
University of Minho
Engineering School
Department of Industrial Electronics

Ricardo Jorge Magalhães Teixeira

Ontology-Driven Metamodeling Towards
Intelligent Motion Control System Design
Automation

October 2017

University of Minho
Engineering School
Department of Industrial Electronics

Ricardo Jorge Magalhães Teixeira

Ontology-Driven Metamodeling Towards
Intelligent Motion Control System Design
Automation

Master dissertation
Master Degree in Industrial Electronics and Computers Engineering

Dissertation supervised by
PhD Professor Adriano Tavares (University of Minho)
Professor Quangang Wen (Zhuhai College of JLU)

October 2017

A C K N O W L E D G M E N T S

This Masters Dissertation could not have been completed without the support and help of
many people. First and foremost, I would like to thank my family for their patience and
enduring faith over the challenging and strenuous years of my studies and, in particular,
this year of my Masters.

Naturally, my supervisor Professor Adriano Tavares had the most influence on the results
and progress of my work and my development as a professional. He had the original idea
for the interdependent topic, and contributed long hours of discussions about the direction
of my research. I particularly would like to thank him for the unfailing trust in me and
my abilities, and for the vast encouraging support on different ways. Obviously, he also
had the greatest part in proofreading of my Masters Dissertation, which he did with great
precision and diligence.

I am deeply indebted to my academic co-advisor, Professor Quangang Wen, who made
it possible to develop this Masters Dissertation in cooperation with an industrial research
institute, the Jilin University. Professor Wen, Professor Liang and the remaining Intelligent
Motion Control Systems’ Platform (IMCSP) development team, did not only endorse the
topic, but showed an incredible interest in my work and actively encouraged me to pursue
my research. For that, for the exceptional reception and for the fulfilling ERASMUS+ period
in China, thanks.

My friends and colleagues at the University of Minho, Jilin University and Zhuhai Col-
lege of JLU, played a major role in making this time enjoyable and rewarding. Miguel
Abreu, José Martins, José Lopes, João Alves, Pedro Pereira, David Almeida, Miguel Macedo
and all the Embedded Systems Research Group (ESRG) team deserve a special mention
for providing unique perspectives to the work developed in the Masters Dissertation, and
amazing interdependent collaborative groups during the last years.

To Juliana Meireles and to my lasting group of friends from SB, thanks for being always
present and for all the fruitful discussions and motivating moments.

Last but not least, I wish to express my warmest thank you to my girlfriend, Beatriz
Meneses, for all her love, abiding patience and magnificent support.

i

ii

R E S U M O

A evolução dos Sistemas Inteligentes de Controlo de Movimento (SICM) desafia a sua
manutenção, capacidade de atualização, variabilidade e automação. Desta forma, é im-
perativo que o seu processo de desenvolvimento seja complementado com uma perspec-
tiva abstrata, que permita reduzir a complexidade da configuração e implementação do
sistema, através de paradigmas, ferramentas de software ou linguagens de programação.
De acordo com um dos mais prominientes paradigmas de software, Model-Driven Software
Development (MDSD), modelar sistemas complexos requere o uso de diversas linguagens
especı́ficas de domı́nio para modelação, resultando em múltiplos modelos de domı́nio es-
pecı́fico, o que aumenta o custo de desenvolvimento do sistema e favorece a ambiguidade
de modelos. Esta Dissertação de Mestrado explora uma abordagem à modelação de SICM
enriquecida por tecnologias semânticas, utilizando a Semantically-enriched Modeling Lan-
guage (SeML) para automatizar o processo de configuração e implementação destes sis-
temas através da geração de código de forma generativa. Para tal, esta Dissertação intro-
duz a SeML e explora exaustivamente o desenvolvimento de uma ontologia prescritiva para
o domı́nio dos SICM. Finalmente, através de um caso de estudo, é demonstrada a viabili-
dade da abordagem proposta através da expansão da gramática SeML com o conhecimento
semântico contido na ontologia desenvolvida. Além disso, a viabilidade da mesma foi com-
plementada com a modelação de um SICM, o sistema de produção de bobinas desenvolvido
na Universidade de Jilin, com o objetivo de automatizar a configuração e implementação
deste sistema e validar a SeML ao nı́vel do domı́nio.

iii

A B S T R A C T

The evolution of Intelligent Motion Control Systems (IMCSs) challenges its maintenance,
upgradability, variability and automation. Concerning this, it’s imperative to complement its
development with an abstract perspective to reduce the complexity of its configuration and
implementation, through paradigms, tools or programming languages. As one of the most
prominent paradigms advocates, MDSD, modeling complex systems usually requires sev-
eral different Domain-specific Modeling Languages (DSMLs), resulting in diverse domain-
specific models, and thus augmenting systems’ development costs and ensuing ambiguous
models. This Masters Dissertation presents an approach to IMCSs’ modeling process en-
riched by semantic technologies, using the SeML to automate systems’ customization and
implementation with generative code generation. To this end, this Dissertation introduces
the SeML and exhaustively explores the development of a prescriptive ontology for the
IMCSs’ domain. The feasibility of this approach is demonstrated by extending the SeML’s
grammar with semantic knowledge contained in the developed ontology, conducive to the
creation of an IMCS’s model, a coil winding machine developed at Jilin University, aiming
at automate its customization and implementation, and validate the SeML at a domain-
level.

iv

v

C O N T E N T S

List of Abbreviations viii

List of Figures xi

List of Tables xvi

List of Listings xvii

1 introduction 1

1.1 Motivation 1

1.2 Context 3

1.3 Aim and Scope 4

1.4 Organization of this Dissertation 5

1.4.1 Chapter Structure and Outline 5

1.4.2 Typographical Conventions 7

2 foundations and background 9

2.1 Model Driven Software Development 9

2.1.1 Overview 9

2.1.2 The Elements of a Model-Driven Process 11

2.1.3 Domain Architectures 14

2.2 Semantically-enriched Software Engineering 18

2.2.1 Ontologies 19

2.2.2 The Semantic Web 29

2.2.3 Ontology-Driven Software Development 37

3 problem analysis and solution scoping 41

3.1 The IMCSP’s Problem Analysis 41

3.2 Solution Approach 45

3.2.1 SeML as a Semantic Connector 45

3.3 Masters Dissertation’s Objectives 47

4 analysis of related work 51

4.1 Review of Upper Ontologies 51

4.1.1 Bunge-Wand-Weber 53

4.1.2 Unified Foundational Ontology 57

4.1.3 Suggested Upper Merged Ontology 61

4.2 Review of Domain Ontologies 64

4.2.1 IEEE Standard Ontologies for Robotics and Automation 68

4.2.2 OCOA 72

vi

Contents vii

4.2.3 RoSta 74

4.2.4 PROTEUS 77

4.2.5 Semantic Sensor Network 80

5 results and practical evaluation 84

5.1 Design of the Semantically-enriched Modeling Language 85

5.2 Design of the Intelligent Motion Control Systems’ Domain Ontology 90

5.2.1 Descriptive Domain Ontology 91

5.2.2 Prescriptive Domain Ontology 100

5.3 Case Study: IMCS’s Metamodeling 102

5.3.1 System’s Overview 102

5.3.2 System’s Structure 103

5.3.3 System’s Variability 106

5.3.4 Design of the Coil Winding Machine Prescriptive Application Ontol-
ogy 111

5.3.5 Coil Winding Machine Metamodeling using the SeML 120

6 discussion and outlook 129

6.1 Evaluation 129

6.1.1 Advantages of the SeML 129

6.1.2 Advantages of Descriptive Domain Ontology for Intelligent Motion
Control Systems 130

6.1.3 Critical Issues 131

6.2 Contribute of This Dissertation 131

6.2.1 Contribute for the SeML’s Project 132

6.2.2 Contribute for the IMCSP’s Project 132

6.3 Future Work 132

6.4 Summary and Conclusions 133

a intelligent motion control systems’ descriptive domain ontol-
ogy 136

a.1 Robot Parts’ classification 136

a.2 Properties 140

a.3 Processes 145

b coil winding machine’s model 148

c ontologies’ development - gantt diagram 150

Bibliography 152

A B B R E V I AT I O N S

AIM Agent Information Manager.
ALFUS Autonomy Levels for Unmanned Systems.
API Application Programming Interface.
AST Abstract Syntax Tree.

BWW Bunge-Wand-Weber.

CFo Common Framework object.
CORA Core Ontology for Robotics and Automation.
CORAX Core Ontology for Robotics and Automation X.
COTS Commercial Off-The-Shelf.

DDA Digital Differential Analyser.
DIOD Device Input Output Driver.
DL Description Logics.
DoD Device object Driver.
DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering.
DSL Domain-specific Language.
DSML Domain-specific Modeling Language.
DUL Dolce UltraLite.

ERM Entity-Relationship Model.
ESRG Embedded Systems Research Group.
ESRG-OT Embedded Systems Research Group Ontology Team.

FP6 European Union’s Sixth Framework Programme.
FPGA Field-Programmable Gate Array.
FSMC Flexible Static Memory Controller.

GFO General Formal Ontology.
GOL General Ontological Language.
GPL General-purpose Language.

HMI Human Machine Interface.

IDE Integrated Development Environment.
IEEE Institute of Electrical and Electronics Engineers.

viii

Abbreviations ix

IMCS Intelligent Motion Control System.
IMCSP Intelligent Motion Control Systems’ Platform.
IoS Internet of Services.
IoT Internet of Things.
IRIs International Resource Identifier.
IT Information Technology.

KIF Knowledge Representation Framework.
KnowRob Knowledge Processing for Autonomous Personal Robots.
KOS Knowledge Organization Systems.

LUT Look-Up-Table.

MDA Model-Driven Architecture.
MDE Model-Driven Engineering.
MDSD Model-Driven Software Development.
MLCOF Multi-layered Context Ontology Framework.
MTBF Mean Time Between Failures.

NIST National Institute of Standards and Technology.

OCOA Ontology based Component Oriented Architecture.
ODP Ontology Design Pattern.
ODSD Ontology-Driven Software Development.
OGC Open Geospatial Consortium.
OMG Object Management Group.
OMRKF Ontology-Based Multi-Layered Robot Knowledge Framework.
OpenCyc Open Source Cyc technology.
ORAWG Ontologies for Robotics and Automation Working Group.
ORO OpenRobots Common Sense Ontology.
OWL Web Ontology Language.
OWL-DL Web Ontology Language Description Logics.
OWL-Full Web Ontology Language Full.
OWL-Lite Web Ontology Language Lite.
OWL2 Web Ontology Language 2.

PBP Point-By-Point.
POS POSition Ontology.
PROTEUS Platform for RObotic Modeling and Transformation for End-Users Scientific

communities.

RDF Resource Description Framework.

Abbreviations x

RDFS Resource Description Framework Schema.
RoSta Robotic Standards and Reference Architectures.
RPARTS Robot Parts Ontology.
RuleML Rule Markup Language.

SAN Semantic Actuator Network.
SeML Semantically-enriched Modeling Language.
SeSE Semantically-enriched Software Engineering.
SICM Sistema Inteligente de Controlo de Movimento.
SRAM Static Random Access Memory.
SSN Semantic Sensor Network.
SSN-XG Semantic Sensor Network Incubator Group.
SSO Stimulus-Sensor-Observation.
SUMO Suggested Upper Merged Ontology.
SUOWG Standard Upper Ontology Working Group.
SWRL Semantic Web Rule Language.

UAV Unmanned Aerial Vehicle.
UFO Unified Foundational Ontology.
UML Unified Modeling Language.
UNA Unique Name Assumption.
URI Uniform Resource Identifier.

W3C World Wide Web Consortium.
WSML Web Service Modeling Language.

XML Extensible Markup Language.

L I S T O F F I G U R E S

Figure 1 Masters Dissertation’s main sub-objectives through a top-down ap-
proach. 5

Figure 2 Classification of horizontal and vertical domains. 11

Figure 3 The three-dimensional framework to classify Domain-specific Lan-
guages (DSLs) (adapted from [ABm07]) 13

Figure 4 Model transformations in a MDSD process. 14

Figure 5 Relation between the real world elements, models, metamodels and
meta metamodels. 15

Figure 6 Inherent trade-off in a DSL building process (adapted from [VSB+
06,

pag. 144]). 16

Figure 7 Overview of a multi-domain modeling process. 17

Figure 8 Domain’s and application’s architecture development threads. 18

Figure 9 HexOntology, a six-dimensions classification framework of ontolo-
gies. 22

Figure 10 Alternative perspective of the HexOntology. 25

Figure 11 Activities in ontologies’ development following the METHONTOL-
OGY methodology. 26

Figure 12 Semantic Web’s architecture (adapted from [BL00, FM01]). 30

Figure 13 Standard representations in this Masters Dissertation. 33

Figure 14 Standard representation of classes (containing individuals). 33

Figure 15 Standard representation of classes (without individuals). 34

Figure 16 Standard representation of Ontologies developed and integrated with
the SeML, using OntoGraf. 34

Figure 17 Ontology-Driven Software Development (ODSD) foundational tech-
nologies’ bridge. 38

Figure 18 Intelligent motion control systems to be developed and integrated
with the IMCSP. 42

Figure 19 Overview of the IMCSP’s workflow. 43

Figure 20 IMCSP’s technology stack. 43

Figure 21 Overview of the IMCSP’s hardware architecture. 45

Figure 22 Overview of SeML’s workflow. 47

Figure 23 Relation between terms, ontologies’ concepts and real-world refer-
ents. 51

xi

List of Figures xii

Figure 24 The transformations of Bunge-Wand-Weber (BWW) during an ODSD
process. 54

Figure 25 The domain of BWW models. 55

Figure 26 BWW constructs and summarized ontology. 56

Figure 27 A selection of structural concepts in the BWW ontology. 57

Figure 28 The history of Unified Foundational Ontology (UFO). 58

Figure 29 Basic concepts of GOL (adapted from [GHW02b]). 58

Figure 30 Basic concepts of DOLCE’s taxonomy (adapted from [MBG+
03, p.

13]). 60

Figure 31 The architecture of UFO. 60

Figure 32 A selection of UFO’s structural concepts (adapted from [GW04]). 61

Figure 33 The origin of Suggested Upper Merged Ontology (SUMO) and its
architecture’s overview. 62

Figure 34 An elementary SUMO’s taxonomy. 63

Figure 35 Domain knowledge added to SUMO after the conclusion of its initial
architecture (presented in Figure 33). 64

Figure 36 Contextualization of the developed ontologies, using the alternative
perspective provided by the HexOntology (see Figure 10). 66

Figure 37 Institute of Electrical and Electronics Engineers (IEEE) hierarchical
structure of ontologies. 68

Figure 38 The primary semantic relations between Core Ontology for Robotics
and Automation X (CORAX) and SUMO. 69

Figure 39 Core concepts in CORAX, Core Ontology for Robotics and Automa-
tion (CORA), POSition Ontology (POS) ontologies and its semantic
connection to SUMO (adapted from [fRG15] and [PCRF+

13a]). 72

Figure 40 Ontology based Component Oriented Architecture (OCOA)’s project
architecture. 73

Figure 41 OCOA’s architectural ontology and its components modular descrip-
tion (adapted from [CG02]). 74

Figure 42 Robotic Standards and Reference Architectures (RoSta)’s glossary
structure (adapted from [RoS]). 76

Figure 43 Summary of Platform for RObotic Modeling and Transformation for
End-Users Scientific communities (PROTEUS)’s ontologies stack. 78

Figure 44 Overview of PROTEUS’s ontology main concepts. 78

Figure 45 PROTEUS’s DSML architecture. 79

Figure 46 The Semantic Sensor Network (SSN)’s ontology, key concepts and re-
lations, split into conceptual modules (adapted from [CBB+

12]). 81

List of Figures xiii

Figure 47 Enumeration of the SSN’s ontology measurement, environmental
and survival properties (adapted from [W3C14]). 82

Figure 48 Contextualization of the developed ontologies and their relation with
the application’s model, using the alternative perspective of the Hex-
Ontology (see Figure 10). 84

Figure 49 The interaction between the system’s designer and the SeML, con-
ducive to the creation of the system’s model. 85

Figure 50 The phases of a General-purpose Language (GPL) processing sys-
tem. 86

Figure 51 The phases of a DSL processing system. 87

Figure 52 The phases of the SeML processing system. 88

Figure 53 The SeML’s Core Ontology. 89

Figure 54 Main concepts of the descriptive ontology for intelligent motion con-
trol systems. 94

Figure 55 Part of the descriptive domain ontology showing concepts related to
Robot Group conceptualization. 95

Figure 56 Part of the descriptive domain ontology showing concepts related to
process conceptualization. 97

Figure 57 Part of the descriptive domain ontology showing concepts related to
property conceptualization. 97

Figure 58 Part of the descriptive domain ontology showing concepts related to
sensing property conceptualization. 98

Figure 59 Part of the descriptive domain ontology showing concepts related to
actuating property. 99

Figure 60 Part of the descriptive domain ontology showing concepts related to
Event conceptualization. 99

Figure 61 IMCSP’s evolution and future work. 102

Figure 62 Coil winding machine working flow’s overview. 103

Figure 63 The technology stack of the coil winding machine. 105

Figure 64 Dependencies between the diverse algorithms that compose a mo-
tion control process. 106

Figure 65 Advantages and disadvantages of each IMCSP’s interpolation algo-
rithms. 107

Figure 66 Point-By-Point (PBP) algorithm’s working fundamentals. 108

Figure 67 Advantages and disadvantages of each IMCSP’s velocity control al-
gorithms. 109

Figure 68 Two distinct scenarios where the relation between the jerk and the
acceleration is analysed. 110

List of Figures xiv

Figure 69 Conceptualizations that result from entity’s conceptualization speci-
fication. 111

Figure 70 Hierarchy of robot parts that can compose a robot. 112

Figure 71 Hierarchy of robot parts that can compose a robot. 112

Figure 72 Hierarchy of characteristics and problems of the coil winding ma-
chine. 113

Figure 73 Process’s conceptualization in the prescriptive domain ontology. 114

Figure 74 ProcessingProcess’s conceptualization in the prescriptive domain on-
tology. 114

Figure 75 StoringProcess’s conceptualization in the prescriptive domain ontol-
ogy. 115

Figure 76 CommunicatingProcess’s conceptualization in the prescriptive do-
main ontology. 115

Figure 77 SeML’s property’s conceptualization in the prescriptive domain on-
tology. 116

Figure 78 Properties of a velocity control algorithm that has direct influence in
system’s variability. 116

Figure 79 Properties of the MODBUS and FSMC protocols that directly influ-
ence system’s variability. 116

Figure 80 Relation between Feature, Goal and Problem, using OntoGraf. 117

Figure 81 Relation between processes and features of the coil winding machine
(adapted from Prétége). 118

Figure 82 Annotation that indicates the necessity of the Trigonometric Iteration.v

file’s generation and the verification of Trigonometric Iteration func-
tion’s interface. 118

Figure 83 Annotation that assists the SeML on the process of replacing the
FinalProduct variable in system’s code. 119

Figure 84 Annotation that assists the SeML on the process of replacing a set of
variables in system’s code with default values. 119

Figure 85 SeML’s compiler error that forces the system’s designer to instantiate
an intelligent motion control system. 120

Figure 86 SeML’s compiler error that forces the system’s designer to specify
system’s requirements. 122

Figure 87 SeML’s compiler error that forces the system’s designer to instantiate
the application’s software structure. 123

Figure 88 SeML’s compiler error that forces the system’s designer to respect
the specified system’s requirements. 124

List of Figures xv

Figure 89 SeML’s compiler error that forces the system’s designer to respect
the specified system’s requirements. 124

Figure 90 SeML’s compiler error that forces the system’s designer to instantiate
and specify the system’s properties. 125

Figure 91 Directory of files generated by the SeML. 126

Figure 92 Part of the descriptive domain ontology showing taxonomy that al-
lows the classification of a Storing Part. 139

Figure 93 Part of the descriptive domain ontology showing the main concepts
related to Storing Property concept. 141

Figure 94 Part of the descriptive domain ontology showing the main concepts
related to Communicating Property concept. 142

Figure 95 Part of the descriptive domain ontology showing the main concepts
related to Supporting Property concept. 142

Figure 96 Part of the descriptive domain ontology showing the main concepts
related to Actuating Property concept. 143

Figure 97 Part of the descriptive domain ontology showing the main concepts
related to Measuring Property concept. 143

Figure 98 Part of the descriptive domain ontology showing the main concepts
related to Powering Property concept. 144

Figure 99 Part of the descriptive domain ontology showing the main concepts
related to Processing Property concept. 144

Figure 100 Part of the descriptive domain ontology showing the main concepts
related to Process conceptualization, depending on the Robot Part.145

Figure 101 Ontologies’ development tasks, accordingly with the methodologies
explored in Subsection 2.2.1. 150

Figure 102 Gantt’s diagram illustrating ontologies’ development scheduling, re-
specting the methodologies explored in Subsection 2.2.1. 151

L I S T O F TA B L E S

Table 1 The domain-specific modeling languages classification, developed by
Greenfield and Short 12

Table 2 Reasoners’ performance comparison, in seconds [DCTD11]. 36

Table 4 Reasoners’ performance comparison, in seconds [BHJV08]. 37

Table 6 Relevant differences between Semantic Web languages and object-
oriented languages. 39

Table 7 Comparison between the generic ontologies analysed and the SeML’s
ontology, using the HexOntology (see Figure 9). 65

Table 8 Comparison between the descriptive and prescriptive domain on-
tologies for the intelligent motion control systems’ domain. 91

Table 9 Domain specification and use-case scenarios for the intelligent mo-
tion control systems’ descriptive ontology. 92

Table 10 Domain specification and use-case scenarios for the intelligent mo-
tion control systems’ prescriptive ontology. 100

xvi

L I S T O F L I S T I N G S

5.1 Import of the prescriptive application ontology with the SeML. 120

5.2 Description of the hardware structure of the coil winding machine using the
SeML. 121

5.3 Specification of system’s requirements, using the SeML. 122

5.4 Description of the software structure of the coil winding machine using the
SeML. 123

5.5 Description of the software structure of the coil winding machine using the
SeML. 124

5.6 Description of the software structure of the coil winding machine using the
SeML, accordingly with the specified requirements. 125

5.7 Description of system’s properties using the SeML. 125

5.8 Trigonometric Iteration implementation in Verilog, in a file named Trigono-
metric Iteration.v that was generated by the SeML. 126

5.9 InitalConfig.h file generated by the SeML, accordingly with the system’s model.127

B.1 Application’s model using the SeML. 148

xvii

1

I N T R O D U C T I O N

1.1 motivation

For decades, software systems have become more and more complex, and control systems,
as part of software systems, are becoming more complex too. As a sub-domain of control
systems, intelligent motion control systems contain hundreds or thousands of sub-systems,
each consisting of incalculable entities and entities’ relations, designed to ensure feasible
and rational motion in the neighbourhood of kinematic and dynamic singularities. With
the ever-developing hardware technologies and ensuing increasing computation power of
today’s [Wir95], customer demands and expectations towards software continue to rise as
well. Additionally, as a result of platform technologies’ metamorphosis and due to business
requirements, the developed software is likely to become outdated much faster than previ-
ously. Therefore, there is a growth in the need to manage the systems’ complexity and the
desire to integrate the developed software/hardware systems with a tool/framework that,
besides efficiently and effortlessly enhances systems’ variability, allows the automation of
systems’ configuration and implementation.

In pursuance of reducing software complexity, and consequently reduce the software
maintenance cost [Kos03, BDZ89], the software engineering industry has developed frame-
works, tools, programming languages and paradigms, focused on describing software sys-
tems through an abstract perspective. In particular, MDSD advocates the use of diverse
DSMLs to describe software systems [BL07], increasing systems’ development speed through
its automation, providing a correct separation of concerns [Ram03] (which will grant, among
other things, better maintainability of software systems through redundancy avoidance and
manageability of technological changes) and enabling the existence of a productive environ-
ment in technology, engineering, and management fields.

In development scenarios that require different DSMLs, the development of multiple
domain-specific models does not suffice to ensure the consistency and validity between
them, because the semantic links between constructs from different modeling languages
remain unspecified, and therefore:

1

1.1. Motivation 2

• The modeling productivity decreases and the precise definition of concerns within a
particular domain is hampered;

• The semantic rigour in partial systems’ specifications decreases, which often causes
inconsistencies and semantic incompatibilities between the individual viewpoints;

• The generation of the code on a particular platform is usually precluded due to insuf-
ficient information about the system.

In conjunction with these disadvantages, the MDSD approach has a major disadvantage -
the development cost of DSMLs will be as big as the number of unavoidable domain-specific
models. Although, this approach provides a crucial advantage to the DSMLs’ developers,
which is the fact that the information about the meaning of a model’s element in relation
to one another is usually hidden [BL07], but available. Merging the advantages and the dis-
advantages of the MDSD approach, it’s easily identifiable that only one of the Guizzardi’s
modeling language properties [Gui13] is satisfied: the domain appropriateness, which refers
to truthfulness of the language to the domain; the other property, domain comprehensibility
appropriateness, which refers to the pragmatic efficiency of the language to support commu-
nication, understanding and reasoning in the domain, is not fulfilled because the resulting
domain-specific models are not semantically connected.

A solution to this core problem resides in semantics. Semantics apply “techniques that
support and exploit semantic information (as opposed to syntax and structure) to enhance
information systems” [SR03]. A formal technique to define DSLs’ semantics is through the
use of ontologies to describe domain knowledge. The increasing interest on ontologies, the
introduction of the Semantic Web framework and the development of its own language,
Web Ontology Language (OWL) (by the World Wide Web Consortium (W3C)) were the key
enablers to a new paradigm: ODSD, which will have an significant role in this Dissertation.
The combination of ontologies and DSMLs for complex software systems’ modeling, and
consequently combination of the ODSD and MDSD paradigms, enabled the development of
a unique DSML with shapeshifting capability, the SeML, which allows systems’ designers to
model systems from different domains (or different applications within the same domain)
with a single DSML.

Advocating the opinion that the ERASMUS+ programme, namely the KA107 Interna-
tional Credit Mobility, is an excellent opportunity to develop my engineering, technological
and social skills, the IMCSP developed at Jilin University (integrated in the Chinese gov-
ernment’s “Made in China 2025” initiative to comprehensively upgrade Chinese industry)
was the chosen application (and domain) to the validation of the SeML.

Therefore, in its first phase, this Masters Dissertation explores the development of the
SeML, beginning with its ontology for software/hardware systems. Subsequently, and as
an instance of the referred ontology, a domain ontology for the intelligent motion control

1.2. Context 3

systems’ domain is developed. Lastly, to validate the whole process and the SeML itself,
an application ontology for the coil winding machine (one of the intelligent motion con-
trol systems developed at Jilin University) is created, and its metamodel is built using the
SeML and the developed ontologies, concerning the automation of its customization and
implementation following generative approach.

1.2 context

This Dissertation has been written in the context of a Masters Dissertation at the University
of Minho, Portugal, in cooperation with the Embedded Systems Research Group Ontology
Team (ESRG-OT) and the IMCSP’s development team from Jilin University. This Disserta-
tion investigates how the integration of ontologies with a SeML can assist the automation
of systems’ customization and implementation.

At the University of Minho, the ESRG-OT embraced a project concerning the SeML’s
development, its application and validation in the intelligent motion control systems’ and
in the hypervisors’ domains. Within the members of the referred team, each one has an as-
sortment of objectives regarding the realization of the interdependent global project, which
was branched in the following Masters Dissertations:

1. Semantically-enriched Modeling Language:

• SeML’s Infrastructure - Miguel Abreu;

• A Graphical Metamodeling Environment - Nuno Afonso.

2. SeML’s application and validation:

• Intelligent motion control systems:

– Ontology-driven metamodeling towards intelligent motion control system
design automation - Ricardo Teixeira.

• Hypervisor:

– Ontology-driven metamodeling towards hypervisor design automation:

∗ Kernel Infrastructure - José Martins;

∗ Secure Design Environment - Miguel Macedo;

∗ Secure Boot - David Almeida;

∗ Secure Monitoring - Pedro Pereira;

∗ Runtime Security - Pedro Lopes;

∗ Secure IPC - João Alves.

1.3. Aim and Scope 4

At Jilin University, the IMCSP’s development team is composed by MSc and PhD stu-
dents from distinct research fields, and aims at developing an intelligent motion control sys-
tems’ platform to provide a reference architecture for the intelligent motion control systems’
domain. The development team is divided through the Changchun and Zhuhai campus,
both belonging to Jilin University. As advocated by Guzzo and Dickson, the students them-
selves are interdependent because of the tasks they perform as members of small teams,
who are embedded in one larger team [Guz96]. Due to the magnitude of this project, it’s
imperative to complement its development with an abstract perspective that will improve
systems’ complexity management.

The present Dissertation is a contribution to the existing research in the semantics of
the intelligent motion control systems’ domain and, hence, aspires to lay the foundation
to future students’ Thesis and the global project. A small part of this Dissertation is there-
fore dedicated to the classification and categorization of existing approaches, in order to
precisely identify shortcomings and weaknesses in previous solutions, to place the work
developed into context and highlight this Dissertation’s contribution.

1.3 aim and scope

This Masters Dissertation has one main goal, which is the development of a domain and
an application ontology, both designed to be integrated with the SeML, in order to allow
the modeling of an intelligent motion control system, developed at Jilin University. Among
others, this is expected to yield the following advantages:

• Reduces system’s complexity, by allowing the system’s designer to define system’s
parameters and behaviours, and thus automate its configuration and implementation;

• By reusing concepts and relations from different levels of abstraction (between core
and domain ontology; between domain and application ontology), provides a seman-
tically rich system’s description that can be leveraged for:

– Automatic reasoning;

– Consistency checking between domain-specific/application-specific models;

– System’s updatability and upgradability, facilitating the integration of new mod-
ules/functionalities, and so, enhance its variability.

• Reduces system’s development time, and subsequently reduces its development costs.

In order to correctly explore the inherent complexity of this topic, this Masters Disserta-
tion’s main goal is branched into seven distinct objectives, following the top-down approach
partially illustrated in the Figure 1. These objectives will be discussed in depth in Chapter
3.3, but in here a brief summary is provided as an overview. The first objective is to analyse

1.4. Organization of this Dissertation 5

the most prominent upper ontologies, in an attempt to identify the essential concepts nec-
essary for a semantic integration of diverse DSLs for modeling software/hardware systems.
Therefore, the second objective is contributing to the development of the SeML’s infrastruc-
ture, aiming at design an ontology for software/hardware systems. Subsequently, the next
objective is to develop a domain ontology, focused on the intelligent motion control systems’
domain, which will decompose it into concepts, relations and axioms. The last objective
before being able to model a IMCS is to design an application ontology that extends the
domain ontology, and thus provides knowledge about the application within the referred
domain.

Figure 1.: Masters Dissertation’s main sub-objectives through a top-down approach.

To demonstrate industrial applicability, an intelligent motion control system, the coil
winding machine (a system that belongs to the IMCSP and which is already employed at the
Mktech factory, in China), will be modelled with the SeML and the imported domain and
application ontologies. This last step validates the developed ontologies and, consequently,
the SeML in a higher abstraction level, the domain-level.

1.4 organization of this dissertation

1.4.1 Chapter Structure and Outline

Similar to a typical scientific paper, this Masters Dissertation’s structure begins by review-
ing the foundations and the theoretical background in Chapter 2, and then, in Chapter 3,
the problem is analysed and the solution proposed. As one of the most relevant parts of
this dissertation, Chapter 4 discusses the related work, before presenting the final results

1.4. Organization of this Dissertation 6

of the developed work, strategy used and the concrete evaluation through a case study, in
Chapter 5. Finally, in Chapter 6, the main conclusions about the entire project are realized
and the future work is revealed. After this briefly outline of contents of each chapter, a
more extensive one is following:

chapter 2

Reviews the distinct emerging software development paradigms that this Masters Disser-
tation uses as foundation. In particular, the ODSD is the analysis’ focus, and a common
vocabulary for the remainder of this Dissertation is established by introducing and defining
the most relevant concepts.

chapter 3

Motivates the Dissertation and highlights the arising challenges. Then, an overview of the
solution approach is provided and the expected benefits are described. Lastly, multiple
research hypotheses are defined, as well as seven concrete objectives to guide the reader
through the remainder work.

chapter 4

Deeply analyses and compares related work in each of the problem domains that belong
each objective. As aforementioned, this chapter is not a mere survey but instead intends to
provide the conceptual foundation for all the developed work.

chapter 5

Presents the theoretical insights and practical developments gained from the research con-
ducted in this Masters Dissertation. Specially, it introduces the developed ontologies and
the interdependencies between them. To round off the discussion, the ontologies are inte-
grated with the SeML, being this process evaluated through a case study.

chapter 6

Finally, it concludes this Masters Dissertation. Particularly, this document assess the feasi-
bility of the approach by highlighting the advantages of the SeML as a modeling tool, and
the developed ontologies as knowledge bases for the SeML. Furthermore, the Dissertation
closes by identifying different directions of future work, both in terms of this project and
in terms of the development of other projects directly related with the developed one.

1.4. Organization of this Dissertation 7

1.4.2 Typographical Conventions

In order to provide a structured and emphatic visual guidance to the reader, this Masters
Dissertation adopts the following typographical conventions:

• Italic script highlights scientific terms and proper names of patterns, methods and
tools carrying special meaning in the software engineering literature.

