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RĊĘĚĒĔ

Fotónica de heteroestruturas de grafeno e outros materiais
bidimensionais

Essa tese aborda o tema da interação da luz commateriais bidimensionais. Ela inicia-
se com uma revisão do estado da arte dos materiais bidimensionais, focando-se, em
particular, naqueles que são mais promissores para o uso em nanofotónica: grafeno,
monocamadas de dicalcogenetos de metais de transição e nitreto de boro hexagonal.
De seguida discutimos as propriedades ópticas desses materiais e nas suas quasi-
partículas/modos coletivos: plasmões, fonões, excitões e polaritões.

O objectivo primeiro desta tese é descrever microscopicamente a interação da luz
com os portadores de carga nestes novos materiais bidimensionais. Para isso é de-
senvolvido em detalhe o formalismo das equações semicondutoras de Bloch. Tam-
bém são derivadas as expressões para a susceptibilidade e a condutividade óptica do
grafeno utilizando a fórmula de Mermin. Esses resultados são utilizados ao longo da
tese.

As equações semicondutoras de Bloch são utilizadas para tratar o sistema de uma
folha de grafeno com bombeamento óptico. Após um rápido período transiente, a
distribuição eletrónica assumirá uma configuração diferente do equilíbrio termod-
inâmico e manter-se-á estável enquanto a luz de bombeamento persistir. Nessa
situação derivamos a nova susceptibilidade eletrónica a que um segundo pulso de
teste irá estar sujeito. A partir da susceptibilidade calculamos a relação de dispersão
dos plasmões, a qual se revela fortemente anisotrópica. Finalmente encontramos
fórmulas semianalíticas para a susceptibilitade, condutividade óptica e relação de
dispersão do plasmão que dependem da intensidade, frequência e polarização do
bombeamento.

Seguidamente tratamos o problema de excitões em monocamadas de dicalcogene-
tos de metais de transição. A partir das equações semicondutoras de Bloch deduz-
imos a equação de Bethe-Salpeter. As soluções da parte homógenea correspondem
às funções de onda dos excitões e às suas energias. A partir da solução da parte não
homogénea podemos calcular as propriedades ópticas. É utilizado o Hamiltoniano
de Dirac em 2D com um termo de massa para tratar dos excitões no ponto K da zona
de Brillouin. Para o ponto Γ utilizamos o modelo de tight-binding de três bandas
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e um cut-off no espaço dos momentos que permite que a função de onda seja de-
composta numa série de Fourier. A condutividade óptica de MoS2, MoSe2, WS2 e
WSe2 é obtida e comparada com dados experimentais. Também deduzimos a fór-
mula de Elliot para o caso bidimensional: uma equação analítica útil para se obter a
condutividade óptica devida às contribuições dos excitões.

Após estudar dois problemas microscópicos, voltamos a nossa atenção para um
problemamacroscópico: a passagemde luz por uma superrede desordenada de dielétri-
cos alternados com folhas de grafeno. A presença de desordem tem como conse-
quência o aparecimento da localização de Anderson. Em sistemas unidimension-
ais a localização de Anderson é caracterizada pelo comprimento de localização, que
pode ser obtido a partir do expoente de Lyapunov. É utilizado o formalismo da ma-
triz de transferência para se calcular numericamente o comprimento de localização.
Também obtemos uma aproximação analítica para desordem fraca que coincide com
o cálculo numérico. Também é estudado a propagação de luz na forma de modos
evanescentes sustentados pela presença de grafeno.
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AćĘęėĆĈę

Photonics of graphene and other two-dimensional materials
heterostructures

This thesis describes the interaction of light with two-dimensionalmaterials. It starts
with a revision of the state of the art of the physics of two-dimensional materials. We
focus on the most promising materials used in nanophotonics: graphene, monolay-
ers of transition metal dichalcogenides, and hexagonal boron nitride. The optical
properties of these materials and their quasiparticles/collective modes are discussed.
They encompass plasmons, phonons, excitons, and polaritons.

The first objective of this thesis is to describe microscopically the interaction of
light with the charge carriers in these new two-dimensional materials. To this end,
the formalism of the semiconductor Bloch equations is derived in detail. Further-
more, the suceptibility and the optical conductivity of graphene are derived using
Mermin’s formula. These results are used throughout the thesis.

The Bloch semiconductor equations are first applied to a system consisting of a
sheet of graphene under optical pumping. After a rapid transient period, the elec-
tronic distribution will assume a new configuration different from that in thermody-
namical equilibrium. This new electronic distribution will remain stable while the
pumping radiation persists. In this situationwe derive the new electronic susceptibil-
ity that a probe pulse with a different frequency sees. From the suceptibility we cal-
culate the plasmon dispersion relation, that will be strongly anisotropic. Finally we
find semi-analytic formulas for the susceptibility, optical conductivity, and plasmon
dispersion relation that depend on the pump intensity, frequency, and polarization
of the optical pump.

Next, we deal with the problem of excitons in monolayers of transition metals
dichalcogenides. From the semiconductor Bloch equations we derive the Bethe-
Salpeter equation. The solution of the homogeneous part corresponds to the exciton
wavefunctions and their energies. From the solution of the inhomogeneous part we
calculate the optical conductivity. We used the 2D Dirac Hamiltonian with a mass
term to deal with the excitons in the K point of the Brillouin zone. For the Γ point
we use the tight-binding model with three bands and a cut-off in the momentum
space that allows to decompose the wavefunction into a Fourier series. The optical
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conductivity of MoS2, MoSe2, WS2, and WSe2 is obtained and compared with the
experimental data. We also derive the Elliot formula for the bidimensional case: an
useful analytic equation for the optical conductivity contributions due to the exci-
tons.

After studying two microscopic problems, we turn our attention to a macroscopic
one: the passage of light through a disordered superlattice of dielectrics alternating
with graphene sheets. The presence of disorder implies the onset of Anderson local-
ization. In one-dimensional systems Anderson localization can be characterized by
the localization length, that can be obtained from the Lyapunov exponent. We use
the transfer matrix formalism to numerically calculate the localization length and so
characterize the Anderson localization in those superlattices. Also, we obtain an ana-
lytical approximation for weak disorder that describes the numerical data with a very
good accuracy. In addition it is studied the propagation of light through evanescent
modes sustained by the presence of graphene.
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IēęėĔĉĚĈęĎĔē 1
In ancient times, mankind stared at the sun and the stars and associated those pri-
mordial light sources with deities. After controlling the fire, mankind could finally
have its own light source. From rustic bonfires to sophisticated oil lamps, fire was
the only source of light until the advent of the light bulp in the XIX century, that
could finally transform eletricity into light. A long development of experiments and
theories culminated in Maxwell’s equations and the famous Hertz experiment: it
was discovered that light is electromagnetic radiation. From this, fast and exciting
deve-lopments started. The electromagnetic spectrum was fully named and classi-
fied, and now all of it is available to be engineered. Naturally, the way to manipulate
electromagnetic radiation is through materials: from Hertz experiments with brass
to silica optical fibers, the generation, manipulation, and transmission evolved step
by step with material science.

One of the last advancements in the material science was the thinning of layered
crystals, such as graphite, to a single atom thick. It is surprising that such a thin
material can strongly interact with light, but it does. Those new materials led by
graphene are paving a new way to manipulate electromagnetic radiation.

The electromagnetic theory is described by Maxwell’s equations plus constitutive
relations, that describe how the electromagnetic fields interact with matter. In the
early stages of electromagnetism, the constitutive relations were obtained from phe-
nomenological approaches. The theory of the interaction of light with matter was
put into a robust foundation with the development of quantum mechanics, solid
state, and condensed matter physics. As a consequence, we can go from microscopic
models to macroscopic relations between the charges and currents in matter.

This thesis starts with a short revision of two-dimensional materials. It is fol-
lowed by a formal chapter about the semiconductor Bloch equations (SBE). The next
two chapters are a direct application of the SBE, first in non-equilibrium optically
pumped graphene. In the second we consider the effects of the electron-electron
interaction in the optical properties of the monolayers of transition metal dichalco-
genides. Those two applications are microscopic problems: we are interested in ob-
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1. IēęėĔĉĚĈęĎĔē

taining the optical conductivity, that is, the relation between the external electric
field and the electronic current. After the study of these two microscopic problems,
we study amacroscopic problem: the passage of light through a disordered photonic
crystal containing graphene layers.

1.1. Outline
Chapter 2: 2D Materials in a nutshell

Here, we briefly discussed themain 2Dmaterials for the nanophotonics field: graphene, hBN
and transitionmetal dichalcogenides. They present new and exciting properties. Also shown
is the importance of polaritons in those 2D materials and it is discussed the coupling of light
with some of the intrinsic excitations of those 2Dmaterials: plasmons, excitons and phonons.

Chapter 3: Semiconductor Bloch equations

In this chapter, the main tool used in the thesis is derived and discussed: the semiconductor-
Bloch equations. With those equations we have a tool for the microscopic description of the
interaction of light with the charge carriers of the 2D materials. The results derived in this
chapter will be used throughout the rest of the thesis.

Chapter 4: Graphene pump probe system

In this chapter, the optical properties of graphene under a continuous intense laser are stud-
ied. The laser will drive the system to an out-of-equilibrium state, where the electronic dis-
tribution is no long described by the Fermi-Dirac statistics. We show that this kind of system
possess plasmons that are described by an effective anisotropic Fermi energy.

Chapter 5: Excitons in 2D materials

In this chapter we discuss excitons and their optical properties in monolayers of transition
metal dichalcogenides. The Bethe-Salpeter equation is solved both for the homogeneous and
inhomogeneous cases. In the former we obtain the excitons wave functions and eigenvalues;
as for the latter we calculate the optical conductivity and absorbance.

Chapter 6: Disorder in photonic crystals

We have performed a theoretical investigation of light propagation and Anderson localiza-
tion in one-dimensional disordered superlattices composed of dielectric stackswith graphene
sheets in between. Disorder is introduced either on graphene material parameters (e.g.,
Fermi energy) or on the widths of the dielectric stacks. We find a good analytic approxima-
tion for the localization length of the electromagnetic field in comparisonwith the numerical
calculations.
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2D MĆęĊėĎĆđĘ Ďē Ć ēĚęĘčĊđđ 2
The key concept that will guide all the topics discussed throughout this thesis is the
interaction of light with two-dimensionalmaterials: they have few atoms or even one
atom of thickness See Ref. [1] for a review

about 2D materials and
van der Waals
heterostructures and [2]
for an extense list of all
2D materials discovered
until 2014.

. Some of the most promising 2D materials for the nanophotonics
field are discussed in this chapter [3]: the semimetal graphene, the semiconductors
monolayers of transition metal dichalcogenides (TMDCs), and the insulator hexag-
onal boron-nitride (hBN). However, before introducing these materials, we discuss
some condensed matter concepts that are key elements to understand the most im-
portant optical properties of these 2D materials: plasmons, excitons, phonons and
polaritons.

2.1. Quasiparticles and collective excitations

The new class of two-dimensional materials has a rich variety of quasiparticles and
collective modes with which light can strongly interact. These modes have specific
properties, arising from their two dimensional nature, that lead to new and interest-
ing effects and properties [1].

Plasmons

Plasmons are collective excitations of the electronic liquid in a material [4]. The usual description of
plasmons uses the
random phase
approximation (RPA) [4]
to calculate the electronic
susceptibility.

Starting
from the equilibrium state, a deviation of the charge density will generate a restora-
tion force towards equilibrium. Analogously to what happens in an harmonic oscilla-
tor, this restoration force can be characterized by amaterial dependent frequency ωpl.
An external field with the same frequency ωpl will couple with the free charge density
of the material: in this case we have the excitation of plasmons. This frequency can
be obtained when the dielectric function of the electron-electron interaction is zero.
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2. 2D MĆęĊėĎĆđĘ Ďē Ć ēĚęĘčĊđđ

Excitons

Excitons are bound states of an electron and a hole [5].For a dielectric thin sheet
the Coloumb potential is
replaced by the Keldish

potential [6].

They cannot exist in gapless
materials and are a consequence of the Coloumb interaction between electric charges.
Excitons can have a strong coupling with light that is seen in optical experiments as
absorption peaks below the material band gap.

They can be classified by their size: Frenkel excitons [7] have the size comparable
to a single unit cell and as such are better described by an atomistic theory. Wannier
excitons [8] comprises several unit cells and can be described by the solution of the
Bethe-Salpeter equation (BSE)[9].The BSE for excitons is

also called the Wannier
equation.

Excitons in 2Dmaterials will be discussed in detail
in chapter 5.

Phonons

Phonons are quanta of the lattice crystal vibrations [10]. Those vibrations in 2D
crystals can be both in- and out-of-plane, generating longitudinal and transversal
phonons, respectively. They play important roles in describing different physical
phenomena in all crystals. An interesting property of 2D materials is, as crystalline
membranes, that they can couple to the substrate lattice vibrations [11]. Further in
this chapter is discussed the strong coupling of phonons with light in hBN.

Polaritons

First discovered in thin metal films, the polaritons are localized electromagnetic
waves coupled with the surface sheet. They are evanescent along the direction per-
pendicular to the material sheet, i.e., the electromagnetic field has a dependence of
the form ϕ(q, ω, z) ∝ e−κz |z|, where ϕ represents the non-vanishing components of
the electromagnetic field, q is the 2D in-plane wavevector, parallel to the material
sheet and κz is the attenuation constant.Here we consider that the

2D material lies in the
xy-plane.

Doped graphene and TMDCs can support
surface plasmon-polaritons (SPP). Also TMDCs can support exciton-polaritons in the
visible frequency. Finally, for hBN we have phonon-polaritons in the terahertz and
infrared frequencies and exciton-polaritons in the UV range.

The opticalThe 2D Fourier transform
of the current is defined

as: J(q, ω, z) =∫
drdtei(q·r−ωt)J(r, z, t),
where (r, z) are usual

cylindrical coordinates,
with analogous definition
for the electric field and
the conductivity tensor.

properties of 2D materials in the linear regime can be described by
a two-dimensional conductivity tensor σij(q, ω), with i, j = x, y representing the
directions along the material sheet and z is the direction perpendicular to it. Con-
sidering a planar 2D material parallel to the xy plane and localized at z = z0, the
electric current density Ji in this material is given by:

Ji(q, ω, z) =

2∑
j=1

σij(q, ω)δ(z − z0)Ej(q, ω, z), (2.1)

with Ej(q, ω, z) the external elecric field. Those quantities are represented as a 2D
spatial Fourier transform. The optical properties of a system containing a 2Dmaterial
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can be derived substituing Eq. (2.1) in Maxwell’s equations. This will be the starting
pointing when calculating plasmon-polaritons (see Chapter 4) and light transmis-
sion along a photonic crystal (Chapter 6).

Figure 2.1.: A 2D material between two
dielectrics.

To illustrate some properties of polaritons, we
will describe the simplest case of an isotropic
material without nonlocal effects, σij(q, ω) =
δijσ(ω), δij is the Kronecker delta.cladded between two dielectrics whose
constants are ε1 and ε2. This is shown in Fig.
2.1, in this situation the transverse electric mode
(TE) and the transverse magnetic mode (TM)
can be treated separately. From the boundary
conditions of Maxwell’s equations [12], we have
for the TM wave the following equation that
gives the frequency of the SPP as function of the
absolute value of themomentum along the prop-
agation direction q:

ε1
κ1

+
ε2
κ2

+ i
σ(ω)

ε0ω
= 0, (2.2)

while for TE waves, we have the following condition:

κ1 + κ2 − iωµ0σ(ω) = 0. (2.3)

From those equations, we can see that, for positive εi, we will only have solution
for the TM mode 2.2 if ℑσ(ω) < 0 while the TE mode 2.3 has solution See Refs. [13, 14] for

reviews about polaritons
in 2D materials.

if ℜσ(ω) > 0.
One way to characterize polaritons is through the loss function, that is an impor-

tant tool because it can be determined through electron energy loss spectroscopy
(EELS) [15]. It can be defined as minus the imaginary part of the inverse of the dielec-
tric function: L(q, ω) = −ℑ

{
[ε(q, ω)]−1

}
or as the imaginary part of the reflection

coefficient [15]:
Lr(q, ω) = ℑ{r(q, ω)}, (2.4)

where r(q, ω) is the reflection coefficient for an eletromagnetic wave with frequency
ω and in-plane wavenumber q. For a 2Dmaterial in vacuum the reflection coefficient
reads [15]:

r(q, ω) =

1− 2i

(
πα

σ(q, ω)

σ0

√
q2c2

ω2
− 1

)−1
−1

, (2.5)

where σ0 = e2/4ℏ, α ≈ 137−1 is the fine structure constant, and c is the speed of
light.

In Fig. 2.2 we compare the loss function for different 2D materials. The loss func-
tion allows to probe surface plasmon-polaritons in graphene, exciton-polaritons in
MoS2, and phonon-polaritons in hBN. Those polaritons will be discussed throughout
the chapter.

7



2. 2D MĆęĊėĎĆđĘ Ďē Ć ēĚęĘčĊđđ

Figure 2.2.: Comparison of loss function (2.4) for different 2D materials and TM polarized electromag-
netic field in logarithm scale: ln(1+ℑr(q, ω)). Top panel: Loss function of graphene, the
reflection coefficient is calculated with Eq. (2.5) and the conductivity is obtained through
the Mermin equation (see appendix B for details), parameters: EF = 0.3 eV, ℏγ = 4
meV, vF = c/300. Middle panel: Loss function for monolayer MoS2, the conductivity was
calculated with the same procedure and parameters as presented in chapter 5 and with
the reflection coefficient given by Eq. (2.5). Bottom panel: Loss function for a slab of
hBN with width d = 100 nm and dielectric function given by Eq. (2.10). The reflection
coefficient in this case was calculated using Eq. (2.12).
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2.2. GėĆĕčĊēĊ

2.2. Graphene

Graphene is a single layer of graphite, a honeycomb lattice of carbon atoms. It
atracted a huge interest of the scientific community and several reviews about the
synthesis and properties of graphene have beenwritten [16, 17, 18, 19, 20]. In graphene at charge

neutrality point, the
Fermi surface shrinks to
the K and K′ points, being
called the Dirac points.

The valence
and conduction bands touches at the inequivalents K and K′ points of the Brillouin
zone. The electronic excitations near the K and K′ points are described by a massless
two dimensional Dirac equation and the resulting dispersion relation is linear and
gapless [17].

Figure 2.3.: Graphene optical conductivity. On the left(right) panel, we see the real(imaginary) part of
graphene optical conductivity. The strong Drude peak, located at the lower frequencies,
is originated from the intraband transitions. The step behavior at ℏω = 2EF corresponds
to the interband transitions.

In figure 2.3 we show graphene optical conductivity. Wehave two different regimes,
determined in frequency by the graphene Fermi energy EF . The Fermi energy in

graphene can be
controlled with chemical
or electrostatic doping
[17].

For ℏω < 2EF the opti-
cal conductivity is dominated by theDrude term, with the broadening of the real part
controlled by the relaxation rate γ and positive imaginary part. For ℏω > 2EF the
step transition is controlled both by the temperature and the relaxation rate, and has
a negative imaginary part. Remarkably, graphene conductivy for frequencies above
2EF /ℏ tends to a parameter-free plateaux given by:

σ0 =
e2

4ℏ
, (2.6)

andwith frequencies above 2EF /ℏ graphene absorbs 2.3% of incident light [21], which
is surprising high considering that it is an atom thick material.
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2. 2D MĆęĊėĎĆđĘ Ďē Ć ēĚęĘčĊđđ

Graphene, as a membrane, is subject to the environment properties. The opti-
cal conductivity can be controlled by an external potential [18], magnetic field [22],
cutting into nanoribbons [23], and deformation [24, 25]. Due to its extraordinary
electronic and optical properties, graphene has emerged as an alternative material
platform for applications in photonics and optoelectronics [26, 27, 28]. A partial and
far from exhaustive list of applications of graphene in photonics include high-speed
photodetectors [29], optical modulators [30], plasmonic devices [31, 32, 33], and ul-
trafast lasers [34].

2.2.1. Graphene surface plasmon-polaritons

In the intraband regime, graphene can support surface plasmon-polaritons (SPP), as
can be seen in Fig. 2.3: the imaginary part of the conductivity for frequencies below
2EF /ℏ is positive and the real part can be neglected in a wide range of frequencies.
The Drude conductivity of graphene reads:See Appendix B for a

derivation of the optical
conductivity of graphene,
including intraband and

interband terms.

σ(ω) =
4i

π

|EF |
ℏω + iℏγ

σ0, (2.7)

with γ the relaxation rate of electronic excitations. We have from Eq. 2.7 that the
imaginary part of the conductivity will always be positive in this regime, as can be
seen in Fig. 2.3. If we plug Eq. 2.7 in the TM polariton Eq. 2.2, in the electrostatic
regime, q ≪ ω/c, it follows that κ1 = q/ε1 and κ2 = q/ε2, and we have the dispersion
relation:

ω =

√
4

ε1 + ε2
cα
EF

ℏ
q − i

γ

2
, (2.8)

with α ≈ 137−1 the fine structure constant and c the speed of light in vacuum. The√
q dependence is an universal property of any 2D system that can support plasmons

in the long-wavelength regime1. This is the same dispersion relation when calculat-
ing the zero of the RPA dielectric function neglecting interband transitions:

εRPA(ω,q) = 1− V (|q|)χRPA(ω,q) = 0, (2.9)

with V (|q|) the 2D Fourier transform of the Coulomb potential and χRPA(ω,q) the
RPA susceptibility. The loss function is depicted in the top panel of Fig. 2.2, where
the dispersion relation can be inferred. An alternative way to describe plasmons in
graphene, that takes in account nonlocality is using an hydrodynamic model [35, 36].

