
 

 

 

 

 

 

 

 

 

Bárbara Andreia Andrade Barbosa 

 

Inferring epidemiology and 

microevolution of Mycobacterium 

tuberculosis strains from deep-sequencing 

data of patient samples 

 

 

 

 

 

Dissertação de Mestrado 

Mestrado em Bioinformática 

 

Trabalho efetuado sob a orientação de 

Professor Doutor Douwe Molenaar 

Professora Doutora Isabel Rocha 

 

 

 

 

 

 

Janeiro de 2017 



 

ii 

DECLARAÇÃO 

 

Nome: Bárbara Andreia Andrade Barbosa 

Endereço eletrónico: barbara.barbosabrt@gmail.com   

Telefone: +351917878136 

Bilhete de Identidade/Cartão do Cidadão: 14312165 

Título da dissertação: Inferring epidemiology and microevolution of 

Mycobacterium tuberculosis strains from deep-sequencing data of patient samples 

Orientadores: 

Professor Doutor Douwe Molenaar, Vrije Universiteit Amsterdam 

Professora Doutora Isabel Rocha, Universidade do Minho 

 

Ano de conclusão: 2017 

Mestrado em Bioinformática  

 

 

 

 

 

 

 

 

 

 

 

 

DE ACORDO COM A LEGISLAÇÃO EM VIGOR, NÃO É PERMITIDA A 

REPRODUÇÃO DE QUALQUER PARTE DESTA TESE/TRABALHO. 

 

 

Universidade do Minho, _____/_____/_________ 

 

Assinatura: 



 

iii 

ACKNOWLEDGEMENTS 

Upon completing this project, first I would like to thank my supervisors, Dowue 

Molenaar and Isabel Rocha, for allowing me to join this fantastic project, for all patience, 

sympathy, help, guidance and advice towards this work and my future. 

I would like to thank Indra Bergval and Sarah Sengstake for all help, ideas, instruction 

and for being two amazing persons to work with. I wish you all the best! 

To my friends for their love and caring, for all the good moments, for all the craziness, 

for always being there for me, for everything.  

To mom and dad, for supporting me in all decisions, for making me who I am today, 

thank you for being the best parents in the world! 

To my brothers, for never disappointing me, for being my brothers and friends, for all 

the jokes, the annoyances, for always being by my side. I’m proud of you! 

To my grandpa, for being the sweetest person in the world. 

A sweet special thanks to Jorge, for being always there for me, for being the amazing 

person you are, for all the help, patient, love, everything. You make me a better person. 

To the Netherlands for making me a super active person by riding a bike every day. 

Dank u wel. Gezellig! 

Finally, to everyone else that turned this two years into two fantastic year.  

 

 

 

 

 

 

 

“How wonderful it is that nobody need wait a single moment before 

starting to improve the world.” – Anne Frank





 

v 

RESUMO 

A Tuberculose provocada pelo agente patogénico intracelular Mycobacterium 

tuberculosis é uma doença infeciosa que continua a ser um dos maiores problemas de saúde 

global, estimando-se que aproximadamente um terço da população tenha estado em contacto e 

esteja infetada de forma latente.  

Whole genome sequencing surgiu como um método revolucionário da investigação de 

genomas de micobactérias. A sua aplicação têm proporcionado conhecimentos inovadores 

relativamente à evolução da Mycobacterium tuberculosis devido a estudos recentes que 

reportam resultados contraditórios sobre a sua estabilidade genómica, particularmente durante 

a evolução da sua resistência a antibióticos em linhagens consideradas modernas. 

Para abordar esta questão, focámo-nos na análise e compreensão dos fatores genotípicos 

e epidemiológicos que influenciam a capacidade de disseminação e o fitness desta bactéria 

através da análise de dados deep-sequencing provenientes de amostras de 85 pacientes 

provenientes da Ásia Central. As amostras pertencem a um estudo maior composto por 399 

isolados clínicos de pacientes recentemente diagnosticados com tuberculose pulmonar 

recolhidas entre 2012 e 2013 no National Center of Tuberculosis and Lung Diseases (NCTLD) 

em Tbilisi, Geórgia. 

Todas as amostras foram mapeadas contra a estirpe H37Rv. Para a reconstrução de 

modelos de evolução molecular, focámo-nos apenas em single-nucleotide polymorphisms e 

utilizámos dois métodos distintos, Maximum Likelihood e Bayesian Inference.  

Cerca de 84% da nossa população pertence à linhagem Beijing, associada com a 

propagação em massa de estirpes resistentes a múltiplos antibióticos. Além disso, as mutações 

no rpoB e rpoC foram associadas à resistência a rifampicina e mutações na região pncA também 

demonstraram estar relacionadas com a resistência à pirazinamida. 

Verificou-se ainda que a quantidade de variabilidade genética acumulada dentro de um 

paciente pode ser tão alta quanto a observada entre pacientes ao longo, do que supomos ser, 

uma cadeia de transmissão. Todos os pacientes que foram acompanhados durante tratamento 

apresentaram variabilidade genética. 

O nosso estudo acrescenta novos dados relativamente à variabilidade entre diferentes 

estirpes de Mycobacterium tuberculosis tendo em conta um panorama de microevolução intra 

e inter paciente. 
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ABSTRACT 

Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis is an 

infectious disease that remains a global public health problem where approximately one-third 

of the world population have been at least in contact and is latently infected with. 

Whole genome sequencing has revolutionized the investigation of mycobacterial 

genomes. The application of this technology has provided innovative understandings into the 

evolution of the Mycobacterium tuberculosis due to recent studies reporting conflicting 

findings on its genomic stability, particularly during the evolution of drug resistance in modern 

lineages.  

To address this question we focused on understanding the genotypic and 

epidemiological factors that influence the spread and fitness of this bacterium by analyzing 

deep –sequencing data of 85 patient samples from Central Asia. Samples were part of a larger 

study of 399 clinical isolates of newly diagnosed patients with pulmonary TB collected between 

2012 and 2013 at the NCTLD in Tbilisi, Georgia. 

All the samples were mapped against H37Rv strain. We focused on single-nucleotide 

polymorphisms to reconstruct models for molecular evolution, using Maximum Likelihood and 

Bayesian Inference methods. 84% of our population belongs to the Beijing lineage, associated 

with the massive spread of multidrug-resistant strains. Relationship between mutations on rpoB 

and rpoC were associated with drug resistance to rifampicin and mutations on pncA region also 

demonstrated to be related with drug resistance to pyrazinamide. 

Furthermore we found that the amount of variation accumulated within a patient can be 

as high as that observed between patients along, what we assume to be, a chain of transmission. 

Intrapatient diversity was found in all of the follow up patients.  

Our study adds new data to the understandings of the variability among Mycobacterium 

tuberculosis strains in an intra and interpatient microevolution scenario. 

 

KEYWORDS: Tuberculosis; Whole genome sequencing; Microevolution; Phylogeny; 

Multidrug resistance. 
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1. INTRODUCTION 

1.1 Context and Motivation 

Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis 

(MTB) is an infectious disease that remains a global public health problem (Torrado & 

Cooper 2010; Lewandowski et al. 2015; da Costa et al. 2014). Indeed, the World Health 

Organization (WHO) estimates that approximately one-third of the world population have 

been in contact and is latently infected with MTB (Bozzano et al. 2014; Seo et al. 2014). 

Being one of the biggest menaces to human health in a global scale, there is a crucial 

need to increase our knowledge on the molecular and systemic mechanisms behind the 

pathological success of this bacterium. Here we will use a combination of genomics, 

bioinformatics and systems biology approaches to understand the factors that influence this 

success. The improved understanding of key success factors in growth and transmission of 

MTB will provide additional or improved therapeutic approaches. 

1.2 Main aims 

Understanding the genotypic and epidemiological factors that influence the spread 

and fitness of MTB by analyzing data consisting of raw Illumina and Roche 454 genome 

sequences of 85 strains of MTB isolated from patients in Central Asia. These will be mapped 

to existing reference whole-genome sequences and the following aims will be pursued:  

• Characterization of the genomic variants and comparison to known variations 

in MTB;  

• Reconstruction of lineages from Central Asia and comparison to known 

lineages; 

• Reconstruction of mutation and selection o4f strains in the host; 

• Reconstruction of transmission history of lineages; 

• Setting up and testing hypotheses concerning spread and fitness. 
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2. STATE OF THE ART 

2.1 Tuberculosis: A problem with global proportions 

 

Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, 

is an infectious disease that remains a global public health problem (Torrado & Cooper 2010; 

Lewandowski et al. 2015; da Costa et al. 2014) . Indeed, the World Health Organization 

(WHO) estimates that roughly one-third of the world population have been in contact and is 

latently infected with MTB (Bozzano et al. 2014; Seo et al. 2014). Besides that, in 2015 the 

WHO reported 9.6 million new cases of TB and 1.5 million deaths (Lewandowski et al. 

2015).  

Due to the fact that the bacteria is transmitted via aerosol droplets that are suspended 

in the air, TB is extremely contagious. Infection by MTB can cause a primary TB infection, 

where the disease is active within two years of the initial infection, or a latent infection, 

which consists in an asymptomatic condition in a purified protein derivative-positive person. 

Although latently infected individuals control the initial infection, 5 to 10% of these 

individuals progress to active TB during their life-time (Lin et al. 2009). The reactivation 

rates are significantly increased when the immune system is compromised, such as in 

individuals infected with the Human Immunodeficiency Virus (HIV), old age, during tumor 

necrosis and other chronic diseases, such as diabetes and alcoholic liver disease (Lin et al. 

2009; Flynn, JoAnne L., Chan 2001; Prezzemolo et al. 2014). 

The lack of an efficient vaccine has disadvantaged the control of this disease, and 

although effective drug treatment exists, the procedures are extensive and involve multiple 

drugs, some of them with considerable toxicity (Raja 2004). Currently, the only vaccine 

available is an attenuated strain of Mycobacterium bovis, known as Bacillus Calmette-

Guérin (BCG) (Cooper 2009; Reyes et al. 2013; da Costa et al. 2014). Nonetheless, scientific 

advances have also empowered the search for more sophisticated methodologies to vaccine 

design. The global pipeline of TB vaccine candidates in clinical trials is stronger than at any 

previous period in history, now including recombinant BCGs, attenuated MTB strains, 

recombinant viral-vectored platforms, protein/adjuvant combinations and mycobacterial 

extracts (Lewandowski et al. 2015). 
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2.2 Mycobacterium tuberculosis: The pathogen 

 

MTB is a facultative intracellular pathogen that has a slow growth rate due to its thick 

layer of hydrophobic mycolic acid in the cell wall that reduce the entry of nutrients (Flynn 

& Chan 2001; Kleinnijenhuis et al. 2011; North & Jung 2004). However, this layer is the 

key for the success of MTB as a pathogen, as it contributes to its resistance to degradation 

by the lysosomal enzymes of the macrophage’s intracellular compartment. Indeed, the cell 

envelope is a unique characteristic of MTB, with a cell wall comprised of a layer with mostly 

mycolic acid at the external portion, and arabinogalactan, phosphalidyl-myo-inositol 

mannosides (PIMs), and peptidoglycans (PGNs) in the internal layers (Kleinnijenhuis et al. 

2011). At the surface, are found mannose-containing biomolecules, such as mannose capped 

lipoarabinomannan (ManLAM), the related lipomannan (LM), PIMs, arabinomannan, 

mannan and man-noglycoproteins (Kleinnijenhuis et al. 2011; Torrelles & Schlesinger 

2011); where ManLAM, LM and PIMs are incorporated into the plasma membrane 

(Torrelles & Schlesinger 2011). These components act as ligands for host cell receptors and 

for that reason are responsible for the initiation of the immune response (Torrelles & 

Schlesinger 2011). 

MTB survives and proliferates inside the host macrophages (North & Jung 2004), after 

being phagocytized, which is induced through the binding of several of the above described 

molecules to the receptors present in macrophages (Torrelles & Schlesinger 2011). MTB can 

also be phagocytized by dendritic cells (DCs) through the binding of ManLAM to DC-

specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin (DC-SIGN) 

(Maeda et al. 2003; Torrelles & Schlesinger 2011). Therefore, ManLAM is an important 

participant in the recognition of MTB by the host cell and, for that reason, it is an important 

virulence factor (Torrelles & Schlesinger 2011). Overall, the initial recognition of MTB is 

critical for the initiation of the innate immune response, which provides the host’s first line 

of defense.  
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2.3 Mycobacterium tuberculosis: DNA repair system 

 

Pathogenic bacteria are frequently exposed to several hostile conditions, with the host 

immune system and antibiotic treatments constantly changing their environments. 

Specifically, intracellular pathogens, like MTB, are challenged by a set of potentially DNA-

damaging attacks in vivo, through the host-generated antimicrobial reactive oxygen and 

nitrogen intermediates (MacMicking et al. 1997; Akaki et al. 2000; Rich et al. 1997; Warner 

& Mizrahi 2006). Therefore is extremely important for bacteria to have a DNA repair system 

and also reversal mechanisms that can “counter-attack” powerfully the injurious effects of 

these encounters (Dos Vultos et al. 2009). 

Genome sequencing shown that genes encoding proteins that are required for 

nucleotide excision repair (NER), base excision repair (BER), recombination and SOS repair 

and mutagenesis are present in MTB. In particular, a full complement of genes known to be 

directly involved in the repair of oxidative damage are present in MTB (Dos Vultos et al. 

2009). However, MTB lacks both the normally highly conserved mismatch repair (MMR) 

system, including dam, dcm, mutH, L and H, and vsr genes, and the BER protein mug, DNA 

glycosylases (Saunders et al. 2011). The nonexistence of the MMR system is parallel with 

high rates of divergence in other species, such as Helicobacter pylori, and hyper mutable 

lineages and sub-clones of Pseudomonas aeruginosa (Mena et al. 2008). Furthermore, the 

lack of MMR is thought to enable evolution through gene duplication and divergence, and 

to rise the relative rate of frame-shift mutations relative to point mutations. This assumed 

“slack in the fidelity of genome maintenance” in MTB is the basis for hypotheses of hyper 

mutability sustaining rapid drug resistance evolution (Dos Vultos et al. 2008; Dos Vultos et 

al. 2009). Nonetheless, the amount of point mutations in MTB is not prominent in vitro, a 

phenomenon attributed to high polymerase fidelity (Springer et al. 2004). 