• Bold face highlights important keywords;

• When referring to elements included in diagrams and other illustrations, Sans-serif

font is used.

• In the PDF version of the Masters Dissertation document, the green text color repre-
sents bibliography entries, and the blue text color highlights chapters, sub-chapters,
figures, etc.

• For code listings, name of classes and other code fragments the Typewriter font is
used.

1.4. Organization of this Dissertation 8

2

F O U N D AT I O N S A N D B A C K G R O U N D

This chapter contemplates and reviews diverse emerging software development paradigms
that are of extreme relevance for the entire project developed by the ESRG-OT. In turn, the
MDSD’ goals, techniques and process building blocks that allows this paradigm to raise
the level of abstraction in software engineering are discussed, in order to understand how
this paradigm grants multi-domain and multi-application development approaches. Lastly,
this chapter finishes with a more detailed introduction to the motivation, by exploring the
techniques of the ontology-driven software paradigm. Thus, this chapter is extremely im-
portant, particularly because the rest of the Masters Dissertation is based on the terminology
and vocabulary defined here.

2.1 model driven software development

This section introduces the paradigm of MDSD, alternatively Model-Driven Engineering
(MDE), beginning with an abstract view of this paradigm and being followed by the identi-
fication of the elements that compose a model-driven process. Subsequently, the core con-
cept of MDSD is reviewed, domain architecture, by discussing the construction of domain
architectures, introducing techniques and best practices that are important for its devel-
opment, and approaching the multi-domain development processes. Finally, this section
investigates the relevant characteristics and divergences between two levels of abstraction,
domain and application level.

2.1.1 Overview

Each software has its own inner structure - inherent development paradigms, expressed in
the source code. This structure directly influences the performance, maintainability and
interoperability of the software, and so, it has an enormous economical impact. Nowadays,
these paradigms are hardly identifiable on a programming language level, because of their
low level of abstraction. To solve this problem, most software development tools were de-
signed with a Round-trip engineering functionality (e.g. [Nie12, Alt]), or reverse engineering,

9

2.1. Model Driven Software Development 10

which synchronizes two or more related software artefacts. This is a functionality that most
of the Unified Modeling Language (UML) tools offer, improving the graphical visualiza-
tion of the code (through UML syntax), but not raising its level of abstraction, stagnating
productivity [VSB+

06, p. 12].
Model-driven Software Development intends to raise the level of abstraction in software

engineering [Per14], creating models that have the exact meaning of program code and al-
low the final implementation to be generated from them, rather then just class and method
skeletons. To this end, MDSD promotes models as parts of the software, constituting a deci-
sive factor in increasing the performance of the process of developing software.

Model-Driven Architecture (MDA), an initiative [Gro03, Gro16a] of the Object Manage-
ment Group (OMG), advocates a stratified approach, where models are mapped from
higher levels of abstraction to levels that are close to the final implementation, prevail-
ing the interoperability and software portability as main goals [KWB03, p. 9]. By contrast,
MDSD aims mainly at:

• Increase the development speed through the automation of systems’ code generation;

• Enhance software quality, as a consequence of the use of automated transformations
and DSLs focused in modeling systems, or DSMLs;

• Provide a well-structured separation of concerns [Ram03], improving the maintainabil-
ity of software systems;

• After conceiving the architectures and modeling languages, expand the acquired
knowledge in order to increase reusability [JW05];

• Manageability of complexity through abstraction, using modeling languages;

• By combining the referred goals and the MDSD best practices, offer a productive
environment in the engineering field.

After exploring the main differences between the MDA and the MDSD paradigms, the
MDSD terminology should be the focus, in order to identify and define the concepts and
terms that, contiguous with the MDSD processes, allow the subsistence of the aforemen-
tioned goals. Domain should be the genesis of the classification, and so is described as a
bounded field of action, thought, influence or knowledge (adapted from [Dic17]) that can contain
other domains, the subdomains. Now that domain was defined, a term should be created
to define the thing that supports the realization of a domain, the platform, representing
components that aggregate the shared parts of a software system family. The last relevant
concept is metamodel, being the prefix “meta” to represent a higher level of description
and the model to represent a function, behaviour or system’s abstract representation. Thus,
“metadata are data about data, and a metamodel is a model used to describe other models.

2.1. Model Driven Software Development 11

Metadata are descriptions of data, and metamodels are descriptions used to characterize
models.” [DDV13, p. 72].

In the following sections, these concepts and terms are elaborated, using them to explore
this paradigm in great detail.

2.1.2 The Elements of a Model-Driven Process

This subsection explores the core parts of a MDSD process, in order to provide an abstract
analysis of this complex topic, using the referred process to introduce MDSD concepts
that are of extremely relevancy. A complete and comprehensive coverage of this topic was
elaborated by Thomas Stahl and Markus Völter in [VSB+

06], Holger Krahn in [KRV14] and
Jorn Bettin in [Bet04].

Domain-Specific Modeling

A DSML is a DSL which domain is modeling systems. Therefore, is a specialized language
that, besides raising the abstraction level of software [MHS05], embodies the concepts and
relations that represent domain knowledge, not forcing systems analysts to reconstruct
them from scratch, and thus optimizes systems’ development process [CE00]. A DSML
already includes domain’s relations and rules that would otherwise have to be added man-
ually, contributing to the model integrity. Therefore, the creation of models with a DSML
allows the design, configuration and implementation of complete systems in a complex
[FRBS+13], but very productive [Voe11], set of activities usually referred as domain-specific
modeling processes.

Figure 2.: Classification of horizontal and vertical domains.

2.1. Model Driven Software Development 12

A domain can be categorized in vertical and horizontal domains, according to several
criteria. Vertical domains refer to complete domains, being alternatively referred as tech-
nical domains. Antagonistically, horizontal domains describe only sub-domains of systems,
being alternatively referred as solution domains. Figure 2 illustrates the categorization re-
ferred above. In order to correctly understand the ontological foundations of a language’s
constructs, this dissertation must classify different DSLs. Being the semantic integration
of DSLs one of the central goals of this dissertation, and due to the analysis of a multi-
domain scenario that it requires, the DSLs’ classification will focus on DSLs that model
horizontal, technical domains. As a basis for the classification, Greenfield and Short (in
[GS03]) classified DSLs in three dimensions with several sub-categories each. Their work
was summarized in [ABm07], resulting in the classification presented in Table 1.

Table 1.: The domain-specific modeling languages classification, developed by Greenfield and Short

This classification is the foundation of the Three-Dimensional Framework developed by
Aßmann in [ABm07], and divides the classification of DSMLs between three categories, as
illustrated in Figure 3, the level of abstraction (purposes a classification for levels of ab-
straction between computation-independent, platform-independent, or platform-specific),
the domain (branched into structure, behaviour and user interface, in order to represent the
aforementioned horizontal domains) and the ontological kind of models (that refers to the
nature of the models’ elements, and is partitioned into Type and Token).

2.1. Model Driven Software Development 13

Figure 3.: The three-dimensional framework to classify DSLs (adapted from [ABm07])

The aforementioned framework will be used as a reference for DSMLs’ classification in
this Masters Dissertation.

Model Transformations

After reviewing the basics about DSMLs and defining the MDSD’s terminology, this para-
graph connects both and explores what is a MDSD’s transformation. For Schmidt [Sch06],
a transformation is a mechanism that “analyses certain aspects of models and then synthe-
sizes various types of artefacts, such as source code, simulation inputs, XML deployment
descriptions, or alternative model representations.”, videlicet a mapping [GS04, p. 45] be-
tween two artefacts, e.g. two domains. As domains, transformations can have different
classifications, e.g. [SK03], but in this Dissertation they’ll be characterized as either ver-
tical or horizontal [GS03]. Vertical transformations constitute a specification of domain,
mapping an abstract domain into a more concrete one or to code. Contrarily, horizontal
transformations can constitute a process of refactoring [FB99], which tries to improve the
design without changing its meaning, or a process of delocalization [CE00], where the aim
is to optimize an implementation. In a MDSD process, illustrated in Figure 4, designing and
implementing models are the domain’s designer responsibility, while the mapping between
models and the application code are the application’s designer responsibility. Lastly, the
engine’s designer is in charge of the transformation engine development and maintenance.

This classification will be very useful in the remaining document, because it will allow
the differentiation between diverse responsibility levels, and thus, different goals within the
ESRG-OT.

2.1. Model Driven Software Development 14

Figure 4.: Model transformations in a MDSD process.

2.1.3 Domain Architectures

After describing the MDSD’s core concept, domain architecture, this subsection approaches
its practical side, the construction of domain architectures. To this end, some techniques
and best practices that are relevant for its development are explored, beginning with the
metamodeling and the multi-domain modeling processes. Lastly, the difference between
domain and application architecture is clarified.

Metamodeling and Multi-level Metamodeling

As aforementioned, metamodels are descriptions used to characterize models, therefore
they must contain the knowledge to describe the abstract syntax of a DSL and to validate
the models through the inferred metamodeling constraints and mapping rules. Figure 5

illustrates the relation between the instantiation (or real world elements in [VSB+
06, p. 86]),

the model, the metamodel and the meta metamodel. Instances, models, metamodels and meta
metamodels have a class-instance relation and so, each level of this hierarchy represents an
instance of the level above, constituting a stratified diagram that can be continued in a infi-
nite way, usually referred as a multi-level modeling process, also called deep metamodel-
ing. Besides being in use by the OMG [Obj13] for almost two decades, the referred stratified
diagram raises some concerns identified in [ABM99] (see also [AKG11a, AKG11b]), due to
the use of strict metamodeling that restricts the instance-of and describes to only be approved
between pairs of conterminous layers and never within a layer. Therefore, when relations

2.1. Model Driven Software Development 15

between non-conterminous layers are an indispensable resource, the procedures developed
by Juan de Lara and Esther Guerra in [LGC14], should be followed.

Figure 5.: Relation between the real world elements, models, metamodels and meta metamodels.

Building Domain Architectures

After exploring the stratified diagram that allows us to follow a multi-level metamodeling
approach when modeling a system, the focus should now be the construction of a domain
architecture. Accordingly with Thomas Stahl and Markus Völter [VSB+

06, pag. 143], the
prime challenge in building a domain architecture is to choose/develop a suitable DSL,
taking into account the trade-offs between the following decision-points:

• Variability - Level of freedom needed to describe an application;

• Configuration and construction - There are two types of not-disjoint DSLs, those DSLs
that grant support for creative constructions and those that provide the engineering
resources to allow systems’ configuration, both illustrated in Figure 6;

• The capability of modeling - Between modeling structural (component structures or
persistence mapping) and/or behaviour aspects of systems;

2.1. Model Driven Software Development 16

• Concrete syntax - Since metamodels are descriptions used to characterize models, a
DSL is the interface for the metamodel, and so, its syntax must be carefully designed
to enable applications’ developers to understand the models properly;

• Continuous validation of the metamodel - The stakeholders must be able to validate
the model at any time, and thus, the grammar should compose valid sentences in the
domain, avoiding misunderstandings.

Figure 6.: Inherent trade-off in a DSL building process (adapted from [VSB+
06, pag. 144]).

Regarding the work developed by Thomas and Markus, the remaining identified chal-
lenges address the development of a DSL instead of directly address the building of domain
architectures, and so they are not relevant to the focus of this Masters Dissertation.

According to RUP [Kru03], a reference architecture is:

“A predefined architectural pattern, or set of patterns, possibly partially or com-
pletely instantiated, designed, and proven for use in particular business and
technical contexts, together with supporting artefacts to enable their use. Often,
these artefacts are harvested from previous projects.”

Thus, a domain model is, in its basic essence, a reference architecture because it provides
a proven architecture pattern both in business and technical contexts to its instantiation.
Therefore, in order to build a domain architecture, two good practices should be respected,

2.1. Model Driven Software Development 17

being the development a suitable DSML the main one, and the formation of an architec-
ture development group the last one. This group should be constituted by members from
various IT organizational departments, in order to design the domain/reference architec-
ture respecting the existent tools, technology and work developed within the organization
[Ree02].

Multi-Domain Modeling Process

The previous sections highlighted the relevance of the multi-level metamodeling approach
and the development of domain architectures as reference architectures. Subsequently, the
exploration of the multi-domain development process, illustrated in Figure 7, enables the
ESRG-OT to develop the techniques to model two independent domains simultaneously
with the same tool, the SeML.

Figure 7.: Overview of a multi-domain modeling process.

During a multi-domain modeling process, the DSL designer is responsible for its main-
tenance, providing a metamodeling environment, while the domain designer and the appli-
cation designer (or the aforementioned architecture development group) are responsible
for building the reference architecture, in a modeling environment, allowing the application’s
code to be generated for a specific platform in an application development environment.

2.2. Semantically-enriched Software Engineering 18

Domain and Application Architecture

The domain architecture, or reference architecture, provides support and formalizes a do-
main. Therefore, a domain architecture must be completely independent from an applica-
tion, allowing it to cover a software system family.

In order to elucidate the reader on the main difference between application and domain
architecture, Figure 8 illustrates the formal modeling process, which denotes the process
that allows the application’s designer to develop an application architecture, using a DSML.
To do so, the application’s designer creates a mapping between the concrete application’s
concepts with the concepts provided by the domain architecture, and uses the DSML to
develop the model and to vertically transform the developed model into application code,
as illustrated in Figure 4.

Figure 8.: Domain’s and application’s architecture development threads.

2.2 semantically-enriched software engineering

This section introduces Semantically-enriched Software Engineering (SeSE), a paradigm
that represents the act of applying techniques to support and explore the semantics within
information (the opposite of syntax and structure), conducive to complement and improve
information systems [SR03]. It begins by investigate and review ontologies as a seman-
tic technology to define and explore DSML’s inherent semantics. Therefore, this section
approaches the theoretical foundations of ontologies as a knowledge representation tech-
nology, and its classification. It continues with the introduction of the Semantic Web, iden-
tifying diverse standards and languages as the prime technology used in the practical de-
velopments of this Masters Dissertation. Lastly, the fundamental ontologies’ development
methodologies are introduced and the description of a SeSE’s research field, the ODSD (an
emerging development paradigm that constitutes a foundation of this Dissertation) con-
cludes this chapter.

2.2. Semantically-enriched Software Engineering 19

2.2.1 Ontologies

The “ontology” term, originally borrowed from philosophy, has an increasing popularity
over the computer science and information systems communities, mostly because of the
type of problems that ontologies aim to solve in these domains, e.g. interoperability between
multiple reality representations and real reasoning capabilities that reduce the gap between
humans and computer systems. Although, as explored by Guarino and Giaretta [GG95],
this term has multiple definitions when applied to different domains, and thus, an ontology
can represent:

• A philosophical discipline;

• An informal conceptual system;

• A formal semantic account;

• A specification of a conceptualization;

• A representation of a conceptual system via a logical theory:

• Logical theory’s vocabulary;

• A meta-level specification of a logical theory.

Therefore, there is still a lot of inconsistency in the usage of the “ontology” term, in partic-
ular in limits between the computer science and information systems domains of research,
and mostly because of the following three foundational ontology aspects [HHDL+

08]:

• Truth versus consensus - The decision between develop an ontology that reflects the
truthfulness of structures, and thus being context independent, or a consensual on-
tology;

• Formal logic versus other modalities - For most of the researchers, an ontology is not
only a logical account, but also a textual definition of its elements.

• Specification versus conceptual system - The trade-off between define an ontology
as a representation of a conceptual system or its specification, and thus, decide the
abstraction level of an ontology.

This Dissertation’s research agrees that an ontology should reflect the truthfulness of
structures, in order to be context independent, and therefore include not only logical ac-
count but also a textual definition of its elements, being able to describe a domain at every
abstraction level required. To conclude this overview, the definition of ontology is stated
as follows - a means to properly and declaratively represent a body of knowledge, and thus,

2.2. Semantically-enriched Software Engineering 20

it’s considered that “they form the foundation for building knowledge bases, represent-
ing domain terminology and enabling communication and knowledge mediation between
heterogeneous agents in knowledge-based systems” [Dev02].

The following Subsections explore and expose in more detail the definition of ontology
and their comparison with the actual knowledge representation methods and modeling
techniques.

Ontologies versus Hierarchies of Knowledge

Sometimes, ontologies are regarded as hierarchies, e.g. taxonomies, that provide domain
knowledge. However, due to the development of languages (OWL [OWL12], Resource De-
scription Framework Schema (RDFS) [DRM12], Web Service Modeling Language (WSML)
[dBFK+

12], etc.) and another technologies that exploit ontologies’ knowledge, it’s possible
to express the semantics of individual concepts in a way that simple taxonomies/hierar-
chies can’t do.

Due to the fact that the aforementioned languages and other tools can be used both to
create ontologies and to create knowledge bases, sometimes there are a misunderstanding
between the divergences between ontologies and knowledge bases. An OWL file can be
used to describe both ontologies and knowledge bases. Nevertheless, an ontology contains
the vocabulary and the formal specification of the vocabulary (domain rules and axioms),
which can be used to express a knowledge base, and aims at the interoperability between
diverse knowledge bases. Thus, as Hepp suggests in [HHDL+

08], a differentiation between
ontological and data individuals should be assumed, with the latter representing part of a
knowledge base within a domain and the former being part of the specification of a domain.

Extensible Markup Language (XML) schemas [BPSM+
08] are a way to define a repre-

sentation syntax for a particular domain through sequential and hierarchical fields, aiming
at moulding context-independent categories of things. Thus, as knowledge bases, they are
confused with ontologies too, but since XML schemas does not represent explicitly the
semantics within a domain, they are not ontologies.

Besides XML schemas and knowledge bases, the relation between Knowledge Organiza-
tion Systems (KOS) with ontologies is a source of misconceptions too, due to the fact that
KOS “are means for structuring storage of knowledge assets for better retrieval and use”
[HHDL+

08, p. 7]. Although, KOS are not able to correctly define the subclass relations or the
meaning of being an instance, and thus, since a key property of ontologies is the meaning
of subclass/instance and its context-independent notion, these two methods of knowledge
representation and classification diverge.

2.2. Semantically-enriched Software Engineering 21

Ontologies - An Emerging Modeling Technique

A formal ontology relies on languages to express its axioms, using the formal semantics
of these languages (typically based on abstract mathematical notions) to develop a domain
knowledge base. This knowledge base can be used to enrich a DSML, by providing the con-
cepts, properties, relations and constraints that enable the ontology-DSML combination to
be a novel modeling technique [GHW03, Obe06]. This emerging technology in the concep-
tual modeling techniques domain, such as UML [Obj08] and the Entity-Relationship Model
(ERM) [Che76] (or one of its variants [Bro75]), have fundamental differences to the tradi-
tional modeling techniques in terms of scope, aim and foundations. Summarizing Oberle
[Obe06]:

• Ontologies have unambiguous semantics;

• An ontology aims at an agreement on the vocabulary terms, properties, constraints
and axioms, between different knowledge bases of heterogeneous domains;

• Ontologies support languages, which enable reasoning and querying capabilities.

As referred in the Section 2.1, the MDA infrastructure aims at the creation of models and
metamodels, managing metadata and the transformation between models (vertical trans-
formations) or between models and applications (horizontal transformations). Based on
the aforementioned advantages, the integration of ontologies with a DSML is a necessity
in the perspective of this Dissertation, in order to reduce language ambiguity, and enable
validation and automated consistency checking [TPO+

06].

Conceptualization and Classification

According with Gruber [Gru93, p. 199], ontologies’ development involves their provision in
multiple formalisms, adopting an understanding of ontology as a conceptualization instead
of its specification in a particular language.

The term ontology was already defined in the diverse domains where it can be applied.
Subsequently, this Paragraph defines what is exactly a conceptualization and how can a
conceptualization be explicitly described. In this Dissertation, a conceptualization is an “im-
plicit and language-independent view on a domain of interest”, [ABm07], committed by a
logical language through an ontological commitment, which allows diverse agents to share
vocabulary in a consistent and meaningful manner. Therefore, an ontology is expressed
using a logical language which ontologically commits to a conceptualization, which in turn
contains the logical theory of an ontology. However, an ontology may contain only a limited
perspective of a conceptualization [GG95], and thus cannot guarantee completeness regard-
ing a certain conceptualization, but only consistency [Gru95]. Although, there are some
directives that should be followed when developing an ontology:

2.2. Semantically-enriched Software Engineering 22

1. Defining a precise formalism to provide the correct interpretation of the vocabulary,
properties, constraints and axioms within an ontology, and its exchange at a syntax
level;

2. Developing the referred formalisms aiming at optimizing the reasoning capability;

The best practices and directives to develop ontologies will be approached in the next Para-
graph, followed by the constraints of ontologies’ development processes, but this brief ex-
planation allows us to define a classification for ontologies. There exist diverse approaches
to classify ontologies, namely by Lassila and McGuinness [LM01], by Oberle [Obe06, p.
43.47], by Uschold/Gruninger [UG96] and by Hepp [HHDL+

08]. Lassila and Mcguiness
developed an ontology spectrum to classify ontologies accordingly with their formal seman-
tics degree, while Oberle, Uschold/Gruninger and Hepp classified ontologies through a
multi-dimensional framework.

Figure 9.: HexOntology, a six-dimensions classification framework of ontologies.

2.2. Semantically-enriched Software Engineering 23

This Masters Dissertation developed and follows a multi-dimensional classification frame-
work, illustrated in Figure 9, to evaluate ontologies through six properties:

• Purpose - Allows the differentiation between an upper ontology, that enables an
agreement between agents belonging to the same metalevel, and a lower ontology,
which is an ontology without instances in the form of ontologies;

• Abstraction level - Refers to the degree of specificity of an ontology, denoting if it is
a generic ontology, which covers diverse and heterogeneous fields, a core ontology,
which covers some interrelated domains, a domain ontology, which enables an agree-
ment between application ontologies, or an application ontology, which is composed
by the semantics within a specific application;

• Implementable expressiveness - This property can range from prescriptive to descriptive;

• Theoretical expressiveness - This property can range from light-weight to heavy-
weight, and represents the expressiveness of the formalism needed to create an on-
tology.

• Conceptual dynamics - The relation between the recently created conceptual elements
and the old ones, per period of time. Thus, representing the relation between the
knowledge capture by an ontology and the actual knowledge existent in a specific
domain at some abstraction level;

• Conceptual elements in the domain - The number of elements constituting an ontol-
ogy.

Due to the fact that there are some interdependencies between this framework’s proper-
ties, this classification framework can be simplified, allowing an agile comparison between
ontologies. Figure 10 illustrates another perspective of the HexOntology, highlighting the
relations between the purpose, implementable expressiveness and abstraction level.

Each layer in the alternative HexOntology classification framework denotes a different
abstraction level, from highly specific (descriptive application ontology or prescriptive applica-

tion ontology) to very general (descriptive generic ontology), providing a vertical classification
of ontologies:

Generic Ontology. By defining general concepts that are applicable in almost all domains,
aims to be a foundational ontology inspired by philosophical considerations regarding the
nature of things and their relations in general, and provides a complete perspective of reality.

Core Ontology. Is an instance-of a generic ontology and allows an agreement between a
limited number of similar domains.

2.2. Semantically-enriched Software Engineering 24

Domain Ontology. Is an instance-of a core ontology and contains domain specific concepts,
constraints and relations, enabling an agreement between application ontologies.

Application Ontology. Is an instance-of a domain ontology and the last metalevel before the
application’s model. Therefore, it specifies the knowledge from the domain ontology into
application-specific concepts, relations and rules.

Besides the vertical categorization, exists an horizontal categorization, in the ranges of
the implementable expressiveness property, which describes a fundamental feature of a model
[Sei03], and can be either descriptive or prescriptive:

Descriptive Ontology. Describes reality but reality is not constructed from it, and, due to
its capability to describe and conceptualize things, are used in analysis and re-engineering
processes.

Prescriptive Ontology. Describes a model that is a specification of reality (describes the
structures and/or behaviours of reality and reality is constructed according to the model),
and thus focus on the specification, control and generation of systems.

These are the definitions that will be used in this Masters Dissertation, in opposition
from the analysis developed by Aßmann/Zschaler, which culminated with the proposal for
the role of ontologies in a meta-pyramid [CRP06, p. 266]. They assume that an ontology
is “a shared, descriptive, structural model, representing reality by a set of concepts, their
interrelations, and constraints under the open-world assumption”, directly advocating that
an ontology cannot be either descriptive or prescriptive. Besides Aßmann/Zschaler, this
Dissertation contradicts Gruber ([Gru93]) and Devedzic too (“Generally, an ontology is a
meta-model describing how to build models.” [Dev02]), due to the fact that they advocate
that ontologies are a design or implementation model, and so, cannot be descriptive. Lastly,
another source of misconceptions is the term upper ontology, which is used to denominate
any ontology in a metalevel n that has an instance ontology in a metalevel (n-1), e.g. in
Figure 10, domain ontology is an upper ontology for the application ontology. This term
must not be confused with the way that Aßmann uses it in [ABm07, p. 22] (in his work, an
upper ontology is the top-level ontology, and so, a Generic Ontology in this classification).

After exhaustively exploring some of the most relevant definitions in this Dissertation
and the ontologies’ classification, the next subsections will approach the methodologies
and constraints of ontologies’ development processes.

Ontological Development Methodologies

In the last decades, ontologies have been known as consensual models of domain of dis-
course, either focused in systems’ specification or in reality description. Although, as ad-
vocated by Martin Hepp in [Hep07], the number of real and useful ontologies available in

2.2. Semantically-enriched Software Engineering 25

Figure 10.: Alternative perspective of the HexOntology.

the Web is very low. In order to contradict this tendency, the science community should
regard the constraints of developing an ontology, explored in the next subsection, and the
methodologies already developed to improve the quality of an ontology.

This subsection does not pretend to transform completely the ontological art in engi-
neering, but aims at identify and clarify some methodologies and requirements that were
used to developed the ontologies approached in this Masters Dissertation. Therefore, in
here is presented an overview of the work developed by Fernandez [FLGPJ97], Guarino
[GW02] and Jansen [JS11]. Notwithstanding, there are other outstanding works on how
to develop ontologies methodologically, e.g. Uschold/King in [UK95], Gruninger/Fox in
[UG96], On-To-knowledge in [SSSS01], among others.

methontology

Developed at the Universidad Politécnica de Madrid, by the Ontological Engineering group,
METHONTOLOGY aims at enable the construction of ontologies at the knowledge level,
and has its roots in some main activities explored by the IEEE software development process
[Sch97] and in other methodologies [MS88]. This methodology guides in how to carry
out the whole ontology development process through a set of well-structured activities,
illustrated in Figure 11. The METHONTOLOGY activities does not intend to imply an
order of execution of its activities, but instead highlight the list of activities to be completed:

1. Planification - Explore the details about the resources and schedule needed to build
the ontology;

2.2. Semantically-enriched Software Engineering 26

2. Specification - Define the goal of the ontology;

3. Conceptualization - Acquire and/or systematize knowledge to conceptualize it in a
model that describes the domain’s problems and solutions;

4. Formalization - Convert the conceptual model into a formal model, using description
logic representation systems;

5. Integration - Integrate the developed ontologies with well-structured ontologies, allow-
ing an extension of the knowledge representation and an agreement between different
domains/communities;

6. Implementation - Implement the ontology in a formal language;

7. Evaluation - Evaluate the developed and implemented ontology;

8. Documentation - Document the finished ontology, allowing other developers to be able
to understand and use it;

9. Maintenance - Maintain the ontology using maintenance guidelines.

Figure 11.: Activities in ontologies’ development following the METHONTOLOGY methodology.

This activities constitute the METHONTOLOGY methodology to correctly develop on-
tologies and to reduce the existing gap between the ontological art and the ontological
engineering.

2.2. Semantically-enriched Software Engineering 27

ontoclean

The OntoClean methodology, developed by Nicola Guarino and Chris Welty, aims at pro-
vide guidance two solve two questions:

1. What kind of ontological decisions need to be made?

2. How these decisions can be evaluated?

And by answering this questions, the OntoClean, provides a support for the ontology
development process based on highly general ontological notions drawn from analytic meta-
physics, a field from the philosophical ontology domain. To do so, this methodology uses
formal notions to define a set of metaproperties (domain-independent properties of classes)
and to characterize relevant aspects on the properties, classes and relations within an ontol-
ogy. Therefore, OntoClean classifies an entity’s property accordingly with its:

• Essence and rigidity - A property can be rigid, if it is essential to all of its instances,
non-rigid, if it is essential to some entities and not essential to others, or anti-rigid, if
it is never essential;

• Identity - Capability of recognizing individual entities in the world as equal or differ-
ent;

• Unity - Capability of recognizing all parts that constitute an individual entity.

This methodology of classifying entities’ properties allows the ontology’s developer to
identify the backbone taxonomy and to clearly define when and where not use subsumption
in the taxonomy [GW02].

the ten commandments of ontological engineering

These commandments aim at compile and condense ontology development rules following
a realist and engineer perspective to provide higher probability of sustainability, interoper-
ability and adaptability to a specific domain. These commandments are categorized in two
approaches, an abstract and a specific one:

• Realism, Multi-perspectivalism and adequatism:

1. Realism - The prime goal of an ontology is the description of the world, and not
the description of words or meaning-entities;

2. Integration Capability - Be a part of a perspective and not the perspective itself,
and thus, developing an ontology that can describe the world through a per-
spective while integrating with others ontologies with different ones, instead of
advocating that there is only one perspective;

2.2. Semantically-enriched Software Engineering 28

3. Domain boundaries - Respect your domain, regarding its boundaries and granu-
larity;

• Terms, definitions and relations:

4. Appropriate conceptualizations - By not providing classes or relations’ labels
somewhat artificial and not commonly used in oral or written communication;

5. Unambiguous definitions - Avoid ambiguity when defining classes or relations;

6. Upper ontology need - The integration with an upper ontology reduces the on-
tology ambiguity and provides mapping between ontologies, allowing an agree-
ment between different domains/communities;

7. Aim at interoperability - Avoid eclecticism, by choosing the correct types in an
ontology, and parochialism, by considering that the domain to be covered or the
entities described in the ontology itself are not all there are in the world;

8. Ontology versus epistemology - Describe a reality through a perspective (ontol-
ogy’s goal) and not the perspective itself (epistemology’s goal).

9. Ontology’s artefacts - Ontologies should avoid classes that are not extensions of
types.

10. Ambiguous relations - Avoid using the same terminology for relations if the
meaning is different, in particular with is-a relation, implicit quantifiers and sin-
gular numerous.

Although several methodologies have been proposed, no methodology has established
as a standard [PM04]. Therefore, this Masters Dissertation will merge these three method-
ologies in order to fill the individual gaps and use a merged methodology to develop the
domain ontology for intelligent motion control systems and the respective application on-
tology, aiming at modeling the coil winding machine developed at the Jilin University.
The methodology advocated by METHOTONTOLOGY’s developers has a high using-cost,
although should be followed. Nevertheless, this methodology does not specifies the devel-
opment methods which allow an ontology to improve its probability of sustainability, inter-
operability and adaptability to a specific domain, and so, should be complemented with the
10 commandments methodology. Lastly, this two methodologies should be complemented
with the OntoClean to fill the gap that exists in the metaproperties analysis, essential due to
the fact that the system’s model is composed by the application ontology’s instances.

Ontology Development Constraints

Although diverse methodologies exist for building ontologies, they (even after being merged)
do not answer questions related to ontology-engineering practices, such as:

2.2. Semantically-enriched Software Engineering 29

1. Can we develop ontologies fast enough to reflect domain’s evolution (conceptual
dynamics)?

2. Does the automation provided by ontologies justifies the development cost?

3. Is the ontology perceptible and meaningful to the user?

To answer the first question, it is an absolute necessity to understand that almost every
domain has a continuous degree of conceptual dynamics, being this degree increased with
the specificity (the aforementioned abstraction level) of modeling. Therefore, if the ontol-
ogy does not follow the principal of minimal ontological commitment, does not maintain
the ontology-engineering/ontology-maintenance lags small and does not limit the degree
of conceptual dynamics, the ontology developers will face an obstacle identified by Hepp
[Hep07, Figure 1], as having an ontology that, after the initial domain capture, will al-
ways have a conceptual discrepancy (e.g. domains such as pharmaceuticals, and chemical
substances have a high degree of conceptual dynamics and thus, constitute a problem to
ontology developers [Hep13]).

The economic question embodies a huge dimension in the ontologies’ development pro-
cesses, due to the fact that the creation of an ontology is characterized as a high development-
cost process. Simperl and Tempich developed ONTOCOM [KVV06] in order to predict the
referred costs and to generate a cost model specialized in a particular ontology, but this
cost model aims at resource-consumption aspects rather than relevant economic driving
forces. Ontology’s inherent costs are a result of both those who create or contribute to the
ontologies and the users of it, due to familiarization and commitment costs. Thus, the
production of good documentation about the ontology, alongside with the good practices
already identified, helps increase the probability of its use/reuse and reduces the develop-
ment cost.

An ontology does not represents the perspective of reality but a perspective of reality, and
therefore the user will be compelled to accept the inherent perspective of things and even-
tual discrepancies that it could have. Nevertheless, the number of ontologies’ users (also
referred as community size) will not only be determined by its quality (and thus, the quality
of its inherent perspective), but also by its complexity, being the latter reflected by the size
[Hep07, Figure 5], detail, expressiveness and conceptual dynamics of it [Hep07, Figure 4].