2.3. Hexagonal boron-nitride
Hexagonal boron-nitride (hBN) has, as it name suggests, an honeycomb lattice sim-
ilar of graphite. In monolayer hBN the sublattice symmetry is broken, with each

1A proof of this statement can be found in chapter 4.
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2.3. HĊĝĆČĔēĆđ ćĔėĔē-ēĎęėĎĉĊ

sublattice containing either only boron or nitrogen atoms. Breaking the sublattice
symmetry implies that hBNwill have a bandgap. For themonolayer case the bandgap
is measured to be around ≈ 7 eV [37]. We can analyze the optical properties of few-
layer hBN in two different frequency ranges. At the infrared, the dielectric function
is dominated by phonons[38]. In this region the hBN is a hyperbolic material that
presents birefringence, with a dielectric function given by [39]:

εm = ε∞,m + ε∞,m

ω2
LO,m − ω2

TO,m

ω2
TO,m − ω2 − iωγm

, (2.10)

with m =⊥, ∥, ωTO,∥/2π = 23.38 THz, ωLO,∥/2π = 24.88 THz, ωTO,⊥/2π = 41.07
THz, ωLO,⊥/2π = 48.27 THz, ε∞,∥ = 2.95, ε∞,⊥ = 4.87, γ∥/2π = 0.12 THz, γ⊥/2π =
0.15 THz.

Figure 2.4.: Real part of the dielectric functions of hBN. The shaded area correspond to the type I and
II Reststrahlen zones [40].

Whenever ε⊥(ω)ε∥(ω) < 0, the dielectric function is hyperbolic and guided polari-
tons modes can be achieved. The angle of propagation θg with respect to the optical
axis is given by [41]:

(tan θg)
2 = −ε⊥(ω)

ε∥(ω)
. (2.11)

At the angles θg given by Eq. (2.11) we have directional propagation, that means
that the propagation only occurs in the direction given by θg. Super-resolution can
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2. 2D MĆęĊėĎĆđĘ Ďē Ć ēĚęĘčĊđđ

be achieved if ℑkzd ≈ 1, where kz is the wavenumber inside the hBN slab at the
direction perpendicular to the hBN sheets and d the slab thickness. Near-field optical
imaging and focusing with hBN was reported in [42], the hybridization of graphene
plasmon-polaritons with hBN phonon-polaritons was studied in [39].

The phonon-polaritons in hBN can be characterized also by the loss function de-
fined in (2.4), the reflection coefficient for a dielectric slab with width d in vacuum
or air is [43]:

rhbn(q, ω) = r0hbn(q, ω) , (2.12)

where r0hbn is the interface air/hbn reflection coefficient [44]:

r0hbn = −κe − ε⊥κa
κe + ε⊥κa

, (2.13)

where κe =
√
ε⊥

ω2

c2
− ε⊥

ε∥
q2 and κa =

√
ω2

c2
− q2. The loss function (2.4) for phonon-

polaritons in hBN is show in the bottom panel of Fig. 2.2.
At the UV range, the optical properties are dominated by excitons with an opti-

cal gap of around 5.3–6.3 [45, 46, 47]. Other important application of hBN is as an
encapsulating device to enhance the properties of another 2D materials, as it pro-
tects those materials from the environment. For graphene, the electronic mobility
on hBN substrate is more than three times larger in comparison of a SiO2 substrate
[48]. For the excitons in TMDCs, the linewidth of photoluminescence at room tem-
perature and on a SiO2 substrate is around 50meV, while when encapsulated at hBN
at T = 4K it is reduced down to 2meV [49, 50].

2.4. Transition metal dichalcogenides

The first synthesis of monolayers of transition metal dichalcogenide was in 2005 [51].
Soon all the combinations of the form MX2 with M=Mo, W and X=S, Se, Te were
synthetised.See Ref. [52] for a review

about TMDCs.
Bulk TMDCs are commonly found in two structural phases and can be

classified according to the stacking order: the trigonal prismatic (2H) has an ABA
stacking while the octahedral (1T) has an ABC stacking. We will draw our attention
to the monolayers from the 2H phase, that has attracted recent attention for its exci-
tonic properties [53]. As it happens in hBN and graphene, the low energy excitations
of 2H monolayers TMDCs are described by a 2D Dirac equation with a mass term
that comes from the breaking of sublattice symmetry as it happens in hBN. They
have a direct band-gap in the two inequivalent K and K′ points of the Brillouin zone
and, as graphene, this can be used for valley dependent physics and devices [54].

More properties of TMDCs are discussed in chapter 5 with a strong focus on the
exciton influence in the optical properties. From the results presented in chapter 5
the loss function (2.4) was calculated and presented in the middle panel of Fig. 2.2.
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2.5. FĎēĆđ ĈĔĒĒĊēę

2.5. Final comment
The 2Dmaterials list, given in this chapter, with applications in nanophotonics is not
exhaustive. Another promising materials for 2D nanophotonics, which are missing,
includes phosphorene [55] and topological insulators [56, 57]. An interesting prop-
erty of 2D materials is that they can be stacked to form van der Waals heterostruc-
tures [1]. In this case the material properties can change significantly, e.g., bilayer
graphene has a band gap that depends on the perpendicular electric field [58] and
so is very different from the gapless monolayer graphene. The crystal orientation
between the stacked sheets can also change the material properties. The twisted bi-
layer graphene is very different from the Bernal-stacked bilayer graphene [59, 60].
Alloys of 2D materials can also be another way to engineer their optical properties
[61, 62]. Finally, from a macroscopic view, polaritons modes of different 2D materials
stacked together can also hybridize, e.g., forming plasmon-phonon-polariton in the
graphene/hBN system [39].
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SĊĒĎĈĔēĉĚĈęĔė BđĔĈč ĊĖĚĆęĎĔēĘ3
The study of the interaction of light with matter leads to a quantum many-body
Hamiltonian that contains carrier-carrier interaction and carrier-electric field inter-
action terms, therefore implying a complex many-body problem without a viable
exact solution. To quote Paul Dirac [63]:

“The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems with-
out too much computation.”

To procceed further in the description of themany-body problem, several approachs
and approximations were developed since the birth of quantum mechanics. Here we
revisit the theory of the semiconductor Bloch equations (SBE), an approach to deal
with the many-body problem for an electron gas in presence of an external electric
field. The formalism developed in this chapter will be used in the next two chapters.
It can be also used to derive graphene optical conductivity, that is a necessary ingredi-
ent in chapter 6 to study the transmission of light through a superlattice containing
graphene layers.

The SBE started as an analogy to Bloch’s work in nuclear spins [64]. Those ideas
were applied by Haken developments off laser theory [65] and further developed in
Stahl’s paper on band-edge of semiconductors [66]. Haug et al. [67] used similar
equations to study nonlinearities in semiconductors. Finally, the work of Lindberg
and Koch [68] generalized the optical Bloch equations to include many-body effects
that takes in account phase-space filling, excitonic effects and renormalization of
the band gap. Those equations became an important tool to study semiconductor
optical properties and is presented in several textbooks [69, 70, 71]. For example, it
was used to study the optical properties of quantum wells [72], quantum dots [73],

15



3. SĊĒĎĈĔēĉĚĈęĔė BđĔĈč ĊĖĚĆęĎĔēĘ

and graphene [74, 75].

3.1. Formalism

In this section we formulate the SBE starting from a Hamiltonian that is composed
of three parts: a one-body Hamiltonian that describes an independent particle Ĥ0,
the carrier-light interaction ĤI and the electron-electron interaction Ĥee.

Ĥ = Ĥ0 + ĤI + Ĥee. (3.1)

Let âλk(t) be the annihilation operator written in the basis that diagonalizes Ĥ0

in the Heisenberg picture. In this picture we can write:We will use a second
quantization notation

through all this chapter
and also in chapters 4

and 5.

Ĥ0 =
∑
kλ

Eλkâ
†
λk(t)âλk(t), (3.2)

where λ labels the band, k is the wavenumber andEλk the corresponding eigenvalue
of Ĥ0.We suppose that the

system posses discret or
continuous translational

symmetry, in the first
case k is the crystal

wavenumber while in the
latter it is the
wavenumber.

The creation and annihilation operators obey the anticommutation relation:

{â†λ1k1
(t), âλ2k2(t)} = δk1,k2δλ1,λ2 . (3.3)

The dipole energy term, written classicaly as−E ·d [76], with d the dipolemoment
and E the electric field, act as an one-body operator and can be written as:

ĤI(t) = − 1

S

∑
λ1,λ2,k,q

E(q, t) · dk+q,k
λ1,λ2

â†λ1,k+q(t)âλ2k(t), (3.4)

with q the photon wavenumber, λ1, λ2 the band indexes, and dk+q,k
λ1,λ2

is the dipole
matrix element. This is a general expression and can be obtained decomposing a
generic one-body operator into a complete basis of the corresponding Fock space.
The electron-electron interaction is a two-body operatorThe condition q ̸= 0

comes from the exact
compensantion between
the term with q = 0 and
the charged background

of ions [69].

:

Ĥee = − e

2S

∑
λ1,λ2,λ3,λ4

∑
k,k′,q ̸=0

V (|q|)Fλ1,λ2,λ3,λ4(k,k
′,q)×

×â†λ1,k′−q(t)â
†
λ3,k+q(t)âλ4,k(t)âλ2,k′(t), (3.5)

with V (|q|) the 2D Fourier transform of the electron-electron potential, ℏq is the
exchanged momentum and S is the system area/volume. Finally, Fλ1,λ4,λ2,λ3(k,q) is
the overlap of the eigenfunctions of Ĥ0 (see 3.A):

Fλ1,λ2,λ3,λ4(k,k
′,q) ≡ ⟨λ1k′ − q|λ2k′⟩⟨λ3k+ q|λ4k⟩. (3.6)
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3.1.1. Density matrix operator

The density matrix operator of Ĥ0 states can be defined as:

ρ̂(t) ≡
∑

λ1,λ2,k1,k2

ρ̂k1,k2

λ1,λ2
(t), (3.7)

with the reduced density matrix operator given by:

ρ̂k1,k2

λ1,λ2
(t) ≡ â†λ1k1

(t)âλ2k2(t). (3.8)

First we note that any one-body operator Ô can be written in terms of the density
operator(3.7) [4]:

⟨Ô(t)⟩ =
∑

λ1,λ2,k1,k2

O
k1,k2

λ1,λ2
â†λ1k1

(t)âλ2k2(t) =
∑

λ1,λ2,k1,k2

O
k1,k2

λ1,λ2
ρ̂k1,k2

λ1,λ2
(t), (3.9)

with
O

k1,k2

λ1,λ2
= ⟨λ1k1|ÔS |λ2k2⟩, (3.10)

calculated in terms of the eigenfunctions of Ĥ0 and ÔS written in the Schrödinger
picture. The expectation value, if Ô is an observable, is simply given by:

⟨Ô(t)⟩ = Tr[ÔS ρ̂(t)]. (3.11)

The This equation cannot be
confused with the
von-Neumann equation.
The difference is i) for the
von-Neumann equation,
the density operator is
written in terms of the
creation and annihilatin
operators of the total
Hamiltonian and ii) they
are written in the
Schrödinger picture while
we consider here for the
SBE the Heisenberg
picture.

goal now is to calculate the Heisenberg equation of motion for the reduced
density operator (3.8):

− iℏ
d

dt
⟨ρ̂k1,k2

λ1,λ2
(t)⟩ = ⟨[Ĥ(t), ρ̂k1,k2

λ1,λ2
(t)]⟩, (3.12)

as we will see, this equation gives rises to a hierarchy problem. If it was viable to
obtain an exact solution of (3.12), it would be totally equivalent of solving the tra-
ditional Schrödinger equation. The task now is to compute each commutator that
appears in the right hand side of Eq. (3.12), this is done in the next section.

3.1.2. Obtaining an explicit form for the equation of motion

From now on, to obtain quick results, we use a very simple notation:

âλ1,k1(t) ≡ 1, â†λ1,k1
(t) ≡ 1†. (3.13)

We use the results: These results are
obtained using the
anticommutation
relation of the creation
and annihilation
operators: {1†, 2} = δ12,
{1, 2} = 0

[3†4, 1†2] = δ413
†2− δ321

†4, (3.14a)

[3†4†56, 1†2] = δ163
†4†52− δ153

†4†62 + δ241
†3†52− δ231

†4†56, (3.14b)
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with this notation we can rewrite the Hamiltonians (3.2), (3.4), and (3.5) as:

H0 =
∑
3

E33
†3, (3.15a)

HI =
∑
34

d343
†4, (3.15b)

Hee =
1

2

∑
3456

V34563
†4†56, (3.15c)

where we defined when necessary ki = k± q to simplify the notation and:

d34 ≡ − 1

S
E(k3 − k4, t) · dk3,k4

λ3,λ4
, (3.16)

V1234 ≡ − e

S
V (|k2 − k3|)Fλ1,λ4,λ2,λ3(k3,k4,k2 − k3)δk2−k3,k4−k1 . (3.17)

We have that the reduced density matrix (3.8) in this new notation is simply ρ12 =
1†2. The commutators of the equation of motion (3.12), using (3.14), result:

[H0, ρ̂12] = (E1 − E2)ρ̂12, (3.18a)

[HI , ρ̂12] =
∑
3

(d31ρ32 − d23ρ13), (3.18b)

[Hee, ρ̂12] =
1

2

∑
345

(V3451 − V3415)3
†4†52 + (V4253 − V2453)1

†4†53. (3.18c)

the commutators (3.18a) and (3.18b) only depend on the density matrix: after all,
they are only one-body operators. However, the electron-electron interaction gives
rise to a two-body operator. Thus, to proceed in an exact way, we need to write
the equation of motion for the two-body density matrix operator 1†2†34, and as we
calculate the commutators for this operator, it will appear in the electron-electron
commutator a three-body operator, and so on. It is an infinite hierarchy problem.
Therefore, to find a closed set of equations, it is necessary to truncate at some point.
Here we will stop at the simplest level that takes in account the electron-electron
interaction in a non-trivial way: using the random phase approximation (RPA), we
can write the expectation value of the two-body density matrix operator as the sum
of the corresponding one-body ones:

⟨1†2†34⟩ ≈ ⟨2†3⟩⟨1†4⟩ − ⟨2†4⟩⟨1†3⟩. (3.19)

Here we can draw a parallel with the Hartree-Fock approximation. The first term
in the right hand side of Eq. (3.19) is equivalent to the Hartree term while the second
term is analogous to the Fock term.
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Therefore, with the RPA (3.19), Eq. (3.18c) can be written approximately as:

⟨[Hee, ρ̂12]⟩ ≈
1

2

∑
345

(V3451−V3415)(ρ45ρ32−ρ42ρ35)+(V4253−V2453)(ρ45ρ13−ρ43ρ15),

(3.20)
this term can be further simplified using the property: V1234 = V2143, and after some
algebra we obtain:

⟨[Hee, ρ̂12]⟩ ≈
∑
345

(V3451 − V3415)ρ45ρ32 + (V4253 − V2453)ρ45ρ13, (3.21)

and the equation of motion (3.12), using Eqs. (3.18) and (3.21), becomes:(
−iℏ

d

dt
− E1 + E2

)
ρ12 =

∑
3

(d31ρ32 − d23ρ13) +

+
∑
345

(V3451 − V3415)ρ45ρ32 + (V4253 − V2453)ρ45ρ13, (3.22)

this is a set of integro-differential coupled equations for all matrix elements of the
expectation value of the density matrix operator. The integral part is in respect to
the wavevector and the differential is in time. This equation can be further simpli-
fied depending on the system properties and symmetries. We also note that in this
procedure it is very easy to obtain the equation of motion when we add more terms
in the Hamiltonian (for example, electron-phonon interaction). Also to deal with a
system without translational symmetry, we can use Eq. (3.22) without the (implicit)
wavenumber labels, only the band ones. In the next sections we will assume that the
electric field is homogeneous over all the sample:

E(q, t) = E(t)Sδq,0. (3.23)

3.1.3. Homogeneous electric field

If the electric field impinging on the material is homogeneous (no spatial depen-
dence), Eq. (3.22) can be simplified as a consequence of momentum conservation.
Firstly, we only need the terms of the density matrix diagonal in momentum. We
now go back to the old notation. The conservation of momentum implies that we
only need to consider the matrix elements with k1 = k2, so we can write:

ρ12 = ρk1k2
λ1λ2

= ⟨a†λ1,k1
aλ2,k2⟩ = ρk1k1

λ1λ2
δk1,k2 , (3.24)

now we make k1 = k2 = k. The first summation on the right hand side of Eq. (3.22)
can be written after simplifying the delta-function in (3.23) as:

∑
3

(d31ρ32 − d23ρ13) = −E(t) ·

∑
λ3

dk,k
λ3λ1

ρk,kλ3λ2
− dk,k

λ2,λ3
ρk,kλ1,λ3

 . (3.25)
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The second summation in Eq. (3.23) leads to a more complicated calculation. The
first term inside the summation is:∑

345

(V3451 − V3415)ρ45ρ32 = − e

S

∑
λ3λ4λ5

∑
k4

[V (k4 − k4)Fλ3λ1λ4,λ5(k4,k,k4 − k4)−

−V (k4 − k4)Fλ3λ5λ4,λ1(k,k4,k4 − k)] ρk4,k4

λ4,λ5
ρk,kλ3,λ2

,

(3.26)

where we used Eq. (3.17). However, in the electron-electron Hamiltonian (3.5) the
term with V (q = 0) is not included in the sum. Therefore as the potential in the
first element inside the brackets of (3.26) depends on k4 − k4 = 0, its contribution
is null. Making k4 = k+ q we have:∑
345

(V3451 − V3415)ρ45ρ32 =
e

S

∑
q ̸=0

V (|q|)
∑

λ3λ4λ5

Fλ3λ5λ4λ1(k,k+ q,q)ρk+q,k+q
λ4,λ5

ρk,kλ3,λ2
.

(3.27)
For the second element of the second summation of (3.22), we obtain:∑

345

(V4253−V2453)ρ45ρ13 = − e

S

∑
q

V (|q|)
∑

λ3λ4λ5

Fλ4λ3λ2λ5(k+q,k,−q)ρk+q,k+q
λ4,λ5

ρk,kλ1,λ3
,

(3.28)
where to simplify the notation we defined the overlapping function F (3.6) with two
wavenumber arguments as:

Fλ1λ2λ3λ4(k1,k2) ≡ Fλ1λ2λ3λ4(k1,k2,k2 − k1) = ⟨λ1k1|λ2k2⟩⟨λ3k2|λ4k1⟩. (3.29)

Now putting together Eqs. (3.27) and (3.28) we haveWe used the relation
Fλ4λ3λ2λ5(k+ q,k) =
Fλ2λ5λ4λ3(k,k+ q).

:∑
345

(V3451 − V3415)(ρ45ρ32 − ρ42ρ35) + (V4253 − V2453)(ρ45ρ13 − ρ43ρ15) =

− e

S

∑
q ̸=0

V (|q|)
∑
λ4λ5

ρk+q,k+q
λ4,λ5

∑
λ3

Fλ2λ5λ4λ3(k,k+ q)ρk,kλ1,λ3
− Fλ3λ5λ4λ1(k,k+ q)ρk,kλ3,λ2

.

(3.30)

Using now Eqs.(3.25) and (3.30) into (3.22) we obtain the set of equations:(
−iℏ

d

dt
− Eλ1k + Eλ2k

)
ρk,kλ1,λ2

= E(t) ·
∑
λ3

[
dk,k
λ2,λ3

ρk,kλ1,λ3
− dk,k

λ3λ1
ρk,kλ3λ2

]
−

− e

S

∑
q ̸=0

V (|q|)
∑
λ4λ5

ρk+q,k+q
λ4,λ5

∑
λ3

Fλ2λ5λ4λ3(k,k+ q)ρk,kλ1,λ3
− Fλ3λ5λ4λ1(k,k+ q)ρk,kλ3,λ2

.

(3.31)

this result is a generalization of the SBE obtained for a two-band system, such as the
one presented in [68], and similarly for themulti-subbandBloch equations presented
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in [69]. From now on we will consider the SBE for a non-interacting electron gas in
graphene (Sec. 3.2 and Chapter 4) before studying interacting electrons in TMDCs
(Sec. 3.3 and Chapter 5).

3.2. Non-interacting Bloch equations
We The two bands appears

because of the presence of
two carbons per unit cell.

now calculate the optical response of graphene using the two-band tight-binding
Hamiltonian that originates from the pz orbitals of the carbon atoms. The results
obtained in this section will be used in chapter 4 to study the optical properties of
graphene with a non-equilibrium distribution function. We will neglect electron-
electron interaction. The e-e interaction is

taken partially in account
by a phenomenological
relaxation term.

Also, we consider an electric field E that is homogeneous over
the entire sample and the dipole operator being given by d̂ = −eR̂, with e > 0 the
magnitude of the electron charge, so the total Hamiltonian reads

Ĥ = Ĥ0 + eE · R̂, (3.32)

where H0 is the nearest neighbor tight-binding Hamiltonian (A.1):

Ĥ0 =
∑
i,n

tTB â
†
Rn
b̂Rn+δi + h.c., (3.33)

See Appendix A for more
details about the
tight-binding method in
graphene.

and where Rn is the lattice vector of the unit cell with label n, and δi, i = 1, 2, 3,
are the three possible basis vectors, and tTB is the hopping parameter. We have
â†Rn

(b̂†Rn+δi
) as the creation operator at the sublattice A(B) and the orbital located

at the position Rn(Rn + δi). To proceed further, we need the diagonalized version
of Ĥ0, which is also obtained in Appendix A, and reads:

Ĥ0 =
∑
k

Ek

(
ĉ†kĉk − d̂†kd̂k

)
. (3.34)

where ĉk(d̂k) is the annihilation operator of the conduction (valence) band and Ek

the energy eigenvalue, see Eqs. (A.4).
Here we are considering a homogeneous electric field, whose 2D Fourier transform

is Eδ(q) and sowe only need to consider the terms of the densitymatrix with k1 = k2.
To simplify the notation, as we only have two bands, we define λ = c, v, where c (v)
stands for conduction (valence) band. We write the density matrix elements as:

n̂c,k(t) ≡ ĉ†k(t)ĉk(t) = ρ̂k,kc,c (t), (3.35a)

n̂v,k(t) ≡ d̂†k(t)d̂k(t) = ρ̂k,kv,v (t), (3.35b)

p̂cv,k(t) ≡ ĉ†k(t)d̂k(t) = ρ̂k,kc,v (t), (3.35c)

p̂vc,k(t) ≡ d̂†k(t)ĉk(t) = ρ̂k,kv,c (t), (3.35d)
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and from now on the time dependence will not be shown explicitly.
The position operator is given by R̂ = R̂A + R̂B , where:

R̂A =
∑
n

Rnâ
†
Rn
âRn , (3.36a)

R̂B =
∑
n

(Rn + δ1) b̂
†
Rn+δ1

b̂Rn+δ1 . (3.36b)

In Appendix A we rewrite the position operator R̂ in the basis (A.4) that diagonal-
izes the Hamiltonian H0 (3.33), in which it results:

R̂ =
∑
k

i∇k (n̂c,k + n̂v,k) +
∇kΘk

2
(p̂cv,k + p̂vc,k) , (3.37)

the i∇k (n̂c,k + n̂v,k) term takes in account the intraband transitions and it is negligi-
ble at optical frequencies. The second term in the right hand side of Eq. (3.37) takes
in account interband transitions.