MTB does not possess DNA polymerase II (PolII), but possesses two DnaE proteins, 

which are apparently functionally redundant. It has been proposed that the main functions of 

DnaE1 or DnaE2 may be error-prone DNA repair (Dos Vultos et al. 2009). DnaE2 has been 

shown to be induced in some rifampicin resistance associated rpoB mutants and deletion has 

been shown to reduce UV resistance, to reduce virulence in animal models of MTB, and has 

been suggested to be “a primary mediator of survival through inducible mutagenesis that can 

contribute directly to the emergence of drug resistance in vivo” (Bergval et al. 2007; 

Boshoff, H., Lun 2011). 
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2.4 The evolution of Mycobacterium tuberculosis 

2.4.1 Control of infection: the role of adaptive immune system 

 

The adaptive immune response is characterized by being highly specific and by 

generating a ‘memory’ response against a specific pathogen, enhancing the adaptive 

response through each interaction with the same agent. This memory response allows the 

immune system to react more quickly at the second encounter with the pathogen, being more 

efficient in neutralizing and clearing the infection (Roitt et al., 1998). This type of immune 

response is triggered when specific cells, called lymphocytes, recognize a specific molecule 

characteristic for a microorganism, known as antigen. There are two types of lymphocytes: 

B lymphocytes (B cells) and T lymphocytes (T cells), both deriving from bone-marrow stem 

cells (Medzhitov 2007). 

Therefore, with the progress of MTB infection, cells that participate in the immune 

response are recruited to the site of infection and assemble in an organized aggregate 

consisting of a mass of infected macrophages, mature macrophages, epithelioid cells and 

neutrophils surrounded by B cells, DCs, CD4+ and CD8+ T cells and fibroblasts, forming a 

granuloma (Garra et al. 2013; Bozzano et al. 2014). The formation of this structure is 

assumed to be regulated by IL-10, an anti-inflammatory cytokine produced mainly by 

macrophages, and tumor necrosis factor (TNF), also produced by macrophages, CD4+ and 

CD8+ T cells and DCs (Flynn & Chan 2001). The granuloma, on the one hand has an 

important role in host protection against mycobacterial infection avoiding dissemination of 

the bacteria, on the other hand, supports the maintenance of mycobacteria in the latent form 

until its reactivation due to decline in host immunity (Torrado & Copper 2013). 

MTB is classified into seven main phylogenetic lineages which are associated with 

different geographical regions, and are capable of inducing variable inflammatory responses 

(Krishnan et al. 2011; Portevin & Gagneux 2011; Carmona et al. 2013). Evidences indicate 

that some strains of MTB are more virulent than others, which can be observed by 

comparisons between lineages: strains from the ancient lineage (Indo-Oceanic and West 

African) induce a considerably stronger immune responses, as opposed modern lineage 

strains (Euro-American/Beijing and Indian/East African) (Krishnan et al. 2011; Portevin & 
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Gagneux 2011). These differential immune responses have been associated with the 

differential recognition of MTB strains (Carmona et al. 2013).  

 

2.4.2 A new era: next generation sequencing 

 

Next generation sequencing (NGS) technologies were first introduced in the market 

around 2005 and since then had a remarkable impact on the genomic field of research. This 

sort of technologies have been used fundamentally for performing genome sequencing and 

resequencing and also for innovative applications that were not possible before using the 

Sanger sequencing method (Sanger et al. 1977).  

Whole genome sequencing (WGS) has revolutionized the examination of 

mycobacterial genomes providing the most comprehensive collection of genetic variations. 

Recent studies have reported conflicting findings on the genomic stability of MTB during 

the evolution of drug resistance (Black et al. 2015; Gardy et al. 2011; Comas et al. 2011; 

Pérez-Lago et al. 2014). Furthermore scientific advances in the molecular area has led to the 

consent that the infection by MTB can be more heterogeneous than conventionally 

considered (Pérez-Lago et al. 2014). 

Understanding the emergence and spread of multidrug-resistant tuberculosis (MDR-

TB) is crucial for its control. MDR-TB in previously treated patients is generally attributed 

to the selection of drug resistant mutants during inadequate therapy rather than transmission 

of a resistant strain. Traditional genotyping methods are not sufficient to distinguish strains 

in populations with a higher burden of tuberculosis and it has previously been difficult to 

assess the degree of transmission in these settings (Black et al. 2015; Gardy et al. 2011; 

Comas et al. 2011; Pérez-Lago et al. 2014). 

 

 

2.4.3 Evolution of antibiotic resistance  

To assure its survival and following transmissions, the pathogen has to adapt in the 

host originally infected. However surviving may be challenging. From physical barriers 

preventing colonization and infection, struggle with the innate microbiome, repression by 

the immune system to basic health care, every case of infection is different. Nevertheless, 
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due to bad and abusive prescription of antibiotics we now see an alarming increase regarding 

antibiotic resistance and a rise in the facility with which a bacteria can adapt by those 

selective pressures (WHO 2014). 

Evolution of antibiotic resistance within hosts can be described as an evolutionary 

principle of a selective sweep, i.e., mutations acquired in order to confer antibiotic resistance 

have a higher frequency and fixation among the host population (Didelot et al. 2016).  

However in most cases, these mutations only arise in one or more lineages in the within 

patient population after numerous months of treatment with the respective antibiotic.  

Up until now, experimental studies were the possible methodology to characterize 

bacterial microevolution (Elena & Lenski 2003). Whole genome sequencing has 

revolutionized the examination of mycobacterial genomes, capturing every detail and 

providing us now with insightful information about within-host evolution of antibiotic 

resistance, discovery of new mutations and mechanisms behind resistance.  Although it is 

not possible for all variables to be controlled, witnessing natural evolution in within 

host populations has the advantage of integrating complexities such as strain 

differences, the host environment and representative fitness trade-offs, which has 

highlighted even more the intimidating adaptive potential of bacterial pathogens. 

Therefore details such as occurrence and spread of individual point mutations can lead to a 

better and more accurate treatment besides aiding in the development of new drugs (Elena 

& Lenski 2003). 

Common sites of adaptive evolution have been identified as genes with independently 

arising mutations often hitting different sites inside the same gene (Table 1). Additionally to 

“traditional” drug-resistance genes, i.e., encoding the protein target of the drug or a drug-

metabolizing enzyme, in the presence of drugs there are other three types of mutations in 

genes that might as well confer a selective advantage by: 

1. Reducing the permeability of the cell wall or increasing the activity of drug 

efflux pumps (Jarher & Nikaido 1994); 

2. Enhancing the fitness cost of other resistance mutations and consequently be 

selected as compensatory mutations (Schrag et al. 1997); 

3. Increasing the rate at which rare beneficial mutations occur in specific or 

mutated phenotypes (Denamur & Matic 2006). 
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In 2013, Farhat and his colleagues investigated the evolution of resistance to a wide-

ranging of drugs in 123 strains of MTB representing transmission clusters and 

epidemiologically unrelated cases (Farhat et al. 2013). According to their results, resistance 

evolved independently up to 20 times to the so called “first line” drugs isoniazid, 

pyrazinamide, ethambutol and rifampicin through substitutions in katG and NADH-

dependent enoyl-acyl carrier protein reductase (inhA; conferring resistance to isoniazid), 

pncA (conferring resistance to pyrazinamide), embB (conferring resistance to ethambutol) 

and rpoB (conferring resistance to rifampicin) (Farhat et al. 2013). The adaptive potential 

and repeatability of bacterial evolution is emphasized by the fact that resistance to these 

antibiotics was evolving several times in parallel. These results show convergent evolution 

in independent patients (the occurrence of mutations resulting in the same phenotype in two 

or more independently evolving lineages; these often arise in the same gene and may even 

occur at the same site), who were exposed to the same drugs providing the strongest evidence 

for adaptation (Farhat et al. 2013). 

 

 

     

        Table 1 - Common targets of antibiotic adaptive evolution in MTB. 

Target Antibiotic 

rpoB Rifampicin 

pncA Pyrazinamide 

embB Ethambutol 

rpsL Streptomycin 

katG Isoniazid 

 

 

Since bacteria can quickly respond to selective pressures by within host evolution, at 

first sight it may look unexpected that antibiotic resistance has not spread even more quickly. 

It has been suggested both by Comas et al. and Sun et al., that this discrepancy is due to the 

fitness costs associated with resistance because resistance-conferring substitutions in key 

enzymes may reduce the efficiency of replication and transcription and also resistance-

conferring proteins may be costly to produce (Comas et al. 2011; Sun et al. 2012). 

Nonetheless, compensatory mutations may arise in order to stabilize the fitness costs 
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associated with antibiotic resistance (Figure 1). Even when fitness costs are expected, 

bacteria can go towards adaptability.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Since the potential for adaptability appears to be different between mycobacterial 

strains, Ford et al. proposed that the ability for within host evolution might even be able to 

explain dissimilarities in the prevalence of MTB global lineages (Ford et al. 2014) 

Therewithal within host adaptation depends on a series of factors, particularly the rate 

at which mutations that confer a potential benefit occur, the effective population size and the 

fitness advantage of mutants (Whitlock 2003). Therefore the larger these factors are, the 

faster the rate of adaptation in the population as a whole. 

Figure 1 - Within-host adaptive potential during exposure to antibiotics. When exposed to an antibiotic, a 

susceptible bacterial strain (blue) is highly likely to be killed, but may occasionally survive by evolving into a resistant 

strain (red). Resistance usually has a high fitness cost, so that resistant strains usually disappear when not exposed to the 

antibiotic. However, resistant strains can evolve compensatory mutations (green) so that they remain resistant without 

the associated fitness cost. Such compensated strains pose a serious danger to public health, because they do not 

disappear simply as a result of antibiotic disuse. Alternatively, strains may evolve adaptability (yellow), enabling them to 

quickly switch resistance on or off and therefore avoid the associated fitness cost, presenting a similar risk to public 

health as that presented by compensated strains. 
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3. MATERIALS AND METHODS 

3.1 Patient samples 

 

Samples were part of a larger study of 399 clinical isolates of newly diagnosed patients 

with pulmonary TB collected between 2012 and 2013 at the NCTLD in Tbilisi, Georgia 

(Tukvadze et al. 2016). 

3.2 Whole Genome sequencing  

Whole genome sequences were prepared at GATC Biotech (GATC, Konstanz, 

Germany) on an Illumina HiSeq 2500 device using paired-end reads of 2x150 base pair (bp) 

and minimum coverage of 400 reads in the core genome. 

3.3 Read alignment and variant calling  

 

Sequence reads were aligned to the H37Rv reference genome using breseq (Barrick et al. 

2014). breseq is an open-source computational pipeline designed to analyze short-read re-

sequencing data and it’s optimized for haploid microbial-sized genomes (Barrick et al. 2014). 

Specifically it uses Bowtie2 to map reads against the reference genome (Langmead & Salzberg 

2012).  

It was used to predict all the single-nucleotide mutations, point insertions and deletions 

and large deletions. Further details are provided in the Supplementary Appendix.  
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All the reads located within highly repetitive regions (e.g. PE/PPE family) were excluded 

because they frequently offer a severe challenge to WGS and posterior data analysis (Lee & 

Behr 2016). Simultaneous events and events occurring less than 12 base pairs (bp) distance 

were also excluded from all the samples. All the exclusions from the samples were made using 

R scripts (Figure 2). Further details are provided in the Supplementary Appendix.  

 

3.4 Comparative Genome Analysis 

To check the genetic distance between the samples a differences matrix was 

implemented in R.  

All the Variant Call Format (VCF) files from the samples were analyzed using PhyTB 

to check for specific lineage SNP and drug resistance SNP matches. PhyTB is a web-based tool 

mainly used to support phylogenetic tree visualization with sequence data from 1601 isolates 

from all over the world and representation of all seven major lineages and sub-lineages in which 

91k SNPs have been identified comparing to the H37Rv reference genome (Benavente et al. 

2015). It contextualizes MTB genomic variation in epidemiological, geographical and 

phylogenic backgrounds (Benavente et al. 2015). 

 

 

Figure 2 - Fltering steps. 
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To perform a posterior phylogenetic analysis, “artificial” sequences were built using R 

scripts (Table 2). The artificial sequences contain all the SNP and the H37Rv was used as the 

reference. The multiple alignment of this sequences was performed using MUSCLE (multiple 

sequence comparison by log-expectation) with a maximum of 10 iterations. MUSCLE is a 

computer software used to perform multiple sequence alignments with high accuracy of protein 

and nucleotide sequences (Edgar et al. 2004).  

 

 

Table 2 - Example of how to build “artificial” sequences. All the SNP’s were used, if the sample did not contain a 

specific position then that position would be filled by the nucleotide in the reference genome, in the same position. 

Reference Genome A G C G A G C A C T G C G A C C G G C T 

Sample A G G C G A G A A C T G C G A C C G G C C 

Sample B A G T G A G A A C T G C G A C G G G C T 

Sample C A T C G A G C A C T G T G A C C G G C C 

Sample D A T C G A A C A C T G C G A C C C G C C 

 

 

The first phylogenetic tree was constructed as a Maximum Likelihood (ML) tree using 

PhyML v3.0. PhyML is a software used to estimate maximum likelihood phylogenies from 

alignment of nucleotides and amino acids sequences (Guindon et al. 2010). The nucleotide 

substitution model implemented was HKY85. HKY85 is a model developed by Hasegawa, 

Kishino and Yano that allows uneven base frequencies and differentiates between transitions 

and transversions (Hasegawa et al. 1985). The internal branch support approach was 

approximate likelihood-ratio tests (aLRT), proposed as an alternative to the conventional 

bootstrap re-sampling and even to Bayesian estimation methods by Anisimova and Gascuel 

(Anisimova & Gascuel 2006). It’s a modification to the previous likelihood-ratio tests proposed 

in 1999 by Alan Stuart and Keith Ord, fundamentally comparing the likelihoods of the best and 

the second best alternative arrangements around the branch of interest.  