2.2.2 The Semantic Web

Promoted by the W3C and supported by a large community of researchers, the Semantic
Web is a framework that aims at enable data’s sharing, reuse and integration across the
limits of applications and enterprise [Koi13]. To do so, it defines semantic techonologies (e.g.
languages) to capture this data, represent it, and specify its semantics to be published. This

2.2. Semantically-enriched Software Engineering 30

languages are XML- or Resource Description Framework (RDF)-based, as referred in the
last subsection, and have a logical foundation in ontologies and knowledge representation
systems.

Theoretical and Technological Foundations

The W3C vision comprises the Semantic Web as a layered architecture framework, illus-
trated in Figure 12, that can provide improved interoperability (compared to traditional
XML approaches) due to Semantic Web languages’ inherent richer expressivity, reusability
(on a global scale) and unambiguous vocabulary to users and developers. To do so, the
Semantic Web works as an open-world [KOTW06], in which new information can be added
to the existing resources, linking everything. Therefore, it is impossible to rule if a spe-
cific statement is true or will be true, resulting in the so-called “open world assumption”,
which means that a statement is not necessarily false if it cannot be proved true. This im-
plies a mindset for the squared developers, used to the closed and finite modeling domains,
and offers the aforementioned advantages.

Figure 12.: Semantic Web’s architecture (adapted from [BL00, FM01]).

The referred W3C vision is only possible with the development of semantic-enabling
technologies to foster an early industry’s adoption and development tools support. At the
moment of writing of this Masters Dissertation, the Semantic Web community developed a
set of semantic-enabling technologies to develop, maintain, use and share domain models
for software engineering, allowing an agreement up to the ontologies, rules and querying

layer. A brief overview of these technologies is presented below:

2.2. Semantically-enriched Software Engineering 31

• RDF - Provides a basic data model to express formally associations among resources
that can be identified via a Identifier (e.g. Uniform Resource Identifier (URI)). This
framework [Guu] is intended for situations in which information needs to be pro-
cessed by applications, and thus, constitutes a semantic-enabling technology to ex-
press and exchange the referred information without loss of meaning. To do so, this
framework allows the creation of statements about resources, represented as sets of
triples resembling the subject, predicate and object of an elementary phrase, such as
International Resource Identifier (IRIs), literals, blank nodes and multiple graphs;

• RDFS - Is the RDF vocabulary description language, extending it to include the basic
features required to describe ontologies. Therefore, RDFS specifies an object-oriented
model for RDF, defining how classes, subclass, relations, properties and datatypes are
represented, and enabling the creation of ontologies based on taxonomic relations;

• OWL - Is a richer and powerful ontology language that extends RDFS and uses the
RDF syntax as its base grammar. As advocated by Ian Horrocks in [Hor08], “A key fea-
ture of OWL is its basis in Description Logics (DL), a family of logic-based knowledge-
representation formalisms that are descendants of Semantic Networks and KL-One,
but that have a formal semantics based on first-order logic”, adding expressiveness
[Sah07] through vocabulary to specify classes based on property or cardinality re-
strictions, to support boolean combinations of classes and to allow properties to be
transitive, unique or inverse. OWL is constituted by three increasingly expressive
sublanguages [DSB+

04], namely Web Ontology Language Lite (OWL-Lite), Web On-
tology Language Description Logics (OWL-DL) and Web Ontology Language Full
(OWL-Full);

• Web Ontology Language 2 (OWL2) - Is an extension and revision of OWL [Gro16b]
with a new syntax [HPS12], three new profiles [MGH+], new features and new ratio-
nales [WG12];

• Semantic Web Rule Language (SWRL) - Being a W3C member, combines unary/bi-
nary datalog sublanguages of the Rule Markup Language (RuleML) [PBZ+

12] with
OWL-Lite and OWL-DL. SWRL [HPsB+

04] extends the set of OWL axioms to com-
prise horn-like clause rules, improving the reasoning capability through additional
expressiveness.

For the practical development of this Masters Dissertation, OWL2 was the representation
format of choice, due to the fact that is an extension and a review of an already solid
theoretical grounding and relatively mature tool support, OWL. Therefore, the following
definitions, adapted from [BKMPS09, HKP+

12, DSB+
04], allows an agreement between the

vocabulary to explore OWL2 ontologies:

2.2. Semantically-enriched Software Engineering 32

Class. Represents a group of resources with similar characteristics. Like RDF classes, where
resource (which is the object of an rdf:type triple) is itself an instance of the rdf:class re-
source, every OWL class is related with a set of individuals, denominated class extension,
where each individual is called an instance of the class. The class extension is related with
the class intentional meaning, but that does not implies that its underlying concept is de-
fined by it. Thus, “two classes can have the same class extension, but still be different”
[DSB+

04]. In order to describe a class, a developer may establish singular class descrip-
tions, or combine them to build class axioms.

Individuals. Members of a class description, as aforementioned. Individuals are defined
through axioms (also referred as facts), that can be about class membership and property
values of individuals, or about the individual entity.

Properties. Through binary predicates and a defined domain/range pair, a property can
semantically connect individuals (object property), individuals to data values (datatype
property), or individuals to annotations (annotation property). Additionally, an object
property can be declared as functional property, inverse property, transitive property,
reflexive property, asymmetric property, symmetric property and/or inverse functional
property. Besides that, a datatype property can be described as an equivalent property, a
disjoint property or a pairwise disjoint property.

Datatypes. Properties that links individuals to data values. A datatype property consists
of a RDF datatype specification, a rdfs:literal (can be either plan or typed and it is used
for values such as strings, numbers and dates - [CWL14]) or an enumerated datatype (to
define a range of values).

Annotations. Properties to encode information about the ontology, rather then about the
domain of interest.

Figure 16, depicts a practical ontology composed of excerpts of an ontology used to
model pizza’s domain [PHK+

11]. In here, are introduce two standard notations to represent
ontologies during this Masters Dissertation. The first notation illustrated in Figures 13

and 14 is used to illustrate theoretical foundations of OWL, to explore ontologies from
other developers and/or represent theoretical ontologies’ implementations, and the second
one, illustrated in Figure 16, is an ontology generated by OntoGraf [Fal10] (using Protégé
[GHH+]), and will be used to illustrate the ontologies developed and integrated with the
SeML.

Contrarily to what happens with Protégé, which is the tool chosen to build this Mas-
ters Dissertation’s ontologies, OWL does not use the Unique Name Assumption (UNA),
meaning that two different names could actually refer to the same individual. Therefore,
in OWL, if not explicitly stated that two individuals are different or equal, they might be

2.2. Semantically-enriched Software Engineering 33

(a) Standard representation of individu-
als.

(b) Standard representation of proper-
ties.

Figure 13.: Standard representations in this Masters Dissertation.

the same or different. Figure 13a shows the representation of some individuals in some
domain, represented as small gray diamonds.

As aforementioned, properties are binary relations between individuals. Figure 13b
shows the notation used to represent properties, through an example with the property
hasSibling linking the individual Matthew to the individual Gemma, and the property livesIn

linking the individual Matthew to the individual France. Properties are also known as slots,
in Protégé, or as roles, in DL, or as attributes in some other formalisms.

Figure 14.: Standard representation of classes (containing individuals).

In the definition of classes, this Dissertation explicitly referred that classes “represents
a group of resources with similar characteristics”. Thus, classes are interpreted as groups
of individuals. For example, the class dog contains the individuals that are dogs in the
domain. Classes may be organized into a class-subclass hierarchy, also referred as taxon-

2.2. Semantically-enriched Software Engineering 34

omy. Thus, considering the class dog, it’s possible to infer that all members of the class
dog are members of the class animal, or dog is a subclass of animal. This hierarchies can
be computed automatically by a reasoner - approached in the next subsection. Figure 14

illustrates three classes, in this notation, as circles or ovals: Person, Pet and Country, each
one of them with the respective individuals.

Figure 15.: Standard representation of classes (without individuals).

The defined annotation creates a clear distinction between illustrations that represent
ontologies that were integrated with the SeML to accomplish this Dissertation’s objectives,
which will be illustrated as in Figure 16, and ontologies from other developers or therotical
ontologies, that will be illustrated as in Figure 15.

Figure 16.: Standard representation of Ontologies developed and integrated with the SeML, using
OntoGraf.

2.2. Semantically-enriched Software Engineering 35

Reasoner and Reasoning Capability

Besides providing precise and unambiguous meaning to domains’ descriptions, formal se-
mantics allow the development of reasoning algorithms, useful to correctly answer arbitrar-
ily complex queries about the domain. The design and implementation of this algorithms
comprises one of the most relevant aspects of DL, because results in highly optimized rea-
soning systems, also referred as resoners, that can be used by applications to help them
understand the knowledge captured in a DL-based ontology.

Reasoner. A reasoner is a program that infers logical consequences from a list of explicit
asserted facts or axioms, and typically provides automated support for reasoning tasks such
as classification, debugging and querying.

This subsection provides a brief analysis to some reasoners, evaluating their performance
and choosing a suitable reasoner for the ontologies developed in the practical part of this
Masters Dissertation. Therefore, the Pellet [CP13] and HermiT [oO] reasoners will be com-
pared, alongside with FaCT++ [prod] and RacerPro [HHMW12], to provide an additional
reference point. This set of reasoners has several common characteristics which seem to be
essential to the final application. In terms of practical usability, they are accessible through
the OWL Application Programming Interface (API) and can be plugged into Protégé, ex-
cept RacerPro. Since they possess the same interfaces, they can be interchanged, providing
development flexibility and allowing their comparison. Also, all the referred reasoners im-
plement tableux algorithms which guarantees soundness - all the inferred statements are
correct - and completeness - how many correct statements are inferred. Another important
reasoner characteristic is rule support. However, the FaCT++ does not provide SWRL rule
support and HermiT is not capable of dealing with SWRL built-ins. A small description of
each reasoner follows:

• HermiT [oO] - This Java-based OWL reasoner is based on a new tableaux reasoning
algorithm, and can be integrated into Protégé and Java applications using the OWL
API;

• Pellet [CP13] - This is an open-source, Java-based OWL DL reasoning engine that
supports a majority of the constructs of OWL, including those introduced in OWL2.
Pellet is developed and commercially supported by Clark and Parsia;

• FaCT++ [prod] - An open-source reasoner, which is implemented in C++, supports a
large subset of OWL DL and is based on optimized tableaux algorithms;

• RacerPro [HHMW12] - Renamed ABox and Concept Expression Reasoner, supports
a large subset of OWL DL and is implemented with Common Lisp programming
language.

2.2. Semantically-enriched Software Engineering 36

Table 2.: Reasoners’ performance comparison, in seconds [DCTD11].

(a) Classification performance. (b) Consistency checking performance.

performance comparison

The performance benchmarked in [DCTD11] uses two typical reasoner tasks, consistency
checking and classification. Consistency checking verifies whether exists a relational struc-
ture that satisfies all axioms in a given ontology, that is, if there are no contradictory state-
ments in the ontology. Classification is the computation of the concepts’ hierarchy and
relations, being this often used as the main performance indicator. The ontology should be
checked for consistency and classified regularly, with every modification made to it.

Using several ontologies in the biomedical field, Kathrin Dentler [DCTD11] evaluates the
performance of several reasoners (including HermiT, Pellet and FaCT++) according to the
previously mentioned reasoner tasks, among other characteristics. These ontologies have
the same OWL profile but different sizes in order to evaluate a possible trade-off between
ontologies’ complexity and reasoners’ performance. The ontologies used were GO [GO14],
NCI [fBI13] and SNOMED CT [Int06], which are listed in ascendant order of size in tables 3a
and 3b. Accordingly with the data provided in [DCTD11], all tested reasoners succeeded in
classifying SNOMED CT, and FaCT++ was the only reasoner who classified the NCI faster
than the GO ontology. HermiT reasoner had the worst performance when classifying the
SNOMED CT ontology, taking approximately two hours to perform the task.

Consistency checking performance per reasoner is depicted in Table 3b. The recorded
times are mostly insignificant except for the SNOMED CT ontology, where HermiT outper-
forms the other reasoners by a large margin. It should be noted that, independently of the
used reasoner, the performance decreases with increasing ontology size and complexity.

In [BHJV08], a different kind of analysis is performed. Reasoners are compared accord-
ing to their Load and Response Time. Load time is the time required to perform some
important preparation before classification, consistency checking and querying ontologies.
Response time starts with querying execution and ends when all the results are stored in
local variables. In the experiments by [DCTD11], the tested ontologies were implemented
according to the same OWL profile. The study by [BHJV08] takes a different approach
and tests ontologies implemented in different OWL profiles, which appear in ascendant
expressiveness order in tables 5a and 5b.

2.2. Semantically-enriched Software Engineering 37

Table 4.: Reasoners’ performance comparison, in seconds [BHJV08].

(a) Load time performance. (b) Response time performance.

By looking at the above tables it is clear that, although Pellet and RacePro show better
performance at load time, they also show significant less performance than HermiT when
queries are executed, especially for higher complexity ontologies. This comparison depends
on whether the application frequently operates on preloaded ontologies or has to re-loaded
them at each classification, since in the former case load times becomes irrelevant.

final thoughts

Based on the literature, two benchmarks ([DCTD11] and [BHJV08]) and the respective re-
sults were analysed to select the reasoners that best fit the requirements of the ontologies
here developed. Between Pellet and HermiT, at first sight the HermiT reasoner shows a
better performance than Pellet. Another important point for reasoner’s selection are the
target ontology’s characteristics, such as size or expressiveness.

Since reasoner performance is largely dependent on ontologies’ and applications’ charac-
teristics, when developing an ontology and its application, the various reasoners should be
tested regularly in order to decide which one bests suits the ontologies. Because of this, an
important characteristic of the selected reasoners is that they should provide an interface
via a common ontology API, such as the OWL API, and have a Protégé plugin, which will
allow to easily interchange them at development time for performance testing. Regarding
the domain and application ontologies it is noted that, if a reasoner must be selected, that
reasoner should be Pellet. Firstly, Pellet shows good performance at load and classifica-
tion time for low/medium theoretical expressiveness ontologies. Also HermiT does not
support SWRL rule built-ins, on which the future work of this Masters Dissertation greatly
depends.

2.2.3 Ontology-Driven Software Development

ODSD is an emerging field of software engineering that has the objective of researching
how ontologies and other Semantic Web technologies can contribute to software develop-

2.2. Semantically-enriched Software Engineering 38

ment. In particular, this Masters Dissertation provides a way to model an intelligent motion
control system using a semantic technology, the SeML. To do so, a domain ontology for in-
telligent motion control systems and an application ontology for a specific system within
the domain (the coil winding machine) are developed and integrated with the SeML, to al-
low sound and complete reasoning for consistency checking, domain knowledge agreement
and sharing, aiming at the automation of this system’s configuration and implementation.

Figure 17 illustrates the integration bridge (adapted from the M3 Integration Bridge
[PSA+

13, p. 258]) that enables the system’s designer to model an intelligent motion control
system using an ODSD approach.

Figure 17.: ODSD foundational technologies’ bridge.

This bridge integrates the MDSD approach (Figure 7), which addresses the specification
of abstract syntax for modeling languages using formalisms like metamodels and meta-
modeling languages, and the ontology world, which addresses the structural, semantic rep-
resentation and validation of data using formalisms like OWL2 ontologies.

Advantages of Ontology-Driven Software Development

The advantages of ODSD were deeply explored by Happel and Seedorf in [HS06], but in
here are summarized the most relevant ones in this Dissertation’s context:

• Interoperability and flexibility - Being an ontology a description of domain knowl-
edge and being that knowledge the result of an agreement about the concepts, rela-
tions, properties and constraints that constitute an ontology, its extension and reuse
are both effortless processes.

• An improved consistent perspective - As referred before, an ontology is not the perspec-
tive but a perspective of a domain. Ontologies incorporate knowledge from multiples
perspectives and different levels of abstraction, and, by doing so, they provide an
increased consistency between the different viewpoints, facilitating the integration of
domains envisaged by MDSD.

2.2. Semantically-enriched Software Engineering 39

• Unambiguous and semantically-shared knowledge - Ontologies precisely describe
domain knowledge and its semantics. Therefore, the relation of model’s elements
and their dynamic relations to other models is correctly defined, allowing them to
communicate.

• Reasoning capability - By inferring logical consequences from a list of explicit as-
serted facts or axioms, and by providing automated support for classification, de-
bugging and querying, reasoners uncover hidden relations between elements from
different domain models and facilitates its automatic adjustment.

Divergence from Objected-Oriented Modeling

The last Subsections already referred some of differences between the Semantic Web lan-
guages and the object-oriented languages. A deep analysis to this question was made by
[KOTW06], but in Table 6 the resume of some key-differences that will be important in this
Masters Dissertation is presented.

Table 6.: Relevant differences between Semantic Web languages and object-oriented languages.

2.2. Semantically-enriched Software Engineering 40

3

P R O B L E M A N A LY S I S A N D S O L U T I O N S C O P I N G

This chapter provides a brief analysis of the problem this Dissertation aims to address. It
motivates the project with the analysis of a intelligent motion control system developed at
Jilin University, the coil winding machine, and highlight the arising challenges. Addition-
ally, it sketches the solution approach and describes the expected benefits. Lastly, it defines
a number of research hypotheses as well as this Dissertation’s objectives.

3.1 the imcsp’s problem analysis

The foundation of control engineering lies on feedback theory, linear systems’ analysis
and integration of network knowledge and communication theory. Thus, three relevant
conceptualizations can be defined in the context of this Masters Dissertation:

Control System. A control system is an interconnection of components assembling a sys-
tem’s architecture that provides a desired system’s response [DB11].

The referred system’s architecture may be a reference architecture if this system consti-
tutes a platform, e.g. the IMCSP developed at Jilin University, and the referred system’s
response is conducted through an automation process.

Automation Process. An automation process is executed by a control system, and consists
of a process controlled using automatic mechanisms rather than manual.

Therefore, a control system is classified through its intelligence, the capability to control
a process without help (e.g. human intervention), or through its purpose, according with
desired system’s response (e.g. an intelligent motion control system is a type of control
systems due to its capability to move parts of the machine in a controlled manner).

Intelligent Motion Control System. An intelligent motion control system is a sub-field
of automation systems, encompassing systems involved in moving parts of machines, re-
specting the kinematics and dynamics aspects, in order to accomplish some objective or
manufacture some product.

41

3.1. The IMCSP’s Problem Analysis 42

The intelligent motion control system developed at Jilin University was designed to con-
stitute a reference architecture, and so, a platform for diverse intelligent motion control
systems. Thus, the final objective of this platform is to have a network of implemented
and integrated systems that can be controlled by it. In the Figure 18 is illustrated a group
of intelligent motion control systems that are intended to be supported by this platform.
From the presented systems, some of them are already implemented, e.g. the coil wind-
ing machine and the Unmanned Aerial Vehicle (UAV), but at the time of writing of this
Masters Dissertation not all of them were integrated with the platform, e.g. the UAV and
one of them, the robotic 6-axis arm, due to the complexity processes that constitutes its
implementation, will be the last system to be integrated.

Figure 18.: Intelligent motion control systems to be developed and integrated with the IMCSP.

The reference architecture designed at Jilin University by the IMCSP’s engineers comprise
a set of features that provides the appropriate platform’s flexibility in order to grant a con-
stant workflow, independent of the desire behaviours, configurations and/or requirements.
Aiming at its objectives, the platform requires to be loaded with the system’s configurations
(Motion parameters and G-encoder code) and the system’s requirements, as illustrated in
the Figure 19.

So far, some of the so-called nuclear definitions of this domain were explored and the
aim of the IMCSP developed at Jilin University was defined. To contextualize, one of
the systems developed and integrated in the IMCSP will be used as a case study in this
Masters Dissertation, validating the domain and application ontologies, and the system’s
model. Therefore, its structure and behaviour should be analysed.

A technology stack seeks to build a bridge between business, technical and operational re-
quirements, while optimizing common quality attributes, such as performance constraints.
The IMCSP’s technology stack is represented in the Figure 20, with the Application Software

in the top-level. This layer integrates all the software dedicated to the user interface, either

3.1. The IMCSP’s Problem Analysis 43

Figure 19.: Overview of the IMCSP’s workflow.

to specify system’s goals or to provide system’s feedback. Sequentially, the communication

layer specifies the existent internal and external communication protocols.

Figure 20.: IMCSP’s technology stack.

3.1. The IMCSP’s Problem Analysis 44

Intelligent motion control systems is an interdisciplinary domain that ranges in scope
from the design of mechanical and electrical components to sensor technology [FGL87],
computer systems, and artificial intelligence. To perform a desired task, an intelligent
motion control system must ensure feasible motion in the neighbourhood of dynamic and
kinematic singularities. To do so, the third layer of the software stack comprises the software

algorithms that accurately support the system’s actuators control, being this action impacted
by the feedback received through the system’s sensing components. These algorithms in-
tegrate the methodologies to efficiently control this multi-variable system (jerk, chord error,
tracking efficiency, fee rate fluctuations, etc.) towards a single purpose, which can be the
best performance in terms of execution time, accuracy, resources efficiency, reliability, stabil-
ity, or a trade-off between them, and so, constitute the area with most substantial variability
elements. The forth layer represents the operating system, RTOS RT-Thread. The layer be-
low is composed by the device drivers that provide a software interface to each I/O device,
allowing the access to hardware functions by the upper layer, the operating system. The
last layer is the hardware layer, comprising the system’s hardware and the software algo-
rithms that were migrated to hardware, constituting the hardware accelerators intended to
increase system’s performance.

The hardware architecture of the IMCSP is divided in two main parts:

• STM32F4 - Comprises the application software, operating system, communication
management, software algorithms and device drivers;

• FPGA Cyclone - Includes the hardware accelerators, e.g. High-accuracy interpolation
algorithm or velocity control algorithms.

These hardware parts and the required hardware logic units are integrated in a single
board, which results in the hardware architecture illustrated in Figure 21. The architecture,
and subsequently the entire system, are in constant development, mainly due to a huge vari-
ety of intelligent motion control algorithms that can be applied to each motion environment,
depending on which attributes the user requires from the system. Besides differing in the
requirements that provides to the system, these algorithms can be implemented in software
or in hardware, depending on the system’s requirements. Due to IMCSP’s complexity and
ever-increasing variability, its integration with a tool that provides customization and au-
tomation for the systems’ implementation is an indispensable process, beneficial to reduce
systems’ configuration and implementation complexity, which in turn reduces systems’ de-
velopment time, and subsequently reduces the development costs and enhances systems’
variability.

In the next Section, the SeML’s workflow is analysed to explore the integration of a
domain ontology for intelligent motion control systems and an application ontology for the
coil winding machine with the SeML itself, in order to enable the metamodeling of the coil

3.2. Solution Approach 45

Figure 21.: Overview of the IMCSP’s hardware architecture.

winding machine with a semantically-enriched DSML that will provide the aforementioned
benefits.

3.2 solution approach

3.2.1 SeML as a Semantic Connector

The nuclear idea of the upper ontology developed and integrated in the SeML by the engine
designer (see Subsection 2.1.2) is to establish semantic links between different domains, the
intelligent motion control systems’ domain and the hypervisor’s domain, using semantic
technologies, in particular, ontologies. Thus, the upper ontology works as a semantic con-
nector, forming a knowledge-base for software/hardware systems and enabling a domain’s
designer to develop the desired domain ontologies from it, which subsequently will allow
the application’s designer to develop an application ontology that reflects the mental im-
age that a system’s designer conceives for the application when designing the individual
model.

Intelligent Motion Control Systems’ Domain Ontology

Concerning the modeling of the coil winding machine, a domain ontology for intelligent
motion control systems should be developed and integrated with the SeML, through the
creation of semantic-relations between the domain ontology and the upper ontology. This
ontology will provide a methodology for knowledge representation and reasoning in the
domain, allowing the existence of a common vocabulary alongside with clear and concise
definitions for it, through the creation of concepts, relations and axioms.

Being the development of a domain ontology one of the most relevant objectives of this
Masters Dissertation, it’s important to evaluate the diverse possible implementations, select

3.2. Solution Approach 46

the methodology with the best ontological performance and, lastly, choose a reasoner that
fits the application. Strictly speaking, the behaviour of each existent possibility should be
evaluated, adopting a trade-off between reasoning performance and ontological knowledge
level, to select the best approach between the following hypotheses:

1. Develop a prescriptive core ontology (complementing the prescriptive core ontology
of the SeML) to describe the Robotics and Automation domain, a prescriptive do-
main ontology for intelligent motion control systems and a prescriptive application
ontology for the coil winding machine;

2. Create an instance of the prescriptive core ontology of the SeML and from it devel-
oping a prescriptive domain ontology for intelligent motion control systems and a
prescriptive application ontology for the coil winding machine;

3. Complement the second hypothesis with a descriptive domain ontology that would
assist in the creation of the prescriptive domain ontology. In this case, the descriptive
domain ontology requires the development of a descriptive generic ontology from
scratch;

4. Follow the third hypothesis, but instead of develop a descriptive generic ontology
from scratch, create the descriptive domain ontology as an instance of a recognized
descriptive generic ontology, inhering all of its semantic-knowledge.

In Chapter 2, a methodology to follow during the practical part of this Masters Disserta-
tion was defined and the reasoner that fits the ontologies to be developed was established.
After doing so, the last hypothesis is now choosing the approach that provides a complete,
concise and unambiguous knowledge base to build a model for the coil winding machine,
aiming at automate its configuration and implementation.

IMCS Application Ontology

The clear, concise and correct definition of the concepts, relations and axioms in the IMCS
domain is required by the SeML’s shapeshifting process to enable the creation of a model for
the coil winding machine. The workflow of the SeML is represented in Figure 22, and iden-
tifies the system’s code implementation as the main goal. Firstly, the developed application
ontology, already semantically-connected to the domain ontology (and subsequently to the
upper ontology) is integrated in the SeML. The second step is to use keywords, constraints
and semantics provided by the ontologies to model the coil winding machine. Lastly, the
SeML generates the system’s code, accordingly to the system’s behaviours, configurations
and requirements provided by the system’s designer when developing the application’s
model. The application ontology is essential to this last step, due to the fact that it contains

3.3. Masters Dissertation’s Objectives 47

the semantic knowledge that enables the SeML to know how to and where to change the
application’s code.

Figure 22.: Overview of SeML’s workflow.

3.3 masters dissertation’s objectives

The previous section introduced the solution approach and specified four hypotheses that
can be suitable to solve the issues that this Masters Dissertation addresses. Starting from
there, a list of concrete objectives to aim at can be defined. These objectives also serve to
scope and structure the analysis of related work in the next chapter as well as define the
case study.

contribute to the seml’s development

An ontology is a branch of metaphysics concerned with the nature of being and relations of
a specific domain. Unlike taxonomies, which provide only a set of vocabulary and a single
type of relations between concepts, an ontology provides an exhaustive set of relations, con-
straints and rules. Therefore, to develop a foundational ontology for software/hardware
systems, as the SeML’s upper ontology, engineers need to be aware of the essential notions
and viewpoints during the domain analysis, preventing ambiguity in the ontology’s design.
Thus, a group of six ESRG-OT’s students embodied a particular team responsible to pro-
vide a methodology for knowledge representation and reasoning in the software/hardware
systems’ domain, culminating in an upper ontology for the referred domain. The first ob-
jective of this dissertation is, along with the referred team, contributing for this ontology’s
development, and so, to the development of the SeML itself. The supervisor of the referred
group is Miguel Abreu, and the remaining elements are João Alves, José Martins, Miguel

3.3. Masters Dissertation’s Objectives 48

Macedo, Pedro Lopes and Ricardo Teixeira. The upper ontology’s development constitutes
an iterative process, and thus, this ontology was continuously updated and upgraded dur-
ing the development of this Masters Dissertation.

domain ontology’s development and seml’s integration

Concurrently with the development of the upper ontology, the intelligent motion control
systems’ domain ontology will be developed. Since the upper ontology will be constantly
updated and upgraded, the domain ontology will follow this state of metamorphosis too,
allowing the correct relation between these two hierarchy levels. Towards the definition of
a domain ontology that allows the representation, reasoning about, and communication of
knowledge in the intelligent motion control systems’ domain, this dissertation must focus
on the related work in this field, particularly in the already developed ontologies, opening
the spectrum of domain’s perspectives as well as their concepts, attributes, constraints, and
relations. The development of the domain ontology will be complemented with the merged
methodology establish in the last chapter, adjusting the activities and techniques that sup-
port its development and exposing inappropriate and inconsistent modeling choices.

application ontology’s development

The application ontology will be developed by the application’s designer, in order to spe-
cialize the concepts from the intelligent motion control systems’ domain ontology with
application-specific variants. The application’s designer is the role of this Dissertation, as-
sisted by Professor Quangang Wen, a specialist in the intelligent motion control systems’
domain.

This ontology is a key technology in this Masters Dissertation, because even being only a
specification of a (much complexer) domain ontology, builds an interface between the SeML
and the system’s designer (see Subsection 2.1.2), enabling the development of the system’s
model and the automation of system’s code configuration and implementation. The sys-
tem’s designer is also Professor Quangang Wen, which leads the IMCSP’s development
team at Jilin University, composed by diverse sub-teams, each one responsible for a spe-
cific research field that theoretically composes the coil winding machine and the IMCSP’s
project.

application’s model using the seml

Concluded the integration of the domain and application ontologies with the SeML, the
following objective is the modeling of the already implemented and tested coil winding
machine. In order to accomplish such complex objective, the system’s designer will use
the SeML to develop the coil winding machine’s model, while assisted by the semantics
provided by the upper, domain and application ontologies.

3.3. Masters Dissertation’s Objectives 49

validation of the coil winding machine’s model

The final objective of this Masters Dissertation is the automation of the coil winding ma-
chine’s configuration and implementation. After accomplishing this objective, the code
generated by the SeML must be validated, in order to verify if it respects the model built
by the system’s designer. To do so, the following task must be accomplished:

1. Verify if the code contains the model’s specifications - System’s behaviours (accord-
ingly with system’s requirements), system’s interfaces and system’s properties;

2. When employed in the coil winding machine, verify if the system’s generates a viable
and desirable final product - it must be precisely identical with and without the SeML
integration in the system’s implementation process;

3. Verify if the software modifications required to integrate the system’s code and if the
SeML do not introduce any overhead in the system;

On the assumption that all the above conditions are respected, the coil winding machine’s
model is validated, and subsequently, the application and domain ontologies are validated
too.

seml’s validation at domain-level

Finally, if all the above objectives are successfully accomplished, the SeML is partially val-
idated. In order to achieve a full validation, the SeML should verify the same behaviour
with its application on a different domain, the hypervisor’s domain. This objective rely on
ESRG-OT’s teamwork, where the strengths of individuals and the support of ESRG-OT’s
members are directed towards meaningful goals.

plan and write this masters dissertation

The roadmap to complete a Masters of Science degree contemplates the writing of a Mas-
ters Dissertation. To accomplish this objective, such task was analysed and planned in a
thoughtful way, scrutinizing every detail of its elaboration in a plan where the Masters
Dissertation structure was carefully delineated through all the chapters, sub-chapters, typo-
graphical conventions, etc.

3.3. Masters Dissertation’s Objectives 50

4

A N A LY S I S O F R E L AT E D W O R K

This chapter thoroughly analyses and compares related work in each of the domain prob-
lems belonging to the identified sub-objectives of this Masters Dissertation. Therefore, a
perspective of how relevant the existent upper ontologies were in the process of devel-
oping an upper ontology (the SeML’s core ontology for software/hardware systems) is
provided, and subsequently diverse well-structured and well-defined domain ontologies
for the robotics domain that were conductible to the development of the domain ontology
are explored in great detail.

4.1 review of upper ontologies

An ontology is, summarily, an aggregation of trivial assertions about the world, aiming at
describing things that the human mind can understand but computers can’t, in order to
provide a knowledge foundation to this machines and thus expect them to act and think as
humans, videlicet shaping them as intelligent agents that act through artificial intelligence
processes. In Figure 23, similarly to Giancarlo Guizzardi in [Gui07], this Dissertation il-
lustrates where ontologies intervenes in the process of translating an existing term to an
existing object, concerning the explanation that an ontology shouldn’t focus in the terms but
in the way this terms can be represented, forming concepts through a computable language
(e.g. OWL2).

Figure 23.: Relation between terms, ontologies’ concepts and real-world referents.

51

4.1. Review of Upper Ontologies 52

Subsequently, an Upper Ontology is a semantically-enriched database structure that pro-
vides a knowledge representation agreement between its instances, ensuring clear and
consistent domain conceptualization, granting correct correlation between classes and sub-
classes (instances), expressing knowledge through a computable language and deducing
new facts from existing facts and rules (inference mechanism). Therefore, an upper ontology
works in the conceptualization of domain terms and rules, allowing it to replace human
intelligence by constituting a foundational knowledge base that is easily expandable (and
thus, is able to follow the real world knowledge expansion), language independent, ma-
chine understandable, concise, consistent, precise and unambiguous. Such characteristics
are essential to develop an agreement about the real-world assertions included in an upper
ontology, and thus enable an agreement between every instance that is connected to it. By
doing so, an upper ontology provides:

• Guidance for how to place information in relation to other information in the domain;

• A source of structure and controlled vocabularies helpful for disambiguating context;

• A more effective basis for information extraction or content clustering, and thus, a
structure for browsing within a domain;

• An explicit scope, definition, language and semantics of a given domain, and therefore
a basis to reason and/or infer over it.