For the purpose of the next chapter, we are interested in the effects of an UV inci-
dent electromagnetic field. In this regime, the intraband transitions will be negligi-
ble, so we approximate the position operator to its interband part:

R̂ ≈
∑
k

∇kΘk

2
(p̂cv,k + p̂vc,k) , (3.38)

and we identify the interband matrix elements as:

Rk,k
cv = Rk,k

vc =
∇kΘk

2
. (3.39)

In the basis that diagonalizes Ĥ0 we can use the result obtained in the previous
section (3.22):[

−iℏ∂t − Eλ,k + Eλ′,k

]
ρk,kλλ′(t) = eE(t) ·

∑
λ1

(
Rk,k

λ′λ1
ρk,kλλ1

(t)−Rk,k
λ1λ

ρk,kλ1λ′(t)
)
. (3.40)

Before advancing further, we introduce a phenomenological relaxation term in Eq.
(3.40):[

−iℏ∂t − Eλ,k + Eλ′,k

]
ρk,kλλ′(t) = eE(t) ·

∑
λ1

(
Rk,k

λ′λ1
ρk,kλλ1

(t)−Rk,k
λ1λ′ρ

k,k
λ1λ′(t)

)
+

+iℏγλλ′

(
ρk,kλλ′(t)− δλλ′fλ,k

)
,

(3.41)
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where fλ,k is the Fermi-Dirac distribution and γλλ′ is the relaxation rate for a tran-
sition between bands λ and λ′. fλ,k =[

exp(
Eλ,k−EF

kBT
) + 1

]−1

This is another advantage of the SBE formalism: we
do not need to use the finite temperature formalism (e.g. Matsubara’s frequencies)
to include thermodynamic properties. The added term forces the system to relax
to the thermodynamic equilibrium, i.e., the diagonal elements of the density-matrix
are the electronic distribution and thus in equilibrium are given by the Fermi-Dirac
function. The non-diagonal elements are interband amplitudes and thus vanish in a
system in equilibrium.

As we will see in the next chapter, the relaxation term γλλ′ plays a central role in
the optical properties of the system under pumping. We will consider from now on
that the relaxation term has different values for interband and intraband transitions:
γcc = γvv = γ0 and γcv = γvc = γp. Using the explicit value of R̂ (3.38) in Eq. (3.41)
we obtain the set of equations for the interband components:

(−∂t + iωk − γp) pcv,k(t) = −i
eE ·∇kΘk

2ℏ
(nc,k(t)− nv,k(t)) , (3.42a)

(−∂t − iωk − γp) pvc,k(t) = −i
eE ·∇kΘk

2ℏ
(nv,k(t)− nc,k(t)) , (3.42b)

where ℏωk = 2Ek, and for the intraband ones:

−∂tnc,k(t) = γ0 (nc,k(t)− fc,k)− i
eE ·∇kΘk

2ℏ
(pcv,k(t)− pvc,k(t)) , (3.43a)

−∂tnv,k(t) = γ0 (nv,k(t)− fv,k)− i
eE ·∇kΘk

2ℏ
(pvc,k(t)− pcv,k(t)) , (3.43b)

those equations will be further studied in chapter 4.

3.3. Including the electron-electron interaction: two-band
system

In the previous section, the effects of the electron-electron interactions are encoded
partially in a phenomenological way through the introduction of relaxations rates in
the graphene Bloch equations. This procedure has the effect of broading the peaks
and the sharps transitions of the optical conductivity. However, the simplicity has
its price and numerous optical processes cannot be described without introducing
electron-electron interactions, for example, excitonic effects.

Here we will particularize Eq. (3.31) for a two-band system. This procedure will be
very useful for the purpose of Chapter 5. The extra considerations that we will do are
the following: i) the system can be well described by a two-band model and ii) the
intraband elements of the dipole Hamiltonian can be neglected. From i), for amatter
of simplicity, we will label the two bands with λ = ±, with + the conduction band
and− the valence band. This labeling is useful as λ and−λ refers to the two different
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possibilities, in this case the expectation values of the elements of the density matrix
(3.24) can be written as:

nλ(k, t) ≡ ρk,kλ,λ(t), pλ(k, t) ≡ ρk,kλ,−λ(t). (3.44)

The dipole Hamiltonian (3.4) for a two-band system neglecting intraband terms
and with a homogeneous electric field is given by:

ĤI = −E(t) ·
∑
λ,k

dk,k
λ,−λp̂λ(k, t), (3.45)

and we rewrite Eq. (3.31) as:(
−iℏ

d

dt
− ℏωk

12

)
ρk,kλ1,λ2

= E(t) · Vλ1,λ2(k) +
e

S

∑
q ̸=0

V (|q|)Ξλ1,λ2(q,k). (3.46)

where we defined ℏωk
12 = E1 − E2 and:

Vλ1,λ2(k) ≡
∑
λ3

[
dk,k
λ2,λ3

ρk,kλ1,λ3
− dk,k

λ3,λ1
ρk,kλ3,λ2

]
, (3.47)

and the term originating from the electron-electron interaction is defined as:

Ξλ1,λ2(q,k) ≡
∑

λ3λ4λ5

ρk+q,k+q
λ4,λ5

[
Fλ3λ5λ4λ1(k,k+ q)ρk,kλ3,λ2

− Fλ2λ5λ4λ3(k,k+ q)ρk,kλ1,λ3

]
.

(3.48)

The term Vλ1,λ2(k), (3.47) that originates from the dipole Hamiltonian, can be
written as

Vλ1,λ2(k) = dk,k
λ2,−λ2

ρk,kλ1,−λ2
− dk,k

−λ1,λ1
ρk,k−λ1,λ2

, (3.49)

where we only take in account interband matrix elements of the dipole Hamiltonian.
For the equation of motion of nλ(k, t), we need λ1 = λ2 = λ:

Vλ,λ(k) = dk,k
λ,−λpλ(k, t)− dk,k

−λ,λp−λ(k, t), (3.50)

and for pλ(k, t):
Vλ,−λ(k) = dk,k

−λ,λ (nλ(k, t)− n−λ(k, t)) . (3.51)

Now we turn our attention for the electron-electron term (3.48) of the SBE (3.31).
Here we consider the case when λ1 = λ2 = λ, that corresponds to the equation of
motion for the diagonal part of the density matrix, and λ1 = −λ2 = λ corresponds
to the term inside the equation of motion for the off diagonal elements. For the first
case:

Ξλ,λ(q,k) = 2iℑ{p−λ(k, t) [pλ(k+ q, t)F−λ−λλλ(k,k+ q)+

+F−λλ−λλ(k,k+ q)p−λ(k+ q, t) + nλ(k+ q, t)F−λλλλ(k,k+ q)+

+n−λ(k+ q, t)F−λ−λ−λλ(k,k+ q)]} , (3.52)
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and for the off diagonal λ1 = −λ2 = λ we find:

Ξλ,−λ(q,k) =
∑

i=1,2,3,4

∑
λ1

Xi
λ,λ1

(q,k), (3.53)

where:

X1
λ,λ1

(q,k) = −pλ(k, t)nλ1(k− q, t)
[
F−λλ1λ1−λ(k,k− q)− Fλλ1λ1λ(k,k− q)

]
,

(3.54a)

X2
λ,λ1

(q,k) = −pλ1(k− q, t)F−λ−λ1λ1λ(k,k− q)∆nλ(k, t), (3.54b)

X3
λ,λ1

(q,k) = −pλ(k, t)pλ1(k− q, t)
[
F−λ−λ1λ1−λ(k,k− q)− Fλ−λ1λ1λ(k,k− q)

]
,

(3.54c)

X4
λ,λ1

(q,k) = nλ1(k− q, t)F−λλ1λ1λ(k,k− q)∆nλ(k, t), (3.54d)

where the difference in occupations reads ∆nλ(k, t) = nλ(k, t)− n−λ(k, t).
Finally, we need to substitute (3.50) and (3.52) into (3.46) to obtain the equation

of motion for nλ, and (3.51), and (3.53) to obtain the equation of motion for pλ:

− i∂tpλ(k, t) = (ω̃λk +Wkλ(t)) pλ(k, t) +
(
Ω̃kλ(t) +Dkλ(t)

)
∆nλ(k, t), (3.55)

− ∂tnλ(k, t) = 2ℑ
[(

Ω̃kλ(t) +Dkλ(t)
)
p−λ(k, t)

]
, (3.56)

where the transition energy (also denoted bare optical band ahead) is ℏωλk = Eλ,k−
E−λ,k and the renormalized Rabi frequency Ω̃kλ(t) reads:

ℏΩ̃kλ(k, t) = E(t) · dk,k
−λ,λ + Bkλ(t), (3.57)

and depends on the dipole moment, the electric field, and the excitonic correction
Bkλ(t). The different terms that appear in equations (3.55) and (3.57) are classified
as:

• Excitonic Rabi frequency renormalization:

Bkλ(t) = − e

S

∑
q

V (|k− q|)
[
pλ(q, t)Fλ′λ′λλ(k,q) + pλ′(q, t)Fλ′λλ′λ(k,q)

]
,

(3.58)
and where in this expression we have the constraint λ′ = −λ, S is the area of
the system, and Fλ1,λ2,λ3,λ4(k1,k2) is defined in equation (3.29)

• Renormalized transition energy (or interacting optical band):

ℏω̃λk = Eλ,k − E−λ,k + λΣxc
k,λ, (3.59)
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where the exchange self-energy is:

Σxc
k,λ(t) =

λe

S

∑
q,λ1

V (q)nλ1(k+ q, t)
[
Fλλ1λ1λ(k,k+ q)− Fλ′λ1λ1λ′(k,k+ q)

]
,

(3.60)
and where in this expression we have the constraint λ′ = −λ. This form of the
exchange self-energy is the same we find in the jelium model, except for the
non-trivial four-body structure factor Fλ1λ2λ3λ4(k,k− q).

• Non-linear contribution:

Wkλ(t) = − e

ℏS
∑
qλ1

V (|k−q|)pλ1(q, t)
(
Fλ′λ′

1λ1λ′(k,q)−Fλλ′
1λ1λ(k,q)

)
, (3.61)

where in this expression λ′ = −λ, λ′1 = −λ1.

• Density term:

Dkλ(t) = − e

ℏS
∑
qλ1

V (q)nλ1(k+ q, t)Fλ′λ1λ1λ(k,k+ q). (3.62)

Now we neglect the densityDkλ(t) and the non-linearWkλ(t) contributions, as we
are essentially focused on the exchange self-energy and excitonic effects to the linear
response. WeWe neglect the

non-linear termWkλ(t)
(3.61) that only
contributes to

second-harmonic and
higher frequency terms,

and the density term
Dkλ(t) that contributes
indirectly to the linear

response through
equation (3.56).

also consider that the system is in thermodynamic equilibrium, where
the electronic distribution nλ(k, t) is given by the Fermi-Dirac distribution function
fλ,k:

nλ(k, t) = fλ,k =

[
1 + exp

(
Eλ,k − EF

kBT

)]−1

. (3.63)

The latter approximation is valid in the linear regime (weak external electric fields).
In this case the SBE become:

− i∂tpλ(k, t) = ω̃λkpλ(k, t) + Ω̃kλ(t)∆fλ(k), (3.64)

this equation will be discussed in detail in chapter (5), where we show how to obtain
and solve the corresponding Bethe-Salpeter equation, showing the influence of the
excitonic effects on the optical properties of TMDCs.

3.A. Electron-electron interaction
Here we show how to obtain the electron-electron interaction in a second quantized
form. In this chapter we are dealing with systems that have a discrete or continuous
translational symmetry, with k labeling the corresponding quantum number. Here
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we will find the expression for the electron-electron interaction in second quantiza-
tion for a system with discrete translational symmetry, however the demonstration
for a system with continuous translational symmetry would be very similar.

Let V (|r1 − r2|) be the interparticle potential, the second quantized form of a
operator can be written using the field operator [4]: The time-dependence

appears from the
Heisenberg picture.Ĥee = −e

2

∫
dr1

∫
dr2 ψ̂

†(r1, t)ψ̂
†(r2, t)V (|r1 − r2|)ψ̂(r2, t)ψ̂(r1, t), (3.65)

where the field operator is defined as Here and thereafter the
summation in k is over
the first Brillouin zone.

:

ψ̂(r, t) =
1√
NcSc

∑
k,λ

ϕk,λ(r)âλk(t), (3.66)

with Sc the unit cell area/volume, Nc the number of unit cells and ϕk,λ(r) are the
eigenfunctions in the same basis that the operators âλk(t) are written. Those func-
tions are normalized as:∫

drϕ†k1,λ1
(r)ϕk2,λ(r2) = Sδk1,k2δλ1,λ2 , (3.67)

where Nc is the number of unit cells.
For a systemwith discrete symmetry the eigenfunctions ϕλ(k) can bewritten using

the Bloch theorem:
ϕk,λ(r) = eik·ruλk(r), (3.68)

with uλk(r) = uλk(r + R) obeying periodic conditions, where R is a lattice vector.
We also use the normalization condition:∫

u.c.
druλ1k(r)uλ2k(r) = Scδλ1,λ2 , (3.69)

where the integration is over the unit cell.
The discret Fourier transform of the potential V (r) is given by:

V (|q|) =
∫

dr

(2π)d
, eiq·rV (|r|) (3.70)

where d is the number of dimensions, with the inverse: Here the summation is
over the first Brillouin
zone (BZ)V (|r|) = 1

Sc

∑
q∈1oB.Z.

e−iq·rV (|q|), (3.71)

expanding the field operators in Eq. (3.65) using (3.66) and (3.68) we obtain:

Ĥee = − e

2N2
c S

3
c

∑
q

V (|q|)
∑

λ1λ2λ3λ4

∑
k1k2k3k4

∫
dr1

∫
dr2e

i(q+k2−k1)·r1ei(−q+k4−k3)·r2×

×
[
u†λ1k1

(r1)uλ2k2(r1)
] [
u†λ3k3

(r2)uλ4k4(r2)
]
â†λ1k1

(t)â†λ3k3
(t)âλ4k4(t)âλ2k2(t).

(3.72)
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We also use the result:We transform the integral
over all the space for one
over the first unit cell only.

∫
dr1e

i(q+k2−k1)·r1
[
u†λ1k1

(r1)uλ2k2(r1)
]
=

=
∑
R

∫
u.c.

ei(q+k2−k1)·(r1+R)u†λ1k1
(r1 +R)uλ2k2(r1 +R)

=
∑
R

ei(q+k2−k1)·(R)

∫
u.c.

dr1e
i(q+k2−k1)·(r1)u†λ1k1

(r1)uλ2k2(r1)

(3.73)

however: ∑
R

ei(q+k2−k1)·R = Ncδk1,q+k2 , (3.74)

where Nc is the number of unit cells and S = NcSc, with an analogous result for the
term that contains the indexes 3, 4, and we define:

Fλ1λ2λ3λ4(k,k
′,q) =

1

Sc

[∫
u.c.

dr1u
†
λ1k+q(r1)uλ2k(r1)

] [∫
u.c.

dr1u
†
λ1k+q(r1)uλ2k(r1)

]
,

(3.75)
we will have:

Ĥee = − e

2Sc

∑
λ1λ2λ3λ4

∑
kk′q

V (|q|)Fλ1λ2λ3λ4(k,k
′,q)â†λ1k′−q(t)â

†
λ3k+q(t)âλ4k(t)âλ2k′(t),

(3.76)

for a system with a continuous symmetry the demonstration follows the same steps,
and the Sc factor is replaced by the total volume/area of the system S. Another way
to see this is to take the limit of an infinitely large unit cell.
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4.1. Introduction
Light matter interaction at low energies occurs due to the interaction of electromag-
netic radiation with weakly bound electrons in a material. The electron gas in a
conductor is a well known form of weakly bound electrons which couple to electro-
magnetic radiation. Usually, we assume that the electron gas is in equilibrium and
that the external perturbation is small, in which case the response of the gas can be
computed in terms of its equilibrium properties —linear response theory. The situa-
tion is markedly different when a high-intensity electromagnetic radiation interacts
with an electron gas driving it to an out-of-equilibrium regime. In this case the re-
sponse of the system depends on intensity of incoming radiation and on the orienta-
tion of its polarization relatively to the real space lattice of the crystal. Moreover the
distribution function of the electron gas occupancy is no longer a Fermi-Dirac distri-
bution. It is this situation that will be studied in this chapter. Here we consider an
intense pumping electromagnetic field interacting with the weakly bound electrons
in graphene thus generating an out-of-equilibrium gas. The pumping is followed
by a weak-probe electromagnetic-field, of frequency much smaller than that of the
pumping field, which probes the out-of-equilibrium plasma created by the pumping.
The physics of this process is depicted in Fig. 4.1.

Pumping graphene with electromagnetic radiation is a possible tool to study the
dynamics of the charge carriers in graphene. In the work of George et al. [77] the
recombination dynamics and carrier relaxation in graphene was studied with tera-
hertz spectroscopy. When electrons in graphene are pumped by an intense light
field pulse, the response is highly anisotropic as was shown in Ref. [78]. After about
1ps of the initial pumping pulse, the photogenerated electrons are described by an
isotropic Fermi-Dirac distribution with a high temperature[79]. The graphene opti-
cal properties under such conditions were studied by Malic et al. [75] and Sun et
al. [80]. The electron dynamics of photo-excited electrons, including the stimulated
electron-hole recombination, was studied by Li et al.[81]. The plasmon dispersion
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relation under a non-equilibrium hot Fermi-Dirac distribution was studied by Page
et al. [82] and experimentally measured by Ni el al. [83]. We note that plasmons
in graphene also offer a possible decay channel to cool down the hot electron gas
[84]. The optical conductivity of doped and gapped graphene taking into account a
non-equilibrium distribution and interband processes was studied theoretically by
Singh et al.[85]. All these studies where made in a regime where the validity of the
Dirac cone approximation holds, that is, the pumping field has a frequency in the
IR/Vis region of the electromagnetic spectrum.

Figure 4.1.: This figure represents the physical situation we are considering in this chapter: a possibly
doped graphene is driven out-of-equilibrium by an electric field of frequency ωp that creates
an electron gas around the M-point in the Brillouin zone. The created plasma is then
probed by a field of frequency ω ≪ ωp. We note that the mechanism we are discussing
does not require an initially doped graphene, that is, we can have EF = 0. Also note that
the electronic spectrum at the M-point has a saddle-like nature (in the drawing only the
steepest descent direction is shown). The probe field allows the excitation of an electron,
belonging to the out-of-equilibrium gas, to higher energies.

For a pulsed laser beam with a pulse duration much larger than 1 ps —the case we
will consider in this work—, the carrier distribution will remain anisotropic for the
duration of the pulse. In this case, electron-phonon and electron-electron interac-
tions, as well as the effect of disorder can be encoded into a hot carrier relaxation
rate. Under such conditions the surface plasmon-polariton (SPP) was studied in sys-
tems described by a gapped Dirac equation by Kumar et al.[86], who discussed the
response of the electron gas to a circular polarized light. In this approach, the density
matrix equations of motion are solved to determine the non-equilibrium electronic
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distribution. In this chapter we study the electronic distribution and the plasmon
spectrumof an optically pumped graphene. Thematerial is subjected to a linearly po-
larized light beam, with a frequency that creates an electron gas beyond the regime
where the Dirac approximation holds. This is relevant when graphene is subjected
to UV radiation. In this case, the spectrum is no longer Dirac-like and the full band
structure of the system has to be taken into account. Therefore, this work goes be-
yond that of Anshuman et al.[86] and includes also the regime studied by these
authors.

The plasmons in graphene were first probed in real-space in the studies of Fei et al.
[87] and Chen et al. [88]. In the work [83] the plasmons in graphene are generated by
an infrared beam focused in the metalized tip of an atomic force microscope, after
a first pumping pulse of electromagnetic radiation. The tip is also used to detect
the plasmons that propagate along the graphene surface and after reflection in the
sample edges standing waves are produced. This kind of experiment can be used to
detect the plasmons discussed in the present chapter using a pulsed laser in the UV
range (pulse duration much larger than 1 ps) for pumping the electrons in graphene.
Due to excitonic effects[89] the position of the maximum of absorption associated to
inter-band transitions at theM−point is reduced from 5.4 eV (independent-electron
result) to about ∼ 4.6 eV (λ ∼ 270 nm), a wavelength for which there are available
lasers.

Under intense and long times optical excitation, the carrier distributionmaintains
a non-equilibrium state and does not follow the Fermi Dirac distribution. The new
electronic distribution has to be calculated using the semiconductor Bloch equation,
with a phenomenological relaxation-term that tends to drive the system towards ther-
mal equilibrium, characterized by a Fermi-Dirac distribution. Since we want to dis-
cuss plasmons in the non-equilibrium electron gas created around the M-point in
the Brillouin zone, we need to describe the π−electrons in graphene using a tight-
binding Hamiltonian. For graphene in the tight-binding approximation, we have
a two-band (valence and conduction) system labeled by the crystal momentum k,
which runs over the full hexagonal Brillouin zone. In our calculations, carrier scat-
tering is accounted for via a relaxation rate. As such, the resulting equations need to
be solved for each point in the first Brillouin zone and different momentum values
are not explicitly coupled.

