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ABSTRACT 

Wireless radio channels are typically unstable medium for communications. However, due 

to the advent of nodes attached to the human body, the radio channel conditions experienced 

by the wearable nodes are quite unique in comparison to those experienced in traditional 

networks, such as Wireless Sensor Networks (WSNs). Wireless Body Area Networks (WBAN) 

are being deployed for an ever-increasing number of applications, however, the time-variant 

nature of the signal attenuation, phenomenon designated as fading, promotes data packet loss 

and hampers the WBANs of reaching their full potential.  

The goals of this thesis are threefold: first, we explore emergent technologies in the field of 

sensing such as non-intrusive wireless-enabled nodes and electrodes embedded in textile 

structures (e-textiles) to develop a WBAN for long-term monitoring of the user. This network 

is integrated into a Cyber-Physical System (CPS) which combines sensing, actuating, 

communications, networking, computing and control technologies to provide a better 

awareness of the on-going firefighting mission and to improve the safety of all elements of an 

emergency response team.   

Second, we aim to establish a better comprehension of the impact that WBAN operation 

scenarios have on intra-WBAN communications. Following a scenario-based radio channel 

characterization, it is proved that large-scale fading is the predominant effect in on-body 

communications. In addition, this effect varies according to the edge of the Network node 

location. For instance, when they are located at limbs (e.g. the user’s wrist), the mobility of the 

nodes leads the on-body links to frequent commutations between line (LOS) and non-line of 

sight (NLOS), which results on fading magnitudes of around -18 dB for 2.45 GHz 

communications. The Edge of the Network node located at the user’s wrist ensures both 

reliability and latency requirements for most of the scenarios, but with an inefficient use of the 

energy available. Furthermore, in-depth analysis of the on-body wave’s propagation shows that 

fading signal component follows a regular pattern during periodic user’s activities that matches 

with the user’s gait cycle period.   

Third, the challenges associated to intra-WBAN communications encouraged the 

investigation on strategies able to ensure reliability with minimum effect on other performance 

aspects. A Transmission Power Control (TPC) mechanism designated Proactive-TPC (P-TPC) 

that employs a hybrid operation principle and targets resource-constrained nodes is proposed. 

This solution relies on RSSI samples to approximate the fading signal during the user’s gait 

cycle, while the instant within the on-going gait cycle is determined using an acceleration 
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signal. Then, the minimum radio output power, called transmission power level (TPL), needed 

to ensure a successful data packet delivery is estimated. The proposed P-TPC mechanism 

consumes nearly 35% less energy than communication systems transmitting at maximum TPL 

allowable on on-body communications (0 dBm). At same time, specific absorption rate (SAR) 

and probability of inter-network interference are improved. The P-TPC is suitable for 

emergency network traffic as the reliability requirement is ensured in an energy-efficient way 

and without sacrificing latency.   

A novel packet scheduler mechanism called by Power Control and Packet Scheduler 

(PCPS) is proposed. The advantages of Neural Networks and Fuzzy Inference Systems for 

modelling nonlinear dynamical systems are explored. Therefore, a model that describes the on-

body channel as a function of operating environment, the relative position of the user’s arm, 

and the body posture is proposed. The PCPS mechanism improves the communication 

reliability (this approach assures around 10% less data packet loss than communications carried 

out at 0 dBm) at the expense of the latency, making this solution suitable for regular network 

traffic. Thus, this mechanism shows that unreliable links can be made reliable if data packets 

are transmitted at instants in which the radio channel quality is favourable for successful data 

packet delivery. 



 

ix 

RESUMO 

As Wireless Body Area Networks (WBAN) estão a ser desenvolvidas para um número cada 

vez maior de aplicações de monitorização, substituindo as tradicionais comunicações por fios 

por comunicações sem fios. Estes canais são geralmente meios de comunicação bastante 

instáveis, contudo, devido ao advento de dispositivos vestíveis, as condições a que os canais 

estão sujeitos são bastante singulares em comparação com as vivenciadas pelas redes sem fios 

tradicionais. A natureza variante no tempo das atenuações sofridas pelo sinal transmitido, 

fenómeno chamado de fading, é a principal razão para a baixa fiabilidade das comunicações 

quanto realizadas em redor do corpo humano. Este fenómeno promove a perda constante de 

pacotes de dados, o que impossibilita as WBANs de alcançarem todo o seu potencial.  

O trabalho de investigação aqui apresentado tem três objetivos principais: primeiro, as 

tecnologias emergentes nas mais diversas áreas são exploradas de forma a implementar uma 

WBAN para a monitorização a longo prazo de bombeiros no teatro de operações. Esta rede é 

integrada num Cyber-Physical System (CPS), que implementa um sistema distribuído de 

monitorização de equipas de emergências através da combinação de diversas tecnologias para 

a deteção, atuação, comunicação, rede, computação e controlo do sistema proposto. 

O segundo objetivo visa estabelecer uma melhor compreensão do impacto que as 

especificidades dos cenários de operação têm nas comunicações da WBAN. Uma abordagem 

de caraterização do sinal baseada em cenários é adotada. Este estudo demonstra que a 

componente large-scale fading do sinal (que provém das obstruções criada pelo corpo e sua 

mobilidade) é o efeito predominante nos sinais transmitidos (na banda Industrial Sientific and 

Medical) e que a sua magnitude vária com a localização dos nós. Para nós localizados em 

membros móveis do corpo humano, o canal de comunicação entre recetor e transmissor está 

em constante comutação entre a existência e a ausência de linha de visão, o que se traduz em 

large-scale fading próximas de -18 dB. Por exemplo, para o nó localizado no pulso, um 

dispositivo padrão é capaz de assegurar os níveis fiabilidade exigidos pelas aplicações e 

latências inferiores aos limites máximos impostos pelo grupo de trabalho IEEE 802.15.6 

contudo, a fonte de energia disponível é utilizada de forma ineficiente. 

Em terceiro lugar, os desafios encontrados pelas WBANs encorajaram os autores a 

investigar estratégias capazes de garantir comunicações fiáveis mas sem comprometer os outros 

requisitos de desempenho. Assim, um mecanismo do tipo Transmission Power Control (TPC), 

designado Proactive-TPC (P-TPC), é proposto. O P-TPC adota um princípio de operação 

hibrido e visa dispositivos com recursos limitados. Esta solução utiliza as amostras da força do 
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sinal recebido para aproximar a componente fading do sinal durante um ciclo de marcha, por 

sua vez, a aceleração sentida pelo nó é utilizada para identificar, em tempo real, o estado do 

ciclo de marcha. Assim, em qualquer instante, o sistema é capaz de determinar a qualidade atual 

do canal e estimar a potência de transmissão mínima necessária para garantir a entrega do 

pacote de dados no destinatário. A solução P-TPC consume menos 35% energia que os sistemas 

de comunicação que transmitem dados à potência de transmissão máxima permitida em 

WBANs (0 dBm). Ao mesmo tempo, minimiza a taxa de absorção específica (SAR) e a 

probabilidade do sistema interferir com redes coexistentes. Este algoritmo é adequado para 

trafego de dados de emergência, pois garante comunicações fiáveis com um consumo 

energético eficiente e sem sacrificar a latência das transmissões.  

Finalmente, um mecanismo do tipo Packet Scheduler, chamado Power Control and Packet 

Scheduler (PCPS), é proposto. Este mecanismo explora as vantagens das redes neuronais e dos 

sistemas de inferência Fuzzy para descrever sistemas dinâmicos não lineares e criar um modelo 

capaz de descrever os canais radio das WBANs em função do ambiente de operação e da 

posição relativa do braço e postura do utilizador. A solução proposta aperfeiçoa a fiabilidade 

das ligações à custa da latência, o que faz desta solução adequada para canais radio aquando o 

trafego de dados normais. O PCPS assegura até menos 10% de pacotes de dados perdidos nas 

transmissões do que sistemas que transmitem à máxima potência permitida em WBANs. Esta 

solução demonstra que ligações não fiáveis tornam-se confiáveis se os pacotes de dados forem 

transmitidos apenas nos instantes em que a qualidade do canal de comunicação é favorável à 

entrega de pacotes bem-sucedidas. 
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CHAPTER 1 

 SCOPE OF THIS THESIS 

Recent developments in wireless communication and miniaturization of sensor/actuator 

technologies have driven the advances in wearable nodes [1]. Over the last few years, the 

revenue worldwide from wearable device sales has significantly increased, passing from USD 

2 billion in 2013 to more than USD 15 billion in 2017 [2]. By the end of 2018, USD 38.84 

billion are forecast [3]. Moreover, the percentage of wearable technology ownership has suffer 

a strong increase, from 7% in 2014 to 15% nowadays and it is foreseen that it can reach 28% 

by the end of 2017[2].  

This type of networks enabled a new domain of research leading to the development of 

suitable network architectures, generally designated as Wireless Body Area Network (WBAN) 

[4]. They are sometimes referred as one of the most promising technologies in a near future 

([5], [6]) due to the great potential to provide high efficiency and convenience for non-invasive 

monitoring of the human body performance and vital signals. The WBAN features enable the 

application of this emergent network technology in wide variety areas. During the last decade, 

wearable systems have been a major topic of research and development, being firstly oriented 

towards the medical and well-being fields, such as, patient’s health monitoring, elderly people 

surveillance and sleep quality evaluation [7], [8]. According to UK National Health Service 

(NHS), the use of innovative technologies to improve health-care to chronically ill with fewer 

hospital visits and admissions could save up to 7 million pounds per year [2].     

Typically, WBANs comprise a set of wearable (and/or implantable nodes) nodes arranged 

around (and/or inside) the human body, communicating within a short range (5 m distance) 

with variable rates, according to measured parameters and application requirements [4], [9]. 

These nodes designated Edge of the Network nodes can gather specific information, such as 

vital signs, body posture and movements or environment parameters in real time, using wireless 

communication technologies, and deliver the information to a node, designated Coordinator 

node, to perform long-term and continuous monitoring [1], [10].  

The applications of WBANs are tremendous and their requirements and specifications 

are dependent on the nature of each application. This thesis focuses on the application of 

WBANs to emergency response team monitoring, one of the most challenging environments 

for this type of networks, as analysed in the next section.  
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 The Challenges of Wearable Nodes Application 

The implementation of a WBAN to real-life applications has been under pressure to reach 

the end-user, but the sector still embraces a number of challenges that are hampering the 

wearable systems of reaching their full potential. Monitoring firefighters and emergency 

response teams during their activities is seen as one of the most difficult and challenging 

scenarios for WBANs. In this application, users are submitted to conditions which limit the 

performance of WBAN systems - harsh surrounding environment, intense movements and 

dynamics of operators. Such conditions, which cover wide operation areas and represents 

immediate life-threatening to the operators (e.g. toxic gases and high temperatures exposure, 

skin burns and risk of collapse) [11], [12] represent a tremendous challenge for WBANs to 

secure efficiency, efficacy and reliability in order to become an effective life-monitoring system 

used in the benefit of professionals and the society.  

According to the IEEE 802.15.6 Task Group (TG6), the WBANs technology must be able 

to handle different requirements in terms of data rate due to the high diversity of sensors used. 

At the same time, a WBAN must ensure the follow requirements [13]:   

 Packet error rate (PER) should be less than 10% for a 256 octet payload (i.e., 256×8 

bits of data) even when the person is in motion. A reduction of the network capacity 

is acceptable, but the data should not be lost;  

 The latency in data transmission, which refers to the time interval between the 

acquisition and processing (or visualization), must be lower than 125 ms in medical 

applications, whereas in non-medical applications a latency up to 250 ms is 

acceptable; Jitter, which is the transmission latency that varies over the time, should 

be less than 50 ms [13].  

Although the TG6 group generalizes the maximum delay for all the applications in the 

medical area, this requirement is dependent not only on the application area, but also on the 

type of parameter measured. For instance, the acceptable latency may vary from 50 ms for 

Endoscope capsules [14], up to 150 ms for Electrocardiogram (ECG) monitoring [15]. 

Independent from the application, it is widely accepted that the quality of the WBAN systems 

depends on their capacity to provide the acquired signals with negligible latency (instantly in 

the user perception), that is, real-time communication [16].  

On the other hand, energy efficiency in WBANs is also an important aspect in this field, 

since the amount of energy available is limited (as the Edge of the Network nodes are battery 
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powered and in many cases, battery replacement or recharging may not be feasible for quite 

long periods [17], [18]). In emergency response team applications, it is expected that batteries 

last for several hours or days as professionals normally work intensively for long periods with 

no breaks and in remote areas where access to the power grid is scarce. Thus, for such 

applications, WBAN nodes able to operate in an highly energy-efficient way are required [1], 

[5]. The technical requirements from the TG6 group do not specify the WBAN autonomy per 

application, since this parameter is application driven. However, they refer that power saving 

mechanisms should be incorporated to allow WBANs to ensure communication reliability in 

an energy-efficient manner, even when operating in power constrained environments [19]. 

WBANs are not autonomous systems, since the information generated within the network 

is not made remotely available (for professionals, such as healthcare personnel, fire command 

centre, etc.). The integration of communications, computation and control technologies is 

required, to enable target the decision to remote and more complex information systems. The 

goal of distributed intelligent systems, known as Cyber-Physical System (CPS), is to create a 

smart control loop to interconnect the WBANs nodes and the remote information systems 

though communication networks (as depicted in Figure 1.1). This approach allows the remote 

information system to gather the data acquired by the WBANs and to manage the physical 

actuators embedded in the Edge of the Network nodes [20], [21].

 The Technological Problem to be Solved 

The CPS approach has the potential to significantly contribute to the progress of Smart 

firefighting and simultaneously provide user comfort and safety. However, the advent of 

wearable and mobile nodes communicating through wireless links around the human body, 

turns the task of ensuring all the Quality-of-Service (QoS) features a very challenging research 

problem in WBANs. On-body communication (data exchange between wearable nodes) is the 

most challenging communication scenario in WBANs, since they are inherently unreliable due 

to the path-loss variability in inter-node distance within a short timeframe.  

The human body plays an important role in the performance of communications in WBANs. 

The on-body links are highly dynamic due to the following reasons: (i) Electromagnetic Waves 

(EM) tend to penetrate the body tissue, dissipating the signal power as heat [22], [23]; (ii) signal 

energy attenuation due to the obstruction of human body, phenomenon designated as 

shadowing [24], [25]. The human body acts as an EM wave’s propagation medium, where the 

emitted EM waves tend to be diffracted by the human body originating surface and creeping 

waves. These EMs may only represent a small percentage of all signal energy initially 
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transmitted [24], [26], [27], however, in the absence of direct waves, the surface and diffracted 

waves may be the main source of energy of the signal received by the Coordinator node [23], 

[27], [28]; (iii) large-scale fading (called slow fading signal component), which refers to slow 

signal fluctuations over small distances, but high in magnitude [24], [25]. This type of fading 

occurs due to the human movement that promotes the frequent commutation of the radio 

propagation conditions between Line-of-Sigh (LOS) and Non-Line-of-Sight (NLOS). This can 

cause a fluctuation in the signal attenuation that can reach 30 dB [26]; (iv) temporal variations 

in the wireless radio channels, which are a result of potential distortions on the antenna radiation 

pattern due to changes on antennas’ direction; (v) the inherent body mobility may render 

WBAN radio channels prone to internetwork interference [18] due to the coexistence of other 

systems or devices, distorting the system performance in terms of reliability [10].   

The unreliability of wireless transmissions around or along the human body have 

discouraged the application of Wireless Sensor Networks (WSN) developments in WBANs. 

Thus, WBAN-specific research and design issues with new lines approaches are required to 

optimize the performance of on-body communication in WBANs [29]. 

 Scientific Challenges 

In the last few years, to meet the QoS requirement of WBAN applications, research efforts 

have been mainly focused on the design of more energy-efficient hardware: through the 

integration of various subsystems into a very compact node [30]; through the transformation of 

energy harvested from different sources, such as, Potential of Hydrogen (pH) level [30], [31], 

Figure 1.1. Cyber-Physical System architecture comprising a WBAN for the user’s monitoring 

in hospitals, source [21]. 
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human body heat [31], [32] or Radio Frequency (RF) radiation [31], [33], into an electrical 

potential to power WBAN nodes; through antenna design and intelligent antenna selection 

according to the link conditions to improve the communication reliability [33]–[35]; through 

Media Access Control (MAC) [18], [36]–[38], and Routing protocols [39]–[42], Interference 

Mitigation schemes [43]–[45] and Transmission Power Control (TPC) mechanisms. 

The research on the latter mechanisms (TPC) aims at increasing the energy efficiency of 

transmissions by adjusting the radio module output power (also known as Transmission Power 

Level (TPL)), at run-time and according to the radio channel conditions [46], to the lowest level 

possible that ensures the successful delivery of data packets, with the minimum effect on other 

performance aspects [4]. This type of mechanisms has drawn considerable attention, since in 

any wireless node, the radio-communication is the process that consumes the larger proportion 

of the available energy [47], being responsible for up nearly three quarters of the total power 

consumption [10]. In addition, the quality of the signal, link connectivity and interference level 

between nearby nodes are directly related with the adopted output power level, i.e. the TPL [4]. 

As a consequence, the performance of MAC protocols, routing mechanisms and interference 

mitigation schemes are significantly influenced by the output power controller [10]. 

Furthermore, the TPC mechanisms can be executed simultaneously with the previous 

approaches, as a complementary energy-saving strategy [48], as demonstrated by the protocol 

stack proposed for multi-hop WBANs [49]. According to research work [50], due to the nature 

of WBANs, the TPC mechanisms play an important role in future developments of WBAN 

technology, being an integral part of the network in several applications [50]. 

Although static and pre-defined TPL mechanisms are used on the majority of the WBAN 

projects, this approach may be inadequate [48], [51] due to the variability of the on-body link 

quality. Therefore, data packets transmission performed at high TPL values may assure reliable 

links, low latency and Specific Absorption Rate (SAR), but may also result in unnecessary 

energy consumption. On other hand, the data packets transmission carried out at low TPLs may 

ensure energy savings, but at the same time the reliability and latency may be sacrificed due to 

the increasing retransmissions.  

 A mechanism able to sense the radio channel quality and properly update the TPL might 

be able to minimize the power consumption, reduce the SAR (an average TPL of -15 dBm is 

used in [39]), improve the receiver nodes quality due to mitigation of RF interferences (PER 

improvements up to roughly one quarter is reported in [52]), as well as delays in transmissions 
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due to retransmissions of lost data packets (in [53] and [54]  a delay reduction up to about 6% 

and 30% were reported, respectively).   

The design of a TPC mechanism with a holistic view of the radio channel in WBANs links 

is crucial for the effectiveness and applicability of TPC mechanisms. However, this is a relative 

new research area, and, as a consequence, there are still some challenges and open issues:  

 The majority of the TPC mechanisms addressed in the literature are only feasible 

for scenarios prone to stable channel quality, for instance, when user is standing 

still. Other solutions rely in the feedback (measured signal power) from the receiver 

node (usually the Coordinator node) to estimate the current radio channel quality 

and then update the TPL. However, this leads to a significant increase of the traffic 

overhead (additional packet transmissions required to exchange control information 

between nodes in order to estimate radio channel quality and update the TPL);   

 Radio channel estimations must be computed fast and must have the sensitivity to 

detect changes in radio channel quality. However, agility and reliability of the TPC 

mechanisms are requirements that are in conflict [55]. For instance, the use of a 

single sample of the measured metric that translates the current radio channel quality 

might result in inaccurate estimates. Several samples increase the accuracy of 

estimations but reduce the TPC mechanism agility, since radio channel quality 

changes are expected, thus, by the time the radio channel is estimated and the power 

is adjusted, the radio channel could have changed; 

 Developing TPCs for Edge of the Network nodes (which have strict constraints on 

processing and working memory) with low complexity is a challenging problem. 

Solutions proposed for WBANs must be kept simple and light enough to be 

successfully implemented in such resource-constrained nodes.  

All the effects listed in section 1.2 turn the radio channel conditions experienced by wireless 

nodes attached to human body quite unique in comparison to those experienced in traditional 

networks. The analytical models, widely used in WSNs to describe the signal attenuation as a 

function of the distance, are not suitable to describe the behaviour of the wireless links in 

WBANs. In WBANs, the distance does not have the most predominant influence on the radio 

channel behaviour [26]. In fact, the signal propagation around the human body is not well-

understood yet. However, reaching a good comprehension of the factors that affect the on-body 

communications is extremely important in the design of effective TPC mechanisms for 

WBANs. 
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Such scenario and technological background have led to the following research questions 

that were the basis of this thesis: 

 Is it possible to implement a body area network where communications are wireless 

and at same time ensure the reliability desirable for the target application?   

 How does the WBAN scenario operation affect the link quality metrics?  

 Which strategies can be implemented to optimize the communications around the 

human body? 

 Research Objectives 

This research project is committed to exploring the integration of several technologies to 

build a CPS approach to a smart Personal Protective Equipment (PPE) for improving the user’s 

performance, resilience and safety in emergency response team application. A special care was 

placed on the design of a smart Personal Protective Equipment that gathers information related 

to the user. In this context, sensor and actuator technologies integration in the garment, as well, 

as data gathering and communication technologies at on-body level are required. Ensuring 

reliable on-body communications, which can be quantified through the Packet Reception Rate 

(PRR)/Packet Error Rate metric, in the proposed WBAN was vital to enhance the QoS 

requirement. Therefore, the metric PRR is considered the main performance metric to be 

improved. However, according to the network traffic (emergency or regular traffic), the WBAN 

privileges certain metrics to the detriment of others (Table 1.1 summarizes the privileged 

metrics, organized by degree of priority, for each type of network traffic), as follows [56]: 

 Emergency traffic – this type of network traffic is initiated by Edge of the Network 

nodes when sensed physiological data exceeds a predefined threshold. The resultant 

data packets have higher priority than other types of data, since this transmission 

must be reliable and with very low latency. Thus, second critical performance metric 

is the latency, while energy consumption must be minimized whenever possible; 

 Regular traffic – refers to the network traffic in normal conditions without the 

critical time request. In such traffic, the energy consumption metric is considered 

the second critical performance metric while the latency is the last one.    

In this regard, one of the goals was to investigate potential strategies to improve the main 

core metrics of this research work, which must be robust and intelligent to deal with the 

necessary trade-off between performance metrics. In addition, solutions must be kept simple 
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and light enough to be successfully implemented in resource-constrained nodes. In summary, 

the main research objectives (RO) of this project are as follow:  

 RO 1 - Development of a WBAN for Firefighter Personal monitoring: Development 

of sensors and actuating nodes, distributed in the user body through attachment to 

user garment. Integration of nodes in a centralized network of the type WBAN to 

provide long term monitoring of users. This WBAN must permit its integration with 

other technologies, following a CPS approach; 

 RO 2 - Establish a better understand of the impact that WBAN operation scenarios 

have on intra-WBAN communications: Understand the on-body radio propagation 

in each link built in the proposed WBAN and, according to the fading behaviour 

and link performance, discuss potential solutions to optimize the WBAN’s link 

performance; 

 RO 3 - Mechanism to optimize the metrics of interest in the scope of this thesis in 

Emergency Traffic: After achieving a better comprehension of on-body radio 

propagation in RO 2, this research work aims to enable the WBAN nodes with a 

computing/control technology capable of estimating the conditions of the radio 

channels and determine the minimum transmission power required to ensure their 

successful sending. This type of algorithm (TPC mechanisms) aim to ensure that the 

system meet the requirements of the application in WBAN’s emergency traffic. 

 RO 4 - Mechanism to optimize the metrics of interest in the scope of this thesis in 

Regular Traffic: Enable the WBAN nodes with a computing/control technology 

(often denominated packet scheduler) capable of sensing the radio channel and 

avoid data packets transmission in instants that radio channel is in outage. Such 

solution might be able to ensure the reliability required and reduce the energy 

consumption due to data packets retransmission. However, these metrics might be 

improved at the expense of the latency metric, making it suitable for the WBAN’s 

regular traffic. 

 

 

 

Table 1.1. Types of network traffic and respective privileged metrics.  

Network Traffic Main Metric  Second  Third  
Regular Reliability Energy Consumption Latency 

Emergency Reliability Latency Energy Consumption 
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 Project Approach 

The research work started with the development of a CPS able to interconnect several 

elements required to make the collected information in a WBAN remotely available. The CPS 

addressed in this thesis comprises three main blocks, including: i) a Base Station, ii) Ad-Hoc 

Network, and iii) a WBAN for sensing user’s garments and trigger alarms. Figure 1.2 depicts 

the overview of the project approach followed in this thesis. 

In this type of systems, the data from the physical world is delivered to the Ad-Hoc network, 

– after being acquired, measured and processed in the WBAN , which has the responsibility of 

connecting the several WBANs with the Base Station (offers a holistic view of the theatre of 

operation).  

As wireless communications are adopted, the wireless radio channels and in particular the 

on-body channels, are unreliable. For that reason, the main focus of this thesis is the intra-

WBAN communications. The main source of unreliability on intra-WBAN communications is 

the fading, which promotes data packet loss, higher latencies on data packet transmission and 

higher energy consumption.  

The challenges associated to intra-WBAN communications encouraged the investigation of 

strategies that can be implemented and incorporated as computing and control technologies in 

WBAN, aiming to achieve effective and reliable communications between wearable nodes in a 

way that can be used as life monitoring system, e.g. firefighting or patient monitoring. 
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Figure 1.2. Overview Project Approach. 
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Every node from the WBAN and each operation scenario are characterized by their own 

particularities and combination of them. In the proposed approach, the research started with the 

attempt to understand why the communication between nodes that are able to communicate in 

a range of 20-30 meter (traditional networks), are not capable of achieving the same efficiency 

in WBANs with maximum distances of 10-40 cm (chapter 4). A scenario-based radio channel 

characterization was made in order to assess the communication performance for each pair of 

nodes. The outcome of this research allowed the identification of strategies for each 

communication link with potential to improve the performance. At the same time, a survey fed 

with state-of-art research was produced in order to fulfil the gap for a thorough analysis of 

solutions to improve communication in links with time-variation fading features, which is 

presented on chapter 2. 

Two strategies were investigated to optimize the metrics performance of time variant 

quality links in emergency and regular traffic - The TPC Mechanism and Packet Scheduler 

Mechanism block, respectively. These two strategies are computing and control technologies 

integrated in the protocol stack, aiming to ensure the successful deliver of emergency or regular 

data packets, respectively. In the next section, the research methodology is described in detail. 

 Research Methodology 

The research methodology has been defined and implemented to meet the requirements for 

successfully accomplish the objectives defined in section 1.2. To achieve the RO 1- 

Development of a WBAN for Firefighter Personal monitoring, the integration of emerging 

technologies in the field of sensing, such as non-intrusive wireless-enabled nodes design and 

electrodes material embedded in textile structures, as well as wireless technologies to provide 

long term monitoring of firefighters were explored. Several Edge of the Network nodes with 

different embedded sensors (to measure several different signals related to human body but also 

the environment such as quality of the air) and actuators (to trigger alarms) were implemented. 

These nodes, which are integrated into different pieces of the personal firefighter garment (a 

wired solution would be impracticable), transmit the measured parameters to the Coordinator 

node through the low-power ZigBee communication technology. The latter WBAN element 

not only manages the network, but also executes the role of gateway. A Wi-Fi card was 

incorporated into the Coordinator node to allow WBAN integration with other technologies 

within a CPS approach. 

To investigate the radio channel performance and fading features in each wireless link of 

the WBAN developed (RO 2 - Establish a better understand of the impact that WBAN operation 
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scenarios have on intra-WBAN communications), the experimental characterisation of the on-

body communications and performance evaluation in terms of the metric of interest in the scope 

of this thesis, namely reliability, energy-efficiency and latency were carried out. To understand 

the influence that factors such as user’s movement and posture, node location and environment 

have in the received signal power, experimental work has been performed in different testbeds 

following a scenario-based approach. Users were invited to perform an activity (standing, 

walking, running and crawling) for a short period of time while nodes (different locations are 

considered namely indoors, such as house rooms and laboratories; and outdoors, such as urban 

open spaces) transmit data packets at a fixed interval period. This interval must be small enough 

to capture the variability of the radio channel behavior. For this reason, transmissions occur 

every 35 ms. To analyze the on-body signal magnitude, the received signals are considered as 

a combination of three components: path-loss, large- and small-scale fading (this differs from 

large-scale fading for presenting faster variations in short periods of time, but with less 

amplitude variations [24], [57], [58] and it is result of the multi-path components effect on the 

emitted signal [59]), in contrast with the approach often adopted in the literature (signal is 

considered a random variable). Moreover, several first-statistical models are tested against the 

empirical data and those that best fit in empirical data are proposed as the model that best 

describes the fading for a specific operation scenario.  

To address the RO 3 – Mechanism to optimize the metrics of interest in the scope of this 

thesis in Emergency Traffic, a mechanism of reduced complexity able to ensure the 

requirements of the WBANs in emergency traffic was developed. Emergency data packets have 

higher priority than other type of data packets in WBANs, since the transmission of these data 

packets must be reliable and with very low latency. A novel TPC mechanism that takes 

advantage of the acceleration signals locally available in the Edge of the Network nodes, 

employing a hybrid operation principle (closed-loop control and inertial-sensor TPC) and 

targeting resource constrained nodes is proposed in chapter 6.  

In regular traffic, communications do not have strict requirements in terms of delays in 

transmissions. Therefore, RO 4 – Mechanism to optimize the metrics of interest in the scope of 

this thesis in Regular Traffic consists in developing a strategy to improve the reliability and 

energy-efficiency of communications at the expenses of the latency. In this regard, the 

advantages of Neural Networks and Fuzzy Inference Systems in modelling nonlinear dynamical 

systems to build a model able to describe the radio channel conditions (Received Signal 

Strength Indicator (RSSI) variations and radio channel outage probability) were explored. This 



1.4. Key Assumptions and Considerations 

 

12 

model, which receives the user’s arm posture (angles between different segments of the arm) 

and body posture and the operating environment as inputs is an important element to the Packet 

Scheduler Mechanism block. This delays data packets transmission to instants in which radio 

channel conditions are more prone to successful data packet delivery. The previous mechanism 

was implemented on the developed Edge of the Network nodes, tested experimentally and 

validated by comparing the results of its performance with those of other solutions addressed 

in the literature. Through simulations, the data packet scheduler was tested and his performance 

assessed by comparing with that of other solutions developed for the same purpose.

 Key Assumptions and Considerations 

In wireless communications, data packets are considered lost data packets if one of the 

following conditions is verified: 

 Signal power, which is translated by the metric RSSI in this study, lower than the 

receiver sensitivity (it is transceiver-dependent and indicates the minimum signal 

power level with an acceptable bit error rate necessary to ensure an accurate received 

signal decode); 

 Signal-to-Interference-plus-Noise ratio (SINR) lower than 6 dB [60].  

The RSSI metric is the measure of the chip error rate of the first eight symbols of the 

incoming data packet, which estimates the quality of the error of a successfully received data 

packet. The SINR determines the probability of correctly decoding a symbol during the process 

of demodulation [47].The latter parameter is determined at each receiver as the ratio of the 

power of the signal of interest  𝑃𝑠𝑖𝑔𝑛𝑎𝑙 to the combined power of the additive white Gaussian 

noise (𝑃𝑛𝑜𝑖𝑠𝑒) and the interference caused by the other active transmissions in range 

(𝑃𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒), as given in the following expression 

 
𝑆𝐼𝑁𝑅 =

𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 𝑃𝑛𝑜𝑖𝑠𝑒
 (1.1) 

Thus, the reliability of the WBAN communication system is influenced by the 

parameters 𝑃𝑠𝑖𝑔𝑛𝑎𝑙, 𝑃𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒  and 𝑃𝑛𝑜𝑖𝑠𝑒 . The former parameter, considered in this thesis to 

determine the signal attenuation and to analyse the fading effects on the radio propagation, is 

translated through the metric RSSI. The 𝑃𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is not addressed in this thesis, while 𝑃𝑛𝑜𝑖𝑠𝑒 

(depends on factors related to the thermal noise of the radio transceiver) influence on signal 

power is already present in the measured RSSI samples. The metric RSSI is a weak indicator 

of the radio channel conditions when radio transceivers are subjected to RF interference [4]. In 
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this thesis, it is assumed that there is no RF interference from external networks. Although 

simple solutions allow networks to avoid (e.g. radio channel hopping strategies) inter-network 

interference and the adoption of low TPLs in communications reduces the level of interference 

between WBANs, it will be hard to ensure in scenarios with high density of networks. 

The present research has some limitations that must be highlighted. The set of scenarios 

considered in the experimental methods were limited to a unique physical layer as well as to a 

unique band, namely narrowband (NB) and Industrial Science and Medical (ISM) radio band, 

respectively. According to some research works that performed experiments in different 

physical layers and frequencies, such as [24], [61], [62], both parameters may have impact on 

path-loss and fading features. However, the narrowband physical layer and the ISM band are 

widely adopted and there is no perspective that this trend changes in a near future (c.f. section 

2.1).  

The experimental method adopted has also some disadvantages. The scenario-based 

experiments are performed for short intervals and for a specific activity that the user must repeat 

during that interval. This method offers poor repeatability and low accuracy. Consequently, the 

fluctuation rhythm and fading features may vary from experiment to experiment. In addition, 

the real measures require a significant number of resources, whether human or economic [26], 

[63]. The number of users considered in current research is short since the WBAN nodes are 

part of the PPE in contrast with the trend adopted in the literature (body worn-nodes). Although 

the followed approach allows us to capture the effect of the antenna-body electromagnetic 

interaction in the fading features, it reduces the number of different human bodies features 

covered in experiments.

 Thesis Outline 

This thesis is structured in eight chapters. The current chapter addresses the motivation for 

the research questions RAISED in this thesis. In addition, the research objectives, the followed 

approach and the research methodology are explained. The remaining of this document is 

structured as follows: 

 Chapter 2 – A generic wearable system architecture typically adopted in the literature 

is described and the implementation of several projects proposed for emergency 

response team application are analysed.  

 Chapter 3 – A generic structure of the TPC mechanisms process is provided and used 

to describe the different solutions addressed in the literature. A taxonomy to classify 
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the different TPC mechanisms developed and described in the literature is proposed 

and, finally, a comparative summary of the state-of-the-art TPCs for on-body channels 

in WBANs is provided. Parts of this research work have been published in [64].    

 Chapter 4 – The CPS, in which the proposed WBAN is integrated, is described and 

system functionalities are addressed. A more detailed information about the platforms, 

sensors and actuators that compose the proposed WBAN is provided as well as the final 

node locations.  

 Chapter 5 – The performance of the several links of the proposed WBAN is evaluated 

in terms of the metrics reliability and latency. Moreover, the fading is decomposed, and 

the several effects analysed as a static process. Later their time dependency is extracted 

from empirical data and analysed. Parts of this work have been published in [65].   

 Chapter 6 – The fading oscillation while user is performing periodic movements is 

analysed and these features are explored to design a TPC mechanism able to ensure 

high reliability, low latency and consumption and to keep the SAR as low as possible. 

The scheme proposed is experimentally evaluated in different scenarios and 

performance results analysed. Parts of this work have been published in [66] and the 

initial ideas was published in [67]. 

 Chapter 7 – The impact of the movement of the user’s arm with different angles 

orientation is analysed. Then, a model developed to describe the radio channel quality 

in function of the angles between different user’s arm segments is presented. Finally, a 

Packet Scheduler mechanism is proposed, implemented and assessed, for several 

conditions, through simulations for several scenarios.   

 Chapter 8 – This thesis concludes with a short review of the proposed WBAN and the 

mechanisms proposed to optimize the on-body communications. In addition, directions 

for future research are provided.
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CHAPTER 2 

 BACKGROUND  

The networks of the type WBAN comprise several independent nodes powered with 

communication capabilities [68]–[71]. According to Movassaghi et al., WBAN’s nodes can be 

classified according to their functionality, implementation and role in the network [68].  

Regarding the classification of the nodes based into their functionality, the categories are the 

following: 

 Body Gateway – This node has the task of gathering all the data coming from Edge 

of the Network nodes and ensure the interaction of the WBAN network with the 

user or with external entities such as other WBANs, networks or information 

systems. The link between the WBAN and other entities is ensured through external 

gateways while the interaction of the WBAN with the user is assured through 

displays or LEDs on the Body Gateway node and/or actuators (e.g. vibrating motor) 

embedded on any Edge of the Network node. In some research works, the Body 

Gateway node is sometimes called Coordinator node, Personal Device (PD), 

Personal Digital Assistant (PDA) or Body Control Unit (BCU); 

 Edge of the Network– these nodes can be categorized into Sensor or Actuator nodes. 

The former node comprises sensors to measure a very specific set of parameters. 

Several types of sensors can be found in WBANs. The sensors can be either 

physiological (e.g. ECG, temperature, blood pressure and glucose, etc.), biokinetic 

(gyroscope, magnetometer, accelerometer) or ambient (e.g. gases, temperature, 

humidity, etc.) sensors. In subsection 2.1.3, more detailed information on the most 

common sensors found and characteristics of the measured parameters in WBAN 

projects is provided. Besides measuring parameters, the sensor nodes may also 

process data and provide wireless response to information [18]. Finally, Actuator 

nodes comprise actuators to change attributes of a physical object aiming to notify 

the user (situations in which a sensed signal is above a pre-defined threshold or 

notifications sent from external nodes) through (for instance) RGB LED or vibration 

motors.   



Chapter 2. Background 

 

16 

The classification of WBAN nodes based on the way that they are implemented within 

human body (classification method proposed by the IEEE 802.15.6 TG [13], [19]) is as follows: 

 Implant – These nodes are implanted in the human body, either inside the body 

tissue or immediately underneath the skin;  

 Body surface – Some existing nodes of this type are smart watches, smart glasses, 

smartphones, earphones or smart textiles attached to garments which enable the 

wireless monitoring of temperature, heart rate, physical activity, moisture, etc. 

(anytime and everywhere). Thus, body surface nodes are wireless nodes that are 

placed on the surface of the skin or in the proximity of the human body (up to 2 

cm away of the body [18], [72]);  

 External – These nodes are not in contact with the user body. Due to the range 

limitations of the communication technologies adopted in WBANs, these nodes 

are typically within a 3-10 m distance of the user body [18], [70], [73]–[75].  

Three different classifications of the WBAN’s nodes are based on the role that they take in 

the WBANs: 

 Coordinator Node – The coordinator of a WBAN has the same role as the Body 

Gateway described above;   

 End Nodes – These nodes are resource-constrained nodes programmed to perform 

their embedded application. These nodes are designated Edge of the Network node 

when classified based on their functionality; 

 Relay Node – These nodes are also called intermediate nodes, and, as its name 

suggests relay the data packets from the network transmitter. The transmitter can be 

the Coordinator (in the case of downlink communications) or one of the End nodes 

(uplink communications). Sometimes, data packets transmitted by wireless nodes 

located in limbs (such as hands or feet) need to be relayed in order to reach the 

Coordinator. Relay nodes might be capable of sensing data and interacting with the 

user or other entities.  

According to the IEEE 802.15.6 TG, there are four possible communication scenarios in 

WBANs [18], [42]: 

 On-Body – Refers to the communications between Edge of the Network node 

implemented in WBANs as body surface nodes and the Coordinator node which is 

also on the user body;  
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 Off-Body – Communications between Body Surface/Implant nodes, usually Body 

Gateway and External nodes. The range of these communications depends on the 

technology adopted for this purpose;  

 In-Body – Refers to the communications between Implant nodes and Implant/Body 

Surface nodes; 

 Body-to-Body – Refers to the communications between Coordinator nodes of 

different WBANs. 

From the set of communication scenarios depicted in Figure 2.1 (unique exception is in-

Body communication), On-Body is the one that has attracted more interest of the research 

community [13], since, as analyzed in subsection 1.2.1, the obstruction of the human body to 

waves propagation lead to high path-loss and turns the radio channel time-variant which might 

promote data packet losses.

 Wearable Systems 

In this section, a generic WBAN communication architecture based in segments is 

described. This architecture is used (section 2.1.2) to describe and compare wearable systems 

approached in the literature for emergency response team application. Finally, in section 2.1.3, 

the most often used sensors in WBAN projects are listed and the characteristics of the 

parameters measured by such sensors are highlighted.   

 

 

Figure 2.1. Communications scenarios in Wireless Body Area Networks, source [2]. 
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 Communication Architecture 

The literature often divides the communication architecture of the research works in 

wearable systems into communication tiers as depicted in Figure 1.1 [18], [21], [41], [73]. This 

generic communication architecture comprises three segments: 

1. Intra-WBAN Communication (Tier-1), refers to the on-body communications; 

2. Inter-WBAN Communication (Tier-2), covers the off-body communications between 

the Body Surface nodes or Implant nodes with External nodes; 

3. Beyond-WBAN communication (Tier-3), refers to the communications that enable 

interactions with an eventual back-end system/information system. 

Regarding the Tier-1, it refers to the interaction between WBANs nodes within a 

communication range lower than 2-10 m. The ZigBee and Bluetooth are the most adopted 

communication protocols (c.f. Table 2.1).  

The second tier refers to the off-body communication between the WBANs and a 

components within the Tier-3 (e.g. smartphones, other WBANs or Ad-Hoc network/WSN 

relays). Several solutions have been used for this purposed, namely Personal Area Network 

(PAN); direct communications; infrastructures such as Wireless Local Area Network (WLAN); 

or the use of mesh architecture networks, such as Ah-Hoc networks or WSNs. Research projects 

that rely in PANs aim to process and display information in smart portable nodes operating 

close to the WBAN. In such cases, the Tier-3 is only implemented if the information is required 

in a large scale. The communication protocol Bluetooth and wireless networking technology 

Wi-Fi are the most adopted to perform off-body communications in wearable projects. In some 

cases, for instance the research projects [76]–[78], the Coordinator node is a smart node 

(smartphone in the pocket or an Internet-of-Things device) that is able to ensure the data 

transmission to a back-end server without requiring the implementation of the Tier-2, 

suggesting that wearable systems’ communication architecture is application-specific.  

The Tier-2’s implementations, based in infrastructures such as Local Area Networks or 

WLANs, are the most adopted approach. They are suitable for systems that operate in places 

with a limited physical area, such as hospitals, offices or houses. The wireless networking 

technology Wi-Fi is the preferable communication technology to this segment, as it offers large 

bandwidths to data transmission and performs a centralized network. Other solutions use mesh 

networks, which are able to ensure a higher coverage area than the previously mentioned 

infrastructures, since routers can be introduced to extend the network coverage. Another 

advantage of this solution is the fast network setup, a fundamental feature in emergency 
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scenarios. Typically, the Coordinator node transmits the user data to an external gateway (an 

External node that is part of the infrastructure or mesh network, for instance static router nodes). 

In CodeBlue research project, an External Node called Access Points (AP) also operates as a 

database server [79].  

The Tier-3 ensures the dissemination of the gathered information in Tiers-1/2 to the 

information systems. This segment when interlinked with the components and the technologies 

of the Tier-2 establish a large CPS that connects the WBANs to information systems (such as 

Smart Healthcare, Smart Cities, Smart Homes, Smart Manufacturing, etc.) to make this 

information Worldwide (W-W) available. These information systems share a common 

component, the back-end database, which performs the critical task of storing the acquired data. 

For instance, in Smart Healthcare system addressed in [80], this database allow systems to 

create a patient profile through the patient information gathered and the previously stored 

historic. This information can be made available to be remotely accessed by healthcare 

personnel such as doctors or nurses. The wireless mobile telecommunications technology 3G 

and 4G, and the wireless networking technology Wi-Fi often used in Tier-3.   

 Projects  

Monitoring emergency response team is regarded as one of the most difficult and 

challenging scenarios, as the surrounding environment is harsh, highly dynamic, covers wide 

operative areas and represents immediate life-threatening to the users (e.g. exposure to toxic 

gases, high temperatures, skin burns, and the danger of collapse) [11], [12]. To address these 

problems, several Personal Protective Equipment’s have been proposed in the literature, where 

different design approaches have been proposed to support user during an urban fire to meet 

the user requirements and the unique challenges faced by the emergency responders. There are 

several differences between the various Personal Protective Equipment’s addressed in the 

literature, namely in the design choices in terms of monitored parameters, Edge of the Network 

nodes’ location, and wireless communication protocols of the tier-1 and tier-2.  

The number and type of physiological and environmental parameters monitored by the 

several proposed PPEs varies highly. PPE like WASP [81], iVital [82], WearIT@Work [11], 

[12] and PHASER [83] do not monitor environmental parameters, FIRE [76] does not monitor 

physiological parameters and PPL [84], GLANSER [85] and CoenoFire [86] do not monitor 

both kind of parameters. On the other side, the ProeTEX [12] and i-PROTECT [87] PPE offer 

a wide range of monitored parameters, the former is more focused on physiological parameters 

and the latter is more focus on the environmental parameters (environmental conditions and 

https://en.wikipedia.org/wiki/Wireless
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toxic gases concentration/presence). Unlike most of the PPEs found on the literature, the FIRE 

relies on sensors preinstalled on the building for monitoring environmental parameters. The use 

of such sensors can give a better awareness of the conditions inside the building as well as an 

idea about the fire progression and expansion. But, if the PPE only relies on these sensors, like 

the FIRE PPE, with the progression of the fire these sensors can be destroyed and, therefore, 

the users and the fire command centre will not be aware about the conditions inside the building. 

To increase the comfort, reduce the size and weight of the sensors and, consequently, increase 

the user acceptance of the proposed solution, several techniques were proposed for the 

integration of smart textiles into the garment. The ProeTEX and iVital PPE rely on textile 

electrodes for the acquisition of the user’s heart rate, and the former uses piezoelectric and 

piezo-resistive sensors, textile motion sensors and textile antennas for the acquisition of 

breathing rate, determine inactivity and the data reception/transmission, respectively. The i-

PROTECT PPE, proposes the use of optical fibers integrated with technical textiles for the 

acquisition of breathing and heart rates and the user’s temperature. Finally, the PPE proposed 

by Soukup et al. [88], aims to acquire the humidity and the nitrogen dioxide (NO2) through the 

use of screen printed sensors, the same technique is employed for the development of antennas. 

Another key feature in a PPE is the modularity of the proposed system. By combining a 

modular architecture with a distributed processing logic at the node level, it is possible to reduce 

the overall hardware complexity, the size of the Edge of the Network node and the amount of 

data to be sent (resulting in a transmission-power consumption reduction). Moreover, a modular 

architecture also makes the system more versatile, as new Edge of the Network nodes can be 

added without modifying the PPE architecture. The on-body communication (Tier-1) can be 

done through the use of wired [12] or wireless [82], [83], [88], [89] technologies. The use of 

wireless technologies makes the PPE more flexible and robust (i.e., it is possible to place an 

Edge of the Network node at any location, without the need of a physical connection, and the 

connections are not damage by use or washing, for example). Different wireless 

communications protocols, Bluetooth/Bluetooth Low Energy (BLE) [81]–[83], [90], ZigBee 

[89], MOTOTRBO [87] or other proprietary RF-based [88] were used for the on-body 

communication, or the communication within the WBAN. Projects like WASP and ProFiTex 

rely on wireless communications within the WBAN, they are based on all-in-one modules for 

the acquisition of the target parameters. The use of such modules makes the PPE more 

vulnerable to failure if the module is damaged during a mission, the fire command centre will 

not receive the updates about the user condition. 
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The bidirectional real-time off-body communication (Tier-2) is of utmost importance in a 

PPE system, since receiving the monitored parameters in real-time and transmitting alerts to 

the user at any moment are essential for decision making support and user’s safety, respectively. 

Several design approaches have been proposed, each one has advantages and disadvantages. 

The iVital project relies on the building Wi-Fi network to send the data to the fire command 

centre. This approach in an urban fire scenario is very unreliable due to the low likelihood of 

the building network to be operational. A similar approach was adopted by the FIRE project, 

in this project a wireless sensor network (WSN) was preinstalled on the building, designated 

SmokeNet, and is used for the communication between the users and the fire command centre 

[76]. Projects like WASP, PHASER and CoenoFire rely on the mobile telecommunications 

technology 3G to send/receive data, which might not be available inside large buildings. 

Additionally, the WASP and the i-PROTECT projects, use the MOTORTRBO mobile radio 

communication system from Motorola to communicate with the fire command centre. Projects 

like WearIT@Work, [40] and [89] are based on the strategic deployment of ad-hoc networks. 

The WearIT@Work project proposes the LifeNet network, which has a system for the 

automatic distribution of beacons as the users are entering the building [11]. A similar approach 

was adopted in [88], however the beacon placement is done dynamically by the users. The 

ProeTEX project proposes the strategic deployment of a long-range communication system, 

based on Wi-Fi, at the intervention site for bidirectional communication [91]. The ProFiTex 

project follows a different approach, they developed the Smart Lifeline, which is a braided data 

and security rope carried by users. It is equipped with data transmission and energy supply 

capabilities. The communication between the users and the lifeline is wireless and based on 

ZigBee technology.  

 Sensors Features 

Although WBANs comprise a limited number of sensors and are application-specific, they 

usually present a higher diversity of Edge of the Network nodes than traditional networks. There 

are various sensors that are often found in WBANs: Blood Glucose, Air Quality (CO, CO2), 

Blood Oxygen, Heart Rate, Inertial sensors, Body Temperature, Blood Pressure, ECG, 

Electroencephalography (EEC), Electromyography (EMG) sensors and Endoscope Capsule. 

These sensors can be categorized according to the type of data collected (continuous or discrete 

time-varying signal), type and location (implant sensor, wearable sensor and external sensor), 

communication traffic (data rate) and maximum acceptable latency.  
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Table 2.1. Wearable System features in terms of parameters measured, communication protocols adopted for the three tiers that composes the communication architecture and 

hardware used. 

Project  Parameters measured Tier-1  Tier-2  Tier-3 E-textile 
Platform in 

Tier-1 

WearIT@Work 

[11]  

Location, acceleration to detect arm movements 

and vibrations, body temperature and heart rate 
Wired 

Ad-Hoc 

(ultrasonic) 
N.A No - 

WASP [81] 
Heart Rate, breathing rate, activity level and 

posture 
Bluetooth MOTOTRBO N.A No 

Zephyr 

technology  

ProeTEX [12] 

Heart rate, breathing rate, body temperature, 

blood oxygen, fall detection, CO and CO2 

concentration, environmental temperature, heat  

Wired (RS485) 

and ZigBee 

Ad-Hoc (Wi-

Fi) 
N.A 

ECG textile electrodes, 

piezoelectric and 

piezoresistive sensors 

- 

ProFITEX [92] 

Breathing and heart rate, movement pattern and 

stance, skin temperature, activity level and 

environment temperature 

ZigBee (IEEE 

802.15.4) 
Wired  N.As No 

Zephyr 

technology 

i-PROTECT [87] 
Breathing and heart rate, body temperature, 

environment parameters  and toxic gases  
MOTOTRBO MOTORBO  N.A 

Yes. Sensor heart and 

breathing rate and body 

temperature  

- 

iVital [82] Heart rate, activity level, location and falls Bluetooth MOTORBO  N.A 
Yes. ECG sensor is based on 

textile electrodes. 
- 

FIRE 

(SmokeNet) [76] 
Location, temperature and air quality 

Smartphone is the 

sensing platform 
WSN  N.A No 

Telos  Sky 

mote 

LifeNet [93] Temperature and air quality Ultrasonic  
Ad-Hoc 

(ultrasonic) 
N.A No 

RELATE 

Bricks [94] 

PHASER [83] 

Hear Rate, ECG, respiratory rate, skin 

temperature, blood pressure/glucose and user 

activity (accelerations) 

Bluetooth  3G or Wi-Fi N.A No - 

Ghosh et al. [89] Heart rate, body temperature, toxic gases ZigBee 

Ad-Hoc 

network 

(ZigBee) 

N.A No TelosB 

CoenoFire [86] 
Speed, activity level, location (GPS) and heart 

rate.  
ANT radio N.A 

Cellular 

Network 

(4G) 

No - 

Soukup et al. 

[88] 

Heart rate, activity level, toxic gases, inner and 

outer temperature and humidity. 
ZigBee  

Ad-Hoc (Wi-

Fi) 
N.A. Yes. E-textile wiring harness - 

PPL (2008) [84] User location and tracking N.A. - - No - 

GLANSER [85] User location N.A.  
Ad-Hoc 

(ZigBee) 
N.A. No - 
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Table 2.2 lists the most common sensors found in WBAN applications and summarizes 

their features, showing that every sensor has his own requirements in terms of data rate and 

latency requirements. The sensors communication traffic is quantified high (thousands of bits 

are generated per second), low (few hundred bits generated per second) and very low (less than 

a hundred bits per second) level of communication traffic, whereas the latency requirements 

are categorized as low (few seconds or minutes), high (less than 250 ms) and very high (lower 

than 125 ms) according to the demand level.   

 WBAN Features 

This section approaches the particularities of the WBANs. First, the set of requirements that 

WBAN networks must meet to ensure their applicability in a wide range of purposes is 

presented. After, the most widely adopted communication standards in WBAN networks 

developed for applications that aim to monitor the users that are part of an emergency response 

team are identified and compared.   

 WBAN Application Requirements  

Several research groups started developments in Wireless Personal Area Networks 

(WPAN) in the 90s, aiming to interconnect the Body Surface nodes [18]. Several WPANs 

performance improvements resulted from these developments, namely lower power 

consumption, short range and low-cost wireless communication standards, such as Bluetooth 

and ZigBee (IEEE 802.15.4). Although these technologies are often adopted in WBAN 

projects, they do not offer enough flexibility to cover all the data rate and Quality of Service 

(QoS) requirements of the wide range of WBAN applications listed below. The limitations of 

these technologies do not enable the implementations of WBANs able to address the 

application’s requirements [18], [42].  