The tree searching algorithm was a combination of nearest neighbor interchange (NNI) 

and subtree pruning and regrafting (SPR). NNI is one of the best known metrics to calculate 

distances between phylogenies first introduced in 1971 by Robinson. Basically, it improves the 

likelihood of a given tree by performing a series of exchanges in the internal branches, i.e., for 

an unrooted tree there are three possibilities of connecting four subtrees and one is the original 

one, so there are only two possible interchanges that lead to new unrooted trees (Figure 3). This 
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process is repeated for each internal branch, until the maximum likelihood is obtained. It’s 

considered an exhaustive and slow way of performing this type of search so as a less time 

consuming and more wide-ranging alternative of search, the SPR (Figure 4) reduces the number 

of topologies searched by selecting and removing a subtree from the main tree and reinserting 

it somewhere else on the main tree in order to create a new node. We considered the use of both 

strategies in order to achieve a better optimization of the whole process.  

 

 

 

Figure 3 - Stages of nearest-neighbor interchange. An internal branch is dissolved and rearranged to create two 

different topologies. 
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Figure 4 - Stages involved in subtree pruning and regrafting. A branch of the tree (a) is selected and inserted on 

another branch (b) in order to create an alternative topology (c). 

 

 

 

A Bayesian evolutionary analysis was made using the program MrBayes v3.2 (Ronquist 

et al. 2012). MrBayes uses Markov chain Monte Carlo (MCMC) methods to estimate the 

posterior distribution of model parameters (Ronquist et al. 2012). MCMC is a powerful 

technique for performing integration by simulation (Metropolis et al. 1953; Hastings 1970).  

The nucleotide substitution model implemented was HKY85, mentioned above. The 

chosen outgroup was the reference genome H37Rv. 
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4. RESULTS AND  DISCUSSION  

4.1 Mapping and Variant Calling 

 

A total of 85 isolates collected from 63 patients were analyzed. 82 samples came 

from patients in Georgia and 3 samples belonged to a European cluster. 34 isolates are 

follow-ups from 12 different patients (Table 3). The treatment that the patients were 

subjected to is currently unknown.  After sequencing, all the samples were associated with 

a unique ID number (e.g. 12_13700).   

 

Table 3 – Summary of follow up samples from each patient with information about the time when each sample was collected. 

 

 

 

The MTB strain H37Rv first isolated in 1905, is considered the most studied strain 

of tuberculosis and has remained pathogenic since. The complete genome sequence and 

annotation of this strain was first published in 1998 (Cole et al. 1998). In the most recent 

Patient code Sample ID 
Month after start of 

treatment 
Patient code Sample ID 

Month after start of 

treatment 

1 
12_16119 baseline 

7 

 

12_16359 baseline 

13_2210 3rd 13_7366 6th 

2 
12_16269 baseline 13_6517 7th 

13_1934 3rd 8 

 

12_16180 baseline 

3 

 

13_1189 baseline 13_6478 3rd 

13_5512 3rd 

9 

 

12_15175 baseline 

13_9242 6th 13_9017 3rd 

4 

 

13_1130 baseline 13_5139 6th 

13_10762 zero 13_819 9th 

13_5974 2nd 10 

 

12_17993 baseline 

13_2601 3rd 13_8431 6th 

13_2937 6th 11 

 

12_16409 baseline 

13_8557 7th 13_6728 5th 

5 

 

13_381 baseline 
12 

 

13_1972 baseline 

13_8969 3rd 13_8615 3rd 

13_5146 6th 13_6273 5th 

6 

 

12_15902 baseline    

13_2995 3rd    
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annotation there’s 4,411,532 bp of DNA sequence representing the whole Mycobacterium 

tuberculosis chromosome (Lew et al. 2011). The reads mapped to more than 95% of the 

H37Rv genome using breseq as shown in Table 4.  

 

Table 4 - Summary of mapping reads results using breseq 

ID reads bases average longest %mapped 

13_9242 3,2E+06 4,6E+08 144,6 bases 151,0 bases 89,4 

13_6273 3,6E+06 5,4E+08 149,1 bases 151,0 bases 94,9 

13_6478 3,8E+06 5,7E+08 149,2 bases 151,0 bases 95,0 

13_2937 3,4E+06 5,0E+08 149,3 bases 151,0 bases 95,1 

12_16850 3,7E+06 5,5E+08 150,0 bases 151,0 bases 95,2 

12_18360 3,8E+06 5,8E+08 149,9 bases 151,0 bases 95,2 

13_5146 4,0E+06 5,9E+08 148,9 bases 151,0 bases 95,2 

13_6517 4,7E+06 7,1E+08 149,1 bases 151,0 bases 95,2 

12_15737 5,8E+06 8,6E+08 149,6 bases 151,0 bases 95,3 

13_2210 3,2E+06 4,8E+08 149,5 bases 151,0 bases 95,3 

13_5139 4,2E+06 6,2E+08 149,1 bases 151,0 bases 95,3 

13_8431 4,6E+06 6,9E+08 149,0 bases 151,0 bases 95,3 

12_17795 3,5E+06 5,2E+08 149,8 bases 151,0 bases 95,4 

13_5974 4,0E+06 5,9E+08 148,8 bases 151,0 bases 95,4 

13_7366 5,4E+06 8,1E+08 148,7 bases 151,0 bases 95,4 

12_16196 5,5E+06 8,2E+08 149,8 bases 151,0 bases 95,5 

12_17736 4,4E+06 6,5E+08 149,6 bases 151,0 bases 95,5 

13_2072 5,3E+06 8,0E+08 149,8 bases 151,0 bases 95,5 

13_2601 5,2E+06 7,8E+08 149,0 bases 151,0 bases 95,5 

13_8557 4,6E+06 6,9E+08 149,3 bases 151,0 bases 95,5 

13_8969 4,4E+06 6,5E+08 148,9 bases 151,0 bases 95,5 

12_14551 3,7E+06 5,5E+08 149,8 bases 151,0 bases 95,6 

12_16734 4,0E+06 5,9E+08 149,7 bases 151,0 bases 95,6 

13_421 4,6E+06 6,9E+08 149,6 bases 151,0 bases 95,6 

13_8615 5,1E+06 7,6E+08 149,0 bases 151,0 bases 95,6 

12_14129 5,5E+06 8,3E+08 149,8 bases 151,0 bases 95,7 

12_15155 4,1E+06 6,0E+08 147,8 bases 151,0 bases 95,7 

12_17975 5,1E+06 8,0E+08 149,5 bases 151,0 bases 95,7 

12_18493 5,3E+06 7,9E+08 149,8 bases 151,0 bases 95,7 

12_18942 5,9E+06 8,9E+08 150,0 bases 151,0 bases 95,7 

13_10762 3,7E+06 5,2E+08 141,3 bases 151,0 bases 95,7 

13_183 3,4E+06 5,0E+08 149,1 bases 151,0 bases 95,7 

13_1934 3,7E+06 5,5E+08 149,2 bases 151,0 bases 95,7 

13_6728 4,9E+06 7,2E+08 149,1 bases 151,0 bases 95,7 

12_16409 3,5E+06 4,4E+08 127,2 bases 151,0 bases 95,8 
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12_19128 4,7E+06 7,0E+08 149,6 bases 151,0 bases 95,8 

13_9017 6,4E+06 8,0E+08 148,8 bases 151,0 bases 95,8 

12_13700 5,5E+06 8,2E+08 149.7 bases 151,0 bases 95,9 

13_2219 3,5E+06 5,3E+08 149,9 bases 151,0 bases 95,9 

13_381 3,6E+06 5,0E+08 138,6 bases 151,0 bases 95,9 

13_819 3,5E+06 5,2E+08 149,2 bases 151,0 bases 95,9 

12_14180 4,3E+06 6,5E+08 149,8 bases 151,0 bases 96,0 

12_15156 5,9E+06 8,9E+08 149,4 bases 151,0 bases 96,0 

12_18057 6,0E+06 8,7E+08 149,3 bases 151,0 bases 96,0 

13_2995 5,0E+06 7,4E+08 149,8 bases 151,0 bases 96,0 

13_5512 5,1E+06 7,7E+08 149,3 bases 151,0 bases 96,0 

12_15239 6,7E+06 1,0E+09 149,5 bases 151,0 bases 96,1 

12_17047 5,5E+06 8,2E+08 149,9 bases 151,0 bases 96,1 

12_18490 7,2E+06 1,1E+09 149,5 bases 151,0 bases 96,1 

12_19069 6,7E+06 1,0E+09 149,4 bases 151,0 bases 96,1 

13_1 6,0E+06 9,0E+08 149,4 bases 151,0 bases 96,1 

13_1130 6,1E+06 7,0E+08 115,2 bases 151,0 bases 96,1 

13_774 3,9E+06 5,8E+08 148,7 bases 151,0 bases 96,1 

12_19131 5,2E+06 7,7E+08 149,7 bases 151,0 bases 96,2 

eu_2 8,9E+06 6,7E+08 75,0 bases 75,0 bases 96,2 

13_56 6,7E+06 1,0E+09 149,8 bases 151,0 bases 96,3 

13_1972 5,9E+06 8,5E+08 143,3 bases 151,0 bases 96,6 

12_16119 4,0E+06 5,8E+08 147,3 bases 151,0 bases 96,9 

eu_1 1,4E+07 1,4E+09 100,0 bases 100,0 bases 97,2 

eu_3 1,1E+07 1,1E+09 100,0 bases 100,0 bases 97,2 

12_17231 3,9E+07 3,9E+09 101,0 bases 101,0 bases 98,1 

12_15175 2,2E+07 2,2E+09 101,0 bases 101,0 bases 98,3 

12_13963 2,3E+07 2,3E+09 101,0 bases 101,0 bases 98,4 

12_14879 2,5E+07 2,5E+09 101,0 bases 101,0 bases 98,4 

12_15251 2,4E+07 2,4E+09 101,0 bases 101,0 bases 98,5 

12_16180 2,4E+07 2,4E+09 101,0 bases 101,0 bases 98,5 

12_17995 2,6E+07 2,6E+09 101,0 bases 101,0 bases 98,5 

12_16295 2,7E+07 2,7E+09 101,0 bases 101,0 bases 98,6 

12_17593 2,5E+07 2,5E+09 101,0 bases 101,0 bases 98,6 

12_15893 2,3E+07 2,3E+09 101,0 bases 101,0 bases 98,7 

12_16505 2,1E+07 2,1E+09 101,0 bases 101,0 bases 98,7 

12_19027 2,4E+07 2,4E+09 101,0 bases 101,0 bases 98,7 

12_18166 2,0E+07 2,1E+09 101,0 bases 101,0 bases 98,8 

12_18248 2,3E+07 2,4E+09 101,0 bases 101,0 bases 98,8 

12_15460 3,4E+07 3,4E+09 101,0 bases 101,0 bases 98,9 

12_16706 2,4E+07 2,5E+09 101,0 bases 101,0 bases 98,9 

12_17704 4,9E+07 5,0E+09 101,0 bases 101,0 bases 98,9 

12_16496 2,4E+07 2,4E+09 101,0 bases 101,0 bases 99,0 
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12_17889 2,9E+07 3,0E+09 101,0 bases 101,0 bases 99,0 

13_1786 2,6E+07 2,2E+09 101,0 bases 101,0 bases 99,0 

12_16269 2,5E+07 2,6E+09 101,0 bases 101,0 bases 99,1 

12_16359 2,1E+07 2,1E+09 101,0 bases 101,0 bases 99,1 

12_17993 2,3E+07 2,3E+09 101,0 bases 101,0 bases 99,1 

12_18055 2,6E+07 2,6E+09 101,0 bases 101,0 bases 99,1 

12_18893 1,7E+07 1,7E+09 101,0 bases 101,0 bases 99,1 

 

 

The difference in the percentage of reads mapped can be explained by the fact that 

our samples were sequenced using two different methods: Illumina and Roche 454. The 

two major differences between this two technologies is the read length with Illumina 

longest read being 101 bases and Roche 454 being 151 bases, also including the 

sequencing protocol.  According to our results the percentage of reads mapped is slightly 

higher when using the Illumina sequencing technology rather than the Roche 454, as 

expected by Luo et al (Luo et al. 2012). 

breseq is an open-source computational pipeline designed to analyze short-read 

re-sequencing data and it’s optimized for haploid microbial-sized genomes (>10mb) and 

re-sequenced samples in which the diverging rate is less than 1 mutation per 1000 bp 

(Barrick et al. 2014). breseq predicts mutations in a sample relative to a reference genome 

using reference-based alignment approaches (Barrick et al. 2014). 

breseq is a command line tool implemented in C++ and R. It will compile and function 

on a variety of UNIX platforms, including MacOSX, Linux and Cygwin.  In order to function 

breseq requires two external dependencies to be installed in your system, Bowtie2 and R. 

Bowtie2 is an “ultrafast and memory-efficient tool for aligning sequencing reads to long 

reference sequences” (Langmead & Salzberg 2012). R is an “integrated suite of software 

facilities for data manipulation, calculation and graphical display” (R Development Core Team 

2008). breseq uses Bowtie2 to map reads to the reference genome. For more information 

regarding the algorithms used by breseq please look up the manual 

(http://barricklab.org/twiki/pub/Lab/ToolsBacterialGenomeResequencing/documentation/met

hods.html). 

In order to run breseq on a data set like ours, a High Performance Computing (HPC) 

Cloud, offered by SURFsara was used. “SURFsara is a Dutch foundation that 

provides supercomputers, colocation, networks and high-end visualization mainly to 

http://barricklab.org/twiki/pub/Lab/ToolsBacterialGenomeResequencing/documentation/methods.html
http://barricklab.org/twiki/pub/Lab/ToolsBacterialGenomeResequencing/documentation/methods.html
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academic institutions.” HPC Cloud is presented as an Infrastructure as a Service 

(IaaS) platform where we can built our own virtual environment according to our needs.  