The chapter is organized as follows: in Sec. 4.2 we write the Bloch equations,
using the result obtained in Sec. 3.2, for the electrons in graphene within the tight-
binding model, which is valid beyond the Dirac cone approximation. We study the
transient response under a pulse laser and obtain analytical expressions for the out-
of-equilibrium electronic distribution. In Sec. 4.3 we obtain the equations to calcu-
late the out-of-equilibrium susceptibility from the new electronic distribution. In
Sec. 4.4 we derive a semi-analytical formula, valid in the long-wavelength regime,
for the susceptibility and in Sec. 4.5 the optical conductivity is obtained in the same
conditions. In section 4.6 we compute numerically the susceptibility of the out-of-
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equilibrium electron gas and obtain results for the plasmon dispersion and the loss
function. In Sec. 4.7 we use the semi-analytical equations for the conductivity ten-
sor to numerically calculate the dispersion relation of the surface plasmon-polariton
and discuss its anisotropic properties. In Sec. 4.8 we provide the general conclusions
of this chapter.

4.2. Non-equilibrium density-matrix and Bloch equation in
the tight-binding approximation

From the previous chapter, we obtained the SBE for a non-interacting electron gas
for graphene considering a tight-binding model with two bands. We assume a time-
dependent and uniform electric field (that is, with null in-plane wave number). Thus
the interaction term in the Hamiltonian does not couple electronic states from dif-
ferent points in the Brillouin zone. Those equations are a system with four unknown
functions that are the matrix elements of the expectation value of the density matrix:
nc,k (nv,k) is the conduction (valence) electronic distribution and pcv,k (pcv,k) is the
valence to conduction (conduction to valence) transition amplitude.

The equations obtained for the electronic distribution are (3.43) and for the inter-
band transition amplitudes (3.42):

−∂tnc,k = γ0 (nc,k − fc,k)− iΩk(t)∆pk, (4.1a)
−∂tnv,k = γ0 (nv,k − fv,k) + iΩk(t)∆pk, (4.1b)

(∂t − iωk + γp) pcv,k = iΩk(t)∆nk, (4.1c)
(∂t + iωk + γp) pvc,k = −iΩk(t)∆nk, (4.1d)

where the interband relaxation rate is represented by γp and intraband one by γ0;
also we have ℏωk = 2Ek, ∆nk = nc,k − nv,k, ∆pk = pcv,k − pvc,k, and fc/v,k is the
equilibrium Fermi-Distribution for the conduction/valence band. The time depen-
dence of nc/v,k and pvc/cv,k has been omitted for simplicity of notation, and finally
the Rabi frequency Ωk is given by:

Ωk(t) =
ea0E(t) ·∇kΘk

2ℏ
, (4.2)

and couples the diagonal to the off-diagonal elements of the density matrix through
the external pumping electric field E(t).

Equations (4.1) are the Bloch equations in graphene[90], with only interband con-
tributions included (note that we want to excite electrons deep in the valence band
to high up in the condution band), and describe the evolution of the electronic dis-
tribution and the rate of interband transitions when an external intense and highly
energetic electric field E is applied. The vector field ∇kΘk entering in the Rabi fre-
quency does not depend on the external parameters and is shown in Fig. 4.2. The
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two inequivalents Dirac points are located at the corners of the hexagon in this fig-
ure. Near these points the function Θk becomes the angle between the momentum
k and the x-axis.

Figure 4.2.: Plot of the vector field ∇kΘk/||∇kΘk||. This field controls the Rabi frequency and it
can be probed by the polarization of the pumping field. Note that the rotation of the
vector field in the two non-equivalent Dirac points has opposite senses. The red hexagon
represents the first Brillouin zone and the intensity refers to the absolute value of the
vector field ∇kΘk; it is more intense around the Dirac points (brighter spots) and along
the directions connecting two Dirac points and passing through the M−point.

4.2.1. Real time analysis

We can simplify the set of Eqs. (4.1), defined in terms of two real (nc,k, nv,k) and two
complex (pvc,k, pcv,k) quantities, to three equations involving real quantities only.
We will show that under an intense monochromatic wave, the electronic density can
reach a steady-state.

Using Eqs. (C.5) and (C.6), we define the deviation from the equilibrium density
as υk(t):

nc,k(t) = fc,k + υk(t), (4.3a)
nv,k(t) = fv,k − υk(t), (4.3b)
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Figure 4.3.: Plot of the time evolution of the electronic distribution υk(t) for k = 2π/a0(3, 0), ℏωp =
2tTB, τ0 = 300 fs (see Ref. [74] ), which corresponds to ℏγ0 = 14 meV (see also Ref. [91] ), ℏγp = 28
meV, E0 = 0.5 GV/m, and EF = 0.2 eV. The pumping field is linearly polarized along the x-axis.

and we split the transition rate into real and imaginary parts:

pvc,k(t) = xk(t) + iyk(t), (4.4)

where xk(t) and yk(t) are real and pcv,k(t) = xk(t) − iyk(t). From Eqs. (4.1) (see
Appendix C), we can write:

ẋk = −γpxk + ωkyk, (4.5a)
ẏk = −ωkxk − γpyk +Ωk(t) (2υk +∆fk) , (4.5b)
υ̇k = −γ0υk − 2Ωk(t)yk, (4.5c)

where the time dependence in x, y and υ has been omitted and ∆fk = fv,k − fc,k.
Also note the different signs in front of υk(t) in Eqs. (4.3).

The set of coupled Eqs. (4.5) describes, using three real functions x, y, and υ,
both the time evolution of the transition probability and the electronic density in
the reciprocal space. Since we have included the effect of both electron-electron
and electron-phonon interactions using only a constant relaxation rate, there is no
coupling between excitations from different k. Thus, for each point in the Brillouin
zone we can solve Eqs. (4.5). In Fig. 4.3 we plot the time evolution of the function
υk, for k = 2π/a0(3, 0)a0 is the graphene lattice

parameter.
(that corresponds to the M-point in the Brillouin zone) for a

monochromatic electric field of frequency ℏωp = 2tTB (that corresponds to a vertical
transition at the M−points) and intensity E0 = 0.5 GV/m (this is a moderate field
intensity), with linear polarization along the x-axis.
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4.2.2. Steady-state solution

As shown in Fig. 4.3, the electronic distribution converges to a well defined value
which we calculate in Appendix 4.A, when the electric field is given by a monochro-
matic wave with pumping frequency ωp and intensity E0: E = 1

2E0e
iωpt+h.c.. In this

case the steady-state solution for the densities can be written as:

nc,k =
(1 + αk)fc,k + αkfv,k

1 + 2αk
, (4.6a)

nv,k =
(1 + αk)fv,k + αkfc,k

1 + 2αk
, (4.6b)

and from Eq. (4.3)
υk =

αk

1 + 2αk
(fv,k − fc,k) , (4.7)

where αk is given by Eq. (4.40) and υk represents the deviation from the equilib-
rium Fermi-Dirac distribution. It should be noted that the steady state distribution
functions are not given by a Fermi-Dirac distribution, but can be written in terms
of combinations of fc,k and fv,k. The non-equilibrium distribution depends on the
pumping frequency ωp and on the complex electric field E0. For the linear polariza-
tion the electric field can be written as a real quantity that depends on the intensity
of the electric field E0 and the angle of polarization θ.

The distribution υk is plotted in Fig. 4.4 for different pumping frequencies ωp

and polarization angles θ of the pumping field. As the pumping frequency increases,
the electronic distribution departs from the Dirac points (the corners of the blue
hexagon). At ℏωp = 2tTB, the M-point is populated. For ℏωp > 2tTB, the electronic
distribution becomes a circle around the Γ-point (center of the hexagon). We also
see in this figure the polarization dependence coming from the term ∇kΘk · E. For
example, although we have three independent M-points, for ℏωp = 2tTB and θ =
π/2 only two are populated. We can use Fig. 4.2 to predict, for a given pumping
polarization, what points in the Brillouin zone can be optically populated, noting
that the electric field E and the vector field ∇kΘk need to be parallel to maximize
the electronic occupation. This anisotropy in the population of the M-points is at
the heart of other anisotropic effects that we will discuss ahead.

4.3. Intraband transitions of the non-equilibrium gas due to
the probe field

The optical response of graphene is determined by intraband and interband transi-
tions [18]. As shown in the previous section, in the steady state the pumping field
changes the electronic distribution and therefore the optical conductivity of the ma-
terial. This quantity is related to the charge-charge correlation function of graphene.
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Figure 4.4.: Plot of the electronic density υk for different values of the pumping frequency ωp and
pumping orientation θ with intensity E0 = 0.5 GV/m, EF = 0, ℏγ0 = 14 meV, and
ℏγp = 28 meV. The bright regions in the Brillouin zone depend on the value of ωp and
have the orientation dependence of the term ∇kΘk · E, which in its turn depends on
the polarization angle, θ, of the incident field. Note that for low frequencies (left panels,
ωp/tTB = 0.1) only momentum values near the Dirac points are excited. On the other
hand, for ωp/tTB = 2 the brightest spots occur at the M−point. Also note that the
M−points are not all excited at the same time, but depend on the polarization of the
pumping field. This result constrasts with the case where the frequency of the pumping
field pumps electrons to the Dirac cone (left panels). In this case, all the Dirac points are
excited simultaneously.
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The charge-charge correlation function can be calculated using the new electronic
distribution obtained in Eqs. (4.6) and (4.7), instead of the equilibrium Fermi-Dirac
distribution, as:

χ(q, ω) =
2e

ℏa20

∑
λ,λ′=±

∫
1◦BZ

d2k

(2π)2
nλk+q − nλ

′
k

ω − ωλ,λ′

k,q + iε
Nk,q

λ′λ , (4.8)

where the factor 2 accounts for the spin degeneracy, nλk is the electronic distribution
given by Eq. (4.6), ℏωλ′,λ

k,q = λ′Ek − λEk+q is the energy transition, and the overlap
of the eigenfunctions is given by:

Nk,q
λ′λ =

1

2

[
1 + λ′λ cos (Θk −Θk+q)

]
, (4.9)

Using Eq. (4.3) to split the density into the equilibrium f
c/v
k and fluctuation υk

parts, the susceptibility can be decomposed into an equilibrium χ0(q, ω) part, that
is calculated using the equilibrium Fermi-Dirac distribution, and two pumped com-
ponents, one intraband and the other interband, as:

χ(q, ω) = χ0(q, ω) + χintra
pump(q, ω) + χinter

pump(q, ω), (4.10)

where ω is the frequency of the probe. The intraband pumped component of the
susceptibility reads

χintra
pump(q, ω) =

2e

ℏa20

∑
λ=±

∫
1◦BZ

d2k

(2π)2
λ (υk+q − υk)

ω − λωintra
k,q + iη

Nk,q
−λ,λ, (4.11)

where ℏωintra
k,q = Ek − Ek+q. Note that χintra

pump is determined by the deviations to the
Fermi-Dirac distribution: υk+q − υk. The interband component reads as:

χinter
pump(q, ω) =

2e

ℏa20

∑
λ=±

λ

∫
1◦BZ

d2k

(2π)2
λ (υk+q + υk)

ω − λωinter
k,q + iη

Nk,q
λ,λ , (4.12)

where ℏωinter
k,q = Ek + Ek+q.

From now on we consider that ωp ≫ ω. This will be the case here because we will
consider a probe in the THz range while the pump is in the UV range. From this
consideration we can neglect the interband susceptibility χinter

pump(q, ω). This happens
because the numerator of Eq. (4.12) is only non-zero for k in the vicinity of the M-
point (see Fig. 4.4) and so the denominator can be approximated as ω − λωinter

k,q ≈
ω ± ωp. See appendix 4.B for the

approximation of the
denominator of Eq. (4.11).

This term will be negligible in comparison of χintra
pump(q, ω) that has in the

denominator a term that can be approximated as ω − λωintra
k,q ≈ ω − λ∇kEk · q, and

this quantity can be resonant with the probe frequency ω depending on q. In other
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words, the interband component of the pumped susceptibility is resonant with the
pumping frequency and the intraband is resonant with the probe frequency.

Wenowwant to introduce the effect of relaxation into the calculation of the charge-
charge susceptibility. This can be done using Mermin’s approach developed for the
3D electron gas[92]. Following Mermin’s work and making the necessary modifica-
tions for the graphene case, the total susceptibility, taking into account relaxation
processes, is given by [15]:

χM (q, ω) =

(
1 + i(τω)−1

)
χ(q, ω + iγ)

1 + i(τω)−1χ(q, ω + iγ)/χ(q, ω = 0)
, (4.13)

where 1/τ = γ is the relaxation rate. For calculating Mermin’s susceptibility we
need the Lindhard susceptibility χ(q, ω + iγ), which needs to be computed for a
complex frequency. In addition we also need the static susceptibility χ(q, ω = 0).
The dielectric function can be obtained from the suceptibility as [15]:

ε(q, ω) = 1− V (|q|)χM (q, ω), (4.14)

where V (|q|) = ea0/(2εmq) is the 2D Fourier transform of the Couloumb potential
and εm = ε1+ε2

2 is the effective dielectric constant of the environment for a graphene
clad between two media of dielectric constants ε1 and ε2. We recall that the term
a0 appears in V (|q|) because the wave number q is measured in units of the inverse
lattice parameter a−1

0 .
Here we have an apparent disagreement with the rest of the chapter. Mermin’s

equation takes in account only one relaxation rate while we used interband and in-
traband transition rates in the SBE. However, as we neglect the interband contribu-
tions to the susceptibility, we can consider only the intraband transition rate and the
intraband susceptibility: χ(q, ω + iγ) ≈ χintra(q, ω + iγ) and γ ≈ γ0.

4.4. Long wavelength limit: anisotropic plasmon dispersion
relation

The calculation of the integral in Eq. (4.11) needs to be done for every different fre-
quence ω and wavenumber q. However, as shown in Fig. 4.5, as q decreases the
conductivity reaches the long wavelength limit and we can show that in this regime
the susceptibility in Eq. (4.11) behaves as q2. In this limit, the static susceptibility
appearing in the denominator of Eq. (4.13) tends to a constant value when q → 0,
and therefore Eq. (4.13) becomes:

χM (q, ω) =
(
1 + i(τω)−1

)
χ(q, ω + iγ). (4.15)

We now split the susceptibility in the right hand side of the Eq. (4.15) in the same
way as we did in Eq. (4.10) —that is in an equilibrium and an out-of-equilibrium
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parts. The equilibrium component χ0(q, ω) can be approximated by the Drude term
for ℏω < 2EF , where EF is the Fermi energy:

χdoped(q, ω) =
4eEF

πℏ2a20
q2

(ω + iγ)2
. (4.16)

For undoped graphene we have EF = 0 and the Drude contribution vanishes. For
the out-of-equilibrium component, we obtain a similar expression in the long wave-
length limit for the pumped susceptibility using Eq. (4.11) (details of the calculations
are given in Appendix 4.B) in the form:

χintra
pump(q, ω) =

∑
i,j

Cij
qiqj

(ω + iγ)2
. (4.17)

The term in the right hand side of Eq. (4.17) corresponds to the intraband pumped
contribution and can also be written as a quadratic dependence on the modulus of
the wavevector q. This is one of the central results of this chapter with far reaching
implications.

Comparing Eq. (4.17) with the susceptibility of doped graphene in the long wave-
length limit in Eq. (4.16), we can define an effective Fermi energy, that depends on
the polarization angle φ of the probe field relative to the graphene lattice, as:

Eeff
F (φ) = EF + f0 + fm cos(2φ+ ϕ), (4.18)

where f0, fm, and ϕ depend only on the properties of the pumping field —Epump, θ,
and ωp— which are defined in Appendix 4.B. Finally the susceptibility in Eq. (4.15)
can be written as:

χM (φ, ω) =
4e

πℏ2a20

Eeff
F (φ)q2

ω(ω + iγ)
. (4.19)

The plasmon dispersion is obtained from the condition ε(q, ω) = 0 in Eq. (4.14),
leading to:

ℏω(φ, q) =
√

2α
ℏc
a0
Eeff

F (φ)q − i
γ

2
, (4.20)

where α ≈ 1/137 is the fine structure constant of atomic physics. Equation (4.20)
has the same √

q dependence as that of plasmons in doped graphene without the
pumping field[93, 15]. The difference lies in the presence of an effective Fermi energy
Eeff

F (φ) that depends on the direction of the wavevector. Equation (4.20) is one of
the central results of this chapter. Note that the dispersion will be anisotropic, as
the effective Fermi energy depends on the orientation of the pumping electric field
relatively to the graphene lattice. Furthermore, even in the case of neutral graphene,
the system supports plasmons since Eeff

F (φ) is finite even for EF = 0, due to the
constant illumination of the pumping field.
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4.5. The anisotropic conductivity of graphene under
pumping

In this section we show that in an out-of-equilibrium situation we can define an
anisotropic optical conductivity for graphene. The optical conductivity tensorσij(q, ω)
can be obtained via the continuity equation:

q · J− ωρ = 0, (4.21)

where ρ is the charge density and J the surface density current. The current is de-
scribed by

Ji =
∑
j

σij(q, ω)Ej = −i
∑
j

σij(q, ω)qjΦ . (4.22)

The previous result follows from the relation between the electric potential Φ, with
well defined momentum q, and the electric field E via the relation E = −∇Φ =
−iqΦ. On the other hand, the charge density is obtained from the charge-charge
susceptibility via ρ = −χM (q, ω)Φ. Thus, using Eq. (4.21), the relation between the
conductivity tensor and the susceptibility is:∑

i,j

σij(q, ω)qiqj = iωχM (q, ω). (4.23)

The Equation (4.23) is not enough to determine the conductivity tensor from the sus-
ceptibility, but in the long wavelength limit, q → 0, the dependence of each element
of the conductivity tensor on the wavenumber disappear, and we can obtain three
independent equations to the four quantities σij . These three equations can be ob-
tained changing the direction of the wavevector q or, equivalently, we can compare
the Taylor expansion of χM (q, ω) to the left hand side of Eq. (4.23). This procedure
would give four equations but one of them would not be independent of the other
three. The missing equation can be obtained from the current-current response [94]
where the intraband contributions to the conductivity tensor read1

σintra
ij (q, ω) =

2ie2

ℏωS
∑

k,λ=±

nλk+q/2 − nλk−q/2

ω − λωintra
k,q + iγ

vi
intra
k,q vj

intra
k,−q, (4.24)

with viintrak,q the components of:

vintra
k,q =

a0tTB
2ℏ

(
e−iΘk−q/2∇kϕk−q/2 + eiΘk+q/2∇kϕ

∗
k+q/2

)
. (4.25)

1The use of the charge-charge current response is not totally consistent with the use of a phenomeno-
logical relaxation rate: the equilibrium density matrix now depends on the vector field [95]. How-
ever this does not change the results in this chapter: from this result we only need a simple symme-
try property of the conductivity tensor.
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and S = Nca
2
0, where Nc is the number of unit cells and

ϕk =
3∑

i=1

eik·δi , (4.26)

where δi are the basis vectors (see appendix A for more details).
From Eq. (4.24) we can show that in the limit q → 0, we have:

σintra
ij (q → 0, ω) = σintra

ji (q → 0, ω), (4.27)

thus it follows from Eq. (4.23) that:

σ
pumped
ij = σ0

Cij

ω + iγ
, (4.28)

where σ0 = e2/(4ℏ) and Cij are the coefficients of the expansion of χpumped(q, ω)
defined in Eq. (4.17), and the total intraband conductivity can be written as function
of an effective Fermi energy tensor Eeff

ij as:

σij
σ0

= i
4

ℏπ
Eeff

ij

ω + iγ
, (4.29)

where we have defined the effective Fermi energy tensor as:

Eeff
ij = EF δij +

π

4
Cij . (4.30)

Although the tensor Eeff
ij can be reduced to diagonal form by a rotation, doing so

we loose the direct connection of the tensor components to the orientation of the
graphene lattice.

We can also define the longitudinal conductivity along the direction defined by
the unit vector uφ for a probing electric field of the form E = E0uφ as:

σφ =
J · uφ

E0
=

4i

ℏπ
Eeff

F (φ)

ω + iγ
, (4.31)

where the angle φ (the polarization angle of the probing field) is the same as that of
the momentum q, since the electric field is proportional to q via the gradient of the
potential.

It is worth remembering that the effective parameters f0,fm, and ϕ depend solely
on the pumping field properties, that is, on the intensity E0, the polarization angle
θ, and the frequency ωp.
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4.6. Numerical results
As shown before (see Fig. 4.4), graphene under intense and energetic light pump-
ing presents a strong anisotropic electronic distribution. This changes the optical
response due to intraband and interband transitions. In doped graphene, without
electromagnetic pumping, the intraband transitions dominates for photon energy
ℏω < 2EF , while interband transitions dominate for ℏω > 2EF [18]. For pumped
graphene, we have a similar result, where intraband transitions dominate for ω < ωp,
where ωp is the frequency of the pumping radiation, and interband transitions dom-
inates for ω ≈ ωp.

Figure 4.5.: Imaginary part of the longitudinal conductivity as function of the polarization angle of the
pump field for different values of q. The parameters are: E0 = 0.707 GV/m, ℏωp = 2tTB,
θ = π/4, EF = 0.2 eV and ℏγ0 = 14 meV, and ℏγp = 28 meV. For q < 10−3 the
susceptibility reaches the long wavelength limit. For q = 10−2 we can see the strong
influence of the static susceptibility (see Fig. 4.14).

To show the effects of the pumping in graphene, we solve numerically the Eq. (4.11)
and compute the pumped component of the intra-band susceptibility. The χ0(q, ω)
component is calculated with the analytical expressions derived with the Dirac equa-
tion [15], since it is not necessary here to account for the full band structure of
graphene. This is because for the equilibrium distribution, the probe frequency ω
in the range we are considering can only excite electron-hole pairs around the Dirac
cone. This is not the case for the pumped electron gas around the M-point, that
cannot be described by the Dirac equation. The out-of-equilibrium distribution is
calculated using Eq. (4.7).