In November 2007, the IEEE Standards Association established a study group as IEEE 

802.15 Task Group 6 (TG6) to specify physical and MAC layers to address the specific 

challenges encountered in WBANs [95]. The TG6 started in 2008 with an invitation of 

contributions for candidate wireless applications in or around a body, which require or might 

take advantage of the WBAN communication standard [96]. In September of 2008, the TG6  

provided a technical requirement document (TRD) [97] gathering a set of technical aspects that 

proposals for the IEEE 802.15.6 WBAN standard must fulfill. The TG6 requirements covers 

several issues, such as performance, reliability, availability and maintenance-level, as follows:  

 WBAN links should support bit rates in the range of 10 kb/s up to 10 Mb/s; 
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 The PER should be less than 10% for a 256 octet payload (i.e. 256 x 8 bits of data) for 

the 95% best-performing links based on PER, i.e. at a given signal-to-noise ratio, those 

5% of radio channels that PER performance should not be used to determine if reliable 

requirement is met; 

 Edge of the Network nodes should be scalable up to a number of 256; 

 Edge of the Network nodes and Body Gateway nodes should be capable of reliable 

communication even when the user is moving. Although it is acceptable for network 

capacity to be reduced, data should not be lost due to unstable radio channel conditions 

The considered applications include postural body movements relative to sitting, 

walking, twisting, turning, running, waving arms and dancing, among others, which 

result in the shadowing effect and radio channel fading. Nodes of different WBANs 

may move individually with respect to each other, promoting interference; 

 Edge of the Network nodes should be capable to joint or be removed from the WBAN 

in less than 3 seconds; 

 Latency (communication delay), jitter (variation of one-way transmission delay) and 

reliability must be supported for critical WBAN applications. The TG6 categorize the 

WBAN application in medical and non-medical, where the maximum acceptable 

Table 2.2. Main features of sensors often present in WBANs, sources [14], [15], [17], [102], [142], [192], [193]. 

Sensor Parameter Measured Placement 
Signal 

type 

Data 

Rate 
Latency 

Blood Glucose Measure the blood sugar level Wearable Discrete 
Low (1.6 

kbps) 

Low (few 

minutes) 

Air Quality CO, CO2, etc. External/Wearable Discrete Very low Low 

Blood Oxygen Blood oxygen saturation Wearable Discrete Very Low Low (< 3s) 

Heart Rate 
Number of heart beats per 

minute 
Wearable Discrete Very Low Low (< 3s) 

Magnetometer 
Measure magnetic induction 

intensity 
Wearable Continuous 

Low (35 

kbps) 
Low 

Body Temperature Temperature of human body Wearable Discrete 
Very Low 

(120 bps) 
Low 

Accelerometer 

Acceleration on each spatial 

axis of three-dimensional 

space 

Wearable Continuous 
Low (35 

kbps) 
Low 

Gyroscope Angular velocity of rotating Wearable Continuous 
Low (35 

kbps) 
Low 

Blood Pressure 

Peak of pressure of systolic 

and the minimum pressure of 

diastolic 

Wearable Discrete Low Low (<3s) 

electroencephalogram 
Measure the spontaneous 

brain activity 
Wearable Continuous 

High (90 

kbps) 

High (latency < 

150 ms) 

ECG 
Measure the heart electrical 

activity 
Wearable Continuous 

High (71-

288 kbps) 

High (latency < 

150 ms) 

EMG 
Measure the electric activity 

of skeletal muscles 
Wearable Continuous 

High (320 

kbps) 

High (latency < 

150 ms) 

Endoscope Capsule 

Used to record images of the 

digestive tract for use in 

medicine 

Implant Discrete Low 

Very High 

latency (< 50 

ms) 
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latency in the former applications is 125 ms while in non-medical applications is 250 

ms. The jitter on communications should be less than 50 ms;  

 On-body and in-body WBANs should be capable of coexist in and around the human 

body; 

 Security and privacy are key concerns in medical applications, a multi-level security 

should be ensured, and the level that best suits is application-specific. Thus., security 

must be lightweight, scalable and energy efficient; 

 The physical layer should support at least ten co-located WBANs randomly distributed 

in a volume of 6 m3; 

 All Body Surface and Implant nodes should be capable of transmitting at 0.1 mW (or -10 

dBm) and the maximum radiated transmission power should be equal or less than 1 mW 

(or 0 dBm). This complies with Specific Absorption Rate (SAR) of the Federal 

Communications Commission’s 1.6 W/kg in 1 g of body tissue1 in US, which equates 

to a maximum transmitter radiated power of  1.6 mW; and EU SAR regulations: 2 W/kg 

in 10 g, which limits the radio-frequency transceiver output power in EU < 20 mW;  

 WBANs should be capable of operating in a heterogeneous environment where 

networks of different standards cooperate amongst each other to receive information; 

 Capability of providing a fast (<1 sec) and reliable (99.9999%) reaction when exposed 

to emergency situations and alarm messages. Higher priority must be provided to this 

type of messages;  

 A transmission range of at least 2 meters shall be supported (while meeting link bit 

rates). However, in some applications the range can be extendable up to 5 meters; 

 A WBAN can incorporate Ultra-Wide Band (UWB) technology with a narrowband 

transmission to cover different environments and support high data rates. For instance, 

some medical applications such as ECG monitoring might require a UWB-based 

WBAN to support higher data rates; 

 Power saving mechanisms should be incorporated to allow WBANs to operate in power 

constrained environment.  

In November 2008, the TG6 issued a Call for Proposals for development of the IEEE 

802.15.6 standard [98], as a consequence of the high number of responses to the call of 

                                                 

 

1 Http://www.fcc.f.ov/oet/rfsafety/sar.html 
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applications, confirming the industry's interest in WBANs. The TG6 call for proposals received 

34 proposals which were assessed based in their capacity to fulfil the technical requirements 

above listed. The several proposals were merged into a single draft of the standard in April 

2010, while the rectified version [19] was released in 2012. This standard defines the Physical 

(PHY) and MAC layers and has as main key feature the flexibility to support several (medical 

and non-medical) applications with its own of requirements in terms of data rate, energy 

efficiency, and reliability. This standard aims to give the manufacturers the flexibility to design 

their nodes in an application-specific way, since the applications requirements cannot be 

simultaneously maximized [99]. 

Although the technical requirements presented by the TG6 [97] were defined to assess 

potential standards, they provide valuable insight into the expected requirements of the target 

applications and serve as guidelines for developers to design appropriate networks for a wide 

range of applications [13]. Nowadays, the network performance are often qualified in terms of 

its main QoS parameters such as delay profile, delay jitter, and data packet loss rate [100].  

 Standard Solutions  

The analyse of the wearable systems proposed for emergency response team monitoring 

application shows that the wireless communication standards ZigBee and Bluetooth Low 

Energy (BLE) are the most adopted on Tier-1 communication segment of communication 

architecture depicted in Figure 1.1.  

Comparison of Wireless Communication Standards 

There are several important factors to consider when choosing a wireless technology, 

namely QoS requirements (scalability, uninterrupted connectivity, promote information 

exchange, mitigation across the network and interconnect plug and play devices), power usage 

(fundamental to the design of energy-efficient WBANs) and SAR (according to the IEEE 

802.15.6 TG, technologies must follow local or international regulations) [18]. Table 2.3 

summarizes some of the characteristics of the most used communications standard in WBAN 

area and standards specially thought to handle the specific requirements of WBAN applications.  
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In terms of QoS requirements, the IEEE 802.15.6 standard is the most appropriate for 

supporting applications with different data rates, being suitable for short range applications (5-

10 m) with high data rate [18]. However, to best of the author’s knowledge there is not IEEE 

802.15.6 transceiver commercial available able to enable a multiple layer operation mode. The 

TG6 defined three different physical layers, namely (1) Narrowband (NB), (2) Ultra Wide Band 

(UWB) and (3) Human Body Communication (HBC) for the IEEE 802.15.6 standard. Some 

UWB transceivers can be found in market, which have been mainly used in indoor localization 

systems, complementing GPS for WBAN tracking [101]. Although this band is the one with 

more potential to WBAN applications (band frequencies are Worldwide available; support of 

high data rates (110-480 Mbps) [18], [73]; short range communication (<10 m) [72], [102]); 

and signals are emitted over a large bandwidth, providing robustness to jamming with low 

probability of interception [17]. The industrial interest on this technology decreased due to the 

costs of the technology and the data rates of the first devices introduced, which presented lower 

values than the data rates theoretically estimated. Furthermore, the energy consumed by UWB 

transceivers is significantly higher than Narrowband transceivers in receiver mode [60]. 

Regarding the power consumption and SAR metric, the BLE is more adequate than the 

IEEE 802.15.4 standard. The BLE is the ultra-low power consumption configuration of the 

Bluetooth technology with the follow key features: robustness, low power consumption and 

low cost [103]. The BLE offers the following implementation’s types: single-mode BLE, 

suitable for low energy nodes with small-factor and short-range communication (<10 m); and 

dual-mode that enable the nodes to operate in both high-power (in the case of a smartphone for 

audio streaming, for example) and low-power (to connect to a heart rate monitor, for example) 

modes. The BLE transceivers  can consume 92 nJ/b and their cost is considered low [18]. 

Theoretically, the BLE node power consumption is comparable to that of IEEE 802.15.4, but 

the data rate is four times higher [104]. However, the reported BLE throughput was lower than 

100 kbps [105], [106]. The communication standard BLE is the most convenient standard for 

short-term high data rate applications [18], since it is able to support applications with different 

Table 2.3. Features of the most used wireless technologies in WBANs, source [18], [73]. 

Technology Frequency 
Data 

Rate 
Coverage Area Modulation 

Network 

Topology 

IEEE 802.15.4 

(ZigBee) 

2.4 GHz (ISM 

band) 

20, 40, 

250 kbps 

10-100 m (on-

body only) 

O-QPSK, BPSK 

(+ASK) 

Star, mesh and 

cluster-tree 

IEEE 802.15.6 

(UWB) 
3.1-10.6 GHz 

110-480 

Mbps 

5-10 m (on-

body only) 

OFDM, DS-UWB, 

BPSK, QPSK 
Star 

Bluetooth Low 

Energy 

2.4 GHz (ISM 

band) 
1 Mbps 

10 m (on-body 

only) 
GFSK star 
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data rates (up to 1 Mbps) within a range of less than 10 m. This technology only supports star 

topology [73] and this limitation is seen as the main disadvantage of the BLE technology, since 

it limits the scalability of WBANs.   

Although the IEEE 802.15.4 standard does not stand out in any of the factors summarized 

at the beginning of this section, this standard is the one that has received more attention from 

the scientific community so far. Several research projects were successfully built using the 

IEEE 802.15.4 standard (c.f. section 2.1). According to Yazdi et al., the IEEE 802.15.4 standard 

will remain a serious candidate for  WBAN applications due to its maturity, availability and 

variety of low-cost commercially available transceivers [107]. The interest of the industry and 

from the research community dictated the emergence of solutions (such as ZigBee, IPv6 over 

Low-Power Wireless Personal Area Networks - 6LoWPAN -, and WirelessHART) that 

complement the standard with higher level protocol’s layers, turning the IEEE 802.15.4 the 

most used standard in both WSNs and WBANs projects. 

The IEEE 802.14.5 frequency bands and maximum achievable data rates shed light on the 

main disadvantages of this standard, namely: (1) high probability of being subjected to inter-

WBAN interference and (2) standard not able to meet data rate requirements of all WBAN 

applications.  

Wireless communication protocols such as ZigBee, Bluetooth, BLE and Wi-Fi share the 

same frequency spectrum [71]. Thus, the transmission range of WBANs and other types of 

network can overlap, causing interference that can degrade the WBAN QoS, leading to 

unnecessary energy consumption and performance degradation [75], [108]. The maximum data 

rate of the IEEE 802.15.4 standard is 250 kbps, which limits the target WBAN applications, 

since it is not enough to support the data rate requirements of some applications (c.f. Table 2.2). 

However, the IEEE 802.15.4 maximum data rate is higher than those required in most of the 

WBAN applications.  

IEEE 802.15.4  

Since the IEEE 802.15.4 is the most adopted standard in WBAN projects, it was chosen as 

the standard for the WBAN application addressed in chapter 4. A brief description of the PHY 

and MAC layer of the IEEE 802.15.4 is provided in this section.   

The target of this standard is the low data rate and low power consumption applications 

with low requirements in terms of latency and performance [73]. 

The PHY layer of the IEEE 802.15.4 specifies 26 half-duplex radio channel across three 

different bands, which differ in the region availability, data rate and modulation technique 
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adopted. The 868 MHz ISM band (a single radio channel with a data rate up to 20 Kbps using 

Binary Phase Shift Keying modulation), the 915 MHz ISM band (ten radio channels with a data 

rate up to 40 Kbps using BPSK modulation) and the 2.4 GHz ISM band (divided into sixteen 

radio channels with a bandwidth of 2 MHz and maximum data rate of 250 Kbps using Q-QPSK 

modulation with a communication range up to 100 m) [109]. The 868 MHz and 915 MHz ISM 

bands are not worldwide available (only in Europe and United States) and offered bandwidth 

is short to the majority of the applications. The 2.45 GHz ISM band is the most popular and 

most adopted in WBAN projects, since it offers worldwide availability, short range 

communications, low power consumption operation, and acceptable on-body propagation 

characteristics (although higher than the 868 MHz and 915 MHz ISM bands [60]). At the same 

time, nodes transmitting in this band only require small and light antennas.  

To reduce concurrent transmissions among Edge of the Network nodes, this standard 

specifies two access mechanisms, namely beacon- and non-beacon-enable [110]. For instance, 

in non-beacon-enable access, the Edge of the Network nodes have to sense the radio channel 

before transmitting data. The unslotted Carrier Sense Multiple Access with Collision 

Avoidance (CSMA/CA) protocol is used. Thus, Edge of the Network nodes only transmit data 

when the radio channel is free. Otherwise, the transmission is delayed by a random amount of 

time. In beacon-enable mode, the radio channel access is managed through a Superframe (SF). 

Beacon frames, which are transmitted periodically to Edge of the Network nodes, delimit SF 

boundaries, ensuring synchronization in the network. Beacon Intervals (BI) are used to define 

the time between two consecutive beacons. Thus, by receiving the beacons the Edge of the 

Network nodes get knowledge of the SF duration and the moment when they can transmit their 

data packets. The SF structure comprises two portions, the active and inactive portion. The 

former portion consists of 16 equally spaced slots, so-called SF time slots, corresponding to 

15.6 ms each (assuming 250 Kbps in 2.45 GHz band). This portion is divided into two periods, 

the Contention Access Period (CAP) and Contention Free Period (CFP) as depicted in Figure 

2.2. In the CAP period, the Edge of the Network nodes access to the medium exactly like in 

non-beacon mode, but within the SF time slots. The CFP period is divided in time slots named 

Guaranteed Time Slot (GTS), which are allocated by the Coordinator node to the Edge of the 

Network nodes (these nodes can only transmit data during his GTS in a contention free fashion).

 Wireless Communication Basics 

On-body communications are not well understood yet, being the number of research works 

addressing this subject very reduced when compared to those carried out in the WSNs 
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communication field. On-body electromagnetic waves propagation have been typically 

modelled in two levels of abstraction, using path-loss and fading models.  

 Path-Loss Models  

The path-loss models describe how the attenuation in power (density) of the 

electromagnetic waves decays logarithmically with the distance. Log-distance path-loss model 

was developed for traditional networks, but several research works (e.g. [27], [111]–[116]) have 

used it to model WBAN radio channels. This model is expressed as [111]: 

 
𝑃𝑑𝐵(𝑑) = 𝑃0,𝑑𝐵 + 10 ∗ 𝑛 ∗ log (

𝑑

𝑑0
) = −|𝑆21| (2.1) 

where 𝑃𝑑𝐵  refers to the path-loss in dB at distance 𝑑 in cm, which decays logarithmically at a 

rate 𝑛; 𝑃0,𝑑𝐵 refers to the path-loss in dB at a reference distance 𝑑0 [117]. The value of the 

coefficient 𝑛  is environment-dependent, and authors extract it by adjusting the curve of the 

model to empirical measurements [117]. Although distance influences the on-body 

communication reliability, it is not the dominant factor as defended by several authors, e.g. 

research works [111], [112], [118]. For example, a weak and hardly noticeable relationship 

between distance and path-loss is reported in [111] (for a fixed distance between the 

Coordinator and End node, the model predicts always the same path-loss). A pair of nodes at 

the same distance but in located at different body limbs are subject to significantly different 

levels of attenuations [112]. Thus, the coefficients of expression (2.1) must present different 

values for each pair of nodes [26]. This suggests that the average signal power cannot be treated 

as a deterministic value and cannot be described using a simple power-distance equation. Due 

to the high diversity of radio channel conditions, an one-model-fits-all approach is not possible 

in WBANs. 

Figure 2.2. Superframe structure of the IEEE 802.15.4 standard [110]. 
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Since the WBAN radio channels have different properties from other radio channels, the 

research community has started looking for alternative ways to model these radio channels, 

opting for the development of models for specific communication scenarios.  

The TG6 proposed three radio channel models designated CM3A, CM3B and C3MC that 

describe the signal power on a per-link basis, discriminating the empirical data to be analysed 

in terms of location of the node, frequency of operation, and surrounding environment. This 

approach allows authors to reach a relation of cause-effect [119]. To take into consideration the 

variability of the path-loss, the TG6 has adopted the standard log-distance path-loss model and 

included a log-normal shadowing variable. For example, the CM3A model includes a normal 

distributed variable, which represents the shadowing effects [119]:  

 𝑃𝑑𝐵(𝑑[𝑚𝑚]) = 𝑎 ∗ log(𝑑[𝑚𝑚]) + 𝑏 + 𝑁 (2.2) 

where 𝑃𝑑𝐵 refers to the path-loss in dB at distance 𝑑 in mm, 𝑎 and 𝑏 are coefficients of linear 

fitting, 𝑁 is a normal distributed variable, with an average value zero and standard 

deviation 𝜎, 𝑑𝐵. CM3A channel models were fitted to empirical data, gathering from WBAN 

using the measurements performed for several static pairs of nodes (located at the user’s left 

wrist, left upper arm, left ear, head, shoulder, chest, right rib, left waist, thigh, ankle and hip), 

covering different narrowband frequencies (400-450, 608-614, 950-956, 2400-2450 MHz) and 

environments (hospital rooms and anechoic chambers) while the user was standing. Table 2.4 

summarizes the obtained results, i.e. values of (2.2) parameters. More detailed information 

about measurements set, derivation, and data analysis is provided by research work [14]. Other 

studies tested the CM3A model against empirical data [113], [120].  

 Fading Models  

To overcome the difficulties in capturing and modelling the properties of the on-body 

channel due to its stochastic properties, WBAN radio channels are commonly modelled using 

statistical distributions, designated fading models, proposed for each configuration scenario. 

This approach was initially suggested by the IEEE 802.15.6 Task Group. In the CM3C channel 

model, the path loss model is complemented with a fading distribution. Fading models are 

typically divided into two sub-models: first- and second-order statistical model.  

First-Order Models 

The first-order statistical model aims to describe the signal amplitude assuming that it is a 

wide-sense stationary process [60]. The WBAN fading distributions are obtained through the 

determination of well-known distributions such as Normal, Log-normal, Nakagami-m, Gamma, 
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Weibull, Rice, Rayleigh, etc. that best fit the empirical data. These distributions abstract from 

any time dependency or temporal correlation in the signal.  

Smith et al. analysed how often a particular distribution was found to best fit the radio 

channel and concluded that the distributions that are more consistent in terms of the relation 

between number of times that a distribution is considered and the rate of “approval” are 

Log-normal, Nakagami-m, Gamma and Weibull [13]. 

The log-normal distribution is the best-suited distribution for scenarios where the user is 

standing [113], [121] or when involuntary movements are performed [59], [122], [123].  

The Nakagami-m distribution is suited for dynamic scenarios (severe fading scenarios, i.e. 

very dynamic time-variant nature of the signal attenuation) [122] and it should not be 

considered to statistical modelling fading in stationary scenarios [62], [124].  

The Weibull and Gamma distribution are often suggested as suitable to describe radio 

channels subjected to severe levels of fading [111]. For example, for scenarios in which the 

user is walking or running and the selected band is 427 MHz, 800 MHz, 820 MHz, or 2.36 GHz 

([62], [122], [125]); and when the user is standing up and standing down at several sub-GHz 

bands (444.5, 611, 953 MHz) [26]. According to D’Errico and Ouvry, the Weibull distribution 

can be used to describe the fading amplitude for several movements of the user [62]. This 

distribution and the Gamma distribution are known for  their ability to model an agglomerate 

of data collected for long periods [62], [126]. For instance, Smith et al. collected data for 2 

hours while the user (wearing several Edge of the Network nodes) performed daily activities, 

predominantly on indoor environments [99].   

Second-Order Models 

The path-loss and the first-order fading models do not take into consideration the temporal 

correlation of the radio channel. The fluctuation of the power of received signal over time can 

be described using several parameters such as fading rate, fading duration, fading magnitude, 

Doppler spread, outage and non-outage period, outage rate, and coherence time. This 

knowledge is important to the development of several strategies that aim to improve WBAN 

communications (e.g. design of protocols and error correcting codes [127], radio channel 

Table 2.4. CM3A parameters values for different scenarios, source [14]. 

Frequency (MHz) Hospital Room (𝒂; 𝒃; 𝝈) Anechoic Chamber (𝒂; 𝒃; 𝝈) 

400-450 3; 34.6; 4.63 22.6; -7.85; 5.60 

608-614 16.7; -0.45; 5.99 -17.2; 1.61; 6.96 

950-956 15.5; 5.38; 5.35 28.8; -23.5; 11.7 

2400-2500 6.6; 36.1; 3.8 29.3; -16.8; 6.89 
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behaviour prediction [128], Transmission Power Control mechanisms [129], data packets 

retransmission strategies [26], packets schedulers [130], interleave size optimization, and data 

packets sizes scaling [59]). It can be also used to analyse the system throughput [121], to 

identify the Edge of the Network nodes locations more susceptive to have poor communication 

radio channel conditions (in terms of fading features) and the best location for potential relay 

nodes [25]. The second-order parameters are extracted from the received data packets by means 

of second-order techniques such as Level Crossing Rate (LCR), Average Fade Duration (AFD), 

and Autocorrelation Function (ACF).  

The LCR technique is typically used to quantify the rate at which a signal strength crosses 

from above to below a given threshold level per second. This technique can be used to provide 

the fading rate parameter. The AFD technique enables the determination of the fading duration, 

i.e. the total time that a signal remains below the threshold over the number of crossings. The 

received signal is often normalized and the average value of the signal removed so that all 

signals have a 0 dB mean value [123]. Several thresholds have been considered, for instance, 

in the range -30 dB to 30 dBm with increments of 0.5 dB [59], -30 dB to 15 dB in steps of 0.5 

dB [123], −20 to 10 dB in steps of 0.5 dB [121], and -30 to 10 dB in steps of 0.5 dB [25].  

Both the AFD and LCR techniques are highly dependent on radio channel dynamics, for 

instance, Franco et al. reported a fading rate of 3Hz and 2.4 Hz (considering an assigned 10 dB 

threshold) while the user was running and walking in an indoor environment, respectively [25]. 

The same study showed that the surrounding environment has a significantly influence in the 

fading rate parameters, since authors reported lower values at outdoors environments. 

Regarding the fading duration, the same authors concluded that for the same threshold the signal 

remains under the threshold for the duration of a single data packet (10 ms) [25]. 

The technique ACF is used to identify repeating patterns in the fading signal based on the 

following assumption: "due to the often repetitive nature of human body movement caused by 

both physiological and biomechanical processes, it is anticipated and indeed expected that 

noticeable correlation may exist between current and previous observations of the received 

signal" [124]. The technique ACF is useful to determine the coherence time value, since the 

majority of the research studies determine and validate coherence time by verifying if the 

autocorrelation coefficients of the amplitude of two signals (in the time domain) is greater than 

0.5 [131] or 0.7 [125], [132]. The parameter coherence time describes the time dispersive nature 

of the fading in the time domain, similar to the Doppler spread in the frequency domain 

(coherence time and Doppler spread are inversely proportional to each other [131] and practical 

approximation have been derived (𝑇𝑐 = 9/16𝜋𝑓𝑚) in [117]). The parameter coherence time is 
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an important measure for the WBAN field, since it specifies the amount of time over which the 

radio channel is assumed to be stable, i.e. the period in which is possible to perform a successful 

data packet transmission [125]. This metric is used to specify the data packet lengths and 

maximum symbol rates that can be achieved [13], [125], [131]. Several research works (e.g. 

[26], [62], [125], [131], [133], [134]) have studied this parameter in different scenarios, 

showing is values depends on node location and movements. D. Smith et al. obtained a TC 

mean (average of all pair of links) of 48 ms while the user was walking and 31 ms when the 

user was running for  20 s [125]; other type of user’s movements have been considered in the 

literature, such as “standing up/sitting down” (coherence time value on the range of 85-310 ms) 

[26] and jogging (27 ms) [131]. In the research work carried out by Fu et al. relative to Doppler 

spread, the authors have reported coherence times (link user’s left ankle-user’s right hip) of 308 

ms, 125 ms and 27 ms for movements standing, walking, and jogging, respectively [131]. 

 Summary 

This chapter provides background information about the field of study wearable systems, 

aiming introduce the main concepts that will be used on the following chapters. First, a generic 

wearable system architecture is presented, which is then adopted to review and compare several 

WBAN projects addressed in the literature for emergency response teams. An in-depth analysis 

of these projects’ design choices for each architecture’s tier in terms of communication 

protocols, monitored parameters and hardware platforms was also presented. This analysis 

showed that although the licensed free bands are more favourable for reliable communication 

as the amount of RF interference is reduced, the unlicensed frequency bands such as the 2.4 

GHz ISM band is often the first choice for the majority of the WBAN projects analysed. In 

regard to the wireless communication standards, the ZigBee (IEEE 802.15.4) is the one most 

often adopted in on-body communications and will remain a serious candidate for WBAN 

applications due to its maturity and availability. Afterwards, the most adopted sensors, for 

emergency response applications, in WBANs were highlighted and their requirements in terms 

of data rate and latency were discussed. This analysis showed that the ZigBee protocol does not 

meet the data rate requirements of all type of sensors frequently required in WBANs.  

Finally, a brief revision of the on-body fading characteristics was performed the WBAN 

radio channel models were discussed. This revision has shown that path-loss models are not 

suitable to describe the unique characteristics of wireless on-body signal propagation. 

Techniques adopted to extract the on-body signal propagation characteristics were also 

addressed.   
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CHAPTER 3 

 TPC MECHANISMS: THE STATE OF THE ART  

The time-variant nature of the fading is a critical issue in WBANs. An inefficient use of the 

transmission output power might cause critical data packets to be lost and hence can be a threat 

to potential critical WBAN applications. In this regard, to meet the strict requirements of 

WBAN applications, a Transmission Power Control (TPC) mechanism able to adjust the 

radio-frequency (RF) transceiver output power accordingly to the unique changing conditions 

observed in WBAN  radio channels is mandatory [135]. 

Several TPC mechanism have been explored to adjust the transmission output to minimize 

the energy consumption in WBANs with star [1], [4], [136]–[145], [5], [146], [9], [22], [39], 

[46], [48], [50], [135] and multi-hop topologies [49], [51]–[54], [147] and to mitigate inter-

network interference in coexisting WBANs [10], [43], [153], [44], [45], [108], [148]–[152].  

TPC mechanisms also have an important role in the task of mitigating the inter-network 

interference. The inherent body mobility may render WBAN radio channels to inter-network 

interference due to the coexistence of other systems or devices. Since WBAN nodes are 

wearable, people unpredictable movements may lead to nodes moving in and out of each other’s 

range [18]. In WSNs, the inter-network interference problem has been mitigated by using a 

centralized coordinator, which controls the medium access and the RF transceivers output 

power of all surrounding WSNs [44]. However, this solution is not applicable in WBANs, since 

WBANs works independently in a distributed way and due to their inherent dynamics it is 

unfeasible to allocate a global coordinator [18]. Several strategies proposed to avoid 

inter-network interference also control the RF transceiver output power control to reduce the 

interference between coexisting networks and devices. Due to the mobility of WBANs, areas 

with a high density of WBANs are expected. Thus, strategies such as radio channel hopping or 

theory game might be inefficient due to the limited number of available radio channels. Thus, 

the TPC mechanisms developed to WBANs have an important role as a technique to avoid and 

reduce the RF interference between coexisting WBANs through the control of the 

Signal-to-Interference-plus-Noise ratio (SINR) in each of the coexisting networks, offering a 

better stability for all networks [43], [44], [108], [149]. The TPC mechanisms addressed in the 
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literature have shown to be able to reduce the RF interference and significantly decrease the 

power consumption [149]. 

The research community focused on implementing TPC mechanisms for the on-body radio 

channel in WBANs that use the narrowband propagation methods. This may be due to the fact 

that on the majority of the WBAN applications, the communication subsystem operates in 

narrowband frequencies, especially unlicensed ones such as Industrial Scientific and Medical 

radio bands (centred at 2.45 GHz) [36], [65] and [66]. Furthermore, first- and second-order 

statistics on data obtained from several research works[25], [26], [62], [113] proved that there 

are no major differences between frequency bands: 400 MHz (centred frequency of Medical 

Implant Communication System (MICS) band), 600 MHz (centred frequency of Wireless 

Medical Telemetry Service (WMTS) band), 900 MHz (ISM band), 2.395 GHz (centred 

frequency of Medical Body Area Network (MBAN) band), 2.45 GHz (ISM band) and 3-5 GHz 

(low UWB bands). This is another reason why TPC mechanisms should be further developed 

for 2.45 GHz band and used in other communication bands.   

This thesis is focus on TPC mechanisms designed to be applied on star topology WBANs 

where mitigation of inter-network interference is not their main goal (however, reducing the 

output power may reduce the likelihood of this network to affect the performance of 

neighbourhood networks). Inter-network mitigation TPCs require cooperation between 

Coordinator nodes of different WBANs. This chapter will focus on the events within the 

WBAN itself. TPC mechanisms for multi-hop WBANs are thus not covered in the present 

section because typically WBANs have a very low density of Edge of the Network nodes which, 

in some cases, turns this type of TPCs impractical. However, TPC mechanisms addressed to 

multi-hop networks adopt some of the principles described in this chapter. 

The following features are expected in TPC mechanisms designed for on-body 

communications: (R1) agility to react to changes in radio channel conditions; (R2) to estimate 

and also (R3) anticipate the run-time behaviour of on-body radio channels; (R4) fast in reaching 

the optimal transmission output power; (R5) low memory usage; (R6) low traffic overhead 

(imposed by control packets, data packets, beacons and acknowledges (ACK)), (R7) able to 

operate in dynamic scenarios (characterized for having user movement); (R8) able to detect 

possible incidental disconnections on wireless links, preventing unnecessary fluctuations in the 

transmission output power output; and (R9) low complexity. A generic architecture to describe 

the operation principle of the TPC mechanisms addressed in the literature is here proposed. 

Figure 3.1 depicts the overview of this architecture that comprises two main blocks:  
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 Link Quality Estimator (LQE), responsible for quantifying (estimating or 

predicting) the current quality of the wireless links in order to modify the output 

power in an energy efficient way;  

 TPL control module, responsible for selecting the most suitable transmission output 

power, according to the output of the LQE.  

In this section a comprehensive analysis of the methods used in LQE and TPL Control 

blocks is carried out in sections 3.0 and 3.2, respectively. In section 3.3, a taxonomy to classify 

the different TPC mechanisms developed and addressed in the literature is proposed. In 

addition, a comparative summary of the state-of-the-art TPCs for on-body radio channels in 

WBANs, highlighting their similarities and differences in terms of design choices and 

fulfilment of the WBAN application’ requirements, is provided in section 3.3. Finally, in 

section 3.4, the issues and challenges in the design of TPCs are highlighted. 

 Link Quality Estimator Module 

To be able to analyse and assess the different methods used to estimate the current radio 

channel quality, a taxonomy, depicted in Figure 3.2, classifying the different LQEs, was 

proposed and used. The LQEs are categorized as Hardware-based (HW-based), Inertial 

Sensor-based and Software-based (SW-based) methods. As SW-based LQE methods rely in the 

Expected Transmissions (ETX), Packet Reception Rate (PRR) and SINR metrics to 

estimate/predict the radio channel quality, they are only adopted in TPC mechanisms though to 

multi-hop WBANs and to mitigate inter-network interference. For that reason, this section is 

only interested in HW-based and Inertial Sensor-based LQEs. For detailed information about 

the SW-based methods, please refers to literature [64]. 

 Hardware-based LQE 

Estimators based in HW-based solutions can be described as mechanisms that rely on 

physical layer metrics’ readings. These metrics are provided by the RF transceiver, such as, the 
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Figure 3.1. Generalized representation of the output power control process. 
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Received Signal Strength Indicator (RSSI) - computed internally by averaging the power signal 

over eight symbol periods of the incoming packet [47] – and the Link Quality Indicator (LQI) 

– the measure of the RF transceiver chip error rate of the first eight symbols of the incoming 

packet [47] which estimates the quality of the error of a successfully received packet. However, 

as these metrics can only be fetched on the data packet receivers (in the Coordinator node rather 

than in Edge of the Network nodes), extra data packets, often designated as control packets, 

such as beacons, acknowledges or other data packets are needed to convey these information 

back to the original data packet senders (Edge of the Network nodes). The LQEs that fit within 

this category are classified according to the method adopted as Sample-and-Hold (S-H), 

Enhanced-Hold (E-H), or Prediction method.  

Sample-and-Hold Method 

In the S-H method, the metric RSSI is often the estimated output, the result of the radio 

channel quality estimation process is the measured RSSI of the last data packet received. This 

method has been reported as a very reliable approach to estimate the radio channel conditions 

in stable-channel-static scenarios [1], [46], [50], which occur when the user remain static and 

in environments with a reduced number of reflecting objects.  

Enhanced-Hold Method 

Similar to the previous method, the majority of the proposed LQEs based on the E-H 

method adopt the RSSI metric to estimate the current radio channel condition. To provide a 

reliable LQE output, designated radio channel gain (𝑅̅̅) and given by (3.1) [1], [142], both the 

power of the last measured sample (𝑅𝑛) and the history of RSSIs received from the Edge of the 

LQE Methods 

Hardware-based 

Software-based 

Inertial sensors-

based 

Sample-and-Hold [1], [46], [50] 

Enhanced-Hold [4], [39], [141], [142] 

Prediction method [50], [146] 

ETX [54] 

PRR [51]–[53], [194] 

SINR [43], [44], [108], [147]–[149], 

[151]

Strength Peak Detection [128], [130] 

Movement Detection [22] 

Posture Detection [135], [143] 

Figure 3.2. Taxonomy of the LQE methods for on-body channels in WBANs. 
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Network nodes are taken into consideration. This latter component of (3.1) is the weighted 

average of the lowest RSSI samples (𝛼) [39], [141]. 

 𝑅̅ = 𝛼𝑅̅ + (1 − 𝛼)𝑅𝑛 (3.1) 

The determination of the optimum value of 𝛼 and the number of samples considered to 

estimate the radio channel gain are key issues. Parameter 𝛼 manages the existing trade-off 

between the agility of the estimator to react to changes in radio channel and the reliability of 

estimations. Its optimum value depends on the sensor location and the surrounding 

environment. For instance, in slowly varying radio channels, higher values of 𝛼 can be used, 

giving more weight to the current radio channel sample and making the LQE more agile to react 

faster to the changes in radio channel conditions. In radio channels that present high and fast 

quality variations, lower values of 𝛼 can be used, which increases the weight of the radio 

channel history, making the estimator less agile, but with less fluctuations in estimations.  

Researchers usually rely on experimental data to determine the most suitable values for the 

average weight parameter, proposing either static and pre-defined values or more than one 

value. Shah et al. proposed two different values according to the radio channel conditions, 

namely 𝛼1 and 𝛼2 – which are inversely proportional – for good and bad radio channel 

conditions, respectively [39], to increase the TPC mechanism performance in both conditions. 

Di Franco et al. proposed an adaptive α that is updated by increasing or decreasing, at run-time, 

the current value of α by a constant, according to the mean square error (MSE) of estimations 

[142]. The research work [4] proposed a LQE that combines estimation metric RSSI and LQI, 

designated RSSI/LQI estimator. Through experimental observation of the relation between LQI 

and PRR, they concluded that the metric LQI is not highly influenced by interferences, but it 

has a much higher variance than the RSSI (regardless of the user movement), thus requiring the 

use of the average LQI to estimate/predict the radio channel conditions. As this solution might 

impair the agility of a TPC to adapt the TPL, authors proposed a LQE that relies in the weighted 

average of LQI, given by (3.1) (parameter 𝑅̅ and 𝑅 refer to the weighted average LQI and last 

LQI samples, respectively), to identify if the radio channel is subjected to interferences (if the 

weighted average of metric LQI is higher than a threshold), whereas the weighted average 

RSSI, given by (3.1), is applied to estimate the signal attenuation when the radio channel is not 

subjected to interferences. 

Prediction Method 

The LQEs following the prediction method estimate the radio channel conditions (radio 

channel gain) by reducing the number of control packets exchanged between the Edge of the 
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Network nodes and the Coordinator node. Research works that fit in this category are scarcer. 

Predictor LQEs proposed in [50] are very simple. Either the sample-and-hold method or the 

enhanced-hold method are used to predict with 250 ms, 400 ms, 800 ms and 1 s ahead, for time 

intervals between received data packets ranging from 10 ms up to a maximum of 400 ms. These 

prediction mechanisms presume that there is an inherent long-term temporal stability of the 

radio channels, that can be quantified by the metric Coherence Time (TC). This metric specifies 

the time over which the radio channel is assumed to be stable [125]. Therefore, a prediction 

scheme requires the TCs higher than the prediction interval to ensure an acceptable reliability, 

otherwise the control power can be either unreliable (data packets can be lost) or energy 

inefficient (power higher than the minimum needed to ensure successful data packet deliver).  

The Weighted alternate-least-squares technique proposed in [146] is more complex than the 

previously described. This LQE aims to predict the next 𝑇𝑝𝑟 RSSI samples ahead of the last 

sample received (maximum referred is up to 2s). A fraction of the measurement of RSSI 

samples (𝑁𝑠) received by the Coordinator node is saved in its memory, taking the 𝑛𝑟 last 

samples received to search over the previous 𝑁𝑠 samples to find the closest match. The 

prediction signal portion (𝑆𝑝) is estimated using an alternate least-squares formulation that is 

weighted by the last sample received. According to the authors, the number of 𝑛𝑟 must depend 

on the superframe (SF) period (𝑡𝑠).When comparing the performance of this LQE set up with a 

𝑁𝑠 of 4s and a 𝑛𝑟 of 5 (𝑡𝑠 = 10 𝑚𝑠), 4 (𝑡𝑠 = 20 𝑚𝑠),3 (20 𝑚𝑠 < 𝑡𝑠 < 120 𝑚𝑠) and 2 (𝑡𝑠 >

120 𝑚𝑠), with a sample-and-hold based LQE with transmissions performed at a pre-defined 

and static TPL (-10 dBm) and sampling periods varying from 10ms to 120 ms, the authors 

concluded that there are clear improvements in all predictions from 120 ms ahead to 2s ahead 

over the sample-and-hold and static TPL transmissions, showing good prediction accuracy up 

to 2s ahead, even in scenarios with the TC of 500 ms.   

 Inertial Sensor-based 

As user’s body posture and movement are considered to greatly influence radio channel 

behaviour [48], some LQEs rely on inertial sensors, such as accelerometers and gyroscopes, to 

estimate or predict the radio channel conditions. The methods relying on inertial sensors can be 

categorized in terms of the strategy adopted as, Strength Peak Detection, Movement Detection 

and Posture Detection. 

Strength Peak Detection 

This type of LQEs aims to explore the periodic fluctuation of the link quality to improve 

the transmission energy efficiency. The research work [130] has shown that there is a strong 
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correlation between the RSSI of emitted signals and the acceleration signal when the user is 

walking. Through the acceleration signal it is possible to determine the signal quality 

fluctuation period as well as the instants that the signal strength is expected to be high.  

The LQEs addressed in [128], [130] rely in the accelerometer information to determine the 

peak of the RSSI metric, according to the correlation between radio channel quality and 

acceleration (positive or negative, acceleration peak or valley respectively) previously 

identified. However, the accelerometer data only indicates which time instant within the gait 

cycle the radio channel quality is expected to be maximum, thus, the estimation or prediction 

of the RSSI in order to provide it to the next TPC block, the TPL control block, is still required.  

All approaches that follow this type of LQE opt for applying this in a receiver-side 

approach, since this solution is too complex to be executed in a typical (resource-constrained) 

Edge of the Network nodes due to the methods adopted to track the gait cycle offset. The 

transmitter after receiving information about the time interval between two adjacent gait cycles 

will opportunistically schedule the intra-BAN traffic so that packets are transmitted when the 

RSSI metric is expected to be high. The received signal strength indicator value of each data 

packet received at the receiver radio is used to estimate the radio channel quality following the 

same principle of the Enhanced-and-Hold LQE: the weighted average of the RSSI value is 

calculated. This solution minimizes the amount of the information collected at run-time, since 

data packets are set off to the instant that radio channel quality is expected to be maximum. The 

main disadvantage of this solution is related to the need of tracking the acceleration signal. 

Techniques to detect the user activity (such as motion or motionless user state) and to identify 

accelerations values on the user’s stride are required. Experimental tests carried out show that 

some methods to predict the peak of the RSSI value are very efficient, but this LQE is limited 

to scenarios where the user performs periodic movements.     

Movement Detection  

The LQEs based on the movement detection method allow, through the modules of the 

acceleration vector, to recognize if the Edge of the Network node is moving (> 9.8 m/s2) or is 

static. When the user is static, the LQE estimates the relative position of the Edge of the 

Network node through the orientation of the acceleration vector. Then, using the empirical data 

– gathered during trial tests with several users and scenarios (positions and different TPLs) – 

the current state of a link is estimated. For example, between the node located on the user’s 

waist (Coordinator node which is the receiver) and the node in the user’s right arm (Edge of the 
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Network node which is the transmitter). This estimation results on the potential RSSI value of 

a data packet, if transmitted at a specific TPL in that orientation conditions [22]. 

Posture Detection  

These type of LQEs identify posture based on the information obtained from inertial 

sensors. The radio channel characterization phase allows the identification of the expected radio 

channel quality for that specific scenario, which can involve more scenario configurations 

beyond posture. The author proposed a LQE to estimate radio channel quality in a well-defined 

application: monitoring infants during sleep is proposed in [144]. This LQE was employed in 

a WBAN comprising a node, designated Wearable IoT Device (several parameters were 

collected, such as, breathing rate, heart rate, temperature and infant’s position) and a 

Coordinator node attached or close to the infant body (distance < 2 m). Assuming that the infant 

remains static for long periods while sleeping, the proposed LQE implements a two-step 

process: estimation of the radio channel gain by applying a LQE based on the sample-and-hold 

method and determination of the current user’s position through an accelerometer, to estimate 

the current level of fading. Since some user positions are more prone to Non-line of sight 

(NLOS) effects (which result in fast variations on radio channel quality in a short period of 

time, peak-to-peak difference up to 15 dBm, due to body obstruction and multi-path 

components), this information can be very useful for the TPL control to adapt its behaviour in 

long-term.   

However, the main goal of these posture detection LQEs is to overcome the main drawbacks 

pointed out to the receiver-side LQEs. These are related with the collection of huge information 

from transmitted data packets and extra packets at run-time, to inform the transmitter about the 

current state or the most suitable TPL (e.g. control packets, hello packets and beacons), thus 

incurring in extra overhead. The LQE solutions proposed in the literature following an inertial 

sensor-based method, can estimate or predict the current radio channel quality, but the 

algorithm is employed in a sender-side way. 

The solution A-LQE, [135], [143] predicts on-body link quality variations, through RSSI 

metric and some constant parameters related to human body features and movement detection 

provided by a 3-axis accelerometer sensor. This LQE is based on Adaptive Neuro-Fuzzy 

Inference System (ANFIS), a multilayer feed-forward network consisting of nodes and 

directional links, which combines the main advantages of Artificial Neural Networks and Fuzzy 

logic, namely, learning capabilities and knowledge representation with inference capabilities. 

These are two important methods of artificial intelligence for modelling nonlinear problems. 
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The LQE proposed, for instance, to link between the Coordinator node located at the user’s 

waist (receiver) and Edge of the Network node located at the user’s right arm (transmitter), 

involves the interaction of several input parameters, such as the TPL, the body position, the 

circumference and the total body fat, to provide as output the predicted RSSI. 

 Summary and Insights 

This subsection provides some synthesis of overall insights and conclusions learned from 

the individual LQE approaches addressed in this chapter.  

The RSSI, PRR, ETX, SINR and LQI metrics are not exclusive to WBANs, they were first 

applied to estimate the radio channel quality of WSNs links (LQE) [55]. However, LQEs used 

in WSNs were not designed to handle the link quality variations observed on WBANs links. 

There are two main limitations of the WSN’s LQEs that makes them unsuitable for WBANs. 

In WSNs the fast link quality variations is not a critical concern and WSNs’ LQEs do not 

distinguish the different types of fading. 

For example the PRR- and Window Mean Exponential Weighted Moving Average 

(WMEWMA)-based LQEs, which are widely adopted in WSNs [55], have very low 

performance in terms of reliability in estimations when applied in WBANs due to very low 

agility to track the very dynamic radio channel variations [51]. The Sample-and-Hold method, 

which is very agile and firstly adopted in WSNs, shows accurate estimation. However, as this 

LQE quantifies the fading as a stochastic process (without distinguishing large-scale from the 

small-scale fading), when integrated in a TPC mechanism and applied to WBANs it will lead 

to poor TPC’s performance. In WBANs it is important to separate both types of fading. This is 

because the main influence on radio channel quality is the large-scale fading and the small-scale 

fading refers to fast variations in time but short variations on the magnitude of the signal around 

the small-scale fading. Quantifying the radio channel quality as the measure of only one 

measured sample can lead to precipitous TPL updates. Therefore, the number of samples 

considered to estimate or predict the radio channel quality, as well as the weight given to the 

radio channel history, allows to better manage the trade-off between agility and reliability in 

estimations. As stated before, in slowly varying radio channels, higher radio channel history’s 

weight turns the LQE more agile to react faster to the changes in radio channel conditions, 

whereas low radio channel history’s weight turns the estimator less agile, but with less 

fluctuations in estimations. Research studies that resulted in LQEs for WBANs analyses the 

radio channel behaviour and study the influence of these two parameters on the reliability of 
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estimations, since their optimal value is scenario-dependent indicating that these parameters 

can take different values during WBAN operation.  

 The LQEs designed to WBAN links are here classified in HW-, SW- and Inertial Sensor-

based. The former method relies on physical layer metrics’ readings, being the RSSI the most 

adopted in the literature. The HW-based LQEs have some limitations: first, their metrics can 

only be measured for successfully received packets (the link quality is overestimated when 

radio channel suffers excessive packet packet losses by not considering the information of lost 

data packets); second, the RSSI metric provides a quick and accurate estimate of the radio 

channel quality, but it is highly influenced by RF interferences, resulting in degradation on link 

quality, in terms of estimated RSSI, making it a weak indicator of the radio channel conditions. 

The experimental studies performed by Kim et al. regarding the relation between RSSI and 

PER showed that the smallest RSSI that ensures the WBAN requirements, in terms of 

reliability, increases significantly when subjected to interferences [4]. Therefore, the HW-based 

LQEs addressed in the literature are devised to WBANs configured with a star topology (lower 

amount of exchanged control packets than in multi-hop topology) if operating in environments 

not prone to RF interferences.  

Even though the combination of metrics in one LQE has not been explored in the literature, 

metrics, such as LQI and SINR, might help the HW-based LQEs to validate the radio channel 

quality measures through the verification of the presence and level measure of the RF 

interferences that link is subjected. Due to the traffic overhead inherited from closed-loop 

control (c.f. subsection 3.3.2), the inertial sensor-based LQEs appears to overcome this 

limitation. However, the advances in this type of LQEs are still very limited. This type of LQEs 

have potential to replace the HW-based LQEs in WBANs, since the body is the main influence 

of the radio channel quality, but solutions are much more complex, their design are 

time-expensive and, until now, are restricted to static scenarios. 

 Transmission Power Level Control Module  

The TPL Control block is responsible for updating the transmission power to reach the 

optimal value - the minimum TPL value able to ensure the successful delivery of data packets 

in destination [154]. This is an important feature from an energy saving and interference 

mitigation perspective. According to the performance behaviour, the TPL control mechanisms 

are classified as reactive-based or predictive-based.   
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 Reactive-based TPL Control 

The majority of the reactive-based TPL Control mechanisms addressed in this subsection, 

rely in margins, such as target RSSI range (𝑅𝑡𝑎𝑟𝑔𝑒𝑡) and LQI range (𝐿𝑡𝑎𝑟𝑔𝑒𝑡), or in a threshold 

(thus, radio channel quality must be always higher than the value set as threshold) [136]. The 

margin is used as a guideline to update the TPL parameter, so that future LQE estimations fit 

within RSSI target values range, resulting in a lower probability of losing data packets and 

higher signal stability. The TPL control mechanisms based on this approach only react to LQE 

estimations outside the RSSI range. As the goal of this module is to ensure that radio channel 

conditions are maintained between thresholds, the determination of the higher (𝑇𝑅𝐻) and lower 

(𝑇𝑅𝐿) limits of this target range are vital. If the lower limit is high, the probability of data 

packets’ loss will be reduced, but at expenses of a higher power consumption; if it is low, the 

probability increases (due to the proximity of the 𝑅𝑥𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, in case a SW-based RSSI is 

used) and data packets’ retransmission may outweigh any energy savings promoted by the TPLs 

[142]. The upper and lower values of the margin play an important role in the TPL update. A 

narrow target range can lead to a higher number of TPL updates due to the unstable behaviour 

of the radio channel, whereas a large one reduces the number of TPL updates, but may reduce 

the energy efficiency of the transmissions.  

These parameters can be dynamically updated at run-time to meet the deployment scenario, 

since in every scenario (different environment, nodes location and user movements), the radio 

channel is subjected to different influences [123], [131], [155], which lead to different fading 

properties (such as fading rate, duration and magnitude) and outage events’ probability. Most 

of the researches adopt a static and predefined target RSSI range, compromising either the 

energy efficiency or the communication reliability, leading to underestimated or overestimated 

TPLs, in high frequency. Moreover, as body posture is always changing, as well as the 

movements performed, the target RSSI range can be dynamically updated, at run-time, 

according to the type of activity performed by the user [154] or to the radio channel variation 

[39]. Sodhro et al. proposed a mechanism able to update at run-time the 𝑇𝑅𝐻. A very similar 

algorithm was also proposed by Kim et al. in their research [4], where the non-static parameter 

𝑇𝑅𝐻 is updated. To this a value is added, which represents the radio channel quality variation 

(standard variation of 𝑛 RSSI samples). Afterwards, the TPL is updated in each interaction until 

the optimal TPL is reached - without previous knowledge of this value. The most representative 

TPL control approaches: Binary, Linear, Dynamic, and Hybrid.  
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Binary 

This approach, described as aggressive in the literature, performs alterations in the TPL 

parameter, exponentially increasing or decreasing it. For instance, if the LQE output (used as 

input of TPL control) is higher than the target range (𝑅𝑡𝑎𝑟𝑔𝑒𝑡 or 𝐿𝑡𝑎𝑟𝑔𝑒𝑡), the algorithm updates 

the current TPL at a midpoint between the previous TPL and the minimum TPL – usually 

defined taking into consideration the lowest TPL available in the transceiver [156]. If the LQE 

output is lower than the target range, the binary algorithm changes the current TPL at the 

midpoint between the previous TPL and the maximum TPL (often 0 dBm). According to the 

results achieved by Lee et al, this reactive approach is more suitable to static scenarios, 

characterized by negligible levels of fading and high radio channel quality stability [46], and 

reaches the optimal TPL faster than other approaches, thus reducing the number of exchanged 

control packets, and, consequently, energy consumption [1], [46]. The principle of this 

algorithm was initially proposed and described in [156] and several TPC mechanisms adopted 

TPL control mechanisms based on a similar concept. 

Dynamic 

The dynamic algorithm is also considered an aggressive approach. It determines the optimal 

TPL on the basis of a straight-line equation. This TPL control, proposed in [9], assumes that 

there is a linear relationship between the RSSI and the TPL, which is considered valid when 

the user is standing. The equation is determined taking into consideration two previously 

measured RSSI values – transmitted at different TPLs, for instance at minimum and maximum 

[5]- and a specific slope. As radio channel conditions do not change, the algorithm is able to 

estimate the optimal TPL [9]. In static scenarios, this algorithm is faster at reaching the optimal 

TPL - as a consequence, more energy efficient than the Linear-based TPL controls [5], [46]. In 

a similar scenario, the dynamic-based TPL control consumes less energy than the binary 

algorithm, since the straight-line equation is determined taking into consideration two 

(previously) measured RSSI values, both out of the target RSSI range, whereas in the binary 

approach more than two control packets may be required to reach the optimal TPL. To detect 

changes in radio channel behaviour, researchers [5] proposed a dynamic algorithm, designated 

extended dynamic TPL control, based on the slope of the straight-line equation. A line equation 

with a negative slope is considered incorrect, triggering the transmission of new data packets 

to generate a correct one. 
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Linear 

The Linear approach is also considered in the literature as an conservative algorithm and 

was mentioned for the first time in [157]. This approach updates the TPL step-by-step until the 

optimal TPL is reached, and can vary over time according to the operation scenario. According 

to Lee et al., this technique is not appropriated to radio channels presenting negligible levels of 

fading, because several iterations are required until the optimal TPL is achieved [46]. The 

algorithm is more efficient in dynamic scenarios. This kind of scenario are characterized by 

high levels of path-loss due to body obstructions and harsh fading. In Linear-based algorithms, 

the TPL is linearly changed (slightly increased or decreased) close to the target RSSI range, 

without causing abrupt variations in the radio channel (due to the output power adopted in 

transmissions), thus reducing the number of control packets exchanged [1]. Several TPC 

mechanisms adopted a Linear-based TPL control, actuating in a way that the TPL is increased 

or decreased by a constant unit or an adaptive unit, updated at run-time based on the radio 

channel conditions [39], [141]. Several TPC mechanisms adopted a Linear-based TPL control, 

actuating in a way that the TPL is increased or decreased by a constant unit or an adaptive unit, 

updated at run-time based on the radio channel conditions [39], [141]. 