Despite the huge number of developed upper ontologies, perspectives and subsequent
differences between them, there are some general concepts and relations that constitute an
agreement on many issues [CJ99]:

• There are objects in the world;

• Objects have properties or attributes that can have values;

• Objects can exist in various relations with each other;

• Properties and relations can change over time;

• Events can occur at different time instants;

• Objects participate in processes, and that processes can occur over time;

• The world and its objects can be in different states;

• Events can cause other events or states as effects;

• Objects can have parts.

4.1. Review of Upper Ontologies 53

Lastly, to finish this introduction and motivate its use, this section makes an analogy to
software development methodologies nowadays. Reuse is an absolute necessity and part of
the best practices in any modern software development (otherwise, every application would
imply the development of its own operating system system, device driver, etc.) to avoid
high development cost processes. Accordingly, during an information system design, reuse
should be maintained as a fundamental best practice. Thus, when developing a domain
ontology, the respective ontology should be mapped to a core or generic ontology.

Naturally, a full coverage of all existing generic ontologies is not the focus of this Masters
Dissertation, and thus this section converges the analysis’ concerns on the proposals that are
related to the problem of establishing ontological foundations for modeling languages, or
that contain semantic-knowledge useful for the development of a stable upper ontology for
hardware/software systems. Therefore, in the next subsections, the BWW, UFO and SUMO
ontologies are analysed in order to explore the development of foundational ontologies
through the last decades, aiming at clearly identify the insufficiencies, strengths and/or
weaknesses of the existing ontologies to emphasize this Dissertation’s contribution to the
semantic world. Lastly, an upper ontology is established, to be used as a semantic connector
to the descriptive domain ontology, which development will later be explored.

4.1.1 Bunge-Wand-Weber

The BWW ontology, which dates from around 1990, is until now the most discussed ap-
proach to ontology-driven conceptual modeling, with over 100 publications in various con-
texts. Aware of the basis of conceptual modeling, Wand and Weber adapted the two-volume
“treatise” on formal ontologies by Bunge [Bun77, Mar80], a physicist and philosopher of
science, and developed the BWW. This process was documented in a series of articles
[WW88, WW90a, WW95].

The BWW ontology advocates that an “information system is an artificial representation
of a real-world system as perceived by humans” [WW88], in order to make a distinction
between the representation and the perceived system. Accordingly to Wand and Weber, an
ontology should be the technology used to model an information system due to its ability
to describe the structure of the world, and thus to encompass both the statics (structure)
and the dynamics (behaviour) of it, through a 3-phase process described in Figure 24. In the
analysis phase, a perspective of the world is forged into a formal model of its perception,
resulting in the so called model of reality, which is equivalent to a descriptive application
ontology. Even being only a human perspective of the real-world and not a way to define
its constituents and its relations, this transformation should provide a structured and unam-
biguous model of reality. Later, in the design phase, the model of reality is transformed to a
model of representation (model of the information system), constituting an interface layer

4.1. Review of Upper Ontologies 54

between the model of reality and the system’s implementation. Lastly, the model of rep-
resentation is transformed into a realization of an information system, and so, a real-world
system.

Figure 24.: The transformations of BWW during an ODSD process.

In the perspective adopted by Wand and Weber, “the world is made of things, that have
properties by which they are known”. A thing is modelled by a set of functions that assign
values to its properties (referred as functional schema). This properties can be agglomer-
ated as sets (that should represent its structure) to constitute a state of the referred thing,
allowing the model to describe the dynamics of a thing through a state machine. Two differ-
ent things are not independent if their history (set of states of thing during a period of time)
demonstrates some dependency, namely, if the history of one of them changes with the
presence/absence of another. Therefore, a system is a thing composed by sets of interacting
things, and thus has its own state machine that is dependent on the interactions between
the state machines of things that compose it. Besides that, a system’s state change can be
implied by an external thing (a thing that is not part of the things that compose the sys-
tem, but is part of the things that compose the environment of the system), constituting an
external event. Regarding possible systems’ states, two assumptions were created [WW88]:

• Stability - A state change happens if and only if the system is in an unstable state;

• Unique response assumption - A system in an unstable state changes to a stable state
uniquely defined by the unstable state.

Taking into account that develop a formal model for all phenomena associated with
information systems is an impossible task, Wand and Weber focused in the deep structure
phenomena of the internal view of an information system [WW95], as illustrated in Figure
25.

The external view of an information system models the system with an external perspec-
tive by treating it as a black box that provides specific necessary services to an organization,
affecting users and evoking managerial concerns. This view allows researchers to define
system’s requirements, process stakeholders and organizational issues. Divergently from

4.1. Review of Upper Ontologies 55

Figure 25.: The domain of BWW models.

this perspective, the internal view takes system’s requirements as fulfilled and concerns
about the characteristics that the system must have if they are to fulfil the referred require-
ments, and so, it regards the structure and behaviour of the system to provide the required
functionality. The later view can be branched into three distinct phenomena - deep, surface
and physical structures. The surface structure phenomena represents the way the system is
presented to its users. The second phenomena, deep structure phenomena, expresses the
meaning of the real-world systems that the information system pretends to model. The last,
physical structure phenomena, manifests the nature and physical structure of the technology
used to build the system.

Advocating that the core of information systems’ design resides in ensuring a good de-
scription of the deep structures of information systems, by providing the meaning of the
real-world systems that they pretend to model, the BWW approach focused in these phe-
nomena and provides three formal models, illustrated in Figure 25, based on two premises:

• Physical-symbol system - A physical-system possesses sufficient properties for it to
be able to represent real-world meaning;

• Representation - Information systems provide an artificial representation of real-world
systems;

The representation model is constituted by two evaluation criteria, the completeness and
clearness, which evaluates if a designed grammar is completed (and so enable to model
any real-world phenomenon) and the capability of its constructs to have a one-to-one corre-
spondence with one of the developed ontological constructs, respectively. The ontological
constructs that constitute the representation model are illustrated in Figure 26, as a result
of a concise analysis to [WW95, Table 1].

4.1. Review of Upper Ontologies 56

Figure 26.: BWW constructs and summarized ontology.

The second model, the state-tracking model, pretends to specify four requirements that
any information system must satisfy in order to enable state tracking [WW88]:

1. Mapping - A real system’s state has at least one correspondent state in the model of
representation;

2. Tracking - The model of representation’s laws (mappings that might change the state
of a system) replicate the real system’s laws;

3. Reporting - Real system’s events should have a reflection in the model of representa-
tion;

4. Sequencing - The real system’s state machine should be respected in the model of
representation.

The last model, The good-decomposition model, specifies three conditions that an informa-
tion system must hold in order to allow the reliability of a decomposition process:

1. Determinism - A decomposition is reliable if, for every subsystem, each external
event at the system’s level is defined either as specified external event (manifest the
influence of the environment on the subsystem), or as well-defined internal event
(state changes that occur internally to a system as a result of an external event);

2. Minimality - A decomposition is reliable only if every subsystem’s descriptions are
defined through non-redundant variables (a redundant variable is a variable that is
never used during the lifetime of the subsystem).

4.1. Review of Upper Ontologies 57

3. Losslessness - A decomposition is reliable only if all emerging variables in the system
(state variable describing a property of the composite system) result from a function
of properties of, at least, one subsystem in this process.

Figure 27 illustrates an overview over the most relevant concepts in the BWW ontology.
By presenting Thing as a pivotal concept, this ontology establishes that “the world is made
up of things” [WW90b]. This development arises with the OWL too, where “every individ-
ual in OWL worlds is a member of the class owl:thing” [Gro16b].

Figure 27.: A selection of structural concepts in the BWW ontology.

The compromise adopted by Wand and Weber in branching Thing into Component Thing
and Composite Thing is an appealing decision for software/hardware ontologies’ designers,
because it allows such ontologies to follow a structural design pattern as the composite de-
sign pattern. Thus, in the presented ontology, Composite Thing can form a group of Things,
which may be made up of other Things (or a single Thing), providing a tree structured
architecture to represent part-whole hierarchies. Nevertheless, both this decision and the
decision of using a state machine to represent the behaviour of the system were initially
adopted in the SeML’ upper ontology, as explained in detail in the next chapter. This re-
search agrees with Wand and Weber about the relevance of the Deep Structure Phenomena
when modeling information systems, and so, the development of the ontologies should be
made by focusing in all the constituents of the internal view, due to the importance that
the specification of the physical and the surface structure encompasses when modeling
software/hardware systems.

4.1.2 Unified Foundational Ontology

The UFO is the result of the synthesis process illustrated in Figure 28, which merged two
foundational ontologies, General Ontological Language (GOL)/General Formal Ontology
(GFO) and Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE), since
it derives from the referred ontologies but focus on a different domain, business [GW04],
in an attempt to resolve each ontology’s shortcomings and insufficiencies.

4.1. Review of Upper Ontologies 58

Figure 28.: The history of UFO.

gol/gof

Advocating that “every domain-specific ontology must use as a framework some upper-
level ontology which describes the most general, domain-independent categories of reality”
[DHHS01], GOL was developed with an upper-ontology as its foundational base of knowl-
edge, providing reasoning capabilities about time, space, inheritance, instantiation, identity,
process, event, attribute, relation, and so on, thus being considered a descriptive ontology.

Figure 29.: Basic concepts of GOL (adapted from [GHW02b]).

As illustrated in Figure 29, GOL branches the entities from the real-world into sets and
urelements, considering that everything that is not a set is a urelement. Subsequently, urele-

ments are divided into individuals and universals, in order to distinguish between something
that is not a set and exist within the confines of space and time, from something that is
not set and can be instantiated simultaneously by a multiplicity of different individuals that
share some characteristics. Individuals may be substances, moments, processes, chronoids, or

4.1. Review of Upper Ontologies 59

topoids. Similarly with thing in the BWW ontology, the concept substance in GOL is based
in the Aristotelian idea of substance [Ack88, p. 7]:

“A substance - that which is called a substance most strictly, primarily, and most
of all - is that which is neither said of a subject nor in a subject, e.g. the indi-
vidual man or the individual horse. The species in which the things primarily
called substances are, are called secondary substances, as also are the genera of
these species. For example, the individual man belongs in a species, man, and
animal is a genus of the species; so both man and animal are called secondary
substances.”

Therefore, a substance “is that which can exist by itself” [GHW02a], an so its independent
from other individuals, e.g. me, you, the sun or a golf ball. Contrarily, a moment can only
exist in other individuals (e.g. passions or an electrical charge). Lastly, chronoids and topoids

are instances of the universals time and space, respectively.

dolce

Although being part of the WonderWeb library [Gua], DOLCE is not considered a descrip-
tive generic ontology, but a starting point for comparing and elucidating the relations with
other modules of the library, and also to clarify the hidden assumptions underlying existing
ontologies or linguistic resources, such as WordNet. Nevertheless, this ontology is analysed
in this Masters Dissertation due to its relevance in the development of the UFO and because
it constitutes one of the most thoroughly researched contemporary generic ontologies.

DOLCE “aims at capturing the ontological categories underlying natural language and
human common sense” [Gua01a], focusing on specific domains. Therefore, a fundamental
ontological distinction between universals and particulars is clarified in this ontology by
taking the relation of instantiation as a primitive (particulars are entities from which no in-
stance is created and universals, contrarily, are entities that can have instances). Besides this
foundational ontological choice, DOLCE has another two core ontological commitments
that allowed it, partially illustrated in Figure 30, to become a standard [MBG+

03]:

• Enduring versus perduring entities - An endurant lives in time by participating in some
perdurants;

• Multiplicative approach - Different entities can be co-located in the same space-time.

The final objective of this ontology, as a formal tool for the semantic integration of data, is
to integrate knowledge from different domains like computational linguistics, agriculture,
medicine, cultural resources, banking, mobile robotics, etc., covering all possible subjects
that exist. To do so, and in order to ensure a constant quality level during its mainte-
nance and expansion, DOLCE was suggested to divide the foundational ontology into sub-
modules of domain knowledge [Gua01b].

4.1. Review of Upper Ontologies 60

Figure 30.: Basic concepts of DOLCE’s taxonomy (adapted from [MBG+
03, p. 13]).

the emerging of the ufo

The term UFO has first been used in [GW04, GW05] and only later the ontology was suc-
cessfully applied in the analysis of several conceptual modeling constructs [GG05]. The
UFO was consistently developed after a deep research on theories originating from areas
such as Formal Ontology in philosophy, cognitive science, linguistics and philosophical log-
ics, comprising a number of micro-theories to address fundamental conceptual modeling
notions, and originating the layered ontology illustrated in Figure 31.

Figure 31.: The architecture of UFO.

The structure of this ontology aims at addressing different aspects of reality, namely
[GWAG15]:

• UFO-A - An ontology of endurants, aiming at structural conceptual modeling aspects;

4.1. Review of Upper Ontologies 61

• UFO-B - An ontology of perdurants, dealing with aspects related with events and
processes;

• UFO-C - An ontology of intentional and social entities, which addresses notions such
as beliefs, intentions, goals, actions, commitments, desires, social roles, among others;

• UFO-S - An ontology of services, addressing the commitments established between
customers and services providers [NFA+

15].

Accordingly with the MDA approach (from the OMG [SO00]), a business model is a
“computation-independent model” because it should be solely expressed in terms of busi-
ness language, and not in Information Technology (IT) concepts. Therefore, the develop-
ment of an upper ontology for business, presents many challenges due to the variability
and complexity of the business domain. The analysis of the UFO leverages this research’s
ontological expertise, and allows the identification of methods that provide the necessary
IT-abstraction to develop an upper ontology and a descriptive domain ontology.

Figure 32 illustrates the main concepts in the UFO, and clearly identifies Thing as the foun-
dational concept, being “anything perceivable or conceivable [ISO:object]” [GW04], concur-
rently to the terms OWL:Thing and BWW:Thing. This concept is then branched into set
and entity, creating a XOR relation that represents disjointness of the corresponding class
extensions.

Figure 32.: A selection of UFO’s structural concepts (adapted from [GW04]).

In this metaphysical approach, Guizzardi and Wagner defined set as Things that contains
other Things, providing some conflict with the BWW:Composite Thing definition. Therefore,
this Dissertation proposes a different Set definition in the upper ontology (being this notion
hidden under an ontology’s annotations interpretation mechanism developed in the SeML).

4.1.3 Suggested Upper Merged Ontology

SUMO is an open source descriptive generic ontology that has been proposed by the Stan-
dard Upper Ontology Working Group (SUOWG), an IEEE-sanctioned working group of

4.1. Review of Upper Ontologies 62

collaborators from the fields of engineering, philosophy, and information science, as a re-
sult of merging a number of existing generic ontologies ([Sow00, BGM96, BGM97, J.F84,
Smi96, Lab, Ass]), as illustrated in Figure 33.

Figure 33.: The origin of SUMO and its architecture’s overview.

The referred merging process, grants a huge diversity and quantity of concepts, axioms
and relations in the resulting ontology, and thus, during its creation, a stratified architecture
was proposed in order to keep it organized in different sections [PNL02], namely into 11

sections with rooted interdependencies carefully documented by Adam Pease in [NP01,
Pea06].

Being a generic ontology (see Figure 9), SUMO proposes definitions for general-purpose
concepts and acts as a foundation for core and domain ontologies, thus creating a compre-
hensive and cohesive ontological structure. The referred ontology uses Knowledge Rep-
resentation Framework (KIF) to embody the semantic knowledge necessary to describe a
considerable number of entities and axioms, intended to define the meaning of those enti-
ties. Although SUMO was initially developed to clarify the meaning of more specific terms
(making them reusable in a large-scale) and to realize a (language independent and easily
understandable by a machine [Pea11]) knowledge representation method, at the time of

4.1. Review of Upper Ontologies 63

writing this Masters Dissertation, the combination of all SUMO concepts result in a ontol-
ogy composed by around 25,000 terms and 80,000 axioms.

Contrarily to what was observed in the BWW and UFO ontologies, SUMO proposes
entity as the root node, and physical and abstract as disjointed concepts, Figure 34. Physical

is further branched into object and process. Object exists in space and keeps its identity
in time (has spatial parts but not temporal stages). Process is a class of instances that
happen in time (have temporal stages), meaning that instead of a perdurantist perspective,
SUMO follows an endurantist perspective. Therefore, in this ontology an object can change
through the time, keeping its identity. Abstract is further branched into quantity, attribute,
set, relation and proposition. As explained in [NP01]:

“Set is the ordinary set-theoretic notion, and it subsumes class, which, in turn,
subsumes relation. A class is understood as a set with a property or conjunction
of properties that constitute the conditions for membership in the class, and a
relation is a class of ordered tuples.”

Figure 34.: An elementary SUMO’s taxonomy.

During the development of this ontology, and due to the adjustment of its focus, referred
by Adam Pease in [Pea11], SUMO increased rapidly in order to cover all possible domains
(as any generic ontology should do). Although, instead of maintain a constant abstraction
level, it eventually focused at specific domains (e.g. hotel/hospitality) in a way that con-
fused the initial well-organized structure. Therefore, this Masters Dissertation will focus on
the perspective given by SUMO as a generic ontology and abstract above the specificity of
some domains that, despite not relevant to the development of the ontologies, constitute a
part of the final architecture of SUMO [Pea06], illustrated in Figure 35.

4.2. Review of Domain Ontologies 64

Figure 35.: Domain knowledge added to SUMO after the conclusion of its initial architecture (pre-
sented in Figure 33).

As a result of its ontological-roots and as the outcome of a huge research (which in
turn was concluded with the integration of domain knowledge in the generic ontology),
SUMO provides definitions for general-purpose terms and acts as a foundation for more
specific domain ontologies, providing the correct integration of domains, an agreement of
real-world perspectives, and also being more flexible than the remaining generic ontologies
analysed in this subsection.

In this Masters Dissertation, SUMO is the descriptive generic ontology from which the
descriptive domain ontology was created. Thus, in the next subsection, the essential on-
tologies from the robotics and automation domain that were useful in the creation of the
descriptive domain ontology as an instance of SUMO will be analysed. Besides the flexible
characteristic granted by this generic ontology (that was used as an upper ontology - see
Figure 9), the process of developing a descriptive domain ontology from a well-defined and
widely used ontology (as SUMO) allows an agreement on the semantic knowledge inherent
to other core/domain ontologies derived from it.

4.2 review of domain ontologies

The last section reviewed generic ontologies, briefly discussing their aim, background, struc-
ture and areas of application, which enables the comparison between them and the upper
ontology developed in this Masters Dissertation using the HexOntology (see Figure 9), as

4.2. Review of Domain Ontologies 65

illustrated in Table 7. Although the analysis of the explored generic ontologies constitute a
relevant research in order to develop the core ontology (which works as an upper ontology
to the instantiated domain ontologies), this ontology intends to operate at different abstrac-
tion level, with a light-weight theoretical expressiveness and a prescriptive implementable

expressiveness, aggregating a variety of characteristics which distinguish it from the analysed
generic ontologies.

Table 7.: Comparison between the generic ontologies analysed and the SeML’s ontology, using the
HexOntology (see Figure 9).

Regarding the IMCS’s domain ontology development, which in turn (since is an instanti-
ation of the SeML’s prescriptive upper ontology) must be a prescriptive domain ontology,
the focus of this Dissertation should now be the development of a descriptive version of
the referred ontology, avoiding the lack of domain knowledge inherent in the process of
directly creating a prescriptive domain ontology. Therefore, as illustrated in Figure 36, a
descriptive domain ontology must be developed as an instantiation of a descriptive generic
ontology (identified in the last Subchapter as being SUMO), and later must be transformed
into a prescriptive domain ontology through a semantic-refactoring process.

Ontology’s development should aim at the reuse of knowledge, and thus, when con-
cluded, an ontology should be at least reusable in its own domain. In pursuance of this
modularization [Obi07], the development of a new ontology should be complemented with
the knowledge and perspectives provided from the existing ones, allowing vocabulary
agreement and knowledge sharing between two different applications in the same domain.

In the domain of robotics and automation, ontologies have been applied for robot de-
scription and operation, generally as a knowledge base used to describe and characterize
the domain, the tasks and/or the surrounding environment. This domain contains diverse
and rich hierarchies in terms of knowledge, and most of the ontologies about it convene on
the following sub-domains:

• Environment - Characterization of the environment surrounding the robot as a reposi-
tory of objects [PSB+

04] or as knowledge about the location in which their are moving
into [BS04];

4.2. Review of Domain Ontologies 66

Figure 36.: Contextualization of the developed ontologies, using the alternative perspective provided
by the HexOntology (see Figure 10).

• Reasoning about actions/tasks - Description of tasks and actions through a stratified
knowledge structure [BAM+

04], to describe learning methods and heuristics [Eps04]
and define concepts related to the intervenients (actors, actions and behavioural poli-
cies) [JBK+

04] or task-oriented concepts [Woo04];

• Shared knowledge - Knowledge is shared to allow robots and its modules to commu-
nicate, using an ontology-based representation-neutral language [CT+

04], allowing
them to perform the require actions or to learn about their own techniques [IBGM08];

• Structural, functional and behavioural knowledge - Ontologies to describe structural,
functional or/and behavioural features of robots [SM05, DDLF+

11];

• Hierarchical knowledge - Characterization of domains and sub-domains of robotics
[HB06].

In this Dissertation’s evaluation, projects that are either unspecific about their ontological
commitments, defines too many domain concepts to be useful for this research’s proposes,
or target a different application area were excluded, such as:

• A Robot Ontology for Urban Search and Rescue [SM05] - In a effort to improve the de-
velopment speed of robotic tools for urban search and rescue responders, the National

4.2. Review of Domain Ontologies 67

Institute of Standards and Technology (NIST) developed an ontology that aims at pop-
ulate a neural knowledge representation by capturing information about robots and
their capabilities to assist in the development and testing of effective technologies for
sensing, mobility, navigation, planning, integration and operator interaction within
the search and rescue domain. In the time of writing this document, the referred
ontology presented a specific perspective in the search and rescue domain, and thus
is not profitable to this Dissertation;

• RobotEarth [M. 11] and KnowRob [TB09] - This project aims at representing a world
wide database repository for robots to share information about their actions, abstract-
ing from their hardware specifications. To do so, RobotEarth stores semantic informa-
tion encoded in OWL using typed links and URIs based on the linked data principles.
The created platform enables robots to store and share information, do the required of-
fload computation (through Knowledge Processing for Autonomous Personal Robots
(KnowRob), which uses OWL for task modeling and a prolog interpreter to reach sym-
bolic goals) and collaborate with another robots. The conjunction of the KnowRob
ontology [Prob, Proa] and the RobotEarth [Proc] presents a limited perspective for
an Generic/Core ontology, reducing the possible spectrum of instantiated ontologies
(domain/application ontologies).

• Ontology-Based Multi-Layered Robot Knowledge Framework (OMRKF) [SLH+
07]

and the Multi-layered Context Ontology Framework (MLCOF) [BASRH13] - Its main
purpose is to help robots in object identification tasks, and thus includes 6 knowledge
layers (KLayers): image, 1D Geometry, 2D Geometry, 3D Geometry, object and space.
Each KLayer includes a meta-ontology, an ontology and an ontology of instances, and
its composed of concepts, relations, functions of relations, hierarchies of concepts,
relations of hierarchy and axioms. MLCOF composes a perspective too abstract to
be considered in this Masters Dissertation. OMRKF is an extension of MLCOF, or-
ganized in a knowledge structure composed by 4 levels (perception, model, context
and activity), each one of them organized in three layers (high, intermediate and low
levels). This ontology aims at the description of robots, but presents an unspecific
definition about their ontological commitments;

• OpenRobots Common Sense Ontology (ORO) [TB09] (complemented with KnowRob
[TB09]) - Largely based on Open Source Cyc technology (OpenCyc) generic ontol-
ogy [Len95], shares most of its concepts with the KnowRob ontology to provide an
ontology-based framework for knowledge representation for cognitive robotic appli-
cations, focusing on the interaction with robots through object recognition, natural
language interpretation, cooperation, task planning and replanning, and therefore is
out of the range of the analysis.

4.2. Review of Domain Ontologies 68

In the next Subsections, some of the prominent domain ontologies for robotics and au-
tomation are explored, in order to comprehend and summarize the inherent domain knowl-
edge and to enrich the ontological expertise required to develop a descriptive ontology,
from which a prescriptive application ontology will be instantiated, conducive to model
the coil winding machine.

4.2.1 IEEE Standard Ontologies for Robotics and Automation

Figure 37.: IEEE hierarchical structure of ontologies.

The origins of the IEEE Standard Ontologies for robotics and automation lie in the require-
ment of having a common understanding in this community and facilitating more efficient
integration/transfer of information. The development of this standard was documented
in a series of articles [SPM+

12, PCRF+
13a, FCG+

15, CFP+
13], and the standard itself was

branched between a conjunction of five ontologies. Following a top-down approach in the
standard’s structure, illustrated in Figure 37, the IEEE is composed by a generic ontology

explored in the last section, SUMO, a core ontology CORAX, and three domain ontologies:
POS, CORA and Robot Parts Ontology (RPARTS).

CORAX ontology

As referred in [FCG+
15], at the time of creation of this ontology, SUMO does not cover for

every possible aspect of reality, only a perspective of it. Although, the knowledge missing in

4.2. Review of Domain Ontologies 69

the generic ontology could not be added in a domain ontology for robotics and automation
due to the violation of the abstraction level that this process requires. Therefore, a core

ontology was developed to interconnect the generic ontology to the domain ontology, CORAX.
This ontology approaches the specification of some conceptualizations from SUMO, e.g.
design, physical environment, interaction and artificial systems, resulting in the concepts
and relations presented in Figure 38. A full explanation of this ontology can be found in
the IEEE standard [fRG15].

One of the possible hypotheses to the problem specified in 3.2 is to develop a side-by-
side upper ontology that has the objective of complementing the SeML’s upper ontology,
concerning its semantic connection to the intelligent motion control system’s ontology. This
approach was structured based on the CORAX development idea. CORAX tries to resolve
some shortcomings and insufficiencies on SUMO that emerges when trying to semantically
connect it to a robotics and automation ontology.

Figure 38.: The primary semantic relations between CORAX and SUMO.

CORA ontology

Despite the name, during this analysis CORA is classified as a domain ontology due to the
fact that does not express the required knowledge to be considered a core ontology (and
thus uses CORAX to complement the generic ontology, SUMO). This ontology provides the
concepts and axioms that appear across the different applications of a domain, including
concepts as robot, robotic system, robot part, etc., and aims at providing consistency among
different sub-domains of knowledge. As referred by Edson Prestes in [PCRF+

13b], in order

4.2. Review of Domain Ontologies 70

to maintain the required consistency, future ontologies about industrial and service robotics
to be included in the standard shall commit to the already existing concepts/definitions in
CORA. Otherwise, inconsistencies and wrong inferences might appear. This is a common
problem in the ontology world, and is based on it that the effort required by the process of
semantic refactor between a descriptive and a prescriptive ontology (illustrated in Figure
36) presents a huge difficulty and relevancy in this Masters Dissertation.

Figure 39 illustrates the main concepts and relations in CORA. This ontology unfolds
around the term robot [PCRF+

13a], considering that a robot:

• Is an agent (SUMO - performs tasks by acting on the environment or themselves)
and a device (SUMO - an artefact with the purpose of serving as an instrument in a
subclass of process);

• Has other devices as parts (further explained in the RPARTS ontology), that represent
suitable mechanical and electrical parts [PCRF+

13a];

• Interacts with the surrounding world through an interface;

• Can be classified accordingly with Autonomy Levels for Unmanned Systems (AL-
FUS)’s classification [HMA03];

• Can form social groups, e.g. a robotic football team;

• Together with other devices can form a robotic system, and thus equip a robotic environ-

ment.

ALFUS [HMA03] defines autonomy as generally dependent on the degree of human
intervention and context, being the latter characterized by the type of global objective and
environment. Based on this, the Ontologies for Robotics and Automation Working Group
(ORAWG) classifies a robot through its modus operandi as a fully autonomous robot, a semi
autonomous robot, a teleoperated robot, a remote controlled robot or an automated robot.

RPARTS ontology

This ontology is another domain ontology, not completely independent from the CORA
ontology [PCRF+

13b]. RPARTS ontology specifies the notions related to a specific robot

part, defining it as a role played by a device while it is connected to a robot. Therefore,
RPARTS provides only an aggregation of specific types of roles that specialize the general
role of robot part, defining the requirements that have to be reached for a device representing
the role of each robot part [fRG15]:

• Robot sensing part - A measuring device that is connected to a robot;

• Robot actuating part - A device that enables the robot to move and act in the surround-
ing environment;

4.2. Review of Domain Ontologies 71

• Robot communicating part - Any device used to communicate between two robots or
between robots and humans;

• Robot processing part - A device used to process information.

POS ontology

In one of the first approaches to the development of CORA, some sub-domains were identi-
fied as future work [PCRF+

13a], e.g. tasks, positioning and physical structure. Nevertheless,
this ontology was later extended [FCG+

15] by the POS ontology, which aims at capturing
the main concepts, relations and axioms underlying the notions of position, orientation and
pose. In this ontology, two types of positional information is explored, quantitative (posi-
tion represented by a given point in a given coordinate system) or qualitative (position
represented as a region defined as a function of a reference object). By considering that
a position can be attributed to an object, this ontology assumes that there is a measure
that relates a given robot to a position measurement, either a position point (for quantitative
position) or a position region (for qualitative position). Similarly to the conceptualization of
position, this ontology provides the conceptualization of orientation, which alongside with
the position constitutes a pose. Accordingly to [FCG+

15]:

“The pose of an object is the description of any position and orientation simulta-
neously applied to the same object. Often, a pose is defined with a position and
an orientation referenced to different coordinate systems/reference objects. In
addition, since objects can have many different positions and orientation, they
can also have many different poses.”

Figure 39 summarizes the integration of the CORAX, CORA and POS ontology with
SUMO, illustrating the main concepts and relations.

The present ontology, that since 2015 constitutes a standard ontology for robotics and
automation, had a significant relevance in this Dissertation’s approach for the development
of a descriptive domain ontology. Firstly, this standard procedures conducive to connect a
domain to a generic ontology, provided a guidance to establish an assortment of research
possibilities to the development of the prescriptive domain ontology, as explored in Section
3.2. Secondly, ALFUS [HMA03] classification system, elucidated how to correctly clas-
sify a robot through its autonomy level, and so, enabled the creation of a classification of
intelligent motion control systems through its intelligence, allowing a correct distinction be-
tween each application developed within the IMCSP’s project at Jilin University. Although
constituting a conjunction of different abstraction level ontologies (generic, core and do-
main), specific conceptualizations are not complete, e.g. there is no a robot part to provide
power to the robot, even being this possible by the semantic-connection to the generic on-

4.2. Review of Domain Ontologies 72

Figure 39.: Core concepts in CORAX, CORA, POS ontologies and its semantic connection to SUMO
(adapted from [fRG15] and [PCRF+

13a]).

tology. Therefore, the descriptive domain ontology here developed, should try to provide
the knowledge to compensate the insufficiencies and weaknesses of this standard.

4.2.2 OCOA

OCOA [CG02] is an open software robot architecture based on behaviours and architectures,
comprising four types of objects that manage and share information with each other on a
distributed peer-to-peer basis, which enables it to describe control architectures for a very
specific component model.

Disagreeing from Shuo and Xinjun [YMY+
17], Casas and Garcı́a act in accordance with

a robotic software architecture’s classification divided in three categories:

• Hierarchical [ALM88] - This architecture aims at providing an abstract perspective
by restricting low-level horizontal communications (and so has reduced flexibility),
making it difficult to adapt to modern robots (due to the iterative and reflexive char-
acteristics presented in modern robots control processes);

• Deliberative [Bro86] - Opposed to the aforementioned category, this architecture com-
prises several behaviours (also referred as modules) that run concurrently through
communication and through the environment, and thus complicating its high-level
representation;

• Hybrid [SA01] - As implied by the name, this architecture combines the hierarchical
and the deliberative architectures, resulting in a complex architectural process.

4.2. Review of Domain Ontologies 73

Based on the referred disadvantages of the current robotic software architectures, OCOA
project presents a new architecture following the component-based architecture software
development paradigm and using ontologies as a knowledge base, aiming at increasing the
reusability and compatibility of the architecture’s components, and enabling the ability to
perform structured and complex coordinated reactive/deliberative behaviours.

The OCOA is composed by three types of components, illustrated in Figure 40.

Figure 40.: OCOA’s project architecture.

The main component, and also core of the OCOA architecture, is the Agent Information
Manager (AIM). Through a notification system that interacts with an internal ontology and
taxonomy, this component manages the agent capabilities, allowing the architecture knowl-
edge base (composed by the interaction between the ontology and the taxonomy) to be built
dynamically. Common Framework object (CFo) provides services for high level logical pro-
cessing and for the infrastructure that shares raw and ontological architectural information.
This component is extended by the Device object Driver (DoD) component, in order to inter-
act indirectly (through Device Input Output Driver (DIOD)) to physical devices, and thus
contains device and platform dependent code. The architecture of the OCOA is presented
in Figure 41, encompassing the interaction between the different aforementioned compo-
nents to create a basic architecture. Since each component have implicit its own goals
and tasks, the creation of a coordinated process that identifies the architecture’s common
or final goal/task is enabled by OCOA, through its expression at an ontological level (as
preconditions, postconditions, execution deadline and execution priority), and later by its
registration in the AIM.