We plot in Fig. 4.5 the imaginary part of the longitudinal conductivity, Eq. (4.31),
as function of the probe incidence angleφ, for differentwave numbers q; this quantity
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Figure 4.6.: Comparison between the semi-analtical approach and the numerical one for the imaginary
part of the longitudinal conductivity, showing the validity of the semi-analytical approxi-
mation obtained in section 4.4. The dots correspond to the cyan solid curve in Fig. 4.5
and the solid line is the semi-analytical calculation. Note that ℑσ ∈ [10σ0, 24σ0]; the
difference between the maximum and the minimum of the conductivity depends on the
magnitude of E0. The parameters are: q = 10−3, E0 = 0.707 GV/m, ℏωp = 2tTB,
θ = π/4, EF = 0.2 eV, and ℏγ0 = 14 meV, and γp = 28 meV.

Figure 4.7.: Dependence of the parameters f0, fm, and ϕ on the intensity of the pumping radiation.
The parameters are: θ = π/4, ℏωp = 2tTB, EF = 0.2 eV, ℏγ0 = 14 meV, and ℏγp = 28
meV. The importance of the parameters f0 snd fm grows with the intensity of the pumping
field. The minimum value of field intensity considered in this figure is 0.1 GV/m. We see
that the anisotropy is observable for this field intensity. We note that the field intensities
scanned in this figure are experimentally attainable.
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controls the dispersion of the surface plasmon-polariton in the out-of-equilibrium
electron gas, as will be discussed in a forthcoming section. We show that the long
wavelength limit is reached around q = 10−3, where the conductivity have a co-
sinusoidal shape as predicted by Eq. (4.18). Note that q is measured in units of 1/a0.
In the same figure we also depict an example of the longitudinal conductivity away
from the long wavelength limit (q = 10−2). It is clear that in this regime the distribu-
tion is, for some φ values, substantially different form the analytical approximation.
Since we are interested here in the long wavelength limit, this results does not inter-
est us and will not be discussed further.

Figure 4.6 shows the numerically computed imaginary part of the longitudinal con-
ductivity, as function of the probing polarization angle φ, for q = 10−3, as defined by
Eq. (4.31), compared with the semi-analytical result, which depends on the effective
Fermi energy defined in Eq. (4.18). The two approaches show a very good agreement,
showing that indeed for q = 10−3 the system is already in the longwavelength regime.
The oscillatory variation of the imaginary part of the longitudinal conductivity will
lead to an anisotropy in the spectrum of the surface plasmon-polariton, as it is this
quantity that determines the behavior of the latter. Note that ℑσ ∈ [10σ0, 24σ0] (see
Fig. 4.6).

From here on our analysis is focused on two ways of parameterizing the effective
Fermi energy: by the function Eeff

F (ϕ) that appears in the susceptibility (4.18) or the
matrix Eeff

ij that appears in the optical conductivity (4.29). The function Eeff
F (ϕ) also

appears in the dispersion relation of the plasmon modes(4.20). The optical conduc-
tivity (4.29) is the input of Eq. (4.34). Therefore, is useful to study in detail how
those two quantities behave in function of the pumping frequency, intensity and
polarization.

Figure 4.7 shows that the parameters f0 and fm have a strong dependency on the
intensity of the pumping field. The angleϕ, in contrast, changes very little by asmuch
as ∼ 0.1 rad, and tends to saturate for large intensity fields. The parameters f0 and
fm can have a strong impact in the optical response of the system, depending on the
initial doping level of graphene, characterized by EF . For large doping, the effect of
f0 and fm is small, except for large pumping field intensities. However, for vanishing
small Fermi energies, the effect of these two parameters have a large impact in the
optical properties of the system, as the effective Fermi energy is essentially controlled
by them.

The dependence of the effective Fermi energy EF
ij on the intensity of the pumping

radiation is depicted in Fig. 4.8. A clear anisotropy is seen in this quantity. Partic-
ularly interesting is the finite value of EF

xy, which leads to a finite off-diagonal term
for the non-equilibrium optical conductivity. The dependence of the parameters f0,
fm, and ϕ on the energy of the pumping photons is depicted in Fig. 4.9. We see that
there is a non-monotonous dependence on ωp with a local maximum (for f0, fm,
and ϕ) when the photon energy is equal to the electronic transition at the M-point
(ℏωp/tTB = 2). This is, most likely, due to the enhanced density of states associated
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Figure 4.8.: Dependence of the effective Fermi energy Eeff
ij − EF δij on the intensity of the pumping

radiation (in GV/m). The anisotropy grows with the increase of E0. The parameters are:
θ = π/4, ℏωp = 2tTB, EF = 0.2 eV, ℏγ0 = 14 meV, and ℏγp = 28 meV. The minimum
value of field intensity considered in this figure is 0.1 GV/m.

with the van-Hove singularity.
In Fig. 4.10 the effective Fermi energy is depicted as function of the frequency of the

pumping field. Clearly its behavior is controlled by the values of the parameters f0,
fm, and ϕ, as can be seen from comparing Figs. 4.9 and 4.10. Again a local maximum
is seen at the value of photon energy given by ℏω = 2tTB.

It is worthwhile to remark that the absolutemaximumof the f0 and fm parameters,
in Fig. 4.9, takes place for ℏωp ≈ 0.5tTB (∼ 1.4 eV), leading to an out-of-equilibrium
gas with a larger effective Fermi energy than when the system is pumped with pho-
tons of frequency ℏωp ∼ 2tTB. This energy scale is controlled by the electric field
intensity. Indeed, the system has an energy scale ∆, for the parameters of Fig. 4.9,
given by

∆/tTB ∼
√

E0a0
tTB

∼ 0.2 , (4.32)

which is of the same order of magnitude of ℏωp ≈ 0.5tTB, the position of the absolute
maximum of the parameters f0 and fm. Note that apart from the gradient of the
phase Θk, E0a0 is essentially the Rabi frequency. We have verified that by reducing
the field intensity by five times, the position of the maximum red-shifts to an energy
of about two times smaller the value of ℏω = 0.5tTB. This effect is represented in the
inset of the bottom panel of Fig. 4.10. The scaling of the position of the maximum of
f0 with

√
E0 is evident. Note, however, that, for these energy scales, the anisotropy

for the plasmon spectrumwill be very small, asEF
xx ≈ EF

yy. Let us also note here that
the intensity of the density of the states at the van-Hove singularity is presumably
controlled by the value of γ0: the larger this parameter is the smaller is the density
of states at the M−point, which otherwise would be a divergence in the absence of

45



4. GėĆĕčĊēĊ ĕĚĒĕ-ĕėĔćĊ ĘĞĘęĊĒĘ

Figure 4.9.: Dependence of the parameters f0, fm, and ϕ on the energy of the photon of the pumping
field. The parameters are: E0 = 0.707 GV/m, θ = π/4, ℏωp = 2tTB, EF = 0.2 eV,
ℏγ0 = 14 meV, and ℏγp = 28 meV. A non-monotonous dependence on ωp is seen for
the three parameters. We must however stress that for ℏωp ≈ 0 the behavior of f0, fm,
and ϕ is not accurate, as we have not included the effect of interband transitions, due to
probe of frequency ω, which become relevant for ωp ∼ ω, specially in the case of neutral
graphene. See Fig. 4.10 for a discussion of the position of the maximum of f0 and fm
located at low energies.

relaxation.
In Figs. 4.11 and 4.12 we show the strong anisotropy in the optical response. The

parameter fm, thatmeasures the amplitude of the effective Fermi energymodulation,
has maxima where the f0 presents minima for some specific angles. This is the origin
of the strong anisotropy in the optical response of the system, which imparts in the
anisotropy of the dispersion relation of the plasmons. In the Fig. 4.11 the parameter
ϕ is also depicted showing a large variation with the angle of polarization of the
pumping field. The significant variation of f0, fm, and ϕ on θ controls the dispersion
of the plasmon in this system.

We emphasize that the results presented in Figs. 4.7-4.12 correspond to the con-
tribution from intraband transitions that take place near the three independent M-
points (in this case the concept of valley is meaningless). Note that Fig. 4.4 shows
the effect of the anisotropic distribution near each M-point and the different oc-
cupations of each M-point. For this electronic distribution, the parity symmetry is
broken (see Fig. 4.4), and, as a consequence, we can have a finite off-diagonal conduc-
tivity. The same symmetry is broken in the Hamiltonian studied by Kumar et al.[86].
However, in this case the parity symmetry is broken by a circular polarized pumping
field that populates each valley differently (in graphene each valley is connected by
the parity symmetry).

One experimental way of accessing the dispersion of the plasmons in a given ma-
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Figure 4.10.: Left panel: Dependence of the components of the effective Fermi energy tensor Eeff
ij −

EF δij on the pumping field frequency. The parameters are: E0 = 0.707 GV/m, θ = π/4,
EF = 0.2 eV, ℏγ0 = 14 meV, and ℏγp = 28 meV. Note the local maximum of the
Fermi-energy tensor-elements around the photon energy ℏω = 2tTB. Also note that the
largest difference between EF

xx and EF
yy occurs at the M−point which implies the largest

anisotropy in the properties of the system, including the plasmon spectrum. We must
stress that for ℏωp ≈ 0 the behavior the effective Fermi energy components are not
accurate, as we have not included the effect of interband transitions, due to the probe of
frequency ω, which become relevant for ωp ∼ ω, specially in the case of neutral graphene.
Right panel: Zoom in of the dependence of the parameter f0 with E0 near the absolute
maximum. Inset panel: Scaling of the frequency of the maximum, ωm, with the

√
E0

(right panel); the linear scaling is evident. The values of ωm are extracted from the
central panel, and correspond to the position of the maximum of the curves for f0. Note
that the larger E0 is the broader is the maximum and more intense is f0.

terial is to perform a EELS experiment. This spectroscopic technique is based on
the excitation of plasmons by moving charges. When exciting a plasmon wave, the
incoming electrons lose part of their kinetic energy. Theoretically, the loss function,
which encodes the excitation of the plasmons by the moving electrons, is defined in
terms of the dielectric function (4.14) as:

L(q, ω) = −ℑ
{

1

ε(q, ω)

}
. (4.33)

This quantity is depicted in Fig. 4.13, for different values of the probing polarization
angle φ. The dielectric function was calculated using Eq. (4.14) and the pumping
susceptibility is given by Eq. (4.11). In Fig. 4.13 we can see the characteristic plas-
mon signature in the loss function. It is clear that the plasmon spectrum depends
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Figure 4.11.: Dependence of the parameters determining the effective Fermi energy on the pumping
polarization angle. Note that for some values of θ the magnitudes of f0 and fm are
almost identical. Also the angle ϕ varies substantially with θ. The largest anisotropy in
the properties of the system occurs for the largest difference between f0 and fm. The
parameters are: E0 = 0.707 GV/m, ℏωp = 2tTB, EF = 0.2 eV, ℏγ0 = 14 meV, and
ℏγp = 28 meV.

Figure 4.12.: Dependence of the effective Fermi-energy Eeff
ij − EF δij on the polarization angle of the

pumping field. We emphasize that our calculations take the three M−points into account
simultaneously since we are making a tight-binding calculation. Therefore there is no
cancellation of Exy. The parameters are: E0 = 0.707 GV/m, ℏωp = 2tTB, EF = 0.2
eV, ℏγ0 = 14 meV, and ℏγp = 28 meV. Note the periodic behavior of the different
parameters.

significantly on the polarization of the probing field, or, in other terms, on the direc-
tion of the momentum in the Brillouin zone. The width of the plasmon spectrum
is proportional to the relaxation rate γ0. For making apparent the anisotropy we
also depict (solid line) the dispersion of the plasmon after an average of the effective
Fermi energy on the polarization angle φ; the anisotropy is obvious.

Let us now discuss the reason why the plasmon characterizing pumped graphene
out-of-equilibrium is similar to that of doped graphene in equilibrium, in what con-
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Figure 4.13.: Loss function for different polarizations of the probe field as function of the dimensionless
wavenumber (multiplied by 103). The parameters are E0 = 0.707 GV/m, θ = π/4,
ℏωp = 2tTB, EF = 0.2 eV, ℏγ0 = 14 meV, and ℏγp = 28 meV. The solid (cyan) curve
is the plasmon dispersion for the semi-analytical result in Eq. (4.20) after an average of
the effective Fermi energy on the polarization angle φ

cerns their small energy values. In the latter case, for ℏω+ ℏvF q < EF and ω > vF q,
where q is the wavenumber and ω the frequency, interband process are suppressed
by Pauli-blocking and the susceptibility is dominated by intraband processes, where
losses are proportional to the relaxation rate γ0 (for γ0 = 0 the usual plasmons are in-
finitely long-lived in this momentum-frequency window). In this regime, graphene
supports plasmons with small attenuation with a dispersion relation proportional to√
q. On the other hand, when we consider the case of the pumped distribution, the

situation is similar, because interband process, that attenuates the plasmon, only
occur for frequencies ω near the pumped frequency ωp. Since we are considering
the regime ω ≪ ωp, the attenuation of the plasmons of the non-equilibrium elec-
tron gas is essentially controlled by the value of γ0 (the plasmons cannot decay via
particle-hole processes in this regime, as it happens in the case of an equilibrium
plasma). Therefore, the correspondent pumped susceptibility is similar in the sense
that the imaginary part is proportional to the scattering time [see Eq. (4.16)]. Thus,
we can expect for plasmons in the out-of-equilibrium electron gas the same level
of attenuation of the conventional plasmons in graphene. As consequence the for-
mer anisotropic plasmons are expected to be long lived as are their siblings in the
equilibrium electron gas.

In Fig. 4.14 we show that the graphene static susceptibility have zeros that renders
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the term (τω)−1χ(q, ω)/χ0(q) (τ = 1/γ) in Mermin’s susceptibility large, even at
small q. In this case the use of the Mermin’s equation is no longer valid, since the
assumption that the fluctuations of the local Fermi Energy, which are proportional
to 1/χ0(q), are small is no longer true and the approximation leading to Mermin’s
equation breaks down.

Figure 4.14.: Static susceptibility for q = 2.10−3, E0 = 0.707 GV/m, and θ = π/4 as function of the
polarization angle of the probe field. Note the existence of points where the susceptibility
is zero. Near and and at these points Mermin’s approach breaksdown.

4.7. Spectrum of the surface plasmon-polaritons in the
out-of-equilibrium regime

As a conductive two dimensional system, graphene supports surface plasmon-pola-
ritons. We now want to address the propagation of these quasi-particles on the sur-
face of graphene due to the electron gas created by the pumping field. We will see
that the surface plasmon-polariton spectrum in pumped graphene shows a disper-
sion strongly dependent on the φ angle, the polarization angle of the probing field.
A surface plasmon-polariton (SPP) is an hybrid particle that couples electromagnetic
radiation to the free oscillations of an electron gas in a conductor. In graphene, the
spectrum of an SPP depends critically on the nature of the optical conductivity of
the system (for a discussion about surface plasmon-polariton in graphene see Refs.
[12, 96]). Indeed, it can be shown that the condition for the existence of an SPP is
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given by[12] [
ε1
k1

+
ε2
k2

+
iσxx
ωε0

] [
k1 + k2
ωµ0

− iσyy

]
− σxyσyx

ωε0
= 0, (4.34)

for a wave propagating along the x direction and decaying exponentially along the

Figure 4.15.: Surface plasmon-polaritons dispersion relation, of the out-of-equilibrium electron gas, for
different values of the angle φ of the polarization of the probing radiation as function
of the dimensionless wave vector. Note that all the angles in the interval φ ∈ [0, 2π]
are contained in the shaded region. The parameters are: E0 = 0.5 GV/m, ℏωp = 2tTB,
θ = π/4, EF = 0.4 eV, ℏγ0 = 14 meV, and ℏγp = 28 meV.

direction perpendicular to the graphene plane. When σxy = σyx = 0, the transverse
electric and the transverse magnetic modes decouple. In the case we are considering
here this is not the case, since the non-equilibrium nature of the electron gas created
by the pumping induces a finite value for σxy. However, since time reversal symmetry
is not explicitly broken in this case, we have the condition that σxy = σyx. Using
the calculated conductivity tensor in Eq. (4.29) and the coefficients Cij calculated
through Eq. (4.44), the spectrum of the SPP can be obtained.

The dispersion relation of the surface plasmon-polariton due to the non-equili-
brium electron gas depends on the orientation of the direction of propagation of
the wave with respect to the crystalline lattice. To describe the propagation along
another direction, we can rewrite Eq. (4.34) in the new reference frame or, alterna-
tively, rotate the conductivity tensor. The latter can be achieved with the usual 2D
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rotation matrixMφ, σ′ =MφσM
−1
φ :

Mφ =

(
cosφ − sinφ
sinφ cosφ

)
. (4.35)

In Fig. 4.15 we show, for fixed E0, ωp, EF , and θ, the surface-plasmon polariton in
graphene from the solution of Eq. (4.34). The shaded region corresponds to different
values of the variable φ, between those represented by the black solid lines at the
borders of the shaded region. We see again the strong dependence of the optical
properties upon the probe angle φ, which is measured by the anisotropy in the SPP
spectrum. Note that the variation of the spectrum with φ is quite substantial and
therefore amenable to experimental verification.

4.8. Final comments
In this chapter we have considered a pump-probe problem, where the pumping field
is a relatively intense and pulsed wave field, with a pulse duration much larger than
1 ps. In this situation we can reach a stationary state where an out-of-equilibrium
electron gas is maintained in the conduction band in graphene. We have considered
the case where the frequency of the pumping field lies in the UV-range of the elec-
tromagnetic spectrum. In this case the electrons are pumped to the M−point in
the Brillouin zone. In addition to the pumping, a probe field of much smaller fre-
quency probes the out-of-equilibrium electron gas. This allows us to access the col-
lective plasma wave —plasmons— in the out-of-equilibrium electron gas. We have
shown that for pumping field of this frequency the excitation of the threeM−points
in the Brillouin zone is uneven, at odds with the excitation of an electron gas near
the Dirac points. This is a consequence of the strong deviation of the band struc-
ture of graphene from the Dirac cone approximation. Indeed, near the M−point
the band structure has a saddle point nature being, therefore, very different from
the Dirac cone. Interestingly enough, we have found that the plasmon in the out-of-
equilibrium electron gas still scales with the √q as in the case of the Dirac plasmons.
This is a consequence of the form of the charge-charge susceptibility, which scale as
qiqj (i = x, y) in the long wavelength limit (note that in the Dirac cone approxima-
tion the charge-charge susceptibility scales as q2). This scaling can still be written in
terms of q2 if we introduce an effective Fermi energy, depending on the properties of
the pumping field. The anisotropy of the plasmon dispersion in the Brillouin zone
originates from the scaling qiqj and is enconded in the effective Fermi energy. At
themore fundamental level, the fact that the out-of-equilibrium susceptibility scales
with qiqj in the long wavelength limit is a consequence of the continuity equation
(4.23) that links the susceptibility with the conductivity. If in the long wavelength
limit the susceptibility scales with a power lower than q2 the conductivity would di-
verge and if the power is greater than q2, the conductivity would be null.
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Due to the relation between the charge-charge susceptibility and the optical con-
ductivity, it is possible to define an out-of-equilibrium optical conductivity. Inter-
estingly, the non-linear dependence of the out-of-equilibirum distribution function
on the pumping field allows for a finite value of σintra

xy = σintra
yx ̸= 0. For the interband

conductivity the situation
is identical
σinter
xy = σinter

yx ̸= 0.
Onsagar relation requires
σxy(H) = −σyx(H) in
the presence of magnetic
fieldH , or similarly
broken time reversal
symmetry. A
Hamiltonian with
circular polarized
external light field is not
time invariant, in which
case we would have a
different result from
above.

This has an im-
pact on the spectrum of the surface plasmon-polaritons (SPPs) that can be supported
by the out-of-equilibirum electron gas, as in this case, the TE and TM polarization
are coupled to each other. We have found that the measured values for SPP spec-
trum depend on the orientation of the polarization of the probing field. This is a
consequence of the anisotropy of the optical conductivity of graphene in the regime
considered.

What is missing form the analysis developed in this chapter is a detailed study
of the effect of electron-phonon and electron-electron interactions, which has been
included only at the level of a phenomenological scattering rate. Therefore phenom-
ena such as carrier multiplication is not included in our description. It would be an
interesting to discuss this problem in the regime we have considered, a problem that
was not analysed in the literature before, but this is outside the scope of this chapter.

4.A. Steady-state equations for the distribution functions
under continuous pumping

With the assumption that ∂tnck = ∂tn
v
k = 0 and considering a monochromatic inci-

dent field with frequency ωp, we can write Eqs. (4.1) as:

γ0 (nc,k − fc,k)− i ⟨Ωk(t)∆pk⟩t = 0, (4.36a)
γ0 (nv,k − fv,k) + i ⟨Ωk(t)∆pk⟩t = 0, (4.36b)
(∂t − iωk + γp) pcv,k = +iΩk(t)∆nk, (4.36c)
(∂t + iωk + γp) pvc,k = −iΩk(t)∆nk, (4.36d)

where we use ⟨⟩t for time average. The solution to this set of equations is of the form:

pcv,k, (t) = A1(ωp)e
iωpt +B1(ωp)e

−iωpt, (4.37a)
pvc,k(t) = A2(ωp)e

iωpt +B2(ωp)e
−iωpt, (4.37b)
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where Ai, Bi can be obtained from Eqs. (4.36c) and (4.36d) as:

A1(ωp) = −
nc,k − nv,k
ωp − ωk − iγp

Ω̄k

2
, (4.38a)

B1(ωp) = −
nc,k − nv,k

−ωp − ωk − iγp

Ω̄∗
k

2
, (4.38b)

A2(ωp) = −
nv,k − nc,k
ωp + ωk − iγp

Ω̄k

2
, (4.38c)

B2(ωp) = −
nv,k − nc,k

−ωp + ωk − iγp

Ω̄∗
k

2
, (4.38d)

with:
Ω̄k =

ea0E0 ·∇kΘk

2ℏ
. (4.39)

If we define:

αk = τ0τp|Ω̄k|2
1 + τ2p

(
ω2
k + ω2

p

)
τ4p (ω

2
p − ω2

k)
2 + 2τ2p (ω

2
p + ω2

k) + 1
, (4.40)

with τ0 = 1/γ0, τp = 1/γp, we have from Eqs. (4.36a) and (4.36b) that:

nc,k − fc,k = αk(nv,k − nc,k), (4.41a)

nv,k − fv,k = αk(nc,k − nv,k). (4.41b)

Note that expression for αk is well defined even taking the collisionless regime
(τ0, τp) → ∞.