One Virtual Machine (VM) was used to run 3 processes at the same time, 

individually performing on average for 5 hours. Each process can be performed by using 

a command where you input the reference file(s) and the read files. 

Example command: 

 

The first argument (-r) on the command line corresponds to the reference genome. 

It’s possible to input multiple reference genomes in the same run. The unspecified 

arguments are the read files, there’s also the option to input as many as you need and 

likewise use FASTQ files from diverse sequencing technologies.  

The pipeline used by breseq is a set of 13 steps that are described above in figure 

1 and the primary advantage of breseq comparatively to other software is essentially 

based on the ability to predict new sequence junctions in an accurate way, even those 

associated with mobile element insertions. Additionally it integrates multiple sources of 

evidence for genetic changes into mutation predictions and it’s able to actually produce 

annotated output describing biologically relevant mutational events. However breseq it’s 

still not able to find some types of mutations, like entirely novel sequences that don’t exist 

in the reference sequence. These reads are discarded to an output file suitable for de novo 

assembly in order to be examined by other software programs. Also mutations inserted 

in repeat regions and chromosomal inversions and rearrangements through repeat 

sequences are not detected (Barrick et al. 2014). 

 

 

 

 

 

 

 

 

 

>>>breseq –r NC_000962.gbk NG-7755_12_14879_lib58473_3367_8_1.fastq NG-

7755_12_14879_lib58473_3367_8_2.fastq 
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The two main output files provided by breseq are a Hyper Text Markup Language 

(HTML) file and a Genome Diff (.gd) file.  

The output.html file consists of an upper table screening predicted mutational 

events and others tables showing high-quality “orphan” evidence that breseq was unable 

to assign to mutational events. An example is presented on Table 5. A complete output file 

is provided in the Supplementary Appendix. 

 

 

 

 

Read and 
reference 

sequence file 
input

Read alignment to 
reference genome

Pre-processing 
alignments for 

candidate junction 
identification

Re-alignment to 
junction 

candidates

Identifying 
junction 

candidates

Preliminary 
analysis of 
coverage 

distribution

Resolving 
alignments with 

junction 
candidates

Creating BAM files

Tabulating error 
counts

Re-calibrating 
base error rates

Examining read 
alignment 
evidence

Polymorphism 
statistics

Output

Figure 5 - breseq pipeline 

(http://barricklab.org/twiki/pub/Lab/ToolsBacterialGenomeResequencing/documentation/methods.html). 

http://barricklab.org/twiki/pub/Lab/ToolsBacterialGenomeResequencing/documentation/methods.html
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Table 5 - Example of HTML output from breseq. 

 

 

The output.gd (figure 6) describes all the mutational differences between the 

H37Rv and each sample also including evidence from computational analysis or even 

experiments that supports mutations. For a complete output.gd file please see the 

Supplementary Appendix. 

Predicted mutations 

evidence position mutation annotation gene description 

RA 1,977 A→G intergenic (+453/-75) dnaA → / → dnaN 
chromosomal replication initiator protein 

DnaA/DNA polymerase III subunit beta 

RA 4,013 T→C I245T (ATC→ACC) recF → DNA replication/repair protein RecF 

RA 7,362 G→C E21Q (GAG→CAG) gyrA → DNA gyrase subunit A 

RA 7,585 G→C S95T (AGC→ACC) gyrA → DNA gyrase subunit A 

RA 9,304 G→A G668D (GGC→GAC) gyrA → DNA gyrase subunit A 

RA 11,37 C→T intergenic (+186/+504) alaT → / ← Rv0008c tRNA-Ala/cell wall synthesis protein CwsA 

RA 11,879 A→G S145P (TCC→CCC) Rv0008c ← cell wall synthesis protein CwsA 

RA 14,785 T→C C233R (TGC→CGC) Rv0012 → membrane protein 

RA 16,601 A→G D290D (GAT→GAC) pknB ← serine/threonine-protein kinase PknB 

RA 21,795 G→A P463S (CCG→TCG) pstP ← phosphoserine/threonine phosphatase PstP 

RA 26,959 C→G intergenic (-78/+64) Rv0021c ← / ← whiB5 
hypothetical protein/transcriptional 

regulator WhiB5 

RA 29,485 Δ1 bp coding (241/363 nt) Rv0025 → hypothetical protein 

RA 30,943 C→T P408S (CCC→TCC) Rv0026 → hypothetical protein 

RA 31,077 C→T intergenic (+9/-112) Rv0026 → / → Rv0027 hypothetical protein/hypothetical protein 

RA 34,044 T→C intergenic (+491/-251) Rv0030 → / → bioF2 
hypothetical 

protein/8-amino-7-oxononanoate synthase 

RA 36,477 (C)7→6 coding (2183/2316 nt) bioF2 → 8-amino-7-oxononanoate synthase 

file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_1.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_2.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_3.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_4.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_5.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_6.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_7.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_8.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_9.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_10.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_11.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/DEL_12.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_13.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_14.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/SNP_15.html
file:///H:/DOUWE/ALL_SAMPLES_BRESEQ/12_13700/output/evidence/DEL_16.html
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Figure 6 - Example of output.gd 

 

 

Since the outputs provided by breseq had a lot of information that was not needed 

in this particular work and the data needed to be filtered, a filter was implemented in R 

as described in the previous Chapter.  

The file used for filtering information was the output.gd. The script is provided in 

the Supplementary Appendix. 

In this filter we started by selecting only the mutations with 3-letter codes as 

shown in Table 6. The reason for this is that the GD file besides containing these mutations 

also contains many pieces of evidence (RA, JC, MC and UN)1 that were rejected as a basis 

for predicting a mutation and are considered marginal predictions. The mean of all 

mutations, with and without evidence, in all samples was 5103.31 mutations per sample 

with a standard deviation (SD) of 578.64. After this step the mean of mutations with 

evidence was 1547.95 mutations per sample with a SD of 242.09. Afterwards, we filtered 

only the crucial information out of the output.gd to a table in order to perform the further 

                                                 

1 RA: Read alignment; JC: New Junction; MC: Missing Coverage; UN: Unknown 
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analysis, such as the sample ID, reference genome, position, type of mutation (Table 6) 

and new sequence. 

 

Table 6 - Type of mutations with a 3-letter code used by breseq. 

Type of mutation Brief description 

SNP Single-nucleotide polymorphism 

SUB Substitution 

DEL Deletion 

INS Insertion 

MOB Mobile elements 

AMP Sequence Amplification 

INV Inversion 

 

Once that was done, we still had some complications before we could pursue to the 

samples comparison. One of the challenges of mapping reads is covering repetitive 

elements which provides an additional issue that may disturb the quality of the MTB 

sequencing, since it's a known "flaw" of the NGS technology. The PE/PPE gene family with 

168 members represents one of the most confusing yet interesting aspects of MTB 

genome. Even though they were discovered over 15 ago, their function remains uncertain. 

They are characterized by their high content of GC and repetition throughout the genome, 

making them very difficult to analyze. Therefore we decided to filter all the members of 

PE/PPE family out of our samples to make sure that our variant calls are based on 

rigorous evidence (Lee & Behr 2016). Moreover all the simultaneous events, i.e., 

mutations and the ones occurring less than 12 bp of distance were filtered out in order to 

not compromise the analysis. 

The last step of the filtering process was selecting only the SNPs to perform a 

comparative genome analysis. We ended up with an average 1110.87 (±165.41) SNPs per 

sample. The application of the filter lead to an exclusion of 78.23% of the mutations. More 

information is provide in the Supplementary Appendix. 
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4.2 Comparative Genome Analysis 

 

In order to check the genetic distance between all the samples and to do a raw inference 

of the epidemic clusters in our population a differences matrix with a heat map was made. The 

matrix was prepared using R. A small example of the matrix is shown in Table 7. The complete 

matrix and the script are provided in the Supplementary Appendix. 

 

Table 7 - Example of the differences matrix. The genetic distance is based only on SNPs. 

 12_14129 12_16119 13_2210 12_13700 13_421 12_15373 

13_2072 756 760 758 757 775 1126 

12_15155 725 723 727 726 738 1091 

12_19069 740 742 740 741 759 1110 

12_15239 536 542 540 539 555 1076 

12_14129  212 210 213 229 1068 

12_16119 212  6 167 173 1068 

13_2210 210 6  165 177 1072 

12_13700 213 167 165  150 1071 

13_421 229 173 177 150  1081 

12_15737 1068 1068 1072 1071 1081  

12_16196 1061 1063 1061 1060 1078 1007 

 

According to the results, eleven epidemic clusters could be inferred taking into 

account the small genetic distance between each isolate, equal or less than 30 SNP (Table 

8). As shown in Table 8 only Clusters I and J don’t present any follow up samples. Cluster 

A is composed by two samples belonging to Patient 1; Cluster B is composed by two 

samples belonging to Patient 3; Cluster C is composed by three samples, two belonging to 

Patient 8; Cluster D is composed by three samples belonging to Patient 5; Cluster E is 

composed by six samples belonging to Patient 4; Cluster F is composed by fifteen samples, 

three of them belonging to Patient 7 and one belonging to Patient 10 ; Cluster G is 

composed by three samples, two belonging to Patient 12; Cluster H  is composed by two 

samples, one belonging to Patient 10; Cluster I is composed by ten samples, two of them 

belonging to Patient 2, four to patient 9 and one to Patient 11. From this results we can by 

now assume that there’s definitely diversity inside clusters and it is even possible to have 
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isolates from the same patient within different clusters, for example patient 10. Patient 6 

and patient 8 don’t belong to any cluster. 

 

Table 8 - Association between the clusters and the patients. Eleven clusters with 29 follow up 

samples from 10 patients, excluding patient 6 and 8. 

Patient code Cluster Sample ID Patient code Cluster Sample ID 

1 
A 

12_16119   

F 

12_18893 

1 13_2210   12_16295 

3 
B 

13_5512   12_18055 

3 13_9242   12_17593 

8 

C 

12_16180   

G 

12_15893 

  12_18166 12 13_6273 

8 13_6478 12 13_8615 

5 

D 

13_381   
H 

12_17889 

5 13_5146 10 13_8431 

5 13_8969 2 

I 

12_16269 

4 

E 

13_1130   12_17995 

4 13_10762   12_18248 

4 13_8557 9 12_15175 

4 13_2601 9 13_819 

4 13_2937 9 13_5139 

4 13_5974 9 13_9017 

7 

F 

12_16359 2 13_1934 

7 13_6517   13_774 

7 13_7366 11 13_6728 

  12_15251   

J 

12_19131 

  12_18057   12_14879 

  12_17736   12_19027 

  12_19128   12_17704 

  13_183   

K 

12_16505 

  12_16850   12_16496 

  12_17047   12_17231 

10 12_17993       
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4.3  Models for Molecular Evolution 

4.3.1 Phylogenetic Analysis 

 

What is the best choice between Maximum Likelihood and Bayesian Inference (BI) 

for inferring phylogenetic relationships? Considered one of the major questions when 

choosing which method suits the data the best, i.e., which one is the most close to the “true 

evolution”, the truth is that there is no right answer to this question as evolution is a 

complex subject. On the one hand some assume that in practice, Maximum Likelihood and 

Bayesian Inference analysis using the same models of evolution frequently produce 

identical approximations of molecular phylogenies but on the other hand there are some 

conflicts regarding this assumption  (Brooks et al. 2007). 

Taking into account what has been said previously, two different phylogenetic 

analyses were performed, one using the ML method and another using the BI method. In 

order to perform this analysis, we built “artificial” sequences containing all the SNPs. All 

the sequences were built using R. The total of SNPs used for this analysis was 5249. 

Further information of the script is provided in the Supplementary Appendix. 

In this next section a comparison between those two methods is made with subsets 

of every tree due to the high size of each tree. This should be considered a mild analysis 

since we are only going to consider positions of samples and how there are grouped in 

each tree, not taking into account other parameters. Therewithal, three main points 

should be to taken into account: 

1. On the right side it is always the BI tree and on the left it is the ML tree;  

2. Each subset has its own color code and not related between them neither 

defining epidemic clusters;  

3. The subsets are in order, i.e., starting from the top of each tree and making 

its way towards the end of it. 

 

Subset I: First 13 samples of each tree. Since is required a outgroup for the BI we 

decided to use the H37Rv MTB strain (“Original”). In this subset the main difference relies on 

Red group being “organized” in a different order. This may be due to the existence of the 

Original sample in the BI since 12_18490 is the one closest to it, in terms of SNP differences. 

Regarding the Blue group it is equal in both trees. 
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Subset II: 21 samples. Five groups of samples, each group containing the same 

samples. There is a slightly difference in the order of the groups, for example the red group is 

the last one in the ML and the second one in the BI. Besides that dissimilarity, the green, yellow 

and orange group are stick together in both analysis. We assume no major differences should 

be considered. 

 

Figure 8 - Subset II: 21 samples. Five groups of samples were considered. It’s visible that each group contains the same 

samples. There is a slightly difference regarding the order of groups, for example the red group is the last one in the ML and 

the second one in the BI. In addition to that divergence, the green, yellow and orange group are in pair with each other in both 

analysis. We assume no major differences should be considered. 

 

Figure 7 - Subset I: First 13 samples of each tree. Since the BI requires a outgroup to perform the analysis, in this case the 

“Original” corresponds to the H37Rv MTB strain. The main difference relies on the first 4 samples being organized in a 

different order. No differences regarding the blue group. 
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Subset III: 15 samples. Three groups were considered. All the groups are in the same 

order in both trees. Inside the yellow group there is only a minor difference between the order 

of 13_6728 that appears first in ML and last in BI. Also in the green group there is a minor 

change between 12_15175 and 12_16269. We assume no major differences should be 

considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subset IV: 23 samples. Three groups were considered. The samples inside each group 

are the same in both cases. Inside each group there are some minor differences between the 

orders of samples. Both subsets start with the blue group but the order of the purple and the red 

group is the opposite. Despite this variances we assume that no major divergences should be 

considered since the relationship between samples is the same. 