The OCOA’s project, although aiming at a similar core objective (develop a domain on-
tology to describe robotic architectures), diverges from the approach of this Masters Disser-
tation in some key developments. The first one is the fact that, this Masters Dissertation
agrees with Shuo and Xinjun [YMY+

17] when considering that a a robotic architecture can
be classified as reactive control, deliberative control, hybrid control or behaviour-based con-
trol, instead of the classification referred before. The second disagreement resides in the on-
tology developed. Firstly, the OCOA domain ontology presents a high abstraction level for
a domain/core ontology, concurrently with a very light-weight theoretical expressiveness,

4.2. Review of Domain Ontologies 74

Figure 41.: OCOA’s architectural ontology and its components modular description (adapted from
[CG02]).

even for a prescriptive ontology, not including the required semantics to be considered a
knowledge based for robotic architectures. Although the divergences, this project’s founda-
tional background includes the component-base architecture software paradigm, emphasiz-
ing the relevance of the composite design pattern for software/hardware systems, already
advocated by some of the analysed ontologies in this Masters Dissertation.

4.2.3 RoSta

RoSta is a coordination action funded under the European Union’s Sixth Framework Pro-
gramme (FP6) from 2007 to 2009, aiming at becoming the main international agreement for
robots standards and reference architectures in service robotics [RoS]. In this context, they
have defined three objectives [045]: The creation of an action plan for the definition of a
standard, the creation of an open-source driven community, and the creation of conditions
to an agreement through this standard in the international community. In order to proac-

4.2. Review of Domain Ontologies 75

tively accomplish these goals, this team established and concluded some activities in the
domain of mobile manipulation and service robots [HD09]:

• Creation of a glossary/ontology - Advocating that ontologies are a means to discuss
and formally describe advanced robotics systems in terms of their requirements, func-
tional components, performance, architectures, models and methods, the first goal of
this project is to develop a domain ontology to provide a comprehensive and widely
accepted glossary’s agreement.

• Specification of reference architecture principles - Due to increasing number of de-
veloped home-grown or ad-hoc architectures, which leads to a divergence rather than
to a convergence of robot’s technology (as referred in the last section) and a set of
counterproductive processes for scientific progress, the second goal is to develop ref-
erence architecture principles (rather than a specific reference architecture to cover all
the domain systems, which in turn is impossible due to the flexibility demanded on
the systems’ architecture accordingly with its final application). These principles aim
at promoting efficient engineering and reuse of components for technical platforms,
enabling the development of specific architectures.

• Specification of a middleware - Due to the complexity of robotic systems, which
in turn are composed by heterogeneous hardware components with a broad range
of communication requirements with diverse real-time requirements and distributed
processing power over a network of embedded computers, the third goal is the inte-
gration and communication of the various systems’ components through a suitable
middleware.

• Benchmarking - Since measuring performance of robotic systems and subsystems rep-
resents an important process to facilitate the communication between research and
industry, to document research progress and to trigger research towards specific func-
tionality performance, the last goal is to develop and use specific benchmarks on
different systems’ levels - from evaluating performance of robotics’ functions via be-
haviours to assessing full systems in their environments.

Figure 42 illustrates an overview of the glossary used to structure the RoSta ontology,
which in turn is fully explained in the set of deliverables issued by RoSta’s development
team [045].

Arguing, in the deliverable 2.1, that the current state of the art for the robotic systems’
reference architectures appears to be quite disappointing (due to the little reuse and ap-
plication of the developed reference architectures), in the deliverable 2.3 they reinforce the
idea that “a common reference architecture is a mission impossible”, and therefore present
a set of technical and non-technical principles to consider when developing a reference

4.2. Review of Domain Ontologies 76

Figure 42.: RoSta’s glossary structure (adapted from [RoS]).

architecture. Although relevant to the RoSta project, the non-technical principles are not
extremely relevant to this Dissertation’s procedures, and thus this research focus on the
technical considerations:

1. Communication and coordination - A suitable coordination and separation of pur-
poseful tasks, specially on communication between the middleware and the architec-
ture side, allowing system’s dynamic configuration, and thus enabling a robot to be
configured with real-time requirements.

2. Architecture and platform independent computations - RoSta research proposes com-
ponents on three different levels: Formal algorithms, portable source code and binary
components. By doing so, and following model driven engineering, they aim at mak-
ing use of high-levels models to generate the source code, abstracting from hardware
or platform issues;

3. Knowledge structures for flexible interoperability and learning - Grant integration of
artificial intelligence, cognition and semantic web, allowing the migration of code/al-
gorithms for robots acting in the so called intelligent spaces;

4. Compositionality and reuse of components - Being aware of the trade-off of what
goes into models/implementations and what goes into the engineering tools, RoSta
advocates that compositionality should be achieved, by putting together the list of
key-concepts (Open Systems, interoperability, loose coupling, separation of concerns,

4.2. Review of Domain Ontologies 77

declarative descriptions, modularity and compositionality) and architecture mecha-
nisms [RoS09] that enable components’ and systems’ reuse.

The analysis of the RoSta’s ontology does not enlighten this research’s perspective due
to the lack of information available about it. Although, the second part of the RoSta deliv-
erables [045] provided us the specifications on reference architectures’ development prin-
ciples, which contains key-information in order to correctly develop the model of the coil
winding machine (developed in the Jilin University), one of this Masters Dissertation’s ob-
jectives (see Section 3.3).

4.2.4 PROTEUS

PROTEUS is a project that aims at creating a platform to foster exchanges, co-operations
and interactions among the members of the French Robotic Community, enhancing its mem-
bers’ capability to share their skills, know-hows and research findings, and thus facilitating
the transfer between industry and academic worlds [Pro12]. Conducive with their project
core ideology, PROTEUS’s development team presented a set of scientific and technical
goals, based on the creation of an innovative technological infrastructure - the identifica-
tion of problems (as specifications or simulations) and the respective architectures and/or
algorithms that should be developed as solutions, the comparison and publication of these
solutions in PROTEUS’s database, and lastly the validation on real-world systems. The re-
sult of referred ideology was the development of individual shared products that constitute
a large platform:

• Ontologies - Domain ontologies to cover the domains of aerial, ground, marine/sub-
marine and humanoid robotics;

• DSML - Through the integration of the ontology, the existing DSML is capable of
describing problems for specific parts of the robotic domain;

• Reference robotic environments - Scenarios described using the resulting DSML;

• Tools - The tools that constitute the platform and allow its consistent workflow;

• Tests - Develop validation tests to challenge and verify the reliability of the created
products.

In the analysis of PROTEUS’s project, the focus will be the developed ontologies and its
respective integration with the DSML, due to the fact that this process follows the same
principles followed in this Masters Dissertation. The ontologies developed in PROTEUS
should reflect the knowledge (trough concepts, relations and axioms) that allow the DSML
to model the following domains:

4.2. Review of Domain Ontologies 78

Figure 43.: Summary of PROTEUS’s ontologies stack.

• Robotic architectures - Specify robot’s architecture and the components that form the
architecture (sensors, actuators, planners);

• Robotic interfaces - Create communication mechanisms between the components, al-
lowing them to interact in a meaningful way to achieve the desired goal;

• Robotic implementations - Represent system’s and component’s behaviours.

Figure 44.: Overview of PROTEUS’s ontology main concepts.

4.2. Review of Domain Ontologies 79

To this end, an ontology stack was created, illustrated in Figure 43, including both kernel-
related knowledge to describe dynamic systems moving in a specific environment, and the
several modules devoted to specific aspects of the PROTEUS’s platform - information, en-
vironment, mission, robot and simulation. Despite being presented as a stack, this indi-
vidual modules are linked in order to provide the required domain knowledge to the re-
sulting DSML. The diverse domain ontologies developed in this project are fully explored
in [Far09], and in the Figure 44 the main concepts of the PROTEUS ontology are illus-
trated. From the relations, this research easily infers that PROTEUS advocates that a system

has an architecture which is composed of components, which can be software or hardware
components. Similarly to the reviewed ontology, PROTEUS follows a component-based
architecture, where hardware and software components represent hardware and software
parts of the robotic systems, respectively. With the knowledge provided by the ontolo-
gies, the DSML offers specific notations and abstractions within the domain that increase
programmers’ productivity, allowing the programmer to quickly and precisely implement
novel software solutions to the emerging problems. Figure 45 illustrates the transfer of
knowledge between PROTEUS’s ontologies and the resulting DSML, enabling the program-
mer to create a robotic architecture based on the composite design pattern, where for each
hardware component a software component is associated. By doing so, the architect creates
a relation of component-behaviour that allows the robotic architecture to express both the
static and dynamic aspects of systems.

Figure 45.: PROTEUS’s DSML architecture.

The approach followed by this project is the same advocated in this Masters Disserta-
tion. Although, since this project aims at providing a platform to foster exchanges, co-
operations and interactions among the members of a small community, the core objective

4.2. Review of Domain Ontologies 80

is not the same. This aimed agreement inside a small community is inherent in the PRO-
TEUS ontologies’ development procedures - instead of connecting the domain ontology to
a well-structured and thoroughly agreed generic ontology, they developed a light-weight
generic ontology (which is directly integrated with the core and domain ontologies), that
besides providing a reduced knowledge-base about the real-world, reduces the probability
of an agreement between the developers’ community (that is the ontologies’ core objective).
Contrarily, as a final goal, this Dissertation intends to provide a DSML (resulting from
a shape-shifting process of the SeML with the developed ontologies) that can be used to
model intelligent motion control systems, and thus, it aims at an agreement by providing a
perspective of the world (through ontologies) based on the research of the ontologies and
standards already implemented. Nevertheless, the analysis of this project, specially the
composition of its ontologies, thoroughly elucidated us about some key-procedures in the
development of the descriptive domain ontology, specially in the specific relation existent
between the hardware and the software parts of a robotic system, which enabled the correct
differentiation between software and hardware properties of a robotic system (which is a
dependency studied during the ontologies’ design, explored in the next chapter).

4.2.5 Semantic Sensor Network

This subsection researched and reviewed some prominent domain ontologies in the robotics
and automation domain, exploring architectures, behaviours and environments of robotic
systems. Nevertheless, following the composite design pattern, a robotic system is com-
posed of another systems and subsystems, which in turn forces the analysis of the knowl-
edge inherent to each individual system that possibly constitutes a robotic system. There-
fore, in this subsection the SSN ontology is explored, in order to provide the required
abstraction to create a knowledge base and an agreement not only for a sensor subsystem
but for every subsystem that possibly composes a robot. The SSN ontology [CBB+

12], devel-
oped by the W3C Semantic Sensor Network Incubator Group (SSN-XG), aims at describing
sensors and observations in terms of capabilities, measurement processes, observations,
and deployments, conducive to standardize the SSN ontology, to allow its use in a linked
sensor data context. It also enables an agreement in the Internet of Things (IoT) and in
the Internet of Services (IoS) domains, while fostering the adoption of the SSN ontology
in the Open Geospatial Consortium (OGC) community. This ontology was built around a
core Ontology Design Pattern (ODP) to describe relations between sensors, stimulus, and
observations, the Stimulus-Sensor-Observation (SSO) pattern [JC10], and therefore presents
four perspectives - sensor (what senses, how it senses and what is sensed), observation
(observed data and related metadata), system (systems of sensors and deployments) and
feature and property (what senses a particular property or what observations have been

4.2. Review of Domain Ontologies 81

made about a specific property). The result was a descriptive domain ontology organized,
conceptually but no physically, into ten modules, encompassing 41 concepts and 39 ob-
ject properties, directly inheriting from 11 Dolce UltraLite (DUL)’s concepts and 14 DUL’s
object properties. Figure 46 illustrates the ten modules and the relation between them.

Figure 46.: The SSN’s ontology, key concepts and relations, split into conceptual modules (adapted
from [CBB+

12]).

The SSN ontology advocates that stimulis are changes or states (DUL:Event) in an envi-
ronment that a sensor senses through a sensing process. In order to capture the knowledge
involved in a sensing process, they created the concept observation, which links the act
of sensing and the event that represents the stimulus (DUL: includes events), the sensor
(ssn: observed by), the method (SSN: sensing method used), the result (SSN: observation
result), the observed feature (SSN: feature of interest) and the observed property (SSN:
observed property). This concept is complemented with a sensor’s perspective, referring
that, for any property observed by a sensor, the sensor’s performance might be affected by
environmental conditions, that can be related (or not) to the property observed, being this
performance modelled by the measurement capabilities of a sensor, as illustrated in Fig-
ure 47. To complement the sensor’s perspective, the SSN ontology constructed a system’s
perspective around the concept system, defining system as an agglomerated of components
(composite design pattern), from which the devices and sensing devices (subclass of devices)
have operating and survival ranges - an operating range describes the environmental char-
acteristics in which the system is intended to operate, and the survival range represents the

4.2. Review of Domain Ontologies 82

environmental conditions to which a device can be exposed and continue to operate as per
defined measurement capabilities.

Figure 47.: Enumeration of the SSN’s ontology measurement, environmental and survival properties
(adapted from [W3C14]).

By abstracting from the sensing domain, this research can extract from this ontology
a rich knowledge network to describe any subsystem of a robotic system in terms of its
hardware properties and environmental behaviour. One example of this is the Semantic Ac-
tuator Network (SAN) ontology [SAD+], an actuators ontology based on the SSN ontology.
Therefore, the knowledge provided by the SSN and the SAN ontologies will be used in the
development of the descriptive domain ontology.

4.2. Review of Domain Ontologies 83

5

R E S U LT S A N D P R A C T I C A L E VA L U AT I O N

In this chapter, the theoretical insights and practical results gained from the research con-
ducted in this Masters Dissertation are presented.

Figure 48.: Contextualization of the developed ontologies and their relation with the application’s
model, using the alternative perspective of the HexOntology (see Figure 10).

Therefore, and based on the findings from the last chapters, the first section discusses the
design of the SeML. Besides a comprehensive description of its grammar and workflow, the

84

5.1. Design of the Semantically-enriched Modeling Language 85

developed mechanisms embedded on this tool that allow the automation of systems’ imple-
mentation and configuration, with generative code generation, are reviewed. Subsequently,
the second section elaborates on the practical challenges for a complete implementation
of a descriptive domain ontology for the intelligent motion control systems’ domain, from
which a prescriptive domain ontology was developed, as illustrated in Figure 48. Lastly,
based on the mentioned ontology, a prescriptive application ontology is built and explored.
To round off the chapter’s approach, the developed ontologies are evaluated in a case study
realized with a real-world system developed at Jilin University, the coil winding machine.

5.1 design of the semantically-enriched modeling language

The SeML is a DSL which domain is modeling systems. To do so, it acquires semantic
knowledge from ontologies and provides an infrastructure that enables a system’s designer
to create a model, describing its:

• Requirements - Through the requirements, the designer indirectly describes machine’s
capabilities that provide the behaviour demanded for solving a problem or achieving
an objective;

• Behaviours - The software implementation of each one of the software components
that compose the system’s model;

• Properties - Code execution properties that characterize the system’s behaviours.

As a result, the SeML generates the system’s code that meets the requirements described
by its designer, in a process similar to the one illustrated in Figure 49.

Figure 49.: The interaction between the system’s designer and the SeML, conducive to the creation
of the system’s model.

5.1. Design of the Semantically-enriched Modeling Language 86

Developing a programming language forces its designer to compose a processing system
capable of read and understand the code written on it. Contrarily to the processing system
of a DSL, the processing system of a GPL includes the phases illustrated in Figure 50

[ASU86]. In this complex process, the preprocessor converts the source program, usually
divided into modules stored in diverse files, into source language statements. Subsequently,
the compiler uses the source program to generate assembly code that is translated by an
Assembler into machine code and then linked with some libraries into executable target
code, by the Linker.

Figure 50.: The phases of a GPL processing system.

DSLs are programming languages that target a specific problem domain, and so, the op-
posite of GLSs that are meant to provide features to solve a diverse variety of problems, e.g.
C, C++ and Java. A program or a specification written in a DSL can be either interpreted/-
compiled into a general purpose language or represent data that will be processed by other
systems. Implementing a DSL encompasses the development of a program that is able to
read text written in that DSL, parse it, process it, and possibly interpret it or generate code
into a target language [Bet16], as illustrated in Figure 51.

During the compilation phase, the analysis consists of four phases:

• Linear analysis - Also referred as lexical analysis or scanning (when performed by
a scanner), is the first phase of compilation, in which a stream of characters in the

5.1. Design of the Semantically-enriched Modeling Language 87

Figure 51.: The phases of a DSL processing system.

source program is read and grouped into tokens, composing sequences of characters
that have a collective meaning;

• Hierarchical analysis - Also called syntax analysis, it is realized by the parser and
hierarchically groups the tokens into grammatical phrases with collective meaning;

• Semantic analysis - Ensures that the grammatical phrases, composed during the previ-
ous phase, fit together meaningfully, gathering information for the subsequent phase;

• Code generation - Uses the Abstract Syntax Tree (AST) to generate code in the target
language.

Since the implementation of a parser and respectively the scanner represents very com-
plex and costly processes, tools were created to deal with these tasks. In particular, there
are DSLs (usually referred as parser generators or compiler-compilers) that generate code
for the lexer and the parser from the specification of a language’s grammar, which is a set
of rules that describe the form of the elements that are valid according to the syntax of a
DSL [Bet16, p. 11]. To develop the SeML, the Eclipse Integrated Development Environment
(IDE) was used, providing an aggregation of features that enrich the user-experience of
the DSL itself, e.g. syntax highlighting, background parsing, error markers, content assist,
hyperlinking, quickfixes, outline and automatic build. Eclipse was the IDE chosen because
it integrates the Xtext framework [ES16] to implement programming languages and DSLs.
The advantage of using this framework is that, from the specification of the grammar, it
generates the lexer, the parser, the AST model, the construction of the AST to represent the
parsed program, and the Eclipse Editor with all the IDE features.

5.1. Design of the Semantically-enriched Modeling Language 88

As indicated by the name, SeML is more than a elementary DSL for modeling systems.
This programming language is semantically-enriched, which means that, in its background,
has an ontologies (a semantic technology) providing the semantic knowledge required to
model a system, as illustrated in Figure 52.

Figure 52.: The phases of the SeML processing system.

Ontologies are composed by concepts, relations and axioms that are used to enrich the
keywords and the set of rules that describe the SeML’s grammar, and by doing so, en-
able the language to shapeshift according to the knowledge inherent in the provided on-
tologies. Therefore, if the system’s designer provides a domain ontology for robotics (an
ontology that describe the robotics domain through concepts, relations and axioms) and,
subsequently, an application ontology for a specific robotic machine (e.g. 6-axis robotic
arm), it will be able to model that robotic machine.

In order to be able to use the semantically-enriched metamodeling environment provided
by the SeML to model a specific system, the system’s designer must provide the ontologies
that represent the domain and application knowledges required to model the system, and
these ontologies must be instance-of of the Core Ontology provided by the SeML (see Figure
48), which in turn provides core knowledge about hardware/software systems, illustrated
in Figure 53.

The core ontology for software/hardware systems follows the composite design pattern,
also used by the BWW ontology and the IEEE Standard Ontologies for Robotics and Au-
tomation analysed in Chapter 4. By doing so, this ontology branches owl:Thing into (SeML:)
problem, (SeML:) characteristic and (SeML:) component, advocating that a (SeML:) compo-
nent is composed of other (SeML:) components. A (SeML:) component can have a (SeML:)
problem and can be demanded by a (SeML:) characteristic, which in turn solves a (SeML:)

5.1. Design of the Semantically-enriched Modeling Language 89

Figure 53.: The SeML’s Core Ontology.

problem. By doing this, the SeML core ontology creates a group of object properties that
focus on describing system’s variability.

A (SeML:) component is either a (SeML:) property (describes every kind of property
related with code execution, and so, it can be constants or variables), an (SeML:) entity (A
container for every type of components) or a (SeML:) process (a procedure that can have
inputs and outputs, and so, it describe continuous behaviour, e.g. function, method or
sequential instruction).

A (SeML:) characteristic is intended to model a characteristic of a system through the
conceptualization of features (system’s attributes), defaults and goals (system’s objectives),
and thus might be used to:

• Require/reject the instantiation of other (SeML:) characteristics;

• Impose existential restrictions on (SeML:) component individuals;

• Influence solution proposals;

• Trigger SWRL rules.

Besides enabling the description of systems’ variability, the SeML has a mechanism to
related each part of the ontology to external tools that can have different roles in the code
generation, being this accomplished through the annotations created in the application
ontology.

The main focus of this Masters Dissertation is to metamodel an intelligent motion control
system following an ontology-driven process. To do so, this Dissertation uses to the SeML,
that provides a semantically-enriched environment to model software/hardware systems
and enable the automation of its configuration and implementation by using the description
of its variability.

After exploring the development and characteristics of the SeML, is now obvious that the
decision of following the fourth hypothesis from the ones indicated in Section 3.2 is based
on the insufficiencies and weaknesses of the remaining hypotheses:

1. Hypothesis 1 - The extension of the core ontology provided by the SeML would in-
deed enhance the knowledge within the ontology, allowing a broad description of the

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 90

intelligent motion control systems’ domain, but would constitute an overhead in the
global process of modeling an intelligent motion control system (since the additional
knowledge provided by the extension would not be recognized by the SeML);

2. Hypothesis 2 - Develop a prescriptive domain ontology without develop a descriptive
domain ontology first, deceives the perspective applied to the ontology, due to the
fact that this perspective would not include the perspectives of other ontologies for
the domain, compromising the agreement required;

3. Hypothesis 3 - Solves the problem of the previous hypothesis, but creates the same
problem for the development of a descriptive generic ontology, since an ontology
at this abstraction-level should not be developed without a huge team of experts
from different and diverse knowledge areas that provide the necessary awareness
and required perspectives to develop a well-structure generic ontology, e.g. SUMO;

4. Hypothesis 4 - By creating the descriptive domain ontology from a descriptive generic
ontology, this hypothesis enables an agreement between domains and within the do-
main, solving the problem referred in the third hypothesis. Since the creation of the
prescriptive domain ontology is the result of the semantic refactor of the descriptive
domain ontology, this hypothesis also solves the problem mentioned in the second
hypothesis. After the semantic refactor, the resulting ontology only contains knowl-
edge inherited from the SeML’s prescriptive core ontology (see Figure 48), and so, the
problem introduced in the first hypothesis is solved too, making this hypothesis the
one to be followed.

In order to follow the fourth hypothesis, and to correctly use the SeML, a descriptive
domain ontology, a prescriptive domain ontology and a prescriptive application ontology
were developed, as explored in the next Sections.

5.2 design of the intelligent motion control systems’ domain ontology

The main goal of this section is to define a prescriptive domain ontology that is expressive
enough to represent the common semantics of the intelligent motion control systems’ do-
main. To do so, a descriptive domain ontology will be develop, describing reality through
the conceptualization of things and their relations. Figure 8 classifies both ontologies, ac-
cording to the HexOntology (see Figure 10), and thus allows the comparison between them.

The descriptive ontology is connected to the SUMO ontology, in order to obtain a almost
complete coverage of reality, characterized by a heavy-weight theoretical expressiveness,
that results of the huge amount of concepts, relations and axioms used to describe the
things in the real-world. Contrarily to the descriptive ontology, the prescriptive ontology

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 91

Table 8.: Comparison between the descriptive and prescriptive domain ontologies for the intelligent
motion control systems’ domain.

defines reality, and therefore must only contain implementable concepts, relations and ax-
ioms. To convert a descriptive ontology into a prescriptive one, a semantic refactor process
will review and rearrange all the non-implementable information in the descriptive ontol-
ogy, as will be further explain.

In the next subsections, a detailed description of the methodologies and techniques used
to develop each one of the referred ontologies is presented. Nevertheless, since the descrip-
tive ontology contain a big aggregation of knowledge, represented as concepts, relations
and axioms, a huge part of its composition is explored in the annex A.

5.2.1 Descriptive Domain Ontology

Following the methodologies for ontologies’ development, mentioned in the Subsection
2.2.1 (METHONTOLOGY, the ten commandments and OntoClean), firstly it’s necessary to
explore the details about the needed resources and then build the desired ontology. This
task will be accomplished with the creation of a Gantt diagram, presented in the annex C.
Aiming at reducing the gap between the ontological art and the ontological engineering,
the second step of the development of the descriptive domain ontology is equivalent to the
specification phase in METHONTOLOGY. It consists in understand the domain and define
use-case scenarios from design experts’ perspective, aiming at specifying the global goals
of the ontology. Table 9 presents the specification and use-case scenarios of the referred
ontology.

The process of developing a descriptive domain ontology must aim at the creation of
abstract and general concepts, relations and axioms, rather than the creation of a particular
and independent massive domain ontology, increasing its flexibility, modularization and
maintainability. Therefore, the third step is the reuse of existent ontologies (if applicable),
allowing knowledge to be shared, and thus an agreement between domains. To do so, this
ontology will be semantically connected to the SUMO ontology, analysed in great detail in
Subsection 4.1.3.

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 92

Table 9.: Domain specification and use-case scenarios for the intelligent motion control systems’ de-
scriptive ontology.

A descriptive ontology describes reality but reality is not constructed from it, constituting
a shared and structured knowledge foundation represented by a set of concepts, their inter-
relations, and axioms under the open-world assumption. As aforementioned, the SeML is a
prescriptive ontology, an thus a descriptive ontology cannot be constructed from it due to
the lack of knowledge expressed. Therefore, aiming at the creation of a descriptive domain
ontology, SUMO was used as a upper and generic ontology, inheriting all the knowledge
that is described on it. SUMO describes, through its designers’ perspective, the real-world
and its things, creating a consensus between diverse domains and applications (granting the
sustainability, interoperability and adaptability aimed by the 10 Commandments), and there-
upon, allow the descriptive ontology for intelligent motion control systems to be connected
to other domain ontologies through the core abstraction level that represents robotics and
automation, e.g. the domains of object recognition, speech recognition, space mapping,
human-robot communication etc.

In order to build the core structure of the descriptive ontology, and following the ap-
proached advocated by the ORAWG, the combination of the concepts agent (SUMO: some-
thing or someone that can act on its own and produce changes in the world) and device

(SUMO: A device is an artefact whose purpose is to serve as an instrument in a specific
subclass of process) was used to conceptualize robot and develop a taxonomy that allows
its classification through its autonomy level, as illustrated in Figure 54:

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 93

• Automated system - An automated system is the agent of an automated process. ’Au-
tomated’ simply means that actions can be carried out by something other than a
cognitive agent (SUMO);

– Automated robot - An automated robot can accomplish a goal or solve a problem
to which the robot was automated to, not adapting to changes in the surrounding
environment;

– Teleoperated robot - A teleoperated robot can accomplish a goal or solve a prob-
lem with the intervention of an human operator, either by controlling the actua-
tors using sensory feedback or by assigning new goals on a continuous basis;

– Remote controlled robot - A remote controlled robot can accomplish a goal or
solve a problem when the control of the tasks’ execution belongs to the human
operator on a continuous basis, resulting from direct or indirect observation of
the robotic system;

– Semi-autonomous robot - A semi-autonomous robot can accomplish a goal or solve
a problem with human intervention at diverse levels, in order to induce the robot
to plan and execute the purposed task, through the execution of the required
processes.

• Cognitive system - An automated system is the agent of a cognitive process;

– Fully-autonomous robot - A fully-autonomous robot can accomplish a goal or solve
a problem without human intervention, while adapting to operational and envi-
ronmental conditions.

Respecting the realism, multi-perspectivalism and adequatism advocated by the Ten Com-
mandments of Ontological Engineering, this Dissertation’s perspective encompasses robot

as a composite component designed to perform purposeful actions, through the execution
of processes, in order to accomplish a goal or solve a problem. To accomplish the referred
actions, a robot is composed of parts that can play the role of a platform part, an interfacing

part, a powering part, a processing part or a storing part:

• Interfacing part - An interfacing part allows the robot to sense, act and interact with
the surrounding environment.

– Actuating part - Allows the robot to move and act in the surrounding environ-
ment, through an actuating process;

– Communicating part - Provides communication among robots and humans through
a communication process;

– Sensing part - Senses the surrounding environment, through a sensing process, in
order to measure a physical quantity;

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 94

• Platform part - Framework of the robot that holds all the robot parts together, allowing
the robot to have the required performance;

• Powering part - Provides power to the robot through a powering process, accordingly
with its own powering properties;

• Processing part - Responsible for processing data and information, through a process-
ing process.

• Storing part - Provides storing capabilities, by allowing the robot to read/write and
control a storing part, through a storing process.

Figure 54.: Main concepts of the descriptive ontology for intelligent motion control systems.

Thus, a robot part is defined as an atomic or composite component that represents a
relation between a given component and a robot, indicating that the referred component is
playing the role of a robot part when composes the robot composite component. By doing
so, in this ontology, a robot part is a piece of hardware that acts on his own when is not
connected to a robot, and acts as a robot part when is integrated in the robot, performing
is own role, likewise in the IEEE Standard Ontology for Robotics and Automation [fRG15]
(explored in detail in the Subsection 4.2.1).

As mentioned in the previous section, the SeML follows the composite design pattern,
allowing a component to be composed by other components. Correspondingly with this
approach, the IEEE Standard Ontology for Robotics and Automation [fRG15] advocates
that the composite design pattern is the most advantageously way to approach the struc-
ture of such complex systems. Equivalently, in this descriptive domain ontology, a robot

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 95

(SUMO:Agent + SUMO:Device) is a composite component composed of parts that repre-
sent composite or atomic components. Therefore, at a higher level (and since a robot is an
agent and agents can form social groups), a robot can be a part of a group of robots (or
other kind of complex system) that work like a team to achieve a goal. By doing so, a Robot
can be part of a single robotic system and a robot group can be a part of a collective robotic

system (being a robotic system an artificial system formed by robots and devices intended
to support the robots in achieving their goals), both aiming at equipping a robotic environ-

ment (physical environment equipped with robotic systems). These relations are illustrated
in Figure 55.

Figure 55.: Part of the descriptive domain ontology showing concepts related to Robot Group con-
ceptualization.

The autonomy level of a specific robot will be determined by its ability to execute an
aggregation of processes in order to achieve the final goal. Therefore, a relevant part of
this descriptive domain ontology is the conceptualization of the diverse kinds of processes
that a intelligent motion control system should be able to perform. SUMO has created a
extensive and exhaustive taxonomy to describe process (SUMO:Process - the class of things
that happen and have temporal parts or stages), and from it this Dissertation explores a
group of conceptualizations that are relevant in the limits of the ontology’s domain:

• SUMO:Power generation - Class of processes in which some kind of power is gener-
ated either for immediate use in a device or to be stored for future use, being classified

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 96

as fossil fuel, nuclear, electrical, or other types (in order to include any type of emerg-
ing power source). The power generated in any of these processes can later be used
to supply (supplying process) or charge (charging process) a robot/robot part;

• SUMO:Nature process - A process that takes place in nature spontaneously, and there-
fore is the opposite of a powering process;

• SUMO:Motion - Conceptualizes any process of movement, and thus includes the mo-

tion control processes required to control an intelligent motion control system;

• SUMO:Automated process - An automated process is some process that is not a nat-

ural process and does not require the agent to be some cognitive agent. The agent will
usually be an automated system. Respecting the boundaries of the domain, the de-
scriptive ontology describes communicating process, sensing process, processing process,
actuating process and storing process as a combination of conceptualizations between
automated process and another specific process identified by SUMO, as illustrated in
Figure 56;

• SUMO:Communication - A social interaction that involves the transfer of information
between two or more cognitive agents. A communicating process, besides being an
automated process, involves the transfer of information between two robots or a robot

and an human;

• SUMO:Computer process - Process which manipulates data in the computer. Depend-
ing on the abstraction level at which a process is observed, any process can manipulate
data in a computer, due to the fact that any actuating, sensing, communicating, stor-
ing or processing process relies on manipulated data to perform. An exception to this
rule is a supporting process executed by a platform part, in order to hold all the parts of
the robot together, allowing the robot to have the required performance;

• SUMO:Making - The subclass of creation in which an individual artefact or a type of
artefact is made. A motion control process can be a making process in which an artefact
(SUMO: An abject that is the product of a making) is produced.

The achievement of a goal is accomplished through the aggregation of simple and com-
plex processes, described using the conceptualizations explored so far, but the performance
of the robot or the performance of one of its parts is directly dependent on its properties,
both hardware (describes an observable quality of a robot or one of its robot parts) and
software properties, illustrated in Figure 57. A property can be ontologically described
accordingly with its quantity kind (an abstract classifier that explores the concept of kind
of physical quantity, representing the essence of a quantity without a numerical value or
unit [CBB+

12], e.g. frequency, velocity) and its physical unit of measurement (an abstract

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 97

Figure 56.: Part of the descriptive domain ontology showing concepts related to process conceptual-
ization.

classifier that represents a “real scalar quantity, defined and adopted by convention. This
way, any other quantity of the same kind can be compared to express the ratio between of
the two quantities as a number” [W3C14], e.g. Hz, m/s).