Hybrid 

The TPL control based on the Hybrid method selects the most appropriate control, 

conservative or aggressive, when a concrete scenario is identified. This method combines both 

linear and binary/dynamic approaches in an algorithm [46] to overcome the main drawbacks of 

the previously described approaches in terms of the radio channel quality behaviour. Therefore, 

the main challenge of such a TPC mechanism solution, is its capability to identify and 

differentiate, at run-time, a stable from an unstable radio channel. The schemes proposed in the 

literature to perform this task are analysed in subsection 3.3.2.   

 Predictive-based TPL Control 

Predictive-based approach consult the LQE’s prediction result before settling the TPL, i.e. 

the future radio channel state after transmissions are settled at a specific TPL. This solution 

uses models to select the most appropriate TPL at run-time, but from the developments 

proposed in the literature, this type of TPL control solutions seem to be applicable only in 

communications occurring in standing scenarios.  

In [136] a TPL control based in a predictive behaviour is proposed, where the most suitable 

TPL is determined according to a RSSI model. This model (which needs the TPL level as input 

parameter) is derived from curve fitting of empirical data gathered in a radio channel 
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characterization (for different scenarios). The TPL control tests several TPLs until the best 

result in terms of RSSI is reached, i.e. the TPL that ensures a RSSI fitting within the target RSSI 

range, designated the optimal TPL to the current radio channel conditions. Vallejo et al. also 

proposed a TPL control based in a predictive approach, since it does not update the TPL until 

the optimal TPL is reached [135], [143]. This TPL control uses the A-LQE estimator, which is 

based in ANFIS, to predict the future radio channel behaviour of the radio channel for a specific 

TPL. After testing all possible TPLs, the TPL control block compares and selects the TPL that 

ensures the best radio channel conditions.  

 Summary and Insights 

This subsection provides some synthesis of the individual LQE approaches analysed 

throughout this chapter. 

Table 3.1 summarizes the features of each type of TPL control algorithm, highlighting their 

level of complexity, time required to compute the optimal TPL, capacity to operate well 

regardless of the subject and the node location, target scenarios, main advantages and 

disadvantages.  

Although both approaches can operate in static scenarios with good performances, the 

predictive approach is the best suited. Since radio channel models from the literature show a 

good fitting to the empirical data collected during the characterization, and since radio channel 

quality can be well described in function of some variables such as TPL, only one iteration is 

required for determining the optimal TPL. These solutions are more complex and require more 

computational resources. However, the time required to execute these algorithms do not affect 

the performance of the TPC, since no significant changes are expected in fading magnitude (the 

Edge of the Network nodes may stay within the target RSSI margin for a long time for the same 

TPL [46]). Due to the excessive control overhead in terms of control packets from the 

Coordinator node to the Edge of the Network node, the application of the reactive approach in 

these scenarios leads to an inefficient use of the radio channel bandwidth, increases the 

probability of RF interference to other devices or networks and increases the energy 

consumption.  

The reactive approach is suitable for dynamic scenarios. When a WBANs radio channel is 

classified as slow-channel fading, the measured RSSI allows the TPC to track the radio channel 

quality and update the TPL accordingly to the current radio channel quality. The predominant 

fading component, the large-scale fading, shows small variations between RSSI samples that 

are measured in intervals between 10 m and 35 ms, even when the user is running [25], [119], 
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[155]. However, due to the small-scale fading, the RSSI values measured are in the proximity 

of the large scale fading with fast variations on time but short in magnitude (-5 up to 5 dBm) 

which makes the fading signals behaviour approach a stochastic process. Due to the small scale 

fading, the target RSSI ranges are important for TPCs that adopt a reactive based TPL control 

mechanism. More studies about the most suitable TPL’s upper and lower values based on the 

Edge of the Network node location, user movement and surrounding environment are required 

since these factors clearly influence the magnitude of the small-scale fading and traffic 

overhead. Thus, pre-defined upper and lower values of the TPL margin might not be 

recommended in WBANs, since small scale fading has different features according to the 

deployment scenario.  

Reactive approaches show very low complexity with execution times between 0.1 ms-10 

ms, suggesting that during the time spent to estimate and update the TPL, the radio channel 

fading remains static. However, since the transmit primitive  uses the MAC layer, this may 

introduce some latency before a data packet is transmitted (maximum 50 ms [130]), the authors 

decided to configure some  CSMA protocols parameters of IEEE 802.15.4 MAC (for instance 

the Clear Channel Assessment backoffs to zero) to reduce the data packet transmission 

operation (≈2.56 ms), giving more control to the TPC mechanism during transmission time 

[130], [137], [145]. An alternative solution might be to execute the TPC algorithm after the 

Clear Channel Assessment in order to determine if the radio channel is free (in beaconless or 

beacon mode of IEEE 892.15.4), proceeding the transmission process and ensuring that there 

is no performance degradation and robustness due to outdated radio channels since by the time 

radio channel is estimated and the power is adjusted the radio channel will not change.  

 Soft computing techniques [135], [143] or analytical equations [136] are the key of 

predictive TPC approaches. These methods are being explored as a tool for modelling these 

ill-defined systems to forecast the radio channel quality, focusing on the influence of the TPL 

Table 3.1. Comparison of the features of both Reactive and Predictive TPL Control Mechanisms. 

 Reactive Predictive 

Complexity Very Low High 

Convergence Speed Low High 

Generic Capabilities Yes Yes 

Scenarios Static & Dynamic Static 

Main Advantages 
-Do not require previous radio 

channel characterization 

- No data packets exchanged; 

-Very fast convergence to the optimal 

TPL; 

Main Disadvantages 

-High network traffic; 

-Low convergence to optimal TPL; 

-On-body transmission 

configuration-dependent. 

-Require algorithms to recognize body 

posture and nodes relative-position; 

-Require that subjects have been 

completely characterized with respect to 

the RSSI and PER metrics in all scenarios; 
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in radio channel quality. However, due to the difficult in describing the on-body communication 

features, (to the best of the author knowledge) there is no predictive TPL proposed to scenarios 

where user is moving in the literature.  

Cheffen et al. proposed a dynamic radio channel model for on-body wireless 

communication (user’s wrist-user’s hip link) while the subject is walking [158]. The angular 

variations of the transmitting and receiving antenna gains (due to angular variation of the 

corresponding body part during waking) is used to estimate the signal fading. However, this 

radio channel model has not been experimentally tested or applied in the context of a TPC 

algorithm.

 TPC Mechanisms for On-body Communications 

Several TPC mechanisms have been proposed over the years for on-body channels in 

WBANs, providing solutions with different schemes and strategies to improve the wireless 

on-body transmissions. In this section, a comprehensive survey of the state-of-the-art on the 

TPCs specifically designed to on-body channel transmissions in WBANs is presented and each 

TPC mechanism classified according to its design goal. Within each subsection, the strategy 

adopted is described. The TPCs description starts with the identification of methods adopted 

on the process of link quality estimation and TPL determination, followed by a brief description 

of the TPC specificities, concluding with a critical analysis of each TPC mechanism based on 

the WBANs application requirements. The different TPCs are analysed in chronological order 

to provide the reader a better insight into the evolution of the research focus on each topic. 

 Classification of the TPC Mechanisms for On-Body Communications 

For the classification of the different TPC mechanisms, a taxonomy cantered on the main 

design choices, depicted in Figure 3.3, is proposed. The TPC mechanisms are categorized based 

on the following characteristics: 1. Link Quality Estimator, 2. TPL control, 3. Goals, 4. 

Topology (star or multi-hop), 5. Algorithm (centralized, decentralized and hybrid), 6. Scenarios 

(static or dynamic) and 7. Communication Standard adopted to the physical and MAC layer to 

data packets transmission.  

The Goal attribute classifies the different TPCs according to the target priority 

requirements. Even though the TPC mechanisms are designed to ensure WBANs application 

requirements, they are application-specific. Thus, the technologies of the TPC mechanisms are 

projected to handle with different requirements in terms of reliability, data rates, latency and 

life-time. According to the intended goal, TPC mechanisms can be classified in terms of 1. 

Energy-efficiency, 2. Connectivity and 3. Interference-mitigation.  
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The Energy efficiency goal attribute refers to a TPC that follows a specific design choice 

to increase the life-time of a network. As a consequence, it may sacrifice other performance 

metrics, for instance the latency. These mechanisms are suitable for energy-sensitive 

applications, such as, when long periods of WBAN operation is required or when battery 

replacement or recharging is not feasible. One of the main problems of a WBAN transmission 

is related to the external interferences that may deteriorate the communication throughput, 

resulting in a higher PRR. Performance-sensitive applications tend to privilege the PRR 

increase in detriment of latency and/or energy metrics. The connectivity goal refers to the TPC 

mechanisms for latency-sensitive applications, requiring transmissions with lower end-to-end 

delay. The latter TPC solutions are thought to networks with a multi-hop topology. First, a 

parent node (Coordinator or relay node) is chosen and the optimal TPL to each hop is 

determined. 

As previously discussed, this thesis is of particular interest in the TPC mechanisms 

developed for WBANs (configured with a star topology) designed for applications sensitive to 

data packet loss, but where the efficient use of available energy is crucial. Therefore, the current 

section only covers the developed TPC solutions for energy sensitive applications. The 
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Figure 3.3. Taxonomy of TPC solutions for WBANs. 
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remaining mechanisms that fit into other categories are not analysed here, but a detailed 

description and comparison analyse of such TPC solutions is provided in research work [64]. 

 TPC Mechanisms for Energy-Sensitive WBAN Applications 

As previously mentioned, the TPC mechanisms proposed for energy-sensitive applications 

can be classified in two groups: Closed-Loop Control or Posture and Motion Detection. 

Closed-Loop Control based TPC Mechanism 

The TPC mechanisms following a Closed-loop control strategy are usually suggested for 

star-topology WBANs with the objective of reducing energy consumption during data 

transmission. It is assumed that, unlike the sensor nodes, the Coordinator node is not 

energy-constrained. The basic operation principle is illustrated in Figure 3.4. The first data 

packets transmitted by each Edge of the Network node are sent at the maximum value allowable 

in on-body communications, so that the Coordinator node is able to apply an LQE estimator. 

This LQE is based in the HW-based RSSI metric of the last data packet (a sample-and-hold 

TPC mechanism), or in the average radio channel gain of a data packet set (enhanced-hold TPC 

mechanism). Therefore, the LQE and the TPL control blocks, in their traditional form, are 

applied in a receiver-side way (as it will be seen later in this paper, they can be applied in a 

sender-side approach). Then, the TPL control scheme is executed to determine, according to 

the LQE output, the most suitable TPL. The result of the TPL control operation is transmitted 

back to the Edge of the Network node (at the maximum TPL allowed), as a control packet or 

as an ACK. After reception of the control packet, the Edge of the Network node updates its 

TPL, ensuring that future data packets are transmitted at this newly updated TPL until another 

control packet from the Coordinator node is received. The TPC mechanisms that fit in this 

category are classified as (A) Sample-and-Hold mechanisms, (B) Enhanced-Hold mechanisms, 

(C) Adaptive Feedback Periodicity mechanisms and (D) Prediction-Based Power Controller 

mechanisms.  

(A) Sample-and-Hold Mechanism 

This type of mechanisms follows a reactive behaviour, as it adopts a sample-and-hold LQE 

that relies in the acquisition of the RSSI metric as estimation parameter. Solutions of this type 

proposed in the literature combine the sample-and-hold LQE with a TPL control (also applied 

in a receiver-side way) namely, Binary [1], [46], Linear [1], [46], [50], Dynamic [1], [5], [46] 

and Hybrid [46] TPL controls. Only the RSSI value of the last received packet is considered 

and the TPL control sets a target RSSI range to ensure a stable signal and power values higher 

than the lower limit. The results obtained from of the application of this type of TPCs 
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demonstrate that these solutions are agile and fast to converge to the optimum TPL in static 

scenarios. In this context, the signal is relatively stable (signal remains within the target RSSI 

range for a long time at the same TPL), the communication system consumes less - Smith et al. 

reported a reduction of 55% on energy consumption when comparing with a system 

transmitting at a the pre-defined and static TPL of 0 dBm [50] -, and the communication 

reliability is ensured, i.e. PER<10%. Nevertheless, they are not able to effectively handle with 

dynamically changing wireless body radio channel environments, as shown by Yi et al. through 

experimental tests [1]. The high variability of the radio channel, as consequence of body 

shadowing but, in particular, due to the small- and large-scale fading, suggest that changes in 

the TPL should be avoided to prevent unnecessary exchanges of control packets that 

significantly increase the energy consumption, as well as, the radio channel overhead, due to 

the high number of control packets needed.  

Guan et al. proposed a TPC mechanism, designated PID-based power controller, 

comprising a Proportional-Integral-Derivative controller, a very common approach to control a 

certain variable in several areas, due to its satisfactory performance and simple structure [139]. 

This controller manages the output parameter, the TPL level, in relation to the tracking error, 

which is the difference between the reference RSSI value and the estimated RSSI resulting from 

the receiver-based, sample-and-hold LQE. Running in the Coordinator node, this controller 

uses as feedback signal the RSSI value estimated at each data packet transmitted, adopting the 

sample-and-hold method. The TPL control, applied in a sender-side way, follows a 

Linear-based approach, since after calculating the input function error, the output parameter of 

the controller is used to increment the TPL in the latest transmission. In comparison with the 

typical structure of a PID controller, some changes were proposed.  

Authors added a Saturation and Quantizer block to generate the TPL boundaries, i.e. to 

define a finite set of discrete output power levels (-25 to 0 dBm). The first block limits the 
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potential TPL values available to the TPL control, named bound of saturation [25 dBm, 0dBm], 

whereas the latter rounds up  the updated TPL to the near discrete value. As this TPC follows 

a closed-loop architecture, the new updated TPL is then transmitted to the Edge of the Network 

node through a control packet. The analysis of the simulation results for two links, (1) user’s 

right waist - user’s chest and (2) user’s right waist - user’s right ankle, show that this is able to 

turn the communication subsystem more energy-efficient. According to the results, this solution 

saves energy by approximately 7% and 68% to link (1) and (2) when the user is walking, 

respectively. When the user is running, the system ensured energy savings of roughly one 

quarter for the link (2), whereas link (1) consumed more of 9% power than transmissions carried 

out at static TPL 0 dBm.  

(B) Enhanced-and-Hold Mechanism 

The most representative solutions of this type of mechanisms are from [4], [39], [140]–

[142]. The LQE adopted consists in an enhanced-hold estimator, using the current estimation 

metric value and the historical one to estimate the current radio channel quality.  

The TPC mechanism proposed by Kim et al., designated RL-TPC, combines the RSSI/LQI 

estimator - applied in receiver-side approach – with a  Linear-based TPL control - applied in 

receiver-side approach - with an adaptive target RSSI range, which defines the upper limit as a 

static variable and updates the lower one according to the standard deviation of the RSSI of 

several samples [4]. Upon detection of the radio channel under interference, through the 

weighted average of the LQI values of 5 samples in a row, the TPC mechanism switches to 

another available radio channel. When the radio channel does not have high levels of 

interference, the TPL is gradually updated if the result is not within the target RSSI range 

margin, through (1). This solution was applied into link wrist-pocket and empirically evaluated 

in indoors to three different activities: (a) static, (b) walking slowly (2.5 km/h) and (c) walking 

a bit faster (5 km/h). This solution reduces the average TPL, being it -17 dBm, -14 dBm and -12 

dB in activities (a), (b) and (c), respectively, and, as consequence, the consumed energy power 

is reduced by 40%, 35% and 30% respectively. The resultant average RSSI is close to -84 dBm, 

-82 dBm and -81 dB to activities (a), (b) and (c), respectively. In all scenarios considered during 

the experimental evaluation, the solution was able to ensure a PRR higher than 90%. 

In [39], a TPC mechanism designated Energy-Efficient Adaptive Power Control (APC) was 

proposed, where the LQE and the TPL control are applied in a receiver-side and sender-side 

way, respectively. The data-driven LQE is based on an enhanced-hold mechanism. However, 

the authors propose the adoption of two possible values to the weighted parameter (𝛼) to 
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provide flexibility to the TPC, by reacting differently to a perceived increase or decrease in 

radio channel quality, emphasizing energy savings or the PRR. These values are static and 

pre-defined and determined through Monte Carlo simulations in Matlab, using the gathered 

data. The authors classified the radio channel, namely the good and bad radio channel 

conditions, according to the PER – given by expression 1-PRR. The average weight values are 

randomly selected and the effect on the system performance is checked. The optimal values 

reported of 𝛼1 and 𝛼2 – 1 and 0.4, respectively –, were those that ensured the better balance 

between reliability and energy efficiency. If the radio channel presents good conditions, the 

LQE turns to a sample-and-hold HW-based RSSI estimator to be faster to converge to the 

optimal TPL. In bad radio channel conditions, the TPL is updated slowly to avoid under and 

overestimations of radio channel measurements, since it turns into a HW-based RSSI 

enhanced-hold method. The solution proposed by Shah et al. adopts a Hybrid-based TPL 

control, i.e. a binary approach for good radio channel conditions (𝛼1 is selected in the radio 

channel gain equation) and a Linear-based approach to bad radio channel conditions (in 

expression (3.1) the value of 𝛼2 is considered). Moreover, the TPL control relies in an adaptive 

target RSSI range margin as guideline for the TPL updating, more specifically, the upper limit. 

As the TPL control is applied in a sender-side way, it means that the radio channel gain 

information, estimated at receiver-side, is transmitted to the Edge of the Network node using 

control packets. The LQE is responsible to determine if the radio channel is under good or bad 

conditions. To perform it, the radio channel gain is compared with the latest power sample 

measured. If 𝑅̅ > 𝑅𝑙𝑎𝑡𝑒𝑠𝑡, the radio channel is considered in good state, if not, it is considered 

in a bad state. Through simulations, the performance of this solution, when applied to link user’s 

right wrist-user’s right hip, in environment indoor and while the user is walking was tested. The 

reported results show that this solution saves just under a half of the whole energy consumed 

when a static and 0 dBm TPL is adopted. 

Although commercial-off-the-shell IEEE 802.15.6-compliant radio-frequency transceivers 

are not yet available, some TPC mechanisms have been designed to operate in conformity with 

IEEE 802.15.6 standard [140]–[142]. Gao et al. proposed a TPC mechanism for WBANs with 

a transceiver that adopts stacks in conformity with the MAC layer proposed by IEEE 802.15.6 

standard, operating in beacon mode with SF boundaries [140]. This mechanism is based in a 

closed-loop control architecture and applies the HW-based enhanced-hold method (running in 

a receiver way and following a data-driven approach) and a Linear-based TPL control block 

that adds to the previous TPL values, the minimum TPL adaptation level value of the set. The 

determination of the TPL is performed by the Edge of the Network nodes, thus, the Coordinator 
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node includes the result of the estimation performed by the LQE in packet acknowledge. This 

must be transmitted back to the Edge of the Network node after reception of the data packet, 

within an interval always lower than the time defined as short interface space period, pSIFS 

(time that a Edge of the Network node, after transmitting its data packets in its allocated slot, 

waits, in the remaining SF, for an ACK, before going to sleep). Through simulations, the 

researchers have verified that the proposed solution ensure a Edge of the Network node lifetime 

by 12.4% (66% of the time transmissions are below -12 dBm) in comparison to the Edge of the 

Network node that transmits at 0 dBm TPL. According to Shah et al., to same conditions, the 

solution APC ensures more energy-efficient transmissions than the solution [140] (the link 

user’s right wrist-user’s right hip, while user is walking, consumes less 18% of energy power) 

[39].     

A two-fold TPC mechanism,  designated Two-step Adaptive TPC algorithm (ATPC), was 

proposed in project [141] and in [142], designed for WBANs that adopt the IEEE 802.15.6 

MAC and operating in beacon mode with superframe boundaries. Although this mechanism 

does not follow the typical closed-loop control scheme, since the TPC is applied in a sender-side 

way, it is designed for WBANs with star topology and with the objective of reducing energy 

consumption without sacrificing other performance metrics. In the first step, the Hw-based, 

enhanced-hold LQE estimator is applied in a sender-side way, following a beacon-based 

approach. As beacons are mandatory for maintaining network synchronization and are 

transmitted periodically by the Coordinator node (authors tested at a sampling interval of 15 

and 150 ms), they are used to measure the radio channel gain of each Edge of the Network node 

at the beginning of each SF. The period of an IEEE 802.15.6 SF is defined by beacons, thus the 

Edge of the Network nodes are awake to receive the first beacon that indicates the start of a SF 

and after go to sleep. They awake again at their allocated time slots to transmit the data packets, 

waiting for an ACK (emitted by the Coordinator node) during the interval pSIFS, before going 

to sleep.  

In the second step, the optimal fade margin to be added to the LQE estimation is defined by 

a mechanism, designated Adaptive Fade Margin Estimator (AFME). This mechanism relies in 

prediction errors calculated through the difference between the radio channel gains obtained in 

step 1 and the current radio channel gain – this is the RSSI of an ACK received by the Edge of 

the Network node. The AFME sets a lower (2 dB) and an upper limit (4 dB) and an initial value 

of the fade margin (3 dB). This margin is then dynamically updated in the following way: the 

prediction error at every SF is compared with the lower and the upper limits. If the error is 

higher than the last one (previous SF), the margin is increased one unit until the maximum 
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upper threshold is reached. If the current error is lower than the last one, the fade margin is 

decreased one unit until the lower threshold is reached [141], [142]. When the last data packet 

is lost, the previous fade margin is increased in three units to reduce the probability of losing 

further data packets.  

These two TPC mechanisms differ from each other on the TPL control method adopted. In 

the solution described in [141], the TPL is calculated (𝑇𝑅𝐿 is set as a static and predefined 

value and the standard deviation of 𝑛 RSSI samples is summed to the 𝑇𝑅𝐿), whereas in the 

solution [142], the TPL control follows a simple Linear-based approach, applied in a 

sender-side way. Based on the reported results from both solutions, it is possible to conclude 

that the TPC reliability decreases when the SF period increases, since slot allocation, granted 

for each Edge of the Network node, does not start immediately after beacon reception. 

Moreover, the time interval between beacon reception and slot allocation is different for each 

Edge of the Network node. For instance, the TPC mechanism performs well for low delays (15 

ms), but poorly for high delays, as in the case of 150 ms. To overcome the problem associated 

with higher delays of fast varying radio channels, authors suggested setting lower values of 𝛼 

in the enhanced-hold Hw-based RSSI LQE equation, increasing the weight of radio channel 

history [141], [142]. For links user’s chest-user’s waist and user’s chest-user’s arm the ATPC 

saves approximately one quarter of energy compared to the fixed TPL (-10 dBm). 

(C) Adaptive Feedback Periodicity Mechanism 

This type of TPC mechanism adapts, as suggested by its designation, the period between 

control packet transmissions, to accommodate the variation in radio channel quality in 

real-time. Solutions proposed in [138] and [1] are excellent examples of its application and 

potential. Both adopt the enhanced-hold LQE, running in the Coordinator node, whereas, 

regarding the TPL control, Moulton et al. implemented a Linear based one and Yi et al. 

implemented a Binary based one, following, in both cases, a receiver-side approach.  

Moulton et al. solution aims at: i) reducing the control packets periodicity, when the radio 

channel gain falls outside the target RSSI margin, so that the TPL mechanism is agile enough 

to react to the changing radio channel conditions at run-time, and ii) increasing the control 

packets periodicity, when the radio channel gain is within the target RSSI range, (radio channel 

quality is stable), to promote savings on the overall energy consumption due to a reduction of 

control packets transmission [138]. As the TPC mechanisms must avoid long control packet 

transmission intervals – if interval is too long, when control packet is transmitted it does not 

reflect the changing radio channel conditions sufficiently fast –, Moulton et al. defined a 
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minimum and maximum interval, namely 2 and 64 control packets, respectively. According to 

the results reported, it is clear that when the user performs periodic movements (such as, 

walking), the period between control packet transmissions is high at the beginning (starts in 2 

s and remains in 2-8 s within the first minute). After the TPL control reaches the optimum value, 

the control packets are emitted at a very low period (between 16-32 s), significantly reducing 

the average number of control packets exchanged. This solution achieved an energy saving up 

to 15% and 21% in comparison to a static TPL (0dBm) while the user is walking and standing, 

respectively (the researchers do not address the metric PRR).    

In their research article, Yi et al. claim that when the radio channel is unstable, i.e. the RSSI 

value fall outside the target RSSI range repeatedly, there is a frequent deliver of control packets 

and the resultant energy consumption may exceed the TPC energy savings [1]. The solution 

proposed by Yi et al. does not update the TPL periodically, instead it controls when the TPL 

control is applied by varying the control packet transmission interval on the basis of the radio 

channel condition.  

The first task of the TPC mechanism LQE is to determine whether the radio channels 

present a stable quality or not. When the radio channel is stable, i.e. the difference between the 

radio channel gain and the last RSSI sample is smaller than a certain limit, the TPL control is 

executed (applied in a receiver-side way); when the radio channel is unstable (radio channel 

estimations fluctuate), the TPL control is deferred and the control packet is not sent, waiting 

until the radio channel becomes stable to execute the TPL control. However, the reported results 

demonstrated that too short or too long periods between control packets transmission can have 

a negative impact on the energy efficiency of the WBAN. Short periods lead to high energy 

consumption due to the frequent transmissions of control packet transmission. Too long interval 

between control packets transmission turns the TPC less efficient - slow reactions to changes 

in radio channel conditions are expected which increase the energy consumed per data packet 

successfully transmitted [1].  

Researchers experimentally tested this solution and compared to a TPC based on the 

Sample-and-Hold operation principle with different design choices in terms of the TPL control 

adopted. Results demonstrate that excessive control packet transmission may lower the energy 

efficiency of the system. The experimental test took up 360 s and was performed to links user’s 

chest-user’s stomach and user’s chest-user’s back in indoors. During this interval the user 

performed a sequence of user´s movements (standing, walking, standing, and running). 

According to results reported, the different mechanisms have equivalent performance in terms 

of PRR (<10%), but the transmitted control packet and the energy power consumption varies 
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considerably. The TPC that adjusts the control packet transmission interval reduces the number 

of transmitted control packets by 90% in comparison to a Sample-and-Hold approach 

configured with a binary-based TPL control, which has a maximum amount of control packets. 

In terms of energy consumption, the proposed solution saves achieves a 40% reduction on 

average.       

(D) Prediction-based Power Control Mechanism 

Another variant of TPC mechanisms identified in the literature and based on the operation 

principle of the closed-loop control architecture is designated Prediction-based Power Control. 

This type of mechanism aims to perform long predictions to reduce the number of iterations 

between the Edge of the Network nodes and the Coordinator nodes, i.e. increase the rate of 

control packets exchange. Several prediction-based TPC mechanism were introduced in the 

literature, such as [50], [136], [146]. 

Guo et al. proposed a TPC mechanism, designated Minimum Energy Packet Forwarding 

Protocol (MEPF). The LQE adopts the sample-and-hold method, applied in a receiver-side way, 

and the TPL control follows a predictive approach. This block, applied in a sender-side way, 

comprises a RSSI model built based on RSSI TPL shifting curves, to predict the RSSI and, in 

just one iteration, define the optimal TPL [136]. In addition, the MEPF adjusts the TPL of the 

Coordinator node ACK, since the TPC result is transmitted to the Edge of the Network node in 

Coordinator node acknowledgment after reception of each data packet. This TPC stores lost 

data packets in the buffer until the link is good enough to retransmit this information. As the 

Edge of the Network nodes are typically resource-constrained, this mechanism adopts a 

threshold to increase the probability of successful data packet retransmission, avoiding the 

buffer from being full [136]. 

When comparing the Closed-loop Control TPC mechanisms described and analysed in the 

previous paragraphs, namely (1) the TPC mechanism that uses a sample-and-hold method LQE 

[50], the (2) TPC mechanism that employs an enhanced-hold LQE [50] and the (3) TPC 

mechanism that predicts the estimator metric using the Weighted alternate-least-squares 

prediction technique [146], it is clear that both Prediction HW-based LQEs solutions are 

combined with a TPL control block that applies a target RSSI to allow the TPC to perform long 

term predictions. Therefore, solutions (2) and (3) are considered similar because they adopt a 

sender-side TPL control based on a Linear approach, differing only on the sender-side LQE 

selected, as mentioned before. These solutions were designed, developed and tested to ensure 

an efficient power allocation for long intervals - up to 250 ms, 400 ms, 800 ms and 1 s -, with 
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an time interval between received data packets, for a given link, varying from 10 ms to 400 ms. 

The reported results reveal that both TPCs have similar performance in terms of outage 

percentage (<10%). However, this performance parameter decreases with an increase in the of 

prediction interval. For instance, from 250 ms to 800 ms, the outage percentage increases up to 

2.5% and power consumption up to 0.1 mW. Moreover, the interval between data packets 

transmission also influences the TPCs performance. According to the results reported, 

increasing the period, the outage percentage slightly increases in average 2%-4%, whereas the 

average circuit power transmission seems not be affected. Solution (3), revealed to be more 

complex than solutions (1) and (2) since it aims to ensure an efficient power allocation up to 2 

s. The LQE adopted is the weighted alternate-least-squares predictor, applied in a sender-side 

way, and the Linear-based TPL control is applied in the Edge of the Network node. Therefore, 

the predicted signal portion 𝑆𝑝 is transmitted in the control packets to the Edge of the Network 

node, as a vector of the RSSIs.  

The performance of this TPC solution was compared with the performance of the solutions 

(1) and (2) in terms of energy consumption and outage probability. Solution (3) was set to 

predict and allocate an optimum TPL for 5 samples ahead, when a sampling interval of 10 ms 

is selected, and for 2 samples ahead, when the sampling interval is higher than 120 ms. In both 

cases, the number of samples corresponding to the last 4 s of the signal have been used. For a 

prediction of 1 s ahead and with the sampling interval adopted, the power consumption of each 

method is relatively constant. The TPCs (2) and (3) outstand in terms of this performing metric, 

reducing significantly the energy consumption, even when compared with low TPLs, such 

as -10 dBm, where reductions of 8% and 22% were reported for solutions (2) and (3), 

respectively. Regarding the outage probability, and considering a prediction of 400 ms ahead, 

the TPCs (1) and (3) ensured the best performance. However, it was noticeable that for any 

sampling interval, as well as, 𝑅𝑥𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, the TPC (3) provides lower outages probabilities 

than the TPC (2) - up to 0.5%-1% below. Both TPCs ensure outage probabilities lower than 

10%, regarding the sampling interval. Researchers also evaluated the TPC (3) for predictive 

power control 250 ms, 400 ms, 1s and 2 s ahead, for a sampling interval of 50 ms. Considering 

-90 dBm as the Coordinator node 𝑅𝑥𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, the predictor algorithm seems to be able to 

ensure the reliability requirements of the IEEE 802.15.6 WBAN applications, since  outage 

probabilities lower than 7% were reported. This demonstrates improvements (for all the 

prediction periods mentioned above) when compared with transmission, with same 

configuration, but at a static TPL of -10 dBm (13% of outage probability). Therefore, the 
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prediction period ahead has not revealed high influence in the performance of TPC (3) in what 

concerns outage probability. Moreover, authors concluded that this solution is able to ensure 

the reliability requirements for a prediction of 2 s ahead, even for a TC of 500 ms [146]. 

Although this TPC mechanism ensures a reduction of the number of control packets that convey 

this information back to the Edge of the Network node (several predicted samples), it is only 

applicable to periodic user’s movements that are performed for long periods (as pre-defined 

movements performed in experimental tests). Thus, it is not reliable when the user performs 

daily activities. 

Posture and Motion-based Mechanisms 

The posture and movement of WBAN users have the most significant influence on the radio 

channel quality. Several researchers explored different techniques to recognize the user’s 

posture and/or movement. The solutions from [22], [128], [130], [135], [143], [144] opted for 

estimators based on (a) inertial sensor-based methods, that through posture and/or movement, 

translate the current radio channel quality. Other solutions determine the current posture 

knowing in anticipation the current and previous radio channel estimations (RSSI samples) and 

are designated (b) RSSI-based Postural Position Detection TPCs 

(A) Inertial Sensor-based TPC Mechanisms 

Regarding solutions that rely in inertial sensor-based LQEs, the author proposed a TPC 

mechanism to monitor infants during sleep [144]. This mechanism is applied in a receiver-side 

approach. The closed-loop control method (c.f. Figure 3.4) is used to estimate the current radio 

channel quality (RSSI), by applying a sample-and-hold method. Moreover, in the TPL 

updating, the fading level information is considered. Since in NLOS transmissions the signal 

strength has high and fast variations and the RSSI hardware-based estimation is prone to 

inaccuracy, updating the TPL in an aggressive manner can drive the RSSI outside the RSSI 

range. To recognize the positions that are more susceptible to fading, authors conducted a radio 

channel characterization based in scenarios (different environments, TPLs, positions and 

distances). This TPC combines a RSSI hardware-based LQE and a TPL control, which uses the 

fading level information to update its strategy on the TPL selection. When data transmission 

occurs in LOS, it is expected that radio channel remains static. In this situation, the TPL control 

adopts an aggressive methodology, a Binary based TPL control to speed the convergence to 

reach the optimum TPL. In bad radio channel conditions, which can be translated in unstable 

radio channels, the TPL control switches to a conservative TPL updating, adopting a 

Linear-based TPL control. This avoids fluctuations in TPL selection (RSSI may go farther from 
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the target RSSI margin), and ensures that the RSSI remains within the target RSSI range for 

long periods, reducing the number of TPL updates (from 14 updates to 6, when compared with 

the aggressive approach). As a consequence, the level of overhead in the radio channel is 

reduced. Results reported show that the TPC mechanism is agile to react to radio channel 

changes and is able to maintain the RSSI level within the target RSSI range. This was not 

verified in a WBAN operation using a pre-defined and static TPL [144].  

Solutions proposed in [22], [128], [130], [135], [137], [143], [145] aim to overcome the 

main limitations of the receiver-side LQEs, namely the one related with the run-time collection 

of huge information from transmitted data packets and extra packets (control packets), which 

is needed to inform the transmitter about the current state or the most suitable TPL (e.g. control 

packets, hello packets and beacons) and incurs in extra overhead. These solutions can exhibit a 

predictive behaviour [22], [135], [143] or an estimation behaviour [137], [145].  

Vallejo et al. proposed a TPC mechanism based on a Fuzzy logic controller, designated 

Proactive-TPC [135], [143]. The main advantages of this type of controllers are their 

robustness, ease of design (due to the use of linguistic variables instead of mathematical 

expressions) and flexibility. According to Kazemi et al., fuzzy controllers have the great 

capability to map nonlinear and complex relationships between input and output spaces [108]. 

The Proactive TPC mechanism comprises the A-LQE, to predict the RSSI variations and the 

TPL control, responsible for adjusting the TPL to the minimum value required (experimentally 

determined) to ensure the successful data packet delivery. The TPC mechanism can follow 

either a conservative or an aggressive strategy, as the TPL is selected according to the current 

radio channel state and the prediction of the future state. The RSSI spectrum is divided in 

several zones and a threshold zone is defined (-80 dBm) to set this value as the minimum RSSI 

value. Taking into consideration the scenario, the TPL is defined to each zone. The number of 

zones depends on the number of TPLs available in the transceiver node, ensuring, in case of a 

large number of TPLs, a finer granularity in the output power.  The researchers opted to define 

three zones, namely RSSI values higher than -75 dBm (Zone 1), values within range -75 dBm  

(Zone 2) and values lower than -80 dBm (zone 3). The TPC mechanism was assesses while the 

user was static in pre-defined positions. According to the results reported, despite the high 

oscillations in the TPL selection, due to the high variability of radio channel quality, this 

mechanism was able to maintain the RSSI value higher than the minimum threshold and 

promoted a reduction of more than 20% on the total energy consumption.  

Solutions from [22], [137], [145] follow a similar approach. The LQE adopted relies in 

movement detection, based on a 3-axis accelerometer sensor to estimate/predict the radio 
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channel quality, while the user is performing periodic movements. The TPC mechanism 

proposed by Vallejo et al., which is applied in a sender-side way and designed as a reactive 

algorithm, relies in an extensive radio channel characterization for each subject and scenario, 

at different TPLs, adjusted through movement detection from an accelerometer. The RSSI is 

predicted when no movement is detected (|𝑔|⃗⃗⃗⃗  ⃗ ≈ 9.8𝑚/𝑠2). In this case, the TPC estimates the 

relative position of the user through acceleration orientation (only predefined static positions 

were considered, such as, seated with different orientations of arms and legs) and using the 

empirical data obtained in the radio channel characterization, the TPC control determines the 

optimum TPL. When the user is moving (user walking), the optimal TPL is estimated by the 

LQE through acceleration measurements. If  |𝑔|⃗⃗⃗⃗  ⃗ ≫ 9.8𝑚/𝑠2, then the TPL control selects the 

maximum TPL allowed, 0 dBm, to avoid data packet losses. This may lead to a 

non-energy-efficient use of the radio transceiver and RF interference with other devices and 

networks. 

The TPCs algorithms, designated Gait Cycle TPC (G-TPC) and Accelerometer 

Assisted-TPC (AA-TPC), addressed in the research works [137] and [145] to the link user’s hip 

(receiver node)-user’s ankle (sender node location), respectively, aim schedule the data packets 

transmissions at the point when the link is at his best quality in each gait cycle. These algorithms 

merge a strength peak detection-based LQE, proposed in [130], and a Linear-based TPC control 

mechanism following a receiver-side approach. These solutions assume that the receiver 

(Coordinator) node is not resource-constrained, for instance a smartphone, since the TPC 

algorithm is too complex and, thus, has to be executed in such nodes. This node is responsible 

for estimating and determining the most suitable TPL, but techniques to track the gait cycle 

offset and to estimate the on-going gait cycle period have to be executed. This process aim the 

determination of the period of time that the sender node must wait between data packet 

transmission. This information and the estimated optimal TPL are transmitted back to the 

emitter nodes as control packet. When this information is received, the emitter configure its 

output power to the new optimal TPL and calculate the time elapsed since the last data packet 

transmitted to determine the remaining time until transmission of the data packet according to 

the information proved by receiver. These solutions, sacrifice the latency (which is the higher 

than maximums allowed in medical and non-medical applications) of the transmissions to 

reduce the energy consumptions (26.4% and 25% in [145] and [137] respectively) and the data 

packet losses (reduce the data packet loses up to 65% [145] and 4% [137] in comparison with 
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a Enhance-and-Hold based-TPC mechanism). The two above cited TPC algorithms differ from 

each other on the techniques adopted to the gait cycle offset. 

(B) RSSI-based Postural Position Detection TPCs 

The solutions proposed by [9], [48] fit within the class of TPCs that predict the current 

postural position using the RSSI measurements (without relying in information from inertial 

sensors to estimate postural position) resulting from the closed-loop architecture. The proposed 

solutions adopt the sample-and-hold method (which belongs to the HW-based category of 

LQEs), applied in a receiver-side way and using the RSSI metric as estimation parameter. They 

also rely in a target RSSI margin to update the TPL in a way that ensures RSSI values stability 

and immunity to packet losses. Through a scenario-based radio channel characterization that 

aims to determine the RSSI-TPL relation, as well as, radio channel quality expected in very 

specific user postures (the users were invited to follow sequence of four right hand movements, 

representing four natural sitting postures), researchers identified the existence of a linear 

relation between these parameters for static scenarios. Both RSSI process and the body postural 

process are modelled as a linear, stochastic system. The current postural position is estimated 

through a Linear Quadratic Gaussian Control with an Integrator (LQGI) whereas the optimal 

TPL is determined through an analytical model that describes the RSSI in function of the TPL 

parameter. The newly TPL is transmitted to the Edge of the Network node as a control packet. 

This TPL control, which is part of the LQGI, has a control variable that updates the TPL control 

behaviour. For instance, for high values of the control variable, the TPL convergence will be 

faster (binary approach, resulting in less TPL updates), but may lead to a tracking error increase 

(difference between RSSI measured and RSSI predicted). For low values, a Linear-based TPL 

control is implicit, ensuring a slow convergence, higher control packets exchange, but also a 

tracking error decrease. 

 Comparative Analysis of Energy-Sensitive TPCs 

This subsection summarizes and compares all the TPC solutions developed for 

energy-sensitive WBAN applications previously described.  

Although the closed-loop control-based TPC mechanisms are not suitable to predict the 

run-time behaviour of the on-body radio channels, they are simple (algorithms with low 

complexity, but may demand high memory usage), effective (minimize energy consumption), 

able to detect incidental disconnections and ensures fast reactions to any changes in the radio 

channel. The several TPC mechanisms addressed in the literature are very different in terms of 

the LQE and TPL control mechanisms employed. The main disadvantages of these type of TPC 
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solutions are related to the traffic overhead resulting from the collection of huge information 

(from transmitted data packets and control packets) at run-time. This TPC operation principle 

might promote an extra overhead thus resulting on a weak network utility. Moreover, the metric 

RSSI, which has been the most adopted LQE metric, is largely influenced by interferences (high 

sampling transmissions also promote the increase of RF interferences) from coexisting WBANs 

or other systems. Therefore, these type of TPC approaches are more suitable for environments 

not subjected to a high RF interference.  

The most devised approaches for static, dynamic, dynamic with fading presenting a periodic 

behaviour, and very dynamic (strict fading features that leads to frequent disconnections and 

lost data packets) scenarios are the Sample-and-Hold, Enhanced-and-Hold, Prediction-based 

Power Control TPCs and Adaptive Feedback Periodicity, respectively.  

The sample-and-hold based mechanisms is the most agile and less complex, this makes this 

approach a good solution to static scenarios, since it requires a very low number of exchanged 

control packet to reach the optimal TPL. However, it is not suitable for dynamic fading 

scenarios due to the fast-change fading, in particular, the small-scale fading. As the radio 

channel quality can vary abruptly in short time periods [123] (Chaganti et al. reported an 

average fading variance of ± 10 dB [123]), this method will lead to unreliable estimations and 

impose a higher effort to the TPL control (higher fluctuation in TPL updating) to meet the 

WBAN application requirements. It also requires a higher amount of control packets when 

compared to the Enhanced-and-Hold based solutions, which ensures fewer fluctuations in 

estimations and in the TPL to update. However, the latter solutions are less agile even though 

this performance metric and, consequently, the TPL updating fluctuation can be optimised 

through the algorithm parameters configuration (such as weight given to the radio channel 

history and RSSI target range) according to the radio channel propagation conditions.  

The solutions Adaptive Feedback Periodicity are devised to very dynamic scenarios since 

in such scenarios updating the TPL may not be recommended. These solutions, which are based 

on the principle of either the Sample-and-Hold or Enhanced-and-hold method to sense the radio 

channel quality, operate by controlling the period between control packets to accommodate the 

variation in the radio channel quality. The reported performance of these mechanisms 

demonstrates that too short or too long periods between transmissions of control packets can 

have a negative impact on the energy efficiency of the WBAN. Shorter periods lead to high 

energy consumption due to the frequent transmissions of control packets. A too long time 

interval among control packets transmissions turns the TPC less efficient. Slow reactions are 

expected, which increase the energy consumed per data packet successfully transmitted [1]. 
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Although these solutions may lead to reduce energy consumption in transmission through a 

good run-time comprehension of the fading conditions, the PER and latency on 

communications may be significantly increased (due to the data packet losses, since solutions 

opt by not updating the TPL when signal in considered unstable).  

The high amount of control packets exchanged has led the scientific community to propose 

Prediction-based Power Control TPCs solutions. These solutions assume that there is an 

inherent long-term temporal stability of the radio channels which makes this solution the most 

devised approach to radio channels showing periodic fading fluctuations. However, these 

solutions might not perform well in user’s daily activities, since the coherence time averages 

reported in the literature are not higher than the maximum prediction period that research works 

aim to ensure (around 1 s). In [146], researchers performed a radio channel characterization for 

long periods while the user carried out his daily activities and coherence time values of 500 ms 

were reported. Usually, on-body characterizations are scenario-based and lower time values are 

reported, e.g. 308 ms when the user is walking [131], 125 ms [131] and 48 ms [125] when the 

user is running, 27 ms when the user is jogging [125], [131], and between 85ms and 310 ms 

[26] when the user is standing up/sitting down. Besides the fact that the radio channel remains 

stable only for periods of time inferior to the maximum predicted ahead (1 s), the stability of 

the radio channel also depends on other factors, such as, the type of movement, user posture, 

Edge of the Network node location (some positions, for instance, user’s wrist or user’s foot, are 

susceptive to larger movements), surrounding environment, as well as, body features or 

𝑅𝑥𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. Therefore, this kind of solution does not seem suitable to improve the 

performance metrics of radio channels that experience variable fading effects. Performance 

results reported by research works, such as [50], are just satisfactory in static or dynamic 

scenarios where the fading magnitude follows a periodic behaviour over time.  

The most suitable TPL control mechanism solution for the TPC mechanisms previously 

described is the scenario- and LQE-dependent. For instance, a binary approach is less efficient 

in dynamic fading scenarios, since in the presence of high radio channel quality variation the 

TPL control predicts the optimal TPL incorrectly. Owing to the big changes in the TPL value, 

the following LQE estimations are further away from the target RSSI range, resulting in data 

packet loss and unnecessary energy consumption. Therefore, this solution matches well with a 

Sample-and-Hold method, as both are recommended only to static fading scenarios. The 

dynamic-based TPL control has lower power consumption than the binary algorithm, since the 

straight-line equation is determined taking into consideration two (previously) measured RSSI 

values, both out of the target RSSI range, whereas in the binary approach more than two control 
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packets may be required to reach the optimal TPL [46]. Nevertheless, the operation principle 

of the dynamic-based TPL control is only suitable for scenarios where the radio channel is very 

stable. The suitability of this approach in dynamic scenarios is not clearly demonstrated, as the 

linear relation between the estimation metric and the TPL is not perceptible. However, even in 

scenarios where the user remains standing, the radio channel is susceptible to be time-varying 

due to body shape changes caused by the physiological process, such as breathing and 

slight-changes in posture, and changes in operation environment [26]. The linear approach was 

designed to cope with the dynamic scenarios since the TPL is linearly changed (slightly 

increased or decreased) close to the target RSSI range, without causing abrupt variations in the 

radio channel (due to the output power adopted in transmissions), thus reducing the number of 

control packets exchanged [1].  

The Predictive-based TPL control has never been applied to TPC mechanisms based on a 

closed-loop control operation principle. The research work [46] empirically evaluated the 

performance of these TPL controls in an Enhanced-and-Hold operation principle TPC. The 

energy consumption and the PRR of the links user’s chest-user’s stomach and user’s 

chest-user’s back (these links do not typically experience severe large-scale fading) were 

analysed while user performed different activities, namely standing, walking and running in an 

indoor scenario. The linear-based TPC is those that consumes more energy in static fading 

conditions (more 23%, 14% and 23% than the binary, dynamic and hybrid, respectively), for 

instance in link user’s chest-user’s stomach while the user is standing or walking, but consumes 

less energy in dynamic fading scenarios (in link user’s chest-user’s stomach while the user is 

walking or to link user’s chest-user’s back to all the user activities). The binary scenario is 

better than the linear approach in static fading scenarios, since this approach reaches the optimal 

TPL faster. Moreover, this solution shows better results than the dynamic approach (this is the 

worst in dynamic scenarios) in all scenarios, achieving up to 5% average energy saving. The 

hybrid approach has better energy efficiency than the other ones in all scenarios tested. 

Regarding the PRR performance, all the TPC mechanisms meet the reliability requirements of 

WBAN applications.   

As several research works showed through empirical radio channel characterization, the 

user0s body posture and movement are considered the main radio channel behaviour influence 

[48]. The Posture and Motion-based TPCs rely in different techniques to determine the current 

user posture and/or movement to ensure the WBANs requirements in terms of the network 

traffic application. In most of the applications data packets are required to be transmitted at 

diverse sampling periodicity since this is signal-specific (for instance, some parameters are only 
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sensed and transmitted at a frequency of 1 Hz such as environment-related parameters) or an 

event-based monitoring is required. The inertial-sensor based solutions addressed in the 

literature are typically more complex than closed-loop control based TPCs, but require low 

memory usage, low traffic overhead and are faster reaching the optimal TPL. However, the 

advances reached on this field are still limited. The research works that propose a solution of 

this type have to reach a great comprehension of the fading effects experienced by on-body 

signals. However, these signals are not well-understood, since the number of research works 

focused on the radio channel characterization and modelling is short when compared to the 

research works carried out on the traditional networks. These studies must take into 

consideration several factors that may affect the emitted signals such as the posture, movement, 

TPL and operation environment into the radio channel quality - it is impractical to conduct 

experimental experiments in all scenario configurations possible and one-model-fits-all 

approach to describe signal attenuation is not reliable [13], [26], [111], [159]. This fading 

effects analyse, which may drive to an analytical model, is used to determine the most suitable 

TPL according to the estimated radio channel conditions.  

The inertial sensor-based TPC solutions rely on hardware to determine the posture and/or 

activity of the user to estimate the current radio channel quality or predict it in future instants. 

Different solutions have been addressed in the literature to either estimate [137], [145] or 

anticipate [22], [135], [143] the radio channel quality according to the user posture and 

movement. However, the proposed solutions to predict the radio channel quality are limited to 

static scenarios. For instance, the research works [22] only predict the RSSI when the user is 

static (this information is extracted from the accelerometer) through the acceleration orientation 

that permit estimate the relative position.  

The research works that rely in models, such as ANFIS [135], [143], show great 

performance in static scenarios (but only in this one), as they cover a high variability of scenario 

configurations. Different TPL controls have been adopted, the majority of the research works 

rely on models that are obtained through the radio channel characterization in order to ensure 

that the optimal TPL value is reached faster, or opt by dividing the range of potential RSSI 

values into zones (to each one a TPL is assigned). The Posture and Motion-based TPCs that 

adopt Movement Detection based TPL control mechanism do not take into consideration all 

influencing factors of radio channel behaviour (such as, different environments, movement 

velocity and different postures) that make the instantaneous signal strength noisy. This solution 

uses the accelerometer to determine whether there is or no movement. When the user is moving 

the TPC is not executed. Therefore, this solution is not suitable for dynamic scenarios. The 
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RSSI-based Postural Position Detection TPCs do not rely on inertial sensors to estimate the 

current user posture.  

The research works [9], [48] rely on the RSSI information (collected by following a closed-

loop operation principle) to perform such task. Even though the results achieved are excellent 

in what concerns the lower error in RSSI estimation and the better energy performance, when 

compared with ordinary closed-loop architecture based TPLs, this TPL control is not suitable 

for dynamic scenarios. As the signals of a link have a dynamic and stochastic behaviour, it is 

impracticable to predict user posture or movement based on the RSSI, due to the numerous 

influences in the radio channel behaviour. All the Posture and Motion-based TPCs provide a 

great accuracy for static positions (if the user performs exactly the same postures that were 

considered during the radio channel characterization phase), but they do not take into 

consideration the underlying motion of the human body. This limitation is due to the LQEs 

based on the inertial sensor method, since none of them is able to cope with all changes in 

orientation of the human body, mobility of the subject and other spatiotemporal aspects (such 

as the room layout, people in the vicinity, etc.). 

Since the user’s body position and movement have a major impact on the radio channel 

behaviour, LQEs relying on 3-axis accelerometers may play an important role in future TPC 

mechanisms, as, besides velocity and displacement estimation, can also detect body-position 

and posture when used as inclinometer. These type of solutions are more complex than closed-

loop control-based TPCs but are more energy-efficient when applied in scenarios in which there 

is no movement, since it does not require packets exchange and are faster reaching the optimal 

TPL. However, developments in this type of approaches do not have enough maturity to 

overcome the performance of the closed-loop control-based TPCs n dynamic scenarios.  

As observed in this section, solutions that are only based on closed-loop control architecture 

or in inertial sensors are not able to ensure all features required in a TPC for WBAN 

communications. The research works [144] and [137], [145] have combined the closed-loop 

control operation principle and inertial-sensors information. Zang et al. proposed a TPC 

mechanism designed to WBANs subjected to changes in user posture but without motion [137], 

[145]. A previous radio channel characterization work allowed the researchers to understand 

which user postures lead the radio channel to experience high fading variability and to 

determine their design choices according to the fading effects nature in each posture. Unlike 

the research work [144] , the research work [137], [145] was designed to handle with the fading 

effects caused by human mobility. However, this solution only estimates the radio channel 

quality while the user performs periodic movements. The goal of this research in postponing 
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the data packets transmissions to the time instants where the radio channel quality is near a 

maximum within the user’s gait cycle, which improves the system reliability since in such time 

instants there are fewer chances of data packets be lost. This solution sacrifices the latency 

metric (to levels much higher than the maximums allowed in WBANs) to improve the metric 

PRR and the energy consumption. These type of solutions show the advantages of merging both 

principles – can be executed in dynamic scenarios and can adapt their behaviour to the radio 

channel quality at run-time- even though the advances observed are still limited to very specific 

scenarios. 

In Table 3.2, the design choices of the different TPC mechanisms are compared according 

to the taxonomy proposed, depicted in Figure 3.3, namely, LQE (1.), TPL Control (2.), Goals 

(3.), Topology (5.), Algorithm (5.), Scenario (6.) and Communication Standard (7.)  

Table 3.3 presents a comparison between the TPC mechanisms in terms of compliance with 

the features required for WBANs, namely, agility to react to changes in radio channel 

conditions (R1), ability to estimate the run-time behaviour of on-body radio channels (R2), 

ability to anticipate future radio channel quality states (R3), ability to fast reaching the optimal 

TPL (R4), low memory usage (R5), low traffic overhead (R6), ability to operate in dynamic 

scenarios (R7), ability to detect incidental disconnections on wireless links (R8) and low 

complexity (R9).   

Table 3.2. Comparison between the TPC mechanisms for energy-sensitive WBAN applications, highlighting the 

design choices of each TPC. 

Reference LQE 
TPL 

Control 

Goal 

Method 
Topology Algorithm Scenario 

Comm. 