 

 

 

 

 

 

 

 

 

 

Figure 9 - Subset III: 15 samples. Three groups of samples were considered. It’s visible that each group contains the 

same samples. Inside the yellow group there is only a minor difference between the order of 13_6728 that appears first 

in ML and last in BI. Also in the green group there is a minor change between 12_15175 and 12_16269. We assume no 

major differences should be considered. 
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Subset V: 15 samples. Three groups were considered. Both ML and BI start with the 

red group but end with opposite groups, blue and orange, respectively. Some minor changes 

between samples inside groups can be observed but again we assume no major differences 

between them since the relationships between samples it’s intact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 - Subset IV: 23 samples. Three groups of samples were considered. The samples inside each group are the same 

in both cases. Inside each group there are some minor differences between the orders of samples. Both subsets start with the 

blue group but the order of the purple and the red group is the opposite. Despite this variances we assume that no major 

divergences should be considered since the relationship between samples is the same. 

Figure 11 - Subset V: 15 samples. Three groups were considered. Both ML and BI start with the red group but end 

with opposite groups, blue and orange, respectively. Some minor changes between samples inside groups can be observed but 

again we assume no major differences between them since the relationships between samples it’s intact.  
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Based on this “raw” comparisons we can assume that ML and BI produce identical 

approximations of molecular phylogenies with some mild differences.  

One of the most important features of the Bayesian likelihood methods is how simple 

the calculated posterior probabilities can be inferred. Making the assumption that every step of 

the algorithm was optimal, the value of the probability obtained can be considered as the correct 

one for the data analyzed (Huelsenbeck et al. 2002). 

One of the most appealing aspects of Bayesian phylogenetic inference is its presentation 

and comparison of multiple optimal hypotheses, that later can be converged in order to have an 

optimal hypothesis, called the posterior output (Ronquist et al. 2012).While maximum 

likelihood usually converges on a single hypothesis, BI produces a range of solutions, each with 

a corresponding overall posterior probability as well as comparable node support values for 

alternative topologies within each tree hypothesis (Mau et al. 1999). 

Another dissimilarity between both methods is the Bayesian method also using a prior 

calculated probability density distribution of the summation of all the possible combinations of 

the model parameters and branch lengths, making the parameters adjustable to the MCMC 

sampling. Consequently, although the calculations are made before the model, the values can 

change in order to obtain better results (Huelsenbeck et al. 2002). 

Taking this into account we decided to use the BI tree for further analysis.  

4.3.2 Lineages and Sub-Lineages 

 

A crucial factor in the pathogenesis of MTB that might influence the transmissibility, 

host response, virulence and consequently the current emergence of drug resistance strains 

it is the genomic diversity specific for each strain in the MTB complex.  

MTB is classified into seven phylogenetic lineages each of which can be divided into 

sublineages. Sublineages of the same lineage have phenotypic differences, including their 

pathogenicity (Anderson et al. 2013; Blouin et al. 2012). 

• Lineage 1 - Indo-Oceanic; 

• Lineage 2 - East Asian; 

• Lineage 3 - East African-Indian; 

• Lineage 4 - Euro-American; 

• Lineage 5 - West African 1; 

• Lineage 6 - West African 2; 
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• Lineage 7 - Recently discovered in north-western Ethiopia and among Ethiopian 

immigrants in Djibouti (Yimer et al. 2015). 

For a long time, multiple methods have been proposed to categorize MTB strains into 

different lineages, i.e., spoligotyping and polyphasic genotyping (Gori et al. 2005; Weniger et 

al. 2010). In 2014, Coll et al. proposed a new system to categorize all the lineages and 

families, which are currently described in the literature, using SNPs as stable markers of 

genetic variation for phylogenetic analysis (Coll et al. 2014). 

Since our dataset was a group of 5249 SNP per sample, we used their method to 

provide us insight into the lineages of our samples (Benavente et al. 2015).  

According to the results, each sample contains several SNPs matching different lineages 

and sub-lineages of the MTB complex, which leads to the conclusion that our population was 

exposed to more than one strain. In order to consider a unique lineage per sample, the one who 

had the most lineage-specific SNPs was the one selected (Table 9). 

A table with all the specific lineage SNP matches is provided in the Supplementary 

Appendix.  

Considering the results, 83,53% of our samples belong to the Beijing lineage, described 

for the first time in 1995(van Soolingen et al. 1995; Kremer et al. 2004). Together with the 

Haarlem lineage, known as “modern” lineages, both are associated with the massive spread of 

multidrug-resistant strains especially in Eurasia (Merker et al. 2013; Mokrousov 2013). 

All the samples belonging to the Beijing lineage exhibit SNPs matching the Euro-

American family, however the opposite is not observed. None of the samples belonging to the 

Euro-American family (Harleem, Ural, LAM, H37Rv-Like, mainly T) exhibit SNPs belonging 

to another family. 

 

Table 9 – Summary of number of samples per Lineage. 

Lineage Number of samples 

East-Asian (Beijing) 71 

Euro-American (Haarlem) 5 

Euro-American (Ural) 3 

Euro-American (LAM) 3 

Euro-American (H37Rv-like) 1 

East African-Indian 1 

Euro-American (mainly T) 1 
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As said above, the BI tree was used for the following analysis. In Figure 12 it is possible 

to see that samples belonging to the same lineage are neighboring, as expected (Lagos et al. 

2016). The green sample belongs to the Euro-American T lineage; pink samples belong to the 

Euro-American LAM lineage; blue samples belong to the Euro-American Ural lineage; grey 

sample belongs to Euro-American H37Rv-like lineage followed by the purple samples 

belonging to the Euro-American Haarlem lineage. It’s clear that the Euro-American family is 

neighboring and clearly separated from the East-Asian family by the yellow sample which 

belongs to East-African-Indian lineage. All the samples in red belong to the East Asian family, 

specifically the Beijing lineage.  
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Figure 12 – BI tree with lineages distribution. Green: Euro-American T lineage; pink: Euro-American LAM lineage; blue: 

Euro-American Ural lineage; grey: Euro-American H37Rv-like lineage; purple: Euro-American Haarlem lineage; yellow: 

East-African-Indian lineage; red: East Asian family, specifically the Beijing lineage. 
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4.4 Population Structure 

The population structure of isolates based on SNP information separated samples into 

previously described lineages (Figure 12). With three exceptions, little variation was seen in 

the follow up samples from the same patient over time, fluctuating between 4-14 SNPs.  

Regarding the patient samples, in order to infer events of transmission, reinfection or 

evolution we did another tree using only the follow ups samples (Figure 13).  

Looking at the beginning of the tree, it starts with a sample from Patient 11, baseline 

sample and then it separates into three different clades. The Clade 1 is composed by two 

samples from Patient 1. Looking closely at Patient 1 it is clearly a case of evolution, with two 

samples clustering with a difference of 6 SNPs, over 3 months. Both samples belong to Euro-

American (Haarlem) lineage and they present the same rpoB and rpoC polymorphisms. Also, 

they both have resistance SNP matches for Ryfamicin, Streptomycin and Ethambutol. 

Clade 2 starts with a sample from Patient 12, baseline sample and then the other two 

samples from Patient 12 appear clustering with Patient 6 and a sample from Patient 10 (6th 

month follow up). From this we assume it is a case of reinfection since the baseline sample 

from Patient 10 belong to a different and distant Clade 3, being the difference between the 

Patient 1  

Patient 2 

Patient 3 

Patient 4 

Patient 5 

Patient 6 

Patient 7 

Patient 8 

Patient 9 

Patient 10 

Patient 11 

Patient 12 

Figure 13. Circular tree with all the follow up samples from our 12 patients. With seven exceptions, follow ups 

from the same patient are close within the tree. We assume that these seven exceptions might be cases of reinfection while 

the other being cases of evolution.  
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samples on the order of  >1000 SNPs. The next cluster inside Clade 2 is composed by 4 different 

Patients, 2, 5, 9 and 11. It all starts with Patient 11 (5th month) and then Patient 2 with both 

samples clustering. Patient 2 is another case of evolution, with two samples clustering with a 

difference of 12 SNPs, over 3 months. Both samples belong to Beijing lineage and they present 

the same rpoB and rpoC polymorphisms. Also, they both have resistance SNP matches for 

Fluoroquinolones, Ryfamicin, Isoniazid, Pyrazinamide and Ethambutol. The last cluster is 

composed by Patient 5 (6th month) and Patient 9 (baseline, 3rd, 9th month). We consider Patient 

5 as a case of reinfection since the previous samples from it belong to a different and distant 

Clade 3 being the difference between the samples on the order of  >200 SNPs. Patient 9 is also 

missing a sample from the 6th month which is clustering with the remaining samples from 

Patient 5 in Clade 3. 

Clade 3 is composed by Patient 3, 4, 5, 7, 8 and 10. Inside this clade there are two clearly 

separated clusters. The first one starts with Patient 3. Patient 3 is another case of evolution, with 

two samples clustering with a difference of 10 SNPs, over 3 months. Both samples belong to 

Beijing lineage and they present the same rpoB and rpoC polymorphisms. Also, they both have 

resistance SNP matches for Ryfamicin. Streptomycin, Isoniazid and Kanamycin. After that we 

Patient 8. Patient 8 is another case of evolution, with two samples clustering with a difference 

of 13 SNPs, over 3 months. Both samples belong to Beijing lineage and they present the same 

rpoB and rpoC polymorphisms. Also, they both have resistance SNP matches for Ryfamicin. 

Streptomycin, Isoniazid, Kanamycin and Fluoroquinolones. Then the case already discussed 

above with Patient 5 and 9. 

The other cluster inside Clade 3, starts with Patient 7 and 10 clustering. The Patient 10 

(baseline) seems to be primarily very close to Patient 7, with a difference between 25-18 SNPs. 

Patient 10 seems to be a case of reinfection since the 6th month is clustering in Clade 2 with 

Patient 6 and 12. 

Lastly, we have Patient 4. Patient 4 is another case of evolution, with six samples 

clustering with a difference of 15-1 SNPs, over 7 months. All samples belong to Beijing lineage 

and they present the same rpoB polymorphism, with no rpoC. Also, they all have resistance 

SNP matches for Ryfamicin. Streptomycin and Pyrazinamide.  

Moreover in the samples collected from the same patient, it was observed that the 

number of SNPs tended to increase over time.  
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After focusing only on Patient, we decided to focus again in the whole population. 

Eleven clusters (53 samples) with variation less than 30 SNPs were examined to ascertain the 

relatedness of the strains; we examined the genes associated with drug resistance. Results are 

summarized in Table 10 and show that the majority of the clusters have mutations in genes 

associated with drug resistance. However there are two exceptions, Cluster C, F, H, I and K. 

Cluster C has an isolate that doesn’t present Fluoroquinolones resistance like the other two. 

Cluster F has one isolate with Rifampicin resistance. Cluster H presents one isolate with 

Pyrazinamide resistance. Cluster I has 3 isolates that differ from others in the Fluoroquinolones 

and Streptomycin resistance. Cluster K characterized by resistance to Streptomycin has one 

isolate which besides that also presents Rifampicin, Streptomycin and Fluoroquinolones 

resistance. 

 

Table 10 – Distribution of mutations in genes associated with drug resistance within each cluster. In the drug 

column R: rifampicin, S: streptomycin, E: ethambutol, I: isoniazid, K: kanamycin, F: fluoroquinolones, P: 

pyrazinamide. 

Drugs Cluster Sample ID Drugs Cluster Sample ID 

R, S, E 
A 

12_16119 S, P, K 

F 

12_18893 

R, S, E 13_2210 S, P, K 12_16295 

R, S, I, K 
B 

13_5512 S, P, K 12_18055 

R, S, I, K 13_9242 R, S 12_17593 

R, S, E, K, F 

C 

12_16180 R, S, K, F 

G 

12_15893 

R, S, E, K 12_18166 R, S, K, F 13_6273 

R, S, E, K, F 13_6478 R, S, K, F 13_8615 

R, S 

D 

13_381 R, S, P, K,E 
H 

12_17889 

R, S 13_5146 R, S, K, E 13_8431 

R, S 13_8969 R, E, I, F, P 

I 

12_16269 

R, S, P 

E 

13_1130 R, E, I, P 12_17995 

R, S, P 13_10762 R, S, E, I, P 12_18248 

R, S, P 13_8557 R, E, I, P 12_15175 

R, S, P 13_2601 R, E, I, P 13_819 

R, S, P 13_2937 R, E, I, P 13_5139 

R, S, P 13_5974 R, E, I, P 13_9017 

S, P, K 
F 

12_16359 R, E, I, F, P 13_1934 

S, P, K 13_6517 R, E, I, P 13_774 
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S, P, K 13_7366 R, E, I, P 13_6728 

S, P, K 12_15251 R, I 

J 

12_19131 

S, P, K 12_18057 R, I 12_14879 

S, P, K 12_17736 R, I 12_19027 

S, P, K 12_19128 R, I 12_17704 

S, P, K 13_183 S 

K 

12_16505 

S, P, K 12_16850 S 12_16496 

S, P, K 12_17047 R, S, E, F 12_17231 

S, P, K 12_17993    

 

4.5 Compensatory mutations versus drug resistance 

 

Of the 85 isolates, 75 had matches for SNPs predictive of drug resistance and only 6 

were resistant to one single drug (Figure 13). 

Currently more than twenty drugs have been developed for the treatment of TB. The 

drugs are usually used in different combinations taking into account the circumstances of the 

patient, i.e., for “new” patients there is a specific group of drugs to be used and for patients with 

drug resistant TB another set of drugs is used. 

The five “first line” TB drugs are generally the ones with the greatest activity against 

TB bacteria and are mostly used for someone with active TB disease who has not had TB drug 

treatment before. These are Isoniazid, Rifampicin, Pyrazinamide, Ethambutol and 

Streptomycin. The resistance to this drugs is commonly associated with treatment failure and 

poor clinical response to therapy  (Hershfield 1999; Cox et al. 2007).  

We decided to analyze the Rifampicin and Pyrazinamide resistance since most of our 

samples had SNPs matches for resistance to these drugs. 