Figure 57.: Part of the descriptive domain ontology showing concepts related to property conceptu-
alization.

A robot has an operating range (a hardware property that specifies the environmental con-
ditions and characteristics of a robot part/robot’s normal operating environment) and a

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 98

survival range (a hardware property that specifies the conditions a robot part/robot can be ex-
posed to without damage - if the robot part/robot is damaged, its capability specifications
may no longer be the same). Besides the operating and the survival ranges, each robot part is
described through a unique group of properties, as illustrated in Figure 58 for a sensing part

and in Figure 59 for an actuating part. This separation of concerns allows the specification
of the characteristics of each robot part, increasing the knowledge inherent in the process
and granting an accurate description on real-world things. Therefore, an actuating part is
characterized through its control signal (which describes the source of the control signal
that controls the referred actuating part as electrical, hydraulic or pneumatic), energy source

(which describes the source of energy that provides power to an actuating part as alternative,
electric current, Hydraulic Pressure, Magnetic Energy, mechanical force, pneumatic pressure or
thermal energy), and actuating properties (describes a physical actuating metric of a robot
part, e.g. efficiency and actuating time), while a sensing part is characterized only through
measuring properties (e.g. accuracy, detection limit and resolution). The referred properties
and the properties of the remaining robot parts are illustrated in the annex A.

Figure 58.: Part of the descriptive domain ontology showing concepts related to sensing property
conceptualization.

The relation between robot, robot part and hardware property allow this ontology to ac-
curately describe a intelligent motion control system’s hardware structure. Nevertheless,
besides the hardware, a robot is composed by software too. Therefore, and in order to re-
duce the gap between the ontological perspective of the system and the software embedded
in the real-system, a relation between robot, robot part, process and event was created and
illustrated in Figure 60. This relation enlighten the system’s designer about two kind of
events that any robot part can possess - an observation or an order. In this Dissertation
perspective, and following the design patterns created by the remaining ontologies in this
domain, an event can be either a command (an action issued by a robot part and requested
by a process, in order to move and/or act in the surrounding environment, or in the robot

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 99

Figure 59.: Part of the descriptive domain ontology showing concepts related to actuating property.

itself) or an observation (a situation that describes the observation of a software property,
controlled by the process which requested the observation, through a robot part).

Figure 60.: Part of the descriptive domain ontology showing concepts related to Event conceptual-
ization.

This ontology describes intelligent motion control systems’ architecture, behaviour, phys-
ical environment, interaction with other systems/humans and working flow. Following the
methodologies referred in this Masters Dissertation, the last step is the documentation and
implementation of the ontology - this subsection documents the main parts of this ontology
(and the remaining is explored in the annex A) and the implementation will be concluded
after the creation of the prescriptive version of this descriptive ontology.

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 100

5.2.2 Prescriptive Domain Ontology

The prescriptive domain ontology for intelligent motion control systems, contrarily to a
descriptive domain ontology, is a metamodel that originates a model, and subsequently a
domain-specific modeling language, that describes the structure and behaviour of reality
and reality is constructed according to it, constituting a specification of reality.

To create a prescriptive ontology, another use-case scenario was developed, allowing the
prescriptive ontology to inherit some features implemented in the SeML, in order to opti-
mize the ontology for the modeling tool. This subsection describes the semantic refactoring
process necessary to do the referred conversion, and as a result, a prescriptive domain
ontology is created, explored and implemented using Protégé.

Table 10.: Domain specification and use-case scenarios for the intelligent motion control systems’
prescriptive ontology.

As aforementioned, the SeML provides a semantically-enriched domain-specific model-
ing language that aims at describing software/hardware system’s variability, concerning
the customization and automation for system’s implementation with generative code gen-
eration. Therefore, the concepts, relations and rules created in the descriptive domain
ontology that are not focused in the description of system’s variability constitute an over-
head in the semantic analysis and interpretation of the ontology, executed by the SeML.
Consequently, the semantic refactor necessary to convert a descriptive domain ontology
into a prescriptive domain ontology (see Figure 10) focused on the following steps:

5.2. Design of the Intelligent Motion Control Systems’ Domain Ontology 101

1. Ontology’s core restructuring - The upper ontology integrated in the SeML allows a
concise but brief description of system’s hardware structure, which in turn forces the
ontology’s designer to rethink and reformulate the descriptive domain ontology’s core
structure by removing the hardware properties and retain only the software proper-
ties (system’s properties related with code execution). Nevertheless, some hardware
properties, depending on the application, can be directly related with code execu-
tion, and thus the hardware properties should only be removed from the ontology
after analysing the application and correctly identifying the properties that are re-
lated with code execution. Consequently, this part of the semantic refactor will be
postponed until the development of the prescriptive application ontology, in the next
section;

2. Object properties and rules’ adaptation - During the process of import and semanti-
cally analyse an ontology, the SeML will process every kind of concept, relation and
axiom, but only the object properties recognized by the upper ontology will aid in
the process of automate systems’ customization and implementation. Therefore, ev-
ery object property that have not a direct correlation in the upper ontology or does
not increases the domain knowledge conducive to the description of system’s vari-
ability, will be eliminated, while the remaining object properties will be maintained
or reimplemented;

3. Process analysis - Equivalently to the semantic refactor executed with the core struc-
ture of the ontology, the conceptualization of process was modified, in order to de-
scribe only software processes, instead of describing hardware processes too, e.g.
Charging Process, Supplying Process, Supporting Process, etc.

To implement the prescriptive domain ontology, a semantic refactor was applied to the
descriptive domain ontology and used Protégé, alongside with the Pellet as a editor/frame-
work and reasoner, respectively. This step supported the development of an unambigu-
ous and precise domain ontology, and enabled the capability of reasoning and querying.
This feature allowed the ontology to understand the inherent knowledge through logical
inferences, useful for its classification, debugging and querying. Since the prescriptive ap-
plication ontology is an instance-of the prescriptive domain ontology and results from the
descriptive domain ontology already illustrated and explored in the last subsection, the
prescriptive domain ontology’s implementation will be illustrated during the analysis of
the prescriptive application ontology.

5.3. Case Study: IMCS’s Metamodeling 102

5.3 case study : imcs’s metamodeling

In this section, a detail analysis on a specific application in the intelligent motion control sys-
tems’ domain is provided, in particular an intelligent motion control system implemented
at Jilin University as part of the project presented in Chapter 3. Conducive to this objective,
the hardware/software structure, behaviour and variability of a coil winding machine will
be explored, resulting in the development of prescriptive application ontology, which in
turn will lead to the creation of the application’s model.

5.3.1 System’s Overview

Developed under the Chinese industry plan “Made in China 2025”, the coil winding ma-
chine follows the principles of this initiative, constituting an innovation-driven, efficient
and high quality system that is integrated in the IMCSP developed at Jilin University. The
long term objective is the development of a platform capable of being used as a hardware
and software reference architecture for diverse kinds of intelligent motion control systems,
e.g. 6-axis robotic arm, hexacopter, coil winding machine, UGV, etc. Since each applica-
tion has different implementation’s adversities, a development plan was created, illustrated
in Figure 61. Considering the pitfalls and obstacles inherent in the development of each
system, the coil winding machine, because it only presents problems that can be directly
solved by adjusting the motion control algorithms, was the first system to be implemented.
As a final objective, the implementation of the 6-axis robotic arm stands as the biggest en-
gineering and economic challenge, outstripping the hexacopter (which has its size, weight
and portability as a huge design challenge). The coil winding machine explored in this
and in the following Subsections is a consummated industry product, already applied with
success in a Mktech factory which focuses on the production of electronic components, e.g.
a coil.

Figure 61.: IMCSP’s evolution and future work.

5.3. Case Study: IMCS’s Metamodeling 103

5.3.2 System’s Structure

The coil winding machine is divided between two subsystems, each one of them with
specific functions and features, aiming at building a coil and at providing specific feedback
about its implementation to the industrial worker, in order to allow a correct management
of the global industrial process. Figure 62 illustrates the coil winding machine’s workflow,
indicating the specific inputs, outputs and processes.

Figure 62.: Coil winding machine working flow’s overview.

The first part of the coil winding machine is responsible for managing all the peripherals
and processes that allow the product designer and the industry worker to interact meaningfully
with the system. Analysing the Figure 62, it’s clear that this interaction is a three step
interaction:

1. System’s properties definition - While the product designer provides a G-Code file with
all the G-Code commands to realize each one of the coils available in the product line
of the company, the industry worker contributes with a file that includes the following
configurations:

• Modbus protocol - An internal communication protocol for which variables must
be initialized. Examples of Modbus properties are the aggregation of 136 toggle
objects, mode, slave address, port, baudrate, parity, number of stop bits and word
width;

• G-Code - Depending on the G-Code files available, the memory allocated for
G-Code and the memory to store it must be defined;

• Interpolation - Define the memory allocated for the interpolation buffer and the
memory to story it;

• Servo motor - Define the actuators’ maximum velocity, acceleration, jerk and
range.

5.3. Case Study: IMCS’s Metamodeling 104

2. Product specification - The industry worker uses the graphical user interface to choose
a product between the products available in the file provided by the product designer

during the first step;

3. Feedback - During the production of the chosen product, the system provides contin-
uous feedback (through the graphical user interface) to the industry worker, allowing the
management of all the industry process through the following parameters:

• 3-axis real-time position;

• Angular displacement;

• Rotational speed - Speed in loops/minute;

• Period - Time to complete a loop;

• Required loops - Presents a relation between the number of loops required to
complete the product and the number of loops concluded.

• Required file - Presents the name of the file that contains the G-Code of the
product chosen.

• Steps - Presents a relation between the number of G-Code steps required to com-
plete the product and the number of steps concluded.

Apparently simple as an overview, Figure 62 hides a complex hardware architecture that
composes the coil winding machine. Aiming at performing accordingly with the character-
istics provided by each motion control algorithm, the coil winding machine is composed by
two distinct parts:

• STM32F103ZET6 - This 32-bit Cortex M3 high-density performance line microcon-
troller is the heart of the user interface, using:

– The Modbus protocol to integrate a Human Machine Interface (HMI) MT6070iH;

– Standard Digital Input Output interface to support an external memory expan-
sion (SD Card);

– Flexible Static Memory Controller (FSMC) protocol to interact with two exter-
nal memories, a IS61LV25616 (a 256K x 16bits Static Random Access Memory
(SRAM)) and a K9XXG08UXB (a 128M x 8bits NAND FLASH memory);

– RT-Thread, a Chinese open-source real-time operating system for embedded sys-
tems, as a provider of the necessary device drivers, board support package, mid-
dleware and a 8, 32 or 256 priority multi-threading scheduling with object ori-
ented programming style support.

• Cyclone IV EP4CE40F23C6 - A 328 IOs Field-Programmable Gate Array (FPGA), re-
sponsible for the execution of the hardware accelerators, both the interpolation and

5.3. Case Study: IMCS’s Metamodeling 105

the velocity control algorithms. As an alternative for the software implementation,
the hardware implementation increases sytem’s performance. To do so, the FPGA is
directly connected with at least four servo motors (HBS2206), one for each axis (x,y,z)
and one for the rotational motion (θ), and receives feedback from a set of proximity
sensors (EE-SX672).

To perform and achieve the desired goals, this hardware architecture is complemented
with a technology stack, illustrated in Figure 63. Within the illustrated technology stack,
the sources of system’s variability is manifested in the software algorithms, allowing the
performance of the system to be directly dependent on the algorithms selected to control
the actuators, videlicet the algorithms that combine to create the motion control algorithm,
which dependencies are illustrated in Figure 64.

Figure 63.: The technology stack of the coil winding machine.

The trajectory plan, the interpolation algorithm and the velocity control algorithm are com-
bined to create a motion control algorithm, aiming at controlling the four actuators that
integrate their actions to create the coil for which the G-Code available in the SD Card (pro-
vided by the industry worker). G-Code provides information about the tool and the type of
movement to perform: where to move, how fast and what path to follow. After encoding the
G-Code, the G-Code encoder saves the result, the interpolation points, that subsequently

5.3. Case Study: IMCS’s Metamodeling 106

are used by the interpolation algorithm to divide a complex segment into small and individ-
ual segments (identified by the start point, end point and distance between them). Lastly,
the velocity control algorithm uses these variables to calculate the velocity curve to apply to
the servo motor (HBS2206) in order to complete the referred segment, as illustrated in the
left side of the Figure 64. Depending on system’s requirements, the Interpolation Algorithm

and the Velocity Control Algorithm require different implementations. The next subsection
explores the possible implementations for each one of these algorithms and the relation
between them and the system’s performance.

Figure 64.: Dependencies between the diverse algorithms that compose a motion control process.

5.3.3 System’s Variability

In a motion control process, the trajectory plan algorithm optimizes a problem by iteratively
trying to improve a candidate solution with regard to a given measure of quality, and, as
a result, it provides an aggregation of points that will serve as input to an interpolation al-
gorithm. This algorithm is extremely costly in terms of processing resources, and therefore
is not executed by a coil winding machine, but by a general processor, which subsequently
provides the G-Code file to be used in each product (that later is stored in an external

5.3. Case Study: IMCS’s Metamodeling 107

memory by the product designer, as illustrated in Figure 62). Therefore, contrarily to the
interpolation and velocity control algorithms, the trajectory plan is part of the Commercial
Off-The-Shelf (COTS) component of the IMCSP’s project.

The next paragraphs resume the work of Prof. Quangang (project manager of the IMCSP
and co-advisor of this Masters Dissertation), which resulted in the submission of 4 Journal
papers. Since some of the work developed to create and improve this algorithms is under a
non-disclosure agreement, this subsection only presents an overview of the analysis of the
corresponding algorithms.

interpolation algorithms

The interpolation algorithm uses the interpolation points, computed by the G-Code En-
coder from the G-Code file, and calculates the start, the end and the length of each segment
that composes the path to be followed by the Robot. To do so, the coil winding machine
presents four different algorithms implemented in hardware, using the FPGA Cyclone IV
EP4CE40F23C6. The variability inherent in an interpolation algorithm resides mainly in
choosing between a low or high accuracy implementation, due to the fact that, since all
the algorithms are implemented in hardware, their performance is very similar but the
resources’ consumption level diverges. In an initial phase of this project, the Digital Dif-
ferential Analyser (DDA) and the PBP algorithms were the only alternatives, and so, due
to their low accuracy, an improved alternative for both algorithms was developed, verify-
ing that the Improved PBP algorithm presents better performance in terms of accuracy and
chord error, as illustrated in Figure 65.

Figure 65.: Advantages and disadvantages of each IMCSP’s interpolation algorithms.

The PBP algorithm provides a step-by-step linear or circular interpolation, being the
decision of the following step made after the conclusion of the current step. As illustrated
in Figure 66, the PBP algorithm provides three options in each point. As an example, lets
consider O(0,0) the start point, P(x,y) the final point (the objective), and N as the current

5.3. Case Study: IMCS’s Metamodeling 108

point. At N, the next step can be suggested to follow the x-axis (reaching C), the y-axis
(reaching A) or both (reaching B).

Figure 66.: PBP algorithm’s working fundamentals.

The following equation defines the path that should be followed:

Sn = XpYn −YpXn

• Sn >0 - In this case, the point N is above the objective line (OP), and thus the next
step will be taken towards the x-axis (Xn+1,Yn);

• Sn = 0 - In this case, the point N is in the objective line (OP), and thus the next step
will be taken towards the x-axis (Xn+1,Yn) or the y-axis (Xn,Yn+1);

• Sn <0 - In this case, the point N is under the objective line (OP), and thus the next
step will be taken towards the y-axis (Xn,Yn+1);

Nevertheless, this algorithm requires both multiplications and additions, constituting
a costly process when deployed in a FPGA. Therefore, an improved PBP algorithm was
developed, which is based in the iterative relation existent between the next step and the
current step, and allows the reduction of logic gates necessary to implement this algorithm.
Besides decreasing the amount of hardware resources, this algorithm presents a reduced
chord and trajectory errors, when compared with the PBP, thus resulting in a optimized
performance in terms of time.

DDA is an interpolation algorithm used for interpolation of variables over an interval
between two specific points, being useful for rasterization of lines, triangles and polygons,
and thus useful for motion control processes. Accomplished using floating-point or inte-
ger arithmetic, the implementation of this algorithm constitutes a complex process when

5.3. Case Study: IMCS’s Metamodeling 109

deployed in a FPGA. This algorithm solves two types of interpolation, circular and linear,
and it was improved on the following points:

• Linear Interpolation:

1. Reduction of the equivalent pulse - Reducing the pulse directly decreases the size
of each step, and thus reduces the calculation time and the chord error associated
to the interpolation.

2. Adjust the accumulator’s capacity.

• Circular Interpolation:

1. The use of secant instead of tangent increases the path accuracy rate but dupli-
cates the computational time.

As an overall performance, the improved DDA represents a better accuracy, due to the
reduction of the chord error between 20%-50% when compared to the DDA.

velocity control algorithms

Contrarily to the interpolation algorithm, the velocity control algorithm is implemented
in both software and hardware. The hardware implementation of this algorithm was suc-
cessfully accomplished through three methods - the trigonometric Look-Up-Table (LUT), the
CORDIC iteration and the CORDIC pipeline. Nevertheless, aiming at solving the insufficien-
cies and weaknesses of the existing methodologies, a forth algorithm was implemented, the
trigonometric iteration, as illustrated in Figure 67.

Figure 67.: Advantages and disadvantages of each IMCSP’s velocity control algorithms.

These algorithms control one or diverse servo motors in order to accomplish the desired
task, e.g. moving an object from one point to another. Hypothetically speaking, to achieve
the best performance (finish a goal in the minimum possible time), the motor would attain
top speed, Vmax instantaneously, would reach its destination at Vmax and, lastly, comeback
to halt position instantaneously too. This case is impossible due to the infinite acceleration

5.3. Case Study: IMCS’s Metamodeling 110

that would be necessary to accomplish this requirements, as can be demonstrated by the
following explanation.

(a) Case1: Jerk assumes an infinite value. (b) Case2: Jerk is limited.

Figure 68.: Two distinct scenarios where the relation between the jerk and the acceleration is anal-
ysed.

The distance between two points is denoted as d and has units of m, being the instanta-
neous value of the displacement represented as a function of time, d(t). This displacement
can be obtained at any point in time by integrating the velocity equation, v(t):

d(τ) =
∫ τ

0
v(t) dt

Subsequently, the velocity can be evaluated by integrating the acceleration, which means
that the velocity is equal to the area under the acceleration-time curve:

v(τ) =
∫ τ

0
a(t) dt

Lastly, trough the integration of the acceleration-time curve the jerk is obtained, which
has units of m/s2 and represents the rate of change of acceleration, and thus, it indirectly
measures the impact in the motors and in the machine (being rapid changes in acceleration
a factor that can lead to equipment wear and result in uneven performances):

a(τ) =
∫ τ

0
j(t) dt

5.3. Case Study: IMCS’s Metamodeling 111

Therefore, the jerk applied to a specific machine (e.g. the coil winding machine) is directly
influenced by the velocity control algorithm applied to its motors, as illustrated in Figure
68. In the first case (68a), a trapezoidal function is used, which generates infinite jerk
in a specific time interval and subsequently produces a huge impact in the equipment,
reducing its lifetime expectations and its Mean Time Between Failures (MTBF). However,
if instead of an abrupt change of velocity, this change happens gradually (as showed in
case 68b) the jerk value is limited to a certain value, being this value as low as the slop of
the velocity change curve. Therefore, the best approach to control a servo motor is using a
trigonometric function, providing the necessary reliability and stability to the machine. As
illustrated in Figure 67, the coil winding machine has 4 different hardware implementations
of the trigonometric function, being the Trigonometric Iteration the most advantageous, due
to the fact that its development combines the techniques of the other approaches and solves
their insufficiencies and weaknesses.

5.3.4 Design of the Coil Winding Machine Prescriptive Application Ontology

Figure 69.: Conceptualizations that result from entity’s conceptualization specification.

The prescriptive ontology for the coil winding machine is an instance of the prescriptive
domain ontology presented and discussed in the last section, inheriting and specifying all
the semantic knowledge inherited from it. By doing so, this ontology explores the coil

5.3. Case Study: IMCS’s Metamodeling 112

winding machine following the prescriptive core ontology’s perspective, provided by the
SeML.

Figure 70.: Hierarchy of robot parts that can compose a robot.

Figure 71.: Hierarchy of robot parts that can compose a robot.

Accordingly with the construction of the prescriptive domain ontology, the first concep-
tualizations should consider the entities existent in this application, and thus should be the
creation of subclasses of each robot part that compose the coil winding machine and the
classification of the robot itself. Figure 69 illustrates the classification of the coil winding ma-

chine as an automated robot, since it is a robot that can accomplish a goal or solve a problem

5.3. Case Study: IMCS’s Metamodeling 113

to which it was automated to, not adapting to changes in the surrounding environment.
Subsequently, the composition of the Robot is specified accordingly to its hardware and
software structure, as illustrated in Figure 70 and 71.

Since the knowledge about the classification and the structure of the coil winding ma-
chine is already integrated in the ontology, the next step should be the description of the
characteristics (requirements/goals and features) of this application, and the respective
problems to which they relate. As mentioned in Section 5.1, the objective of the SeML is
to provide a semantically enriched environment for system’s modeling accordingly with
its variability, using the relation features-goals-problems to allow the system’s designer to
create the model. Therefore, when establishing the features, goals and problems of an ap-
plication, a perspective over the application’s variability should be provided. In the coil
winding machine, as explored in the previous sections, the variability of the system is di-
rectly dependent on the motion control algorithms (trajectory plan algorithm, interpolation
algorithm and velocity algorithm) and the properties that each one of them implies for de-
sired system’s behaviour. Therefore, the features, goals, and problems of the coil winding
machine, are the same as the features, goals and problems of the motion control algorithms
and its properties, due to the fact that the remaining parts of the system are static and does
not influence significantly the system’s performance. Figure 72 illustrates the application’s
characteristics and problems, which connected to the structure, processes and properties of
the system, allow this ontology to provide the semantic knowledge necessary to extend the
SeML grammar conducive to the creation of the application’s model.

Figure 72.: Hierarchy of characteristics and problems of the coil winding machine.

5.3. Case Study: IMCS’s Metamodeling 114

The conceptualization of Process (inherited from the SeML’s prescriptive core ontology),
was specified as illustrated in Figure 73 in the prescriptive domain ontology.

Figure 73.: Process’s conceptualization in the prescriptive domain ontology.

The semantic refactor removed the specification of the processes that contain only knowl-
edge about the physical behaviour of an intelligent motion control system, erasing the spec-
ification of the actuating process, sensing process, powering process and supporting process, and
adapting the concepts of processing process, communicating process and storing process. Being
one of the subclasses of process, processing process explores all the processes that are respon-
sible for processing data and information necessary to proper and required operation of
the robot, and so, the RT-Thread operating system (and subsequently the its middleware,
device drivers and board support package), all the software/hardware algorithms and com-
munication processes between system’s parts (MODBUS and FSMC protocols) are covered
by this concept, as illustrated in Figure 74.

Figure 74.: ProcessingProcess’s conceptualization in the prescriptive domain ontology.

5.3. Case Study: IMCS’s Metamodeling 115

A storing process is a process responsible for allowing the interaction between a robot
and its storing part, and therefore, this concept encompasses knowledge about the software
processes to access both the IS61LV25616 (SRAM memory) and the K9XXG08UXB (flash
memory) storing parts, as illustrated in Figure 75.

Figure 75.: StoringProcess’s conceptualization in the prescriptive domain ontology.

Lastly, the communicating process provides knowledge about the software processes that
enable the factory worker to interact with the machine, in order to specify the final product
and show the machine’s working parameters, as illustrated in Figure 76.

Figure 76.: CommunicatingProcess’s conceptualization in the prescriptive domain ontology.

After specifying all the knowledge referent to the structure and behaviours of the coil
winding machine, the prescriptive application ontology specifies the SeML’s ontology con-
cept property, and branches it between the properties of the software algorithms, the sys-
tem’s initial configurations and the properties of the communication protocols, as illustrated
in Figure 77. From this knowledge, the properties of this application’s intelligent motion
control algorithms are explicitly defined as illustrated in Figure 78. Finally, to conclude the

5.3. Case Study: IMCS’s Metamodeling 116

core structure of the application’s ontology, the properties of the internal communication
protocols were identified as illustrated in Figure 79.

Figure 77.: SeML’s property’s conceptualization in the prescriptive domain ontology.

Figure 78.: Properties of a velocity control algorithm that has direct influence in system’s variability.

Figure 79.: Properties of the MODBUS and FSMC protocols that directly influence system’s variabil-
ity.

After specifying all the knowledge referent to the structure, behaviours and properties
of the coil winding machine, the prescriptive application ontology must relate all the parts
of the ontology to describe system’s variability through the object properties existent in

5.3. Case Study: IMCS’s Metamodeling 117

the SeML’s prescriptive core ontology. To do so, each goal is related (requires) to a feature,
which in turn is associated with specific processes (demands) that solves a problem. Figure
80 illustrates a single example of the aforementioned relations implemented with Protégé.

Figure 80.: Relation between Feature, Goal and Problem, using OntoGraf.

Figure 81 illustrates all the relations between the features and the processes of the coil
winding machine, which is used to force the system’s designer to specify (in the model) the
correct process to accomplish the desired requirements or goals, as will be explored in the
next section.

The prescriptive application ontology is concluded with the introduction of the afore-
mentioned relations to describe system’s variability. Nevertheless, it is necessary to create
specific annotations in the ontology (using Prétége) that will allow the SeML to relate the
system’s model to the system’s code, and enable the automation of the configuration and
the implementation of the coil winding machine. The SeML provides tools, implemented
in java, that enable the following functionalities:

• Replace - This tools is capable of replacing a specific keyword in the system’s code
by value/string specified in the system’s model or by a default value specified in the
prescriptive application ontology (in case the system’s designer does not mentioned
it in the system’s model);

• CheckExistence - Verifies if a function is implemented in the system’s code.

The code generation is divided in two main parts, the verification of the system’s code
interfaces and the assignment of the properties specified in the system’s model. In the
prescriptive application ontology, every process must contain an annotation that forces
the SeML’s compiler to check if a specific interface is implemented in the code, as illus-
trated in Figure 82 for one of the motion control algorithms. By doing this, if the sys-
tem’s designer specifies the Trigonometric Iteration as the velocity control algorithm in the

5.3. Case Study: IMCS’s Metamodeling 118

Figure 81.: Relation between processes and features of the coil winding machine (adapted from
Prétége).

system’s model, during the code generation process the SeML generates the file Trigono-

metric Iteration.v in the files’ directory ApplicationSoftware/VelocityControl, and checks if the
Trigonometric Iteration function exists.

Figure 82.: Annotation that indicates the necessity of the Trigonometric Iteration.v file’s generation
and the verification of Trigonometric Iteration function’s interface.

Subsequently, the ontology should specify the files and the location of each one of the
system’s properties related with code execution, as illustrated in figures 83 and 84. Figure
83 demonstrates how to create an annotation in the prescriptive application ontology in

5.3. Case Study: IMCS’s Metamodeling 119

order to replace a keyword in the system’s code with a string. The compiler will search
for the keyword in the file ApplicationSoftware/InitialConfig.h and replace it with the product
specification provided by the system’s designer in the system’s model.

Figure 83.: Annotation that assists the SeML on the process of replacing the FinalProduct variable in
system’s code.

Figure 84 provides an alternative for the configuration of the system, which is the default
values provided by the ontology. If, in the system’s model, the system’s designer does not
configure one of the required system’s properties, they will be replaced in the generated
code with the default values defined in the ontology, e.g. in this specific case, the value of
all the software switches of the MODBUS protocol will assume the default value 1.

Figure 84.: Annotation that assists the SeML on the process of replacing a set of variables in system’s
code with default values.

This section explored the prescriptive application ontology, its relation with the prescrip-
tive domain ontology and the mechanisms that allow the SeML compiler to associate the
system’s model (built with the knowledge provided by the hierarchy of ontologies) with
the system’s code. From the integration of these ontologies with the SeML results a DSML
with the following characteristics (accordingly with the DSML framework discussed in the
Subsection 2.1.2):

• Abstraction-level - Since the prescriptive application ontology contains knowledge
directly related with system’s code, the DSML is platform-specific;

• Domain - Due to the SeML’s ontology’s capability to describe system’s variability, the
resulting DSML can model systems’ behaviours and its structure;

5.3. Case Study: IMCS’s Metamodeling 120

• Ontological kind of models - This language abstracts from the system’s implementa-
tion by classifying several components based on their properties and/or behaviours,
and thus, is a type model language.

In the next Section, the system’s model will be developed and analysed, to understand
how the developed ontologies assist the development of the model and the automation of
system’s configuration and implementation.

5.3.5 Coil Winding Machine Metamodeling using the SeML

The objective of this section is not only to demonstrate how the SeML was used to model
the coil winding machine, proving that both the prescriptive domain and application on-
tologies are suitable for its purpose, but also to elucidate how the compiler (semantically-
enriched by these ontologies and by the SeML’s prescriptive core ontology) assists in the
development of the system’s model.

import "D:CWM/CWMO.owl"

Listing 5.1: Import of the prescriptive application ontology with the SeML.

Figure 85.: SeML’s compiler error that forces the system’s designer to instantiate an intelligent mo-
tion control system.

In order to begin the modeling of the coil winding machine, the system’s designer must
import the application ontology that provides the domain-knowledge required, and since
the prescriptive application ontology is an instance of the prescriptive domain ontology,
which in turn is an instance of the prescriptive core ontology, the SeML imports all of
the ontologies. Importing the prescriptive application ontology (CWMO.owl), as illustrated

5.3. Case Study: IMCS’s Metamodeling 121

in Listing 5.1, makes the compiler interpret it and extend the SeML’s grammar with the
knowledge provided by it, aiming at assisting the system’s designer in the system’s model
development. The following figures illustrate the assistance provided by the SeML after
each step of the system’s model development process. After extending its grammar, the
compiler shows an error, illustrated in Figure 85. This error forces the user to create an in-
stance of an intelligent motion control system, which in turn can have one of the illustrated
classifications. Since the prescriptive application ontology is for a coil winding machine, in
this ontology the coil winding machine was already instantiated and classified as an auto-
mated robot in the ontology, using Protégé. Therefore, this informs the compiler about the
compromise of creating this system, forcing the system’s designer to use the instantiation
created on Protégé in the model and specify its composition, as in the following Listing.

CoilWindingMachine isComposedOf

CWM_PowerSupply ,

CWM_Infrastructure ,

EE-SX672 ,

HBS2206 ,

IS61LV25616 ,

K9XXG08UXB ,

MT6070iH ,

STM32F103ZET6 ,

SDIO ,

CycloneIV_EP4CE40F23C6 ,

SecureDigitalCard

STM32F103ZET6 uses

CycloneIV_EP4CE40F23C6 ,

MT6070iH ,

SDIO ,

EE-SX672 ,

HBS2206 ,

IS61LV25616 ,

K9XXG08UXB

CycloneIV_EP4CE40F23C6 uses

EE-SX672 ,

HBS2206 ,

IS61LV25616 ,

K9XXG08UXB

SDIO uses SecureDigitalCard

Listing 5.2: Description of the hardware structure of the coil winding machine using the SeML.

Subsequently, the compiler forces the designer to create the dependencies between the
components, by establishing the relations between its processing parts, the STM32F103ZET6

and the CycloneIV EP4CE40F23C6, and the remaining robot parts. These robot parts, e.g.

5.3. Case Study: IMCS’s Metamodeling 122

MT6070iH or EE-SX672, are related (through an object property) to processes. For exam-
ple, the HBS2206 (a servo motor) is connect to the interpolation and the velocity control
algorithms explored in the last subsections, forcing the user (during the specification of the
system’s behaviors) to mention which one of the existent algorithms (both to the interpo-
lation and the velocity control algorithms) will control this actuating part in the system’s
implementation. Since this system contains a huge variety of alternatives for each process
that is directly related with the motion control algorithms, in the prescriptive application
ontology exists semantic knowledge to indicate the compiler to ask the designer to specify
the system’s requirements, because with them the compiler can assist the designer in the
process of specifying the system’s behaviours for each of its robot parts. This development
is verified by the compiling error illustrated in Figure 86.

Figure 86.: SeML’s compiler error that forces the system’s designer to specify system’s requirements.

So, the next step should be the specification of the system’s requirements, elaborated in
the following listing. As analysed in the last subsection, in the ontology each characteristic
is associated with a problem and with the process that solves that problem. Therefore, by
choosing the requirements of the system (or the characteristics), the system’s designer is
indirectly specifying the processes that should compose the implementation of the system.

use Accuracy , Reliability , Performance , Stability , ResourcesEfficiency

Listing 5.3: Specification of system’s requirements, using the SeML.

Listing 5.3 represents the most important line in the system’s model, since it allows
the compiler to use the knowledge contained in the prescriptive application ontology to
propose the remaining system’s model composition. Hidden in this step, is the key for the
automation of the system’s configuration and implementation, since from it, the designer

5.3. Case Study: IMCS’s Metamodeling 123

will be restricted to define system’s behaviours and properties that respect the requirements,
and so, the generated code will respect them too.

Figure 87.: SeML’s compiler error that forces the system’s designer to instantiate the application’s
software structure.