Standard 
Year 

[48] 1.1.1 2.1.4 3.1.2.2 4.1 5.1 6.1 -- 2009 

[136] 1.1.1 2.2 3.1.2.2 4.1 5.1 6.1 -- 2010 

[9] 1.1.1 2.1.4 3.1.2.2 4.1 5.1 6.1 -- 2010 

[138] 1.1.2 2.1.1 3.1.1.3 4.1 5.1 6.1 -- 2010 

[50] 1.1.1/1.1.2 2.1.1 3.1.1.4 4.1 5.2 6.2 -- 2011 

[146] 1.1.3 2.1.1 3.1.1.4 4.1 5.2 6.2 -- 2012 

[5] 1.1.1 2.1.3 3.1.1.1 4.1 5.1 6.2 -- 2013 

[4] 1.1.2 2.1.1 3.1.1.2 4.1 5.1 6.2 -- 2013 

[22] 1.3.2 2.2 3.1.2 4.1 5.2 6.1 -- 2013 

[46] 1.1.1 2.1.4 3.1.1.1 4.1 5.1 6.2 -- 2014 

[1] 1.1.2 2.1.2 3.1.1.3 4.1 5.1 6.2 -- 2014 

[139] 1.1.1 2.1.1 3.1.1.1 4.1 5.3 6.2 -- 2014 

[140] 1.1.2 2.1.1 3.1.1.1 4.1 5.1 6.2 7.2 2014 

[141] 1.1.2 2.1.1 3.1.1.2 4.1 5.2 6.2 7.2 2014 

[135] 1.3.3 2.2 3.1.2.1 4.1 5.2 6.1 -- 2014 

[142] 1.1.2 2.1.1 3.1.1.2 4.1 5.2 6.2 7.2 2015 

[143] 1.3.3 2.2 3.1.2.1 4.1 5.2 6.1 -- 2015 

[39] 1.1.1/1.1.2 2.1.1 3.1.1.2 4.1 5.3 6.2 -- 2016 

[144] 1.1.1 2.1.4 3.1.2.1 4.1 5.1 6.1 7.1 2016 

[145] 1.1.2 2.1.3 1.2.1 4.1 5.2 6.2 -- 2016 

[137] 1.1.2 2.1.3 1.2.1 4.1 5.2 6.2 -- 2017 
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 Issues, Challenges, and Future Research Directions 

In the following subsections, issues, challenges and future research directions in the design 

of TPCs for WBANs will be highlighted.  

 Issues and Challenges in TPCs for WBANs 

Many studies have been carried out on mechanisms that aim the control of the TPL for 

miniaturizing energy consumption, RF interference and SAR in WBANs, but none of them are 

able of meeting all the TPC mechanisms requirements yet.  

In part, the main reason for the failure is due to the wide number of factors that influence 

the radio channel conditions that turns the estimations and/or prediction of the radio channel 

quality a difficult task.  

Holistic Link Quality Estimations 

The design of a LQE able to offer a holistic view of the radio channel in WBANs links is crucial 

for the effectiveness and applicability of TPC mechanisms. However, this is a relative new 

research area, and, as a consequence, there still are some challenges and open issues. 

Many works have analysed the capacity of several software- and hardware-based metrics 

in quantifying WBAN links properties. So far the TPCs addressed in the literature that take 

decisions based on estimations of a single LQE metric tend to fail in providing a holistic view 

Table 3.3. Comparison between TPC mechanisms for energy-sensitive WBAN applications in terms of 

requirements  

Reference R1 R2 R3 R4 R5 R6 R7 R8 R9 Year 

[48] ✓ ✓ X ✓ ✓ X X X ✓ 2009 

[136] ✓ ✓ ✓ X ✓ X X X ✓ 2010 

[9] ✓ ✓ X X ✓ X X X ✓ 2010 

[138] X ✓ X X ✓ X ✓ X ✓ 2010 

[50] ✓ ✓ X X X X ✓ X ✓ 2011 

[146] ✓ ✓ ✓ ✓ X ✓ ✓ X X 2012 

[5] ✓ ✓ X ✓ ✓ X ✓ X ✓ 2013 

[4] X ✓ X ✓ ✓ X ✓ X ✓ 2013 

[22] ✓ X ✓ ✓ X ✓ X X ✓ 2013 

[46] ✓ ✓ X X ✓ X X X ✓ 2014 

[1] ✓ ✓ X X ✓ X X X ✓ 2014 

[139] ✓ ✓ X ✓ ✓ X X X X 2014 

[140] X ✓ X X ✓ ✓ ✓ ✓ ✓ 2014 

[141] X ✓ X X ✓ ✓ ✓ ✓ ✓ 2014 

[135] X ✓ ✓ ✓ X ✓ ✓ X X 2014 

[142] X ✓ X X ✓ ✓ ✓ ✓ ✓ 2015 

[143] ✓ ✓ ✓ ✓ X ✓ ✓ X X 2015 

[39] ✓ ✓ X X ✓ X ✓ X ✓ 2016 

[144] ✓ ✓ X X X X ✓ X ✓ 2016 

[145] X ✓ ✓ X X ✓ ✓ ✓ X 2016 

[137] X ✓ ✓ X X ✓ ✓ ✓ X 2017 
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of the radio channel. In this regard, the selection of representative link quality metrics and the 

design of a new approach for combining these metrics in a single LQE is a challenging problem. 

The research work [4] proposed one of the few LQE solutions that combine heterogeneous 

metrics, but the combination of other metrics should also be considered to investigation. 

As stated by Baccour et al., the agility and reliability of LQEs (radio channel estimations 

must be computed fast and LQE must have sensitivity to detect changes in radio channel 

quality) impose a very challenging problem [55]. As the majority of the LQEs for WBANs 

addressed in the literature rely on several samples of a specific LQE metric to estimate the 

desired output parameter, it is necessary to find an optimal trade-off between the LQE stability 

and the ability to cope with radio channel quality dynamics.  

Due to the lack of a holistic assessment methodology (to be used regardless of the nature 

and used metrics of the LQE under consideration) and the difficulty in providing a quantitative 

assessment of the LQE accuracy, the way how link quality estimator is validated and how LQE 

configuration parameters are dynamically tuned still remains an open issue within the WBAN 

field. 

Low Complexity  

One of the challenges faced during the developing of TPC mechanisms for WBAN Edge of 

the Network nodes is related with strict constraints on processing and memory space. Solutions 

proposed for WBANs must be kept simple and light enough to be successfully implemented in 

such resource-constrained Edge of the Network nodes.  

Some very promising TPC mechanisms based on ANFIS models have been proposed and 

evaluated through simulations. However, the resultant neural network and number of fuzzy 

rules turn unfeasible this type of solution in WBAN networks. Inertial-sensor based TPCs that 

predict the RSSI peak value on periodic movements rely in complex techniques that need to 

process several amounts of accelerometers (memory space required is superior to the one 

available on a typicall sensor node SoC, the CC2420 [130]), which forced the authors to 

implement these solutions in a receiver-side way (increasing the dependency on control 

packets). 

The assessment of the TPCs performance in terms of metrics able to quantify the TPC 

computational load and running time as well as how computation load of the algorithms affect 

the power consumption have been ignored. The way how TPCs can be assessed and compared 

to other solutions in terms of these metrics still remains an open issue.  
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Impact of Loss of Feedback radio channel in TPCs  

Most of the research works in TPC field is reliant in feedbacks from the receiver in a form of 

either control packets, beacons or ACK, constructing a closed-loop control system to allow 

TCP mechanisms to accommodate dynamic changes in the environment adaptively. Generally, 

it is assumed that for each data packet transmitted, the transmitter has access to the output value 

of the LQE block or the optimal TPL transmitted as control packet by the receiver. The impact 

that control packets loss has on power control schemes (in terms of performance degradation 

and robustness) has been ignored, remaining as an open issue in the TPC field.  

The TPC addressed in [49] proposes a strategy to identify incidental disconnections, to 

distinguish it from broken links and to proceed in such situations in a way that reacts reasonably 

fast and avoids fluctuating TPL. To the best of the author knowledge, this research work in the 

TPC field for WBANs is the only one that proposes a block to deal with incidental 

disconnections as part of the TPC architecture. The authors also analysed the effect of incidental 

disconnections on TPC performance, showing that the detection of incidental disconnections 

and the design of the appropriate approaches to react to it is a challenging problem.     

Design of Appropriate Protocol Stacks to merge with TPCs 

The LQE is a fundamental block for several protocols (e.g. MAC, routing, mobility 

management, radio channel interference mitigation, localization and self-organization) [52], 

[55], thus, the integration of TPC mechanisms with these protocol solutions already addressed 

and validated in the literature and/or the design of adequate protocols to support TPC 

procedures are important research challenges. Research works [151], [160] propose that 

through a tightly integration of TPC techniques with other mechanisms, higher gains can be 

achieved.  

For instance, the research work [21] shows that appropriate routing protocols can use the TPL 

as a routing metric to achieve energy-efficient and low-latency end-to-end communications 

between the on-body sensors and the Coordinator node. Other routing protocols (e.g. [49], [52], 

[53]) use the metrics often adopted in this type of protocol (PRR, SINR or ETX) to choose the 

most reliable path. After this process, the TPC algorithm choose the optimal TPL to each Edge 

of the Network node that built the communication path. This scheme allows the extension of 

the per-link transmission power assignment schemes to the network topology level. 

Regarding MAC protocols design, research works [49], [161] have focus on the design of 

more effective MAC control to work with TPC algorithm through either the adaptation of the 

most adopted standards in WBANs (e.g. IEEE 802.15.4 in [161]) or the design of new 
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approaches in order to facilitate the power control algorithm and analyse of the overall 

performance. The research works [49], [53], [140]–[142], have opted by developing TPC 

mechanism for WBANs with a transceiver that adopts stacks in conformity with the IEEE 

802.15.4/IEEE 802.15.6 MAC layer. 

The research work  [49] addressed the design of a TPC built on top of two modified layers, 

namely the MAC and Network layer.  

The design of suitable protocols is a very challenging problem, as evidenced by the limited 

number of solutions found in the literature. However, the implementation of these protocols to 

cooperate with TPC mechanisms is an important future research direction for ensuring the 

WBAN requirements in a wide range of applications [22], [44], [48], [108], [128], [149]. 

Researches in the TPC field for WBANs is relatively recent. The number of works is 

significantly reduced in comparison to the number of solutions addressed in the literature in 

other fields such as MAC, radio channel interference mitigation, routing protocols, etc. 

Therefore, how to build TPCs solutions on top of these protocols (that are already validated in 

the literature) to balance energy and reliability in an acceptable way but without leading to deep 

changes in such protocols (for instance by using their LQE metric as estimation metric of the 

TPC LQE block) is still an open issue.  

TPCs to accommodate all Wireless Radio Channels Scenarios 

Several challenges and issues arise due to the high heterogeneity found in wireless radio 

channel conditions and wide variety of WBAN applications with different demands.  

 TPC techniques are designed to unicast data packets, but they must also be extended to 

support broadcast and multicast data packets. This challenge has not been addressed in the 

literature so far.  

The feedback approach in TPCs resumes to the ACK-, beacon- and data packet-driven 

approaches. However, unlike verified to WSNs, there was not been driven an comparative 

performance to determine the most appropriate approaches for each WBAN scenarios [162]. 

Therefore, it is still an open issue in the TPC field. 

Another open issue is related to some assumptions taken in the TPC design approach. For 

instance, TPC mechanisms are evaluated through simulations/experimental tests assuming that 

all the Edge of the Network nodes produce the same data rate and have the same periodicity. 

However, this does not happen in real applications due to the diversity of the different sensors 

required by WBAN applications. Thus, the trade-off between data packet loss, latency and 

overhead as well as the impact of the sensor data periodicity needs to be addressed. 
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Research works focus in proposing an effective TPC for scenarios where user performs 

periodic movements should extend this scheme to other daily activities (like running and 

ascending/descending stairs, etc.). However, solutions have opted by evaluate solutions in 

experimental tests while user is walking, thus, the performance and effectiveness of such 

solutions in daily activities has not been addressed. Moreover, movements never are exactly 

periodic, thus, the key challenge is to develop mechanisms for capturing the locality of on-body 

node movements caused by human postural mobility.  

As discussed in this document, TPC solutions are proposed for very specific wireless radio 

channel scenarios. Some approaches are feasible for scenarios prone to stable radio channel 

quality to single hop; others are suitable for scenarios with dynamic scenarios with severe 

irregularities in user movement or periodic movements; other solutions are effective in 

scenarios where multi-hop topology ensures a higher communication reliability and TPCs are 

required to ensure a good trade-off between reliability and power consumption; and other 

approaches performs well when scheduling the data packet transmission among multiple 

WBANs is a very challenging task. There is not a single and flexible TPC mechanism in the 

literature able to effectively operate in any circumstances.    

 Future Research Directions 

Although, several research works have been surveyed in this study, there are still many 

aspects that need to be approached in order to increase the performance and usability of TPCs 

in WBANs. Key future research directions in TPCs for WBANs are provided in this subsection.  

Off-Body Communications  

As depicted in Figure 1.1, communications between the Coordinator node and an External 

node are required to turn the information gathered in WBAN available on internet. Off-body 

signal propagation is very similar to the verified in on-body communications, since radio 

channel conditions are dynamic. Emitted signals are shadowed by human body and are 

influenced by surrounding environment conditions. In addition, as the ZigBee (IEEE 802.15.4), 

Bluetooth and Wi-Fi (IEEE 802.11) are communication technologies in this communication 

segment, the nodes on this segment are subjected to RF interferences. The Coordinator node, 

which is also energy-constraint node, is located in a WBAN, thus, RF interference magnitude 

is non-deterministic due to the WBAN mobility, which might demand TPCs mechanism to 

reduce TPL of coexisting Coordinator nodes to improve the overall network utility. Therefore, 

seems reasonable claim that most of the advances reached to on-body communications have 

potential to improve off-body communications. Off-Body Communications have not received 
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so much attention from the research community, however, reliable off-body communications 

are also critical to implement suitable monitoring systems. 

Low traffic Overhead TPCs for Dynamic Scenarios 

Through data exchange between Edge of the Network nodes (e.g. TPCs for latency- and 

energy-sensitive applications) or between Coordinator nodes of different WBANs (e.g. TPCs 

for performance-sensitive applications), the several TPCs surveyed in this article show their 

ability to improve the communications reliability and minimize energy consumption. The 

cooperation between nodes (Edge of the Network or Coordinator nodes) leads to a significant 

and undesired communication traffic. The use of inertial-sensors data as a LQE metric is a 

relative new research area, thus, several research challenges still remain to be addressed.  

As human body is the predominant influence on the radio channel behaviour, further 

research on Posture and Motion-based mechanisms is required as a way to reduce cooperation 

between nodes. User movement and relative position of the Edge of the Network node in 

relation to the Coordinator node constitutes extremely useful information that allows the Edge 

of the Network nodes to take decisions without requiring exchange data [143]. By itself, 

modelling the radio channel quality based on the body posture, the movement and the relative 

position of the Edge of the Network nodes (information process through inertial sensor data) is 

a promising research topic. The inertial sensors are already embedded in the Edge of the 

Network nodes of a large number of the WBAN implementations and sampling inertial sensors 

data does not have a significant impact on the energy consumption when compared to sending 

and receiving control packets [130], [135]. Therefore, a data fusion algorithm should be 

adequately integrated with a Kinematic radio channel model (e.g. [158]) together with a radio 

channel model that describes the radio channel in function of the posture, the movement and 

the Edge of the Network nodes’ relative position.   

So far the TPC solutions addressed in the literature accommodate different behaviours in 

order to adjust the power control algorithm to the radio channel quality conditions, but future 

research could also make use of the actual battery level (in the algorithm) as part of the TPC 

behaviour decision making. This would allow nodes with different power sources and power 

requirements to be addressed in the energy balancing process [163], especially in TPCs though 

to mitigate RF interferences between nodes or networks. 

 

Integration of the WBANs in a Cyber-Physical System 
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The development of a WBANs integrated in a CPS as depicted in Figure 1.1, which enables 

the collection of information from many others WBANs, offering several advantages to TPCs, 

namely: 1) increasing of the situational awareness of Coordinator nodes position, physiological 

and environmental conditions [101]; 2) refinement of LQE and TPL control parameters 

(according to the small-scale fading changes that is widely influenced for the environment) 

such as radio channel history weight (𝛼) in equation (3.1); and 𝑇𝑅𝐻 and 𝑇𝑅𝐿; 3) reduction of 

the cooperation between WBANs, since CPS systems might be able to interpret the WBANs 

location and adjust the TPL value according to overlapping communications ranges, as explored 

in the interference-mitigation scheme addressed in research work [151]; 4) reduction of the 

computational effort in the Edge of the Network nodes and Coordinator nodes through the 

distribution of the workload; and 5) system capable of interpreting and adjusting to the dynamic 

changes of the environment in real time [101].   

In spite of the advantages of the integration of WBANs in a CPS, only the research work 

[149] proposed a TPC that takes advantage of the intrinsic CPS characteristics. 
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CHAPTER 4 

 PROTACTICAL PROJECT 

In this chapter, a fully integrated Cyber-Physical System approach to a smart Personal 

Protective Equipment (PPE) is discussed, implemented and assessed.  

 Introduction 

PROTACTICAL was a successfully R&D Project. PROTACTICAL is based on a Personal 

Protective Equipment is composed of a shirt, a coat, pants and boots. A WBAN is deployed in 

the PPE and critical data is gathered through electroactive substrates (e-textiles) with sensors 

and electronic circuits embedded into the textile structure for physiological signals monitoring, 

together with off-the-shelf sensors unobtrusively integrated onto the textile substrates. The 

monitored parameters, consistent with urban fire requirements, are heart rate, breathing rate, 

sweat detection, inner and environmental temperatures, heat flux across the coat, carbon 

monoxide and dioxide concentrations, user’s activity and posture, absolute and relative 

position. 

The array of real-time sensors data also ensures situational awareness during emergency 

events. However, as firefighting involves several actors, the PROTACTICAL CPS explores 

wireless communication technologies to ensure a multi-dimensional system at individual user 

(or PPE), emergency response team and fire command centre levels. Regarding to computation 

and control components, the real-time data transmitted is perceived as actionable information 

for computational technologies in order to provide data to powerful decision making tools. 

The integration of each subsystem into a unique system ensures a close interplay between 

the “cyber” and “physical” worlds, i.e. a change in a world must be reflected in the other world. 

This allows, not only the real-time monitoring of various external (environmental) and internal 

(microclimate of the equipment and the user) parameters, which provides situation awareness, 

but also control and actuation at three distinct levels (PPE, emergency response team and fire 

command centre). 

 PROTACTICAL CPS Architecture  

The architecture of PROTACTICAL CPS is depicted in Figure 4.1. The components of the 

system are defined across spatial levels, while the interactions between components and their 
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tasks are defined across temporal and spatial levels. The tasks performed for every component 

are described by an “Event-Action” relation. The target application defines the changes required 

in the physical world - which can be a change in an attribute, temporal or spatial status of a 

physical phenomenon or object or a combination of these different types of information and are 

designated as events, which have a predefined action after the respective event is triggered. 

These events can be generated from several nodes and the same event has a different level of 

abstraction in each PROTACTICAL CPS component, accordingly to the spatial level. For 

instance, considering the following event “Inner temperature of user garment is 40 ºC”, the 

Node-PROTACICAL and the Coordinator node (here designed Gateway-PROTACTICAL) 

illustrated in Figure 4.1, have different levels of abstraction. In the node, the event is interpreted 

as the level of temperature in inner coat, while in the latter coordinator it can be interpreted as 

critical since it causes skin burns.  

The spatial-temporal event model presented in [164] is adopted to capture close interactions 

between cyber and physical worlds. This model integrates different events over space and time 

while the information of the original physical event remains intact. Concepts such as Events 

Condition (combination of attributes, temporal, and spatial information, which are used to 

trigger changes in physical world), Events Instance (events required) and Actions (predefined 

actions triggered after the detection of an Event Instance), as well as, Observers components 

(nodes with capacity to collect data, assess it based on the event condition, and generate an 

Event Instance when conditions are respected) are introduced in the proposed architecture. 

Forward-
PROTACTICAL IoT Intel 

Galileo 

Ethernet 

Ad Hoc-PROTACTICAL WBAN-PROTACTICAL Base Station- 
PROTACTICAL 

Gateway-
PROTACTICAL 

Node-PROTACTICAL 

Wi-Fi 
ZigBee 

Cyber Event 
Cyber-Physical Event 
Sensor Event 
Physical Event 

GUI 

Figure 4.1. Architecture of the CPS-PROTACTICAL. 
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The components of the PROTATICAL CPS are categorized according to the spatial level 

(Cyber-, Physical-World or CPS Network), as depicted in Figure 4.1. There are five elements 

operating at the Physical-World: 

 Sensors – interface between the physical and cyber worlds, resulting in physical 

events. The physical phenomenon measured is converted to information, containing 

attributes, time and/or space information; 

 Actuators – capable of changing attributes of a physical object; 

 Node-PROTACTICAL – it is a wearable Edge of the Network node composed by a 

microcontroller, designated computing component; a transceiver, communication 

component; a power source (small battery); sensors and/or actuators. The physical 

observations of sensors are exploited by Nodes-PROTACTICAL to generate a Node 

Event Instance based on Event Conditions of the Node-PROTACTICAL and 

respective sensor. This component represents the first level of Observers in CPS 

event model (Observer entity), being responsible for transforming real-time sensor 

data into actionable information; 

 Gateway-PROTACTICAL – it is a Body Gateway node that has the task of 

gathering the real-time sensor data received from Nodes-PROTACTICAL and for 

managing the WBAN-PROTACTICAL. It also serves as second level of Observers 

in the CPS event model. In this context, this component is called event-driven 

control unit, since it can also collect the node Event Instance from the 

Nodes-PROTACTICAL, as input observations and generate cyber-physical Event 

Instance, or in other words, additional actionable information; 

 Wireless Body Sensor Network (WBAN)-PROTACTICAL – a distributed network 

comprising several Nodes-PROTACTICAL and the Coordinator node of the 

network, the Gateway-PROTACTICAL. The wireless communication technology 

adopted in this network is the ZigBee. A detailed description of this network can be 

found in section 4.4. 

The elements of the cyber world of the proposed CPS system, illustrated in Figure 4.1, are 

as follows: 

 Fire command centre – in the context of PROTACTICAL CPS is called Base 

Station-PROTACTICAL or CPS Control Unit (CU), serving as the highest level of 

Observers in the CPS event model. This Observer entity is connected to the Ad 

Hoc-PROTACTICAL, receives cyber-physical Instance Events from 
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Gateway-PROTACTICAL, processes them according to certain rules and generates 

Cyber-Events. Moreover, at this level, Cyber actions are associated with determined 

Cyber-Events; these actions can be performed in CU or can be a command for 

WBAN-PROTACTICAL; 

 Database Server – distributed data logging service. Events Instance that circulate 

inside the CPS network are automatically transferred to the database server after a 

defined time for later retrieval. 

The CPS network is called Ad Hoc-PROTACTICAL and consists in an ad-hoc network 

with the responsibility of connecting the WBANs-PROTACTICAL with the Base 

Station-PROTACTICAL and Database Server. A continuous, reliable and efficient connection 

is ensured by the Ad Hoc Network, using Forward-PROTACTICAL nodes. The cyber-physical 

events emitted by any Gateway-PROTACTICAL are transported by the 

Forwards-PROTACTICAL to the CU. The CU, after processing the cyber-physical events 

emits an associated cyber action to the respective Gateway-PROTACTICAL through the CPS 

network created by the Forward-PROTACTICAL nodes. The wireless communication 

technology selected for this network was Wi-Fi.

 Sensors, Actuators and Instrumentation Electronics 

Recent advances in wearable, wireless communications, computer and electronic 

technologies have considerably reduced the size, cost, and power requirements of 

embedded/wearable systems. Low-power and low-cost nodes are now equipped with sufficient 

storage and data processing capabilities, making wireless sensing a reality in a wide range of 

applications. 

The monitored parameters (physical events) of the PROTACTICAL Personal Protective 

Equipment are acquired through wearable multipurpose Edge of the Network nodes, 

Nodes-PROTACTICAL, with wireless (ZigBee), data processing and sensing capabilities, that 

send the processed data to the Gateway-PROTACTICAL (sensor event) at a predefined 

sampling rate. This sampling rate can be automatically updated if the 

Gateway-PROTACTICAL detects/identifies a critical situation (cyber event), i.e. the 

processing logic is distributed at Node-PROTACTICAL level. 

In Table 4.1, the different modules (Nodes-, Gateway- and Router-PROTACTICAL) of the 

current version of the smart PPE are listed, where it is highlighted the embedded sensors in 

each module, parameters measured and the interface used to link module to the Coordinator 

node of the network: Gateway-PROTACTICAL. The architecture proposed for each Node and 
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selection of components took into account the flexibility and unobtrusiveness of the solution, 

energy efficiency and autonomy and reliability of the measurements under harsh conditions. 

The Nodes-PROTACTICAL are composed for the following four blocks: 

 Sensing and actuating block - several sensors and actuators may be embedded in 

nodes. Every node comprise a different combination of sensors and actuators; 

 Energy block - nodes are self-powered through small batteries, with the capacity to 

continuously monitor the Edge of the Network node-specific parameters during the 

user’s intervention; 

 Processing/Transceiver block – it refers to the microprocessor and radio module 

(radio-frequency transceiver) adopted for each Node-PROTACTICAL. A 

low-power system-on-chip (SoC) was chosen to implement these two blocks: the 

CC2531 from Texas Instruments. This SoC includes a ZigBee-compliant 

transceiver and a MCS-51 compliant microcontroller on the same integrated circuit.  

 Inertial Sensor – every Node-PROTACTICAL is also equipped with a 

LSM330DLC STMicroelectronics MEMS accelerometer. 

Table 4.1. Nodes and monitored parameters in the WBAN-PROTACTICAL. 

Module Garment 
Sensors & 

Actuators 
Monitored Parameters Interface 

1 Shirt 
Textile Electrodes 

Sensor 
Heart Rate and Battery Level ZigBee 

2 Shirt 

Textile Moisture 

and Temperature 

Sensors 

Sweat Detection, Inner 

Temperature and Battery Level 
ZigBee 

3 Shirt 
Piezo-Resistive 

Sensor 

Breathing Rate and Battery 

Level 
ZigBee 

4 Coat 

Heat Flux, 

Temperature and 

Inertial Sensors 

Heat Flux across the coat, 

Inner Temperature, Inactivity, 

Posture, Fall and Battery Level 

ZigBee 

5 Coat 
CO and CO2 

Sensors 

CO and CO2 Concentrations, 

Environmental Temperature, 

Relative Humidity and Battery 

Level 

ZigBee 

6 Boot Inertial Sensors 
Inactivity/Position and Battery 

Level 
ZigBee 

7 Coat 

Buttons, RGB LED, 

Inertial Sensors and 

Vibration Motor 

Inactivity/Posture, Panic 

Event, User Feedback and 

Battery Level 

ZigBee 

8 Pants Inertial Sensors 
Inactivity/Posture and Battery 

Level 
ZigBee 

Gateway-

PROTACTICAL 
Coat 

GPS Module, UWB 

Transceiver, 

Barometer and 

Temperature 

Sensors 

Absolute Position, Indoor 

Location, Altitude, 

Environmental Temperature 

and Battery Level 

SPI 

Router-

PROTACTICAL 
Coat - Battery Level ZigBee 
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The modular architecture of nodes allows reducing the amount of data to be sent, thus the 

energy consumption due to wireless communications, and enables customizing the PPE 

according to the user’s needs (i.e. adding or removing Nodes-PROTACTICAL according to the 

intervention scenario). In addition, the proposed architecture allows adding new 

Nodes-PROTACTICAL to the PPE, to monitor other parameters, without modifying the other 

Nodes-PROTACTICAL. 

Figure 4.2 illustrates the Node-PROTACTICAL 4 through a 3D representation of the 

developed hardware and, through a block diagram, the several components that compose this 

node.  

 Shirt 

From the electronics point-of-view, the shirt was designed for the acquisition of 

physiological parameters that need direct contact or proximity with the skin and integrates 

knitted textile-based sensors, as well as, connections paths, embedded in the structure. The 

parameters monitored by the Nodes-PROTACTICAL placed in the shirt are heart rate, 

breathing rate, sweat detection, and inner temperature. 

For the acquisition of the heart rate, textile electrodes with a voluminous structure to 

increase contact to skin were developed [165] and a two electrode configuration was selected. 

This configuration allows reducing the number and size of the connections paths, making the 

system more robust and less vulnerable to common-mode interference. The heart rate 

measurement is obtained by the front-end AD8232, from Analog Devices and the heart rate 

value is computed as described in [166]. 

The breathing rate measurement is carried out using a textile extension sensor [167]. The 

quantification of extension is based on the relationship between elongation and impedance.  

Sweat detection is obtained from a textile moisture sensor, made of two conductive bars 

embedded on the shirt lower back, near the lumbar curvature, which is the location where most 

of the human’s eccrine sweat accumulates [166]. The detection of sweat is based on a threshold 

value, defined by an electrical resistance and when the electrical resistance between the two 

conductive bars drops below the defined value, the system identifies the presence of sweat. This 

threshold value is defined based on the amount of sweat needed to cause skin burns, due the 

presence of humidity and high inner temperature (above 40 ºC). 

The inner temperature is measured using a commercial off-the-shelf (COTS) digital sensor 

(ADT7320 from Analog Devices), placed in the same node-PROTATICAL of the textile 

moisture sensor (node-PROTACTICAL 2).  



Chapter 4 – PROTACTICAL Project  

 

85 

 Coat 

The coat’s electronics are designed to monitor the environmental parameters and assess the 

user activity state. The nodes-PROTACTICAL incorporated in the coat measure various 

parameters, namely heat flux across the coat, inactivity, user’s posture, fall detection, carbon 

monoxide (CO) and carbon dioxide (CO2) concentrations, inner and environmental 

temperature, relative humidity, indoor location and absolute position. An alarm module is also 

included in the coat, responsible for notifying the user of an emergency situation. The coat also 

includes the module designated Gateway-PROTACTICAL for data transmission. This node 

will send the acquired information to the fire command centre using the ad 

hoc-PROTACTICAL network. 

The heat flux across the coat is measured using a heat flux sensor from CAPTEC. This 

sensor provides information on the heat exchanges between the user and the environment. 

When heat flow passes through the surface of the sensor, it supplies a voltage proportional to 

the heat flux. The output voltage can be either positive or negative, depending on the heat flux 

direction (respectively, outwards and inwards). This sensor is integrated in the inner layer of 

the upper front of the coat (node-PROTACTICAL 4). This node also integrates a sensor for the 

GB2530-L 
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CC2531 
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Hardware 
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Figure 4.2. Node-PROTACTICAL 4: 3D representation of the hardware developed through 

Altium software – a) front and b) back view – and c) block diagram. 
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acquisition of the inner temperature of the coat (user’s chest), using hardware COTS identical 

to node-PROTACTICAL 2.  

To assess the user activity state during a fire intervention, two inertial sensor modules are 

used: one integrated in the coat sleeve (node-PROTACTICAL 7) and the other at the upper 

front of the coat (node-PROTACTICAL 4). These modules integrate one 3-axis accelerometer 

and one 3-axis gyroscope to detect long periods of immobility, falls, and user posture. 

The monitoring of toxic gases, namely CO and CO2, is carried out by 

node-PROTACTICAL 5. This node is integrated on the collar in the outer layer of the coat, 

close to the user’s mouth and nose. The selected COTS sensors for monitoring the CO and CO2 

concentrations are the TGS2442 and the COZIR, respectively. The COZIR sensor also acquires 

the relative humidity and the environmental temperature. 

For the acquisition of the environmental temperature, a type T thermocouple is used. This 

thermocouple was selected as it combines a wide temperature range (from -270 to 370 degrees 

Celsius), good accuracy (+/- 1 degree Celsius) and long term stability. The sensor is positioned 

in the coat outer layer, connected to Gateway-PROTACTICAL, close to the user’s waist region. 

The absolute position of the user is determined through a high precision Global Positioning 

System (GPS) module from U-Blox (Neo-6P). This module is based on an active antenna and 

relies on the Precise Point Positioning (PPP) technology to provide an accurate absolute 

position estimation of the user in outdoor environments. Although the performance of the 

sensor deteriorates in the presence of high obstacles and in indoor environments, this 

information is still extremely useful for the fire command centre for firefighting operation 

coordination. The GPS module is connected to the Gateway-PROTACTICAL, which is 

integrated in a front pocket of the coat. 

For the indoor localization, a UWB transceiver from Decawave (DWM1000) is used to 

obtain ranging measurements. Based on the ranging measurements acquired, a trilateration 

algorithm is used to compute the position of the user. The estimated position is then refined 

based on the user’s posture and the relative position estimated from the readings of the 

Node-PROTACTICAL 6. The UWB transceiver is connected to the 

Gateway-PROTACTICAL. 

The alarm module (Node-PROTACTICAL 7) was designed to notify the user of emergency 

scenarios or to send an alarm to the fire command centre in case of panic. A  RGB LED and a 

vibration motor are used to alert the user that an alarm was received/detected. The RGB LED 

is able to encode, using colours, up to seven different alarms (e.g. the combination of high inner 

temperature and moisture on the shirt, evacuation order, quality of the air or connection loss 
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with the Ad Hoc-PROTACTICAL network). The vibration motor (307-100 from Precision 

Microdrives), which is positioned in the inner layer of the cuff, has a normalized vibration 

amplitude of 6 g’s and the vibration amplitude is driven by a microcontroller through a PWM 

signal. To notify the fire command centre that a panic scenario occurred, a two button 

configuration was selected. The buttons are placed on diametrically opposite sides in the 

node-PROTACTICAL 7 to avoid the generation of false alarms due to involuntary contact and 

must be pressed simultaneously. 

 Pants 

The pants incorporate Node-PROTACTICAL 8 in the outer layer of the user’s thigh area. 

Inertial sensors (3-axis accelerometer and 3-axis gyroscope) are integrated in this node for the 

evaluation of the user’s posture and to detected inactivity. Similar to the node integrated on the 

coat sleeve, Node-PROTACTICAL 7, it aims to enhance inactivity detection, as it can 

independently detect legs’ movement. 

 Boots 

The Node-PROTACTICAL 6 is integrated in the boots. This node is dedicated to the 

estimation of user’s relative position during intervention in the emergency site. Inherently it is 

also possible to detect long periods of inactivity. This node is equipped with a 3-axis 

accelerometer and a 3-axis gyroscope and a 3-axis magnetometer sensor. The accelerometer 

and gyroscope are used to estimate the distance and direction of the movement, respectively. 

The magnetometer, besides the information about changes in direction, provides the initial 

orientation of the user. For the continuous relative position estimation, methods such as the 

ones used in pedestrian dead reckoning are implemented. Figure 4.3 shows some examples of 

nodes, aiming to demonstrate its final appearance. 

 Wireless Communications and Networking 

The value of the sensor data or actionable information depends not only in its features, such 

as accuracy and completeness, but also in its real-time accessibility, i.e. real-time transmission 

of parameters. Wireless technology communications were explored to integrate the PPE 

subsystems and the Base-Station PROTACTICAL. The networking technologies adopted and 

the distributed networks developed are described in the following sections. 
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 WBAN-PROTACTICAL  

The WBAN-PROTACTICAL comprises a set of wearable nodes, described in section 4.3, 

integrated into/onto the textile platform of the PPE, as depicted in Figure 4.4. Low-power 

wireless technology ZigBee was selected for the transmissions inside the WBAN range. As the 

WBAN-PROTACTICAL is subjected to different physical movements, path-loss and fading 

(effect of the presence of reflector objects in surrounding environment) [26], [111] may occur 

and, due to the coexistence of nodes from other PPEs PROTACTICAL or other systems, RF 

interferences are likely to happen. Therefore, to ensure the requirements of user’s monitoring 

in critical applications and to comply with the requirements of standard IEEE 802.15.6 for 

networks operating close to the human body [19], a third element, designated 

Router-PROTACTICAL, was included in the WBAN-PROTATICAL.  

An preliminary experimental performance evaluation of the several links in different 

environments (indoor and outdoor) were performed and results analysed in [66]. The version 

of the WBAN used in these tests is illustrated in Figure 4.5, corresponding to a Mock-up of the 

WBAN-PROTACTICAL. These tests correspond to a PER test, where results show that the 

Node-PROTATICAL lost several data packets transmitted to the Gateway-PROTACTICAL. 

The Node-PROTACTICAL 7 was not also able to successfully delivery all the transmitted data 

packets. This is especially evident when non-line-of-sight exists between nodes. The average 

PER value varies according to the movement performed. Lost data packets led to an increase 

Figure 4.3. Examples of constituent elements of the implemented PROTACTICAL interactive system: 

a) Node- PROTACTICAL 7 (PAPS), b) Gateway-PROTACTICAL and c) Router-PROTACTICAL 
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in latency of the data packets delivery, as well as, in waste of energy due the retransmission 

attempt and degradation of system reliability are expected to occur.  

We included the Router-PROTACTICAL in the proposed solution to, in the future, analyse 

if multi-hop communication can be exploited as a solution to ensure alternative paths when 

there is no direct communication between Nodes-PROTACTICAL and 

Gateway-PROTCTICAL. 

 Ad Hoc-PROACTICAL 

The CPS network connecting the Gateways-PROTACTICAL to the Base 

Station-PROTACTICAL is an ad-hoc network, designated Ad Hoc-PROTACTICAL, and it is 

implemented by nodes, designated Forward-PROTACTICAL, distributed at the incident 

scenario. These nodes are responsible for ensuring a path to transmission of data between 

Gateways and Base Station-PROTACTICAL, increasing the range of the network when 

required. The Forward-PROTACTICAL are composed by an Intel Galileo Gen 1 and a Wi-Fi 

card Intel Centrino Wireless-N135. 

Node-PROTACTICAL 5 

Node-PROTACTICAL 1 

Node-PROTACTICAL 7 

Node-PROTACTICAL 4 

Gateway-PROTACTICAL 

Node-PROTACTICAL 6 

Figure 4.4. PPE prototype with several Edge of the Network nodes integrated into/onto the 

textile subsystem. 

Node-PROTACTICAL 8 
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 Data Driven Decision Making 

Supporting decisions and subsequent decisions in real-time is paramount to ensure user 

safety, making data-driven decision making an important tool. In this regard, the challenges 

encountered in PROTACTICAL project are heterogeneity of data sets and uncertainty in 

modelling real-world phenomena. Regarding heterogeneity of data sets, the data coming from 

different observation points have different meanings with different levels of spatial and 

temporal abstractions, as analysed before. Moreover, PROTACTICAL CPS will deal, for the 

same physical event, with different events triggered over time and space (Sensor Event, 

Cyber-Physical Event and Cyber Event) and, consequently, different predefined actions are 

initiated. Therefore, the system must support random and periodic spatial-temporal events. This 

is ensured through the CPS event model adopted, which allows capturing heterogeneous 

characteristics of CPS for formal temporal and spatial analysis addressing random and periodic 

events, as well as, the temporal relationship between them. In addition, as parameters measured 

from sensors close to human body have complex interrelations, logical operators are used in 

event model to combine different types of events to capture composite events. Thus, the 

hierarchical architecture of PROTATICAL CPS (c.f. Figure 4.1) associated to the inclusion of 

logical operators, allows detection of complex critical events to the emergency response team 

safety. 

In the proposed architecture for PROTACTICAL CPS, different levels of data-driven 

decision making were implemented. The Gateway-PROTACTICAL was designed to be an 

event-driven control unit, meaning that, when the CPS network cannot ensure a successful 

transmission of information between WBAN-PROTACTICAL and Base 

Gateway-PROTACTICAL 

Node-

PROTACTICAL 

Router 

Router 

Node-

PROTACTICAL 

Moisture Textile Sensor 
Prototype 

Figure 4.5. Mock-up of the WBAN-PROTACTICAL. 
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Station-PROTACTICAL, the Gateway-PROTACTICAL is able to detect critical situations, 

support decisions and subsequent command actions, to reduce the time needed to detection, 

warning and response, thus ensuring the user’s safety. The PPE user is notified of an occurrence 

of a critical event through Node-PROTACTICAL 7. 

 Summary  

The PROTACTICAL solution concept currently implemented has the potential to 

significantly contribute to the progress of Smart firefighting and simultaneously provide user 

comfort and safety. The CPS can improve the decision making at several firefighting operation 

stages (user, team and fire command centre levels). All this combined makes the 

PROTACTICAL CPS a unique solution among the state-of-the-art smart PPEs. It adopts the 

ZigBee and Wi-Fi communication technology for communication Tier-1 and Tier-2, 

respectively. The communication Tier-3 is not yet implemented.  

Taking advantage of the proposed CPS approach, other tools can be developed for a better 

awareness of the firefighting challenges, as well as, to improve user safety. Examples of such 

tools are generation of escape routes detection, detection of flashover events, and generation 

and analysis of biometric parameters. 

However, the current implementation have shown some limitations. In the proposed WBAN, 

only wireless communication is performed while most of the projects proposed for user 

monitoring applications opt for wires. The preliminary study have shown that the IEEE 

802.15.4 compliance nodes application in this regard lost several data packets. Although these 

nodes operate well in scenarios without any obstruction for several meters, when attached to 

human body they are not able to meet the Quality-of-Service requirements. Suggesting, that 

more investigation must be carried out in on-body communications to understand the causes of 

the data packets loss and how reliability, energy-efficiency, and latency in this communication 

scenario can be optimized.  
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CHAPTER 5 

 ON-BODY CHANNEL CHARACTERIZATION AND MODELLING 

Several questions are addressed in this chapter, namely How does the user activity affect 

the path-loss and fading on a millisecond-scale? Are the fading and path-loss affected by 

changing the node position and operation scenario? Are the links (with transmissions at the 

maximum power allowed) able to ensure the application requirements? Which approaches can 

be advised to each link in order to optimize communications?  

To answer these questions, a characterization of dynamic narrowband on-body propagation 

and a wireless communication reliability assessment was carried out. The emitted on-body 

signals were divided in several terms, which enables the assessment of the effect of several 

scenarios configuration aspects. 

On the next section, an experimental method, the experimental method used to perform a 

radio channel measurement experiments (section 5.1) is described. The first- (section 5.2) and 

second-order (section 5.3) statistical results are analysed; a detailed description of radio channel 

performance analysis in terms of percentage of successful data packet delivered and a link 

margin evaluation (section 5.4) is made, having as reference the Quality-of-Service 

requirements imposed by IEEE 802.15.6 TG; and finally, some conclusion and remarks are 

presented, including general observations inferred from results from previous sections (section 

5.5). 

 On-Body Time-variant Measurement   

The on-body propagation was researched based on the combination of different parameters 

that enabled to analyse how the different communication operation scenarios affect the radio 

channel quality in order to ensure reliable transmissions. The configuration used in the time 

domain was set as following: 

 Wearable Node Configuration: the WBAN-PROTACTICAL nodes are equipped 

with the IEEE 802.15.4-compliant CC2531 SoC, which has a maximum receiver 

sensitivity of -97 dBm, and the application uses a Texas Instruments ZigBee 

compliant protocol called Z-stack, in order to implement an IEEE 802.15.4 WBAN. 

Nodes transmit data packets at a maximum transmission power level allowed by 

on-body communications (0 dBm) to automatically meet the SAR guideline of the 
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Federal Communications Commission (FCC) [13]. In our case, the selected TPL 

was -0.5 dBm, since it correspond to the TPL available on the SoC’s radio 

transceiver, close to the maximum allowed; 

 On-Body Nodes Location: the study was performed in a 28 years old male, 1.69 m 

high and a weight of 74 kg. The user wore a garment with several Edge of the 

Network nodes distributed by several body locations. The version of the 

WBAN-PROTACTICAL used was only composed by two types of nodes, namely 

1) the Gateway-PROTACTICAL, taking the role as the data packets receiver, 

located at the user’s waist, and 2) the remaining nodes (Edge of the Network nodes), 

configured as transmitters, which were distributed across different parts of the 

garment. Three transmitters were used as an example of each group, in order to 

categorize the Edge of the Network nodes of the WABN-PROTACTICAL. This 

approach aims to eliminate redundant information, caused by Edge of the Network 

nodes from the same group, i.e. Edge of the Network nodes presenting the same 

type of obstacles to radio channel propagation. As such, the Edge of the Network 

nodes considered are Node-PROTACTICAL 2 (located at the user’s back), 

Node-PROTATICAL 4 (located at the user’s chest), and Node-PROTACTICAL 7 

(located at the user’s wrist); 

 Network Architecture: the network architecture was developed in two phases. 

First, only star-topology were considered in order to identify links that do not satisfy 

the Quality-of-Service requirement of WBAN applications. However, a relay node 

was introduces (c.f. Table 4.1) in the WBAN-PROTACTICAL. Therefore, the 

WBAN can resort to multi-hop topology whenever required in order to ensure 

communication reliability; 

 Scenarios: the experimental test bench follows a scenario-based approach, taking 

into consideration the huge variability of environments that a PPE might operate 

and the dynamism in terms of movements performed by the user. Thus, 

measurements were performed in both indoor (a laboratory with an area of 14mx7m 

filled with office furniture, two large textile industrial machines and with Wi-Fi) 

and an ordinary room (7mx6m composed by typical furniture); and outdoor urban 

environment (a street surrounded by buildings). The measurements were performed 

in controllable environments, in order to ensure that RF external interference did 

not affect the gathered RSSI sample. Radio channel measurements were performed 

on four different conditions regarding user’s movement and position, namely 
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standing position (with no movement but the breathing movements, where every 

radio channel measure were carried out at a different location, e.g. close or far from 

walls), walking movement (where the user walks on random directions at an average 

speed of 0.75 m/s), running (randomly, taking many directions at average speed of 

1.2 m/s), and crawling (following a straight direction at  0.30 m/s); 

 MAC Configuration: as the configuration should ensure that the received signal 

translates the influence of the human body movements, the non-beacon-enabled 

mode of IEEE 802.15.4 MAC protocol was used. This mode represents the classical 

CSMA protocol [130], and gives the maximum control over the transmission time, 

allowing the next higher stack layer to control the transmission time quite accurately 

(typically on the order of 10 ms). The number of retransmissions and the CCA 

backoff were configured to zero, to reduce the data packet transmit operation from 

10 ms to ≈2.6 ms plus a few milliseconds of CPU processing and processing jitter; 

 Transmission Scheduler: each experiment for the different scenarios were 

repeated in three distinct occasions. Each experiment lasted for approximately 12 

minutes, corresponding to the transmission of 350 data packets with an interval 

between transmissions of 35 ms (30 data packets measured per second seems 

enough to capture the variability of the radio channel behaviour) with a centre 

frequency at 2.45 GHz. A total of 37800 samples were gathered to evaluate the radio 

channel features of the Edge of the Network nodes of interest in several scenarios 

configuration. 

 First-Order Statistical Modelling of Received Signal Amplitude  

The received signals can be modelled by either considering them as a random variable or 

decomposing them in several terms. Although the former approach is the most adopted method, 

the latter one is more useful for time-variant on-body radio channels in order to reach a better 

understanding of the factors responsible for affecting the radio channel. The Power Transfer 

Function (PTF), which allows the decomposition of the received signal in three components 

[25], [119], is expressed as:  

 𝑃(𝑡𝑛) = 𝐺0 ∗ 𝑆(𝑡𝑛) ∗ 𝐹(𝑡𝑛) (5.1) 

where 𝐺0 refers to the mean path gain, so-called radio channel gain; 𝑆(𝑡𝑛) refers to the effect 

of the human body on radio channel, namely the shadowing effect, resulting into large-scale 

fading, so-called slow fading signal component; and 𝐹(𝑡𝑛) represents the contribution of multi-
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path components on received signal, namely the small-scale fading, so-called fast fading signal 

component.  

 Mean Radio channel Gain Model for Different Scenarios 

The radio channel gain is computed as the mean of the received power signal that results 

for each scenario, i.e. nodes locations, activity, and environment of operation. From the results, 

the log-normal distribution was the one that describes 𝐺0 in a more appropriate way. Therefore, 

the radio channel gain expressed in dB (negative values indicate the power path loss of the 

transmitted signal) can be represented by a Gaussian random variable: 

 𝐺0~𝑁(𝜇𝑠,  𝜎𝑠) (5.2) 

where mean value (𝜇𝑠) and standard deviation (𝜎𝑠) are scenario-dependent. The statistical 

analysis was performed on the radio channel gain of different scenarios. The results obtained 

for different operation environments, node locations, and user activities (Table 5.1), enabled 

the following observations: 

 The path-loss (𝜇𝑠) is higher and its dispersion (𝜎0𝑆) is larger in outdoor environments, 

regardless of the activity and node location. This is due to the fact that the 

electromagnetic waves propagation occurs mainly by creeping waves2, Line of Sight 

(LOS), and small reflections from ground, whereas when at indoor environments 

lower path-loss are verified; 

 Indoor communications are more prone to multi-path components, which have an 

additional energy contribution [119]. This is particularly perceived when the 

communication radio channel is in shadowing, e.g. Node-PROTACTICAL 2, for 

which there is not line of sight between this node and the 

Gateway-PROTACTICAL. Gains are near of 10 dB for indoor environments; 

 Although path-loss (𝜇0𝑠) was expected to be higher inside of the room than in the 

laboratory environment as previously observed (lab environment is more prone to 

the presence of multi-path components), the hypothesis could not be verified in all 

test scenarios. The radio channel gain was always lower in laboratory if the user was 

                                                 

 

2 EM waves, which are copies of the original EM wave resulting of the diffraction phenomenon, propagating 

along or around the user’s body 
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standing, regardless of the Node-PROTACTICAL. However, when the user is 

walking or running, the radio channel gain was be lower for the room scenario; 

 Activities that generically lead to worsts path-loss and dispersion are when the user 

is running and walking, with small differences between them when performed in 

indoor environments. The lowest path-loss is verified when the user is in a standing 

position (high multi-path component contribution) and when the user is crawling. 

In outdoor environments the standing activity presented the worst results in terms 

of radio channel gains, when compared to user walking and running, since the 

Table 5.1. The 95% confidence interval of the mean  (𝝁𝟎𝑺) and standard deviation (𝝈𝟎𝑺) of the radio channel gain, 

and the standard deviation of the large-scale fading (𝝈𝒔𝑺).    

Movement Node 𝝁𝟎𝑺(𝒅𝑩) 𝝈𝟎𝑺(𝒅𝑩) 𝝈𝒔𝑺(𝒅𝑩) 

Laboratory 

Standing 
2 [-73.4;-75.3] [0.3;1.8] [0.2;1.4] 

4 [-52.0;-52.6] [0.4;2.2] [0.3;1.8] 

7 [-65.1;-73.1] [1.3;8.1] [1.1;7.6] 

Walking 
2 [-81.8;-82.9] [2.5;15.8] [0.5;3.3] 

4 [-52.2;-54.8] [0.7;4.3] [0.4;2.7] 

7 [-75.2;-76.6] [4.7;29.4] [2.7;17] 

Running 
2 [-80.9;-81.4] [3.1;19.4] [0.8;5.1] 

4 [-55.4;-56.2] [0.7;2.2] [0.2;1.1] 

7 [-74.8;-78.3] [4.73;29.86] [1.8;11.2] 

Crawling 
2  [-78.3;-79.7] [3.75;23.63] [1.9;11] 

4  [-47.7;-51.2] [2.7;17.1] [1.1;6.7] 

7 [-62.2;-64.4] [3.84;24.24] [1.8;11.6] 

Room 

Standing 
2  [-75.7;-78.6] [0.3;1.6] [0.2;1.1] 

4 [-53.9;-58.1] [0.1;0.5] [0.1;0.5] 

7 [-67.6;-69.5] [0.3;1.9] [0.23;1.5] 

Walking 
2 [-83.5;-84.3] [1.8;11.3] [0.4;2.5] 

4 [-49.8;-50.7] [0.2;1.4] [0.1;0.81] 

7 [-72.0;-72.5] [3.6;22.5] [1.1;7] 

Running 
2 [-82.6;-84.4] [2.2;14.1] [0.4;2.8] 

4 [-50.39;-50.98] [2.5;16.1] [0.2;1.1] 

7 [-72.8;-73.1] [4.3;27.1] [1.1;6] 

Crawling 
2  [-82.1;-82.8] [2.71;17.10] [1;6.3] 

4  [-48.8;-53.5] [4.4;27.5] [3.0;19] 

7 [-64.1;-66.3] [3.2;20.3] [1.7;10.8] 

Outdoor 

Standing 
2 [-88.7;-89.2] [0.41;2.6] [0.5;2.5] 

4 [-55.9;-56.3] [0.04;0.3] [0.02;0.1] 

7 [-81.3;-83.8] [0.8;5.3] [0.8;5] 

Walking 
2 [-86.9;-88.3] [1.4;8.8] [0.3;2.1] 

4 [-55.6;-57.1] [0.64;4.1] [0.4;2.6] 

7 [-78.0;-80.1] [5.3;33.3] [3;18] 

Running 
2 [-85.1;-88.9] [1.6;10.3] [0.3;2] 

4 [-55.9;-57.9] [1.2;7.6] [0.2;1.2] 

7 [-75.4;-77.3] [6.7;42.0] [2.6;16] 

Crawling 
2  [-83.6;-84.6] [1.3;8.4] [0.5;3.1] 

4  [-52.3;-54.5] [4.0;25.2] [1.9;12] 

7 [-60.5-65.5] [3.7;23.4] [2.4;15] 
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multi-path components contribution is lower, thus increasing the resultant path-loss 

in case of NLOS. The crawling activity presents the best radio channel gain values, 

since reflections from the ground are the main energy contribution for the signal 

received by the Gateway-PROTACTICAL (it is not applied to 

Node-PROTACTICAL 2, since it is located at the user’s back). This was observed 

for all type of scenarios; 

 The dispersion (𝜎0𝑆) in Node-PROTACTICAL 4 and in Node-PROTACTICAL 2 

is very low when the user is in a standing position. Since in both cases the main 

propagation component contribution comes from creeping waves (low energy 

contribution). However, when dynamic activities are considered, the dispersion of 

the Node-PROTACTICAL 2 is very high whereas the Node-PROTACTICAL 4 

always has very low dispersions. This is an indication that the node at the user’s 

chest is less susceptive to path-loss variations then the Node-PROTATICAL 2 for 

dynamic scenarios. This fact can be justified because when the user is standing, 

contributions (both creeping and multi-path waves) to radio channel of 

Node-PROTACTICAL 2 are consistent, whereas if user movements are considered, 

his limbs are continuously obstructing the wave’s path; 

 The Node-PROTACTICAL 4 is the one that has the lowest path-loss for all 

activities and environments, being consistent for all cases since radio channel gain 

is always near to -50 dB. This can be justified by the fact that propagation occurs 

mainly due to creeping waves and “on-air” propagation also occurs with small 

distance between nodes, being less susceptive to changes in path-loss due to the 

dynamic activities, since there is no obstructions imposed by limbs to the wave’s 

path. In such cases, the body shape and the body features (dielectric and 

permeability properties of the body tissue) may have a predominant influence on the 

signal attenuation [127], [133]; 

 The Node-PROTACTICAL 2 presents the worst path-loss for all the scenarios 

because it is always in NLOS and, thus, propagation occurs mainly by creeping 

waves. The situation is worst when the user performs movements due to obstruction 

created by the user’s limbs, introducing dynamic shadowing. Dispersion of link 

Node-PROTACTICAL 2 is considerably higher at indoor environments than when 

at outdoors, indicating that at outdoor scenarios the presence of multi-path 

components due to environment influence might be negligible; 



Chapter 5 – On-body Channel Characterization and Modelling  

 

99 

 The path-lost confidence interval range of Node-PROTACTICAL 7 is higher when 

the user is standing, since propagation occurs mainly by creeping and multi-path 

waves. However, this range is lower when user movement is taken into 

consideration. This is due to the fact that during most of the time there is line of 

sight between the Node-PROTACTICAL 7 and the Gateway-PROTACTICAL. 