4.B. Semi-analytical formula for the charge-charge
correlation function

In the longwavelength limit, the susceptibility for finite frequency is written in power
of q2. If we expand υk+q and ωk,q until order q2, we have:

χintra
pump(q, ω) =

2e

ℏa20

∑
λ

∫
d2k

(2π)2
λ∇kυk · q

ω − λ∇kEk · q+ iγ0
, (4.42)

where we used that N(k,q) = 1 +O(q2). Expanding also the denominator we find:

χintra
pump(q, ω) =

4e

ℏa20
1

(ω + iγ0)2

∫
d2k

(2π)2
∇kυk · q∇kEk · q, (4.43)

and thus we can define:

Cij =

∫
d2k

(2π)2
∂iυk∂jEk . (4.44)
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In terms of Cij we rewrite Eq. (4.43) as:

χintra
pump(q, ω) =

4e

ℏa20
1

(ω + iγ0)2

∑
ij

Cijqiqj . (4.45)

Making qx = q cosφ and qy = q sinφ it follows that:

1

q2

∑
ij

Cijqiqj = Cxx cos
2 φ+ Cyy sin

2 φ

+ (Cxy + Cyx) sinφ cosφ . (4.46)

With an integration by parts we can show from Eq. (4.44) that Cxy = Cyx. Using
trigonometric identities we can write Eq. (4.46) as:

1

q2

∑
ij

Cijqiqj =
Cxx + Cyy

2
+
Cxx − Cyy

2
cos 2φ+ Cxy sin 2φ . (4.47)

Defining:

f0 =
1

π

Cxx + Cyy

2
, (4.48a)

fm =
1

π

√(
Cxx − Cyy

2

)2

+ C2
xy, (4.48b)

ϕ = arctan
2Cxy

Cxx − Cyy
, (4.48c)

the susceptibility (4.45) is written as:

χintra
pump(q, φ, ω) =

4e (f0 + fm cos(2φ− ϕ))

ℏ2a20π
q2

(ω + iγ0)2
. (4.49)

It is then possible to defined an effective Fermi energyEeff
F (φ) = EF+f0+fm cos(2φ−

ϕ), which allows to write the total susceptibility as:

χ(q, φ, ω) =
4eEeff

F (φ)

ℏ2a20π
q2

(ω + iγ0)2
. (4.50)

The last result has the same functional formon frequency as that of the charge-charge
susceptibility in the independent electron gas model.
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The study of excitons in bulk transition-metal dichalcogenides (TMDCs) is a research
topic in condensed matter physics that dates back to 1960’s [97, 98]. With the ad-
vent of two-dimensional materials [99], this topic regained interest since it became
possible to study single- and few-layers of TMDCs [100, 101]. Together with its two-
dimensional nature, this new class of materials also has a hexagonal lattice structure
as does graphene. On the other hand, while the low-energy electronic excitations
are in graphene described by a massless Dirac equation, in monolayer TMDCs the
same excitations can be described by a massive (with a gap) Dirac equation. The
absence of a gap in graphene prohibits the existence of bound-states of excitons (but
not of excitonic resonances [102]). On the contrary, we find in TMDCs absorption
spectrum fingerprints of both excitonic bound states (including the presence of a Ry-
dberg series) and of excitonic resonances, due to electron-hole scattering processes,
with energies above the non-interacting gap.

As a consequence of optical experimental studies in few-layers TMDCs, the study
of a new type of excitons in these novel 2D materials became possible. This has at-
tracted a wealth of scientific research [103, 104, 105, 106, 53, 107, 108, 109, 110, 111, 112,
113, 114, 115, 116, 117]. The signature of excitons appeared first in the optical measure-
ments of monolayer MoS2 [101], where two peaks in the absorbance, with energies
∼ 1.9 eV and ∼ 2.1 eV, were identified. These two peaks correspond approximately
to the same results found in several layers of MoS2 [97].

The optical studies of other monolayers of TMDCs soon followed at the pace of
their synthesis. The optical properties of MX2, M={Mo,W}, X={S,Se}, in the range
1.5 − 3 eV were experimentally studied by Li et al. [53], with reflectance and trans-
mittancemeasurements followed by a Kramers-Kronig analyses, and byMorozov and
Kuno [106], with differential transmission and reflectance measurements. It should
be noted that all these four materials have similar optical properties. Their opti-
cal absorbance spectra show signatures of the spin-orbit splitting for excitons at the
K(K’) points in the Brillouin zone, as well as signatures of excitonic resonances at
the Γ-point.
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The properties of the excitons at theK-point were extensively studied in the frame-
work of tight-binding and Bethe-Salpeter equation (BSE) [112, 113], DFT + GW + BSE
[110, 111], and gapped 2D Dirac-equation [113]. One of the most prominent features in
the optical spectra of these materials is its dependence on the Berry phase, which
generates a modified Rydberg series [114, 115]. The form of the electron-electron
interaction potential, which deviates form the Coulomb one, also contributes to a
modified Rydberg series [118]. The C-excitonic resonance in monolayer MoS2, due to
transitions at the Γ-point, was first calculated by Qiu et al. [111], and it was associ-
ated with a minimum in the optical band structure around the Γ-point by Klots et
al. [116]. The effects of temperature and carrier density in MoS2 were studied either
solving the semiconductor Bloch equation (SBE) with a tight-binding Hamiltonian,
whose parameters were obtained from a G0W calculation [117], or by combining a
LDA+BSE approach with the inclusion of electron-phonon coupling [103].

In the present chapter we use the polarization concept formalism [69, 102] for de-
scribing the excitonic properties of monolayer TMDCs. This formalism is easily ap-
plied to any system, both using low-energy effective models or tight-binding ones.
The development of the formalism boils down to the solution of an eigenvalue prob-
lem for determining the excitonic bound states and to the solution of a linear system
of equations for computing the optical conductivity of the system. We apply the
resulting equations to a two-band gapped Dirac equation for describing the physics
around theK-point; this originates the physics of the A and B excitons in the TMDCs
and of a modified Rydberg series. On the other hand, using as a starting point the
three-band model for TMDCs [119] we describe the formation of an exitonic reso-
nance near the Γ-point. This approach allows us to make much analytical progress
and clearly identify the origin of different bound-states and resonances in the ab-
sorption spectrum. In this regards, our approach is distinct from previous ones that
consider the full band structure as a starting point. The advantage of our approach
lies in the possibility of clearly identify the origin of the different peaks in the optical
conductivity, or absorbance for the same matters, of TMDCs.

We show that the optical properties have a strong dependence on external pa-
rameters, namely, temperature and dielectric function of the environment. This
dependence on external parameters opens the possibility of engineering at will nano-
materials showing strong optical response in the spectral range from the IR to visible.
The application of these systems to opto-electronics, including photo-detectors, will
launch a new set of devices in this area. Another possibility that these 2D materi-
als may provide is the engineering Bose-Einstein condensation of excitons when a
TMDC is put inside an optical cavity [120].

The chapter is organized as follows: in section 5.1 we introduce the second quan-
tized form of the Hamiltonian, which is composed of three pieces: the non-interac-
ting part, the light-matter interaction term, and the Coulomb interaction. Using this
Hamiltonian the excitonic properties at the Dirac point are worked out. In section 5.1
we derive the optical properties of four TMDCs around the K-point in the Brillouin
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zone. Using a three-band tight-binding model we describe the excitonic properties
of four TMDCs in section 5.2. The excitonic effects around the Γ−point in the Bril-
louin zone are actually resonances, as they are above the continuum. In section 5.3
the optical properties of four TMDCs are discussed in detail and compared with the
existent experimental data for the absorption. We find a good agreement with the
experimental data, although, since we do not include electron-phonon interaction,
the agreement is not quantitative. We also note that the experimental values for the
absorption present discrepancies among different experiments. This led us to con-
clude that there is a clear sample-dependence in the absorption measurements. In
two of the TMDCs we stress the absence of the B-excitonic series in the experimental
data, which is a noticeable discrepancy with our theoretical calculations. This led us
to believe that the experiments need to be repeated for encapsulated TMDCs in h-BN
at low temperatures. This approach screens away the effect of extrinsic disorder, and
reduces the impact of phonons in the absorption spectrum, due to low temperatures.
Finally, in section 5.4 we provide a summary of the main conclusions of the chapter.
A set of appendices give details of the calculations.

5.1. K-point excitons

In this section we introduce the effective model for electronic properties of TMDCs
around the K-point in the Brillouin zone. Since we are dealing with a many-body
problem, the second quantization formalism is used throughout the chapter. Using
the full interacting Hamiltonian, the equations of motion for the density matrix are
obtained and from it the total polarization is derived. The electron-electron interac-
tion generates a hierarchy of correlation functions that are truncated at the random-
phase approximation (RPA) level. This procedure is equivalent, in a diagrammatic
approach, to the inclusion diagrams considering only the interaction in the electron-
hole propagator. The diagrams relevant to our calculation are given in figure 5.1,
where K represents the BSE kernel (see ahead). Although the diagrammatic ap-
proach is a possible route to solve the problem of excitonic effects in TMDCs, it is also
possible to address it using an equation-of-motion approach. The latter formalism
enables treating at the same level of approximation the exchange-energy correction
and the excitonic effects, and that is the path we will follow in this chapter.

The band structure implied by Hamiltonian (5.1) around the K−point in the Bril-
louin zone is depicted in figure 5.2 (different colors correspond to opposite spin pro-
jections).

The low-energy single-particle electronic-excitations of TMDC materials can be
described, in the k ·p approximation, by a 2D gapped Dirac equation. When we con-
sider spin-orbit coupling (SOC), the effective mass and chemical potential become
valley and spin dependent. With these aspects in mind, we can write the single-
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Figure 5.1.: Diagramatic expression of the Bethe-Salpeter equation for the vertex function. Our trun-
cation of the equation-of-motion for the density matrix (when we introduced the RPA
approximation) is equivalent to consider the kernel of the BSE in the ladder approxima-
tion. However, a more precise approach would require more diagrams to be summed in
the kernel.

Figure 5.2.: Band structure of WSe2 and MoSe2 around the K−point in the Brillouin zone, as described
by Hamiltonian (5.1). Note that for WSe2 the bands of different spin projections (different
colors) do not cross, whereas for MoSe2 there is a crossing in the conduction bands. Due
to these differences, the optical response of the two materials as function of doping differs
from each other. In particular, in WSe2 the highest-energy exciton peak is suppressed
upon doping when compared to the lowest one. (We have located the chemical potential
at the top of the valence band.)

particle Hamiltonian for a single combination of valley(τ )/spin(s) index as:

Hsτ
0 (k) = ℏvF (τσ1kx + σ2ky) + σ3msτv

2
F − µsτI, (5.1)

with σi the usual Pauli matrices and I the identity matrix, τ = ± the valley index,
and s = ± the spin index. The effective mass, msτ , and the on-site energy, µsτ , can
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be written in terms of the SOC parameters, Λ1 and Λ2 [121], and of the mass ∆ as:

msτ = ∆− sτ

2

Λ1

v2F
, (5.2)

µsτ =
1

2
sτΛ2 . (5.3)

with Λ1 = ∆VB −∆CB and Λ2 = ∆VB +∆CB, with ∆VB (∆CB) the spin-splitting of
the valence (conduction) band.

In three dimensions (3D), the electron-electron interaction in a dielectric medium
is given by the Coulomb potential in vacuum but with the permittivity of free space
ε0 replaced by the medium permittivity εmε0. Contrary to 3D, the same procedure
does not hold in 2D materials. In contrast, the electron-electron interaction is de-
scribed by the Keldysh potential [6, 122]. See appendix D for a

discussion between the
relation of the Keldysh
potential and the static
RPA.

This takes into account the surface charge
polarization from a dielectric thin film and reads in momentum space:

V (q) = − e

2ε0

1

q(r0q + εm)
, (5.4)

where q is the 2D transfered momentum, εm and r0 are the capping dielectric func-
tion of the environment and a material-dependent constant, respectively, the latter
measuring the deviation from the 2D Coulomb potential. Note that we recover the
2D Coulomb potential making r0 → 0. The potential (5.4) is written in a slightly dif-
ferent manner than in reference [122] for removing the dependence of the parameter
r0 on the external dielectric constant.

To calculate the optical properties of TMDCs, we consider the interaction of the
electron gas with a time-dependent electric field E(t) polarized along the x axis. For
describing the light-matter interaction in this problem we use the dipole-coupling
Hamiltonian

ĤI(t) = eE(t)x̂, (5.5)

with x̂ the position operator and e > 0 the magnitude of the electron charge. For the
external field, we only consider the interband terms of the Hamiltonian ĤI as we are
discussing a neutral system. In this condition ĤI reads:

ĤI = −E(t)
∑
sτλ1k

dsτλ1
(k)ρ̂sτλ1−λ1

(k, t), (5.6)

where λ = ± stands for the conductance (+) and valence (−) bands. The interband
dipole matrix element dsτλ1

(k) is given by:

dsτλ1
(k) = −ieℏ

vsτλ1
(k)

2λ1Esτ
k

. (5.7)
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with vsτλ1
(k) the matrix element of the velocity operator (E.10). See appendix E for

the derivation and explicit formulas.
From now on, we consider the full many-body Hamiltonian as:

Ĥ = Ĥ0 + ĤI(t) + Ĥee, (5.8)

where Ĥ0 is built from the single-particle Hamiltonian (5.1) and Ĥee is the electron-
electron interaction:

Ĥee = −e
2

∫
dr1dr2ψ̂

†(r1)ψ̂
†(r2)V (r1 − r2)ψ̂(r2)ψ̂(r1), (5.9)

where ψ̂(r) is the field operator (5.10) defined below and V (q) is the Fourier trans-
form of the Keldysh potential given by equation (5.4). For simplicity, from here on
we choose units such that vF = ℏ = e = 1; the usual units are reintroduced at the
end of the calculations. The field operator is given by:

ψ̂(r, t) =
1√
S

∑
k,λ,s,τ

ϕsτλ (k)âλksτ (t)e
ik·r, (5.10)

with S the square-box area, âkλsτ the usual annihilation operator that obeys anti-
commutation relations and ϕkλsτ the eigenfunctions of Hsτ

0 , Hsτ
0 ϕ

sλ
τ (k) = (λEsτ

k −
µsτ )ϕ

sλ
τ (k), with λ = − (+) for the valence (conduction) band. The eigenfunctions

and positive eigenvalues are given by:

ϕsτλ (k) =

√
Esτ

k + λmsτ

2Esτ
k

(
1

τkx−iky
λEsτ

k +msτ

)
, (5.11)

Esτ
k =

√
k2 +m2

sτ . (5.12)

The eigenfunctions (5.11) will be used extensively in this chapter for determining the
four-body structure factor. The electron-electron interaction can be written as (see
Sec. 3.A):

Ĥee = − 1

2S

∑
sτλ1λ2λ3λ4

∑
kk′q

V (|q|)F sτ
λ1λ2λ3λ4

(k,k′,q)â†λ1k′−qsτ (t)â
†
λ3k+qsτ (t)×

×âλ4ksτ (t)âλ2k′sτ (t). (5.13)

where the four spinor product is (3.29):

F sτ
λ1,λ2,λ3,λ4

(k1,k2) = ϕsτλ1

†(k1)ϕ
sτ
λ2
(k2)ϕ

sτ
λ3

†(k2)ϕ
sτ
λ4
(k1). (5.14)
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5.1.1. Equation of motion and optical properties

Here we will consider that the dynamics of each pair spin/valley separated, i.e., we
will neglect the interaction that can occur between pairs of different valleys and
spins: from this we start now to add a sτ label in each quantity that depends on
the spin/valley. In chapter 5 we derived the SBE for a two-bandy system, obtaining
(3.64):

− i∂tp
sτ
λ (k, t) = −ω̃sτ

λkp
sτ
λ (k, t) + Ω̃sτ

kλ(t)∆f
sτ
λ (k), (5.15)

where the renormalized Rabi frequency is given by:

Ω̃sτ
kλ(k, t) = E(t)dsτ−λ(k) + Bsτ

kλ(t), (5.16)

the difference in occupation is given by ∆fsτλ (k) = fsτλ (k)− fsτ−λ(k), where fsτλ (k) is
the Fermi-Dirac distribution:

fsτλ (k) =

{
exp

[
λEsτ

k − µsτ − EF

kBT

]
+ 1

}−1

, (5.17)

with T the temperature, kB the Boltzmann constant and EF the Fermi energy.
We have that Bsτ

kλ(t) is given by Eq. (3.58):

Bsτ
kλ(t) = − 1

S

∑
q

V (|k− q|)
[
pλ(q, t)F

sτ
−λ−λλλ(k,q) + psτ−λ(q, t)F

sτ
−λλ−λλ(k,q)

]
,

(5.18)
and the renormalized transtion energy is (3.59):

ℏω̃sτ
λk = 2λEsτ

k + λΣxc,sτ
k,λ , (5.19)

with the exchange self-energy given by (3.60):

Σxc,sτ
k,λ (t) = −λ

S

∑
q

V (q)∆fsτλ (k−q)
[
F sτ
−λλλ−λ(k,k−q)−F sτ

λλλλ(k,k−q)
]
. (5.20)

The external electrical field is written as E(t) = E0e
−iωt, and the linear-response

is obtained from the terms proportional to e−iωt, psτλ (k, t) = psτλ (k, ω)e−iωt. The
equation-of-motion (5.15) in the linear regime becomes:

(ω + ω̃sτ
λk) p

sτ
λ (k, ω) = −

(
E0d

sτ
−λ,x(k) + Bsτ

kλ(ω)
)
∆f sτλ (k), (5.21)

with Bsτ
kλ(ω) obtained replacing psτλ (k, t) by psτλ (k, ω) in equation (5.18):

Bkλ(ω) =
1

S

∑
q

V (|k− q|)
[
pλ(q, ω)F−λ−λλλ(k,q) + p−λ(q, ω)F−λλ−λλ(k,q)

]
.

(5.22)
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Once equation (5.21) is solved for the transition probabilities psτλ (k, ω), the total
polarization P (t) = P (ω)e−iωt can be obtained from the expectation value of equa-
tion (E.13)See Appendix E.1 for the

derivation.
:

P (ω) = S
∑
sτλ

∫
dk

(2π)2
dsτλ (k)psτλ (k, ω), (5.23)

and the optical conductivity follows from the macroscopic relation between the po-
larization current density and the polarization density J(t) = ∂tP(t):

σ(ω) = −i
ω

SE0
P (ω). (5.24)

The presence of the excitonic term, equation (5.30) inΩ1sτ
kλ(ω), makes the equation

of motion (5.21) a system of two coupled Fredholm integral equations of the second
kind for the transitions probabilities psτλ (k, ω), λ = ±, that has to be solved for each
spin/valley pair sτ . The correspondent homogeneous equation [that can be obtained
making E0 = 0 in equation (5.21)], corresponds to a Fredholm integral equation of
the first kind. The solution of the latter will be explored in the next section.

5.1.2. Calculation of the exchange energy

The exchange self-energy (3.60) reshapes the electronic bands and, as will be shown
later, it is essential to correctly describe the optical properties of TMDCs, specially
the value of the independent-particle energy gap.

For graphene, described by amassless Dirac equation (msτ = 0), the exchange self-
energy was calculated in [123] and [124] with the use of the Couloumb potential. Here
we calculate the exchange self-energy using the Keldysh interaction for the gapped
Dirac equation (m ̸= 0).

The self-energy for the optical band structure, Σsτ,xc(k), is calculated from equa-
tion (3.60) using the expressions in 3.3. Its calculation boils down to an integral over
all possible momentum values:

Σsτ,xc(k) =

∫
dq

4π2
V (q)∆fsτk−q

k · q+m2
sτ

Esτ
k E

sτ
q

, (5.25)

where the difference between the electronic valence and conduction distribution
functions is defined as ∆fsτq = fsτ+ (q)− fsτ− (q).

The direct gap renormalization, for each pair spin/valley, is given by the difference
of the spin/valley top valence band and bottom conduction band energies, that is:

∆sτ = 2msτ +Σsτ,xc(k = 0), (5.26)
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TMDC MoS2 MoSe2 WS2 WSe2
∆(eV) 0.797 0.648 0.685 0.524

ℏvF (eVÅ) 2.76 2.53 3.34 3.17
Λ1(eV) 0.076 0.104 0.164 0.215
Λ2(eV) 0.073 0.082 0.230 0.252
r0(Å) 31.4 51.7 37.9 45.1

∆K(eV) 2.82 2.37 2.78 2.31
Experimental gap 2.5[125] 2.18 [125] 2.14 [126] 2.51 [127]

2.14 [128] 2.02, 2.22 [129] 2.41 [130] 1.58 [131]
1.86 [126] 2.0, 2.18 [129]

Table 5.1.: The first five columns give the material parameters used in all calculations in this chapter.
The parameters in the first four columns come from Ref. [121] and in the fifth column from
Ref. [107]. The sixth column is the direct gap at the K-point calculated with the exchange
self-energy obtained from our model. The last columns are experimental data (numbers in
square braces refer to references). See also [132] for a different set of parameters and, in
particular, the prediction of SOC induced splitting in the conduction band at the K-point.

and for T = 0, the exchange energy can be calculated analytically from equation
(5.25), resulting in

Σsτ,xc(k = 0) =
αmsτ

εmβ

Q(r0msτ , k
sτ
F /msτ )√

1 + (r0msτ )2
, (5.27)

Q(ζ, ξ) = ln

ζ
(
ζ − ξ +

√
ξ2 + 1

√
ζ2 + 1

)
(ζξ + 1)(

√
1 + ζ2 − 1)

 , (5.28)

with α ≈ 1/137 the fine structure constant, β = vF /c the ratio between Fermi-
velocity and the speed of light, and the valley-spin dependent Fermi momentum ksτF
is given by:

ksτF =
√
(EF + µsτ )2 −m2

sτ . (5.29)

We depict the dependence of gap-renormalization on the environment dielectric
constant in figure (5.3). The temperature dependence of the same quantity is given
in figure (5.4), and the renormalized band in figure (5.5). We can see the strong
dependence of the exchange energy on the external parameters (temperature and
dielectric constant of the medium surrounding the TMDC), showing that the envi-
ronment plays a key role on the optical properties of these materials.