Resistance to rifampicin is predominantly acquired by mutations in rpoB (critical for 

cell viability), coding for the β-subunit of RNA polymerase. In an early stage, when rifampicin 

is administrated, most of the mutations on this gene provide selective advantage while having 

a negative impact on the bacteria’s fitness. However the fitness may be restored with subsequent 

adaptations after the acquisition of primary resistance (Bergval et al. 2007).  

By comparing mutations in rpoB in all the clusters with the results from Table 10, we 

found on the one hand the ones that didn’t present any Rifampicin resistance are the ones with 
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only this specific A1075A (GCT→GCC) polymorphism; on the other hand the ones 

with  S450L (TCG→TTG) polymorphism always presented Rifampicin resistance. Besides 

that it is also possible to have isolates in the same cluster with different rpoB polymorphisms, 

for example in cluster C, F, H and J, suggesting independent emergence of MDR within these 

clusters.  

Pyrazinamide is an important sterilizing drug that shortens TB therapy. However, the 

mechanism of action of pyrazinamide is poorly understood because of its unusual properties 

(Zhang 2003). Besides that mutations on the pncA gene are associated with this drug (Zhang 

1996). 

The pncA polymorphisms were also analyzed. Despite the fact that all the clusters had 

mutations on the pncA gene, only four clusters E, F, H and I presented polymorphisms 

predictive of resistance to Pyrazinamide, T135P (ACC→CCC), 

C14R (TGC→CGC), Q141P (CAG→CCG), I6L (ATC→CTC) and   H71R (CAT→CGT). 

Besides that it is also possible to have isolates in the same cluster with different pncA 

polymorphisms, for example cluster C, F and H suggesting independent emergence of MDR 

within these clusters. 

A summary table with all the specific polymorphisms is provided in the supplementary 

appendix.  
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Figure 14 – Distribution of samples with and without SNPs matching for drug resistance. In red are the samples without 

SNPs matching for drug resistance; in grey samples with SNPs matching for drug resistance. 
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Little is known about the epidemiological relevance of compensatory evolution in 

MDR-TB. In order to achieve similar fitness as the wild-type strain, compensatory mutations 

ease the fitness cost associated with drug resistance mutations, e.g., rpoC mutation. Some rpoC 

mutations have a compensatory effect regarding the fitness cost associated with mutations in 

rifampicin-resistant bacteria carrying mutations in rpoB, which even in the absence of antibiotic 

pressure increase the fitness cost (De Vos et al. 2013). 

With this in mind we decided to assess the distribution of rpoB and rpoC in all the 

isolates using the BI tree as a form of representation and we can highlight these six features: 

1. 6 samples without any mutation in rpoB and 2 of them with rpoC 

mutation, leading to assume that it is not necessary to have the rpoB mutation in order 

to have rpoC mutation;  

2. 32 samples without any mutation in rpoC; 

3. 16 unique polymorphisms; 6 rpoB and 10 rpoC; 

4. “Neighboring” isolates with different polymorphisms; 

5. Only 51 samples with actual resistance to rifampicin despite the fact that 

79 samples presented mutation in rpoB; 

6. We assume that the last 19 isolates in the tree don’t have mutations in 

rpoC because the rpoB mutation is not conferring resistance to rifampicin. 
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Figure 15 – BI tree with the distribution of rpoB and rpoC mutations. Red: no rpoB mutation; Orange: no rpoC mutation; 

Green: with rpoB & rpoC mutation; Blue: same rpoB mutation as nearest neighbors; Purple: same rpoC mutation as nearest 

neighbors; Deep Red: single event; Pink: rifampicin resistance.  
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5. CONCLUSIONS AND FUTURE PERSPECTIVES 

In this study we used WGS in order to understand the genotypic and epidemiological 

factors that might influence the spread and fitness of this MTB by analyzing deep –sequencing 

data of 85 isolates from Central Asia. 

We found that the amount of variation accumulated within a patient can be as high as 

that observed between patients along, what we assume to be, a chain of transmission. 

Intrapatient diversity was found in all of the follow up patients. The analysis of the mechanisms 

responsible for this microevolution, i.e., the genetic variability of MTB in a short period of 

time, of a parental strain into clonal variants is a relevant issue that needs to be addressed. 

Regarding the eleven epidemic clusters, ten belonged to the Beijing lineage and one to 

the Harleem lineage, both associated with the massive spread of MDR strains. Within clusters 

independent emergence of MDR was observed.  

Relationship between mutations on rpoB and rpoC were associated with drug resistance 

to rifampicin and compensatory evolution, thereby contributing to the spread of drug resistance.  

Not all mutations in rpoB confer resistance to rifampicin, we were able to find that the S450L 

polymorphism confers but A1075A polymorphism does not. Moreover, our data confirms the 

convergent evolution of specific compensatory rpoC mutations, indicating its positive 

selection. 

Mutations on pncA demonstrated to be related with drug resistance to pyrazinamide but 

there was not enough evidence to relate it with a mechanism of compensatory evolution. We 

consider that this issue should be addressed in the future. 

We believe that our study adds new data to the understandings of the variability among 

MTB strains in an intra and interpatient microevolution scenario. Moreover we suggest that 

alternative mechanisms of fitness compensation might exist. 

Last of all we strongly believe that the improved understanding of key success factors 

in growth and transmission of MTB will provide additional or improved therapeutic 

approaches. 
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SUPPLEMENTARY APPENDIX 

 

Table 11 - Summary of before and after filter of all mutations. 

ID before after differences ID before after differences 

12_13700 4256 1059 3197 12_18893 5175 1678 3497 

12_13963 5236 1677 3559 12_18942 5266 1627 3639 

12_14129 4176 1031 3145 12_19027 5167 1683 3484 

12_14180 5063 1611 3452 12_19069 4253 1093 3160 

12_14551 5080 1598 3482 12_19128 5065 1613 3452 

12_14879 5206 1687 3519 12_19131 5199 1595 3604 

12_15155 4358 1064 3294 13_1 5025 1617 3408 

12_15156 5215 1586 3629 13_10762 5373 1670 3703 

12_15175 5132 1690 3442 13_1130 5438 1709 3729 

12_15239 4076 1033 3043 13_1786 5303 1723 3580 

12_15251 5262 1686 3576 13_183 5302 1602 3700 

12_15460 5286 1672 3614 13_1934 5248 1600 3648 

12_15737 5119 1509 3610 13_1972 5116 1634 3482 

12_15893 5258 1695 3563 13_2072 4249 1116 3133 

12_16119 3862 1049 2813 13_2210 4279 1056 3223 

12_16180 5266 1713 3553 13_2219 3879 950 2929 

12_16196 5146 1566 3580 13_2601 5109 1643 3466 

12_16269 5283 1704 3579 13_2937 5221 1620 3601 

12_16295 5292 1712 3580 13_2995 5178 1608 3570 

12_16359 5245 1701 3544 13_381 5205 1686 3519 

12_16409 4155 960 3195 13_421 4186 1060 3126 

12_16496 5255 1673 3582 13_5139 5319 1607 3712 

12_16505 5202 1652 3550 13_5146 5302 1626 3676 

12_16706 5195 1668 3527 13_5512 5167 1647 3520 

12_16734 4996 1625 3371 13_56 5090 1625 3465 

12_16850 5212 1615 3597 13_5974 5053 1618 3435 

12_17047 5186 1630 3556 13_6273 5205 1614 3591 

12_17231 5200 1715 3485 13_6478 5331 1641 3690 

12_17593 5285 1715 3570 13_6517 5237 1612 3625 

12_17704 5575 1877 3698 13_6728 5285 1625 3660 

12_17736 5123 1616 3507 13_7366 5262 1624 3638 

12_17795 4001 941 3060 13_774 5037 1597 3440 

12_17889 5278 1675 3603 13_819 5179 1609 3570 

12_17975 5179 1623 3556 13_8431 5367 1627 3740 

12_17993 5317 1677 3640 13_8557 5386 1639 3747 

12_17995 5255 1693 3562 13_8615 5266 1622 3644 

12_18055 5242 1709 3533 13_8969 5190 1624 3566 

12_18057 5028 1617 3411 13_9017 5227 1627 3600 
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12_18166 5205 1712 3493 13_9242 6880 1641 5239 

12_18248 5196 1690 3506 eu_1 6387 1657 4730 

12_18360 5148 1566 3582 eu_2 7106 1539 5567 

12_18490 2808 607 2201 eu_3 6337 1650 4687 

12_18493 5074 1623 3451     
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Table 12 - Summary of before and after filter of SNPs. 

ID before after differences ID before after differences 

12_13700 922 766 156 12_18893 1435 1173 262 

12_13963 1477 1188 289 12_18942 1414 1189 225 

12_14129 911 775 136 12_19027 1455 1176 279 

12_14180 1405 1193 212 12_19069 965 819 146 

12_14551 1386 1178 208 12_19128 1394 1182 212 

12_14879 1459 1176 283 12_19131 1397 1186 211 

12_15155 927 798 129 13_1 1406 1192 214 

12_15156 1372 1172 200 13_10762 1447 1191 256 

12_15175 1455 776 679 13_1130 1469 1188 281 

12_15239 900 775 125 13_1786 1471 1187 284 

12_15251 1445 1180 265 13_183 1391 1179 212 

12_15460 1434 1174 260 13_1934 1390 1187 203 

12_15737 1328 1139 189 13_1972 1419 1192 227 

12_15893 1453 1183 270 13_2072 981 833 148 

12_16119 915 771 144 13_2210 922 775 147 

12_16180 1426 1190 236 13_2219 838 717 121 

12_16196 1344 1134 210 13_2601 1417 1189 228 

12_16269 1465 1179 286 13_2937 1400 1186 214 

12_16295 1462 1178 284 13_2995 1399 1191 208 

12_16359 1458 1175 283 13_381 1459 1187 272 

12_16409 853 720 133 13_421 931 782 149 

12_16496 1444 1179 265 13_5139 1398 1190 208 

12_16505 1427 1168 259 13_5146 1410 1186 224 

12_16706 1433 1167 266 13_5512 1427 1200 227 

12_16734 1410 1189 221 13_56 1412 1189 223 

12_16850 1396 1180 216 13_5974 1399 1187 212 

12_17047 1408 1181 227 13_6273 1399 1188 211 

12_17231 1473 1181 292 13_6478 1419 1191 228 

12_17593 1462 1172 290 13_6517 1393 1191 202 

12_17704 1588 1183 405 13_6728 1410 1187 223 

12_17736 1395 1180 215 13_7366 140244 1180 222 

12_17795 836 715 121 13_774 1396 1185 211 

12_17889 1441 1181 260 13_819 1394 1192 202 

12_17975 1415 1191 224 13_8431 1416 1190 226 

12_17993 1436 1173 263 13_8557 1414 1189 225 

12_17995 1455 1183 272 13_8615 1409 1188 221 

12_18055 1461 1179 282 13_8969 1406 1185 221 

12_18057 1405 1185 220 13_9017 1415 1190 225 

12_18166 1462 1189 273 13_9242 1428 1198 230 

12_18248 1452 1181 271 eu_1 1449 1186 263 

12_18360 1355 1151 204 eu_2 1357 1173 184 

12_18490 533 451 82 eu_3 1433 1184 249 

12_18493 1411 1195 216     
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Script used for filtering the mutations of our samples. 

Input: Matrix with all the positions and mutations of all the samples. 

Output: Tables with only the SNPs of interest of all the samples. 

                            

              ############## FILTERS ############## 

                               

 

##### Converting .gd to .csv ##### 

 

setwd("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/GD") 

library(dplyr) 

library(data.table) 

 

filenames <- 

list.files("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/GD", pattern = 

".gd",full.names=FALSE) 

col = 0 

for (file in filenames){ 

  temp = max(na.omit(count.fields(file, sep = "\t"))) 

  if (temp>col){ 

    col = temp 

  } 

} 

 

all_samples = data.frame(matrix(nrow = 1,ncol = 5)) 

colnames(all_samples) = 

c("id_sample","ref_genome","position","type","new_seq") 

mutations = c("SNP", "SUB", "DEL", "INS", "MOB", "AMP", "CON", "INV") 

 

for (file in filenames){ 

   

  gd = fread(file,sep = "\n",sep2 = "\t",stringsAsFactors = F) 

   

  temp = data.frame(matrix(nrow = dim(gd)[1], ncol = col)) 

   

  for (i in 1:dim(gd)[1]){ 

    tstring = strsplit(as.character(gd[i,]),split = '\t') 

    for (j in 1:length(tstring[[1]])){ 

      temp[i,j] = tstring[[1]][j] 

    } 
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  } 

   

  idx_to_mantain = c() 

   

  for (mutation in mutations){ 

    idx = which(temp$X1==mutation) 

    idx_to_mantain = append(idx_to_mantain,idx) 

  } 

   

  temp = temp[idx_to_mantain,] 

  temp = temp[,c(2,4,5,1,6)] 

  temp[,1] = substr(file,1,nchar(file)-3) 

  colnames(temp) = 

c("id_sample","ref_genome","position","type","new_seq") 

   

  temp_name = 

paste("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/Original_csv/",subst

r(file,1,nchar(file)-3),sep="") 

  temp_name = paste(temp_name,".csv",sep="") 

   

   

  write.csv(temp,temp_name,row.names = F) 

   

  all_samples = rbind(all_samples,temp) 

   

} 

 

write.csv(all_samples[2:dim(all_samples)[1],], 

"C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/All_Samples/all_samples.cs

v",row.names = F) 

 

##### Filtering By Family ##### 

 

 

setwd("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/Original_csv") 

 

family = 

read.csv("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/familia.csv",sep=

";",header = F) 

family = family[,1:2] 

interval = c() 
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for(i in 1:dim(family)[1]){ 

  temp = c(family[i,1] : family[i,2]) 

  interval = append(interval, temp) 

} 

 

filenames <- 

list.files("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/Original_csv", 

pattern = ".csv",full.names=FALSE) 

all_samples_filtred = data.frame(matrix(nrow = 1,ncol = 5)) 

colnames(all_samples_filtred) = 

c("id_sample","ref_genome","position","type","new_seq") 