Following the proposes of the compiler, the system’s designer specifies each process
of the coil winding machine, as coded in the Listing 5.4. Since this model constitutes a
reference architecture for the coil winding machine, the interface of each selected process
must be verified. In order to simplify the programming effort and provide a cleaner model’s
view for the designer, the mechanisms that verify the interfaces of the reference architecture
in the system’s code work directly with the semantic knowledge of the ontology, avoiding
redundancies in the model.

SecureDigitalCard isUsedBy

DeleteDirectory ,

MakeDirectory ,

ReadDirectory ,

CloseDirectory ,

SeekFile ,

OpenDirectory ,

WriteFile ,

ReadFile ,

CloseFile ,

OpenFile

MT6070iH isUsedBy

DisplayControlParameters ,

ProductSpecification

IS61LV25616 isUsedBy

ReadSRAM ,

ReadSRAM_DMA ,

WriteSRAM ,

WriteSRAM_DMA

K9XXG08UXB isUsedBy

5.3. Case Study: IMCS’s Metamodeling 124

FlashBlockErase ,

FlashReset ,

ReadSpareFlash ,

WriteFlashPage ,

WriteSpareFlash

HBS2206 isUsedBy ImprovedDDA

Listing 5.4: Description of the software structure of the coil winding machine using the SeML.

The last subsection explored the relation between system’s requirements and its pro-
cesses, which explicitly stated that the ImprovedDDA algorithm does not respects neither
the reliability or the stability requirements, due to its enhanced chord error. Therefore,
and since the system’s designer chosen those requirements, by specifying this process
(ImprovedDDA algorithm), he must expect the compiler to throw the error illustrated in
the Figure 88.

Figure 88.: SeML’s compiler error that forces the system’s designer to respect the specified system’s
requirements.

The referred interpolation algorithm should be replaced by an algorithm that represents
the best trade-off for the requirements expressed, the ImprovedPBP.

HBS2206 isUsedBy ImprovedPBP

HBS2206 isUsedBy TrigonometricLUT

Listing 5.5: Description of the software structure of the coil winding machine using the SeML.

Figure 89.: SeML’s compiler error that forces the system’s designer to respect the specified system’s
requirements.

5.3. Case Study: IMCS’s Metamodeling 125

Concurrently, the TrigonometricLUT does not offers the best trade-off between the se-
lected requirements, and so, the following error is thrown by the SeML compiler. In order
to respect the specified requirements, the system’s designer must select both the Trigono-

metricIteration and the ImprovedPBP, as expressed in the next listing.

HBS2206 isUsedBy TrigonometricIteration

HBS2206 isUsedBy ImprovedPBP

Listing 5.6: Description of the software structure of the coil winding machine using the SeML,
accordingly with the specified requirements.

Lastly, the compiler throws an error expressing the necessity of having the specification
of some properties, as illustrated in Figure 90.

Figure 90.: SeML’s compiler error that forces the system’s designer to instantiate and specify the
system’s properties.

To conclude the system’s model, the system’s designer specifies the following properties,
as required by the ontology (and thus by the SeML compiler).

FinalProduct = "Coil1"

MB_Mode = "MB_RTU"

MB_Parity = "EVEN"

MB_Baudrate = 9600

MB_Port = 1

MB_SlaveAddress = 8

MB_StopBitsWidth = 1

MB_WordWidth = 8

MaxAcceleration = 150

MaxVelocity = 150

Jerk = 15000

Listing 5.7: Description of system’s properties using the SeML.

Since the model is finished, the system’s designer can now ask the SeML to implement
the system, and so, to generate the system’s code with the specified structure, behaviours
and properties. Conducive to this accomplishment, the SeML interprets the annotations

5.3. Case Study: IMCS’s Metamodeling 126

existent in the ontology for each one of the processes and properties, as explored in the last
section, and generates the files’ directory illustrated in Figure 91.

Figure 91.: Directory of files generated by the SeML.

Concurrently to the generation of the files’ directory, the SeML verifies if the functions
are in fact implemented inside the files, following the annotation provided by the prescrip-
tive application ontology for each process. Accordingly to the annotation illustrated in
Figure 82, the SeML generates the Trigonometric Iteration.v file and checks if the function
Trigonometric Iteration is implemented, which in turn has the following implementation.

function Trigonometric_Iteration;

input integer StartPoint;

input integer EndPoint;

input integer Distance;

5.3. Case Study: IMCS’s Metamodeling 127

// Output driving wires to drive between 1-8 motors

output wire servo1_control;

output wire servo2_control;

output wire servo3_control;

// ...

endfunction

Listing 5.8: Trigonometric Iteration implementation in Verilog, in a file named
Trigonometric Iteration.v that was generated by the SeML.

After this step, the SeML replaces the system’s properties in the code with the values
assigned by the system’s designer during the system’s model development. Following the
examples of the figures 83 and 84, the SeML generates the InitalConfig.h file with the code
presented in the listing 5.9.

#ifndef InitConfig

#define InitConfig

// Product Specification

#define FinalProduct Coil1

// Switch States

#define switch1 1

#define switch2 1

#define switch3 1

// ...

#endif

endfunction

Listing 5.9: InitalConfig.h file generated by the SeML, accordingly with the system’s model.

By providing the knowledge (through concepts, relations, rules and annotations) about
the system’s hardware/software structure, the system’s variability, the system’s files direc-
tory, the files themselves and the processes and properties contained in that files, the pre-
scriptive application ontology extends the SeML grammar and enables the automation of
system’s configuration and implementation. Thus, the integration with the SeML provides
an abstract perspective of the system’s implementation that allows the system’s designer to
model the system with domain-knowledge, reducing the complexity of system’s configura-
tion and implementation, and so, reducing its development cost.

5.3. Case Study: IMCS’s Metamodeling 128

6

D I S C U S S I O N A N D O U T L O O K

This chapter discusses the results of this Dissertation and concludes on the work developed.
First, an initial evaluation of the semantically-enriched metamodeling process is provided,
based on the insights gained from the case study in the last chapter. Then, the contribu-
tions of this Dissertation are explored, regarding both to the SeML and the IMCS projects.
The Dissertation closes by pointing to the future work necessary in this project as well as
providing some general research directions for ODSD.

6.1 evaluation

Based on the insights gained from the case study, this section provides an evaluation of
the semantic technologies developed and used in this Masters Dissertation. A number of
advantages that have proved to be of particular value for the semantically-enriched meta-
modeling process of software/hardware systems are highlighted, and lastly some critical
issues and open questions that still need to be resolved to leverage the full potential of the
followed approach are indicated.

6.1.1 Advantages of the SeML

Metamodeling environment
Since the SeML was implemented using the Xtext/Xtend Framework and Eclipse IDE, this
DSML provides a rich modeling environment to develop a system’s model. Through syntax
highlighting, background parsing, error markers, content assist, hyperlinking and quick-
fixes, the system’s designer is able to use diverse features of the language to help in the
development of the model. This modeling-assisted process is enabled both by the Xtex-
t/Xtend framework and by the semantic knowledge that extends the language’s grammar.
Some examples of these features were illustrated during the creation of a system’s model,
in the previous chapter.

129

6.1. Evaluation 130

Composite design pattern
This design pattern describes a component as being atomic or composite. A composite
component is composed of another components, while an atomic component is composed
only by itself. The SeML prescriptive core ontology was created following this pattern, and,
since the prescriptive domain ontology is an instance of this ontology, the knowledge de-
scribed in the prescriptive domain ontology for intelligent motion control systems, follows
a composite structure. This perspective of a software/hardware systems, creates a hierarchy
of part-whole relations that reduces the complexity of a system’s implementation analysis,
and thus the complexity of creating a model. Besides that, since the SeML sees everything
as a component (which in turn can be a property, an entity or a process), the system’s model
can be easily updated or upgraded by replacing or editing a specific component without
changing the whole architecture. Subsequently, a system’s model developed by a system’s
designer represents a reference architecture, and thus can be applied in others systems and
changed its behaviour and properties without changing its core structure.

Goal-oriented software architecting
Alongside with the metamodeling environment and the composite design pattern, a goal-
oriented architecture provides to the system’s designer a straightforward way to almost
automatically change the behaviour and properties of a system, by changing its require-
ments. Thus, as demonstrated in the previous chapter, this feature reduces the system’s
model complexity and development time.

6.1.2 Advantages of Descriptive Domain Ontology for Intelligent Motion Control Systems

Metamodeling with domain- and application-knowledge
Instantiated from the SeML prescriptive core ontology, the prescriptive domain ontology
contains the concepts, relations and rules that constitute domain-knowledge about the in-
telligent motion control systems’ domain. Being an instance of the latter ontology, the
prescriptive application ontology for the coil winding machine provides specific concepts,
relations and axioms that specify the inherited ones. Then, this structure of semantic knowl-
edge extends the SeML’s grammar and provides domain and application concepts, relations
and axioms that enhance the metamodeling process through which the system’s designer
develops the system’s model.

Excellent reuse support
Ontology technological space facilitates an effective reuse of classes (concepts) and proper-
ties declared in the prescriptive domain ontology [ABm07], and so the integration of new
prescriptive application ontologies can be effortlessly accomplished, increasing the knowl-

6.2. Contribute of This Dissertation 131

edge within the domain and allowing an agreement between different applications.

System’s configuration and implementation automation
As validated in the previous chapter, system’s configuration and implementation automa-
tion is enabled by the integration of the prescriptive application ontology. By doing so, the
system’s model development using SeML reduces system’s development costs.

6.1.3 Critical Issues

Domain-knowledge coverage
As referred in the last chapter, the semantic refactor process required to convert a descrip-
tive domain ontology to a prescriptive domain ontology reduces the knowledge within the
ontology, and therefore, inhibits the system’s model to contain more information about the
hardware structure and the hardware properties of the system, which clearly is a disadvan-
tage of the prescriptive domain ontology. Nevertheless, since the SeML is focused on en-
abling system’s configuration and implementation automation through system’s software
variability description, this process represents an imperative convergence in the domain-
knowledge’s coverage to reduce the semantic-knowledge’s overhead during the SeML’s
compiling processes.

SeML compiler’s performance
The SeML compiling performance is directly influenced by the size of the ontology (in
terms of concepts, relations, rules and annotations), and thus a really complex ontology
besides being hardly reusable (as explained in Subsection 2.2.1), requires a higher reason-
ing and processing time from the reasoner and the SeML compiler, respectively. Though,
Miguel Abreu (the SeML developer), developed and integrated SeML’s mechanisms that
enable a system’s model development process to not be completely dependent on the on-
tologies’ size. Conducive to this task, the referred mechanisms create a trade-off between
the reasoning time (and compiling time) and the availability of some features of the rich
metamodeling environment aforementioned.

6.2 contribute of this dissertation

The contributions of this Dissertation can be split into two different categories - contribu-
tions to the SeML’s project, and contributions to the IMCSP’s project.

6.3. Future Work 132

6.2.1 Contribute for the SeML’s Project

In Section 1.2, the context of the project developed in this Masters Dissertation was ex-
plored. Alongside with the ESRG-OT, this Master Dissertation contributes to the SeML by
providing a prescriptive domain ontology that validates at the domain-level this technology
and the work developed by this team, since it proofs that the SeML is capable of providing
a technology to model a system based on semantic-knowledge in two different domains,
the intelligent motion control systems’ and the hypervisor’s domain. Lastly, the validation
at the application-level will be the objective of the ESRG-OT elements branched between
the different sub-domains of the hypervisor’s domain.

6.2.2 Contribute for the IMCSP’s Project

At Jilin University, the IMCSP’s project encompasses a hardware/software platform to con-
trol diverse intelligent motion control systems. The project lacked a technology that en-
abled the system’s designer to automate the process of configuration and implementation
of a specific system within the platform, and thus reduce the development time and the
development costs. The ontologies developed in this Masters dissertation, alongside with
its integration with the SeML, provide the tool required for the desired objectives, enabling
the system’s designer to create a system’s model with domain-knowledge, and configure
the system’s implementation by expressing its requirements.

6.3 future work

Naturally, a single Masters Dissertation cannot exhaustively cover all questions and prob-
lem that arise from the huge and diverse complexity of this project. In fact, this Masters
Dissertation has multiple directions for future work. Without a doubt, the most important
goal in the near future is to be able to develop a system’s model through a graphical meta-
modeling environment, which in turn is a project already being developed by a member of
the ESRG-OT. This integration aims at providing a user-friendly interface that can facilitate
and enhance the system’s model development.

In addition, and directly in focus with the objectives of this Masters Dissertation and
both projects (the SeML and the IMCS), the second direction for future work is the devel-
opment of prescriptive application ontologies for the remaining IMCSs developed for the
IMCSP. This would allow us to create an agreement between different applications, and
thus, enabling the existence of a vast catalogue of reference architectures for diverse intelli-
gent motion control systems that can be used at any time. Lastly, this work would reinforce
the validation of the SeML and the descriptive domain ontology at an application-level.

6.4. Summary and Conclusions 133

Finally, an interesting topic for future research is the expansion of the descriptive do-
main ontology for intelligent motion control systems to a descriptive domain ontology for
robotics and automation, and thus the creation of an agreement between the actual ontol-
ogy and other descriptive domain ontologies developed as instances of the SUMO ontology.
This would enable the coverage of systems focused on speech recognition, object recogni-
tion, transport, etc. As a final objective, this ontology would be metamorphosed through
a semantic refactor and integrated with the SeML, allowing it to model a wide range of
systems in the robotics and automation domain, enabled by the merging of multiple per-
spectives provided by the diverse ontologies.

6.4 summary and conclusions

The goal of this Masters Dissertation was to develop a semantic technology that can be inte-
grated with the SeML to enable the development of an intelligent motion control system’s
model and subsequently allow the automation of its customization and implementation.
This goal was realized by tackling four distinct objectives in turn.

The first objective was to develop a technology to enable a DSML to model systems in
any sub-domain of the software/hardware systems’ domain. To do so, this Dissertation
contributed to the development of a prescriptive core ontology based on the composite
design pattern and the goal-oriented architecture, that can integrate other ontologies and
extend the DSML’s grammar to be able to model domain-specific applications. The result
was the creation of the SeML.

The second objective was to developed an ontology to describe the domain-knowledge of
intelligent motion control systems. To this end, the research of this Dissertation included a
comprehensive literature survey to identify commonly used descriptive generic ontologies
and descriptive domain ontologies for robotics and automation, studying their structures
and comprehending as well their semantic rules and relations. An outcome of this study
was the development of a descriptive domain ontology for intelligent motion control sys-
tems, as an instance of a well-structured and acknowledge descriptive generic ontology,
SUMO.

The third objective was to find an appropriated ontology that could be integrated with
the SeML to enable its shapeshifting capability and be able to model an intelligent motion
control system. Therefore, through a semantic refactor process, the descriptive domain
ontology was converted into a prescriptive domain ontology, containing only knowledge
strictly necessary for the shapeshifting of the SeML.

Finally, the fourth objective was to evaluate the capability of the prescriptive domain
ontology to provide the semantic knowledge to the SeML in order to model a domain-
specific application. Therefore, an prescriptive application ontology was developed as an

6.4. Summary and Conclusions 134

instance of the prescriptive domain ontology, focused on a specific application - the coil
winding machine. Subsequently, the model of the coil winding machine was created, and
the automation of the system’s configuration and implementation was validated by the
code generated.

In conclusion, this Masters Dissertation has, to a large extent, achieved its goals. It clari-
fied and explored many different aspects of ontologies’ development, and clearly identified
the most critical questions that need to be addressed in order to achieve its integration with
a DSML, conducive to systems’ configuration and implementation automation. As stated
in Section 1.2, this Masters Dissertation represents a relevant work within both to the SeML
and the IMCS projects. As a result, this work has become a broad coverage of many dif-
ferent issues related to the enrichment of DSML using semantic technology and ODSD in
general. Whenever possible, this Dissertation strived to address the inherent complexity
of this topic by providing frameworks to classify and evaluate both the ontologies, as a
semantic technology, and the resultant DSML. Hopefully, this Masters Dissertation will rep-
resent a good foundation for future work and assist others Masters students to familiarize
themselves with the backgrounds and state of the art of this project.

6.4. Summary and Conclusions 135

A
I N T E L L I G E N T M O T I O N C O N T R O L S Y S T E M S ’ D E S C R I P T I V E
D O M A I N O N T O L O G Y

As a reference, this annex provides an overview over all the concepts and relations that
were only referred during the analysis completed in the Subsection 5.2.1.

a.1 robot parts’ classification

This section provides an overview of the classification of each part that can composes a
robot. Conducive to the creation of a reduced taxonomy that would allow the classification
of an actuating part, diverse approaches were suggested by the team of domain experts
in the Jilin University. Nevertheless, in this ontology, an actuating part can be classified
accordingly with its function:

• Electric actuator - An electric actuator is an actuating part which has electric current as
energy source, and so it converts that energy into mechanical actions;

• Hydraulic actuator - A hydraulic actuator is an actuating part which has hydraulic Pres-

sure as energy source, and so it converts that energy into mechanical actions;

• Magnetic actuator - A magnetic actuator is an actuating part which has magnetic energy

as energy source, and so it converts that energy into mechanical actions;

• Mechanical actuator - A pneumatic actuator is an actuating part which has mechanical

force as energy source, and so it converts that energy into mechanical actions;

• Pneumatic actuator - A pneumatic actuator is an actuating part which has pneumatic

pressure as energy source, and so it converts that energy into mechanical actions;

• Thermal actuator - A thermal actuator is an actuating part which has thermal energy as
energy source, and so it converts that energy into mechanical actions.

Similarly, a classification was created to classify a sensing part, accordingly with its func-
tionality:

136

A.1. Robot Parts’ classification 137

• Acoustic sensor - Specialized on measure, through a sensing process, some physical
quantity in a acoustic environment;

• Automotive sensor - Specialized on measure, through a sensing process, some physical
quantity in a automotive environment;

• Chemical sensor - Specialized on measure, through a sensing process, some physical
quantity in a chemical environment;

• Electrical sensor - Specialized on measure, through a sensing process, some physical
quantity that describes some electrical attribute;

• Flow Sensor - Specialized on measure, through a sensing process, some physical quan-
tity in an environment evolving some fluid movement;

• Force sensor - Specialized on measure, through a sensing process, some physical quan-
tity in an environment where the observed Force, density, or level is applied;

• Ionization sensor - Specialized on measure, through a sensing process, some physical
quantity in an environment involving ionizing radiation or subatomic particles;

• Movement sensor - Specialized on measure, through a sensing process, some physical
quantity involving position, angle, displacement, distance, speed or acceleration;

• Navigation sensor - Specialized on measure, through a sensing process, some physical
quantity in a navigational environment;

• Optical sensor - Specialized on measure, through a sensing process, some physical
quantity involving optical vision, light, imaging and photons;

• Pressure sensor - Specialized on measure, through a sensing process, some physical
quantity in an environment where the observed pressure is applied;

• Proximity sensor - Specialized on measure, through a sensing process, some physical
quantity in an environment where the observed proximity or presence needs to be
controlled;

• Thermal sensor - Specialized on measure, through a sensing Process, some physical
quantity in an Thermal environment.

• Specific application sensor - Specialized on measure, through a sensing process, some
physical quantity in a specific environment, not specified by none of the referred
sensing parts.

Accordingly with its portable characteristic, a classification was create for the powering

part:

A.1. Robot Parts’ classification 138

• Battery - Capable of providing power to a Robot (through a supplying process) and
classified accordingly to its charging/discharging properties as:

– Rechargeable - Battery which discharges through a discharging process and can
be charged through a charging process multiple times, until the end of the battery

lifetime (an operating property of a battery);

– Non-rechargeable - Battery that discharges through a discharging process and can
only be used one time, and so can’t go through a charging process or a supplying

process.

• Power supply - Capable of providing power to a robot (through a supplying process),
or charging a battery (through a charging process).

A platform part can be classified into several categories:

• UAV - Unmanned aerial vehicle is a platform part for a robot that flies without a human
pilot aboard and without requiring input from an operator (and so a fully autonomous

robot);

• AUV - Autonomous underwater vehicle is a platform part for a robot that travels un-
derwater without requiring input from an operator (and so, a fully autonomous robot);

• UGV - Unmanned ground vehicle is a platform part for a robot that operates while in
contact with the ground, without a human pilot aboard and without requiring input
from an operator (and so a fully autonomous robot);

• Unnamed platform - A platform part intended for any robot that is not included in the
AUV, UAV and UGV subclasses.

Accordingly to its specificity, a processing part can be classified using the following taxon-
omy:

• ASIC - Application-Specific Integrated Circuit is a hardware processing part customized
for a particular application or domain, rather than intended for general-purpose use
(as is the case of the generic processor);

• ASIP - Application-Specific Instruction-Set Processor is a hardware processing part

which includes a minimum ISA (Instruction Set Architecture) and a configurable logic
that can be used to design new instructions. Compared with an ASIC is more flex-
ible and more expensive. Compared with an FPGA is less flexible, achieves better
performances and is cheaper;

• Generic processor - A generic processor is the hardware processing part dedicated to
general purpose applications, such as personal computers and workstations;

A.1. Robot Parts’ classification 139

• FPGA - Field-Programmable Gate Array is an hardware processing part that is designed
to be configured and reprogrammed to desired application or functionality require-
ments after manufacturing.

Lastly, a storing part can be classified as illustrated in Figure 92.

Figure 92.: Part of the descriptive domain ontology showing taxonomy that allows the classification
of a Storing Part.

• External storage - A storing part that is not directly accessible by a software processing
part. This kind of storing part provides a way of communicate indirectly with the
Robot.

– External flash memory - A non volatile and randomly accessed external storage;

– Magnetic disk - A non volatile and sequentially accessed external storage. A mag-

netic disk can be accessed through a read/write, using a electromagnet reader;

– Optical disk - A non volatile and sequentially accessed external storage. A optical

disk can be accessed through a read/write, using a laser reader.

• Internal storage - A storing part that is directly accessible by a software processing
part, through a storing process.

– RWM - A volatile, mutable and randomly accessed internal storage;

– ROM - A non volatile, non mutable and randomly accessed internal storage;

– Hybrid - A non volatile, mutable and randomly accessed internal storage.

A.2. Properties 140

a.2 properties

This section illustrates the conceptualization of property in the descriptive domain ontology,
exploring the properties of each robot part. As described in the Subsection 5.2.1, both robot

part and robot have survival and operating ranges, which attributes depend directly on the
environmental conditions experimented by both. Thus, a robot (as a composite system) has
a survival range and an operating range that is an aggregation of the survival ranges and
operating ranges of the atomic or composite robot part that compose it.

The following definitions describe the main conceptualizations that allow the specifica-
tion of robot part/robot’s hardware properties, while the software properties are defined in
the application ontology (due to its specific relation with the system’s code):

• Capability - A capability is a property that collects together properties and environ-
mental conditions in which those properties hold, composing a specification of a robot

part’s capability in those conditions. Therefore, its branched in:

– Measuring capability;

– Powering capability;

– Supporting capability;

– Actuating capability;

– Processing capability;

– Storing capability;

– Powering capability;

• Hardware property - Physical describes a robot part;

• Operating range - An operating range is a hardware property that specifies the en-
vironmental conditions and characteristics of a robot part/robot’s normal operating
environment;

• Operating property - A hardware property that identifies the environmental character-
istics and other conditions in which the robot part/robot is intended to operated;

• Survival range - A hardware property that specify the conditions a robot part/robot’s can
be exposed to without damage. If the robot part/robot’s is damaged, its capabilities’
specifications may no longer be the same;

• Survival property - A hardware property intended to identify the characteristics that
represent the extent of the robot part/robot’s useful life;

• Condition - A hardware property which specify ranges for other hardware property, defin-
ing the behaviour of a robot part/robot in the surrounding environment.

A.2. Properties 141

Equivalently to the operating range and survival range, the majority of the properties
presented in the following figures are described through the existent relation with the con-
ceptualizations of Physical Quantity Kind and Physical Unit of Measure, allowing each prop-
erty to have a meaning and a unit in the Systeme International Unit. Nevertheless, some
properties require a functional relation and a covering axiom to allow its description, as ex-
plained during the implementation of the prescriptive domain ontology, in the Subsection
5.2.2. Examples of this special properties are the Mutability and Volatility, both illustrated on
Figure 93.

Figure 93.: Part of the descriptive domain ontology showing the main concepts related to Storing
Property concept.

A.2. Properties 142

Figure 94.: Part of the descriptive domain ontology showing the main concepts related to Communi-
cating Property concept.

Figure 95.: Part of the descriptive domain ontology showing the main concepts related to Supporting
Property concept.

A.2. Properties 143

Figure 96.: Part of the descriptive domain ontology showing the main concepts related to Actuating
Property concept.

Figure 97.: Part of the descriptive domain ontology showing the main concepts related to Measuring
Property concept.

A.2. Properties 144

Figure 98.: Part of the descriptive domain ontology showing the main concepts related to Powering
Property concept.

Figure 99.: Part of the descriptive domain ontology showing the main concepts related to Processing
Property concept.

A.3. Processes 145

a.3 processes

This section provides an overview of the taxonomy of processes that a robot can execute
through a specific robot part, illustrated in Figure 100:

Figure 100.: Part of the descriptive domain ontology showing the main concepts related to Process
conceptualization, depending on the Robot Part.

• Communicating process - A process that interacts with a communicating part, in order
to provide interaction among robots and humans:

– Complex:

∗ Physical - Responsible for configuring the system and proceed with the re-
quired actions to enable the reception and transmission of messages;

∗ Syntactic - Allows a robot to decode (decoding), encode (encoding) or recon-
struct (reconstruction) a message, in order to assemble it in a syntactically
correct way.

∗ Semantic - Responsible for interpreting (interpretation) [or infer (composition)]
the semantic knowledge of a (to a) message, making it meaningful.

A.3. Processes 146

– Elementary:

∗ Control - Procedure to interact with a communicating part in order to con-
figure or control its behaviour;

∗ Receive - Procedure to wait for a message;

∗ Send - Procedure to send a message.

• Powering process - Process which allows a powering part to be the robot’s power supply
or to be the power supply of another powering part:

– Charging - Represents the action of charging another powering part;

– Discharging - Represents the action of discharging of a powering part;

– Supplying - Represents the action of being the power supply of a robot part/robot.

• Sensing process - A process which is aware of an observation to allow the robot to
measure a physical quantity in the surrounding environment, through a sensing part:

– Conversion - Responsible for converting the measured physical quantity into a
signal, in order to allow the measured values to be processed;

– Observation - Observes a predefined physical quantity in the surrounding envi-
ronment or in the robot itself;

– Semantic Analysis - Infers meaning to the measured physical quantity.

• Processing process - Process responsible for processing the data and information nec-
essary to the proper and required operation of the robot:

– Application Software - Process focused on the application software:

∗ Internal communication;

∗ Software algorithms.

– Board support package - A process dedicated to provide support for a given
board that conforms to a given operating system;

– Device driver - Process focused on the device drivers, and thus responsible for
implementing a device driver;

– Middleware - Process focused on the middleware’s software:

∗ Application framework - Defines a standard structure for application software

development;

∗ Platform interface - Defines an API that enables the application software to
interact with the operating system, and so provides services to the application

software;

A.3. Processes 147

– Operating system - Process that constitutes the operating system and manages its
operation.

• Storing Process - A process responsible for enabling the interaction between the robot

and its storing part.

– Control - Interaction with a storing part that is neither read and write;

– Read;

– Write;

• Supporting process;

• Actuating process - Process that interact with the actuating part, in order to move and
act in the surrounding environment.

B
C O I L W I N D I N G M A C H I N E ’ S M O D E L

import "D:CWM/CWMO.owl"

/* System ’s Requirements [Goals] */

use Accuracy , Reliability , Performance , Stability , ResourcesEfficiency

/* Hardware Structure [RobotParts] */

CoilWindingMachine isComposedOf

CWM_PowerSupply ,

CWM_Infrastructure ,

EE-SX672 ,

HBS2206 ,

IS61LV25616 ,

K9XXG08UXB ,

MT6070iH ,

STM32F103ZET6 ,

SDIO ,

CycloneIV_EP4CE40F23C6 ,

SecureDigitalCard

STM32F103ZET6 uses

CycloneIV_EP4CE40F23C6 ,

MT6070iH ,

SDIO ,

EE-SX672 ,

HBS2206 ,

IS61LV25616 ,

K9XXG08UXB

CycloneIV_EP4CE40F23C6 uses

EE-SX672 ,

HBS2206 ,

IS61LV25616 ,

K9XXG08UXB

SDIO uses SecureDigitalCard

/* Software Structure [Processes] */

SecureDigitalCard isUsedBy

DeleteDirectory ,

MakeDirectory ,

148

149

ReadDirectory ,

CloseDirectory ,

SeekFile ,

OpenDirectory ,

WriteFile ,

ReadFile ,

CloseFile ,

OpenFile

MT6070iH isUsedBy

DisplayControlParameters ,

ProductSpecification

IS61LV25616 isUsedBy

ReadSRAM ,

ReadSRAM_DMA ,

WriteSRAM ,

WriteSRAM_DMA

K9XXG08UXB isUsedBy

FlashBlockErase ,

FlashReset ,

ReadSpareFlash ,

WriteFlashPage ,

WriteSpareFlash

HBS2206 isUsedBy TrigonometricIteration

HBS2206 isUsedBy ImprovedPBP

/* Properties */

FinalProduct = "Coil1"

MB_Mode = "MB_RTU"

MB_Parity = "EVEN"

MB_Baudrate = 9600

MB_Port = 1

MB_SlaveAddress = 8

MB_StopBitsWidth = 1

MB_WordWidth = 8

MaxAcceleration = 150

MaxVelocity = 150

Jerk = 15000

Listing B.1: Application’s model using the SeML.

C
O N T O L O G I E S ’ D E V E L O P M E N T - G A N T T D I A G R A M

As a reference, this annex provides an overview of the main tasks (Figure 101) and respec-
tive schedule (Figure 102) in the development of the descriptive domain ontology, prescrip-
tive domain ontology and the prescriptive application ontology. The scheduling of this
ontologies’ development follows the METHONTOLOGY methodology and includes the
validation of each of the ontologies by the 10 commandments and the Ontoclean method-
ologies.

Figure 101.: Ontologies’ development tasks, accordingly with the methodologies explored in Subsec-
tion 2.2.1.

150

151

Figure 102.: Gantt’s diagram illustrating ontologies’ development scheduling, respecting the
methodologies explored in Subsection 2.2.1.

B I B L I O G R A P H Y

[045] RoSta Project 045304. RoSta: Project. http://www.robot-
standards.org/index.php?id=8. [Online; visited on 14-April-2017].

[ABM99] Colin Atkinson, Jean Bézivin, and Pierre-Alain Muller. Supporting and Apply-
ing the UML Conceptual Framework, pages 21–36. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1999.

[ABm07] Uwe ABmann. Design of a Semantic Connector Model for Composition of Meta-
models in the Context of Software Variability. Phd thesis, Technische Universitat
Dresden, 2007.

[Ack88] J.L. Ackrill. A New Aristotle Reader. Princeton University Press, 1988.

[AKG11a] Colin Atkinson, Bastian Kennel, and Bjorn GoB. The Level-Agnostic Modeling
Language, pages 266–275. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[AKG11b] Colin Atkinson, Bastian Kennel, and B Goß. Supporting Constructive and
Exploratory Modes of Modeling in Multi-Level Ontologies. 7th International
Workshop on Semantic Web Enabled Software Engineering, 2011.

[ALM88] J. S. Albus, R. Lumia, and H. Mccain. Hierarchical control of intelligent ma-
chines applied to space station telerobots. IEEE Transactions on Aerospace and
Electronic Systems, 24(5):535–541, 1988.

[Alt] Altova. UML Round Trip Engineering. http://www.altova.com/umodel/uml-
round-trip.html. [Online; visited on 27-March-2017].

[Ass] European Health Telematics Association. ITB CNR Institute for Biomedical
Technologies (Italy) eHealth Portal for Europe. https://www.ehtel.eu/join-
ehtel/member-profiles/member-itb-cnr. [Online; visited on 24-April-2017].

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1986.

[BAM+
04] T. Barbera, J. Albus, E. Messina, C. Schlenoff, and J. Horst. How task analy-

sis can be used to derive and organize the knowledge for the control of au-
tonomous vehicles. Robotics and Autonomous Systems, 49(1-2 SPEC. ISS.):67–78,
2004.

152

Bibliography 153

[BASRH13] Julita Bermejo-Alonso, Ricardo Sanz, Manuel Rodrı́guez, and Carlos
Hernández. Ontology Engineering for the Autonomous Systems Domain, pages
263–277. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[BDZ89] R. D. Banker, S. M. Datar, and D. Zweig. Software complexity and maintain-
ability. Proceedings of the tenth international conference on Information Systems -
ICIS ’89, 11(5.6):247–255, 1989.

[Bet04] J Bettin. Model-Driven Software Development Activities. The Process View of
an MDSD Project, SoftMetaWare, pages 1–16, 2004.

[Bet16] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publishing Ltd, 2 edition, 2016.

[BGM96] S Borgo, N Guarino, and C Masolo. A Pointless Theory of Space Based on
Strong Connection and Congruence. In Proceedings of Principles of Knowledge
Representation and Reasoning,, pages 220–229. Morgan Kaufmann, 1996.