 Slow Fading Model for Several Scenarios 

In order to statistically analyse the slow fading signal component, a low pass filter that 

calculates the average of the received signal was applied in order to extract the slow component 

from the empirical measurements. Therefore, the sliding temporal window length was 

determined so as the variations were smoothed out while the variations on the received signal 

are still present due to user movement. The window size was selected to be 350 ms, 

corresponding to a number of samples, 𝑤, of 10: 

 

𝑆(𝑡𝑛) ≈
1

𝑤
∗ ∑

𝑃(𝑡𝑛)

𝐺0

𝑛+𝑤/2

𝑛−𝑤/2

 (5.3) 

Figure 5.1 depicts the power transfer function of a received signal (raw data) and the same 

signal but without the influence of the surrounding environment (small-scale fading), i.e. the 

𝐺0 ∗ 𝑆(𝑡𝑛) components of the power transfer function of equation (5.1). It allows the 

identification of the influence of both types of fading. The slow component in the measured 

signal results from the shadowing phenomenon created by user movements. It is noticeable that 

in the absence of movement the slow component is moderated, as shadowing conditions still 

exists but remain constant. Moreover, its magnitude strictly depends on the way that the user 

moves and its path trajectory (LOS or NLOS), for instance the slow component in 

Node-PROTACTICAL 7 is larger when the user is walking or running.   

This subsection aims to determine the most reliable statistical model in order to analyse the 

received signal amplitude distribution over the different scenarios. To reach this goal, six 

distributions were considered to fit the received signal power, which are the distributions often 

considered during radio channel characterization and modelling, namely Normal, Log-normal, 

Gamma, Rayleigh, Nakagami-m, and Weibull distribution [13].  

First, all the measurements were normalized and the statistical analyses on the slow 

component was carried out. All distribution parameters for each scenario were obtained using 

the maximum likelihood estimation (MLE).  
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The best fitting distribution was selected based on the Akaike Information Criterion (AIC), 

a widely adopted technique to determine the best fitting distribution in both narrowband and 

wideband communications [13]. The distribution that is the best fit model for each scenario, 

according to the AIC, is given in Table 5.2, where column ∆𝐴𝐼𝐶𝑐 reflects the difference between 

the AIC of the best fitting distribution and the AIC of the Log-normal distribution, and can be 

used to determine if this distribution is a good alternative distribution. As claimed in [62], a 

∆𝐴𝐼𝐶𝑐 lower than 10 indicates the existence of a better suited alternate distribution.  

The statistical analysis on the slow component of expression (5.1) show that the majority 

of the scenarios are well modelled by the log-normal distribution. This is due to the fact that 

there is a large number of effects contributing to the attenuation of the signal transmitted, which 

are multiplicative, or equivalently additive in the log domain. According to the central limit 

theorem a large number of random multiplicative effects will converge to a normal distribution 

in the log domain [62]. 

The distributions Weibull and Normal are good candidates since, accordingly to the 

research works [13], [62], [123], the Weibull distribution often provides a reasonable fit for 

scenarios where radio channel is subject to high levels of fading due to the human body, while 
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Figure 5.1. Time-variant power transfer function and shadowing component in indoor (laboratory) and outdoor 

environment for Node-PROTACTICAL 7. 
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the Normal distribution seems a suitable statistical distribution to model shadowing effect on 

on-body communications in scenarios where the user is standing.   

Summarizing, the slow fading signal component can be well described as a Gaussian 

random variable:  

 𝑆(𝑡𝑛)~𝑁(0,  𝜎𝑠𝑠) (5.4) 

where the standard deviation 𝜎𝑠𝑠 refers to the slow variations of the PDF due to the shadowing 

from human body, in a specific scenario. The 𝜎𝑠𝑠 resultant of empirical experiments in each 

scenario considered are shown in Table 5.1 and lead to the following observations:  

Table 5.2. Best-fitting models for slow fading signal component in several scenarios. 

Movement Node Best Distribution ∆𝑨𝑰𝑪𝑪 

Laboratory 

Standing 
2 Normal (σ=1.436; μ=-0.0532) 3.6 

4 Log-normal -- 

7 Log-normal -- 

Walking 
2 Normal (σ=2.011; μ=-0.0429) 6.5 

4 Log-normal -- 

7 Log-normal -- 

Running 
2 Normal (σ=2.672; μ=-0.0072) 2.4 

4 Normal (σ=1.257; μ=-0.057) 1.8 

7 Log-normal -- 

Crawling 
2  Weibull (α=25.739;β=83.25) 85.3 

4  Log-normal -- 

7 Gamma (α=283.65;β=3.709) 1.12 

Room 

Standing 
2 Log-normal -- 

4 Log-normal -- 

7 Weibull (α=64.11;β=70.076) 20.4 

Walking 
2 Log-normal -- 

4 Weibull (α=64.644;β=50.49) 30.28 

7 Weibull (α=24.25;β=73.975) 9.7 

Running 
2 Log-normal -- 

4 Normal(σ=1.28; μ=-0.0067) 5.6 

7 Log-normal -- 

Crawling 
2  Weibull (α=26.486;β=84.47) 9.2 

4  Normal (σ=6.1718; μ=-0.051) 9.7 

7 Log-normal -- 

Outdoor 

Standing 
2 Log-normal -- 

4 Log-normal -- 

7 Log-normal -- 

Walking 
2 Log-normal -- 

4 Weibull (α=63.2;β=89.096) 65 

7 Log-normal -- 

Running 
2 Log-normal -- 

4 Weibull (α=46.23;β=86.7) 37 

7 Log-normal -- 

Crawling 
2  Log-normal -- 

4  Normal (σ=2.28; μ=0.055) 5.7 

7 Log-normal -- 
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 Larges dispersions occur when user is performing dynamic activities, being larger 

if the user is walking, indicating that user movement is responsible for the 

shadowing effect on the radio channel. Although the running activity is the most 

dynamic activity, the oscillations of the arms are more limited than the case when 

the user is walking because arms tend to be close to the body, whereas when user is 

stationary, the presence of a slow component in the received signal is the result of 

involuntary movements.  

 The standard deviation is larger when at outdoor environments due to the almost 

nonexistence of multi-path components. 

 Node-PROTACTICAL 2 has a larger variance when comparing with 

Node-PROTACTICAL 4 due to the obstruction of the LOS, especially in room and 

outdoor environments where multi-path propagation is limited. The 

Node-PROTACTICAL 7 is the one that presents the larger variance due to its 

location, since it is located at an extremely dynamic part of the user body, leading 

the electromagnetic waves propagation conditions to continuously commuting the 

radio channel communication conditions between LOS and NLOS.  

According to D’Errico and Ouvry, the radio channel gain has a slow variation around the 

mean value (𝜇0𝑆) that can be described by the total variance: 𝜎𝑇𝑆
2  = 𝜎0𝑆

2  + 𝜎𝑠𝑆
2 [119]. 

 Fast Fading signal component Model for Different Scenarios 

The fast fading signal component, which is depicted in Figure 5.1 and Figure 5.2, refers to 

the fast signal variations in a short period of time, but with lower amplitude variation than the 

slow fading signal component. However, as will be demonstrate on the next section, the 

influence of the fast fading signal component in data packets transmission must not be ignored. 

The measurements of the fast fading signal component, which are computed as the signal 

fluctuation around the slow fading signal component, show that the fast fading signal 

component can last for significant periods of times (i.e. average time below the slow fading 

signal component) and can reach relative high amplitudes. In particular, for Node-

PROTACTICAL 7 when tested at the laboratory while the user is walking, the radio channel 

measurements of the fast fading signal component has a maximum amplitude of -13 dB, an 

average amplitude of -3.3 dB, and an average fast fading signal component duration of 71 ms 

(period of time required to transmit two data packets). As expected, due to the presence of a 

LOS wave and multi-path components [25], [119], the Rice distribution is the best fit to the fast 

fading signal component measurement data.  
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Table 5.3 shows the values of the Rice K-factor of the Rice distribution for different 

scenarios. This parameter is defined as the ratio between the power in LOS component and the 

power in multi-path components [25]. Therefore, a high K-factor values indicate a high ratio of 

the LOS wave component over the multi-path component [119]. The K-factor values in Table 

5.3 led to the same observations presented in [119]. As expected, reported K-factor are 

generally higher when the user is standing, as the small-scale fading is lower. In contrast, radio 

channels are more unstable (a larger fading is expected) when the user performs movements, 

as the body obstructs the wave path the propagation occurs manly by creeping waves and 

reflections on the surrounding environment. In fact, the highest K-factors generally occur when 

the user is running due to the increasing of the energy diffracted or scattered from the user’s 

body. Moreover, regardless of the Node-PROTACTICAL/location, the K-factor is slightly 

lower at indoor environments, since the energy contribution of the multi-path components 

increases and, in some cases, results in a more important contribution than the LOS waves. The 

Node-PROTACTICAL 2 is the one that presents the lowest K-factor, indicating the absence of 

LOS wave components. The Node-PROTACTICAL 7 is the node with higher dynamics, thus 

the resulting K-factor values show how its communication link is affected by the fast fading 

signal component. The Node-PROTACTIAL 4, due to the high K-factor values obtained, is 
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Figure 5.2. Temporal variations in the normalized signal emitted by Node-PROTACTICAL 4. 
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subjected to a strong LOS wave’s energy contribution, which results in a stable radio channel, 

i.e. radio channel experiments a small fast fading signal component.     

 Dynamic Narrowband On-Body Radio channel: Time-Dependent Characteristics 

The second order statistics, a statistical analysis of the time dependencies fading features 

and Doppler spread of the radio channel, are presented in this section. The comprehension of 

how the signal behaves with time is an essential tool not only to determine the best node location 

(as previously stated some locations are prone to poor radio channel conditions), the required 

topology in order to meet the QoS requirements (identification of the optimal location for 

potential relays) [25] and to evaluate the mobile radio system performance, but also on assisting 

the development of transmission mechanisms aiming to improve the radio channel throughput. 

Some example are the design of error correcting codes [127], radio channel behaviour 

prediction algorithms [128], TPC mechanisms [129], data packets retransmission strategies 

[26], data packets scheduler mechanism [130], interleaving algorithm, error-protection coding 

scheme, scaling the size of data packets to be emitted and radio channel modelling [59].  

In this section a statistical analysis of the dynamic properties of the propagation radio 

channels of Node-PROTACTICAL 2, 4, and 7 is described. Only dynamic scenarios at the 

laboratory were considered in this analysis and they are identified by the letters A, B, and C, 

corresponding to the activities walking, crawling, and running, respectively; and outdoor 

scenarios D, E and F, correspond to the activities walking, crawling and running. To all the 

empirical measures gathered during the experimental test bench, the respective radio channel 

gains were removed (as exemplified in Figure 5.2). This approach allowed to analyse the 

dynamic properties of the radio channels, i.e. fading, without ignoring the influence of the 

small-scale fading contribution on the received power signal. 

Table 5.3. Fast fading signal component statistics (K-factor) at several scenarios. 

Movement Node Laboratory Room Outdoor 

Standing 
2 13.3 14.2 21.2 

4 102.2 105.9 114.1 

7 45.0 48 51.4 

Walking 
2 2.8 3.1 3.4 

4 45.1 45.3 48.1 

7 3.8 5.6 7.4 

Running 
2 1.2 2.0 2.7 

4 36.1 38.8 42.2 

7 2.1 2.5 4.7 

Crawling 
2  3.8 4.1 6.2 

4  9.3 10.5 17.7 

7 4.6 5.2 6.7 
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Several statistical parameters have been adopted to describe the fluctuation of the received 

signal over time, such as: Fading Rate, Fading Duration, Fading Magnitude, Doppler spread, 

and TC. Second-order techniques, such as Level Crossing Rate and Average Fade Duration, are 

used to extract the mentioned second-order parameters from the data gathered in the 

experimental test bench.  

 Fading Rate and Coherence Time 

The Level Crossing Rate (LCR) is the frequency at which the signal crosses into fade, i.e. 

crosses a reference threshold relatively to the mean value (goes below the threshold). The 

average LCR of each Edge of the Network node for each scenario is graphically illustrated in 

Figure 5.3. The maximum LCR for all cases is always near of the mean value, a few dBs below 

0 dB. Moreover, the measured values, when the mean value is considered as the threshold value, 

are lower but very similar to the maximum LCR observed. Furthermore, all radio channels, 

regardless of the scenario, are subjected to almost the same LCR value. This is only not the 

case when larger link margins are considered.  

The fading rate, when considered the mean value as the threshold, can be used to estimate 

the Doppler spread, as proposed in [62]. Thus, a value between 2 and 4 Hz to average the 

Doppler spread was adopted for all nodes on the majority of the scenarios. The unique exception 
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Figure 5.3. LCR of links Node-PROTACTICAL 2, 4, and 7 in different scenarios 
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might happen when the user is running in an outdoor scenario, since the influence of the multi-

path is negligible due to the lack of reflecting objects. In this case, the worst LCR (<1 Hz) 

belongs to Node-PROTACTICAL 2 which is not so influenced for multi-path waves reflected 

from the ground as Nodes-PROTACTICAL 4 and 7. The LCR results shows that there is a 

strong correlation between the movement and the LCR values. As observed before, the fading 

amplitude seems to be higher when the user is running, leading to signal fading for higher link 

margins, for example, the average LCR of Node-PROTACTICAL 7 in scenario D at threshold 

-18 dB is 0 Hz (only after -14 dB the signal crosses into fade) whereas in scenario E a LCR 

near 0.5 Hz is observed. Adopting the approach usually embraced in the literature, a threshold 

of -10 dB is selected to deduce the fading depth of radio channels on the several scenarios [62], 

[119].  

The average fading rate values by scenario are summarized in Table 5.4. As expected, the 

Node-PROTACTICAL 7 presents higher fading rates in all scenarios, whereas the 

Node-PROTACTICAL 2 has higher fading rates than the remaining motionless nodes, in 

activities performed at indoor environments since the received signal path is always obstructed, 

resulting into contribution of several phenomenon, namely creeping and multi-path waves. 

However, when at outdoor environments the radio channel Node-PROTACTICAL 4 presents 

a higher LCR value than Node-PROTACTICAL 2, this can be explained by the fact that this 

node is more affected by the movement, which leads to changes in distance and orientation 

between nodes. The LCR values are below 2 Hz for all scenarios (sometimes equal to zero), 

whereas Node-PROTACTICAL 7 has always fading rates lower than 3 Hz.    

According to the coherence time values shown in Table 5.4, it is clear that the radio channels 

operating at outdoors remain stable for longer periods. The coherence time is the time duration 

over which the received signal strength is essentially invariant. Coherence times for the 

Node-PROTACTICAL 2 from 35 ms to 57 ms at indoors and from 41 ms to 78 ms at outdoors 

were reported. The radio channel of the Node-PROTACTICAL 4 stays constant up to a 

maximum of 96 ms and 121 ms at indoors and at outdoors, respectively. Coherence time values 

from 60 ms to 75 ms and from 96 ms to 145 ms were reported for the Node-PROTACTICAL 

7 at indoors and outdoors, respectively.     

 Fading Period and Percentage of Poor Radio channel Quality Period 

Fade duration is the time interval that a received signal remains in fading (below a reference 

threshold, usually -10 dB), whereas the Average Fade Duration (AFD) is described as the ratio 

between the total of duration that a received signal drops below a reference threshold and the 
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number of fading events. This parameter is used to determine the likely number of bits that 

might be lost due to the fading phenomenon, i.e. the average fading period. The radio channel 

is considered poor when fading is below a reference threshold. In Table 5.4 the values for 

maximum fading duration, minimum fading duration, AFD and standard deviation (to evaluate 

the dispersions of this statistical parameter) are presented for a threshold of -10 dB.  

As expected the Node-PROTACTICAL 7 presents the highest AFD values in all scenarios 

analysed. The highest AFDs values occur for outdoors’s scenarios, such is the cases of scenarios 

D, E, and F. In running activity, scenario F, the radio channel Node-PROTACTICAL 7 is 

subjected to the highest maximum fading duration, 385 ms, whereas the highest average AFD 

was obtained on scenario E, 155 ms. Therefore, for periodic actions, regardless of the 

environment, it is expected that radio channel Node-PROTACTICAL 7 will be subject to AFDs 

higher than 56 ms, The remaining Edge of the Network nodes presented lower AFDs values 

and fading durations, as expected.  

Figure 5.4 depicts the cumulative distribution function (CDF) of the fading duration 

behaviour in radio channel Node-PROTACTICAL 7. It is observable that the fading duration, 

or poor radio channel quality (CDF of 0.9), is below 175 ms for scenarios A, B, and F. The 

fading duration does not exceed 450 ms. For scenario C the duration is less than 90 ms and does 

not exceed 140 ms. The fading duration is below 80 ms on scenario D without exceeding 175 

Table 5.4. Fading features and Coherence Time for links Node-PROTACTICAL 2, 4 and 7 in several scenarios. 

Results obtained for a threshold of -10 dB. 

Scenario Node LCR (Hz) AFD (s) 

Max. 

Fade 

Duration 

(s) 

Min. 

Fade 

Duration 

(s) 

STD 

Percent. 

of Poor 

Channel 

Period 

(%) 

Average 

Fade 

Depth 

(dB) 

TC 

(ms) 

A 

2 1.22 0.035 0.035 0.035 0 4.2 -12.96 43.1 

4 0 0 0 0 0 0 0 84.5 

7 2.15 0.078 0.315 0.035 0.168 7.1 -14.4 69.9 

B 

2 1.47 0.047 0.105 0.035 0.012 6.8 -12.6 57.6 

4 1.31 0.057 0.14 0.035 0.030 7.4 -10.2 95.2 

7 1.146 0.105 0.455 0.035 0.035 12 -26.03 74.6 

C 

2 1.88 0.043 0.105 0.035 0.04 8 -13.2 35.8 

4 0.081 0.035 0.035 0.035 0 6.8 -11.2 47.6 

7 2.78 0.056 0.14 0.035 0.030 15 -18.3 59.6 

D 

2  0 0 0 0 0 0 0 47.11 

4  0 0 0 0 0 0 0 121.8 

7 2.29 0.056 0.175 0.035 0.033 12.8 -19.8 95.2 

E 

2  0.081 0.035 0.035 0.035 0 0.3 -10.3 78.1 

4  1.07 0.108 0.245 0.035 0.137 11.4 -20 104.7 

7 1.146 0.155 0.042 0.035 0.419 17.7 -25.6 145.6 

F 

2  0.90 0.040 0.105 0.035 0.012 3.7 -10.5 40.5 

4  0 0 0 0 0 0 0 49.7 

7 2.54 0.092 0.385 0.035 0.177 23 -20.2 137.7 
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ms. For scenario E the value of the fading duration is less than 320 ms the fading duration value 

never exceeds 420 ms. The standard deviations remains zero (or very close to zero) for 

motionless Edge of the Network nodes, i.e., Nodes-PROTACTICAL 2 and 4, whereas the radio 

channel of Node-PROTACTICAL 7 presents the highest fading duration dispersion for outdoor 

environments. These fading duration values shows demonstrate that there is correlation 

between the fading duration and the type of user’s movement activity, speed and the 

environment at which the activity is executed.  

Table 5.4 includes information about the parameter percentage of poor radio channel quality 

period given in percentage. This parameter is defined as the percentage of time that the received 

radio signal remains below a reference threshold (in such situation the radio channel conditions 

are considered poor). Once again, the value -10 dB is set as reference threshold. The worst 

results obtained occurred at outdoor environments, where the presence of the large-scale fading 

is high. Non-surprisingly, the worst results, in terms of percentage of poor radio channel quality 

period, where obtained during the running activity with poor radio quality periods of 15% and 

25% at laboratory and outdoor scenarios, respectively. 

 Fading Magnitude 

Fading magnitude refers to the maximum fade depth, with respect to the mean value, 

verified during the period of any fade. Table 5.4 shows the parameter maximum fading period 

for each scenario investigated for a threshold of -10 dB. The Node-PROTACTICAL 7 is the 

radio channel that is subjected to the maximum fading depth values and, as expected, it is worst 

when the user is performing activities at outdoor environments due to the shadowing effect 

mitigation due to presence of several electromagnetic waves propagation (differences in range 

of -2 dB up to -5 dB). In fact, the results shows a trend to the radio channel 
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Node-PROTACTICAL 7 in all activities and all environments shows high average fading 

magnitudes, always higher than -18 dB. The majority of the fading magnitude (90% of the 

occurrences of fading) occurred in radio channel Node-PROTACTICAL 7 with a threshold 

value of -10 dB. For this Node, values of -22.3 dB, -28.46 dB, -18.5 dB, -14.7 dB, -29.18 dB 

and -18 dB were obtained for scenarios A to F, respectively. 

Motionless nodes also presents some deep fading magnitudes, however, this values must be 

relativized, since in the majority of the cases the fading only occurs rarely (a couple of times), 

as indicated by parameter LCR, indicating that the majority of the time this radio channels 

cannot be considered poor radio channels in terms of propagation conditions, and when in 

fading (which is very unlikely for all activities in all environments, with the unique exception 

of crawling) the fading magnitude is only a bit lower than the reference threshold. Summarising, 

these statistical parameters provide a valuable information about the temporal characteristics of 

the Node’s radio channels for the several scenarios.  

 Performance Analysis based on Radio channel Dynamics 

This section aims to evaluate the performance of the current system in terms of the 

Quality-of-Service (QoS) requirements such as reliability and latency values.  

 Packet Error Rate Analysis 

The PER metric indicates the percentage of data packets that were not successfully deliver 

to the Coordinator node, the Gateway-PROTACTICAL.  

Figure 5.5 illustrates the radio channel performance in terms of PER values for all the 

scenarios, showing that radio channels Node-PROTATICAL 4 and 7 are able to ensure that 

requirements imposed by IEEE 802.15.6 TG in terms of reliability (PER<10%), regardless of 

the scenario conditions. Maximum PER values obtained have occurred for scenario F (6%) and 

scenario B (1%) on Nodes-PROTACTICAL 7 and 4, respectively. These radio channels are 

also able to ensure the latency requirements, since, as shown in Figure 5.5, the radio channel is 

in outage for periods lower than 125 ms and 250 ms (the maximums latencies to medical and 

non-medical applications).  

 The node with the worst results is Node-PROTACTICAL 2, the worst values are obtained 

for scenarios D and F, with PERs values higher than 10%. This downside on operation of this 

radio channels is due to the lack of the multi-path waves and due to their location, due to 

obstructions created by human body, blocking the electromagnetic waves propagation. The 

Node-PROTACTICAL 2 is not able to ensure the WBAN application requirements in terms of 

reliability. Thus, it is suggested the use of a multi-hop topology to overcome the limitations 
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obtained for a star topology, being the WBAN responsible for commuting between multi-hop 

and star topology depending on radio channel conditions. However, Node-PROTACTICAL 2 

achives satisfactory results in terms of latency, as the latency requirements of non-medical 

applications are respected for all the scenarios tested. Only in scenario E the 

Node-PROTACICAL 2 presents an average outage period higher than the maximum required 

for medical applications (135 ms as depicted in Figure 5.5).  

 Link Margin Analysis 

In the previous subsection the radio channel is evaluated assuming that either the radio 

transceiver sensitivity or the TPL (Transmission Power Level) are static. Although this is 

verified in the measurement test bench described in the previous section, it is clear that another 

system may have different radio transceiver sensitivities and/or output transmission power. In 

fact, these parameters can be updated to reach an optimal radio channel performance in terms 

of both PER and latency values. It is especially relevant when applied protocols such as TPC 

(Transmission Power Control), which aims to maximize the energy efficiency  of transmissions 

by adjusting the TPL at run-time and accordingly to the radio channel conditions [46]. The TPL 

is adjusted to the lowest level that ensure the successful delivery of the data packets, with 

minimum side effects on other aspects of the performance [4], such as latency and reliability. 

Thus, in this subsection a radio channel performance assessment with respect to a Link Margin 
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(LM) gain is proposed. It is based on the research work presented by Smith et al. in [155], but 

with significant differences. The Link Margin at 𝑡𝑛 is here quantified in dBs and is given by 

following expression: 

 𝐿𝑀(𝑡𝑛) = 𝑇𝑃𝐿𝐺𝑎𝑖𝑛(𝑡𝑛) + 𝑆𝑦𝑠𝐿𝑜𝑠𝑠(𝑡𝑛) − 𝑅𝑥𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  (5.5) 

where 𝑇𝑃𝐿𝐺𝑎𝑖𝑛(𝑡𝑛) represents the gain (in dB) achieved, at round 𝑡𝑛 when a different TPL is 

used. This gain is relatively to transmissions at the maximum allowed TPL, i.e. difference of 

radio channel gain of new transmission at updated TPL and radio channel gain reference (TPL 

equal to -0.5 dBm), c.f. Table 5.1. Higher and lower TPL transmissions result in lower and 

higher radio channel gain values [48]. In the proposed test bench the TPL adopted for radio 

channel operation is a static and pre-defined value (-0.5 dBm), thus 𝑇𝑃𝐿𝐺𝑎𝑖𝑛(𝑡𝑛) is zero. The 

𝑆𝑦𝑠𝐿𝑜𝑠𝑠(𝑡𝑛) refers to the system losses, or in other words, the power transfer function 𝑃(𝑡𝑛), 

whereas 𝑅𝑥𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 is the nominal radio transceiver sensitivity, which is typically measured 

in dBm. It indicates that the parameter Link Margin gain, given by expression (5.5), is dynamic 

and can be calculated taking in consideration the choices in terms of both TPL and radio 

sensitivity values.  

In equation (5.5), the radio channel gain must be updated in order to translate the difference 

between the new radio channel gain verified and the radio channel gain used as reference 

(presented in Table 5.1). When a different radio transceiver sensitivity is used, the 𝑅𝑥𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  

parameter must represent this new sensitivity value. Thus, the wireless radio channel can be 

evaluated relative to a Link Margin gain at each round in order to evaluate if a radio channel is 

in outage using the following expression:   

 𝐿𝑀(𝑡𝑛) < 0 → 𝑜𝑢𝑡𝑎𝑔𝑒 (5.6) 

The remaining of this section aims to assess whether the nodes that have met the reliability 

requirements, namely the Node-PROTACTICAL 4 and 7, can meet the latency requirements 

imposed by the Task Group TG6 for different scenarios. 

The statistical parameters introduced in section 1.1 (fading probability, fade duration, 

non-fade duration, and LCR) describe the dynamic nature of the fading signal component but 

do not enable the assessment of the radio channel performance in terms of latency on the 

communications. In this regard, other parameters are introduced, namely Outage duration, 

Outage probability, Non-Outage duration and Time-between-Outages. These parameters are 

illustrated in Figure 5.6.  
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Outage Duration 

The outage duration of an outage state is quantified as the amount of time that a signal 

remains in the outage state, as illustrated in Figure 5.6 where the signal, which corresponds to 

the temporal behaviour between second 2 up to 5 of the signal transmitted by 

Node-PROTACTICAL 7 in scenario D, remains in outage for ≈0.5 seconds (N). This analysis 

enable to understand which link margins are required to ensure the latency requirements of 

WBAN applications, for either medical or non-medical applications. Figure 5.7 depicts the 

outage durations of radio channel Node-PROTACTICAL 7 in scenario A. As the percentage of 

outage durations that will last less than the period of time given by x-axis to a specific Link 

Margin gain, identified in the y-axis. For instance, considering a LM gain of 10 dB, if an outage 

occurs, three quarters of these outages will last less than 70 ms, following the same logic, 90% 

and 100% of the outages will last less than 105 ms and 280 ms, respectively. Therefore, in order 

to meet the latency requirements imposed by WBAN applications to medical and non-medical 

applications, to a 100% of outages, a LM of 17 dB and 11 dB are required, since for these 

margins the outage durations will last less than 125 ms and 250 ms. 

Table 5.5 shows the results of the performance evaluation of radio channels in several 

scenarios in terms of several outage parameters at Link Margin identified as required to ensure 

the requirement latency of WBAN applications, given by column Link Margin gain (dB). As 

expected, Node-PROTACTICAL 4 demands lower Link Margin gain values, since this radio 

channel, as verified in fading characteristic analyses, is subject to short fading periods and low 

fading magnitudes were reported. Thus, a Link Margin gain value of 5 dB seems be enough to 

ensure the most challenging latency requirement, 125 ms, regardless of the scenario, whereas 

to non-medical applications Link Margin gain values lower than 5 dB seems to be able to ensure 

its latency requirements. Regarding Node-PROTACTICAL 7, the most demanding scenario in 

terms of Link Margin gain values is scenario A, requiring a Link Margin gain of 17 dB, since, 
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as observed in fading duration analysis, this scenario leads to the highest fading durations (≈315 

ms).  

Outage Probability 

Although the Link Margin gain values above defined as requirements are enough to ensure 

the latency requirements, the same conclusion cannot be made for other aspects of network 

performance. Thus, this subsection aims to analyse the probability of an outage occurring, 

considering the LM values identified in the previous subsection for each node accordingly to 

each test bench scenario. To the Link Margin gain values of 17 dB and 11 dB, required to radio 

channel Node-PROTATICAL 7 in scenario A, an outage probability of 4% and 13% are 

obtained, as depicted in Figure 5.8. Although in this scenario such outage probabilities give the 

impression of being acceptable, one quarter of the outages registered in scenario C, to the Link 

Margin gain value of 5 dB, are too high, indicating that this Link Margin gain value must be 

increased in order to reduce the outage probability and, consequently, rise the probability of 

both requirements, latency and reliability, being ensured for all scenarios. Relative to 

Node-PROTACTICAL 4, low outage probabilities (<2%) are obtained in Figure 5.8, indicating 

that such LM values are suitable to ensure both latency and reliability requirements.   

Non-Outage Duration  

The performance measure non-outage duration, concept illustrated in Figure 5.6 and 

analogous to the second-order parameter non-fade duration, consists in the total interval of time 
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that a received radio signal is not in outage state (i.e. received signal strength lower than the 

radio transceiver sensitivity). The top graph of Figure 5.7 illustrates the Node-PROTACTICAL 

7 empirical non-outage durations at several LM values in scenario A. Taking into consideration 

the reference LM values previously identified, namely 17 and 11 dB, there is 100% of 

confidence that a period of non-outage will last more than 500 ms and 175 ms, respectively. 

These results have direct implication on the data packet length to consider, indicating that to 

radio channels low non-outage durations, small data packet sizes must be consider in order to 

ensure a successful transmission, whereas large data packet sizes require longer non-outage 

durations. The radio channel Node-PROTACTICAL 4 has 100% of confidence that for all cases 

the period of non-outage will last more than 105 ms, as shown in Table 5.5. This shows that the 

LM values considered to Node-PROTACTICAL 4 do not offer high confidence in terms of 

non-outage durations, limiting the data rate. Thus, higher LM values might be required.  

Time between Outages 

Another performance measurement proposed is the Time-between-Outages (TbO), which 

is analogous to LCR, and specifies how often outages occurs. The TbO metric is the period of 

time between the moments that the received signal crosses into consecutive outages, as depicted 

in Figure 5.6. The TbO should be as low as possible since it is desired small rates between 

outages. The TbO observed in radio channel Node-PROTACTICAL 7 in scenario A for a given 

LM value are illustrated in Figure 5.9, and can be interpreted in a similar way to previous graphs 

depicting other outage performance parameters. Considering the LM values required to this 

node in the scenario of interest, 17 and 11 dB, there is 100% confidence of TbO being greater 

than 385 ms (it indicates that a outage occurs every and 385 ms) and 175 ms, respectively.  

Table 5.5. Radio channels result of Link Margin Analysis at several scenarios. 

Scenario Node 

Link Margin 

gain (dB) 

Non-Outage 

(ms) 

Outage Probability 

(%) 

Time-between-

Outages(ms) 

125 

ms 

250 

ms 

125 

ms 

250 

ms 
125 ms 250 ms 125 ms 250ms 

A 
4 5 4 105 70 1.4 8 70 105 

7 17 11 195 110 4 13 630 200 

B 
4 10 5 105 70 4.8 14.3 315 70 

7 15 10 175 105 3 8 175 150 

C 
4 5 3 210 175 1.7 10.2 210 70 

7 10 5 105 70 10 25 70 35 

D 
4 5 4 140 105 7.4 11.8 140 70 

7 12 10 105 70 3 10 70 35 

E 
4 15 10 350 105 2.8 8 140 70 

7 15 10 175 70 3 13 210 175 

F 
4 5 4 105 70 3.4 12.5 105 70 

7 13 9 385 105 15 21 245 35 
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Table 5.5 shows the TbO for each radio channel in every scenario of interest, revealing that 

the LM values initially considered as reasonable to Node-PROTACTICAL 4 lead the radio 

channels to shorter TbO (from 35ms up to 70 ms), which is not desirable, indicating once again 

that these LM values must be updated in order to ensure a better performance in terms of all the 

outage metrics. 

 Summary 

In this section, the questions presented at beginning of this chapter were addressed.    

How does the user activity affect the path-loss and fading on a millisecond-scale? 

First- and second-order statistical analysis have shown that the user activity (that causes 

shadowing) is the predominant effect to the time-variation of on-body radio channels. As a 

consequence, the radio channel is a slow fading radio channel, as stated in other research works 

such as [24], [62], [111], [168]. The fading features and radio channel gain strongly depend on 

the considered user activity, therefore, the influence of human activity on the radio channel 

varies according to the location of the node, since some locations are more susceptible to 

movement than others. According to research works [63] and [158], body parts movements 

strongly affect the signal fading due to angular variations of the transmitter and receiver antenna 
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gains, as well as, a reduction in the antenna gains due to the angular variation of the 

corresponding body part during the walking activity. The antenna gain depends on the radiation 

pattern of the antennas.  

Are the fading and path-loss affected by changing the node location and operation 

scenario? 

The transmitter node located at the user’s chest (Node-PROTACTICAL 4) presents a very 

stable radio channel, with consistent path-loss values (near to -50 dB) and with no occurrence 

of fading. Since this node is not located at a user’s limb, its radio channel is not subjected to 

variable path-loss and fading features, and thus transmissions at the lowest TPL (-22 dBm) are 

enough to ensure the reliability requirement (with path-loss values near to -81 dBm). The 

Node-PROTACTICAL 7 is the most mobile of all the nodes. As a consequence of the frequent 

commutations between LOS (Line-Of-Sight) and NLOS propagation conditions, a wide range 

of radio channel gain values and fading magnitudes of -18 dB are observed (for all scenarios). 

The observed fading depths values of the Node-PROTACTICAL 2 are lower than -10 dB, but 

with high fading rates than the other nodes. According to the results obtained in this test bench, 

this node has the lowest radio channel gain values.  

This test bench study has shown that the energy contribution of the multi-path components 

have a significant effect on on-body channels, leading to a radio channel gain increase of 10 

dB. At the same time, surrounding environment also affects the fading features, turning the 

on-body channel more dynamic (higher fading rates).   
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Regardless of the scenario, the radio channel state remains unchanged during each data 

packet transmission period. It was also observed that there are only small differences on 

measured fading amplitudes of two to three consecutive data packets (35 ms is the period that 

separates each data packet transmission).    

Are the links (with transmissions at the maximum power allowed) able to ensure the 

application requirements? 

Empirical PER results revealed that the Node-PROTACTICAL 2 does not meet the QoS 

requirements defined by IEEE 802.15.6 TG in terms of reliability, since PER values higher than 

10% were obtained. The remaining nodes assessed in the test bench were able to ensure the 

requirements of both reliability and latency, but with an inefficient use of the energy.  

Which approaches can be advised to each link in order to optimize communications? 

Regarding Node-PROTACTICAL 2, a multi-hop topology should be explored for scenarios 

where the star topology is not adequate. 

Regarding the Node-PROTACTICAL 4, low LM values (within the range 4 up to 6 dB for 

all scenarios) are required and high stability was observed (maximums fading magnitudes of -10 

dB, low fading durations, and low path loss). Therefore, the utilization of a TPL lower than 0 

dBm (can be also static and pre-defined before WBAN operation) seems able to ensure the 

communication QoS requirements and, at same time, making the transmissions more energy 

efficient. 

The radio channel performance assessment with respect to a LM gain value shows that the 

Node-PROTACTICAL 7 is the link that requires the highest LM gain values, for all scenarios. 

In some cases, a higher LM value than the suggested in Table 5.5 is required. Although the 

latency requirements are respected, a PER value above 10% is likely to occur for the LM gain 

values of Table 5.5 (due to the reported outage probability values). The reported periodic 

fluctuations (dynamic movements promote significant differences between the maximum and 

minimum fading depths in each period) reinforce the need for a TPC mechanism. It is the 

author’s conviction that such solutions are able to increase the radio channel reliability and 

reduce the energy consumption in on-body communications. 

TPC mechanisms seem to be a suitable and feasible solution to optimize QoS requirements 

in on-body communications. The on-body channel of Node-PROTACTICAL 7 is slow fading 

and both reported coherence time and non-outage values last in the order of the at least one 

hundred of milliseconds (value might increase with the optimization of the considered LM 

value). In addition, outages last in the order of milliseconds.  
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These features suggest that successful data packets transmission across of multiple 

communication data packets might be possible, and that estimations about the state of the link 

will likely hold true in the near future (for the next 30 ms - 145 ms). In other words, agile TPC 

mechanisms might be able to estimate and adjust the radio module power while the radio 

channel state remains unchanged.  
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CHAPTER 6 

 TRANSMISSION POWER CONTROL FOR ON-BODY COMMUNICATIONS 

In this chapter a transmission power control (TPC) mechanism denominated Proactive-TPC 

(P-TPC), which explores the natural periodic movements of the human body, is proposed. This 

mechanism overcomes some of the main drawbacks of the TPC mechanism analysed in chapter 

3. The proposed mechanism relies mainly on the acceleration samples from an inertial sensor 

to monitor the user’s gait cycle when updating the WBAN’s TPL parameter. The proposed 

solution employees a hybrid operation principle that will be further explained in the following 

subsections. Unlike other solutions proposed to execute in non-energy constrained nodes, e.g. 

smartphone that might take the role of Coordinator node, the Proactive-TPC targets energy 

constrained nodes (Edge of the Network nodes). Therefore, it was engineered to be simple and 

with minimal processing requirements.  

There are several questions addressed in this chapter: How does walking activity affects the 

fading signal pattern and is this influenced by the human body properties? How can 

accelerations in the user’s stride be tracked and how to reduce the complexity of mechanisms 

(addressed in the literature) to be implemented at the sensor nodes? Can traffic overhead be 

reduced and can TPC still be employed effectively to dynamic scenarios? How can the proposed 

TPC mechanism be integrated into the protocol stack as a performance improvement strategy? 

Is the proposed TPC approach fast and agile enough to estimate the radio channel and adjust 

power before the radio channel quality changes? Can energy efficiency and reliability of 

communications be optimized without sacrificing latency?  

 Fading Characterization  

In the following section the experimental setup used for fading signal characterization is 

described. The fading properties and Link-Margin gain (LM) values expected in real scenarios 

are reported. 

 Experimental Testbed Configuration  

Although nodes are located in several parts of the PPE, only signal propagation from the 

Node-PROTACTICAL 7 (which is attached to jacket with a body-surface-to-antenna 

separation that can vary from 2-4 cm) to the Coordinator node are characterized. This node was 
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selected from a set of eight Edge of the Network nodes, since the communications to the 

Coordinator node are more susceptible to alternate between LOS and NLOS due to user’s 

changes on posture and movement as described in chapter 5. Furthermore, the limitations of the 

TPC mechanisms addressed in the literature is on handling transmissions in dynamic scenarios 

without increasing the traffic overhead due to extra control frames. 

A scenario-based approach was used for signal characterization. Thus, empirical samples 

of the RSSI value were gathered in scenarios where users were walking on different 

environments (indoor, normal room and outdoor, urban area). Several users and different 

transmission power levels (TPL) were used on the test bench to gather the data. 

The Edge of the Network nodes transmit data packets to the Coordinator node at a frequency 

of 30 Hz and at a TPL lower than the maximum allowed on communications in and around the 

human body (0 dBm) in order to automatically meet the specific absorption rate restrictions 

[13]. Moreover, the Node-PROTACTICAL 7 periodically measures its 3-axial accelerometer 

with a sampling frequency of 30 Hz. Two male (subject 1: 29 years old, 1.69 cm, 73 Kg; and 

subject 2: 20 years old, 1.75 cm, and 76 Kg) and one female user (26 years old, 1.61 cm, and 

55 Kg) performed every scenario experiment on three different occasions. Each experiment 

takes around 60 seconds. Approximately half million RSSI values and 1800 acceleration values 

were collected during these experiments. 

The transmission frequency is 2.45 GHz, which is part of the ISM band. Taking into 

consideration that this band is shared by several wireless technologies, experimental measures 

were conducted at controllable environments so as to reduce the influence of external RF 

interferences on transmissions. As a precaution, during each experimental test a spectrum 

analyser was used to ensure that the test bench spectrum band was not being used.   

 Fading Features 

Figure 6.1 shows 15 seconds of the RSSI signal (bottom graph) received by the Coordinator 

node and transmitted by the Node-PROTACTICAL 7 during the experiment performed by user 

(subject 1) at the outdoor scenario. This figure also depicts the collected y-axis acceleration 

during the same experiment. The acceleration signal allows the identification of the subject 1 

periodic movement, the gait cycle period, calculation of the acceleration of the user’s stride, 

and also allows to determine that the fading follows a periodic behaviour with a period that 

matches with the gait cycle period, regardless of the test bench environments.  

Therefore, considering the nature of the acceleration when the subject is walking, two 

higher and lower acceleration peaks occur during the interval of a gait cycle. The RSSI value 
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shown in Figure 6.1 has a peak-to-peak magnitude between 20 to 25 dB. The higher peak value 

corresponds to the relative-position between nodes that allows LOS communication, 

Node-PROTACTICAL 7 positioned at the front of the user’s torso, whereas lower peak values 

occur when the link is in NLOS, i.e. Node-PROTACTICAL 7 positioned at the user’s back.  

The RSSI value is higher and less noisy in LOS than in NLOS, since LOS wave propagation 

has a strong energy contribution on signal power, whereas in NLOS the signal power is mainly 

due to the contribution of multi-path waves resulting from body obstruction and reflections 

from ground and surrounding objects.  

Figure 6.2 shows the fading during the first 15 seconds of an experiment performed by 

subject 1 (indoor). The RSSI signal (i.e. RSSI values over time) at indoor and at outdoor 

scenarios has different features, suggesting that the environment strongly affects the fading. 

The bottom signal of Figure 6.2 is noisier than the RSSI signal at the outdoor scenario regardless 

of the relative positions of Node-PROTACTICAL 7 and the Coordinator node. The fast-fading, 

which refers to fast RSSI value variations, in short periods of time due to energy contribution 

of multi-path components generated by objects on surrounding environment, also affects the 

Figure 6.1. Fifteen seconds of the acceleration (top) and RSSI signal (bottom) regarding link created between 

the Node-PROTACTICAL 7 and the Coordinator node while subject 1 was walking outdoors. 

Figure 6.2. Fifteen seconds of the RSSI signal (bottom) regarding link created between the Node-

PROTACTICAL 7 and the Coordinator node while subject 1 was walking indoors. 
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peak magnitude of the RSSI value.   

Figure 6.3 summarizes the collected RSSI values, regarding the data packets transmitted 

during the two experiments performed by each subject (indoor) using boxplots. The box of the 

graph holds exactly half of the collected data. Both peaks, higher RSSI and lower RSSI values 

in the subject’s gait cycle are affected in different ways. When subject 1 went from the indoor 

scenario to the outdoor scenario the value of the higher edge box increased 6 dB. This is due to 

the fact that multi-path components mitigate the effect of the relative-position (c.f. chapter 5). 

Regarding the lower edge of the box, it drops to values closer to the receiver sensitivity, because 

at outdoors the energy contribution of multi-path components is lower. Even though lower box 

edge at indoor scenario is higher, this illustration describes the signal as being static over time. 

The temporal evolution of the signal depicted in Figure 6.2 reveals that both lower and higher 

RSSI peak values are less deterministic at indoors, since they took values within a larger range 

when compared to the ones obtained at outdoor scenarios.  

Finally, aspects related to the amplitude of the stride movement and velocity, as well as, 

user’s body features, such as the user’s arm length, user’s wrist circumference, user’s Body Fat 

Mass, etc. [143], also affect the signal behaviour along the time and the fading magnitudes. The 

Magnitude Gains are the difference between higher RSSI value peak and average RSSI value 

of the respective gait cycle. Magnitude Gains between ranges of 10-15 dB, 6-12 dB, and 3-10 

dB were reported at outdoor scenario for subjects 1, 2 and 3, respectively.  
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 Link-Margin Gain 

A metric called Link-Margin gain is adopted in order to give an indication of the potential 

reduction of the RSSI value that might be achieved. Link-Margin is the difference between the 

RSSI value and the receiver sensitivity. Figure 6.4 and Figure 6.5 show the Link-Margin gains 

registered if transmissions occur within an interval ±35 ms and ±350 ms, with the center at the 

time of the higher and lower RSSI peak values, respectively.  

This analysis approach (instead of verifying the Link-Margin at the exactly moment that 

the peak value occurs) was selected due to the fact that it is very unlikely that the system is able 

to accurately detect or predict the upcoming RSSI peak value due to an acceleration and the 

time required to process the information from 3-axis accelerometer, as suggested in [130]. In 

addition, data packets transmission might not be precisely controlled due to the latency 

introduced on the MAC layer and the airtime of an IEEE 802.15.4 data packet transmission 

(receiver-to-transmitter turnaround time of Coordinator node and acknowledgment – ACK – 

reception from the Node-PROTACTICAL 7).  

Potential LM gain values shown in Figure 6.4 and Figure 6.5 were computed in relation to 

the smoothed fading signals with moving average window size of 70 ms and 350 ms. High 

Link-Margin gains were observed when transmissions were performed at intervals of time when 

the higher RSSI peak values occurred. Gains between 20 dB and 27 dB were obtained on 

experiments made with subject 3, whereas the Link-Margin gains of the remaining subjects are 

Figure 6.4. Normalized histogram of the reported Link-Margin Gains (at outdoors) for 

transmissions performed within interval ±35 ms and ±350 ms centred at the time of the higher RSSI 

peak  
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within the range of 25 dB to 30dB. Regarding the Link-Margin gains shown in Figure 6.5, the 

gains are substantial lower than the results of Figure 6.4, dropping to values between 5 dB and 

15 dB. The analysis of the influence of the transmission interval in the Link-Margin gains shows 

that shorter intervals do not lead to substantial increasing on the Link-Margin gains. However, 

this conclusion should not be generalised to transmissions performed at the points of time 

between the higher and lower RSSI peak values, since during this interval the fading magnitude 

has a fast decay due to the user’s limb movement, the communication channel quickly 

commutes between LOS and NLOS.

 Proactive-Transmission Power Control 

In the present section the design of the LQE and the TPL control block of the P-TPC 

mechanism is addressed and the influence of the several configuration parameters on their 

performance is assessed and analysed. Detailed information about the P-TPC mechanism 

operation principle is given and the algorithms used in each state of the P-TPC mechanism state 

machine to assure accurate radio channels prediction and TPL selection are described and 

evaluated in real scenarios. The P-TPC mechanism proposed was implemented as small 

software components in order to simplify the integration with standard communication 

protocols. Finally, details about the implementation of the P-TPC mechanism are given and the 

integration of the P-TPC mechanism with the IEEE 802.15.4 standard protocol stack was 

evaluated through experimental tests.   

 Link Quality Estimator (LQE) 

The main goal of the proposed LQE is the reduction of the number of control packets 

exchanged between the Coordinator node and the Edge of the Network node. This can be 

achieved by exploring the regular pattern of the RSSI peak values with a period that matches 

Figure 6.5. Normalized histogram of Link-Margin Gain if a data packet is sent within ±35 

ms and ±350 ms of the lower RSSI peak (subject 1). 
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the user’s gait cycle. Hauer et al. proposed an algorithm to predict future RSSI peak values, 

taking as assumption that the RSSI signal is periodic and that the period and the phase offset of 

the RSSI peak value relative to the beginning of the gait cycle is static [130]. However, as the 

user’s walking speed is not constant, the LQE uses the accelerometer signal to track the 

acceleration of the user’s stride in order to detect the beginning of a gait cycle, update the gait 

cycle’s period and measure the phase offset of the higher and lower RSSI peak values relative 

to the beginning of the gait cycle.   

To approximate the fading signal a linear interpolation was used, the proposed solution 

starts by mapping the measured RSSI samples into the gait cycle as depicted in Figure 6.6. This 

fading approximation function is used to predict the current radio channel quality (RSSI). The 

on-going gait cycle instant (in percentage) is provided as the LQE’s input and the predicted 

RSSI value at that instant is the LQE’s output. For example, to predict the future lower RSSI 

peak value the proposed LQE algorithm adds the latest gait cycle period to the last-known lower 

RSSI peak value.  

The several graphs shown in Figure 6.6 result from the execution of an algorithm that 

assesses the influence of the number of samples (N) on the final fading approximation function. 

The data gathered during radio channel characterization was used to extract the RSSI samples 

at 1 Hz sampling frequency, during consecutive gait cycles. To determine the LQE’s input, the 

acceleration signal was used to obtain the user’s stride acceleration and thus to identify the 

0 50 100
-90

-85

-80

-75

-70

-65
N samples (5)

Gait Cycle (%)

R
S

S
I 

(d
B

m
)

0 50 100
-90

-85

-80

-75

-70

-65
N samples (10)

Gait Cycle (%)

R
S

S
I 

(d
B

m
)

0 50 100
-90

-85

-80

-75

-70

-65
N samples (15)

Gait Cycle (%)

R
S

S
I 

(d
B

m
)

0 50 100
-90

-85

-80

-75

-70

-65
N samples (25)

Gait Cycle (%)

R
S

S
I 

(d
B

m
)

0 50 100
-90

-85

-80

-75

-70

-65
N samples (25)

Gait Cycle (%)

R
S

S
I 

(d
B

m
)

0 50 100
-90

-85

-80

-75

-70

-65
N samples (30)

Gait Cycle (%)

R
S

S
I 

(d
B

m
)

Figure 6.6. Approximated fading signal (red line) while human is walking (outdoor) by mapping N RSSI 

samples (blue line) measured in the Node-PROTACTICAL 7 onto the gait cycle period interval. 
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different gait cycles and calculate the gait cycle’s period (during each gait cycle two 

acceleration peaks are expected). Therefore, the first acceleration peak detected is considered 

to be the beginning of the gait cycle and the time required to achieve two more acceleration 

peaks is considered the gait cycle duration.  

The instant, at which a RSSI sample is extracted from the collected data, is mapped in 

relation to the gait cycle. Each instant is calculated by subtracting the current time from the 

on-going gait cycle to the time when the gait cycle started. After finishing the approximation 

to the fading signal, the higher and lower RSSI peak values can be extracted, as well as, their 

corresponding gait cycle instants. The approximated shape of the fading signal, visible in Figure 

6.6, is used to predict the RSSI peak value for future gait cycles.   

Figure 6.7 depicts the Mean Estimation Error, in dB, which is calculated as the difference 

between the empirical RSSI peak value and the predicted RSSI peak values. As expected, the 

approximation to the fading signal becomes better as the number of samples becomes larger. 

For N=3, the error obtained on the higher RSSI peak value estimation is larger than 5 dB for all 

subjects, and between -10 dB up to -15 dB when the algorithm estimates the lower RSSI peak 

value. The optimal number of RSSI samples is seven (N=7) regardless of the RSSI peak value 

of interest, since the mean error on the estimation of the higher RSSI peak value drops to 1.21 

dB, 1.98 dB and 3.2 dB for subjects 1, 2 and 3, respectively. The higher RSSI peak value occurs 

at 64.58% of the gait cycle time. When the algorithm estimates the lower RSSI peak value 

(23.54% of the gait cycle) the average error was -3.65 dB, -5.19 dB and -4.64 dB for subjects 

1, 2 and 3, respectively. However, when the experiment was carried at indoors, the lowest 
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Figure 6.7. The influence of the number of RSSI samples on the prediction of the higher 

and lower RSSI peaks for outdoor experiments. 
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estimation error was obtained for N larger than 8. Fifteen RSSI samples were found to be the 

number that offers the best compromise between the LQE’s performance at both environments. 

The instant when the RSSI peak values occur in the gait cycle is algorithm 

configuration-dependent, since it depends on the definition of the beginning of the gait cycle 

period.  