A more accurate approach to the calculation of renormalization of the band gap
due to electron-electron interactions requires a self-consistent approach, where the
unperturbedHamiltonianHsτ

0 (5.1) is defined including the self-energy fromelectron-
electron interactions. For graphene this procedure is used to study the possibility of
dynamical generation of a gap in the spectrum [133, 134].
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Figure 5.3.: Dependence of the bandgap renormalization in TMDCs (5.28), computed from the ex-
change self-energy, on the capping dielectric function at T = 0 K. A higher dielectric
constant suppresses the electron-electron interactions and thus the renormalization of the
band gap by exchange energy becomes smaller. The parameters used are from table 5.1.

5.1.3. Excitonic effects in the Rabi frequency

The electron-electron interaction induces the creation of electron-hole bound states
below the non-interacting energy gap (corrected by the exchange self-energy), that
corresponds to excitonic bound states. Also excitonic resonances appear above the
energy gap. These two effects are routinely measured in optical experiments in semi-
conductors [69]. In the equation-of-motion description, the electron-electron inter-
action renormalizes the Rabi frequency, and, as will be shown later, this corresponds
to solve the Bethe-Salpeter equation in the ladder approximation and in the center-
of-mass reference frame. This procedure allows the calculation of the renormalized
expectation value of the x̂ operator.

The renormalized Rabi frequency (5.18), term Bsτ
kλ(t), can be split into two parts

(addition of two terms):

Bsτ
kλ(t) = − 1

S

∑
q

V (|k− q|)psτλ (q, t)F sτ
−λ−λλλ(k,q)−

− 1

S

∑
q

V (|k− q|)psτ−λ(q, t)F
sτ
−λλ−λλ(k,q) . (5.30)

The Eq. (5.21) corresponds to two coupled integral equations, with the unknown
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Figure 5.4.: Temperature dependence of the bandgap renormalization in TMDCs computed from the
exchange self-energy (5.25). Parameters used are from table 5.1.The chemical potential is
set at the top of the valence band, but any other location would give qualitatively similar
results. As the temperature increases, for a fixed chemical potential, the valence band
depopulates, less carriers are available in the band and, as a consequence, the exchange
self-energy decreases.

Figure 5.5.: Renormalization of the transition energy ωk = 2Ek in MoS2 due to the exchange self-
energy (5.25). We can see the band gap shift and an increase in the curvature of the
band, relatively to the independent particle approach. Parameters used were m = 0.796
eV and q0 = 1/33 Å−1
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functions psτ± (k, t). The first termof Eq. (5.30) depends on the same function psτλ (k, t)
of the equation of motion, while the second term couples with the transition ampli-
tude psτ−λ(k, t). Neglecting this latter term we have two independent equations of
motion for psτ+ (k, t) and psτ− (k, t).

5.1.4. Study of homogeneous Bethe-Salpeter Equation:
Excitonic states

The set of equations (5.21), in the homogeneous case, corresponds to the Bethe-
Salpeter equation for the exciton wave function ψsτ

nl with energyEsτ,exc
nl . In this limit

this equation is also known as the Wannier equation [69]. Once the excitonic wave
functions are known we can calculate the absorbance coefficient A(ω) using Elliot’s
formula [69], in a form appropriate for TMDCs; this formula is derived in F.1 follow-
ing a procedure described in [112]; this approach leads to

A(ω) ≈ 4παωγ
√
εm

∑
sτ,l={0,2},n

M sτ
nℓ

(ω − Esτ
nℓ/ℏ)2 + γ2

, (5.31)

whereM sτ
nℓ is the oscillator strength, given by:

M sτ
nℓ =

v2F
2π

∣∣∣∣∫ ∞

0
qdq dsτℓ,+,x(q) [ψ

sτ
nℓ(q)]

∗
∣∣∣∣2 , (5.32)

with ℓ and n the angular and radial quantum numbers, dsτℓ,−(q) is the angular decom-
position of the dipole matrix element, and we have explicitly reintroduced the Fermi
velocity vF for defining the oscillator strength as a dimensionless quantity.

In the system of equations (5.21) we neglect the non-resonant term psτ+ (k, ω), con-
sider the system at zero temperature, and at the charge neutrality point, ∆fsτλ (k) =
−λ. Thus, we have for the homogeneous problem an integral equation for psτ− (k, ω):

(ω + ω̃sτ
−k)p

sτ
− (k, ω) =

∫
dq

(2π)2
V (|k− q|)F sτ

++−−(k,q)p
sτ
− (q, ω) . (5.33)

If we also neglect the exchange self-energy term in the previous result, equation (5.33)
is formally equal to the Bethe-Salpeter equation for the two-body electron-hole wave
function obtained in the center-of-mass reference frame in a gapped Dirac system.
We can write equation (5.33) in the following matrix form:(

Eexc −KBS
)
Ψ = 0, (5.34)

with Eexc = ω the Exciton energy and KBS the integral operator of equation (5.33).
We can use the cylindrical symmetry to write the eigenfunctions of equation (5.33)
as:

psτ− (k, θ, ω) =
∑
nℓ

ψsτ
nℓ(k)e

iθeiℓθ, (5.35)
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with ℓ the angular quantum number (note that we have omitted the dependence of
ψsτ
nℓ(k) in ω). The extra phase in definition (5.35) allows to write equation (5.33) in

the heavymass limitm→ ∞ as a hydrogen-atom equation inmomentum space with
a screened potential [108]. The introduction of a factor eiθ to classify the excitons can
be seen as arbitrary. Since the spinors, given by equation (5.11), also have an arbitrary
global phase that propagates to the four-spinor product (5.14), the best way to define
the s-wave is by a limit condition, that is, taking the limitm→ ∞ we should recover
the spectrum of the hydrogen atom.

Substituting (5.35) into (5.33), and using the orthogonal relations for thewave func-
tion ψsτ

nℓ(k), equation (5.33) becomes the following Wannier formula:

(ω + ω̃sτ
−k)ψ

sτ
nℓ(k) = −

∫ ∞

0
dqT̃ sτ

ℓ (k, q)ψsτ
nℓ(q), (5.36)

with the kernel T̃ sτ
ℓ (k, q) given in appendix 5.B. Equation (5.36) was solved before in

references [112, 113] without the exchange self-energy contribution in ω̃sτ
+k. Here we

include the effect of the exchange term.
The results for convergence of the binding energies, Ebinding

nℓ = ∆sτ − Enℓ, with
∆sτ given by equation (5.26), of the integral equation for the s-wave (ℓ = 0) and the p-
waves (ℓ = ±1) are presented in columns labeled “3000” and “GL” of table 5.2 (in it we
also discuss convergence issues of our numerical methods). In this table we compare
our results with those of reference [113], and because of this we have neglected the
exchange correction as those authors also did. The wave functions for the s-wave
are presented in Fig. (5.6), where we can see the usual increase of nodes for higher
modes. The breakdown of degeneracy in p-waves comes from the ℓ dependence in
the matrix element of the four body spinor product, that appears inside the integral
(5.61), and is a consequence of the Berry curvature of the Dirac Hamiltonian [114, 115].

The Rydberg series for excitons including exchange corrections is presented in fig-
ure 5.7 for all four TMDCs considered in this chapter with the parameters of table
5.2. There are four combinations of spin/valley, but the time-reversal symmetry re-
duces this number to two independent combinations. Each of these will generate a
distinct Rydberg series, that we call A for the lowest fundamental energy and B for
the highest one. Note that the A and B series are split due to SOC. For WS2 we com-
pare the Rydberg series with the experimental work of ref. [130]; our results show a
good agreement with the experimental data, with a deviation smaller than 5 meV.

5.1.5. Integral equation for the vertex function

With the knowledge of the solution of the homogeneous equation, we come back to
the integral equation (5.21), where we add a phenomenological interband relaxation
rate γp to include disorder effects.

We write psτλ (k, θ, ω) = E0Ψ
sτ
λ (k, θ) and proceed as we did in equation (5.35) ex-

panding Ψsτ
λ (k, θ) in the eigenstates of the homogeneous Bethe-Salpeter equation
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50 100 300 600 1200 3000 GL LM Ref.[113]
1s 0.224 0.264 0.304 0.318 0.327 0.333 0.331 0.301
2s 0.033 0.055 0.081 0.092 0.099 0.104 0.103 0.099
2p+ 0.051 0.077 0.107 0.119 0.126 0.132 0.132 0.125
2p− 0.062 0.090 0.122 0.134 0.142 0.148 0.147 0.150

Table 5.2.: Binding energy (in eV) for four different excitonic states of MoS2 corresponding to the
A-series. The first six data rows show the results for the numerical procedure based on a
constant grid discretization; convergence is obtained only for very large grids of the order of
3000. GL accounts for Gauss-Legendre/Laguerre, where the integral in q is divided in three
intervals [0, 0.3∆], [0.3∆, 0.6∆], [0.6∆,∞]. For the first interval we use 100 points, and for
the second and third 50 points are used. In the first two intervals we use Gauss-Legendre
quadrature, and the last one Gauss-Laguerre with a rescale of m/150. The last row (LM)
is the data from reference [113], with excitonic binding energy computed using a lattice
(tight-binding) model. We want to stress that the discretization procedure in a linear mesh
of 3000 points takes several hours to run in a conventional laptop, whereas the GL method
takes only few minutes in the same computer. At a given stage the calculation requires
performing an angular integral of the Keldysh potential V (k − q). Although the integral
can be proven finite, numerically the integral is ill behaved when k = q. For avoiding
this pathology a finite constant of the order of the grid spacing is added to pk,q(θ) in Eq.
(5.61); this renders the integral finite, as it should.

Figure 5.6.: (Color on-line) Unnormalized radial excitonic wave function for MoS2 from the solution of
equation (5.36) for ℓ = 0 at the K−point. We can see the usual increase of nodes with
the higher modes. The size of the exciton, estimated as 2π/k, is of the order of ∼ 10 nm,
or about few of unit cells.
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Figure 5.7.: Exciton eigenvalues of equation (5.34), with exchange effects included, as function of the
radial quantum number n for ℓ = 0. The dashed line corresponds to the spin/valley
dependent gap, given by equation (5.28). The blue circles (green squares) corresponds
to the ↑ K, ↓ K′ (↓ K, ↑ K′) series. Note that for WS2 and WSe2 the B excitons are
all but one (1s=B) inside the continuum of the A excitonic series. This fact is expected
to have important consequences in the absorbance spectrum of these two materials (see
section 5.3).
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Figure 5.8.: Comparison between experimental data (red triangles) from Ref. [130] and our theoretical
model, considering a small amount of doping (green circles and yellow stars), and the
neutral case (blue squares). Exciton eigenvalues of equation (5.34) for WS2, with exchange
effects included, as function of the radial quantum number n for ℓ = 0. The dashed line
corresponds to the spin/valley dependent gap, given by equation (5.28). The parameters of
the mass, Fermi velocity and SOC are from table 5.2. We set r0 = 40.92 Å, slightly larger
than that given in reference [107], 37.89 Å. The effective dielectric constant, including the
effect of the substrate (SiO2), is ε = 2.45.

and angular momentum states:

Ψsτ
λ (k, θ) =

∞∑
ℓ=−∞

ψsτ
λℓ(k)e

iθeiℓθ, (5.37)

and as a consequence:

(ω + ω̃sτ
λk + iγ)ψsτ

λℓ(k) = −∆f sτλ (k)

[
dsτ−λ,0(k)δℓ,0 + dsτ−λ,−2(k)δℓ,−2 +

+

∫ ∞

0
dq
(
T 1,sτ
λ,ℓ (k, q)ψsτ

λℓ(k) + T 2,sτ
λ,ℓ (k, q)ψsτ

−λℓ(k)
)]
, (5.38)

where δℓ,s is the Kronecker-delta, and the kernels T 1,sτ
λ,ℓ (k, q) and T 2,sτ

λ,ℓ (k, q) are given
in appendix 5.B, and the dipole decomposition dsτℓ,λ(k) in appendix F.1.

The diagrammatic representation of equation (5.38) is shown in figure 5.1, where
the internal electron-hole legs are understood to be dressed by the exchange inter-
action.
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5.1.6. Bright and Dark excitons: optical selection rules

We are now in position to discuss the conditions that an exciton can absorb a pho-
ton. From the coupled set of equations (5.38), only ℓ = 0 (s-excitons) and ℓ = −2
(d-excitons) contribute to the optical conductivity, but from our numerical calcula-
tions, the ℓ = −2 mode contribution is negligible for real TMDCs parameters. After
performing the θ-integration in equation (5.23), we obtain for the polarization:

P (ω)

SE0
=
∑
sτλ

∫
kdk

2π
dsτ0,λ(k)ψ

sτ
λ,−2(k) + dsτ−2,λ(k)ψ

sτ
λ,0(k). (5.39)

Finally, the numerical procedure to calculate the optical conductivity is the follow-
ing: we solve the integral equation (5.38) to determine the eigenfunctions ψsτ

λℓ(k),
calculate the polarization from the integral in equation (5.39), and lastly the optical
conductivity is calculated from relation (5.24). The absorbance for aMoS2 suspended
sheet for a TEM wave with normal incidence can be obtained from the optical con-
ductivity as [15]:

A(ω) = απ
4ℜ [f(ω)]

4 + π2α2|f(ω)|2
, (5.40)

with f(ω) = σ(ω)/σ0 and σ0 = e2/4ℏ.

5.2. Excitons at the Γ-point
To describe accurately the optical absorption in the frequency domain after the two
first excitonic peaks (A and B), that is the region roughly located in the interval
2.3− 3.5 eV, we need to describe the excitonic effects due to electronic transitions at
the Γ-point. This implies going beyond the k · p model at K-point. To accomplish
this, we use the three-band model of Liu et al. [119], which was shown to describe
accurately theGGAband structure. Weuse the same equation ofmotion approach in-
troduced in previous section. The dipole matrix element is calculated using a Peierls
approximation [135, 117]:

⟨λk|x̂|λ′k⟩ = i

Eλ′
k − Eλ

k

⟨λk|∂kHk|λ′k⟩, (5.41)

which takes in account vertical interband transitions only.
To proceed with the discussion about excitons (actually excitonic resonances) at

the Γ-point, we have to look in detail into the TMDC band structure depicted in
figure 5.9; this band-structure was calculated using a full relativistic method (see
figure caption for details), that is necessary to correctly account for the spin-orbit
coupling [139] in TMDCs. Very close to the Γ-point, the top of the valence band
(that from now on we label band 0) and the last four conduction bands (that, from
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Figure 5.9.: Electronic bands diagram of single layer MoS2. In red are the valence bands and in blue
the conduction bands. On the right panels a zoom-in of the conduction bands (top) and
valence bands (bottom) near the Γ point is shown. The band diagrams were obtained
using Density Functional Theory in the GGA (PBE)[136] approximation, as implemented
in the QĚĆēęĚĒ ESPRESSO[137] package. An energy cutoff of 70 Ry and a Monkhorst-
Pack[138] grid of 16 × 16 × 1 were used. Mo and S atoms are represented by norm
conserving pseudopotentials generated with fully relativistic calculations including spin-
orbit interaction. To avoid interaction between different images of the layer, a 45 bohr
supercell in the c direction is included. (Courtesy of Ricardo Ribeiro).

here on, are labeled 1, 1′, 2 and 2′, in increasing energy order) are essentially due to
contributions from electrons belonging to the transition-metal d-orbitals. We note
in passing that the bands 0, 1, and 2 are also used in the effective Hamiltonian valid
near the K-point. The four lowest conduction bands at the Γ point (labeled 3, 3′,
4 and 4′, in increasing energy order) are mostly composed of p-orbitals from the
chalcogenides atoms. Fromhere on, we do not consider SOC effects in the three band
model as they are very small at the Γ−point (see right panels in Fig. 5.9). Therefore,
we drop the prime notation of the bands, that is, the bands i and i′ are treated as
spin-degenerated (at the computation level this amounts to a multiplicative factor
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of two affecting the absorbance curves).
The mirror symmetry, with respect to the plane formed by the metallic atoms,

is important to discuss the optical properties of TMDCs. The bands 0, 1 and 2 all
have even symmetry, while the bands 3 and 4 both have odd symmetry. Therefore,
the dipole matrix elements between bands with different mirror symmetry vanish
(note that the mirror symmetry refers here to the z−coordinate). As a consequence,
the existence of excitons composed of holes from the 0 band and electrons from the
bands 3 and 4, they are optically dark under a single-photon experiment. This implies
that we restrict the calculation of excitonic effects near the Γ−point considering only
the optical properties of excitons composed of holes from band 0 and electrons from
bands 1 and 2. These optical transitions generate a modified Rydberg series, which
is a consequence of the non-parabolic dispersion relation of the optical band [see
equation (5.45)] and finite Berry curvature at the Γ-point and as well as from the
form of the Keldysh potential.

To calculate the optical properties of the excitons at the Γ-point, we use the same
equation of motion method developed in previous section. We define transition
probabilities p0i(k, t) = ⟨â†ik(t)â0k(t)⟩, that represent the annihilation of an electron
at the valence band 0 and a creation of an electron at the conduction band i = 1, 2.
The equation of motion is given by (3.31), making λ1 = 0 and λ2 = 1, 2, the latter two
values represent the two possible bright excitons at the Γ-point. On the other hand,
the H0 = H3b

0 Hamiltonian is the three-band model given by Liu et al. [119], that
describes, up to the next-nearest-neighbor order, the effective tight-binding model
between the metal atoms M={Mo,W}. We are interested only in the term equiva-
lent to the Bethe-Salpeter equation (encoded in the Rabi frequency renormalization
term):

B3b
ki (ω) = − 1

S

∑
q

V (|k− q|)F 3b
0i (k,q)p0i(q, ω), (5.42)

which is obtained from equation (3.31) from the terms with λ3 = 0, λ4 = 0, i and
λ5 = i. For the model we are considering, the four-body spinor is given by:

F 3b
0i (k,q) = ϕ†0(k+ q)ϕ0(k)ϕ

†
i (k)ϕi(k+ q), (5.43)

and is obtained numerically from the diagonalization of the 3 × 3 matrix defining
the three-band model, with ϕi the wave function of the i-band.

In our calculation, the exchange self-energy is included as an energy shift from
the renormalization of the band gap [see equation (5.28)]. We also ignore spin-orbit
effects in the calculations at the Γ-point, as these are very small. The equation that
we need to solve for obtaining the transition probability p0i(k, θ, ω) reads:

[ω − ωi(k, θ)] p0i(k, θ, ω) = −∆fid
Γ
i (k, θ)E0 +

∆fi
1

Sc

∑
q,θ′

V (k, q, θ − θ′)Fi(k, q, θ, θ
′)p0i(q, θ

′, ω), (5.44)
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with Sc the unit cell area, ωi(k, θ) = Eik,θ −E0k,θ, Eik,θ, and E0k,θ the eigenvalues of
the three-band Hamiltonian H3b

0 , ∆fi = fik,θ − f0k,θ is the difference in occupation
numbers between bands i and 0 (given in terms of the Fermi-Dirac function), and the
dipole element dΓi (k, θ) = ⟨λk|x̂|λ′k⟩, with the expectation value calculated using
equation (5.41).

Since we only need the band-structure near the Γ−point we approximate the op-
tical band structure near this point by the Fourier series:

ωi(k, θ) ≈ hi0(k) + hi6(k) cos(6θ) + hi12(k) cos(12θ), (5.45)

with hiℓ(k), ℓ = 0, 6, 12 are polynomials of degree six (this expression is valid up to
momentum values of the order of 2π/(3a0), where a0 is the lattice parameter). Ex-
pression (5.45) describes accurately the optical band structure near the Γ-point. For
k → ∞ the optical band approximation (5.45) diverges. Although the contributions
for k → ∞ becomes negligible to the excitons’ wavefunction, the approximation
(5.45) makes the numerical convergence faster. Using the angular decomposition
(5.10), pi0(k, θ, ω) = E0

∑
ℓ c

i
ℓ(k)e

iℓθ (note that we have omitted the dependence of
ciℓ(k) in ω), we can write the Bethe-Salpeter equation (5.44) as (where we have made
∆fi = −1 since are interested in a neutral system):

ωciℓ(k)−
∑
ℓ′

ω̃i
ℓ′(k)c

i
ℓ−ℓ′(k) = dΓi,ℓ(k)−

∑
ℓ′

∫
q
dq

2π

∫
dθ

2π

∫
dθ′

2π
e−iℓθeiℓ

′θ′ ×

×V (k, q, θ − θ′)F 3b
0i (k, q, θ, θ

′)ciℓ′(k), (5.46)

and ω̃i
ℓ(k) =

∫ 2π
0

dθ
2π eiℓθωi(k, θ).