 

for (file in filenames){ 

  idx_to_remove = c() 

  temp = read.csv(file,stringsAsFactors = F, sep = ",") 

  for(i in 1:dim(temp)[1]){ 

    if (temp[i,'position'] %in% interval){ 

      idx_to_remove = append(idx_to_remove,i) 

    } 

  } 

   

  temp_filtred = temp[-idx_to_remove,] 

   

  temp_name = 

paste("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/Filtred_By_Family/",

substr(file,1,nchar(file)-4),sep="") 

  temp_name = paste(temp_name,"_filtred_by_family.csv",sep = "") 

   

  write.csv(temp_filtred,temp_name,row.names = F) 

   

  all_samples_filtred = rbind(all_samples_filtred,temp_filtred) 

   

  # print(file) 

} 

 

write.csv(all_samples_filtred[2:dim(all_samples_filtred)[1],],"C:/Use

rs/marlichimi/Desktop/MBINF/THESIS/FILTER/All_Samples/all_samples_filtred.c

sv",row.names = F) 

 

 

##### Filtering By Distance ##### 
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setwd("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/Filtred_By_Fam

ily/") 

 

all_samples_filtred = 

read.csv("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/All_Samples/all_s

amples_filtred.csv") 

 

#transposing matrix 

 

samples = unique(all_samples_filtred[,1]) 

 

# to create an empty data frame 

## data.frame(matrix(nrow = x,ncol= y)) 

### x in this case is the number of all positions and y is the number 

of samples 

trans_all_samples_filtred = data.frame(matrix(nrow = 

dim(all_samples_filtred)[1],ncol = length(samples))) 

colnames(trans_all_samples_filtred) = samples 

for (sample in samples){ 

  idx = which(all_samples_filtred[,1]==sample) #where row are related 

to the 'sample' variable 

  for(i in 1:length(idx)){ 

    trans_all_samples_filtred[i,sample] = 

all_samples_filtred[idx[i],'position'] #only getting the position column 

  } 

} 

 

#write a csv for each filtred sample in a new folder 

for (i in 1:dim(trans_all_samples_filtred)[2]){ 

  name = 

paste("./Filtred_By_Family(Only_Position)/",colnames(trans_all_samples_filt

red)[i],sep="") 

  name = paste(name,".csv",sep = "") 

  print(name) 

  

write.csv(trans_all_samples_filtred[order((trans_all_samples_filtred[,i])),

i], file = name,row.names = F,na = "") 

} 
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filenames <- 

list.files("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/Filtred_By_Fami

ly/Filtred_By_Family(Only_Position)", pattern = ".csv",full.names=FALSE) 

 

values_to_remove = c() 

setwd("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/Filtred_By_Fam

ily/Filtred_By_Family(Only_Position)") 

 

for (file in filenames){ # for each sample 

   

  temp = read.csv(file) #temporary object with the positions of the 

sample 

  temp[,1] = sort(temp[,1]) # sort the list to make the sum 

  for(i in 1:dim(temp)[1]){ 

    sum_pos = 0 # variable to add if the sum of the next positions 

    if(temp[i,1] %in% values_to_remove){ # if the position was already 

meant to be removed 

      next 

    } 

    if (i < dim(temp)[1]){ 

       

      k = 1 #number of row(s) that you will search  

       

      sum_pos = sum_pos + temp[i+k,1]-temp[i,1] # temporary variable 

to have the sum of the position 

      print(sum_pos) 

       

      if (sum_pos<12){ 

        values_to_remove = append(values_to_remove, temp[i,1]) # to add 

the 1st one in which we are looking for 

      } 

       

      while (sum_pos < 12){ 

        if(temp[i+k,1] %in% values_to_remove){ 

          print("already exists") 

        } 

        else{ 

          values_to_remove = append(values_to_remove, temp[i+k,1]) 

        } 

        sum_pos = sum_pos + temp[i+k+1,1]-temp[i+k,1] 

        k = k+1 
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      } 

    } 

  } 

  print(length(values_to_remove)) 

  print(sort(values_to_remove)) 

} 

 

 

 

idx_to_remove = c() 

for (value in values_to_remove){ 

  if (value %in% all_samples_filtred[,'position']){ 

    idx_to_remove 

=append(idx_to_remove,which(all_samples_filtred[,'position']==value)) 

  } 

} 

all_samples_final_filtred = all_samples_filtred[-idx_to_remove,] 

 

write.csv(all_samples_final_filtred,"C:/Users/marlichimi/Desktop/MBIN

F/THESIS/FILTER/All_Samples/final_all_samples_filtred.csv",row.names = F) 

 

setwd("C:/Users/marlichimi/Desktop/MBINF/THESIS/FILTER/Filtred_by_Fam

ily/Filtred_By_Family(Only_Position)/Filtred_By_Family_And_Distance") 

 

samples = unique(all_samples_final_filtred[,1]) # vector with the 81 

samples 

for (sample in samples){  

  idx = which(all_samples_final_filtred[,1]==sample)# vector with the 

row numbers related to that sample 

  idx = intersect(idx, 

which(all_samples_final_filtred[,'type']=='SNP')) 

  filen = paste(as.character(sample),".csv",sep="") # concatenate the 

sample name with ".csv" to write the file 

  write.table(all_samples_final_filtred[idx,],file = filen,row.names = 

F,sep=",") 

} 
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Table 13 – Specific lineage SNP matches obtained for each sample using PhyTB. 

SAMPLES SPECIFIC LINEAGE SNP MATCHES MAIN LINEAGE 

12_13700 

##lineage4.1.2.1 = 20 

Euro-American (Haarlem) 
##lineage4.1 = 12 

##lineage4.1.2 = 3 

##lineage4.9 = 2 

12_13963 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_14129 

##lineage4.1.2.1 = 20 

Euro-American (Haarlem) 
##lineage4.1 = 12 

##lineage4.1.2 = 3 

##lineage4.9 = 2 

12_14180 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_14551 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_14879 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_15155 

##lineage4.2 = 61 

Euro-American (Ural) ##lineage4.2.1 = 29 

##lineage4.9 = 2 

12_15156 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_15175 ##lineage2.2 = 47 Beijing 
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##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_15239 

##lineage4.1 = 12 

Euro-American (H37Rv-like) ##lineage4.9 = 2 

##lineage7 = 1 

12_15251 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

12_15460 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_15737 

##lineage3 = 123 

East-African-Indian ##lineage4 = 15 

##lineage4.9 = 2 

12_15893 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_16119 

##lineage4.1.2.1 = 20 

Euro-American (Haarlem) 
##lineage4.1 = 12 

##lineage4.1.2 = 3 

##lineage4.9 = 2 

12_16180 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_16196 

##lineage2.2.2 = 70 

Beijing 

##lineage2.2 = 47 

##lineage2 = 36 

##lineage4 = 15 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 



                                                               SUPPLEMENTARY APPENDIX 

 

62 

12_16269 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_16295 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_16359 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_16409 

##lineage4.3.3 = 48 

Euro-American (LAM) ##lineage4.3 = 13 

##lineage4.9 = 2 

12_16496 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_16505 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_16706 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_16734 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 
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##lineage4.1.1.2 = 1 

12_16850 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_17047 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_17231 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_17593 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_17704 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_17736 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_17795 

##lineage4.3.3 = 49 

Euro-American (LAM) ##lineage4.3 = 13 

##lineage4.9 = 2 

12_17889 

##lineage2.2 = 47 

Beijing 
##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 
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##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_17975 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_17993 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_17995 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_18055 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_18057 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_18166 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_18248 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 
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12_18360 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_18490 
##lineage4.8 = 14 

Euro-American (mainly T) 
##lineage4.9 = 2 

12_18493 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_18893 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_18942 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_19027 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_19069 

##lineage4.2 = 61 

Euro-American (Ural) ##lineage4.2.1 = 29 

##lineage4.9 = 2 

12_19128 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

12_19131 

##lineage2.2 = 47 

Beijing ##lineage2 = 36 

##lineage4 = 15 
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##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_1 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_10762 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_1130 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_1786 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_183 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_1934 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_1972 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 
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##lineage4.1.1.2 = 1 

13_2072 

##lineage4.2 = 61 

Euro-American (Ural) ##lineage4.2.1 = 29 

##lineage4.9 = 2 

13_2210 

##lineage4.1.2.1 = 20 

Euro-American (Haarlem) 
##lineage4.1 = 12 

##lineage4.1.2 = 3 

##lineage4.9 = 2 

13_2219 

##lineage4.3.3 = 49 

Euro-American (LAM) ##lineage4.3 = 13 

##lineage4.9 = 2 

13_2601 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_2937 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_2995 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_381 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_421 

##lineage4.1.2.1 = 20 

Euro-American (Haarlem) 
##lineage4.1 = 12 

##lineage4.1.2 = 3 

##lineage4.9 = 2 

13_5139 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 
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##lineage4.1.1.2 = 1 

13_5146 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_5512 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_56 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_5974 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_6273 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_6478 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_6517 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_6728 ##lineage2.2 = 47 Beijing 
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##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_7366 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_774 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_819 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_8431 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_8557 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_8615 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_8969 

##lineage2.2 = 47 

Beijing ##lineage2 = 36 

##lineage4 = 15 
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##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_9017 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

13_9242 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

eu_1 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 

eu_2 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

eu_3 

##lineage2.2 = 47 

Beijing 

##lineage2 = 36 

##lineage4 = 15 

##lineage2.2.1 = 10 

##lineage4.9 = 2 

##lineage4.1.1.2 = 1 
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Table 14 - Drug resistance SNP matches obtained using PhyTB. 

Sample Drug Region Position 

12_13700 Isoniazid fabG1_promoter 1673425 

12_13963 

Rifampicin rpoB 761155 

Streptomycin rrs 1473246 

12_14129 

Rifampicin rpoB 761109 

Streptomycin rrs 1473246 

Ethambutol embB 4248003 

Ethambutol embB 4249583 

12_14180 

Fluoroquinolones gyrA 7570 

Rifampicin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Kanamycin eis_promoter 2715344 

12_14551 

Rifampicin rpoB 761155 

Streptomycin rpsL 781687 

Kanamycin eis_promoter 2715342 

Ethambutol embA_promoter 4243217 

12_14879 
Rifampicin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

12_15155    

12_15156 
Streptomycin rpsL 781687 

Ethambutol embA_promoter 4243217 

12_15175 

Rifampicin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Ethambutol embA_promoter 4243221 

Ethambutol embB 4247513 

12_15239    

12_15251 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 

12_15460    

12_15737    

12_15893 

Fluoroquinolones gyrB 6750 

Rifampicin rpoB 761155 

Streptomycin rrs 1472362 

Kanamycin eis_promoter 2715346 

12_16119 

Rifampicin rpoB 761155 

Streptomycin rrs 1473246 

Ethambutol embB 4248003 

12_16180 

Fluoroquinolones gyrA 7570 

Rifampicin rpoB 761155 

Streptomycin rpsL 781687 

Kanamycin eis_promoter 2715347 

Ethambutol embB 4248003 

12_16196    

12_16269 Fluoroquinolones gyrA 7563 
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Rifampicin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Ethambutol embA_promoter 4243221 

Ethambutol embB 4247513 

12_16295 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 

12_16359 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2289202 

Kanamycin eis_promoter 2715369 

12_16409 
Isoniazid kasA 2518919 

Para-Aminosalisylic-Acid thyA 3073868 

12_16496 Streptomycin rpsL 781687 

12_16505 Streptomycin rpsL 781687 

12_16706    

12_16734 

Rifampicin rpoB 761155 

Rifampicin rpoC 764841 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2289096 

Kanamycin eis_promoter 2715369 

12_16850 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 

12_17047 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 

12_17231 

Fluoroquinolones gyrA 7570 

Rifampicin rpoB 761155 

Streptomycin rpsL 781687 

Ethambutol embB 4247495 

12_17593 
Rifampicin rpoB 761155 

Streptomycin rpsL 781687 

12_17704 
Rifampicin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

12_17736 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 

12_17795 

Rifampicin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Isoniazid kasA 2518919 

Para-Aminosalisylic-Acid thyA 3073868 

Ethambutol embB 4247574 

12_17889 

Rifampicin rpoB 761155 

Streptomycin rrs 1472362 

Pyrazinamide pncA 2289226 

Kanamycin eis_promoter 2715369 

Ethambutol embB 4247574 
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12_17975 

Rifampicin rpoB 761155 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288852 

Ethambutol embB 4247399 

12_17993 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 

12_17995 

Rifampicin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Ethambutol embA_promoter 4243221 

Ethambutol embB 4247513 

12_18055 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 

12_18057 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 

12_18166 

Rifampicin rpoB 761155 

Streptomycin rpsL 781687 

Kanamycin eis_promoter 2715344 

Ethambutol embB 4248003 

12_18248 

Rifampicin rpoB 761155 

Streptomycin rrs 1473246 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Ethambutol embA_promoter 4243221 

Ethambutol embB 4247513 

12_18360 

Rifampicin rpoB 761155 

Rifampicin rpoC 764822 

Streptomycin rpsL 781687 

Isoniazid katG 2155109 

Ethambutol embB 4248003 

12_18490 Isoniazid fabG1_promoter 1673425 

12_18493 
Rifampicin rpoB 761155 

Streptomycin rrs 1472362 

12_18893 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 

12_18942    

12_19027 

Rifampicin rpoB 761155 

Rifampicin rpoB 761244 

Isoniazid fabG1_promoter 1673425 

12_19069 
Rifampicin rpoB 761155 

Rifampicin rpoC 764363 

12_19128 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 
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12_19131 

Ryfamycin rpoB 761155 

Ryfamycin rpoB 761244 

Isoniazid fabG1_promoter 1673425 

13_1    

13_10762 

Ryfamycin rpoB 76115 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288839 

13_1130 

Ryfamycin rpoB 76115 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288839 

13_1786 

Fluoroquinolones gyrB 6735 

Streptomycin rpsL 781687 

Streptomycin rrs 1473246 

Pyrazinamide pncA 2289201 

Kanamycin eis_promoter 2715342 

Ethambutol embA_promoter 4243222 

Ethambutol embB 4247393 

Ethionamide ethA 4326770 

13_183 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288820 

Kanamycin eis_promoter 2715369 

13_1934 

Fluoroquinolones gyrA 7563 

Ryfamycin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Ethambutol embA_promoter 4243221 