Figure 6.8 shows the performance of the LQE algorithm (mean error and standard 

deviation) when estimating the higher RSSI peak value through the interpolation of 15 RSSI 

samples. As expected, the algorithm has better results during the outdoors experiments, since 

the emitted signals at outdoor scenarios are less prone to fast-scale fading influence, ensuring 

more stable signals. The minimum mean error is observed on subject 1 with a variance of 1.83 

dB, and the worst results were obtained for subject 3 with a mean estimation error of 2.011 dB 

and a variance of 1.7 dB. These errors can be justified by the fact that two consecutive gait 

cycles were not perfectly matched as a result of small changes in the limb amplitude during the 

gait cycle and also due to the accelerations in the user’s stride.  

The LQE performance degrades for indoors scenarios due to the variability of the RSSI 

signal as a result of the fast fading component on the communication signal which translates 

into non-identical RSSI signal patterns. The mean estimation error is practically the same for 

all subjects, between 2.75 dB and 3.13 dB, whereas the highest variance registered occurred on 

subject 3 experiment: 2.42 dB. As the fast-fading negatively affects the performance of the 

LQE, the estimation of the lower RSSI peak value presents higher residuals, with a mean 

estimation error from -4.64 dB to -7.78 dB and average variance of 6 dB.  

As a significant result, the fading signal shows that its peaks are regular within the gait 

cycles, which allows to estimate the current radio channel quality based on the on-going gait 
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Figure 6.8. Proposed LQE’s ability to predict the higher RSSI peak in indoor and outdoor 

environments through the fading approximation function comprising N= 15 RSSI samples. 
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cycle instant (0-99%). Furthermore, the information about the last gait cycle period and the 

user’s stride acceleration enables to anticipate future instants in the on-going or the next gait 

cycles. These results are very significant, especially because the LQE algorithm aims to 

estimate gait cycle instants that will happen when communications are performed in LOS 

(regardless of the environment). Results show that at least 15 RSSI samples are required before 

the LQE algorithm can start estimating the radio channel quality. However, the mean error and 

the variance obtained indicates that residuals are expected and must be taken into consideration 

at the moment that an update to the transmission output power (TPL) is required. However, as 

shown in Figure 6.9, the potential Link-Margin gains are still significant. 

 Transmission Power Level Control 

The TPC mechanism requires a TPL control block that receives the RSSI value estimated 

by the LQE as input and aims to determine the optimal TPL as output. Quwaider et al. observed 

a linear relationship between the TPL adopted on transmissions and the RSSI value measured 

at the receiver when the user was standing [9].  

During the experimental radio channel characterization, tests were performed with different 

TPL values, ranging from -0.5 dBm up to -22 dBm, which allowed to determine if a linear 

relationship between the TPL and RSSI values exist. Figure 6.10 depicts the effect that the TPL 

value has on the higher RSSI peak value, showing that a linear relationship between these two 

parameters exists. The RSSI value, which can be described through the expression:    

 𝑅𝑆𝑆𝐼𝑖(𝑎) = 𝐵0(𝑎). 𝑇𝑃𝐿𝑖 +𝐵1(𝑎) + 𝜀(𝑎) (6.1) 

where 𝑅𝑆𝑆𝐼𝑖 is the RSSI value at the receiver for a transmission power 𝑇𝑃𝐿𝑖 -0.5, -1.5, -3, -4, 

-6, -8,…, -22 dBm for subject 𝑎 (i=1, 2, 3).  The parameters 𝐵0 and 𝐵1 are the slope and the 

Indoor (Peak Positive) Outdoor (Peak Positive) Indoor (Peak Negative) Outdoor (Peak Negative)
0

5

10

15

20

25

30

M
e
a
n
 E

s
ti
m

a
te

d
 L

M
 G

a
in

 (
d
B

)

 

 

Subject 1 ()

Subject 2 ()

Subject 3 ()

Figure 6.9. Difference between the predicted Link-Margin gains (difference between the predicted 

higher and lower RSSI peaks and the receiver sensitivity – and the empirical Link-Margin gains. 
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intercept of the fit model verified for transmissions at the maximum TPL allowed in on-body 

communications. Finally, the parameter Ɛ is the error term that is obtained by finding the 

statistical distribution that better describes the model residuals (difference between observed 

values and values that model predicts). The error term is well described by means of a normal 

distribution and, consequently, by the parameters residuals mean and variation, namely ≈0 dB 

and 1.67 dB respectively.  

In order to obtain the optimal TPL as fast as possible, a solution based on reactive-based 

approach (the dynamic one) is chosen. The slop parameter of expression (1) is used to determine 

the expected influence that the TPL metric has on the fading signal: 𝐵0(1)=0.8441, 

𝐵0(2)=0.8812, 𝐵0(3)=0.8109. 

 P-TPC Implementation 

The hybrid TPC mechanism is implemented using the state machine depicted in Figure 

6.11. It is composed by five main states: Acceleration Acquisition; Periodic Mobility Detection; 

Fading Approximation; Gait Cycle Period Update and Phase Offset Tracking and TPC 

Mechanism. The first two states, which are described on the next subsection (designated 

Acceleration Acquisition and Periodic Mobility Detection), aim to detect the periodic 

movement and to obtain the first gait cycle period (i.e. the time from initial contact of one foot 

to the following initial contact of the same foot). Once the periodic movement is detected the 

mechanism enters the Fading Approximation state on which the fading signal is captured by 

the gathered RSSI samples and a function able to approximate it is derived, please see 

subsubsection 6.3.2. The mechanism leaves the Fading Approximation state after obtaining the 

Figure 6.10. Mean Estimation error and variance, in dB, of Link-Margin gains estimated at higher and lower RSSI 

peaks by a number (N) of RSSI samples obtained for outdoor experiments performed by subjects 1, 2 and 3. 
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fading approximation function and starts the Gait Cycle Period Update and Phase Offset 

Tracking state. This state goal is to compute the periods of each of the user’s gait cycle and 

track the acceleration on the user’s stride. The output of this state (period of the last gait cycle 

and estimation of the period of the on-going gait cycle) is crucial to ensure that the TPC 

mechanism operates efficiently, since the tasks of obtaining the on-going gait cycle instant (in 

percentage) and the radio channel quality estimation, which are carried out in the TPC 

Mechanism state, rely on the output of the Gait Cycle Period and Update and Phase Offset 

Tracking state.  

The TPC Mechanism state (c.f. subsubsection 6.3.4) starts every time a data packet is ready 

to be transmitted. In this state, the TPC mechanism, which has the architecture depicted in 

Figure 3.1, is executed. The LQE block estimates the RSSI value through the fading 

approximation function and its output is used by the TPL Control block to compute the optimal 

TPL for the data packet to be transmitted. After the transmission of the data packet the 

mechanism leaves this state and returns to Gait Cycle Update and Phase Offset Tracking state 

in order to keep updating the gait cycle period.   

 Acceleration Acquisition and Periodic Mobility Detection 

In the Acceleration Acquisition state, the acceleration samples, required for the Periodic 

Mobility Detection state to determine the first gait cycle period, are acquired at a sampling rate 

of 30 Hz. Samples are measured for an interval corresponding to the detectable gait cycle 

period, i.e. (2x2.1 s). 

Figure 6.11. State machine of the proposed algorithm, being composed by five main stages. 
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The mobility detection algorithm used in [130] is adopted in the Periodic Mobility 

Detection state for detecting the periodic mobility and to extract the first user’s gait cycle period 

through the user’s stride acceleration signal. It is called Average Magnitude Difference 

Function (AMDF) and it is a variation of the Autocorrelation Function (ACF) with lower 

computational complexity, since no multiplications are required. The AMDF algorithm, which 

enables the determination of the periodicity of a signal, is defined by the follow relation: 

 

𝐴𝑀𝐷𝐹(𝜏) =
1

𝐿
∑|𝑠𝑖 − 𝑠𝑖−𝜏|

𝐿

𝑖=1

 (6.2) 

where 𝐿 is the length of the frame of the sampled acceleration signal, 𝑠𝑖 is the sample of the 

acceleration signal and 𝑠𝑖−𝜏 is the delayed version of the acceleration signal sample, with 𝜏 

representing the time lag in terms of samples. The value of 𝜏 that ensures a lower output value 

of the AMDF is considered the period of the signal. Thus the 𝐴𝑀𝐷𝐹(𝜏) is computed by 

delaying the input 𝑠 signal, subtracting the delayed waveform from the original, and summing 

the magnitude of the differences between sample values. The difference signal is always zero 

at delay 0 s, and is particularly small at delays corresponding to the signal period of a signal 

having a quasi-periodic structure. 

The range of values of 𝜏 must be chosen for which the minimum and maximum values 

represent the minimum and maximum detectable gait cycle period. The delay shift of 700 ms 

and 2100 ms were selected as  𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥, respectively. The period of the signal shown in 

Figure 6.12 is 1.23 s which is considered the first gait cycle period.  

Algorithm 6.1 is responsible for mobility detection and extraction of the first gait cycle 

period. . In this algorithm, three criteria have to be verified to conclude the existence of periodic 

Figure 6.12. Acceleration Signal while subject 1 is walking outdoor and respective AMDF values to 

delay shifts from 0 to 2100 ms. 
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mobility: i) the time series of the acceleration signal must be at least equal to the maximum 

detectable gait cycle period; ii) on the Periodic Mobility Detection state the acceleration 

window size is divided into two parts and the results of the computed AMDF algorithm for 

each of the accelerations windows must not have a gait cycle period difference higher than the 

detectable minimum gait cycle period (700 ms); iii) finally, the minimum AMDF algorithm 

output value must be at least 50% less than the maximum valued outputted by the AMDF 

algorithm. These criteria’s were obtained via trial-and-error in the performed experiences for 

the several users.    

 Fading Approximation 

In the Fading Approximation state fifteen RSSI samples are required to ensure a suitable 

approximation of the fading signal. As the number of samples is low, a similar approach to the 

one chosen on closed-loop control TPC was adopted. The Node-PROTACTICAL 7 transmits 

the data packets at a frequency given by N (number of samples) divided by the first gait cycle 

period obtained from the Periodic Mobility Detection state. This allows to measure the RSSI 

value of the ACK received from the Coordinator node (transmitted at TPL -0.5 dBm). However, 

before applying an interpolation function to approximate the fading signal the collected RSSI 

samples must be aligned with the gait cycle. Thus, the gait cycle period and the phase offset 

must be determined.  

The Dynamic Time Warping (DTW) algorithm is a well-known technique to find an 

optimal alignment between two time-dependent signal sequences (usually used to pitch 

detection [169]), assuming that the signal speed can vary. As mentioned, this algorithm is used 

to align two similar acceleration signals, 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1 and 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖 which are the 

acceleration signal for one full gait cycle and the acceleration signal of the consecutive gait 

cycle, so that both on-going gait cycle period (interval of 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖) and the phase offset can 

be obtained. Therefore, giving two signals 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1 and 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖 of length n and m (67 

and 58 samples respectively) the DTW algorithm constructs a matrix n-by-m (67 lines and 58 

columns), from the signals on Figure 6.13, resulting in the matrix depicted in Figure 6.14, in 
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which every element of the matrix (x, y) is an Euclidean distance, i.e. the difference between 

points 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1(𝑥) and 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖(𝑦).  

The red line on graph of  Figure 6.14 represents the warping path which is achieved under 

certain restrictions (please refer to [169]) and consists of a set of elements from the n-by-m 

matrix, 𝑝=( 𝑝2, 𝑝2, … , 𝑝𝐿,), that defines an alignment on time between 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1 and 

𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖, for any sample in 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖 the warping path represents a mapping into the 

reference sequence: 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1, as illustrated on the bottom image of Figure 6.13. The 

warping path is a sequence of elements from a n-by-m matrix, thus it must be selected from a 

set of possible warping paths 𝑤= ( 𝑤1, 𝑤2, … , 𝑤𝑘,). The warping path with lowest cost is 

selected, using the expression:  

 

𝐷𝑇𝑊(𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1, 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖) = 𝑚𝑖𝑛

{
 

 
√∑

𝑤𝑘
𝑘

𝑘

𝑘=1

 (6.3) 

The DTW algorithm leads to a computational complexity that is exponential in the sequence 

lengths n and m and requires enough space to save the n-by-m elements which is not possible 

on the majority of resource restrained Edge of the Network nodes, as was concluded by research 

work [137]. The DTW complexity is O(MN)=O(7680), where M (the length of the sliding 

Require: The accelerometer samples collection for 4.2 s, starting after occurrence of a valley  

(local minimum) 

Input: 

  1: Min_DelayShift: minimum time lag  

  2: Max_DelayShift: maximum time lag  

  3: Acc_signal: vector of acceleration samples of the nearest 4.2 s 

  4: Lenght: the length of the acceleration samples vector 

  5: win_size: size of the moving average window 

Output: 

  6: Periodic_Motion: Boolean variable indicating the occurrence of periodic motion 

  7: GC_Period: period of the last gait cycle  

Begin 

  8: Acc_signal        moving average filter (Acc_signal, win_size) 

  9: Acc_firstGaitCycle        Acc_signal (0: Length/2) 

  10: Acc_secondGaitCycle         Acc_signal ((Length/2)+1: Lenght) 

  11: AMDF_FirstGaitCycle         AMDF(Acc_firstGaitCycle, Min_DelayShift, Max_DelayShift) 

  12: AMDF_SecondGaitCycle        AMDF(Acc_secondGaitCycle, Min_DelayShift, Max_DelayShift) 

  13:   If (argmaxi{ AMDF_FirstGaitCycle}/2)> argmini{ AMDF_FirstGaitCycle} then 

  14:     If (argmaxi{ AMDF_SecondGaitCycle}/2)>argmini{ AMDF_SecondGaitCycle} then 

  15:        FirstGaitCycle_Period        Get_GaitCyclePeriod_Function(AMDF_FirstGaitCycle) 

  16:         SecondGaitCycle_Perio Get_GaitCyclePeriod_Function(AMDF_SecondGaitCycle)      

  17:          If ‖ FirstGaitCycle_Period-SecondGaitCycle_Period ‖≤Min_DelayShift then  

  18:               GC_Period             SecondGaitCycle_Period 

  19:               Periodic_Motion        True   

  20:    else 

  21:         Periodic_Motion        False 

  22:          end If 

  23:     end If 

  24:  end If 

End 

  

Algorithm 6.1. Mobility detection and extraction of the first gait cycle period.  
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window) is set as 96 and N (the length of the acceleration template) as 80. Due to this 

complexity, the gait cycle tracking was implemented by the Coordinator node since it has more 

computing resources and more energy. The complexity can be reduced by avoiding computing 

the whole matrix through the selection of points, designed as anchors, in the reference sequence 

(𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1) at an associated time 𝑡1, 𝑡2, … , 𝑡𝑛 [130]. For each anchor in the reference 

sequence, the acceleration data of 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖 around an interval of time centred on anchor time 

𝑡𝑖 is extracted.  

The Euclidean distance for each point on the extracted  𝑆𝑡𝑟𝑖𝑑𝑒𝑖 acceleration data in relation 

to 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1 acceleration value in the respective anchor is calculated. From the resultant 

vector of distances the minimum values are then extracted and, as sampling rate is known, it is 

possible to obtain the phase offset and the time that the gait cycles period increases or decreases 

in relation to the previous gait cycle. If the minimum value is on the center of the vector it 

means that there was no acceleration whereas vector indexes higher than the center index 

indicates negative accelerations and lower indexes suggest positive accelerations, which can be 

converted to seconds by multiplying the difference between the index of the minimum 

Euclidean distance and centred vector index by the acceleration sampling interval.  

Figure 6.15 shows an example of this approach in which three anchors were considered, 

corresponding to the extremes of the acceleration signal (set at the instant points 0.95 s, 1.47 s 

and 1.995 s of the 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1 acceleration signal featured in Figure 6.15) during a gait cycle 

(in the case of the reference sequence acceleration values used as example and illustrated in 
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Figure 6.13. Two acceleration signals of two consecutive gait cycles (top graph) and signal as result of 

the DTW algorithm, i.e. aligned acceleration signals (bottom graph). 
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Figure 6.13), whereas the window size, which defines the interval around the anchors, is ±350 

ms. The result is graphically represented on the bottom image of Figure 6.15 and corresponds 

to the Euclidean distances calculated by using a sequence of acceleration samples of the original 

acceleration measurements, whereas the top graph is the result when a filtered version of the 

acceleration signal is considered. It is observable that the minimum calculated Euclidean 

distances for anchor 2 occurs at -0.28 s and -0.245 s as shown in the bottom and top image of 

the Figure 6.15 respectively. Therefore, the Euclidean distances featured on the bottom and top 

image of the Figure 6.15 are slightly different. This observations shows that when the 

acceleration signal is filtered the calculated Euclidean distances are more accurate.  

The window size is also relevant since it defines the maximum and minimum changes 

detectable on a gait cycle period. In Algorithm 6.2 the final algorithm to track the gait cycle is 

presented. A window size of ±140 ms and two anchors were selected for each gait cycle, 

corresponding to the high extremes of the acceleration signal. The first anchor is selected in 

𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1 as the high value of the signal and this is considered to be the beginning of the 

gait cycle (even if it is not the case), and then the second anchor is predicted in next gait cycle 

by adding the gait cycle period to the reference acceleration signal. The Euclidean distance is 

then calculated in an interval of ±140 ms around the predicted anchor and the minimum value 

of this distance indicates an acceleration peak value. This instant is then added to the reference 

sequence gait cycle period resulting on the period of the on-going gait cycle.  

The task of computing the gait cycle’s period and tracking accelerations on the user’s stride 

starts at the Fading Approximation state in order to allow the P-TPC mechanism to map the 

fading signal to the gait cycle.  
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 Gait Cycle Period and Phase Offset Tracking 

The modified DTW algorithm (c.f. Algorithm 6.2) previously proposed and described above 

is also executed during the Gait Cycle Period Update and Phase Offset Tracking state. As long 

as the user performs periodic movements, this state remains in execution, providing the user’s 

gait cycle period of the on-going gait cycle. Updated values of the previous gait cycle and 

detection of the acceleration in the user’s stride enable the P-TPC mechanism to determine the 

on-going gait cycle instant. This is achieved by counting the time elapsed since the beginning 

of the gait cycle and dividing it by the on-going gait cycle period (updated two times during a 

gait cycle period, since two anchors are used). This process is restarted on the beginning of the 

next gait cycle and repeated for the subsequent gait cycles. Thus, the last gait cycle acceleration 

signal is set as the reference 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖−1, whereas the actual acceleration signal is considered 

the signal 𝐺𝑎𝑖𝑡𝐶𝑦𝑐𝑙𝑒𝑖 on the DTW algorithm. To keep tracking the gait cycle period and the 

phase offset, the next sequences of gait cycle periods must be sampled in order to map the 

current time in the current gait cycle.  

In order to reduce the energy consumption during the acceleration signal acquisition, a 

sampling frequency of 30 Hz was selected and a moving average filter with a window size of 

70 ms was applied. Furthermore, only the y-axis acceleration data is read during an interval of 

280ms centred on the predicted anchor time. This corresponds to 40% of the gait cycle period 

for an average gait cycle period of 1.3 s, and thus sixteen acceleration samples per gait cycle 

period are acquired. 
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Figure 6.15. Euclidean distances between anchors (at time 0.95 s, 1.47 s and 1.995 s of the reference gait cycle 

shown in Figure 6.13) and acceleration samples of 𝑮𝒂𝒊𝒕𝑪𝒚𝒄𝒍𝒆𝒊−𝟏 in an interval ±350ms centred in the 

respective anchor time. 



Chapter 6 – Transmission Power Control for On-Body Communications  

 

137 

The False Detected Accelerations (FDA) and the Undetected Accelerations Rate (UAR) 

error measurement criteria were used to assess the accuracy of the gait cycle tracking procedure 

summarized in Algorithm 6.2. The FDA, given in percentage, is computed as the total number 

of false accelerations (accelerations wrongly identified or calculated by the algorithm) detected 

from the total number of anchors: 

 
𝐹𝐷𝐴 =

∑𝑑𝑒/𝑎𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑/𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

∑𝑎𝑛𝑐ℎ𝑜𝑟𝑠 
∗ 100 (6.4) 

The UAR is calculated as the ratio of the total number accelerations not detected by the 

algorithm by the total number of anchors used during the algorithm execution: 

 
𝑈𝐴𝑅 =

∑𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑑𝑒/𝑎𝑐𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

∑𝑎𝑛𝑐ℎ𝑜𝑟𝑠 
∗ 100 (6.5) 

Although the error measurement FDA is relatively significant to all subjects (superior to 

6%), these values are due to Euclidean distances computation that led to wrong values, since 

all accelerations were correctly identified. Therefore, this algorithm seems to be reliable since 

Algorithm 6.2. Gait Cycle Tracking. 

Input: 

  1: PreviousGC_Anchor: acceleration sample of an anchor (first or second 

one) 

  2: win_size: size of the acceleration samples vector   

  3: win_acc: slide window for holding the acceleration samples  

  4: GC_Period: period of the last gait cycle 

  5: Ts: time interval of acceleration samples 

  6: TDTW: the time poi not of performing the DTW 

  7: TAnchor: the time point of the last detected anchor (first or second one) 

  8: Tcurrent: the time of the current time point  

  9: Euclidean_distance: vector of Euclidean distances with a size win_size 

  10: Index: Index of a minimum point  

Output: 

  11: Current_GC_Period: the current gait cyle period  

Begin 

  14: TDTW        (GC_Period - ( Tcurrent - TAnchor) - ( win_size* Ts)/2) 

  15: If Tcurrent== TDTW then 

  16:    do   

  17:        win_acc         {newAccsample, win_acc(1:end)} 

  18:        num_samples++ 

  19:    while receive an acceleration sample & num_samples< win_size 

  20:    PreviousGC_Anchor        1 

  21:    Normalize_DataFunction(win_acc) 

  21:    Euclidean_distanceFunction (win_acc, Euclidean_distance) 

  22:    Index         argmini(Euclidean_distance (1,:)) 

  23:    PreviousGC_Anchor          win_acc(Index) 

  24:    TAnchor               Tcurrent-(win_size-Index)*Ts 

  25:    If Index+1≤ (( win_size/2)-1) then 

  26:        Current_GC_Period          Current_GC_Period - (Index* Ts) 

  27:    else If Index+1≥ (( win_size/2)+1) then 

  28:       Current_GC_Period          Current_GC_Period + (Index* Ts) 

  29:    else 

  30:       Current_GC_Period          GC_Period 

  31:     end If    

  32:  end If 

End 
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the almost all user’s stride accelerations are detected by the proposed algorithm (maximum 

UAR value is 2.9%), but the accuracy of the calculated phase offset might require some 

improvements.   

The results of the evaluation of the Algorithm 6.2 in different subjects are summarized in 

Table 6.1. This algorithm was executed during 120 s when the subjects were walking (gait 

cycles periods between 1.1-1.3 s) half of the time and at faster pace (gait cycle periods between 

0.8-1.0 s) the remaining time.    

 TPC Mechanism 

The IEEE 802.15.4 MAC layer was configured to beaconless mode, with the CSMA/CA 

backoff parameters set to zero, namely the CSMA/CA backoff exponent, backoff delays and 

number of backoff attempts. This configuration will further reduce latency on the transmissions 

and thus providing a higher control of the transmission time to the P-TPC mechanism. 

According to Akbar et al., the CSMA/CA configuration proposed achieves an end-to-end delay 

of 4.4 ms using a transmission bit rate of 250 kbps and a data packet with the maximum payload 

length of 127 bytes. This delay includes data packet handling and CPU processing time. 

However, it leads to a decrease in terms of network performance, since there is a higher 

probability of collisions [110]. The performance of the P-TPC mechanism following the 

configuration described above is discussed in section 6.4.   

In summary, the P-TPC mechanism has two main components, the LQE and the TPL 

Control blocks and has the objective to minimize the energy consumption on WBAN’s 

communications by dynamically adjusting the Transmission Power Level (TPL) at every data 

packet transmission. Therefore, the LQE and TPL Control blocks must be part of the 

communication protocol stack, at the MAC and at the PHY layer, respectively. Both blocks of 

the proposed P-TPC mechanism are included as part of IEEE 802.15.4.  

A TPC mechanism able to minimize energy consumption during communications without 

sacrificing the latency is desired. With minimal latency the data packets are not delayed to 

periods when the fading signal reaches the higher RSSI peak value, since this might 

compromise the transmissions reliability but it will lead to latencies that can reach the gait cycle 

period [130].  

By including the LQE in the MAC layer, the P-TPC mechanism is able to operate in any 

MAC protocol and it is capable to deal with the latency imposed by MAC protocols, since the 

LQE block is only performed after the detection that the radio channel is free (e.g. in the case 

of a slotted or no beacon based CSMA), as depicted in Figure 6.16.  
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The LQE block is implemented using a very simple process. This process only determines 

the time elapsed from the beginning of the on-going gait cycle (identified through the anchors 

of the proposed DTW algorithm) and divides it by the estimated on-going gait cycle period, as 

shown in Algorithm 6.3. This information (i.e. gait cycle instant in percentage) is then used to 

obtain the estimated RSSI value from the approximation function of the fading signal. The time 

interval required to execute the LQE process and get a radio channel quality prediction is 0.078 

ms, which is lower than the time duration of each active superframe portion slot of IEEE 

802.15.4 beacon mode (every time slot corresponds to 0.96 ms, assuming 250 kbps in 2.45 GHz 

band).  

Finally, the TPL Control block (PHY layer) determines and configures the transmission 

output power of the transceiver to an optimal TPL, having as restriction the maximum TPL of 

-0.5 dBm. The linear model previously described allows the TPL Control block to interpret the 

influence that the power level has on the fading signal, as the fading signal approximation refers 

to the fading signal if the transmissions are made at the maximum TPL. This approach allowed 

to avoid the typical operation principle of a TPC mechanism in which a close loop between the 

Table 6.1. Error Measurement results of the Gait Cycle Tracking algorithm.  

 FDA (%) UAR (%) 

Subject 1 8.9 1.3 

Subject 2 6.3 2.9 

Subject 3 6.8 0.9 

 

Figure 6.16. Data transmission flowchart as a result of the P-TPC mechanism inclusion in the 

beaconless mode of IEEE 802.15.4.  
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LQE and TPL blocks is required in order to reach an optimal TPL. A TPL Control solution 

based on the reactive-based approach (dynamic one) was chosen to obtain the optimal TPL as 

fast as possible. This solution required fewer control interactions, between the LQE and the 

TPL clocks, in order to reach the optimal TPL. Considering, as an example, the situation in 

which there is a high difference between the estimated RSSI value and the receiver sensitivity, 

the transmission power can be configured with a lower TPL. As shown in Algorithm 6.4, the 

TPL control updates the output power to the TPL that is in the middle of the TPLs range, which 

is defined by the two bounds: minimum TPL available in the radio transceiver and the current 

TPL. Several LQE-TPL control interactions might be required to reach the optimal value. As 

depicted in Figure 6.10, there were some residuals from the estimation operation and from the 

TPL influence on the fading magnitude as a consequence of the fast-scale fading. Therefore a 

threshold (variable R in Algorithm 6.4) higher than the receiver sensitivity must be used in 

order to avoid that during a gait cycle period the absolute RSSI values do not drop to values 

lower than the sensitivity threshold of the radio due to the high variability of the communication 

signal. 

As shown in Table 6.2 and Figure 6.17, the optimal TPL is typically reached within 0.093 ms 

(maximum observed was 0.13 ms to an experimental testbed performed during one gait cycle 

of 1.7 s). The fast execution of the several P-TPC mechanism components offers the system a 

high control of the transmission time.   

The memory footprint of the main components of the P-TPC mechanism are shown in Table 

6.2. The AMDF is the component that requires more RAM resources, since several acceleration 

Input: 

  1: Fading_Signal: vector of RSSI samples corresponding to fading approximation 

  2: N: size of the fading approximation vector 

  3: GC_InstantsFading: vector, with size N, of gait cycle instants of each index of      

Fading_Signal  

  4: Tcurrent: the time of the current time point  

  5: TFirstAnchor: the time point of the last detected anchor (first one) 

  6: GC_Instant: the current gait cycle instant   

  7: Current_GC_Period: the current gait cycle period 

  8: Index: index of the current gait cyle in the GC_Instant  

Output: 

  9: Current_RSSI: the current fading magnitude  

Begin 

  10: GC_Instant         ((Tcurrent - TFirstAnchor)/ Current_GC_Period)*100 

  11: for k=1,2,…, N  do 

  12:    If GC_InstantsFading (k-1)< GC_Instant≤ GC_InstantsFading(k) then   

  13:        Current_RSSI        Fading_Signal (k) 

  14:     end if    

  15:  end for 

End 

 

Algorithm 6.3. Radio channel Quality Prediction. 
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samples have to be kept in memory in order to detect the periodic movement and the extraction 

of the first gait cycle period.  

The adoption of the DTW method and the computation of the whole distance matrix would 

consume 90% of the PROTACTICAL Nodes’ memory resources (RAM), whereas the proposed 

solution (based on calculation of the Euclidean distance relative to anchors) only requires 

approximately 50 bytes. 

 Performance Evaluation 

The performance of the P-TPC mechanism was evaluated using three different metrics: 

Packet Reception Rate (PRR), latency time, and the power consumption for each successfully 

transmitted data packet (obtained by dividing the total power consumed for all transmissions 

by the number of successfully delivered data packets).  

The performance assessment was made by comparing the P-TPC mechanism with other 

TPC mechanisms. Due to the lack of TPC solutions that are designed to operate while the user 

is performing any dynamic activity, the Sample-Hold and Enhanced-Hold TPC mechanisms 

and the AA-TPC/G-TPC were selected and used to compare and assess the performance results. 

Three different configurations were used as TPL control solutions: linear, binary, and dynamic.  

The TPC mechanisms were executed for a period of time equivalent to 20 gait cycles (slow 

and fast walking with gait cycle periods varying from 0.96 s up to 1.4 s), at both indoor and 

outdoor environments. The test was repeated three times for each scenario. Regarding the 

Algorithm 6.4. TPL Control block based on reactive-based approach 

Input: 

  1: Current_RSSI: the current fading magnitude 

  2: Slope_fitModel: slope of the TPL fit model 

  3: TPLs_vector: set of TPLs available on radio transceiver  

  4: High_IndexTPL: index of the highest TPL in TPLs_vector 

  5: Low_IndexTPL: index of the lowest TPL in TPLs_vector 

  6: OptimalTPL_found: Boolean variable to indicate that optimal TPL is found 

Output: 

  7: Optimal_TPL: estimated optimal TPL   

Begin 

  8: currentIndex         High_IndexTPL 

  9: do 

  10:    currentIndex         currentIndex+Int((Low_IndexTPL- High_IndexTPL)/2) 

  11:    If (Current_RSSI  + (TPLs_vector(currentIndex) * Slope_fitModel)) > R then 

  12:       High_IndexTPL         currentIndex  

  13:    else  

  14:      Low_IndexTPL         currentIndex 

  15:      currentIndex         High_IndexTPL 

  16:   end If  

  17:   If Int((Low_IndexTPL - High_IndexTPL)/2)==0 then 

  18: OptimalTPL_found        True 

  19:  end If 

  20: while OptimalTPL_found==False 

  21: Optimal_TPL         TPLs_vector(currentIndex) 

End 
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AA-TPC/G-TPC experimental testbed, the RSSI value of -81 dBm and -86 dBm were set as the 

higher (𝑇𝑅𝐻) and lower (𝑇𝑅𝐿) limits of the RSSI target range (c.f. subsection 3.2). 

The P-TPC mechanism updates the output power to the minimum TPL level that might 

ensure a RSSI sample lower than a threshold (similar to the lower RSSI value target range 

boundary). This threshold parameter is then updated at run-time and can take up to four 

different values. The threshold parameter is scenario and on-body propagation condition 

dependent (LOS or NLOS) thus, threshold values of -93 dBm (LOS) and -85 dBm (NLOS) 

were used for outdoor transmissions. During indoor transmissions the threshold values were set 

to -91 dBm (LOS) and -82 dBm (NLOS). The performance results obtained in terms of PRR, 

average TPL, energy per data packet (EPP), traffic overhead and average latency time are 

summarized in Table 6.3.  

Only the experiments performed by subject 1 were included, since results from the two 

other subjects were found to be similar.  

 Reliability  

The results summarized in Table 6.3 reveal that TPC mechanisms performance in terms of 

PRR follows a pattern. Since, the PRR values are slightly better at outdoors scenarios due to 

the nature of the signal, when compared to the values obtained for indoors scenarios.  

The Sample-and-hold TPC mechanisms are able to ensure a PRR near to 100%, whereas 

Enhanced-hold solutions achieved a lower PRR percentage (above 95%), regardless of the 

scenario. For all the scenarios and operation environments, transmissions performed with TPLs 

updated at run-time lead to PRRs values lower than transmissions performed with a static and 

pre-defined TPL (-0.5 dBm).  

PRR results verified at the indoor scenarios decrease between 1.6% and 3% relative to the 

results obtained at outdoor scenarios. Only the enhanced-hold dynamic-based TPC achieves 

better results in an indoor scenario. These results match with the conclusions reported in [46], 

where authors concluded that conservative solutions are more suitable to more dynamic radio 

Table 6.2. Memory footprint of the main P-TPC mechanism components as well as their execution time. 

TPC Flash (B)  xData/RAM (B)  Execution Time (ms) 

AMDF 4288 1448 493.141 

Accelerations tracking with gait cycle period updating 1296 144 0.103 

Gait Cycle Period Update 1116 134 0.016 

TPL Control 1620 320 0.0933 

LQE 4396 655 0.078 

Acceleration Sampling and Filtering 1299 48 0.127 
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channels (indoor environments), whereas aggressive approaches are advisable for stable radio 

channels (outdoor environments). 

Although closed-loop control based TPC results meet the reliability requirements of WBAN 

applications, the results are worse than those obtained with a static TPL -0.5 dBm (there is 

almost no losses of data packets). The AA-TPC and G-TPC solutions ensure that 100% of the 

data packets are successfully deliver to the Coordinator node. The P-TPC mechanism achieves 

a PRR very close to the maximum value. Although some data packets have been lost during 

transmissions, the PRR results obtained show that the number of data packets lost during 

transmissions is indeed very low. Therefore, the reliability requirement imposed by IEEE 

802.15.6 TG is meet by the proposed P-TPC mechanism, with a performance equivalent to 

static transmissions at a fixed -0.5 dBm TPL.       

 Latency 

The latency is interpreted as the time corresponding to the number of data packets that need 

to be retransmitted until the data packet is successfully delivered to the receptor. Transmitted 

data packets have a sequence number, allowing the receptor to identify data packets that were 

not received.  

The average latency time presented in Table 6.3 suggests that it is very unlikely that, when 

an outage occurs (i.e. RSSI value lower than receiver sensitivity or data packet not received), 

its period be larger than the maximum latency time allowed for WBAN applications. Even 

though, the maximum average latency time at outdoors scenarios occurs when an E-H TPC 

solution was employed, whereas S-H TPC solutions lead to worst latency time results for 

indoors experiments.  

Figure 6.17. Execution time of the TPL Control algorithm performed on a cc2531 during a gait cycle of 1.7 s. 



6.4. Performance Evaluation 

 

144 

The proposed P-TPC mechanism ensures an average latency of 35 ms, being equivalent to 

the period between data packets transmissions in the experimental testbed (no loss of two 

consecutive data packets). A lower latency time is expected since the P-TPC mechanism 

ensures a high level of reliability, indicating that few (or even none) data packets are lost. Since 

the AA-TPC and G-TPC mechanisms only transmits when the link is at his best quality within 

each gait cycle, these solutions lead to latencies higher than the maximum allowed for WBAN 

applications, namely 948 and 721 ms. The performance of these solutions in terms of latency 

is gait cycle dependent and data packets transmission frequency-dependent.      

 Energy Consumption  

Since the TPC mechanisms that employ the closed-loop control introduce a number of 

control messages, the power consumption analysis must include the cost of data packets and 

control packets transmissions. The energy consumed by the proposed P-TPC mechanism must 

translate the energy effort on the following tasks: data packets transmission, control packets 

transmission at the Fading Approximation stage (15 control packets), acquisition of the 

acceleration samples at TPC mechanism stage (in order to track the gait cycle period and phase 

offset) and finally power consumption due to the acceleration readings from the inertial sensor 

at the Acceleration Acquisition stage. The accelerometer (MEMS inertial sensor) used 

consumes 0.25 mW when active and 0.001 mW when in power-down mode. The P-TPC 

Table 6.3. TPC mechanism performance results  

TPC 
PRR 

(µ±σ %) 

Average TPL 

(dBm) 

EPP (mJ/data 

packet) 

Traffic Overhead 

(%) 

Average Latency 

(ms) 

Indoor 

Static 

TPL 
98.9±0.8 -0.5 1.57 0 35 

P-TPC 98.7±0.9 -11.7 1.03 3 37 

S-H L 95.2±2.9 -12.7 1.10 41 46 

S-H B 97.9±1.1 -10.3 1.06 30 48 

S-H D 97.2±1.2 -9.7 1.19 33 46 

E-H L 95.9±1.1 -12.5 1.09 37 37 

E-H B 96.1±1.9 -10.21 1.08 33 43 

E-H D 98.1±0.4 -10 1.06 33 35 

AA-TPC 100 -16.7 0.92 31 948 

Outdoor 

Static 

TPL 
99.1±0.2 -0.5 1.57 0 35 

P-TPC 98.9±0.2 -17.1 0.93 3 35 

S-H L 98.2±0.7 -7.6 1.18 32 35 

S-H B 99.8±0.1 -11.6 1.04 30 35 

S-H D 99.1±0.5 -9.9 1.16 29 38 

E-H L 97.5±1.2 -8.7 1.19 36 41 

E-H B 98.4±1.5 -9.7 1.17 28 38 

E-H D 97.2±1.4 -9.5 1.18 28 53 

AA-TPC 100 -18.4 0.92 31 721 
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mechanism starts by acquiring the acceleration samples for an interval of 4.2 s. After the AMFD 

algorithm is executed and the existence of periodic movements is verified. Thus, the energy 

consumption on Acceleration Acquisition stage is equivalent to the energy consumption of the 

transmission of a maximum-sized IEEE 802.15.4 DATA frame (133-byte Physical Protocol 

Data Unit) without ACK, at -0.5 dBm. In order to reduce the energy consumption in this task 

(gait cycle period and phase offset tracking), the accelerometer readings have a duty cycle of 

40% of the gait cycle interval (1.3 s is taken as reference), reducing the energy consumption by 

gait cycle to the equivalent of a transmission of a control packet. 

To determine the transmission cost per data packet, the model proposed in [9] was adopted, 

where packet energy cost is given by 

 
𝐸 =

(𝑉. 𝐼. 𝐿)

𝐶
 (6.6) 

where V, I, L, and C represent the supply voltage, the current drawn, the data packet size, and 

the radio channel capacity, respectively. For the results reported in this article, the following 

values were used: V=3.2 v, C=19.2 Kb/s, L=67 bytes (data packets) and L=3 bytes (control 

packets). The current drawn during transmission is TPL-dependent and can be consulted in 

[170]. The control packets are transmitted at the maximum allowed TPL.  

The results summarized in Table 6.3 show that the closed-loop control TPC mechanisms 

require a high number of control packets at the indoor scenarios, when compared to the number 

obtained at outdoor scenarios, in order to keep RSSI value within the RSSI value target range. 

The TPC mechanism that relies in linear-based TPL Control solutions transmits a high number 

of control packets (an average 50 control packets) than the TPCs configured with binary or 

dynamic based TPL Control solutions. Although TPCs at the indoor scenarios transmit a higher 

number of control packets than at outdoors scenarios (≈30 on average), energy consumption 

per data packet is relatively similar for both environments, since at outdoors there is a negligible 

energy contribution from multi-path components. Consequently, fading magnitudes drop to 

values near the receiver sensitivity when in NLOS situations. Therefore, the average TPL is 

higher at outdoor than at indoor scenarios. The TPC mechanisms based on closed-loop control 

operation principle were able to reduce the overall energy consumption when compared to a 

system that transmits at the maximum TPL. An energy consumption reduction between 24% 

and 34% was achieved for outdoor scenarios, whereas for indoors scenarios the overall energy 

consumption reduction was between 24% and 32%, when compared to static TPLs 

transmissions. It is also interesting to note that the closed-loop control TPC mechanisms that 

achieved the lower energy consumption per data packet at outdoor scenarios are those that 
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adopted an aggressive TPL Control.  For indoor scenarios, all TPC mechanisms achieved 

similar performance in terms of energy consumption per data packet.  

The proposed P-TPC mechanism achieved an energy consumption of 1.03 mJ per data 

packet at indoor scenarios and 0.93 mJ per data packet at outdoor scenarios, including the 

acceleration sampling (AMDF and DTW algorithms). This corresponds to an overall energy 

reduction between 34.7% and 41.7%, for transmissions at indoor and outdoor scenarios, 

respectively.  The P-TPC mechanism achieves similar energy saving performance to the 

AA-TPC/G-TPC at outdoors. However, for indoor scenarios, these mechanisms minimize the 

energy consumptions by 7% when compared to the P-TPC mechanism, since in such scenarios 

transmissions at any time within the gait cycle require the use of higher TPLs. Furthermore, as 

shown in Table 6.3, the P-TPC mechanism offers the most significant improvements in terms 

of energy-efficiency transmission, from all the mechanisms assessed. The P-TPC mechanism 

adds an extra traffic overhead of only 3%. It is an insignificant number when compared to the 

number of control packets transmitted by other TPC mechanisms assessed. Furthermore the 

proposed P-TPC mechanism reduces the bandwidth utilization. Closed-loop control based 

TPCs introduce high traffic overheads (near to 40%) to ensure an efficient control of the TPL 

adopted in data packet transmissions. Moreover, the average TPL during experimental tests of 

the P-TPC mechanism are, on average, between 9.5 and 5.5 dBm lower than the closed-loop 

control based TPC mechanisms. This result might reduce the RF interference level with 

coexisting nodes and networks.      

 Summary 

This chapter described a novel TPC mechanism for on-body communications suited to 

scenarios where the user is performing periodic movements, such as walking or running. The 

fact that the user is performing periodic movements could limit the applicability of the proposed 

solution, however, as suggested in [145], the TPC mechanism can adopt a closed-loop control 

based scheme, for instance the E-H approach, in instants during which the user is not 

performing a periodic movement (reliability and latency requirements are still ensured but the 

average TPL, energy consumption and traffic overhead increases).  

How does walking affect the fading signal pattern and is this influenced by the human 

body properties? 

The fading signal (after extracting the small-scale fading component) has a period that 

matches with the user’s gait cycle period. High Link-Margins (LM) gains were verified during 

the user’s gait cycle. Accordingly to the reported LM gains and radio channel gains, the on-body 
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channel is able to ensure the Quality-of-Service (QoS) requirements, but, as a consequence of 

the high LM gains, the communication system presents an inefficient use of the energy 

available. A peak-to-peak magnitude between 20 to 25 dB and maximum LM gains between 

25 and 30 dB are observed at outdoors. When in NLOS propagation scenarios, the LM gains 

are lower at outdoor scenarios (as a consequence of the absence of LOS wave’s energy 

contribution as concluded in chapter 5). Although the measured RSSI values are close to the 

radio module sensitivity when outdoors, occurrences of lost data packets are practically 

inexistent for all the tests made.     

How can accelerations in the user’s stride be tracked and how to reduce the complexity 

of mechanisms (addressed in the literature) to be implemented at the Edge of the Network 

nodes? 

The P-TPC mechanism continuously tracks the gait cycle periods and phase offset to 

determine the current instant within the on-going gait cycle in order to estimate the current radio 

channel quality. The first task of the P-TPC mechanism is to detect periodic movements through 

the AMDF algorithm. The TPC is ready to control the TPL after just 4.2 s, which is the time 

required to acquire and process the acceleration data required to evaluate the existence of 

periodic movements and extract the first gait cycle period. To track and determine the 

acceleration on the gait cycle, a modified DTW algorithm, which relies on acceleration signals 

that are locally collected, was proposed, discussed and implemented. 

Can traffic overhead be reduced and TPC can still be employed effectively to dynamic 

scenarios? 

The LQE relies in a fading approximation function, which follows a closed-loop control 

during a time interval equivalent to the first gait cycle period. This function is used to estimate 

the radio channel quality in function of the on-going gait cycle instant. This approach enabled 

to reduce the traffic overhead in comparison to the traditional closed-loop control based TPC 

solutions. The user’s gait cycle varies accordingly to the speed of the movement, but fading 

features such as fading magnitude or LM gains remain unchanged at higher and lower RSSI 

values peaks. This demonstrates that there is a strong correlation between relative Edge of the 

Network node locations (in relation to the Coordinator node) and the fading magnitude.     

How can the proposed TPC mechanism be integrated into the protocol stack as a 

performance improvement strategy?  

Some TPC solutions addressed in the literature have a very low agility, since these solutions 

are complex and require the exchange of a large quantity of packages. To ensure that the P-TPC 
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mechanism has enough ability to accommodate time-variant changes in the radio channel 

quality, the proposed LQE algorithm was designed to be integrated into the MAC layer of the 

protocol stack. This approach turns this solution feasible for any MAC protocol, since the MAC 

schemes introduce some latency in data packet transmissions. The LQE is a very simple process 

(0.078 ms is the time required to estimate the current radio channel conditions) and it is only 

performed after detection of a free radio channel. Thus, by the time that radio channel is 

estimated, the TPL updated, and the data packet transmitted and the new output power is 

received by the Coordinator node, the radio channel has not suffered significant changes. 

Is the proposed TPC approach fast and agile enough to estimate the radio channel and 

adjust power before suffering changes in the radio channel quality? 

The Link Quality Estimator (LQE) relies in a fading approximation function. It was 

demonstrated that there exists a linear relationship between the TPL adopted on transmissions 

and the consequent RSSI value measured at the receiver, even for dynamic scenarios (Quwaider 

et al. have observed this relation for static scenarios [48], but for the best of authors knowledge, 

it has never been assessed for dynamic scenarios). A linear model that describes the RSSI value 

in function of the TPL was proposed (section 6.2.2).  

The several implemented mechanisms, which are executed at different stages of the 

proposed P-TPC mechanism state machine, have a very low complexity, allowing their 

implementation in Edge of the Network nodes. Moreover, the dependency of the proposed 

solution in terms of exchanged control packets, between the node and the coordinator) is very 

low.    

Can energy efficiency and reliability of communications be optimized without sacrificing 

latency? 

The extensive experimental evaluation carried out showed that the proposed P-TPC 

mechanism is able to reduce the energy per data packet between 24 and 34%, when compared 

with a system that transmits data packets at the maximum allowed TPL, without sacrificing 

latency and reliability. The P-TPC mechanism achieves better performance results than 

state-of-the art TPCs mechanisms that follow a closed-loop control operation principle. 

Furthermore, the number of exchanged control packets is ten times lower than other existing 

closed-loop control based TPC mechanisms. The extra traffic overhead of the proposed solution 

is only 3% (promoting an efficient use of the bandwidth). Finally, the proposed P-TPC 

mechanism requires an average TPL lower than the other TPC mechanisms to ensure a reliable 

communication link, which reduces the RF interference and keeps SAR low.  
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CHAPTER 7 

 PACKET SCHEDULER FOR ON-BODY COMMUNICATIONS IN WBANS  

The body movement has a significant effect on the first- and second-order statistics of the 

communication signal, as analysed in Chapter 5. According to Cheffena et al., the body 

movements can be used to estimate the fading signal, since the angular variations of the antenna 

gains promote time/varying channel conditions [158]. Therefore, in this chapter, the possibility 

of describing the on-body canal (Node-PROTACTICAL 7) according to the body posture, the 

operation environment and the Node-PROTACTICAL 7 relative position is discussed and 

analysed.  

Since communications around and along the human body are too complex, turning 

impractical the development of an exact analytical formula to predict the radio channel 

conditions, the main research question addressed in this chapter is: Can the on-body radio 

channel quality (RSSI and Outage occurrences) be anticipated through a model? To answer 

this question, Neural Networks and Fuzzy Inference Systems were explored to model the 

nonlinear dynamical system (on-body channel quality). In section 7.1, a generic description of 

some of the most popular soft computing techniques is provided, while, in section 7.2, a detailed 

description of the hybrid soft computing ANFIS (Adaptive Network based Fuzzy Inference 

System) is provided. 

The second research question addressed in this chapter is: If obtained, how can such a model 

be used to reduce the PER and minimize the energy consumption in on-body communications? 

To answer this question, in section 7.3, a novel approach that aims the increase of the system 

reliability, reduction of the SAR in wireless communications at expenses of latency is proposed. 

This approach explores the advantages of two different mechanisms, namely packet schedulers 

and mechanisms TPC, by merging them into a new hybrid approach. Detailed information about 

the proposed solution is provided in section 7.4. Furthermore, the performance of the proposed 

solution in different scenarios is also analysed in section 7.4 and performance results are 

compared to that of other solutions addressed in the literature. 

Unlike the majority of the packet schedulers addressed in the literature (that are only 

suitable for scenarios where users perform periodic movements [128], [130], [137], [145]), the 

goal is to develop a mechanism that is applicable to either periodic or non-periodic movements. 
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The nuclear elements of this mechanism are the two ANFIS models built to describe the 

on-body channel (first research question).  

 Soft Computing Techniques 

The soft computing techniques are a popular methodology for system identification to the 

purpose of modelling linear or nonlinear dynamical systems. Unlike the conventional hard 

computing techniques, the soft computing ones do not rely in mathematical models to identify 

and control dynamical systems. The soft computing techniques accommodate the imprecision 

of the real world through the exploration of the tolerance for imprecision, uncertainty and partial 

truth to achieve robustness, low solution costs and tractability. One of the most powerful soft 

computing techniques is called Adaptive Network based Fuzzy Inference System and it is 

categorized as a hybrid intelligent technique [171]. This chapter focus on using this soft 

computing as a tool for modelling an ill-defined system (on-body communications applied to 

many scenarios) in order to forecast the radio channel conditions in terms of the radio channel 

quality (RSSI and PER). As the ANFIS technique is a hybrid approach (two soft computing 

techniques are combined), the current section aims to introduce and describe the ANFIS 

technique, as well as, providing a brief overview of the techniques combined in ANFIS, namely 

the Neural Network (NN) and Fuzzy Logic (FL). 

 Neural Network-based Algorithms  

The NNs resulted from the researchers’ effort in modelling the human brain. Their main 

motivation is the fact that human brain is able to process incomplete information thanks to the 

biological properties of the nervous systems and the brain[171]. Developments in this scientific 

field drove to neural networks that model the human brain as a continuous time nonlinear 

dynamic system. The NNs follow an architecture in layers in which processing units (neurons) 

are interconnected by weights. Through the adjustment process of the interconnections between 

layers, the neural networks are able to learn and adapt from data. According to Buragohain, the 

most important features of this soft computing technique are [171]: 

 Presence of a large number of simple processing units; 

 Presence of a large number of parallel processing units; 

 Presence of strongly connected processing units; 

 Robustness against the failure of single processing units; 

 Learning from data. 
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The architecture of a neural network is composed by layers that can be divided into three 

groups, as illustrated in Figure 7.1. These layers are as follows: 

 Input layer, it is composed by all the input processing units together; 

 Hidden layer, it is any layer that is between the input and output layer (intermediate 

layer). In any neural architecture might more than one hidden layer is found; 

 Output layer, all the output processing units constitute this layer. 

The neural network architecture offers a methodology for identification, learning and 

adaptation. This conceptual principle has been enhanced along the time, resulting in a set of 

popular neural network architectures, namely the Neuro-Fuzzy Network [143], Radial Basis 

Function Network (RBFN) and the Multi-Layer Perception (MLP) network [172].  

 Fuzzy Logic-based Algorithms  

Fuzzy logic has two different meanings, in a narrow sense, FL is a logical system an 

extension of multivalued logic. In a wider sense, FL is a synonymous with the theory of fuzzy 

sets. This relates classes of objects with unshaped boundaries (i.e. the boundaries between 

qualitatively things exist but it is difficult to exactly defined them) in which membership (MF) 

is a matter of degree where the possibility of partial membership in it is admitted. The following 

example help us to understand the FL. In a two-valued logic (where either something is in or is 

out), Fridays are totally excluded of the group of weekends days. However, the human 

experience might suggest that Fridays are too part of the weekend (for instance, after finishing 

the working scheduler), thus, the multivalued logic (where the truth of any statement becomes 

a matter of degree) permits the inclusion of Fridays in both groups: week days and weekend 

days. The human intuition allows us to interpret and process imprecise and incomplete 

information received from the perceptive organs. The FL mimics the human brain through a 

methodology that computes with words to deal with impression and granularity. In this 

Figure 7.1. Types of layers that compose a NN [195]. 
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systematic approach, the linguistic variables (whose values are words rather than numbers) is a 

basic concept. 

The FL theory has been targeted to applications where the tolerance for impression can be 

explored to decrease the solution’s cost. The Fuzzy Logic was introduced by Zadeh [173], [174] 

and since then it has been employed in a wide variability of applications thanks to the research 

and implementation of Fuzzy Inference Systems (FIS). Their applications range goes from 

consumer products (such as cameras, camcorders, washing machines, and microwave ovens) 

up to industrial process control (such as robotics, automatic control), medical instrumentation, 

decision-support systems (such as pattern classification, data classification), and portfolio 

selection (such as expert systems, decision making). The process of Fuzzy inference refers to 

the formulating the mapping from a given input to an output based on the concepts of fuzzy set 

theory, fuzzy if-then rules and fuzzy reasoning. The linguistic variables are expressed as fuzzy 

sets and defined in terms of degree of their associated membership functions. The fuzzy rules 

are composed by an antecedent and a consequent and have usually the following format: 

Rule 1: IF x is A and y is B THEN z is f 

where x and y are the input variables, the A and B are the fuzzy sets (on previous example, the 

day of the week is the input and weekend and week are the fuzzy set). These two, when merged 

with logic operators, form the fuzzy rule’s antecedent. The z=f in the consequent can be a 

constant, a fuzzy set or a crisp function. The fuzzy rules implement an efficient mechanism to 

deal with fuzzy consequences and antecedents. Finally, the fuzzy reasoning is a mechanism for 

performing inference with respect to the rules in order to reach to a reasonable output or 

conclusion [171]. Thus, a FIS is composed by three main components, namely a rule base 

comprising of the fuzzy rules, a database defining the fuzzy rules’ membership functions and 

the reasoning mechanism. The most important features of the FIS are as follows: 

 Conceptually easy to understand; 

 FL is based on natural language, i.e. the inputs and outputs are described through 

qualitative description used in everyday language; 

 It is flexible; 

 Tolerant of imprecise data; 

 FL can model nonlinear functions of arbitrary complexity through the match of input-

output data; 

 The expert experience can influence the final FIS in contrast to the neural networks 

where impenetrable models are created through the tanning data; 
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 The FL does not necessarily replace the conventional control methods, in many cases it 

aims to simplify and enhance their implementation.  