[BGM97] Stefano Borgo, Nicola Guarino, and Claudio Masolo. An Ontological Theory
of Physical Objects. Qualitative Reasoning 11th International Workshop, pages
223–231, 1997.

[BHJV08] Jürgen Bock, Peter Haase, Qiu Ji, and Raphael Volz. Benchmarking OWL
reasoners. CEUR Workshop Proceedings, 350, 2008.

[BKMPS09] Jie Bao, Elisa F. Kendall, Deborah L. McGuinness, and Peter F.
Patel-Schneider. OWL 2 Web Ontology Language Quick Reference
Guide. http://www.w3.org/TR/2009/REC-owl2-quick-reference-20091027/,
2009. [Online; visited on 04-May-2017].

[BL00] Tim Berners-Lee. Semantic Web - XML2000.
http://www.w3.org/2000/Talks/1206-xml2k-tbl, 2000. [Online; visited
on 04-April-2017].

[BL07] Matthias Bräuer and Henrik Lochmann. Towards semantic integration of mul-
tiple domain-specific languages using ontological foundations. Proceedings of
4th International Workshop on (Software) Language Engineering (ATEM 2007) co-
located with MoDELS, 2007.

[BPSM+
08] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François

Yergeau. {Extensible Markup Language}. https://www.w3.org/XML/, 2008.
[Online; visited on 25-July-2017].

Bibliography 154

[Bro75] A. P. G. Brown. Modelling a real world system and designing a schema to
represent it. In IFIP TC-2 Special Working Conference on Data Base Description,
pages 339–348, 1975.

[Bro86] Rodney A. Brooks. A Robot Layered Control System For a Mobile Robot. IEEE
Journal of Robotics and Automation, 2:14–23, 1986.

[BS04] Stephen Balakirsky and Chris Scrapper. Knowledge representation and plan-
ning for on-road driving. Robotics and Autonomous Systems, 49(1):57 – 66, 2004.
Knowledge Engineering and Ontologies for Autonomous Systems 2004 AAAI
Spring Symposium.

[Bun77] Mario Augusto Bunge. Treatise on Basic Philosophy - Onthology I: The Furniture
of the World, volume 3. Springer Netherlands, 1977.

[CBB+
12] Michael Compton, Payam Barnaghi, Luis Bermudez, et al. The SSN ontology

of the W3C semantic sensor network incubator group. Journal of Web Semantics,
17:25–32, 2012.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000.

[CFP+
13] Joel Luis Carbonera, Sandro Rama Fiorini, Edson Prestes, et al. Defining posi-

tioning in a core ontology for robotics. IEEE International Conference on Intelli-
gent Robots and Systems (IROS), pages 1867–1872, 2013.

[CG02] Feliciano Manzano Casas and L. A. Garcı́a. OCOA: An Open, Modular, Ontology
Based Autonomous Robotic Agent Architecture, pages 173–182. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002.

[Che76] Peter Pin-Shan Chen. The entity-relationship model—toward a unified
view of data. ACM Trans. Database Syst., 1(1):9–36, March 1976.

[CJ99] B. Chandrasekaran and R. Josephson. What are ontologies, and Why do we
need them? IEEE Intelligent Systems, 14(1):20–26, 1999.

[CP13] Clark and Parsia. Pellet’s reasoner, 2013. [Online as a Github repository;
available on 25-July-2017].

[CRP06] C. Calero, F. Ruiz, and M. Piattini. Ontologies for Software Engineering and
Software Technology. Springer Berlin Heidelberg, 2006.

Bibliography 155

[CT+
04] Nicholas L. Cassimatis, J. Gregory Trafton, et al. Integrating cognition, percep-

tion and action through mental simulation in robots. Robotics and Autonomous
Systems, 49(1-2 SPEC. ISS.):13–23, 2004.

[CWL14] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts
and Abstract Syntax. https://www.w3.org/TR/rdf11-concepts, 2014. [Online;
visited on 25-July-2017].

[DB11] Richard C. Dorf and Robert H. Bishop. Modern Control Systems. Prentice-Hall,
Inc., 12th edition, 2011.

[dBFK+
12] Jos de Bruijn, Dieter Fensel, Uwe Keller, et al. WSML - Web Service Modeling

Language. https://www.w3.org/Submission/WSML, 2012. [Online; visited
on 01-April-2017].

[DCTD11] Kathrin Dentler, Ronald Cornet, Annette Ten Teije, and Nicolette De Keizer.
Comparison of reasoners for large ontologies in the OWL 2 EL profile. Seman-
tic Web, 2(2):71–87, 2011.

[DDLF+
11] Saadia Dhouib, Nicolas Du Lac, Jean-Loup Farges, et al. Control Architec-

ture Concepts and Properties of an Ontology Devoted to Exchanges in Mobile
Robotics. In 6th National Conference on Control Architectures of Robots, page 24

p., Grenoble, France, May 2011. INRIA Grenoble Rhône-Alpes.

[DDV13] Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven Archite
and Ontology Development, volume 53. Springer, 2013.

[Dev02] Vladan Devedzić. Understanding ontological engineering. Commun. ACM,
45(4):136–144, April 2002.

[DHHS01] Wolfgang Degen, Barbara Heller, Heinrich Herre, and Barry Smith. GOL:
Toward an axiomatized Upper-Level Ontology. Proceedings of the inter-
national conference on Formal Ontology in Information Systems - FOIS ’01,
2001(November):34–46, 2001.

[Dic17] Dictionary.com. Definition of the domain term, 2017. [Online; visited on 25-
July-2017].

[DRM12] Google Dan Brickley, Google R.V. Guha, and Brian McBride. RDF Schema
1.1. https://www.w3.org/TR/rdf-schema/, 2012. [Online; visited on 01-April-
2017].

[DSB+
04] M Dean, G Schreiber, S Bechhofer, Frank van Harmelen, Jim Hendler, Ian

Horrocks, D McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.

Bibliography 156

OWL Web Ontology Language Reference, 2004. [Online; visited on 23-June-
2017].

[Eps04] Sl Epstein. Metaknowledge for Autonomous Systems. Proceedings of AAAI
Spring Symposium on Knowledge Representation and Ontology for Autonomous Sys-
tems. AAAI., 2004.

[ES16] Sven Efftinge and Miro Spoenemann. Xtext - Language Engineering Made
Easy! http://www.eclipse.org/Xtext/, 2016. [Online; visited on 02-July-2017].

[Fal10] Sean Falconer. OntoGraf - Protege Wiki.
http://protegewiki.stanford.edu/wiki/OntoGraf, 2010. [Online; visited
on 13-June-2017].

[Far09] Jean-Loup Farges. Robotic Ontology and Modelling - 3rd version, 2009. [On-
line - PDF version; visited on 10-July-2017].

[FB99] Martin Fowler and Kent Beck. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[fBI13] National Cancer Institute Center for Biomedical Informatics. National Cancer
Institute Thesaurus. http://bioportal.bioontology.org/ontologies/NCIT, 2013.
[Online; visited on 04-June-2017].

[FCG+
15] Sandro Rama Fiorini, Joel Luis Carbonera, Paulo Goncalves, et al. Exten-

sions to the core ontology for robotics and automation. Robotics and Computer-
Integrated Manufacturing, 33:3–11, 2015.

[FGL87] K S Fu, R C Gonzalez, and C S George Lee. ROBOTICS : Control, Sensing,
Vision, and Intelligence. McGraw-Hill Education (India) Pvt Limited, 1987.

[FLGPJ97] M Fernández-López, A Gómez-Pérez, and Natalia Juristo. METHONTOL-
OGY: From Ontological Art Towards Ontological Engineering. AAAI-97 Spring
Symposium Series, SS-97-06:33–40, 1997.

[FM01] Dieter Fensel and Mark A. Musen. The semantic web: A brain for humankind.
IEEE Intelligent Systems and Their Applications, 16(2):24, 2001.

[FRBS+13] Ulrich Frank, Iris Reinhartz-Berger, Arnon Sturm, et al. Domain-Specific Mod-
eling Languages: Requirements Analysis and Design Guidelines, pages 133–157.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[fRG15] Ontologies for Robotics and Automation Working Group. Ieee standard on-
tologies for robotics and automation. IEEE Std 1872-2015, pages 1–60, April
2015.

Bibliography 157

[GG95] Nicola Guarino and Pierdaniele Giaretta. Ontologies and knowledge bases:
Towards a terminological clarification. In Towards very Large Knowledge bases:
Knowledge Building and Knowledge sharing, pages 25–32. IOS Press, 1995.

[GG05] G. Guizzardi and Giancarlo Guizzardi. Ontological foundations for structural
conceptual models. PhD thesis, University of Twente, 10 2005.

[GHH+] Rafael Gonçalves, Josef Hardi, Matthew Horridge, et al. protégé.
http://protege.stanford.edu/. [Online; visited on 06-May-2017].

[GHW02a] Giancarlo Guizzardi, Heinrich Herre, and Gerd Wagner. On the general on-
tological foundations of conceptual modeling. Conceptual Modeling ER 2002,
Lecture Notes in Computer Science, 2503(Er 2002):65–78, 2002.

[GHW02b] Giancarlo Guizzardi, Heinrich Herre, and Gerd Wagner. Towards Ontological
Foundations for UML Conceptual Models, pages 1100–1117. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2002.

[GHW03] Giancarlo Guizzardi, Heinrich Herre, and Gerd Wagner. On the General Onto-
logical Foundations of Conceptual Modeling, pages 65–78. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2003.

[GO14] GO. Documentation — Gene Ontology Consortium.
http://www.geneontology.org/page/ontology-documentation, 2014. [Online;
available on 25-July-2017].

[Gro03] Object Management Group. Mda guide version 1.0, 2003. [Online; visited on
25-July-2017].

[Gro16a] Object Management Group. Mda - the architecture of choice for a changing
world, 2016. [Online; visited on 25-July-2017].

[Gro16b] OWL Working Group. OWL 2 Web Ontology Language Document Overview
(Second Edition). https://www.w3.org/TR/owl2-overview/, 2016. [Online;
visited on 04-June-2017].

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowl. Acquis., 5(2):199–220, June 1993.

[Gru95] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing? International Journal of Human-Computer Studies, 43(5):907

– 928, 1995.

Bibliography 158

[GS03] Jack Greenfield and Keith Short. Software Factories - Assembling Applications
with Patterns, Models, Frameworks and Tools. OOPSLA ’03 Companion of the
18th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 16–27, 2003.

[GS04] J. Greenfield and K. Short. Software Factories: Assembling Applications with Pat-
terns, Models, Frameworks, and Tools. Timely, practical, reliable. Wiley, 2004.

[Gua] Nicola Guarino. WONDERWEB - Ontology Infrastructure for the
Semantic Web — Institute of Cognitive Sciences and Technologies.
http://www.istc.cnr.it/project/wonderweb-ontology-infrastructure-
semantic-web. [Online; visited on 23-April-2017].

[Gua01a] Nicola Guarino. WONDERWEB Report Summary: DOLCE, 2001. [Online -
PDF version; visited on 16-April-2017].

[Gua01b] Nicola Guarino. WONDERWEB Report Summary: DOLCE Modules, 2001.
[Online - PDF version; visited on 02-June-2017].

[Gui07] Giancarlo Guizzardi. On ontology, ontologies, conceptualizations, model-
ing languages, and (meta)models. In Proceedings of the 2007 Conference on
Databases and Information Systems IV: Selected Papers from the Seventh Interna-
tional Baltic Conference DB&IS’2006, pages 18–39, Amsterdam, The Nether-
lands, The Netherlands, 2007. IOS Press.

[Gui13] Giancarlo Guizzardi. Ontology-Based Evaluation and Design of Visual Conceptual
Modeling Languages, pages 317–347. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013.

[Guu] VU University Amsterdam Guus Schreiber. RDF 1.1 Primer.
https://www.w3.org/TR/rdf11-primer/. [Online; visited on 04-April-2017].

[Guz96] M. Guzzo, R. & Dickson. Team in organizations: Research on performance
and effectieness. Annual Review of Psychology, 47:307–338, 1996.

[GW02] Nicola Guarino and Christopher Welty. Evaluating ontological decisions with
OntoClean. Commun. ACM, 45(2):61–65, 2002.

[GW04] Giancarlo Guizzardi and Gerd Wagner. A Unified Foundational Ontology
and some Applications of it in Business Modeling. In CAiSE Workshops, pages
129–143, 2004.

[GW05] Giancarlo Guizzardi and Gerd Wagner. Towards Ontological Foundations for
Agent Modelling Concepts Using the Unified Fundational Ontology (UFO), pages
110–124. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

Bibliography 159

[GWAG15] Giancarlo Guizzardi, Gerd Wagner, João Paulo Andrade Almeida, and Renata
Guizzardi. Towards ontological foundations for conceptual modeling: The
unified foundational ontology (UFO) story. Applied Ontology, 10(3-4):259–271,
2015.

[HB06] John Hallam and Herman Bruyninckx. An ontology of robotics science.
Springer Tracts in Advanced Robotics, 22:1–14, 2006.

[HD09] Martin Hägele and Knut Drachsler. RoSta - Final Deliverable DMa4, 2009.
[Online; visited on 18-June-2017].

[Hep07] Martin Hepp. Possible ontologies: How reality constrains the development of
relevant ontologies. IEEE Internet Computing, 11(1):90–96, 2007.

[Hep13] M. Hepp. Güterklassifikation als semantisches Standardisierungsproblem.
Deutscher Universitätsverlag, 2013.

[HHDL+
08] Martin Hepp, Martin Hepp, Pieter De Leenheer, Aldo De Moor, and York Sure.

Ontologies: State of the Art, Business Potential, and Grand Challenges, pages 3–22.
Springer US, Boston, MA, 2008.

[HHMW12] V Haarslev, K Hidde, R Möller, and M Wessel. The RacerPro knowledge
representation and reasoning system. Semantic Web Journal, 1:1–5, 2012.

[HKP+
12] Pascal. Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and

Sebastian Rudolph. OWL2 Web Ontology Language Primer (Second Edition).
https://www.w3.org/TR/owl2-primer/, 2012. [Online; visited on 05-April-
2017].

[HMA03] Hui-Min Huang, Elena Messina, and James Albus. Toward a generic model
for autonomy levels for unmanned systems (ALFUS). Performance Metrics for
Intelligent Systems (PerMIS) Workshop, 2003.

[Hor08] I Horrocks. Ontologies and the semantic web. Communications of the ACM,
51:58–67, 2008.

[HPS12] Matthew Horridge and Peter F. Patel-Schneider. Owl 2 web ontology language
manchester syntax (second edition). https://www.w3.org/TR/2012/NOTE-
owl2-manchester-syntax-20121211/, 2012. [Online; visited on 09-June-2017].

[HPsB+
04] Ian Horrocks, Peter F Patel-schneider, Harold Boley, et al. SWRL : A Semantic

Web Rule Language Combining OWL and RuleML. W3C Member submission
21, pages 1–20, 2004.

Bibliography 160

[HS06] Hans-jörg Happel and Stefan Seedorf. Applications of Ontologies in Software
Engineering. In 2nd International Workshop on Semantic Web Enabled Software
Engineering (SWESE 2006), held at the 5th International Semantic Web Conference
(ISWC 2006, pages 1–14, 2006.

[IBGM08] J Ierache, M Bruno, and R Garcı́a-Martı́nez. Ontolog{ı́}a para el aprendizaje
y compartici{ó}n de conocimientos entre sistemas aut{ó}nomos. VII Jor-
nadas Iberoamericanas de Ingenierı́a de Software e Ingenierı́a del Conocimiento 2008,
Guayaquil, Ecuador, January 30, 2008.

[Int06] SNOMED International. SNOMED - The Global Language of Healthcare.
http://www.snomed.org/snomed-ct, 2006. [Online; visited on 18-July-2017].

[JBK+
04] Hyuckchul Jung, Jeffrey M Bradshaw, Shri Kulkarni, et al. An Ontology-Based

Representation for Policy-Governed Adjustable Autonomy. In Proceedings of
the AAAI Spring Symposium on Knowledge Representation and Ontology for Au-
tonomous Systems., 2004.

[JC10] Krzysztof Janowicz and Michael Compton. The stimulus-sensor-observation
ontology design pattern and its integration into the semantic sensor network
ontology. In Proceedings of the 3rd International Conference on Semantic Sensor
Networks - Volume 668, SSN’10, pages 64–78, Aachen, Germany, Germany, 2010.
CEUR-WS.org.

[J.F84] J.F.Allen. Towards a general theory of action and time. Artificial Intelligence,
23:123–154, 1984.

[JS11] Ludger Jansen and Stefan Schulz. The Ten Commandments of Ontological
Engineering. In OBML Workshop, pages 41–46, 2011.

[JW05] Jan Jürjens and Stefan Wagner. Model Driven Software Development in the
Context of Embedded Component Infrastructures. Lecture Notes in Computer
Science, pages 320–344, 2005.

[Koi13] E. Koivunen, M. R., & Miller. W3C Semantic Web Activity.
http://www.w3.org/2001/12/semweb-fin/w3csw, 2013. [Online; visited on
27-Feb-2017].

[Kos03] Jussi Koskinen. Software Maintenance Costs. Information Technology Research
Institute, University of Jyv{\”a}skyl{\”a}, 200, 2003.

[KOTW06] Holger Knublauch, Daniel Oberle, Phil Tetlow, and Evan Wallace. A Semantic
Web Primer for Object-Oriented Software Developers, 2006. [Online; visited
on 15-May-2017].

Bibliography 161

[Kru03] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3 edition, 2003.

[KRV14] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in software de-
velopment using domain specific modeling languages. CoRR, abs/1409.6618,
2014.

[KVV06] Markus Krötzsch, Denny Vrandečić, and Max Völkel. ONTOCOM: A Cost
Estimation Model for Ontology Engineering. The Semantic Web - ISWC 2006,
4273(February 2016):935 – 942, 2006.

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[Lab] Knowledge Systems AI Laboratory. Stanford Knowledge Systems, AI Labora-
tory. http://www-ksl.stanford.edu/. [Online; visited on 09-June-2017].

[Len95] Douglas Lenat. CYC: A Large-Scale Investment in Knowledge Infrastructure.
Communications of the ACM, 38(11):33–38, 1995.

[LGC14] Juan De Lara, Esther Guerra, and Jes’us S’anchez Cuadrado. When and How
to Use Multilevel Modelling. ACM Trans. Softw. Eng. Methodol., 24(2):12:1—-
12:46, 2014.

[LM01] Ora Lassila and Deborah L. McGuinness. The Role of Frame-Based Represen-
tation on the Semantic Web. Review of Accounting Studies, 12(3):369, 2001.

[M. 11] M. Waibel and M. Beetz and J. Civera and R. D’Andrea and others.
RoboEarth-A World Wide Web for Robots. Robotics Automation Magazine, IEEE,
18(June):69–82, 2011.

[Mar80] Mario Augusto Bunge. Treatise on Basic Philosophy - Ontology II: A World of
Systems, volume 4. Springer Netherlands, 1980.

[MBG+
03] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and Alessan-

dro Oltramari. WonderWeb Deliverable D18, 2003.

[MGH+] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, et al. OWL 2 Web Ontology
Language Profiles (Second Edition). http://www.w3.org/TR/owl2-profiles/.
[Online; visited on 23-July-2017].

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Computing Surveys, 37(4):316–344,
2005.

Bibliography 162

[MS88] J.L. Maté and J.P. Sierra. Ingenierı́a del conocimiento: diseño y construcción de
sistemas expertos. Informática (SEPA). Sepa, 1988.

[NFA+
15] Julio Cesar Nardi, Ricardo De Almeida Falbo, João Almeida, et al. A

commitment-based reference ontology for services. Information Systems,
54(June):263–288, 2015.

[Nie12] Engelbert Niehaus. Javascript class generator. https://niebert.github.io/

JavascriptClassCreator, 2012. [Online as a Github repository; visited on
25-July-2017].

[NP01] Ian Niles and Adam Pease. Towards a standard upper ontology. In Proceedings
of the International Conference on Formal Ontology in Information Systems - Volume
2001, FOIS ’01, pages 2–9, New York, NY, USA, 2001. ACM.

[Obe06] D. Oberle. Semantic Management of Middleware. Advances in the Semantic Web
And Beyond. Springer, 2006.

[Obi07] Marek Obitko. Ontolgies and Semantic Web - Modularization of Ontologies,
2007. [Online; visited on 24-May-2017].

[Obj08] Object Management Group. Welcome to Papyrus UML web site.
http://www.uml.org/, 2008. [Online; visited on 01-Feb-2017].

[Obj13] Object Management Group. MetaObject Facility (MOF) Home Page.
http://www.omg.org/mof/, 2013. [Online; visited on 03-March-2017].

[oO] Information Systems Group University of Oxford. HermiT Reasoner: Home.
http://www.hermit-reasoner.com/. [Online; visited on 25-July-2017].

[OWL12] OWL Working Group. OWL - Semantic Web Standards.
https://www.w3.org/OWL/, 2012. [Online; visited on 01-Feb-2017].

[PBZ+
12] Adrian Paschke, Harold Boley, Zhili Zhao, et al. Reaction RuleML 1.0: Stan-

dardized semantic reaction rules. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 7438 LNCS, pages 100–119, 2012.

[PCRF+
13a] Edson Prestes, Joel Luis Carbonera, Sandro Rama Fiorini, et al. Towards a

core ontology for robotics and automation. Robotics and Autonomous Systems,
61(11):1193–1204, 2013.

[PCRF+
13b] Edson Prestes, Joel Luis Carbonera, Sandro Rama Fiorini, Vitor A. M. Jorge,

et al. Towards a core ontology for robotics and automation. Robot. Auton. Syst.,
61(11):1193–1204, November 2013.

https://niebert.github.io/JavascriptClassCreator
https://niebert.github.io/JavascriptClassCreator

Bibliography 163

[Pea06] A Pease. The suggested upper merged ontology (sumo)-ontology portal.
http://www.adampease.org/OP/, 2006. [Online; visited on 23-April-2017].

[Pea11] Adam Pease. Formal Ontology and the Suggested Upper
Merged Ontology (SUMO), Adam Peace, 20110822 - YouTube.
https://www.youtube.com/watch?v=EFQRvyyv7Fs&t=1251s, 2011. [On-
line - San Francisco Bay ACM’s talk; viewed on 20-April-2017].

[Per14] Branko Perisic. Model Driven Software DevelopmentState of The Art and
Perspectives. Infoteh- Jahorina, 13(March):1237–1248, 2014.

[PHK+
11] Using Prot, Matthew Horridge, Holger Knublauch, Alan Rector, Robert

Stevens, Chris Wroe, Simon Jupp, Georgina Moulton, Nick Drummond, and
Sebastian Brandt. A Practical Guide To Building OWL Ontologies Using
Protégè 4 and CO-ODE Tools Edition 1.3, 2011. [Online; visited on 25-July-
2017].

[PM04] Helena Sofia Pinto and João P. Martins. Ontologies: How can they be built?
Knowledge and Information Systems, 6(4):441–464, 2004.

[PNL02] Adam Pease, Ian Niles, and John Li. The Suggested Upper Merged Ontology:
A Large Ontology for the Semantic Web and its Applications. In In Working
Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, volume 28,
pages 7–10, 2002.

[Proa] KnowRob’s Project. KnowRob - Upper Ontology File.
http://knowrob.org/kb/knowrob.owl. [Online; visited on 09-April-2017].

[Prob] KnowRob’s Project. Overview of the knowrob upper ontology.
http://knowrob.org/doc/knowrob taxonomy. [Online; visited on 25-
July-2017].

[Proc] RobotEarth’s Project. RobotEarth - UpperOntology File.
http://knowrob.org/kb/roboearth.owl. [Online; visited on 14-June-2017].

[prod] WonderWeb project. FaCT++ reasoner — OWL research at the University of
Manchester. http://owl.cs.manchester.ac.uk/tools/fact/. [Online; visited on
30-May-2017].

[Pro12] Proteus Project. Platform for RObotic modeling and Transformations for End-
Users and Scientific communities. http://www.anr-proteus.fr/?q=node/110,
2012. [Online; visited on 29-April-2017].

Bibliography 164

[PSA+
13] Jeff Z. Pan, Steffen Staab, Uwe Aßmann, et al. Ontology-driven software develop-

ment. Springer-Verlag Berlin Heidelberg, Berlin, 2013.

[PSB+
04] Ron Provine, Craig Schlenoff, Stephen Balakirsky, et al. Ontology-based meth-

ods for enhancing autonomous vehicle path planning. Robotics and Autonomous
Systems, 49(1-2 SPEC. ISS.):123–133, 2004.

[Ram03] Laddad Ramnivas. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications Co., 2003.

[Ree02] Paul Reed. Reference Architecture: The best of best practices, 2002. [Online;
visited on 07-July-2017].

[RoS] RoSta. RoSta. http://wiki.robot-standards.org/index.php/Main Page. [On-
line; visited on 28-April-2017].

[RoS09] RoSta IST-045304. Deliverable D 2.2: Reference Implementation of Key Archi-
tectural Abstractions and Mechanisms, 2009.

[SA01] Alexander Stoytchev and Ronald C. Arkin. Combining deliberation, reactivity,
and motivation in the context of a behavior-rased robot architecture. Proceed-
ings of IEEE International Symposium on Computational Intelligence in Robotics and
Automation, CIRA, pages 290–295, 2001.

[SAD+] Nicolas Seydoux, Mahdi Ben Alaya, Khalil Drira, Nathalie Her-
nandez, and Thierry Monteil. SAN (Semantic Actuator Network).
https://www.irit.fr/recherches/MELODI/ontologies/SAN. [Online; visited
on 30-May-2017].

[Sah07] Goutam Kumar Saha. Web ontology language (OWL) and semantic web. Ubiq-
uity, 2007(February):1–1, 2007.

[Sch97] David J. Schultz. Ieee standard for developing software life cycle processes.
IEEE Std 1074-1997, The Institute of Electrical and Electronics Engineers, New
York, USA, 1997.

[Sch06] Douglas C Schmidt. Model-Driven Engineering. Computer, 39(February):25–
31, 2006.

[Sei03] E. Seidewitz. What models mean. IEEE Software, 20(5):26–32, Sept 2003.

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and
soul of model-driven software development. IEEE Software, 20(5):42–45, 2003.

Bibliography 165

[SLH+
07] Il Hong Suh, Gi Hyun Lim, Wonil Hwang, Hyowon Suh, et al. Ontology-

based multi-layered robot knowledge framework (OMRKF) for robot intelli-
gence. IEEE International Conference on Intelligent Robots and Systems, pages
429–436, 2007.

[SM05] Craig Schlenoff and Elena Messina. A robot ontology for urban search and
rescue. In Proceedings of the 2005 ACM Workshop on Research in Knowledge Repre-
sentation for Autonomous Systems, KRAS ’05, pages 27–34, New York, NY, USA,
2005. ACM.

[Smi96] Barry Smith. Mereotopology: A theory of parts and boundaries. Data and
Knowledge Engineering, 20(3):287–303, 1996.

[SO00] Richard Soley and OMG Staff Strategy Gropu. Model driven architecture.
OMG white paper, pages 1–12, 2000.

[Sow00] John F. Sowa. Knowledge Representation: Logical, Philosophical and Computational
Foundations. Brooks/Cole Publishing Co., Pacific Grove, CA, USA, 2000.

[SPM+
12] Craig Schlenoff, Edson Prestes, Raj Madhavan, Paulo Goncalves, et al. An

IEEE standard Ontology for Robotics and Automation. IEEE International Con-
ference on Intelligent Robots and Systems, pages 1337–1342, 2012.

[SR03] Amith P Sheth and Cartic Ramakrishnan. Semantic (Web) Technology In Ac-
tion: Ontology Driven Information Systems for Search, Integration and Anal-
ysis. IEEE Data Engineering Bulletin, 26(December):1–10, 2003.

[SSSS01] Steffen Staab, Rudi Studer, Hans-Peter Schnurr, and York Sure. Knowledge
processes and ontologies. IEEE Intelligent Systems, 16(1):26–34, January 2001.

[TB09] Moritz Tenorth and Michael Beetz. KNOWROB - Knowledge processing for
autonomous personal robots. 2009 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS 2009, pages 4261–4266, 2009.

[TPO+
06] Phil Tetlow, Jeff Z. Pan, Daniel Oberle, Evan Wallace, Michael Uschold, and

Elisa Kendall. Ontology driven architectures and potential uses of the seman-
tic web in systems and software engineering. W3C Working Draft Working
Group Note 2006/02/11, W3C, 03 2006.

[UG96] M. Uschold and M. Gruninger. Ontologies: Principles, Methods and Applica-
tions. AIAI-TR. Artificial Intelligence Applications Institute, University of Ed-
inburgh, 1996.

Bibliography 166

[UK95] Mike Uschold and Martin King. Towards a methodology for building ontolo-
gies. In In Workshop on Basic Ontological Issues in Knowledge Sharing, held in
conjunction with IJCAI-95, 1995.

[Voe11] Markus Voelter. From Programming to Modeling-and Back Again. IEEE Soft-
ware, 28(6):20–25, 2011.

[VSB+
06] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen, K. Czarnecki, and B. von

Stockfleth. Model-Driven Software Development: Technology, Engineering, Man-
agement. Wiley Software Patterns Series. Wiley, 2006.

[W3C14] W3C. Semantic sensor network ontology, 2014. [Online; visited on 28-June-
2017].

[WG12] Evan K. Wallace and Christine Golbreich. OWL 2 Web Ontology Language
New Features and Rationale (Second Edition). http://www.w3.org/TR/owl2-
new-features/, 2012. [Online; visited on 01-Feb-2017].

[Wir95] Niklaus Wirth. A plea for lean software. Computer, 28(2):64–68, February 1995.

[Woo04] Sharon Wood. Representation and purposeful autonomous agents. Robotics
and Autonomous Systems, 49(1-2 SPEC. ISS.):79–90, 2004.

[WW88] Yair Wand and Ron Weber. An ontological analysis of some fundamental
information systems concepts. Proceedings of the Ninth International Conference
on Information Systems, 1988:213–226, 1988.

[WW90a] Yair Wand and Ron Weber. An Ontological Model of an Information System.
IEEE Transactions on Software Engineering, 16(11):1282–1292, 1990.

[WW90b] Yair Wand and Ron Weber. Toward a theory of the deep structure of informa-
tion systems. Conference on Information Systems, 5:61–71, 1990.

[WW95] Y Wand and R Weber. On the deep structure of information systems. Informa-
tion Systems Journal, 5(3):203–223, 1995.

[YMY+
17] Shuo Yang, Xinjun Mao, Sen Yang, Zhe Liu, et al. Towards A Robust Soft-

ware Architecture for Autonomous Robot Software. In 2017 6th International
Conference on Software and Computing Technologies (ICSCT 2017), 2017.

	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Motivation
	1.2 Context
	1.3 Aim and Scope
	1.4 Organization of this Dissertation
	1.4.1 Chapter Structure and Outline
	1.4.2 Typographical Conventions

	2 Foundations and Background
	2.1 Model Driven Software Development
	2.1.1 Overview
	2.1.2 The Elements of a Model-Driven Process
	2.1.3 Domain Architectures

	2.2 Semantically-enriched Software Engineering
	2.2.1 Ontologies
	2.2.2 The Semantic Web
	2.2.3 Ontology-Driven Software Development

	3 Problem Analysis and Solution Scoping
	3.1 The IMCSP's Problem Analysis
	3.2 Solution Approach
	3.2.1 SeML as a Semantic Connector

	3.3 Masters Dissertation's Objectives

	4 Analysis of Related Work
	4.1 Review of Upper Ontologies
	4.1.1 Bunge-Wand-Weber
	4.1.2 Unified Foundational Ontology
	4.1.3 Suggested Upper Merged Ontology

	4.2 Review of Domain Ontologies
	4.2.1 IEEE Standard Ontologies for Robotics and Automation
	4.2.2 OCOA
	4.2.3 RoSta
	4.2.4 PROTEUS
	4.2.5 Semantic Sensor Network

	5 Results and Practical Evaluation
	5.1 Design of the Semantically-enriched Modeling Language
	5.2 Design of the Intelligent Motion Control Systems' Domain Ontology
	5.2.1 Descriptive Domain Ontology
	5.2.2 Prescriptive Domain Ontology

	5.3 Case Study: IMCS's Metamodeling
	5.3.1 System's Overview
	5.3.2 System's Structure
	5.3.3 System's Variability
	5.3.4 Design of the Coil Winding Machine Prescriptive Application Ontology
	5.3.5 Coil Winding Machine Metamodeling using the SeML

	6 Discussion and Outlook
	6.1 Evaluation
	6.1.1 Advantages of the SeML
	6.1.2 Advantages of Descriptive Domain Ontology for Intelligent Motion Control Systems
	6.1.3 Critical Issues

	6.2 Contribute of This Dissertation
	6.2.1 Contribute for the SeML's Project
	6.2.2 Contribute for the IMCSP's Project

	6.3 Future Work
	6.4 Summary and Conclusions

	A Intelligent Motion Control Systems' Descriptive Domain Ontology
	A.1 Robot Parts' classification
	A.2 Properties
	A.3 Processes

	B Coil Winding Machine's Model
	C Ontologies' Development - Gantt Diagram
	Bibliography