Ethambutol embB 4247513 

13_1972    

13_2072    

13_2210 

Ryfamycin rpoB 761155 

Streptomycin rrs 1473246 

Ethambutol embB 4248003 

13_2219 
Isoniazid kasA 2518919 

Para-Aminosalisylic-Acid thyA 3073868 

13_2601 

Ryfamycin rpoB 761155 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288839 

13_2937 

Ryfamycin rpoB 761155 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288839 

13_2995 

Streptomycin rpsL 781687 

Streptomycin rrs 1472362 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Kanamycin eis_promoter 2715369 

Ethambutol embB 4247553 
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13_381 

Ryfamycin rpoB 761155 

Streptomycin rpsL 781687 

Streptomycin rrs 1473246 

13_421 Isoniazid fabG1_promoter 1673425 

13_5139 

Ryfamycin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Ethambutol embA_promoter 4243221 

Ethambutol embB 4247513 

13_5146 

Ryfamycin rpoB 761155 

Streptomycin rpsL 781687 

Streptomycin rrs 1473246 

13_5512 

Ryfamycin rpoB 761155 

Streptomycin rpsL 781687 

Isoniazid fabG1_promoter 1673425 

Kanamycin eis_promoter 2715344 

13_56 
Ryfamycin rpoB 761139 

Streptomycin rpsL 781687 

13_5974 

Ryfamycin rpoB 761155 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288839 

13_6273 

Fluoroquinolones gyrB 6750 

Ryfamycin rpoB 761155 

Streptomycin rrs 1472362 

Kanamycin eis_promoter 2715346 

13_6478 

Fluoroquinolones gyrA 7570 

Ryfamycin rpoB 761155 

Streptomycin rpsL 781687 

Kanamycin eis_promoter 2715347 

Ethambutol embB 4248003 

13_6517 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2289202 

Kanamycin eis_promoter 2715369 

13_6728 

Ryfamycin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Ethambutol embA_promoter 4243221 

Ethambutol embB 4247513 

13_7366 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2289202 

Kanamycin eis_promoter 2715369 

13_774 

Ryfamycin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Ethambutol embA_promoter 4243221 
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Ethambutol embB 4247513 

13_819 

Ryfamycin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Ethambutol embA_promoter 4243221 

Ethambutol embB 4247513 

13_8431 

Ryfamycin rpoB 761155 

Streptomycin rrs 1472362 

Kanamycin eis_promoter 2715369 

Ethambutol embA_promoter 4243222 

Ethambutol embB 4247574 

13_8557 

Ryfamycin rpoB 761155 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288839 

13_8615 

Fluoroquinolones gyrB 6750 

Ryfamycin rpoB 761155 

Streptomycin rrs 1472362 

Kanamycin eis_promoter 2715346 

13_8969 

Ryfamycin rpoB 761155 

Streptomycin rpsL 781687 

Streptomycin rrs 1473246 

13_9017 

Ryfamycin rpoB 761155 

Isoniazid fabG1_promoter 1673425 

Pyrazinamide pncA 2289030 

Ethambutol embA_promoter 4243221 

Ethambutol embB 4247513 

13_9242 

Ryfamycin rpoB 761155 

Streptomycin rpsL 781687 

Isoniazid fabG1_promoter 1673425 

Kanamycin eis_promoter 2715344 

eu_1 

Ryfamycin rpoB 761155 

Ryfamycin rpoC 764724 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288850 

Kanamycin eis_promoter 2715342 

eu_2 

Ryfamycin rpoB 761155 

Ryfamycin rpoC 764724 

Streptomycin rpsL 781687 

Kanamycin eis_promoter 2715342 

eu_3 

Ryfamycin rpoB 761155 

Ryfamycin rpoC 764724 

Streptomycin rpsL 781687 

Pyrazinamide pncA 2288953 

Kanamycin eis_promoter 2715342 
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           Table 15 – Specific rpoB and rpoC polymorphisms. Single events are highlighted in yellow.  

samples rpoB rpoC 

12_13700 D103D (GAC→GAT) G594E (GGG→GAG) 

12_13963 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_14129 
D103D (GAC→GAT) 

G594E (GGG→GAG) 
D435Y (GAC→TAC) 

12_14180 
S450L (TCG→TTG) G332C (GGC→TGC) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_14551 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_14879 
S450L (TCG→TTG) 

E1092D (GAA→GAC) 
A1075A (GCT→GCC) 

12_15155   

12_15156 A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_15175 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_15239  G594E (GGG→GAG) 

12_15251 A1075A (GCT→GCC)  

12_15460 A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_15737 
G876G (GGT→GGG)  

A1075A (GCT→GCC)  

12_15893 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_16119 
D103D (GAC→GAT) 

G594E (GGG→GAG) 
S450L (TCG→TTG) 

12_16180 
S450L (TCG→TTG) 

G332S (GGC→AGC) 
A1075A (GCT→GCC) 

12_16196 A1075A (GCT→GCC)  

12_16269 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_16295 A1075A (GCT→GCC)  

12_16359 A1075A (GCT→GCC)  

12_16409  A542A (GCC→GCG) 

12_16496 A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_16505 A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_16706 A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_16734 
S450L (TCG→TTG) 

I491T (ATC→ACC) 
A1075A (GCT→GCC) 

12_16850 A1075A (GCT→GCC)  

12_17047 A1075A (GCT→GCC)  

12_17231 
S450L (TCG→TTG) I491V (ATC→GTC) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 
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12_17593 
S450L (TCG→TTG) 

Q523K (CAG→AAG) 
A1075A (GCT→GCC) 

12_17704 
S450L (TCG→TTG) 

E1092D (GAA→GAC) 
A1075A (GCT→GCC) 

12_17736 A1075A (GCT→GCC)  

12_17795 S450L (TCG→TTG) 
W484G (TGG→GGG) 

A542A (GCC→GCG) 

12_17889 

S450L (TCG→TTG) 

E1092D (GAA→GAC) E761D (GAG→GAC) 

A1075A (GCT→GCC) 

12_17975 
S450L (TCG→TTG) 

D485Y (GAT→TAT) 
A1075A (GCT→GCC) 

12_17993 A1075A (GCT→GCC)  

12_17995 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_18055 A1075A (GCT→GCC)  

12_18057 A1075A (GCT→GCC)  

12_18166 
S450L (TCG→TTG) 

F452C (TTC→TGC) 
A1075A (GCT→GCC) 

12_18248 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_18360 
S450L (TCG→TTG) 

D485N (GAT→AAT) 
A1075A (GCT→GCC) 

12_18490   

12_18493 
S450L (TCG→TTG) V483A (GTG→GCG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_18893 A1075A (GCT→GCC)  

12_18942 A1075A (GCT→GCC) E1092D (GAA→GAC) 

12_19027 

S450L (TCG→TTG) 

E1092D (GAA→GAC) I480V (ATC→GTC) 

A1075A (GCT→GCC) 

12_19069 S450L (TCG→TTG) G332R (GGC→CGC) 

12_19128 A1075A (GCT→GCC)  

12_19131 

S450L (TCG→TTG) 

E1092D (GAA→GAC) I480V (ATC→GTC) 

A1075A (GCT→GCC) 

13_1 A1075A (GCT→GCC)  

13_10762 

S450L (TCG→TTG)  

L731P (CTG→CCG)  

A1075A (GCT→GCC)  

13_1130 

S450L (TCG→TTG)  

L731P (CTG→CCG)  

A1075A (GCT→GCC)  

13_1786 A1075A (GCT→GCC)  
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13_183 A1075A (GCT→GCC)  

 S450L (TCG→TTG) V483G (GTG→GGG) 

13_1934 A1075A (GCT→GCC) E1092D (GAA→GAC) 

13_1972 
I925V (ATT→GTT) 

E1092D (GAA→GAC) 
A1075A (GCT→GCC) 

13_2072   

13_2210 
D103D (GAC→GAT) 

G594E (GGG→GAG) 
S450L (TCG→TTG) 

13_2219   

13_2601 

S450L (TCG→TTG)  

L731P (CTG→CCG)  

A1075A (GCT→GCC)  

 S450L (TCG→TTG)  

 L731P (CTG→CCG)  

13_2937 A1075A (GCT→GCC)  

13_2995 

L430P (CTG→CCG) 

E1092D (GAA→GAC) H445N (CAC→AAC) 

A1075A (GCT→GCC) 

13_381 
S450L (TCG→TTG) 

 
A1075A (GCT→GCC) 

13_421 D103D (GAC→GAT) G594E (GGG→GAG) 

13_5139 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

13_5146 
S450L (TCG→TTG)  

A1075A (GCT→GCC)  

13_5512 
S450L (TCG→TTG) 

N698S (AAC→AGC) 
A1075A (GCT→GCC) 

13_56 
H445Y (CAC→TAC)  

A1075A (GCT→GCC)  

13_5974 

S450L (TCG→TTG)  

L731P (CTG→CCG)  

A1075A (GCT→GCC)  

13_6273 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

13_6478 
S450L (TCG→TTG) 

G332S (GGC→AGC) 
A1075A (GCT→GCC) 

13_6517 A1075A (GCT→GCC)  

 S450L (TCG→TTG) V483G (GTG→GGG) 

13_6728 A1075A (GCT→GCC) E1092D (GAA→GAC) 

13_7366 A1075A (GCT→GCC)  

13_774 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

 S450L (TCG→TTG) V483G (GTG→GGG) 

13_819 A1075A (GCT→GCC) E1092D (GAA→GAC) 
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13_8431 

S450L (TCG→TTG) 

E1092D (GAA→GAC) E761D (GAG→GAC) 

A1075A (GCT→GCC) 

13_8557 

S450L (TCG→TTG)  

L731P (CTG→CCG)  

A1075A (GCT→GCC)  

13_8615 
S450L (TCG→TTG) E1092D (GAA→GAC) 

A1075A (GCT→GCC) V483G (GTG→GGG) 

13_8969 
S450L (TCG→TTG)  

A1075A (GCT→GCC)  

13_9017 
S450L (TCG→TTG) V483G (GTG→GGG) 

A1075A (GCT→GCC) E1092D (GAA→GAC) 

13_9242 
S450L (TCG→TTG) 

N698S (AAC→AGC) 
A1075A (GCT→GCC) 

eu_1 
S450L (TCG→TTG) 

F452S (TTC→TCC) 
A1075A (GCT→GCC) 

eu_2 
S450L (TCG→TTG) 

F452S (TTC→TCC) 
A1075A (GCT→GCC) 

eu_3 
S450L (TCG→TTG) 

F452S (TTC→TCC) 
A1075A (GCT→GCC) 
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        Table 16 - pncA polymorphisms for each sample. Single events are highlighted in yellow. 

pncA (2,288,681 → 2,289,241) 

12_13963 L85R (CTG→CGG)  

12_18166 2,288,794 (+C) 

13_5512 2,288,852 (+T) 

13_9242 2,288,852 (+T) 

12_16180 C138R (TGT→CGT)  

13_6478 C138R (TGT→CGT)  

13_6517 C14R (TGC→CGC) 

12_16359 C14R (TGC→CGC)  

13_7366 C14R (TGC→CGC)  

13_1786 C14Y (TGC→TAC)  

12_14129 D242D (GAT→GAC)  

12_16734 D49A (GAC→GCC) 

12_14879 H71P (CAT→CCT) 

12_17704 H71P (CAT→CCT)  

12_19027 H71P (CAT→CCT)  

12_19131 H71P (CAT→CCT)  

13_819 H71R (CAT→CGT) 

13_9017 H71R (CAT→CGT) 

12_15175 H71R (CAT→CGT)  

12_16269 H71R (CAT→CGT)  

12_17995 H71R (CAT→CGT)  

12_18248 H71R (CAT→CGT)  

13_1934 H71R (CAT→CGT)  

13_2995 H71R (CAT→CGT)  

13_5139 H71R (CAT→CGT)  

13_6728 H71R (CAT→CGT)  

13_774 H71R (CAT→CGT)  

12_17593 H71Y (CAT→TAT)  

12_17889 I6L (ATC→CTC)  

12_15251 Q141P (CAG→CCG)  

12_16295 Q141P (CAG→CCG)  

12_16850 Q141P (CAG→CCG)  

12_17047 Q141P (CAG→CCG)  

12_17736 Q141P (CAG→CCG)  

12_17993 Q141P (CAG→CCG)  

12_18055 Q141P (CAG→CCG)  

12_18057 Q141P (CAG→CCG)  

12_18893 Q141P (CAG→CCG)  

12_19128 Q141P (CAG→CCG)  

13_183 Q141P (CAG→CCG)  

13_2937 T135P (ACC→CCC) 

13_10762 T135P (ACC→CCC)  
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13_1130 T135P (ACC→CCC)  

13_2601 T135P (ACC→CCC)  

13_5974 T135P (ACC→CCC)  

13_8557 T135P (ACC→CCC)  

12_14180 T142M (ACG→ATG)  

13_381 V128G (GTC→GGC)  

13_5146 V128G (GTC→GGC)  

13_8969 V128G (GTC→GGC)  

12_17975 V130G (GTG→GGG)  

eu_1 V131F (GTC→TTC)  

12_15893 V7A (GTC→GCC)  

13_6273 V7A (GTC→GCC)  

13_8615 V7A (GTC→GCC)  

12_14551 W119L (TGG→TTG)  

12_16119 W68C (TGG→TGT)  

13_2210 W68C (TGG→TGT)  

12_13700   

12_15155   

12_15156   

12_15239   

12_15460   

12_15737   

12_16196   

12_16409   

12_16496   

12_16505   

12_16706   

12_17231   

12_17795   

12_18360   

12_18490   

12_18493   

12_18942   

12_19069   

13_1   

13_1972   

13_2072   

13_2219   

13_421   

13_56   

13_8431   

eu_2   

eu_3   

 