Five steps must be carried out to reach a FIS from which decisions can be make, namely 

Fuzzification, Aggregation, Activation, Accumulation and Defuzzification. These steps might 

vary according to the type of Fuzzy system adopted. Although the steps of any FIS type are the 

same, they might have some differences. Therefore, the Mandami Fuzzy System type is selected 

in order to describe the set of steps required to reach a FIS. 

 Fuzzification, in this step the inputs are taken to calculate the degree of belongingness 

to each of the fuzzy sets via the associated membership function. Usually, the inputs are 

a crisp numerical value limited to the universe of the discourse (the range of all possible 

values for an input to a fuzzy system) of the input variable and the output is the degree 

of membership in the fuzzy set (result is always between 0 and 1); 

 Aggregation, after knowing the degree to which each part of the antecedent for each 

rule they are combine by logical operators, such as AND and OR. If the antecedent of a 

given rule is composed for more than one membership value from fuzzified input 

variables, one value that represent the antecedent result is obtained through the 

application of a fuzzy operator, since the output is always a truth value. Two AND 

methods are usually provided, the Min operator and Product operator to classification 

and approximation tasks, respectively. Two OR methods are usually implemented, 

namely the Max and the Probor (probabilistic method, which Is calculated according to 

the formula: probor(a,b) = a + b - ab) operator are used to classification and 

approximation tasks, respectively;  

 Activation, the weight of each rule (value between 0 and 1, usually this value is one in 

order to do not affect the implication process) is calculated and applied to the value 

given by the antecedent of the given rule. Then the implication process is carried out to 

each rule, it receives as input a single number given by the antecedent of the given rule 

and provides as output a fuzzy set (represented by a membership function) which is 

reshaped using a function associated with the antecedent (a single number). 

 Accumulation, in this step all the fuzzy sets given as outputs of each rule on the 

activation step are combined into a single fuzzy set to a decision be make.  

 Defuzzification, in this step the fuzzy set built in previous step is received as input and 

a single value is provided as output. This crisp value can be obtained through different 
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methods, such as the centre of gravity, bisector of area, mean of maximum, smallest of 

maximum and largest maximum.  

There are several different types of Fuzzy systems, which differ in terms of the 

Defuzzification method adopted. The three main ones and the mostly used Fuzzy systems are 

as follows:  

 Mandami Fuzzy System, it is also known as the linguistic fuzzy system. This process is 

not computationally efficient, since a method (at defuzzification step) must be 

performed in order to the crisp value be reached; 

 Singleton Fuzzy system, no fuzzy sets integration is necessary, since the rules’ output 

are restricted to a singleton membership function. This type of Fuzzy system is 

considered a special case of the Mandami Fuzzy System and is widely employed in 

industry [171], as the complexity of the Defuzzification is simplified as well as the 

computational demand.  

 Takaga-Sugeno Fuzzy System, this technique is considered an extension of the 

Singleton Fuzzy System. The output of each rule, f of the rule above identified as Rule 

1, is a crisp function. This is represented by f(x,y) and usually is a polynomial for the 

input variables x and y.  

 Neuro Fuzzy-based Algorithm  

The hybrid intelligent tools refers to techniques that combine the advantages of two or more 

soft computing techniques. The combination of the complementary techniques neural network 

and fuzzy logic led to hybrid system called neuro-fuzzy hybrid system, which is one of the most 

popular hybrid intelligent approach. In this regard, the main advantages of each soft computing 

technique are explored in this hybrid tool, namely the learning capabilities of neural networks 

to recognize patterns and adapt themselves to react to changes in the environment; and the 

knowledge representation and inference capabilities of fuzzy logic [135]. These approaches 

have been targeted to a high variety of complex and ill-defined systems where mathematical 

models are difficult to build. The neuro-fuzzy models can be obtained easier and are able to 

reflect properly the uncertainty of systems under consideration [171]. An effective method 

developed by Roger Jang for this purpose is called Adaptive Neuro-Fuzzy Inference System 

[175]. The ANFIS models can take the function of prediction system behaviour and/or system 

control [176]. To construct a neuro fuzzy model, the same steps required to build a FIS which 

are above describe must be carried out. These steps are performed in sequentially arranged 
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layers of the neural networks. The parameters of the extracted rules (for instance the 

membership functions) are then adjusted through the neuro network architecture. The neuro-

fuzzy soft computing technique has the following features [171], [176]: 

 This approach is inspired on biological neurons and is concerned with model extraction 

from numerical data (unlike symbolic artificial intelligence) which represents the 

dynamic behaviour of a system; 

 It is a learning technique that uses fuzzy logic to transform given inputs into a output 

through highly interconnected neural networks processing elements and information 

connections; 

 The human expertise – in the form of conventional knowledge – can used to build the 

set of rules that map an input space to an output space the rules; 

 In the absence of system models or human expertise, the FIS models can be constructed 

through available sampled data; 

 Soft computing is targeted to real world applications where conventional approaches 

are not suitable. Conventional techniques require either detailed description of the 

problems or precise mathematical model, which in most cases is impracticable;   

 It relies more in intensive computing than in precise background knowledge to build the 

rules list; 

 It enables accurate learning through the refinement of the fuzzy ID-THEN rules. In this 

regard, the interconnected neurons and information connections are weighted to map 

the numerical inputs into an output. The weights are tuned to optimize the model;  

 Both linguistic and numerical knowledge are easily incorporated; 

 Fault tolerance against broken neurons or rules are automatically ensured by the parallel 

and redundant architecture of the derived models. However, the model performance 

degrades gradually; 

 Adaptive Network based Fuzzy Inference System  

A hybrid soft computing ANFIS was originally presented in 1993 by Jang [177]. ANFIS 

has been explored in the literature to describe and represent Mandami, Singleton or 

Takagi-Sugeno Fuzzy Systems by an ANFIS architecture. The process of building an Fuzzy 

model follows four steps: gathering data related to the system to be modelled, derivation of an 

initial FIS model from the input-output data, selection of the input variables of the FIS model, 

and updating the initial FIS model (fine tune the rules). A network structure like that of NN is 
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used to interpret the input/output map and to optimize the performance of the FIS. In this 

structure, inputs are mapped through input MFs and associated parameters, so-called premise 

parameters, and then through output MFs and associated parameters, so-called consequent 

parameters, to outputs. These parameters will keep changing during the learning process, since 

the weights of each neuron is updated. The current section describes the typical structure of 

ANFIS models as well as all the steps above mentioned.   

 ANFIS Structure  

In order to describe this architecture, two IF-THEN rules based on a first order 

Takagi-Sugeno model with two inputs and one output are considered, also called type-3 FIS. 

In this model each rule’s output is a linear combination of the input variables added by a 

constant term. The rules of this FIS might be stated as: 

Rule 1: 𝐈𝐅 𝑥 is 𝐴1 and 𝑦 is 𝐵1 𝐓𝐇𝐄𝐍 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

Rule 2: 𝐈𝐅 𝑥 is 𝐴2 and 𝑦 is 𝐵2 𝐓𝐇𝐄𝐍 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

where x and y are the inputs of the model under consideration; Ai and Bi are the fuzzy sets; fi 

are the outputs within the fuzzy region specified by the fuzzy rule; and, finally, pi, qi, and ri are 

the design parameters that are determined during the learning process. The final output of the 

present example is the weighted average of each rules’s output. Figure 7.2 depicts the ANFIS 

architecture that describes the reasoning mechanism of a Takagi-Sugeno model, where circles 

represent the fixed nodes and squares indicates the adaptive nodes. Each layer of the five-layer 

architecture of the ANFIS model that represent the two rules are explained in detail below. 

 Layer 1 (Fuzzification). All nodes in this layer are adaptive and receives the inputs 

variable of the model and have as output the fuzzy membership grade of the inputs. The output, 

also called node function, is given by: 

Figure 7.2. Architecture in layers of a Takagi-Sugeno ANFIS model.   
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 𝑂1,𝑖 = 𝜇𝐴𝑖(𝑥), 𝑖 = 1, 2, (7.1) 

 𝑂1,𝑖 = 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2, (7.2) 

where x and y are the inputs variables to node i, and Ai and Bi are the linguistic variable 

associated to their node function and 𝜇𝐴𝑖(𝑥) and 𝜇𝐵𝑖(𝑦) are the membership function of Ai and 

Bi, respectively. Different fuzzy membership functions can be adopted. Table 7.1 summarizes 

the most applied membership functions in ANFIS applications, where ai, bi, ci and di are the 

premise parameter of the membership functions.  

From the set of MFs above described, the bell shaped, and Gaussian membership function 

are the most predominant, since they overcome some drawbacks found on remaining MFs. For 

instance, a drawback pointed out to some MFs (such as triangular and trapezoidal) is related to 

the amount of information that is lost during the process of fuzzification. In regions of the 

triangular and trapezoidal MFs where the slope is zero, the MFs are not differentiable [171]. As 

a consequence, these MFs might have problems of learning from data.  

 Layer 2 (Inference or rule layer): All the nodes are fixed and are responsible for 

calculating the firing strength 𝑤𝑖 of each rule. Fuzzy logic operators are involver on this layer. 

The operator AND is applied in order to fuzzify the inputs. This operator is illustrated by 

symbol ∏  , indicating that it is a simple multiplication. Therefore, the output of each node is 

then the product of all the incoming signs and can be represent as  

 𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥) ∗ 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2, (7.3) 

 Layer 3 (Implication layer): All the nodes are fixed and each one calculates the ratio 

of the firing strength of a given rule to the sum of all the firing strengths of all rules. The output 

of this layer is the normalized (nodes are labelled by N) firing strength, which is given by 
Table 7.1. Fuzzy Logic Membership Functions. 

Membership 

Function 

Equation Parameters description 

Bell-Shaped MF 
𝜇𝐴𝑖(𝑥) =

1

1 + [(
𝑥 − 𝑐𝑖
𝑎𝑖

)
2

]
𝑏𝑖
, 𝑖 = 1,2  

c determines the centre of the MF, a (is the 

half width) and b control the slopes at the 

crossover points {c-a, c+a}  

Gaussian 
𝜇𝐴𝑖(𝑥) = 𝑒𝑥𝑝 [− (

𝑥 − 𝑐𝑖
𝑎𝑖

)
2

] , 𝑖 = 1, 2  
c represents the MF centre and a determines 

the MF width   

Triangular-shaped 

membership function 
𝜇𝐴𝑖(𝑥)

= max (min (
𝑥 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

,
𝑐𝑖 − 𝑥

𝑐𝑖 − 𝑏𝑖
) , 0) 

a, b and c (a<b<c) determine the x-axis 

coordinates of the three corners of the 

underlying triangular 

Trapezoidal-shaped 

membership function 
𝜇𝐴𝑖(𝑥)

= max (min (
𝑥 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

, 1,
𝑑𝑖 − 𝑥

𝑑𝑖 − 𝑐𝑖
) , 0) 

a, b, c and d (a<b<=c<d) determine the x-

axis coordinates of the four corners of the 

underlying trapezoidal 

Sigmoid curve 
𝜇𝐴𝑖(𝑥)=

1

1 + exp[−𝑎(𝑥 − 𝑐𝑖)]
, 𝑖

= 1, 2 

a control the slope at the crossover point 

x=c; de sign of a specifies if the sigmoid is 

open right or left  
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𝑂3,𝑖 = 𝑤𝑖̅̅ ̅ =

𝑤𝑖
𝑤1 +𝑤2

, 𝑖 = 1, 2, (7.4) 

 Layer 4: In this layer, the nodes are adaptive. The output of each node is the product 

between the normalized firing strength of the rule under consideration and a first order 

polynomial. The output of this layer is given by 

 𝑂4,𝑖 = 𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1, 2, (7.5) 

where 𝑤𝑖̅̅ ̅ is the output of the layer 3 and the set of parameters {𝑝𝑖, 𝑞𝑖 , 𝑟𝑖} is the consequence 

parameter set. 

 Layer 5 (Defuzzification): This layer comprises just one node (fixed one) that is 

labelled with ∑  , indicating that this node performs the summation of all the incoming signals. 

The output is given by 

 
𝑂5,𝑖 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = ∑𝑤𝑖̅̅ ̅𝑓𝑖

𝑖

=
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
, 𝑖 = 1,2,  (7.6) 

 Initial ANFIS Model 

 The initial FIS model derivation process, also called training methodology [177], 

establishes the initial number of inputs, the linguistic variables, the type of membership 

functions, and the number of rules. The initial model determines the number of input variables 

that are considered during the next step: input variable selection. Then, learning techniques are 

employed to tune the parameters of the initial model to reach the optimal ANFIS model. The 

first step of the training methodology is to gather the input-output pairs, which are obtained 

from the system that is to be modelled. This data set is called training data set and consists of a 

set of input and output vector that are used to find rules and the premise parameters of the MFs. 

In this regard, techniques, such as grid partition and subtractive clustering, have been used. 

Different initial ANFIS models can be obtained according to the technique adopted [178]. 

Grid Partition Technique 

This technique divide the input space into rectangular subspaces, i.e. a number of fuzzy 

regions based on a pre-defined number of MFs and their types to form the antecedents, through 

axis-paralleled partitions of each region [171]. Figure 7.3 depicts the grid partitioned fuzzy 

subspaces for a Takagi-Sugeno ANFIS with two input variables (which input has three MFs). 

This technique requires high computational resources, since the number of rules increase 

exponentially with the number of variable inputs [178]. For example, the number of inputs of 

the system above is two and the partitioned fuzzy subset for each input is three, then the number 
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of possible fuzzy rules is 32. Consequently, this is only suitable for systems with a small amount 

of input variables. According to Jang, the number of input variables should be lesser than 6 

[179].   

Subtractive Clustering Technique 

This technique distributes the data space into fuzzy clusters. It is applied to the input output 

pairs to for finding similarities and grouping similar information [180]. These groups, 

designated cluster of information points, are represented by cluster centres. In this technique 

every information point is considered with potential to be a cluster centre. It is expected 

different similarities between different groups of data points represented by cluster centres. The 

data point’s potential is quantified as function of the Euclidean distances of all information 

points. The data points with a potential above a certain value as clusters centres. This technique 

collects n information points in an M dimensional space and each point xi is setting as a potential 

cluster. Then, the potential (𝑃𝑖) of each point is calculated through the expression 

 

𝑃𝑖 =∑𝑒−𝛼‖𝑥𝑖−𝑥𝑗‖
2

𝑛

𝑗=1

 (7.7) 

where ‖. ‖ denotes the Euclidean distance and the parameter 𝛼 is given by: 

 
𝛼 =

4

𝑟𝑎
2 (7.8) 

where 𝑟𝑎 is the cluster radius that defines the neighbourhood, i.e. this parameter determines a 

sphere of data points with relevant influence on the potential cluster under consideration. 

Figure 7.3. Application of the Grid Partition method in a problem with two inputs. The 

resultant Fuzzy subspaces are nine (as each input has three MFs) and are identified by a 

number from 1-9. 
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Information points that within the sphere with centre on the data point considered as potential 

cluster centre are accepted as neighbours. The constant value of the radius centre must be 

chosen in a way that an adequate quantity of clusters are inserted. A high cluster radius leads 

to generation of a small number of clusters, which turns the model too generalized; low 𝑟𝑎 

implies an excessive generation of clusters. Therefore, the radius selection is dependent of the 

desired model complexity and generalization capacity. After potential of every data point has 

been calculated, the point with the highest potential is selected and settled as the first cluster 

centre. The potential of each data point is then re-evaluated through the expression: 

 𝑃𝑖 = 𝑃𝑖 − 𝑃1
∗𝑒−𝛽‖𝑥𝑖−𝑥1

∗‖2 (7.9) 

where 𝑃1
∗ is the potential of the data point 𝑥1

∗, which is the first cluster centre. The parameter 𝛽 

is given by: 

 
𝛽 =

4

𝑟𝑏
2
 (7.10) 

where 𝑟𝑏 is a positive value (the value 𝑟𝑏 = 1.25𝑟𝑎 is typically chosen [171]). This parameter 

is the radius that defines the data point that will have significant potential reduction. After 

revising all the potentials, the point with the highest potential among the remaining points is 

selected as the second cluster centre. After the kth cluster centre has been selected, the potential 

of each data point is re-evaluated using the expression: 

 𝑃𝑖 = 𝑃𝑖 − 𝑃𝑘
∗𝑒−𝛽‖𝑥𝑖−𝑥𝑘

∗‖2 (7.11) 

where 𝑃𝑘
∗ and 𝑥𝑘

∗ are the potential of the Kth cluster centre potential and the centre location, 

respectively. The process of re-evaluating the potential ends when the criteria 𝑃𝑘
∗ < 0.15 𝑃1

∗ is 

satisfied. Each vector 𝑥𝑖
∗ is decomposed into two vectors, being represented as 𝑥𝑖

∗ =[𝑦𝑖
∗;  𝑧𝑖

∗ ], where 

𝑦𝑖
∗ holds the cluster centre location on the input space and 𝑧𝑖

∗ the cluster centre in output space. The 

number of linguistic variables and rules are indicated by the number of cluster centres, since 

each cluster centre is considered as a fuzzy rule that describe the system behaviour on the 

following was: “if input is near 𝑦𝑖
∗ then output is near 𝑧𝑖

∗”. The degree to each rule of a given 

input vector y is defined as 

 𝜇𝑖 = 𝑒
−𝛼‖𝑦𝑖−𝑦𝑖

∗‖2 (7.12) 

where 𝛼 is given by (7.8) and 𝑦 is an input vector used as example. The output of this system 

is given by 

 
𝑧 =

∑ 𝜇
𝑖
𝑧𝑖
∗𝑐

𝑖=1

∑ 𝜇
𝑖

𝑐
𝑖=1

 (7.13) 
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In analogy to the inference system with if-then rules, each rule would have the following 

form: 

IF Y1 is Ai1 and Y2 is Ai2 and … THEN Z1 is Bi1 and Z2 is Bi2… 

where Yj and Zj are the jth input variable and output variable, respectively; Aij is an exponential 

MF in the ith rule with jth input and Bij is a singleton in the ith rule associated with the jth output 

[171]. Thus, the parameters Aij and Bij of the ith rule, which is represented by cluster centre 𝑥𝑖
∗, 

are given by 

 

𝐴𝑖𝑗(𝑌𝑗) = 𝑒
−0.5(

𝑌𝑗−𝑦𝑖𝑗
∗

𝜎𝑗
)

2

 
(7.14) 

and  

 𝐵𝑖𝑗 = 𝑍𝑖𝑗
∗  (7.15) 

where 𝑦𝑖𝑗
∗  is the jth element of the cluster centre 𝑦𝑖

∗ and 𝑧𝑖𝑗
∗  is the jth element of 𝑧𝑖

∗and 𝜎𝑖𝑗
2 =

1

2𝛼
  

[171], [181].   

 Input Variables Selection 

Input selection is critical in a soft computing approach, as an excessive number of inputs 

will increase the computation time required for building a model using ANFIS architecture 

[177]. Therefore, it is advisable to keep only the inputs that are important to the system 

behaviour description to develop a reliable model that is too concise, practical, simpler and 

transparent. Jang et al. states that noise/irrelevant inputs, as well as inputs that are dependent 

on other ones must be removed. This will reduce the time required for model construction. The 

methods presented in [182] and [183] are widely adopted and they use the ANFIS architecture 

for determining the most relevant inputs. Both methods take as assumption that ANFIS models 

with the smallest Root Mean Square Error (RMSE) after a small number of epochs have a great 

potential of achieving a lower RMSE when more epochs are considered in the ANFIS training.  

In the former method, all antecedent classes associated with a input variable from the rules 

are removed and the model is evaluated. If the RMSE decreases relative to the original initial 

ANFIS model, the input variable is removed, and the process is repeated to another input 

variable. If the RMSE increases, the input variable is not removed from the ANFIS model. This 

process is repeated until the RMSE can no longer be reduced. The ANFIS model for which the 

RMSE is the minimum is defined as the initial ANFIS. This method has the advantage of no 

new models generation is needed.          
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The method proposed in [183] builds several models which are then assessed. For instance, 

35 (C4
7) ANFIS models have to be generated if the system under consideration has a total of 

seven inputs and an ANFIS model with four inputs is desired [177]. The several combinations 

of inputs are evaluated. The ANFIS model with the lowest RMSE is chosen as initial ANFIS 

model. 

 Hybrid Learning Algorithm 

This learning algorithm, which is composed of a forward pass and a backward pass, is 

extremely efficient in ANFIS systems [175]. For example, considering the example illustrated 

in Figure 7.2, the overall output of the ANFIS model can be expressed as a linear combination 

of the consequent parameters as follows 

 
𝑂5,𝑖 = 𝑓 =

𝑤1
𝑤1 +𝑤2

𝑓1 +
𝑤2

𝑤1 +𝑤2
𝑓2 (7.16) 

 𝑂5,𝑖 = (𝑤1̅̅̅̅ 𝑥)𝑝1 + (𝑤1̅̅̅̅ 𝑦)𝑞1 + (𝑤1̅̅̅̅ )𝑟1 + (𝑤2̅̅̅̅ 𝑥)𝑝2 + (𝑤2̅̅̅̅ 𝑦)𝑞2 + (𝑤2̅̅̅̅ )𝑟2 (7.17) 

During the forward pass, the least squares method is applied to optimize the consequent 

parameters of the rules, i.e. nodes outputs go forward until the Layer 4 and the consequent 

parameters (𝑝𝑖, 𝑞𝑖, and 𝑟𝑖) are updated using the least squares. The premise parameters are 

optimised by the gradient descent method that is applied during the backward pass. The ANFIS 

output is calculated by employing the consequent parameters found in the forward pass. The 

output error propagates backward from the output layer to the input layer.   

 ANFIS-Packet Scheduler 

The radio channel characterization carried out and the radio channel temporal fading 

features, discussed in chapter 5, show that the relative position of the nodes are a prominent 

influence of both radio channel gain and fading magnitudes features. The Node-

PROTACTICAL 7 is subject to changes in its relative position, which leads the radio channel 

to switch between LOS and NLOS. Some of its relative-positions in relation to Coordinator 

node might make it impossible to successfully deliver data packets, even for transmissions at 

maximum TPL. Empowering a mechanism with the capacity to sense when the radio channel 

is in outage might allow the communication system to avoid data packets loss and energy 

consumption due to data packet retransmission. Such an approach might lead to a significant 

increasing on PER at expenses of latency. Although latency increasing is seen as a 

disadvantage, in some applications or network traffic modes (for instance regular traffic), 
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latencies on communication a bit higher than the maximum suggested by the TG6 seems 

reasonable.  

In this chapter, a mechanism, depicted in Figure 7.4, designated Power Control and Packet 

Scheduler (PCPS) is proposed. This mechanism aims to control the transmission power at each 

data packet transmission but also the time to transmission (interval of time between the instant 

that a data packet is ready to be transmitted and the instant that it is effectively transmitted by 

the radio module). Thus, this mechanism can delay the data packets transmission to some later 

period if required. The structure of the PCPS mechanism is made of three blocks:  

 RSSI-prediction LQE - forecast the RSSI value in the on-body channel under 

consideration;  

 TPL Control - adjusts the TPL to the minimum TPL required to ensure successful data 

packets delivery (according to the current radio channel conditions). The TPL Control 

algorithm proposed and validated on chapter 6 is selected to perform as TPL Control 

block in the PCPS mechanism; 

 PER-prediction LQE - this block predicts the outage probability of the radio channel to 

a given scenario configuration.  

A set of variables, which describes the relative position of the Node-PROTACTICAL 7, 

are given as inputs to the RSSI-prediction LQE. The LQE output is the predicted radio channel 

quality (RSSI) to the current scenario conditions (operation environment, body posture and arm 

relative position).  

For each data packet transmission, the PCPS mechanism first set -0.5 dBm as default TPL 

of the RSSI-prediction LQE block. If the outputted value of this block is lower than the RSSI 

Threshold (can be the radio module sensitivity or a higher value), the PCPS mechanism 

immediately cancel/postpone the data packet transmission. However, if RSSI-prediction LQE’s 

output is higher than the RSSI Threshold value, the TPL Control block is executed to quest for 
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Figure 7.4. Diagram block representation of the proposed packet scheduler mechanism called PCPS. 
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the optimal TPL, implementing a dynamic-based approach and relying on the linear relation 

between RSSI and TPL analysed in section 6.2. This block outputs the minimum TPL that 

ensures the following criteria: (i) estimated RSSI (outcome of the execution of the dynamic 

based TPL Control block that) > RSSI Threshold. Typically, the TPC mechanisms addressed in 

the literature after finding out the minimum TPL – as result of the operation above described – 

enables the radio module to transmit the data packet. However, before the PCPS mechanism 

proceeds with the data packet transmission, the criteria (ii) PER-prediction LQE’s output < OP 

(Outage probability) has to be met.   

For the set of movements under consideration in this chapter (c.f. subsection 7.3.2), the 

RSSI alone is not a reliable indicator of the radio channel quality, since data packets loss is 

quite likely to happen (c.f. subsection 7.3.2) and the RSSI value is only computed for data 

packets successfully delivered. Therefore, the PCPS mechanism only allows the radio module 

to transmit the data packet if both (i) and (ii) are met. If this is not the case, transmission of the 

data packet is inadvisable and then deferred to a future point where radio channel conditions 

are more favourable to successful transmissions.  

The outputted value (TPL) of the TPL Control block ensures the criteria (i), while the PER 

prediction LQE block has the task of checking if the inputted TPL also meets the criteria (ii). 

If this is the case, then this TPL value is set as optimal TPL for the radio module. Otherwise, 

the task of the PER prediction LQE block consists in the quest for the minimum TPL (a value 

higher than the one provided as input by the TPL Control block) that ensures the criteria (ii). 

When this TPL value is found, this is inputted into the TPL control block which will only update 

the estimated RSSI for this radio channel condition (relative arm position, posture, environment 

and new optimal TPL) without changing the TPL provided by the PER prediction LQE that is 

set as the optimal TPL value. Finally, the PCPS mechanism allows the radio module to transmit 

the data packet with the ideal TPL value. 

This mechanism must represent a small protocol layer located between the MAC layer and 

the next layer protocol, the Network (NTW) layer. The protocol stack location is due to the 

need to intercept data packets from NWK to MAC layers, since this location allows the 

mechanism to queue and to delay the data packets transmission.  

 ANFIS Models Methodology 

The research goal is to develop two different Link Quality Estimators aiming to predict the 

radio channel quality in terms of signal strength variability and outage probability on the 

communication link between the Node-PROTACTICAL 7 and Gateway-PROTATICAL, the 
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RSSI- and PER-prediction models. To achieve models that can describe the fading features, the 

ANFIS soft computing technique was adopted, involving the interaction of several input 

variables. In this subsection, the approach followed to find out meaningful and reliable models 

is described, these models were afterward integrated in the PCPS mechanism. To build 

reasonable models, the next four steps were followed.  

 Experimental Trial: several experiments were carried out to collect RSSI samples that 

describe the time-variant fading signal. Moreover, the number of lost data packets on the 

different scenarios was also determined; 

 Input variables selection: to remove redundancy and, therefore, to build less complex 

models, different combinations of inputs were tested; 

 Selection of a RSSI- and PER-prediction model: different ANFIS models for each output 

parameter considered were developed. From the set of different types of Fuzzy systems the 

Takaga-Sugeno was selected, since it is considered more compact and efficient, leading to 

proper representations of the system behaviour with a minimum number of rules [135]. 

Since different models can be obtained according to the training technique adopted at the 

initial FIS model derivation process, the derivation of the initial FIS model through the grid 

partition and subtractive clustering initial generation method was tested. Moreover, model 

inputs with different number and type of MFs, such as Gaussian curve, Triangular-shaped 

and Generalised bell-shape were assessed. A linear MF was chosen as the output variable. 

To optimize the several initial FIS models, the method that combines the least-squares and 

the back-propagation gradient descendent method was adopted. As part of the process of 

input selection, models for the various combinations of input variables were built. To ensure 

that a minimum error tolerance was achieved, a training error tolerance of 0.0001(0.01%) 

was selected. Only two epochs were considered to the ANFIS training process to reduce the 

time for building the model. The capacity of the model to describe the output variable (linear 

MF) under consideration is translated through the computation of the RMSE that first needs 

to determine the residuals (difference between the actual and the desired output). Therefore, 

the network performance with lower RMSE were selected as the FIS models that better 

perform the role of LQE. Those models were created and evaluated using the MATLAB 

Fuzzy Logic Toolbox; 

 ANFIS models validation process: the ANFIS models are validated against two datasets, 

namely the checking and testing one. The criteria used for evaluating the two models (one 
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for each output) are the RMSE, Mean Absolute Error (MAE), and Absolute Fraction of 

Variance (R2) models.   

The training and testing methodology adopted to build, analyse and select the most efficient 

and reliable ANFIS models is depicted in Figure 7.5. At the first step of this methodology, after 

collecting the empirical samples (of fading) in the experimental trial, the training and checking 

data, and the number, type and shape of the initial MFs are specified. According to Vallejo et 

al. the generalization capability of ANFIS models is ensured by the proper selection of a large 

training dataset [143], thus, suitable training datasets to train the ANFIS models must include 

as many system’s situations as possible. The input/output vectors are randomly chosen from 

the vectors of input data, collected during the experimental characterization. The two desired 

models, namely the RSSI- and PER-prediction ANFIS, have different input data lengths, since 

the RSSI-prediction ANFIS model has at least one input variable less (the TPL is not used as 

input variable to this model, as a linear relation between the TPL and the RSSI signal has been 

proved in chapter 5).  

In step (2) of adopted methodology, the initial FIS models were generated. The command 

provided by MATLAB to generate the initial single-output Sugeno FIS model is genfis, which 

requires three inputs, namely the input (an N-columns array, where N is the number of FIS 

inputs) and output data (an M-column array, where M is the number of FIS outputs) in matrix 

form, and options (where information about the learning technique, type and shape of MFs is 

provided). Both input data and output data must have the same number of rows, as each row 

represents a system situation.                

The third step of the training methodology is to tune the initial single-output Sugeno FIS 

by using the input/output training data. All the training data passes through the NN by using 

the combination of the least-squares and backpropagation gradient descent methods to adjust 

the weights of the several nodes, finding the relationship between inputs and outputs variables 

which minimizes the error. The MATLAB provides the command anfis to train the FIS model. 

The training data was provided as input, the initial FIS model to be tuned and some training 

options, such as the maximum number of training epochs or the training error goal. These two 

training process configuration parameters are extremely important to the optimization of the 

FIS. The training tolerance error is a threshold value for the error between the actual and the 

desired and it is used to create an additional training stopping criterion stopping. The least-

squares method determines the consequent parameters and the error is computed. If this error 
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is larger than the training tolerance error, then the gradient decent method is applied to update 

the premise parameters.  

The combination of the forward and backward propagation to optimize the consequent and 

the parameters associated with the MFs respectively is one epoch. The training process stops 

when the calculated error is lower than the tolerance error or when the number of epochs has 

been reached. When the training process is finished, the final MFs and the training error 

(RMSE) are provided as the anfis command output. Then, the checking data is used to verify 

the accuracy and effectiveness of the trained FIS model. This approach helps to handle with the 
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Figure 7.5. ANFIS training and testing methodology. 
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overfitting problem to increase the effectiveness of the model thanks to a better understanding 

of the system performance under new situations. The problem of overfitting is very common 

on machine learning. It occurs when training data is overtraining during the ANFIS training 

process, leading to output predictions over its accuracy [177], i.e. the error on training data is 

driven to a very small value. However, when FIS is evaluated against new data, it performs 

very poorly, suggesting that the FIS is not able to generalize new situations.  

In steps (5) and (6), a performance evaluation of the model generated in the first step is 

carried out. The main goal of this step is to evaluate and control the potential of the model to 

over fit the data. The MATLAB command evalfis is used to study and evaluate the performance 

of the FIS models to analyse if satisfactory results are generated. The testing data, in the form 

of M-by-N matrix (where M is … and where N is number of input variables matrix form), and 

the trained FIS model are given as input. The output testing vector is not provided as input of 

the evalfis command. This function takes each row of the input testing data and returns the M-

by-L matrix (L is the number of output variables) as output variable. Each output row is the 

system response to the input variables values provided in the same row number at matrix given 

as input to evalfis command (input and output matrix have the same number of rows). The 

evalfis output is then used to measure the model error, as the difference between FIS output and 

the desired response. 

 The checking and testing of residuals is used to evaluate the performance of the system, 

three different measurements, namely the criterion error RMSE, Mean Absolute Error (MAE) 

and the coefficient of determination (R2) can be used to obtain the accuracy of the derivate 

models. RMSE, which is the standard deviation of the residuals (difference between the 

forecasted and the actual collected data) and used to monitor the training error, is given by  

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑗 − 𝑦̂𝑗)

𝑁

𝑗=1

 (7.18) 

where N is the number total of rows of the input training vector, 𝑦𝑗 is the collected values given 

as part of output vector in training methodology and and 𝑦̂𝑗 is the ANFIS outcome (model 

predictions). MAE indicates the average of all absolute errors, it is the difference between the 

predicted and the actual value, and is given by   

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑗 − 𝑦̂𝑗|

𝑁

𝑗=1

 (7.19) 
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The coefficient of determination is a measure of how much the variance in the output collected 

data is explained by the model outcome and is frequently interpreted as how well a model 

explains and predicts future outcomes. The computed values must be within the range [0 1] and 

the higher the computed value, the better the fit. This parameter is given by: 

 

𝑅2 = 1 −
∑ (𝑦𝑗 − 𝑦̂𝑗)

2𝑁
𝑗=1

∑ (𝑦𝑗 − 𝑦̅)
2𝑁

𝑗=1

 (7.20) 

Where 𝑦̅ is the average value of the collected samples, 𝑦𝑗 is the collected values given as part 

of output vector in training methodology and and 𝑦̂𝑗 is the ANFIS outcome. 

Finally, in the step identified by (7) in Figure 7.5, additional information about the features 

of the final FIS models are obtained to study, analyse and better understand these models. The 

gensurf MATLAB command generates the output surface for the FIS provided as input to plot 

the FIS output variable against two selected variables from the set of FIS input variables. The 

rules resultant of the training methodology can be analysed using the showrule command. 

Another useful command is the plotfis that displays the high level diagram of an FIS. The fuzzy 

sets, the number of fuzzy sets of each input variable and the shape of MFs can be graphically 

visualized through the MATLAB command plotmf.      

To find the best-fit models, ANFIS method are investigated through the combination of use 

of number of data sets, membership functions, and types of membership functions. Twelve and 

five ANFIS models were constructed using combinations of inputs, sample training data, 

membership function numbers, and membership function types for RSSI-and PER-prediction 

LQE, respectively. After trained, the models performance was assessed, and results were 

compared based on their performance in training and checking data sets. The two selected 

models to perform the task of RSSI- and PER-prediction LQE were tested to evaluate the 

capacity of generalization of the proposed models. 

 Experimental Trial 

Algorithms for inertial sensor data fusion such as rate gyroscope integration [184], vector 

observation [185], Complementary Filtering (CF) [186] and Kalman filtering [187] resort to 

information from inertial measurement unit (IMU) – which measures linear acceleration, 

angular velocity and direction of magnetic field – to represent the human motion. Such 

algorithms, first, estimate the angles of segments and joints of human limb and, second, 

estimate the limb postures, which is a representation of the human limb angles (identified from 

a set of angles) [188]. There are two type of angles: i) angles of a non-static segment 
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(“constituent parts into which a human body is divided or marked off by or as if by natural 

boundaries” [188]) of the human limb in relation to an anatomical plane or ii) angle between 

two contiguous segments to the joint, i.e. point of contact between segments. 

Movements occur around and within axes aligned with respect to specific anatomical planes 

[188], [189], which are depicted in Figure 7.6. 

Scenarios 

The experimental trials carried out in this study occurred only in indoors (room), since this 

type of environments promotes small-scale fading (unlike outdoors) but not as aggressive as 

the magnitudes observed inside laboratories. The experiments follow a setup configuration 

(MAC configuration, network topology and packet scheduler) like the one carried out in 

Chapter 5. Since the goal is to develop a mechanism able to control the TPL and postpone the 

data packets transmission when required in static (TPC mechanisms based in models are only 

applicable in this type of scenarios) and dynamic scenarios, a radio channel characterization 

following a scenario-based approach was adopted, where the follow movements were 

considered:  

A. Forearm Supination and Pronation – turning and revolving the forearm around a specific 

plane (Median, Transverse or Frontal plane of the hand), see Figure 7.7; 

B. Shoulder Flexion and Extension – movement of the upper arm in Sagittal plane around 

a transverse axis, see Figure 7.8 a); 

Figure 7.6. The main anatomical plans of the body, edited from [189]. 
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C. Elbow Flexion and Extension – movement of the forearm in Sagittal plane around a 

transverse axis, see Figure 7.8 b);   

D. Shoulder Abduction and Adduction – movement of the arm in a Frontal plane around 

an anteroposterior axis, see Figure 7.8 c).  

Up to a total of four arm angles (represented in Figure 7.7 and Figure 7.8) are estimated 

from readings obtained from IMU while the user performs any of the above mentioned 

movements. From readings up to four arm degrees of freedom are extracted:  

 ∢F, angle of the type i) that reflects the angle of the forearm in relation to the forearm 

Middle Position. This angle permits the description of the movement A. in any plane; 

Figure 7.7. Pronation and Supination of forearm, edited from [189]. 

Figure 7.8. Angles of segments to estimate in experimental trial, edited from [188]. 
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 ∢S1, angle, which is of the type i), of arm with respect to the Frontal plane, which helps 

us to describe the movement B; 

 ∢E, angle of the type ii) that describes the angle formed by the upper arm segment and 

forearm. This angle permits the description of the movement C; 

 ∢S2, this angle of the type i) and refers to the angle of the upper arm with respect to the 

Sagittal plane. This angle is important to identify the arm posture at any instant in 

movement D.  

As can be seen in Figure 7.8, experiments are carried out in controlled environments, i.e. 

for each movement/experiment, only one of the angles varies over time while the three lefts are 

unchanged throughout the experiment. This approach simplifies the process of mapping the 

measured fading features samples (RSSI and PER) to the relative arm position, since our IMU 

will detect variations in only one of its axis (which varies depending on the performed 

movements). For example, in movement depicted in Figure 7.8 a) with ∢F angle of ≈85º, the 

x-axis of the IMU is aligned with the direction of the movement, while the rotations in the 

sagittal plane are sensed mainly by the y-axis of the gyroscope.  

Figure 7.9 illustrates the pattern of the accelerometer and gyroscope signal (in this 

experiment shoulder Flexion/Extension angle ranged from 0º to 90º) sensed in the movement 

above described – c.f. Figure 7.8 a). Therefore, as the Node-PROTACTICAL 7 is attached in a 

fixed position and orientation, signal patterns enable the easy identification of which movement 

performed for each pair of movements. Also, this approach and the specific and static 

orientation of the IMU enables the use of simple algorithms to compute the angles by searching 

the data stream in one axis of the gyroscope. Additionally, as the majority of the movement is 
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collected from IMU embedded in Node-PROTACTICAL 7.   
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localized in one axis, initial IMU offsets or misalignments do not influence significantly the 

computed angles.      

The angles under consideration are computed through the integration of the gyroscope 

signal over time. However, the gyroscope data is only reliable on the short term, since, on the 

long term, the measurement tends to drift. This means that when the arm returns to the original 

position, estimated angles will be different from expected angles for the original position. This 

is the main disadvantage of using gyroscope data to estimate rotations in localization and 

tracking system. The integration of the gyroscope signal shown in Figure 7.9 over time (interval 

in which 53 repetitions of movement B were executed) leads to the drift depicted in Figure 7.10. 

After 100 s, the drift error is close to -61º.    

A technique designated Zero-Velocity Update (ZUPT), which is widely adopted to correct 

drift error in localization and tracking systems based on data fusion algorithms, provides the tilt 

from accelerometer as initial condition for the integration of the gyroscope, resetting every 

stride (IMUs are typically attached to ankle). This technique is especially important in data 

fusion algorithms, such as CF and Kalman filter. The former solution requires two estimates of 

the orientation (such as gyroscope integration and vector observation from the magnetometer 

and the accelerometers) while the latter solution is a very complex approach (tilt gives a pseudo 

measurement used to update the IMU orientations).  

The proposed solution for relative arm position estimation is only executed after the IMU 

sensor calibration. For each experiment, the IMU readings are sampled at 100 Hz while data 

packets (carrying several IMU samples) are transmitted with an interval between transmissions 
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of 35 ms. To deal with the small offsets in the average signal output of both sensors, the 

proposed solution only starts transmitting the IMU readings after the first five minutes of IMU 

operation (sources of errors on estimations vary according to IMU temperature). The next IMU 

samples, which are collected before the arm moving, provide the bias error (averaging the IMU 

outputs while the Node-PROTACTICAL 7 is in a constant position for one minute). This source 

of estimation deviations is subtracted to future IMU readings. The scale factor (0.00078 g and 

0.065º for accelerometer and gyroscope) is only compensated after bias compensations in IMU 

readings (computed bias errors relative to example of Figure 7.10 are 0.018844 g and 1.9023º 

for accelerometer and gyroscope respectively). After calibration, tilt is provided and set as the 

initial condition (initial value of the angle of interest in degrees) for gyroscope integration for 

each pair of movements.  

The ZUPT method is executed every time that the arm returns to the original position, which 

is triggered through the condition: variations on absolute values of the acceleration and 

gyroscope samples greater than a threshold (0.09 g and 3º, respectively) for 0.4 s. As the 

accelerometer is only reliable on the long term, the resultant average acceleration (during the 

ZUPT) in the x-axis is used to compute the IMU tilt. This value is then set as the true angle 

value of the angle under consideration. The accuracy of the solution above described is 

computed every time that arm returns to the original position and is given as the difference 

between the estimations (gyroscope integration over time) and the tilt at each ZUPT.    

The implementation of the ZUPT method allowed to reduce the error drift. In Figure 7.10, 

the red line represents the angle estimations through the proposed solution. The computed 

RMSE to an experiment depicted in Figure 7.10, which involved 53 shoulder flexion/extension 

movements, is 1.82º. 

In summary, the arm posture is a representation of the orientation of the arm in which the 

Node-PROTACTICAL 7 is located, and it is identified from the four arm angles. In each 

experiment the user performs 53 repetitions of a specific movement. The movements above 

described were repeated for several static arm angles configurations. For instance, the 

flexion/extension of the arm was repeated for three different static ∢F angles, namely 90º, 0º 

and -90º and different ∢E. To capture the effect of the TPL into the fading and outage, all TPL 

available in radio transceiver module were considered (experiments were repeated for each 

TPL). A total of 357500 RSSI samples were collected in the experimental trials.  

Figure 7.11 depicts the measured RSSI samples for different forearm angles while user is 

standing with the arm stretched forward, forming a right angle with the Coronal plane. 

Experiments to an ∢F angle near to 90º resulted in a radio channel quality (RSSI) improvement 
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up to ≈12 dBm when compared to angles near to 0º. The effect of the arm angles is also felt in 

the PER metric, affecting the reliability of the system. For instance, considering the experiment 

where user is standing with the arm postures illustrated in Figure 7.7, it was observed a PER 

(100 data packets were transmitted) value of 70%, 2%, and 20% for forearm angle 0º, -85º and 

90º respectively. The two examples above prove what was stated before, i.e. arm angles have a 

significant effect on the first- and second-order statistics of the signal.   

 ANFIS-LQE (RSSI) 

The selection of the data used to training, checking and testing the models is extremely 

important. The training data, which was used to train the FIS model, must be fully 

representative of the features of system that the FIS is intended to model. To avoid a trivial 

checking and validation process, the testing data must be both representative of the features of 

the system that the FIS model is intended to evaluate and sufficient distinct from the training 

data. To avoid that ANFIS memorize the training data examples and to ensure that the ANFIS 

model have learned to generalize new situations the training, checking, and testing data do not 

contain repeated samples, since after randomly chosen the training data set, these samples are 

ignored during the selection of the remaining data sets. The training dataset used during the 

training process of the RSSI-prediction ANFIS models is composed by 27500 input and 27500 

output vectors, corresponding to three quarters of the input data (19250); 4125 vectors were 

randomly chosen for the checking error; and the remaining 4125 vectors were selected for the 

testing dataset. 
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Figure 7.11. Influence of the forearm angle (∢F) on fading magnitude. 
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 In order to find out the optimal FIS model, several experimental were carried out where 

different ANFIS model settings were tested. The factors that differ between ANFIS models are 

the input variables, fuzzy sets, MFs type and the hybrid learning technique adopted, whereas 

the length of the training and checking data set as well as the epoch number is the same. From 

the set of ANFIS models resultant of the methodology described above, the optimal ANFIS is 

the one that shows a better balance between its complexity, generalization ability to fit any 

sample space well, and RMSE values.  

The resultant ANFIS models are identified through ANFIS(i)(j), where i is the number of 

inputs variables of the FIS model and j is the version of the ANFIS model under consideration. 

The input variables of the RSSI-prediction models must represent the arm limb angles through 

the description of the orientation angles in which the wearable system is setting at a time unit. 

A set of input variables required to describe the arm position at any instant form a pose vector 

designated Arm Position, which is expressed as Ptx={∢Elbow, ∢Shoulder, ∢Forerm}, which 

represents the elbow (Elbow_F/E_Angle ANFIS input represents the ∢E angle), the shoulder 

(Shoulder_F/E_Angle represents the ∢S1 and Shoulder_A/A_Angle is the ∢S2 angle) and the 

forearm (Forearm_S/P_Angle represents the ∢F angle) angles, respectively.  

Two variables are given as inputs to the ANFIS(2)(j) model, namely ∢S1 and ∢S2 angles, 

and from the experiments four different initial ANFIS were generated: ANFIS(2)(1), 

ANFIS(2)(2) and ANFIS(2)(3) were structured through the Grid Partition technique and by 

selecting two inputs; defaulting values for MFs (9*6) and setting MFs as type Gaussian curve, 

triangular-shaped and generalised bell-shaped, respectively.  

Figure 7.12 shows the RMSE of the initial ANFIS(2)(2) after carrying out the training 

process for 15 epochs. It is clear that the most relevant input variable into the description of the 

system under consideration is the Shoulder_F/E_Angle. Although the performance of the 

model increases with the increase of the number of fuzzy sets of each input variable, the 

difference is not significant (a RMSE 0.02 high than the RMSE of an ANFIS with the MF 

number 18*18). For that reason, the Shoulder_F/E_Angle and Shoulder_A/A_Angle inputs of 

all the models have 9 and 6 fuzzy sets respectively, which significantly reduces ANFIS structure 

complexity in relation to a potential ANFIS with two inputs and MFs number 18*18. Since the 

aim is to compare the initial ANFIS extracted from input output data by using different 

techniques, the ANFIS(2)(4) is the initial ANFIS extracted through the subtractive clustering 

technique.  
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Table 7.2 shows that the trained ANFIs model with the lowest RMSE is the model generated 

through Grid Partition technique that has two inputs, triangular-shaped MFs, MFs number 

(9*6). However, the effectiveness of this model is not outstanding compared to the remaining.  

The ANFIS(2)(4) ensures similar performance (training error is 5.5333 and while checking 

error is 5.98783). Since this initial model was generated by the Subtractive clustering technique, 

which has two inputs, namely Shoulder_F/E_Angle; Shoulder_A/A_Angle, with three MFs of 

the type Gaussian curve for each. Although the performance is slightly lower, the network 

complexity is much lower than the complexity of the ANFIS(2)(2) (depicted in Figure 7.13, 
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Figure 7.12. Training error measurement (RMSE) of ANFIS(2)(2) inputs configured with different number of MFs. 

Table 7.2. Information about the architectures of the set of ANFIS(2)(j) models, which were generated through 

different initial model generation techniques and configured with different types of MFs.  

ANFIS Parameter Type ANFIS(2) (1) ANFIS(2) (2) ANFIS(2) (3) ANFIS(2) (4) 

Number of Inputs 2 

Generation technique Grid Partition Subtractive 

Clustering 

Membership Function Type Gaussian 

Curve 

Triangular-

Shaped 

Generalised Bell-

Shaped 

Gaussian Curve 

Number of MFs 9*6 3*3 

Training Data Set 27500 

Checking Data Set 4125 

Epoch Number 15 

Number of Nodes 143 143 143 29 

Number of Linear 

Parameters 

162 162 162 12 

Number of Nonlinear 

Parameters 

45 45 45 16 

Number of Fuzzy Rules 54 54 54 4 

Input Combinations Shoulder_F/E_Angle; Shoulder_A/A_Angle 

Training Error (RMSE) 5.52931 5.50861 5.51839 5.5333 

Checking Error (RMSE) 5.97946 5.95267 5.97954 5.98783 
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where Ai is the MFs of the Shoulder_F/E_Angle and Bi is the MFs of Shoulder_A/A_Angle 

input), which is perfectly detectable through the number of NN architecture nodes (20 nodes 

compose the NN, against the 143 of the ANFIS(2)(j) structure), number of rules (4 against the 

54 of the ANFIS(2)(j)), linear and nonlinear parameters.  

Table 7.3 summarizes the information about structure of the ANFIS generated by mean of 

different techniques and the performance of the models in terms of RMSE. The ANFIS(3)(j) 

models are similar to the previous models, the only difference is the inclusion of another input 

variable. The Sugeno FIS models are as depicted in Figure 7.14, having as inputs the variables 

Shoulder_F/E_Angle, Shoulder_A/A_Angle and Forearm_S/P_Angle. 

The several generated models with three inputs have shown reduced performance 

variations. The ANFIS(3)(2), where every input is mapped as Triangular-shaped MFs, is the 

best-fit model to training and checking data, achieving the lowest RMSE value (5.16667), while 

ANFIS(3)(4) is the model that led to the lowest performance, it achieved a RMSE value of 

5.18715. The model generated through the subtractive clustering, ANFIS(3)(4), is the less 

complex, since the number of rules and nodes is much lower than those that compose the 

structure of models generated through the Grid partition technique. Although ANFIS(3)(4) has 

more fuzzy sets per input variable, the generated fuzzy inference system structure only contains 

10 rules, while the model that better describes the system under consideration, ANFIS(3)(2), has 

162 rules. ANFIS models resulting from the Grid partition are expected to be more complex 
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than models generated through Subtractive clustering technique, since, in the former technique, 

any combination of MFs results in a rule. This complexity increment, which demands more 

computational resources, results in slight performance improvements.  

Figure 7.15 illustrates the Membership functions shape after training the model ANFIS(3)(4) 

for 15 epochs. Each input of this FIS model has ten MFs, which are called “Cluster 1”, “Cluster 

2”, …, “Cluster 10” and ten rules are generated to describe the system. Each rule generated 

through the genfis MATLAB command has one value, since the output is of the type “constant” 

by default.   

The ANFIS(4)(j) relies in four inputs to describe the radio channel quality, namely 

Shoulder_F/E_Angle, Shoulder_A/A_Angle, Forearm_S/P_Angle and Elbow_F/E_Angle. The 

ANFIS(4)(4) was generated through the Subtractive clustering and have MFs number 

(20*14*3*3) of the Gaussian type.  

Table 7.3. Information about the architectures of the set of ANFIS(3)(j) models, which were generated through 

different initial model generation techniques and configured with different types of MFs. 

ANFIS Parameter Type ANFIS(3)(1) ANFIS(3)(2) ANFIS(3)(3) ANFIS(3)(4) 

Number of Inputs 3 

Generation technique Grid 

Partition 

Subtractive 

Clustering 

Generation 

technique 

Grid Partition 

Membership Function Type Gaussian 

Curve 

Triangular-

Shaped 

Generalised Bell-

Shaped 

Gaussian Curve 

Number of MFs 9*6*3 10*10*10 

Training Data Set 27500 

Checking Data Set 4125 

Epoch Number 15 

Number of Nodes 378 378 378 86 

Number of Linear 

Parameters 

648 648 648 40 

Number of Nonlinear 

Parameters 

72 72 72 60 

Number of Fuzzy Rules 162 162 162 10 

Input Combinations Shoulder_F/E_Angle; Shoulder_A/A_Angle; Forearm_S/P_Angle 

Training Error (RMSE) 5.17311 5.16667 5.17315 5.18715 

Checking Error (RMSE) 5.6197 5.61323 5.61994 5.63132 

  

Figure 7.14. Sugeno Fuzzy Inference System with three inputs. 
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Table 7.4 shows the ANFIS(4)(4) information structure, demonstrating that twenty rules 

ensure a model performance that is acceptable and quite accurate to describe the system under 

consideration. The ANFIS(4)(j) models performance demonstrated that the Triangular-shaped 

model is the best fit model with a RMSE value of 3.23473.  

The lowest complexed model is the Subtractive clustering model that obtained 3.24985 and 

3.87458 as training and checking RMSE’s values, respectively. Several ANFIS models with 

different inputs, MFs number, and shapes were evaluated based on their performance in training 

and checking data sets in order to analyse the effect of their influence on model performance. 
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Figure 7.15. Membership Functions of the ANFIS(3)(j) inputs after training. 

Table 7.4. The ANFIS(4)(4) information structure. 

ANFIS Parameter Type ANFIS(4)(4) 

Number of Inputs 4 

Membership Function Type Gaussian Curve 

Number of Membership Functions 20*14*3*3 

Training Data Set 27500 

Checking Data Set 4125 

Epoch Number 15 

Number of Nodes 127 

Number of Linear Parameters 100 

Number of Nonlinear Parameters 80 

Number of Fuzzy Rules 20 

Input Combinations 

Shoulder_F/E_Angle; 

Shoulder_A/A_Angle;  

Forearm_S/P_Angle; 

Elbow_F/E_Angle;  

Training Error (RMSE) 3.24985 

Checking Error (RMSE) 3.87458 
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The performance of the best-fit models for each inputs combination and the Subtractive 

clustering models are shown in Table 7.5. It is clear that the ANFIS performance increase with 

the increase of the number of inputs, showing significant improvement variations.  

Increasing the number of inputs means an increasing of model performance, however, 

increasing the number of MFs per input does not necessarily means an increase in the model 

performance or on the structure complexity. Grid partition models do not seem to be very 

sensitive to the type of MFs, as no significant difference between models has been reported. 

Summarizing, the subtractive clustering ANFIS models have much less rules and nodes, but 

ensure a model performance similar to the performance of Grid partition models.  

Taking this observations into consideration, the ANFIS(4)(4) is chosen as the best-fit model. 

Even though this model is not the one with the best performance, it presents a lesser complex 

structure (four inputs, 20*14*3*3 - determined through trials -, and a NN that comprises 127 

nodes and 20 rules) and performance is still satisfactory since an RMSE of 3.24985 and 3.87458 

are the results of the model’s evaluation against training and checking dataset, respectively.  

The ANFIS(4)(4) was subjected to the steps (3), (4), (5), (6) and (7) of the methodology 

depicted in Figure 7.5. The training the ANFIS model for several interactions is very important 

not only to optimize the initial model as the maximum possible but also to handle with the 

problem of model overfitting. The overfitting problem can be identified by plotting the training 

and checking error. It occurs when error starts to increase with the number of epochs or when 

the performance on the training set is much lower than the performance on the checking set 

(because the model fits too much to seen data, and does not generalize well). The overfitting 

problem can be avoided through the identification of the last epoch before overfitting starts, i.e. 

epoch number where the RMSE is the lowest [177].  

The training and checking errors for 100 epochs are depicted in Figure 7.16. The magnitude 

difference between the training and checking error is not significant. The optimal epoch number 

to the ANFIS(4)(4) is four.  

Table 7.6 summarizes the performance results of the ANFIS(4)(4) model when it is assessed 

against the testing dataset. The performance results indicate that the model under consideration 

produces satisfactory results, namely a RMSE of 4.079, MAE of 2.24 and a R2 of 0.83, showing 

Table 7.5.Performance of the best-fit ANFIS models.  

Model Inputs Training Error (RMSE) Checking Error (RMSE) 

ANFIS(2)(2) 2 5.51661 5.97267 

ANFIS(2)(4) 2 5.5333 5.98783 

ANFIS(3)(2) 3 5.16667 5.61323 

ANFIS(3)(4) 3 5.18715 5.63132 

ANFIS(4)(4) 4 3.24985 3.87458 
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that this model can be successfully used to describe the system under consideration, i.e. the 

on-body link (Node-PROTACTICAL 7-Gateway-PROTACTICAL) quality). The testing 

RMSE result values are a bit higher than the training and checking RMSE values, but the error 

difference obtained suggest that this model might be able to generalize well unseen data sets.    

Figure 7.17 shows an example of the ANFIS surface view. The three-dimensional curve was 

obtained through gensurf command provided by MATLAB. This graph represents the mapping 

from Shoulder_F/E_Angle and Forearm_S/P_Angle to the normalized ANFIS(4)(4) output the 

(RSSI). 

 PER-prediction LQE 

The methodology followed to find the best-fit RSSI-predicted model was also employed to 

find the model that best describe the outage probability of the system under consideration. Table 

7.7 shows information related to training and checking error of the best-fit models after running 

the training methodology for 15 epochs.  

These models were trained into a training data set composed by 2503 vectors (three quarters 

of the input data collected), while two groups of 537 vectors were randomly chosen for 

checking and testing data set.  

The ANFIS(5)(4) is the one with best performance, ensuring a training and checking RMSE 

values of 6.39227 and 6.76810, respectively. This ANFIS model has five inputs, namely TPL, 

Figure 7.16. Training and checking error curve after training data into the ANFIS(4)(4) Subtractive 

Clustering system (ANFIS) for 100 epochs with an error tolerance of 0.0001 

Table 7.6. Performance results of the ANFIS(4)(4) when tested against the testing data set. 

Model R2 RMSE MAE 

ANFIS(4)(4) 0.83 4.07952 2.24 
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Shoulder_F/E_Angle, Shoulder_A/A_Angle, Forearm_S/P_Angle, and Elbow_F/E_Angle 

which have the MF number 35*35*35*35*35 with a Gaussian curve shape. 

Table 7.8 summarizes the features of the ANFIS(5)(4) structure, which consists of 428 nodes, 

210 and 350 linear and nonlinear parameters respectively, where 35 rules are required to describe 

the system. This model was trained for 100 epochs in order to optimize the parameters of the 

several rules stored in the fuzzy rules database. As result of this process, the values of 6.35399 

and 6.74908 were reported as the training and the checking error (RMSE).     

The testing process shows that the error does not increase significantly in relation to the 

training error. Therefore, testing results suggest that the ANFIS(5)(4) can be employed as a 

PER-prediction LQE. Figure 7.18 shows a three-dimensional curve that graphically describes 

the mapping from Elbow_F/E_Angle and TPL to the normalized ANFIS(5)(4) output. This graph 

Figure 7.17. Surface view of the mapping between two model input and the ANFIS(4)(4) output. 
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Table 7.7. Performance of the best-fit ANFIS models when predicting the outage probability of WBAN-

PROTACTICAL radio channels. 

Model Inputs 
MFs 

shape 

Training 

Error  

Checking 

Error  

ANFIS(3) 

(2) 
TPL, Shoulder_F/E_Angle, Shoulder_A/A_Angle;  

Triangular-

shaped 
7.41611 7.78093 

ANFIS(3) 

(4) 
TPL, Shoulder_F/E_Angle, Shoulder_A/A_Angle;  

Gaussian 

Curve 
7.44798 7.81321 

ANFIS(4) 

(2) 

TPL, Shoulder_F/E_Angle, Shoulder_A/A_Angle, 

Elbow_F/E_Angle 

Triangular-

shaped 
7.11596 7.53910 

ANFIS(4) 

(4) 

TPL, Shoulder_F/E_Angle, Shoulder_A/A_Angle, 

Elbow_F/E_Angle 

Gaussian 

Curve 
7.15469 7.59917 

ANFIS(5) 

(4) 

TPL, Shoulder_F/E_Angle, Shoulder_A/A_Angle, 

Elbow_F/E_Angle, Forearm_S/P_Angle 

Gaussian 

Curve 
6.39227 6.76810 
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shows that the PER increase with the decrease of the TPL regardless of the angle between the 

upper arm and the forearm.  

The accuracy of the RSSI- and PER-prediction model and their satisfactory performance 

when subjected to different data sets are ensured by the high values of R2 and low values of 

RMSE and MAE. Table 7.9 summarizes some additional information relative to the complexity 

of each of the selected ANFIS models, where the number and types of mathematical operations 

required along the layers that compose the ANFIS model structure are shown.  

 PCPS Implementation   

As stated before, the evaluation of any development on the WBANs field based on 

simulations is not common in the literature due to the fact that simulation models are based on 

simplified assumptions [24], [143]. As a consequence of the simulators not being able to model 

many of the characteristics of the real world, high discrepancies between the path-loss, radio 

channel quality temporal variations (fading) obtained through simulations and the on-body 

features obtained experimentally through the radio channel characterization performed are 

recurrent [143], [190].   

In this regard, the selection of a simulator is extremely important. We have selected the 

software Simulink to implement and assess the PCPS mechanism.  

 Simulink Model 

Although this Simulink is not a simulator for WBANs, WSNs or any other communication 

network, the path-loss and fading characteristics are introduced in our simulation 

implementation in the form of a database containing the data collected experimentally. Another 

Table 7.8. The ANFIS(5)(4) information structure. 

ANFIS Parameter Type ANFIS(5)(4) 

Number of Inputs 5 

Membership Function Type Gaussian Curve 

Number of Membership Functions 35*35*35*35*35 

Training Data Set 2503 

Checking Data Set 537 

Epoch Number 100 

Number of Nodes 428 

Number of Linear Parameters 210 

Number of Nonlinear Parameters 350 

Number of Fuzzy Rules 35 

Training Error (RMSE) 6.35399 

Checking Error (RMSE) 6.74908 

Testing Error (RMSE) 7.0943 

Testing Error (R2) 0.89 

Testing Error (MAE) 2.24 
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limitation of this software package, is related to its incapacity of simulating the body movement. 

In order to overcome this limitation, the term gesture (G) was introduced, which is defined as 

“a movement of part of the body to express an idea or meaning” [Oxford English Dictionary, 

2016], to represent a succession of movements of the upper limb. As a posture is a 

representation of several angles between two different segments of the upper limb, the arm 

motion is represented as a sequence of several posture, which can be defined as: 𝐺 =

𝑃(𝑡)𝑡0.035
𝑡𝑛 = {𝑃0.035, 𝑃0.070, 𝑃0,105, … , 𝑃𝑛}, where 𝑃𝑡𝑖 is a posture in a time frame (time unit is 

0.035 s).   

Figure 7.19 depicts the PCPS mechanism implementation on Simulink where three main 

blocks can be seen: “ANFIS Model to RSSI Signal”, represents the ANFIS model selected as 

RSSI-prediction LQE; “TPL_Control_Block”, which is the equivalent to the TPL Control block 

illustrated in the PCPS mechanism structure overview (c.f. Figure 7.4); “ANFIS Model to PER 

Signal”, which is the proposed PER-prediction ANFIS model; and a “While Iterator 

Subsystem”.  

The block “ANFIS Model to RSSI Signal” is a Fuzzy Inference System block that 

represents the implementation of the selected ANFIS model, the ANFIS(4)(4), to operate as 

RSSI-prediction LQE. A set of Simulink blocks of the type “From Workspace” are linked to 

the RSSI-prediction LQE, namely “Shoulder_FlexionExtension”, 

Table 7.9. Number of operations of the selected ANFIS models to describe the system. 

Model Output Sums Subtractions Products Divisions Exponentials 

RSSI 59 40 81 80 40 

PER 351 350 176 350 175 
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“Shoulder_AbductionAdduction”, “Wrist_SupinationPronation” and 

“Elbow_FlexionExtension”, which can only take one value at each time unit (Simulator are set 

to perform time steps of 0.035 s). Each of these blocks consist of time series, which are data 

vectors sampled over time (regular intervals of 0.035 s). Therefore, the combination scalar 

values (provided at any time instant by each block) form the position vector, whereas the 

sequence of rows of these blocks enable to determine the arm motion as a gesture (G).  

Figure 7.20 shows an inside look at “ANFIS Model to RSSI Signal” block, illustrating the 

ANFIS structure implementation in Simulink in the form of layers equivalent to the ANFIS(4)(4) 

structure. The variables “in1”, “in2”, “in3”, “in4” are the linguistic variables, referring to the 

Shoulder_F/E_Angle, Shoulder_A/A_Angle, Elbow_F/E_Angle, Forearm_S/P_Angle FIS 

inputs, respectively.  

Figure 7.21 a) illustrates the “in1” input characteristics mapping through MFs process in 

the developed Simulink model. Figure 7.21 b) shows the sequence of blocks implemented to 

compute the “in1” degree of belongingness (Fuzzification step) to the fuzzy set via the 

associated membership function “in1cluster1”, which is shaped through its associated 

parameters, which are here represented through “mu” (represents the MF centre) and “sigma” 

(determines the MF width) Constant blocks.  

Figure 7.21 c) illustrates an implementation of a rule block, where inference and implication 

process are computed in order to calculate the rule output, which is the output of the layer 4 

that given by expression (7.5). “andorMethod” block, depicted in depicted in Figure 7.21 c), 

Figure 7.19. PCPS implementation in Simulink. 
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performs the multiplication of all degrees of the fuzzy sets belongingness (antecedents) 

expressed by equation (7.3), providing a single number given by the antecedents (Layer 2 

output in a Takagi-Sugeno FIS structure). The “weighting” block performs the product between 

the rule antecedent single value and the “weight” parameter, performing the expression (7.4), 

resulting the Takagi-Sugeno Layer 3 output: the normalized firing strength of the rule under 

consideration. The “impMethod” block performs a product, in our case the product of the 

equation (7.5), which consists in the multiplication between the normalized rule firing strength 

and the consequence parameter determined by the linear MF of the Fuzzy sets of the ANFIS 

output depicted in Figure 7.22.   

Since the ANFIS(4)(4) model has twenty rules, the number of MFs of the model output has 

to have exactly the same, since each MFs represents the consequent parameter. This is 

computed as a linear combination of the input variables added by a constant term, i.e. 𝑎1"in1" +

𝑎2" in2" + 𝑎3"in3" + 𝑎4"in4" + 𝑏 (“in1”, “in2”, “in3” and “in4” the model inputs and ai and 

b are the consequent parameters set, the linear and constant coefficient, respectively). The 

image on right side of Figure 7.22 shows the diagram of blocks implemented in Simulink to 

Figure 7.20. Simulink implementation of the ANFIS(4)(4) model. 
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compute the linear equation, where the input of each “LinearMF” is a vector containing the 

values of each model input at the current simulation time. After computing the output 

“LinearMF” block, the result of this operation is the input on its respective “Rule” block (c.f. 

Figure 7.21). This input is called “consequents” and is the consequent parameter required to 

obtain the output given by expression (7.5).          

Figure 7.23 shows the inside of the Defuzzification block that implements the 

defuzzification process of a Takagi-Sugeno ANFIS model, performing first the aggregation 

operator, which is the sum of all the incoming signals (multiplication between rule firing 

strength and consequent parameter). This value is then divided for the total firing strength in 

order to provide the ANFIS(4)(4) output as in equation (7.6). This output is the RSSI prediction 

of the RSSI-prediction LQE.    

The “TPL_Control_Block” consists of a MATLAB Function block that enables the 

integration of the MATLAB algorithm in our Simulink model. The MATLAB script loaded by 

this block is a MATLAB function that performs the reactive-based TPL Control approach 

described in subsection 6.2.2. This bock requires as input the slope of the model given by 

expression (6.1) that describes the linear relation between TPL and RSSI. This slop is 

represented by a Constant Simulink block, designated “Slope_fitModel”, that takes the value 

0.8444, which is the RSSI decay rate found to subject 1 in chapter 5. Other important inputs of 

this block are the maximum and minimum TPL values (designated “High Index TPL” and “Low 

Index TPL, respectively”), these blocks limits the output block to the range [-0.5 dB, …, -22 

dB].  

a)                               c) 

 b) 

Figure 7.21. a) Representation of the Fuzzy sets of the “in1” (Shoulder_F/E_Angle FIS input), b) 

Simulink implementation of the Membership Function  “in1cluster1”, and c) rule 1 block 

implementation.  
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The “ANFIS Model to PER Signal” block consists of a Fuzzy Inference System block that 

implements the ANFIS(5)(4). The “Shoulder_FlexionExtension”, 

“Shoulder_AbductionAdduction”, “Wrist_SupinationPronation”, “Elbow_FlexionExtension” 

and “From Workspace blocks”, namely “Current_TPL” are connected to the “ANFIS model to 

PER Signal” block, representing the Shoulder_F/E_Angle, Shoulder_A/A_Angle, 

Elbow_F/E_Angle, Forearm_S/P_Angle and TPL ANFIS(5)(4) inputs. The “Current_TPL” is a 

Data Story Write block, which enables to write data to a data store, therefore the output of 

RSSI-prediction LQE, which is the optimal TPL, is stored in this block and later used by the 

PER-prediction LQE to estimate the PER according to the position vector at a given time. The 

output of the “ANFIS Model to PER Signal” is a PER value that is stored in “Current_PER” 

block.  

The “While Iterator Subsystem” block (depicted in Figure 7.24) is the element in the 

Simulink model responsible for determining the TPL that might ensure a RSSI higher than the 

RSSI Threshold and with a higher chance of reaching de receiver (low OP). Although the 

Figure 7.22. Set of MFs of the output variable (left image), which are computed as a linear equation, 

computed through the sequence of blocks illustrated in right image.  

Figure 7.23. Defuzzification process implementation in Simulink. 
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computed RSSI of a potential data packet transmitted in the current scenario conditions at TPL 

given by the “ANFIS Model to RSSI Signal” block is higher than the receiver sensitivity (or 

another defined threshold), in terms of outage, this scenario conditions might not be favourable 

to successful transmissions. The “ANFIS Model to PER Signal” indicates this information 

through the computed PER as follows: high PER means that the optimal TPL must be increased 

in order to increase the hypotheses of the data packet be received in Coordinator node. Data 

packets are postponed when either the “ANFIS Model to RSSI” output is lower than the chosen 

threshold or no TPL ensures the criterion PER lower than a given threshold.    

 Simulation Results   

In this subsection, the simulation results of the PCPS mechanism and the simulation results 

of other mechanisms are presented and compared. Besides the PCPS mechanism, the following 

mechanisms were assessed and the results analysed: 

 Static TPL, in this approach all data packets transmission occurs at maximum TPL 

value allowable in on-body communications (-0.5 dBm); 

 Offline PCPS, this mechanism has the same architecture of the proposed PCPS, as 

depicted in Figure 7.4. However, in this approach, the computation of the optimal 

TPL is performed off-line;   

 Power Control (PC), this mechanism comprises the RSSI-prediction LQE and TPL 

Control blocks of the PCPS. However, it does not perform the PER-prediction LQE, 

implementing only the power control features of the PCPS mechanism; 

Figure 7.24. Inside look of the block called “While Iterator Subsystem” that comprises the ANFIS 

PER model and implements a While cycle in order to recalculate the optimal TPL. 
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 Power Scheduler (PS), similar to previous mechanism. However, only 

PER-prediction LQE mechanism is implemented. Thus, there is no output power 

control and this mechanism postpone when the PER is higher than a threshold value; 

 Reactive Without Scheduler (RWS), it is a mechanism similar to the closed-loop 

control TPCs, where the optimal TPL is selected according to the measured RSSI 

of the previous transmitted data packet and following a dynamic-based TPL Control 

fashion; 

The simulation of these mechanisms is only possible because the link created between the 

Node-PROTACTICAL 7 and the Gateway-PROTACTICAL was extensively characterized 

with respect to the RSSI and PER metrics in all the movements and for all the TPLs. Through 

the experimental data a Look-up Table (LUT) – it maps inputs (arm position angles and TPL) 

to an output (RSSI, PER and optimal TPL) – created in order to dictate the outcome of the 

execution of the mechanisms. In the Static TPL, Offline PCPS, and RWS mechanism the 

computation of the optimal TPL is done off-line and their outcome provided by the LUT. Unlike 

the PCPS mechanism that computes the optimal TPL online and his outcome (RSSI) is provided 

by the developed ANFIS models, the PC and PS mechanism use the RSSI-prediction LQE 

(“ANFIS Model to RSSI Signal” block of the PCPS’s Simulink implementation) and the PER-

prediction LQE (“ANFIS Model to PER Signal” block visible Figure 7.19) model, respectively, 

only to compute the optimal TPL (“TPL_Control_Block”) and to determine the estimated PER 

(used to determine whether the current data packet transmission should be postponed or not), 

respectively. Their outcome (RSSI) is provided by the LUT.     

The comparison of the performance results of all mentioned mechanisms enables the 

validation of each PCPS mechanism functionality, namely the power control and transmission 

scheduler. The various simulations performed during the evaluation process of the various 

mechanisms lasted the equivalent to the time required to perform 50 repetitions of any 

movement. Several movements and combinations have been considered during this process, 

such as:  

1. Shoulder flexion (from angle -135º up to 180º ) followed by extension (from 180º up to 

-135º) of upper limb at shoulder limb while the angle between upper arm and forearm 

is static (as well as the Shoulder_AbductionAdduction angle with value 0º), forming an 

angle of 0º. This movement was considered for three different simulation 

configurations, which differ in the forearm angle. Therefore, this movement is repeated 
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for scenarios where forearm angles are 90º, -90º and 0º (angle static during the 

simulation interval execution);  

2. Shoulder abduction (from 0º up to 145º ) followed by adduction (from 145º up to 0º) of 

left upper limb at shoulder joint while remaining angles are static (both 

Shoulder_F/E_Angle and Elbow_F/E_Angle with an angle of 0º) to static 

Forearm_S/P_Angle of -90º and 0º;    

3. Elbow flexion (from 0º up to 145º) followed by extension (from 145º up to 0º) of the 

forearm at elbow joint while the remaining angles are static (Shoulder_F/E_Angle and 

Shoulder_A/A_Angle with an angle of 0º); 

4. Walking movement is repeated for three different Forearm_S/P_Angle (90º, -90º and 

0º) while Elbow_F/E_Angle remains static (0º). 

In the first three upper limb movements the user is standing while he moves the upper limb 

as described above. Other important aspect, during the execution of the mechanism, is the RSSI 

Threshold (c.f. section 3.2) used by the TPL Control block (c.f. Figure 7.19) to estimate the 

optimal TPL. In this regard, the OP Threshold defined during simulations is 10%, whereas, 

regarding the RSSI Threshold, different values were chosen. To PCPS, offline PCPS and PC 

mechanism simulations the RSSI value -93 dBm was set as RSSI Threshold, whereas the RWS 

mechanism is configure with a RSSI Threshold value of -86 dBm. 

The remaining section analyses the performance of the proposed mechanisms in terms of 

lost data/PER, average TPL and latency in transmissions, as well as the influence of the RSSI 

and PER limit on the mechanism performance.  

In any simulation, the data packets transmission and the execution of the mechanism are 

trigger every 35 ms. Thus, the latency of any mechanism performance is in each simulation 

given by the multiplication of the interval between transmissions (35 ms) by the outcome of the 

division between the number of data packets not sent (data packet transmission postponed or 

data packets transmitted but never received by the receiver) and the number of data packets 

successfully transmitted to the receiver.   

Performance Analysis 

The analysis of the performance of a communication system that transmits data at the 

maximum power allowed in WBANs serves to prove that scaling mechanisms of data packet 

transmissions, as well as the power control schemes employed in each of these transmissions, 

are fundamental to a reliable communication system. The results obtained in terms of PER are 

shown in Figure 7.25 and they suggest that this mechanism (Static TPL) is not able to ensure 
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the reliability levels required in WBANs for part of the case studies considered. During the 

simulations of movements 1 and 4, this mechanism achieved PERs lower than the imposed 

limit, 7%, and 9% respectively. However, for the case study of movements 2 and 3, the PER 

was 15% and 13%, respectively.  

The reported latency values of the Static TPL mechanism are lower than the limits of 

medical and non-medical applications. Average latency of 44.5 ms, 59.0 ms, 48.6 and 43 ms 

are reported for movement 1, 2, 3 and 4, respectively. These results, shows that outages occurs 

with high frequency but for a short period of time.  

According to the performance results of the RWS mechanism, this mechanism ensures 

average RSSI values (-84 dBm, -85 dBm, -84 dBm, -82 dBm for movement 1, 2, 3 and 4 

respectively) higher than the value imposed as RSSI Threshold (-86 dBm) in the performed 

simulations.  

The performance results in terms of average RSSI of this mechanism and the others is 

shown in Table 7.10. It can be seen, from the average TPL used during simulations, that the 

TPL has suffered a significant reduction compared to the transmissions at the predefined power 

level (-0.5 dBm - c.f. Figure 7.26) performed by Static TPL and PS mechanism.  

The RWS solution reduces the SAR, for movements 1, 2, 3 and 4, respectively. However, 

the performance of this mechanism, in terms of reliability is unsatisfactory. The observed PER 

values are higher than the maximum limits announced by working group TG6, and slightly 
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Figure 7.25. Packet Error Rate performance of several mechanisms in different movements. 
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worse than the results of Static TPL mechanism. The best performance of RWS in terms of 

PER occurs for simulations of movement 1, with a PER of 10.40%, while the worst case is 

movement 2 (PER is 18.45%).  

Although the radio channel quality (when translated into the measured RSSI) suggests that 

the current radio channel conditions (RSSI values) are appropriate for performing data 

exchange between nodes, the amount of data lost during this process is quite significant. Thus, 

the use of the RWS mechanism for the study case under consideration would imply the 

degradation of the communication reliability, leading the system to lose data packets and to 

increase the latency and energy consumption on retransmissions of the lost data packets. 

Although the above mechanism has proved to be inefficient in the quest to ensure the QoS 

requirements imposed by applications, this is not the one that has the worst performance. From 

the set of mechanisms considered for analysis, the PC mechanism is the one with the worst 

Table 7.10. Simulation results in terms of average RSSI (dBm) for several mechanisms. 

Mechanism Movement 1 Movement 2 Movement 3 Movement 4 

Static TPL (-0.5 dBm) -77 -83.6 -82 -78 

PCPS -86 -90 -85 -84 

Offline PCPS -89 -91 -85 -85 

PC -89 -89 -90 -90 

RWS -84 -85 -84 -82 

PS -78 -84  -83 -76 

 

Figure 7.26. Latency performance of the several mechanism under consideration for different 

movements. 
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performance in terms of PER. With respect to the average PER, we can see that performance 

results of this mechanism are much higher than the OP Threshold. PER values of 19%, 17%, 

27% and 22% were obtained for study case movements 1, 2, 3 and 4, respectively. The poor 

performance of this mechanism occurs due to the RSSI value set as a boundary in the TPL 

Control mechanism is quite close to the sensitivity of the radio module, neglecting the 

small-scale fading effect on the radio channel quality.  

The average TPL values presented in Table 7.11 show that the PER values achieved by the 

PC mechanism are clearly lower than those achieved by the RWS mechanism. In summary, the 

RSSI Threshold is very important in the implementation of a solution that aims to control the 

signal power and ensure energy efficiency in the sending of the data packet.  

The results of the performance of the PS mechanism proved the usefulness of the scheduling 

functionality of the proposed developments. From the reliability point of view, it can be seen 

that the PS mechanism shows the best result for all study cases considered. Through this 

functionality, the proposed mechanism might be able to reduce the amount of data packets lost, 

achieving PER values of 3%, 2%, 5% and 3% on average for movements 1, 2, 3 and 4, 

respectively. These values are below the minimum required PER value in WBAN applications 

as well as the values reached by other mechanism in the same test conditions. However, the PS 

mechanism performance in terms of latency was sacrificed to increase the reliability of the 

transmissions. Reported values, of 315 ms, 350 ms, 292 ms and 224 ms for movement 1, 2, 3 

and 4 respectively, are above the limits maximums acceptable in medical and non-medical 

applications.  

The OP Threshold parameter enables to deal with the trade-off between reliability and 

latency in the transmission. The performance results of the PS mechanism suggest that the 

"PER-prediction LQE" and "While Iterator Subsystem" blocks are key blocks in the proposed 

implementation of the PCPS mechanism, since permits to identify the instant in which data 

packets are not advisable and, as a consequence, these transmissions can be postponed to future 

instants.  

Regarding the performance of the PCPS mechanism, the average values achieved in terms 

of the PER, TPL and RSSI values are between the results obtained by the PC and PS 

mechanism. This performance degradation can be explained by the inclusion of transmission 

power control functionality. The results of the PC mechanism suggest that the RSSI Threshold 

value is quite close to the sensitivity of the radio module, which reduces the communications’ 

reliability. Therefore, situations in which the TPL Control suggests a TPL that leads to a PER 

lower than the OP Threshold without having to resort to the "While Iterator Subsystem" block 
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are propitious to failed transmissions due to the RSSI Threshold considered during the 

simulations. This mechanism respects the WBAN reliability requirement in movement 2 and 4, 

achieving a PER value of 2% of 6% respectively.  

It can be seen, from the TPL, PER and latency point of view, that the offline PCPS shows 

better results than the PCPS mechanism for most of the study cases. However, the difference 

with the results given by the PCPS mechanism is relatively small in simulation of movement 4, 

while in movement 2 the PCPS mechanism shows better performance than offline PCPS in 

terms of average values of PER, TPL and RSSI. Relative to the remaining case studies, namely 

movement 1 and 3, unlike the PCPS mechanism, the offline PCPS meets the WBAN 

requirements in terms of reliability, with PER values lower than 10% (worst case occurs in 

movement 3, with a PER of 5% due to an error on ANFIS models prediction). 

In summary, the Static TPL performance shows that the communication systems that do not 

rely in any TPC, scheduler or hybrid approach to optimize transmissions are not able to meet 

the QoS requirements of WBAN applications. The chosen RSSI Threshold for PC mechanism 

might be the explanation of the poor performance presented by PC mechanism in terms of PER 

for the majority of the study cases. Similar to PS, offline PCPS and PCPS mechanism, before 

outputting the optimal TPL and after the “RSSI-prediction LQE” and TPL Control output the 

optimal TPL this value is updated by the “While Iterator Subsystem” block, the average TPL 

is updated and, as a consequence, the number of lost data packets is lower.  

The offline PCPS shows better results than all the other mechanisms, however, regarding 

the PER results of the mechanism, this outperforms the PS in only 1-3%.  

The PS mechanism increases the latency on communications in order to reduce the amount 

of data packet lost. The larger latency (observed in simulations of movement 1) was 105 ms. 

Although the scheduler functionality of the proposed mechanism seems very efficient, the 

comparison between achieved PER of the offline PCPS and the PCPS mechanism (values 

chosen as RSSI Threshold and OP Threshold during the simulation was identical on both 

mechanisms) in simulations of movement 1 and 3 might suggest that the residual errors of the 

ANFIS models selected as RSSI- and PER-prediction LQE reduce the performance of the 

Table 7.11. Simulation results in terms of average TPL (presented in dBm) for several mechanisms. 

Mechanism Movement 1 Movement 2 Movement 3 Movement 4 

Static TPL (-0.5 dBm) -0.5 -0.5 -0.5 -0.5 

PCPS -10 -6 -5 -7 

Offline PCPS -12.4 -10 -7 -12 

PC -14 -7 -11 -15 

RWS -5.6 -3.8 -5.2 -7.7 

PS -0.5 -0.5 -0.5 -0.5 
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proposed me. Therefore, the values set as RSSI Threshold and OP Threshold influences the 

performance of the PCPS mechanism.        

Influence of the PCPS’ configurable parameters on PCPS’s performance   

Figure 7.27 shows the results for PER in relation to the value chosen as RSSI Threshold of 

the proposed TPL Control block. These results relate to the simulation of movement 1, since 

the PCPS mechanism configuration (RSSI and OP Threshold with values -93 dBm and 10%, 

respectively) tested above in this study case leads to a PER value higher than maximum 

acceptable. During the simulations, a 10% PER value was assigned to the configurable 

parameter OP Threshold, which remained unchanged during all simulations while PCPS 

mechanism with different RSSI Threshold values were tested, starting with -78 dBm and 

incrementing by 2 dBm between simulations until the RSSI Threshold was equal to the received 

model sensitivity (-96 dBm). It can be seen that the value PER decreases with the increasing of 

the RSSI Threshold. It happens due to the fact that the margin between the RSSI Threshold and 

the receiver sensitivity increases, thus, the small scale fading is less likely to drive the radio 

channel to outage and, as a consequence, the number of data packets lost increases.  

The minimum RSSI Threshold that enables the proposed mechanism to ensure a PER<10% 

is -92 dBm in the study case under consideration. The lower obtained PER value is 3.645% and 

occurs when - the RSSI Threshold value is set to -78 dBm. However, changing the RSSI 

Threshold also affects other performance metrics as shown in Table 7.12. This table presents 

the TPL, RSSI and latency in relation to the several RSSI Threshold values tested during the 

Figure 7.27. Performance of the PCSP in terms of PER for the simulation of the movement 1. PCPS 

mechanism is configured with 10% as OP Threshold while different RSSI Threshold were tested. 
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simulations of the movement 1. It can be seen that the larger the RSSI Threshold value is, the 

lower the average TPL value is; increasing the RSSI Threshold value will translate into an 

increasing of the average RSSI value; the average latency value also increases with the 

increasing of the RSSI Threshold value. Therefore, increasing the RSSI Threshold value might 

positively affects the PER and RSSI values, but the TPL value increases, meaning that the SAR 

is negatively affected by high values of RSSI Threshold.  

As the different in terms of TPL and RSSI of the minimum and maximum tested RSSI 

Threshold is significant (≈ -10 dBm and ≈ -8 dBm, respectively) a RSSI Threshold value that 

offers a satisfactory balance between metrics must be chosen. From this range of RSSI 

Threshold values, -86 dBm was the one selected for the RSSI Threshold since it is the one that 

offers the best balance between the several metrics. The observed average TPL and PER after 

execution of the PCPS mechanism configured with a RSSI Threshold of -86 dBm is shown in 

Table 7.13. Therefore, -86 dBm is the value chosen for the RSSI Threshold in the TPL Control 

block while different OP Threshold values must be tested until achieve his optimal value.  

Several simulations for different OP Threshold values were executed to analyse the 

influence of this parameter on the performance of the proposed mechanism. Figure 7.28 shows 

the simulation average PER value for several movements. In summary, the PER value increases 

with the increasing of the OP Threshold value. Although the PER for low OP Threshold values 

is almost non-existent, these limits lead to less satisfactory results in terms of average TPL and 

latency values. High OP Threshold values result in average PER values higher than the PER 

reference value of 10 %, being the unique exception the PER value for the movement 3, where 

the maximum registered PER value is 9.8%, which occurs to the OP Threshold value of 18%. 

The maximum OP Threshold value that ensure average simulation PER values lower than 10% 

for each movement are 18%, 18%, 20% and 16% for movement 1, 2, 3 and 4, respectively.   

Table 7.12. PCPS mechanism performance results for metrics TPL, RSSI and latency in relation to the RSSI 

Threshold (OP Threshold is 10 % and remained unchanged between simulations). 

RSSI Threshold (Movement 1) TPL RSSI Latency 

-78 -1.31 -79.3002 0.294 

-80 -1.95 -80.39 0.294 

-82 -2.88 -80.91 0.294 

-84 -3.92 -81.172 0.294 

-86 -6.24 -82.742 0.28 

-88 -6.35 -83.91 0.28 

-90 -7.717 -84.384 0.28 

-92 -9.266 -85.712 0.28 

-94 -10.273 -86.772 0.28 

-96 -11.5033 -87.159 0.28 

 



Chapter 7 – Packet Scheduler for On-Body Communications in WBANs  

 

199 

Regarding the latency, it can be seen in Figure 7.29 that low OP Threshold values result in 

higher latencies values, as the number of situations where both criterions (RSSI and PER higher 

than thresholds) are not met increase. An OP Threshold value of 2% leads to the maximum 

average latency values observed in this study, namely 0.5838 s, 0.5425 s, 0.455 s and 0.525 s 

for movement 1,2 ,3 and 4, respectively. At the same time, the minimum average latencies in 

communications are observed for simulations of the PCPS mechanism configured with OP 

Threshold value of 20%. Observed values are 0.175 s, 0.243 s, 0.202 s and 0.105 s respectively 

for movement 1, 2, 3 and 4.  

The effect that the OP Threshold value has on TPL and RSSI metrics for movement 2 is 

represented in Table 7.14. It can be seen that both average TPLs and RSSI values decrease with 

the increase of the OP Threshold value. This trend is also observed in the remaining 

movements.  

High OP Threshold values enable the “While Iterator Subsystem” block to choose from a 

higher range of TPL values at each time packet that might ensure a PER value lower than the 

OP Threshold value. Thus, the lowest values of this value range of TPL will be chosen as the 

optimal TPL value, which results on lower average simulations TPL values and, as a 

Table 7.13. PCPS mechanism – configured with a RSSI Threshold and OP Threshold of -86 dBm and 10%, 

respectively – performance in terms of average TPL and PER. 

Movement 1 TPL (dBm) PER (%) 

1 -6.24 6.32 

2 -1.56 0 

3 -4.208 7.84 

4 -6.72 5.53 
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consequence, on lower RSSI values. However, these chosen TPL values reduce the reliability 

of the communication system, by increasing the simulation average PER value.  

A PCPS mechanism configured with a RSSI Threshold value of -86 dBm and an OP 

Threshold value of 12% can reach satisfactory results to all the metrics in all the study cases 

analysed. This configuration, for movement 1, show average values for PER, TPL, latency and 

RSSI of 5.24%, -6.8 dBm, 0.245 s and -84.4 dBm, respectively. For movement 2, the average 

values of 2.1%, -2.16 dBm, 0.36 s and -88.2 dBm were obtained for PER, TPL, latency and 

RSSI. The PCPS mechanism also provides benefits for movement 3, average values of 5.89%, 

-4.62 dBm, 0.303 s and -85.9 dBm were obtained for PER, TPL, Latency and RSSI, 

respectively. Finally, this PCPS mechanism configuration when employed to simulation of the 

movement 4 shows satisfactory performance in terms of the average values for PER (7.32%), 

TPL (-6.72 dBm), latency (0.154 s) and RSSI (-82.63). 
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Figure 7.29. Latency for the PCPS mechanism configuration. OP Threshold values from the range 2-20% 

were tested. 

Table 7.14. Latency and TPL values obtained after testing several PCPS mechanism configurations, differentiating 

in the OP Threshold value selected from the range 2-20%, in the simulation of movement 4. 

OP Threshold (%) TPL (dBm) RSSI (dBm) 

2 -3.45 -79.22 

4 -4.82 -80.45 

6 -6.07 -81.21 

8 -6.24 -81.78 

10 -6.72 -82.29 

12 -6.85 -82.63 

14 -7.1 -82.66 

16 -7.51 -82.79 

18 -7.49 -83.12 

20 -7.72 -83.93 
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The results above enabled to conclude that the PCPS mechanism with the previous 

mentioned configuration is able to improve the performance of the communications subsystem, 

while lower TPL values are used to transmit data packets. The PCPS mechanism shows a better 

PER value of 1 .76%, 12.9%, 8.11% and 2% for movements 1, 2, 3 and 4, respectively. 

However, the relation between simulation average PER and latency shows that the proposed 

PCPS mechanism is able to improve the reliability of the communications at the expense of 

latency. The PCPS mechanism shows an increase in latency of 0.196 s, 0.301 s, 0.255 s and 

0.111 s for movement 1, 2, 3 and 4, respectively. The latency observed in Static TPL is due to 

the high number of data packets lost in transmissions, but the channel is on outage for short 

period of times, while the latency observed in PCPS mechanism is due to the delay assigned to 

data packets transmission, resulting in an increasing of reliability, reduced SAR and lower 

interferences with coexisting nodes or networks.    

 Summary  

In this chapter, a solution, designated PCPS mechanism, is proposed to time-variant radio 

channel quality WBAN links, such us the Node-PROTACTICAL 7 of the 

WBAN-PROTACTICAL. This mechanism delays the data packets to instants in which the 

radio channel quality is more favourable to a successful data packet deliver. In addition, the 

PCPS mechanism can adjust the radio module output power whenever possible to make the 

communications more energy efficient.   

Can the on-body radio channel quality (RSSI and Outage occurrences) be anticipated 

through a model? 

The advantages of Neural Networks and Fuzzy Logic soft computing techniques to model 

the on-body channel were explored. Several ANFIS models were built, which were assessed 

and compared through analysis of their RMSE, MAE and R2 results. Two models were selected 

to perform the task of RSSI- and PER-prediction LQEs in the PCPS mechanism (c.f. Figure 

7.4). These ANFIS models show good fitting to the empirical data collected during the 

characterization of every user’s movement, with a training error of 3.25 and 6.39, respectively. 

The checking and testing error values validate the generalization capability of these ANFIS 

models. Their values are not significantly different from the training error. By using the selected 

soft commuting techniques and following the methodology depicted in Figure 7.5, it was 

possible to build a model capable of describing the on-body channel in function of the relative 

position of the arm, the body posture and the scenario environment.   
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How can such a model be used to reduce the PER and minimize the energy consumption 

in on-body communications?   

The proposed PCPS mechanism follows the operation principle depicted in Figure 7.4. It is 

based on three blocks: RSSI-prediction LQE, PER-prediction LQE and TPL Control. First, the 

PCPS mechanism (RSS-prediction LQE) estimates the RSSI value assuming that the next 

transmission is performed at -0.5 dBm output power. The TPL Control determines the optimal 

TPL value, implementing a dynamic-based approach and relying on the linear relation between 

RSSI and TPL values, analysed in section 6.2. Thereafter, the PCPS mechanism executes the 

PER-prediction LQE block. This block output suggests whether the transmission of data 

packets is advisable or not. If the PER-prediction LQE output value is larger than the OP 

Threshold value, the data packet transmission is postponed to a future instant. When the 

PER-prediction LQE output value is lower than the OP Threshold value, a closed-loop control 

based TPC approach is executed to determine the minimum TPL value that will ensure an 

outage probability and a predicted RSSI value inferior to the RSSI Threshold and OP Threshold 

value, respectively.     

The proposed PCPS mechanism has shown to have a better performance than mechanisms 

that only exploit the multiple transmission levels provided by the current radio transceivers. 

The packet scheduler functionality of the proposed PCPS mechanism is simulated in several 

scenarios and its performance analysed through the simulation results of the PS mechanism. 

The PS mechanism implements the packet scheduler functionality without applying any power 

control. From the set of mechanisms tested, the PS is the one that has shown better simulation 

PER average values, ensuring PER values lower than 6% for all movements. The PCPS 

mechanism shows unacceptable PER average values in some scenarios, for instance, movement 

1 and 3. By tuning of the RSSI and OP Threshold values in the TPL Control and “While Iterator 

Subsystem” block, respectively, the proposed PCPS mechanism’s performance in terms of PER 

average value is improved. Increasing the RSSI Threshold value from -93 dBm to -86 dBm 

resulted in better PER average value of 3.87%. Moreover, by tuning the OP Threshold value 

the performance of the mechanism in terms of the PER metric is also improved at the expense 

of the latency, since the PCPS mechanism shows acceptable PER values for all the simulated 

movements (5.24%, 2.1%, 5.89% and 7.32% for movements 1, 2, 3 and 4, respectively).  

The PCPS mechanism showed similar performance to the PS mechanism in terms of PER 

results, but with much lower TPL average values (less 6.3, 1.96, 4.12 and 6.25 dBm for 

movement 1, 2, 3 and 4, respectively) and similar latency values (the PCPS mechanism reduced 

the latency by 0.068 s, 0.01 s and 0.0684 s for movement 1, 2 and 4).          
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CHAPTER 8 

 CONCLUSION AND FUTURE WORK 

One of the topics addressed by this thesis focused on the research objective (RO) 

1- Development of a WBAN for Firefighter Personal monitoring. In chapter 4, a WBAN 

architecture to enhance the firefighter’s occupational health and safety was proposed and 

described. This network enables its integration with other computational and control 

technologies within a Cyber Physical System. The communication within the 

WBAN-PROTACTICAL is performed using a wireless approach from the Edge of the Network 

nodes (Node-PROTACTICAL) to a Coordinator node, designated Gateway-PROTACTICAL 

in the context of the WBAN-PROTACTICAL. Several Edge of the Network nodes located at 

different parts of the garment using only wireless communication technologies were designed 

and developed, this approach is a unique solution among the state-of-the-art smart Personal 

Protective Equipment (PPE).  

Although there are different communications scenarios in WBANs, the focus of this thesis 

is on RF communications among wearable nodes, since this type of nodes are not well studied 

for wireless communications. Several research works in the fields of the MAC layer and routing 

protocols for traditional networks such as WSNs have tried to apply different approaches to 

optimize the intra-WBAN reliability, but they have failed due to WBAN’s quite unique features 

when compared to the traditional wireless networks. Therefore, before developing strategies to 

optimize the on-body communications, the second part of thesis was focused on the main source 

of communication unreliability: the fading of the transmission signal.  

To achieve the RO 2 - Establish a better understand of the impact that WBAN operation 

scenarios have on intra-WBAN communications, an experimental radio channel 

characterization based on several scenarios was carried out. In comparison to other research 

works in this filed, this fading analysis covered a wider range of WBAN operation conditions 

and has followed a different approach, since a decomposing of the measured on-body signals 

into radio channel gain and large- and small-scale fading was adopted. The main conclusions, 

within the scope of chapter 5, for the proposed WBAN-PROTACTICAL are: 

 User activity is the predominant effect to the time-variation of on-body 

communication channels; 
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 The on-body radio channel is a slow fading radio. The large-scale fading remains 

unchanged during each data packet transmission period and small magnitude 

differences between the fading magnitudes of two to three consecutive data packets 

were observed;    

 Node-PROTACTICAL 4 is not subjected to variable path-loss (values near to -50 

dB) and fading (magnitudes are low) regardless of the test scenario. The results in 

terms of these parameters are similar for all operation conditions. A static and 

pre-defined TPL can be adopted (for all covered scenarios) to this radio channel. 

Transmissions at a TPL of -22 dBm (resulting in ≈50% energy saving in relation to 

transmissions performed at -0.5 dBm) assure the reliability requirements in all 

considered scenarios;  

 The Edge of the Network nodes located at the user’s limbs, such as 

Node-PROTACTICAL 7, are the most affected by the user activity. A wide range 

of radio channel gain values and fading magnitudes above -18 dB were observed at 

all scenarios;  

 As the Node-PROTACTICAL 2 is always in NLOS situation, it has the lowest radio 

channel gain values but with significant signal fading magnitudes. This node is not 

capable of meeting the WBAN application requirements in terms of reliability. So 

a multi-hop topology was explored; 

 The large-scale signal fading effect is more substantial for the indoor scenarios, as 

proved by the obtained signal fading rates. Moreover, the energy contribution of the 

multi-path components on the signal increases the radio channel gain for some 

operation conditions.  

Several TPC mechanisms have been addressed in the literature to optimize the 

Quality-of-Service (QoS) requirements in an energy-efficient way. The sate-of-the-art TPCs 

were addressed in chapter 3, the discussion proved that there are still several challenges and 

open issues in this field of study. There are two main types of TPC mechanisms: (1) 

Closed-Loop Control based and (2) Posture and Motion Detection. The most suitable solutions 

for updating the power control according to the radio channel conditions in dynamic scenarios 

are based on closed-loop control. However, due to the additional control packets required, there 

is a negative impact on the traffic overhead. The majority of the TPC mechanisms based on the 

posture and motion detection employ inertial sensors to estimate the radio channel conditions 

and select the optimal transmission power level (TPL). These solutions prove to be agile in 
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reaching the optimal TPL, however the current developments are only applicable to static 

scenarios (no user movement).  

The remaining chapters of this thesis focused on mechanisms that have potential to improve 

the QoS requirements in an energy-efficient way were described and analysed and some 

scientific contributions have been provided.

In chapter 6 the RO 3 - Mechanism to optimize the metrics of interest in the scope of this 

thesis in Emergency Traffic was addressed and a novel TPC mechanism was proposed. The 

proposed solution aims to improve the Packet Reception Rate metric and minimize the energy 

consumption, without sacrificing the latency on data packets transmissions, for scenarios when 

the user is performing periodic movements such as walking or running, i.e., dynamic periodic 

scenarios. Daily routines involve significant amount of periodic movements, such as walking, 

running or jogging. For instance, according to [60], an adult walks on average one hour per day, 

which corresponds to between 6000 and 7000 steps.  

Chapter 6 started by characterizing the fading signal while the user (tests with several users 

were carried out) was walking. The analysis of the collected empirical data drove the following 

conclusions: 

 There is a significant temporal correlation between the user movements and the 

fading signal while the user performs periodic movements; 

 The fading signal follows a regular pattern, with the fading magnitude showing 

significant fluctuations. A peak-to-peak fading magnitude between 20 and 25 dB 

and Link Margin gains (difference between fading magnitude and receiver 

sensitivity) between 25 dB and 30 dB, and between 5 dB and 15 dB were reported 

at outdoors and indoors respectively. While at indoor scenarios the Link Margin 

gains are inferior, and the fading signal is more unstable; 

 For all the users and scenarios (i.e. for all the tests made) the number of data packets 

lost by the proposed P-TPC mechanism was very low; 

 As the fading and acceleration signals follow a regular pattern, past samples can be 

used to forecast future fading signal values.      

There are a few research works, such as [130], [137] and [145], that have addressed 

solutions for a similar operation scenario. However, their purpose is to detect the instant within 

a gait cycle that the maximum fading magnitude occurs. These mechanisms, which are very 

complex (preventing its implementation in resource constrained Edge of the Network nodes 

such the ones used on the proposed PPE), rely in local accelerometer information to track the 
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user’s gait cycle period. A previous fading signal characterization allowed the identification of 

the gait cycle instant when the maximum fading signal amplitude occurs. Therefore, data packet 

transmission are delayed in order to be transmitted at that gait cycle instant since this moment 

offers more changes of a successfully deliver of the data packet. The Edge of the Network nodes 

receive control packets from the Coordinator node that contain the RSSI value of the last 

transmitted data packet. This RSSI value can be used in order to update the TPL by 

implementing a closed-loop control architecture. 

 Based on the above observations, a novel TPC mechanism was proposed employing a 

mixed operation principle (closed-loop control together with Posture and Motion detection) and 

targeting resource constrained nodes.  

The proposed mechanism uses the on-body communication RSSI values to approximate the 

fading signal during the user’s gait cycle and, simultaneously, the acceleration signal (from 

inertial sensors) is used to determine the instant within the gait cycle. By mapping the measured 

RSSI samples into the gait cycle, an interpolation function was derived, which is used to 

anticipate the fading signal magnitude for all instants of a gait cycle. The RSSI values are 

gathered based in the closed-loop control operation principle. Only 15 RSSI values are required 

to reach a satisfactory fading signal approximation. This approach results in an increasing of 

3% on the traffic overhead. This results is insignificant when compared to the increases between 

30 and 40% achieved by the closed-loop control based TPC mechanisms. A modified version 

of the DTW algorithm enabled to drastically reduce the complexity of the original DTW 

algorithm. The user’s stride accelerations and gait cycle were computed using two anchors for 

each gait cycle, corresponding to the extremes of the acquired acceleration signal. By using the 

Euclidean distance, the proposed mechanism can identify and determine accelerations on the 

user’s stride and identify how they affect the period of the on-going gait cycle. This approach 

proved to be of very low complexity, thus suitable to resource constrained devices, and very 

effective (please see results obtained in section 6.4). The proposed P-TPC mechanism was 

incorporated in the Z-stack (Texas Instruments communication stack) integrating the MAC and 

the PHY layers.       

Experimental results show that the proposed TPC mechanism is capable of achieving an 

energy consumption reduction up to 30% per data packet transmitted, when compared to data 

packet transmissions performed at maximum TPL. Furthermore, this thesis research work 

shows that all WBAN application requirements identified by IEEE 802.15.6 TG can be ensured 

in an energy-efficient way without sacrificing the communications reliability and the latency 

(since data packets are not delayed). Even though this solution is limited to applications where 
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the user performs periodic movements, when no periodic movement is detected, the mechanism 

can follow a closed-loop control based TPC. The P-TPC solution meets all the features expected 

from TPC mechanisms: R1-R9 (c.f. chapter 3). 

The last part of this thesis (chapter 7) addressed a packet scheduler mechanism denominated 

PCPS in order to answer the RO 4 - Mechanism to optimize the metrics of interest in the scope 

of this thesis in Regular Traffic. This solution also controls the TPL according to the current 

radio channel conditions. The radio channel characterization has shown that the relative 

position of the user arm (described as the combination of the angles of the different segments 

of the arm) has a significant influence on the RSSI value and the radio channel outage. In fact, 

for some arm postures successful data packets transmission is impossible (even at maximum 

allowed TPL), since radio channel conditions are not favourable. In such scenarios, the more 

wise action is to postpone the data packet transmission. This will increase the communication 

reliability, and the latency on transmissions. Therefore, two ANFIS models to estimate the RSSI 

value and outage probability of a transmission based on user information (arm posture, body 

posture and operation environment) were developed. This solution, which was assessed through 

simulations, was able to ensure the reliability (average PER is ≈4%, while static TPC 

transmissions is ≈12%) requirements and Specific Absorption Rate (since average TPL is 

between -10 to -5 dBm). An average increase in the order of 0.215 s in relation to the 

transmission at a static TPL (-0.5 dBm) were reported. The improvement in terms of energy 

consumption was not analysed since this solution was not experimentally tested. The PCPS 

mechanism have probed that unreliable links can be made reliable if data packets are 

transmitted in instants in which the radio channel quality is favourable to successful data packet 

delivery    

Some future work must be performed in order to help WBAN applications overcoming 

some issues and challenges that have been hampering wearable systems of reaching their full 

potential.  

In the context of the PROTACTICAL PPE, other tools can be developed for a better 

awareness of the firefighting challenges, as well as, to improve user safety by taking advantage 

of the proposed CPS approach. There are various examples of such tools: generation of escape 

routes, detection of flashover events and generation and analysis of biometric parameters.  

The advent of CPS applicable to WBANs can also help TPC/Packet Scheduler mechanisms 

to improve their effectiveness in WBANs. As stated before, scenarios prone to inter-network 

interferences might drastically affect the efficiency of the proposed P-TPC and PCPS 

mechanisms, so mechanisms that explore channel-hopping schemes might be able to avoid 
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interference due to the radio channel sharing. This type of schemes are efficient in scenarios 

with low density of networks (they resort to cooperation between Coordinator nodes of different 

WBANs), but their performance decrease with the increasing of networks density. In this 

context, the CPS approach (which offers a holistic view over all the WBANs of a system) 

proposed in this research work and the location and tracking algorithm (addressed in [191] and 

developed in the context of the PROTACTICAL project) can be explored to develop a 

channel-hopping mechanism that consider the relative movement of WBANs with respect to 

each other. Thus, WBANs operating within a communication region around of each other 

(where potential transmissions are prone to fail) must manage their transmissions rate and TPLs 

to reach the maximum network utility and/or, wherever applicable, assign different radio 

channels to each of the coexisting WBANs to avoid RF interference.    

Some research work must be carried out in order to ensure the applicability of the proposed 

PCPS mechanisms in a wide range of conditions. First, the generalizability of the results must 

be proven, thus, many more users should be considered during the radio channel 

characterization phase. Moreover, a very simplistic approach was adopted to determine the arm 

posture in real-time, thus not all degrees of freedom of the user’s arm, as well as, user’s postures 

were considered during the experimental trial (c.f. subsection 7.3.2). In this regard, the use of 

more than one inertial sensor is required. Processing of multiple sensor readings is a very 

challenging task, but it might allow the characterization of more user movements, enlarging the 

range of scenarios in which the proposed ANFIS model approach is able to efficiently describe 

the on-body radio channel.  
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