The previous equation couples coefficients ciℓ with different angular momentum
numbers ℓ through two terms: the kinetic term

∑
ℓ′ ω̃

i
ℓ′(k)c

i
ℓ−ℓ′(k) and the electron-

electron interaction term (Rabi frequency renormalization term). The kinetic term
couples only coefficients having different angular momentum values, but this term
gives a negligible contribution to the optical response when ℓ ̸= ℓ′. This is a conse-
quence of the fast vanishing of the potential V (k, q, θ − θ′) whenever θ − θ′ ̸= 0 and
θ−θ′ is varied. Therefore, we can replace the four-body spinor functionF 3b

0i (k, q, θ, θ
′)

by its average angular value as follows:

F̃ 3b
0i (k, q, θ

′) =

∫ 2π

0

dθ

2π
F 3b
0i

(
k, q, θ − θ′

2
, θ +

θ′

2

)
. (5.47)

and the effective potential is given in this approximation by:

Ṽ i
ℓ (k, q) =

∫ 2π

0

dθ′

2π
eiℓθ

′
V (k, q, θ′)F̃ 3b

0i (k, q, θ
′). (5.48)

The approximation (5.48) and (5.47) keeps the hermiticity of equation (5.46). Fi-
nally, we replace the potential term in equation (5.46) by (5.48), where we arrive at
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Figure 5.10.: Angular decomposition from each contribution to the optical conductivity for the exciton
at the Γ-point for the 01 exciton (see section 5.2 for the definition). In the calculation
we have used the example of MoS2. This exciton is composed of Mo d-states. Each
angular decomposition has also angular components ℓ± 6 and ℓ± 12, a consequence of
the optical band structure (5.45).

the coupled set of integral equations:

ωciℓ(k)−
∑

ℓ′=0,±6,±12

ω̃i
ℓ′(k)c

i
ℓ−ℓ′(k) = dΓi,ℓ(k)−

∫ ∞

0
qdqṼ i

ℓ (k, q)c
i
ℓ(q). (5.49)

To solve (5.49), the summation in ℓ′ gives five additional terms [ℓ′ = 0,±6,±12;
see equation (5.45)] that are coupled together. This generates a hierarchy of equa-
tions for the coefficients ciℓ(k). Therefore, the solution of equation (5.49) has to be
truncated at some ℓ value. In this procedure we have assumed that the contributions
above ci18(k) are vanishing small. This is confirmed by figure 5.10, which shows that
for ℓ = 5 the contribution is already small (note that for this curve we have all the
coefficients ciℓ(k), with ℓ = −7,−1, 11, 17 entering the calculation of the conductiv-
ity, see below). In terms of the coefficients ciℓ(k) the conductivity is computed as
follows. The expectation value of the polarization operator can be calculated as we
did in section 5.1, and results in:

P (ω) = −2S
∑
i=0,1

∫ ∞

0

∫ 2π

0
k
dk

2π

dθ

2π

[
dΓi (k, θ)

]∗
pi0(k, θ, ω), (5.50)
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(a) Excitons composed of bands 0 and 1.
Note that all excitons have nodes along
the Γ−M direction (vertical).

(b) Excitons composed of bands 0 and 2.
Note that the all exciton have nodes
along the Γ−K direction (horizontal).

Figure 5.11.: Exciton wave function in momentum space at the Γ point.

where we account for the spin degeneracy introducing a factor of two. The conduc-
tivity can be obtained from equation (5.24), and we can separate the contribution for
each band i. Performing the angular integral in the equation for P (ω) we obtain:

σi(ω)

σ0
= −8iω

∞∑
ℓ=−∞

∫ ∞

0
k
dk

2π

[
dΓi,ℓ(k)

]∗
ciℓ(k). (5.51)

Once the coefficients ciℓ(k) are determined from the solution of (5.49) the conductiv-
ity follows from the previous equation.

The solution of (5.49) also give us the excitonic wave functions in momentum
space. The results for the first excitonic energy, for each angular momentum mode,
is shown in figure 5.11a for the exciton composed from an electron in band 1, and in
figure 5.11b for an electron in band 2. From a careful inspection of figures 5.11a and
5.11b, we can see that the nodes of exciton with band index i = 1, ℓ = 0 lies along the
Γ −K direction, while the nodes of exciton with band index i = 2, ℓ = 0 lies along
the Γ-M point.
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5.3. Results

In this section we have perform a thorough analysis of the absorption spectrum of
four TMDCs. For computing the absorbance, the optical conductivity is needed. Tak-
ing the example of MoS2, the decomposition of the real part of the optical conduc-
tivity, coming from different angular momentum contributions of the exciton at Γ-
point, associated with the transition 0 → 1, is shown in figure 5.10; remember that
each contribution is composed of ℓ = 0, ℓ ± 6, and ℓ ± 12 angular momentum com-
ponents.

It is important to introduce here a note on notation: the peak at lowest energy is
denoted by A= 1s and the next Rydberg energy level in the A-series is denoted by
A’= 2s; this corresponds in a given valley and to a given spin projection. In the same
valley, and for the other spin projection, the peaks belong to the B-series, with the
lowest energy is denoted by B=1s and the next one by B’= 2s. For MoX2 TDMC’s the
energy order is A, B, A’, and B’, whereas for WX2 TMDCs the energy order is A, A’, B,
and B’. This agrees with the notation introduced in figure 5.7.

The absorbance, and the real and the imaginary parts of the optical conductivity,
for four TMDCs considered in this chapter, are shown in figure 5.12, with the param-
eters of table 5.1. That is, in this figure we do not try to fit the data but simply use the
parameters characterizing the potential and the band-structure of the TMDCs given
in other papers. In figure 5.13, on the contrary, we fit the A peak position chang-
ing r0 and we also add a chemical potential, since, as noted in Refs. [140, 141] all
TMDCs samples have a certain and undetermined amount of negative doping. We
note in passing that at the time of writing different experiments report distinct per-
centages for absorption of radiation for two, supposedly identical, TMDCs. Table
5.3 gives, from four different references, the measured values of the absorbance of
MoS2 samples; as it can be seen the values fluctuate among different experiments.
Also, our model predicts, at low temperatures, larger absorption peaks than those
measured at room temperature. This result makes sense, but when we increase the
temperature we never obtain values as small as those reported in the experiments for
MoS2. It is now known [142] that excitonic spectrum of TDMC’s samples in SiO2 are
strongly influence by the disorder of the substrate. In this reference it is shown that
encapsulated samples in h-BN have much narrower excitonic peaks. Therefore our
results should agree with absorbance measurements in these encapsulated samples
(measurements yet to be made).

Next, we analyze each aspect of the optical spectrum of each TMDC and compare
our results with the experimentalmeasurements available to date in a large frequency
window. The parameters used in our calculations are: (i) at the K-point we used the
values in table 5.1 and a broadening γK = 50 meV; (ii) at the Γ-point we used the
GGA parameters of the three-band model given by Liu et al. [119], the same Keldysh
parameters of table 5.1, and a broadening γΓ = 100 meV. Note that exception made
to the broadening parameters, all the other values were taken of the literature and
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Excitonic peak Model [101] [53] [106] [140]
A 14 10.8 7.4 3.8 7.5
B 15 10.5 8.6 5.0 8.0

Table 5.3.: Absorbance (in percentage) of A and B peaks for MoS2. The table gives a comparison
between our theoretical model and the experimental results for samples deposited on silica
([101],[53],[106]), and a FET device [140], where the MoS2 is deposited on top of silicon and
under a voltage gate of −10 V. The “Model” refers to the theoretical approach developed
in this chapter and we have considered MoS2 on top of silica (ϵsilica = 1.46). This value
of ϵsilica translates into an ϵm = (1 + 2.13)/2, which is the value we use in our equations.
Remember that in our model both the peak intensity and the peak width are dependent
on the choice of the relaxation rate γK . We can artificially reduce the height of the peak
at the expenses of increasing its width. It is worth noting the variation of the experimental
values for the absorbance among themselves.

no attempt was made to choose them in order to fit the data, with exception to the
case reported in figure 5.13.

• MoS2 The two first peaks in the absorbance, A and B, correspond to the A(1s)
and B(1s) excitons. The different position of the two peaks is a consequence of
SOC splitting of the bands. The last two peaks in the absorbance spectrum,
C01 ans C02 (having about the same intensity –see the conductivity curve),
correspond to the sum of different angular momenta contributions from the
Γ-excitons (actually excitonic resonances). The third (C01) peak is associated
with the transition from the top of the valence band to both the 1 and 1’ conduc-
tion bands at the Γ-point (conduction bands number 5 and 6 in figure 5.9); we
have considered these two degenerated since SOC is small in this case. Finally,
the fourth peak (C02) comes from transitions connecting the top of the valence
band and the 2 and 2’ conduction bands (also taken degenerated; conduction
bands 7 and 8 in figure 5.9).

The real part of the conductivity follows closely the absorbance spectra, as ex-
pected. Usually, the imaginary part of the conductivity from a single excitonic
contribution is negative for ℏω < Eb and positive for ℏω > Eb, where Eb is the
binding energy, a result that can be obtained by inspection of Elliot’s formula
for the optical conductivity (F.11).

Let us now discuss the differences between experimental data and our model.
We note that the rigid shift to the left performed by Wu et al. [113], and Stein-
hoff et al. [117] is not necessary in our case. The difference in intensity of A
and B peaks is probably a consequence of the phonons that exist at finite tem-
perature. This effect was not considered in this chapter but was shown to be
important for the peaks’s broadening [111, 103].

Lastly, we discuss the excitonic effects at the Γ-point. The optical measure-
ments identify only one peak, which seems to correspond to the C02 exciton.

80



5.3. RĊĘĚđęĘ

Figure 5.12.: Absorbance and optical conductivity of four TMDCs computed from formula (5.40),
assuming the materials are neutral and in vacuum; there is no fitting of the data. The
real part of the conductivity has the peaks labeled by the corresponding excitonic series,
A (1s=A and 2s=A’), B (1s=B and 2s=B’), and C (all contributions from figure 5.10 for
the transitions 0→ 1 and 0→ 2). The former two are due to transitions at the K-point
and the latter to transition at the Γ-point. Experimental data for the absorbance (solid
black curves) is taken from reference [53]. The model parameters are given in table 5.1
for the excitons at the K-point and in reference [119] for the Γ−point; for all but WS2

the parameter r0 has been replaced by r0ϵ, with ϵ the effective dielectric constant for a
fused silica substrate; a similar procedure was used in reference [130]. See section 5.3
for a discussion of the similarities and differences between the data and the computed
spectra. The vertical black line in the central panels define the energy value above which
we enter the continuum of the A-series. Note that for WX2 the first peak of the B series
in inside the continuum of the A series (this accounts for the disappearance of the B peak
in the experimental data; see figure 5.13). Excitons in the A and B series corresponding
to ℓ = −2 have vanishing contribution to the optical properties at exciton energy, but
are included in this calculation (note that ℓ = 2 is a dark exciton). The absorbance has
been computed taking the substrate into account using the dielectric permitivity of fused
silica at optical frequencies (ϵ = 2.13).
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The work of Qiu et al. [111] obtain a rich structure of peaks in this region that
was washed out when they include quasi-particle lifetimes from phonon terms.

• MoSe2
The aborbance spectrum of this TMDC sharemany similarities withMoS2: two
peaks from the K-point split (A and B) by the SOC and two wider peaks from
the Γ-point are also present. The exciton at the Γ-point contributes with two
peaks at ∼ 2.4 eV and ∼ 2.7 eV. The experimental data shows a single peak at
2.6 eV. This discrepancy comes possibly from the phonons already discussed
for the MoS2. Overall there is a good agreement between the data and the
calculated curves, both in position of the peaks and in intensity.

The imaginary part of the conductivity is only positive for frequencies ℏω >
2.6 eV, meaning that exciton-polaritons can only be excited for energies in the
visible.

• WS2
For this material we note the very good agreement of the position and magni-
tude of the calculated A peak in comparison with those in the experimental
data. We also see that the second experimental peak coincides with a small
computed peak from the 2s state (A’) associated with the series of first exciton
A-peak (see figure 5.7). There is at least three reports [143, 144, 145] of measure-
ment of the A’ peak in WS2 in the temperature range of 4-300 K. Unfortunately,
in the literature the A’ peak has been dubbed B, using an analogywith theMoX2

case. However, looking at the central panel of figure 5.12 we clearly see that the
A’= 2s peak appears at lower energy than the B= 1s. Note that from our anal-
ysis we can separate each spin/valley contribution. Also note that the A’ peak
has a similar absorbance to the experimental one (identified in the experimen-
tal literature on WX2 TMDCs as B, because it is the second to appear in the
energy scale). Studying the dependence of light absorption of different peaks
on an external magnetic field, for breaking spin degeneracy, together with the
use of strong circular polarized light to populate the two valleys differently[86],
is a possible way of clarifying the microscopic origin of the different peaks.

The third theoretical (B) peak (which is the SOC counterpart of the first peak)
is absent in the experimental data. Note that from figure 5.7, all but one (1s=B)
contributions from the B family of peaks are excitonic resonances (above the
interacting band gap). The proximity of the B-peak to the continuum may pro-
vide a scattering channel to transfers spectral weight from this peak to the res-
onances in the continuum. An additional and possible mechanism is based on
extrinsic doping of these materials as shown in figure 5.13. It has been shown
that doping has a strong effect in attenuating the excitonic peaks [109], spe-
cially the B-peak in MoS2. There is no reason to believe that the same mech-
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anism would not work in WX2 TMDCs. Indeed, from figure 5.2 we expect a
strong attenuation of the high-energy excitonic peak whereas the low energy
one should survive. This should happen since the doping with electrons tends
to block first the higher energy transition whereas maintaining the low energy
one. In figure 5.13 we see a comparison of the absorption spectrum ofWS2 with
the data taking into account the effect of doping; the agreement is excellent.
The suppression of the B-peak is evident from our results, thus confirming dop-
ing by electrons as a possible mechanism for suppressing the B excitonic state.

The first excitonic resonance (C01) at the Γ-point is in very good agreement
with the experimental one, while the second excitonic (C02) resonance at the
Γ-point is at an energy range above the measured one (although its intensity is
rather small). Therefore nothing can be said about the possible agreementwith
the experimental data, since this does not cover that spectral region. Lastly the
imaginary part of the optical conductivity becomes positive above the energy∼
2.6 eV nd therefore the system can support exciton-polaritons in that spectral
region.

• WSe2
We end our analysis with a comparison between the calculated absorbance
curve and the one measured for WSe2. For this material the disagreement be-
tween the calculated curves and the experimental data is the largest of the four
TMDCs studied in this chapter. Indeed, the data seems stretched relatively to
the calculated curves. The first peak in the WSe2 absorbance spectrum is in
very good agreement with the experimental data, with a difference in position
less than 0.1 eV.

As in the case of WS2, we see that the B-family peak is present in the data as a
small shoulder. The third and fourth experimental peaks, when compared with
our theoretical model, come from resonances at the Γ-point. The theoretical
calculations show a red shift of about 0.2 eV for these two peaks, indicating that
higher order exchange corrections, which reshape the band structure around
the Γ-point, might be important.

The imaginary part of the optical conductivity is positive above ∼ 2.8 eV, thus
allowing for excitons-polaritons.

Next we present an analysis of the effects associated with changing the Fermi en-
ergy and the Keldysh potential parameter r0. Given a Fermi energy the parameter
r0 can be adjusted to fit the A peak. Results of this procedure are shown in figure
(5.13) for WS2. We can see an excellent agreement between our results and the ex-
perimental curve. This highlights the importance of a finite Fermi energy in describ-
ing the experimental data. As noted before a finite Fermi energy comes from the
spontaneous negative doping observed in TMDCs samples. The better agreement

83



5. EĝĈĎęĔēĘ Ďē 2D ĒĆęĊėĎĆđĘ

with the data shown in figure (5.13) relatively to the results of figure (5.12) shows the
non-negligible effect of the doping in the optical properties. On the other hand, the
parameter r0 should also be a function of the electronic density. At the moment of
writing this dependence is unknown.

One aspect that our calculation does not take into account in an exact way is the
self-consistent solution of the exchange energy. Since this calculation is outside the
scope of this thesis, we can mimic it using a different value of Λ2 [see Eq. (5.3)]. This
leads to a narrow A peak and a broaden B peak in WS2, as seen in the experimental
data. In this regime, the B peak is no longer an exciton but rather an excitonic res-
onance. The mechanism leading to the broaden of the B peak can be explained by
the self-consistent solution of the exchange energy. For a given carrier density, the
iterative calculation of the exchange energy reduces its value and therefore the im-
portance of the doping increases for the lowest conduction band. In WS2 the effect
is much stronger in the lowest band than in the next conduction band due to the
large spin-orbit splitting. This mechanism due to exchange increases the splitting
on the two conduction bands.

Another aspect of the doping is its influence on the decreasing of the band gap.
We show in figure (5.14) the dependence of the band gap and the exciton energies on
the Fermi energy. We can see that increasing Fermi energymakes the binding energy
(difference between the thick blue curve and all the others) smaller. The energy of
the first excited state (squares) increases with the dopingwhile the energy the second
(triangles) and third (circles) have the opposite behavior. We also see that it exists
a critical doping that makes the exciton states collapsing into resonances when they
merge with the band gap. For the energy of first and third excited states we see the
same qualitative behavior as measured in Ref. [141].

This concludes the analysis of our theoretical results when compared with the ex-
perimental data. Globally, the agreement is good, but some points need further re-
search. Measurements performed at low temperatures in encapsulated TMDCs using
hexagonal boron-nitride should reveal the fine structure of the excitonic spectrum
predicted by our model.

5.4. Discussion and conclusions

In summary, we have performed a study of excitons in TMDCs monolayers including
in the same foot both excitons at the K- and Γ-points. The excitons at the K-point
were calculated with a gapped Dirac equation including electron-electron interac-
tions and SOC. The excitonic resonances at the Γ−point were calculated with the
tight-binding three-band model expanded around that point in the Brillouin zone.
We compared our theoretical results with the experimental data available from ref-
erence [53]. We clarified the microscopic origin of each observed excitonic peak and
discussed the reasons for some disagreement between our theoretical model and
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Figure 5.13.: Fitting of the experimental optical absorption for WS2. The parameters are those of
table 5.1 unless otherwise said. The new parameters are r0,A = 55.7, EF = 5 meV,
γA = γB = 26 meV, and γΓ = 0.1 eV. Temperature is 300 K and we also changed the
value of Λ2 → Λ2 + 0.12. The figure is discussed in detail in the main text.

Figure 5.14.: Dependence of the band gap and of the three first exciton s-states for WSe2 on the Fermi
energy. ECB is the lowest conductance band energy. The parameters of the mass, Fermi
velocity and SOC are from table 5.2. We set r0 = 40.92 Å, slightly larger than that
given in reference [107], 37.89 Å. The effective dielectric constant, including the effect
of the substrate (SiO2), is ε = 2.45. We used a temperature of 77 K.
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the experimental data. Note that the measurements where made at room temper-
ature. Therefore, the effect of a self-energy, which will be energy dependent, due
to electron-phonon interactions might play an important role in modeling the ab-
sorbance spectrum at room temperature. We note here that our equation of motion
method also allows for treating electron-phonon interactions at the expenses of a
more lengthly calculation.

Also, as noted byMak et al. [140]: “Spontaneous negative doping, presumably from
defects within the MoS2 layer and/or substrate interactions, has been commonly re-
ported in mechanically exfoliated samples”. This seems be the reason [109] why the
B-series is not visible in WX2 when the material is electron-doped (see figure 5.13).
To conclude, given the uncertainties in the experimental data reported in table 5.3
we consider the agreement between our calculation and the data to be quite good.

We have also studied the variation of the 1s =Apeakwith the dielectric function of
the capping medium (results not shown). We found that the A-peak position varies
little with ϵm. This happens because the exchange energy correction compensates
the binding energy coming from the BSE.

Although we have considered in this chapter the response to linearly polarized
electromagnetic radiation, it is simple to generalized the calculation to circularly
polarized one. This would allow us to discuss the additional appearance of more
selection rules associated with spin.

5.A. Overlap of the four-body wavefunctions

The four-body overlap functions are explicitly defined below for the massive Dirac
Hamiltonian:

F sτ
λ1,λ2,λ3,λ4

(k1,k2) = ϕsτλ1

†(k1)ϕ
sτ
λ2
(k2)ϕ

sτ
λ3

†(k2)ϕ
sτ
λ4
(k1) . (5.52)

For simplicity of writing, we omit in this appendix the superscript sτ in the F ’s-
functions and in the energy Esτ

k . For the case λ1 = λ4 and λ2 = λ3 the overlap
function reads:

Fλ1,λ2,λ2,λ1(k1,k2) =
1

2

(
1 + λ1λ2

k1 · k2 +m2

Ek1Ek2

)
, (5.53)

whereas when λ1 = λ4, λ2 = −λ3 we find:

Fλ1,λ2,−λ2,λ1(k1,k2) =
λ1
2

m [k2 · (k2 − k1)] + iλ2Ek2(k1 × k2) · uz

k2Ek1Ek2

. (5.54)
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Finally, in the conditions λ1 = −λ4, λ2 = −λ3 we have:

Fλ1,λ2,−λ2,−λ1(k1,k2) =
1

2

k1k2
Ek1Ek2

[
1 +

k1 · k2

(
λ1λ2Ek1Ek2 +m2

)
k21 k

2
2

+

+
im(k2 × k1) · uz(λ1Ek1 + λ2Ek2)

k21 k
2
2

]
. (5.55)

When λ1 = −λ4 and λ2 = λ3 we have the following symmetry:

F ∗
λ1λ2λ3λ4

(k1,k2) = ϕ†λ2
(k2)ϕλ1(k1)ϕ

†
λ4
(k1), ϕλ3(k2)

= Fλ2λ1λ4λ3(k2,k1) , (5.56)

that is, in expression (5.55)we have an identity upon the exchange of indexesλ1 ↔ λ2,
k1 ↔ k2.

5.B. The Bethe-Salpeter kernel
In this appendix we give the explicit forms of the BSE kernel. Firstly, from equation
(5.18) we have:

Bsτ
kλ(t) = − 1

S

∑
q

V (|k− q|)
[
psτλ (q, t)F sτ

−λ−λλλ(k,q) + psτ−λ(q, t)F
sτ
−λλ−λλ(k,q)

]
.

(5.57)
For the homogeneous case we only consider the first term in the previous equation
and choose with λ = −, which corresponds to the resonant term. Thus we have the
BSE kernel reading:

Ksτ
λ (k, q, θ) = V (|k− q|)F sτ

−λ−λλλ(k,q) . (5.58)

Using the expression (5.55) for the F sτ
++−−(k,q), and the Keldysh potential (5.4), and

after the angular decomposition

T̃ sτ
ℓ (k, q) =

∫ 2π

0

dθ

2π
ei(ℓ+1)θKsτ

− (k, q, θ), (5.59)

we have the corresponding kernel T̃ sτ
ℓ (k, q):

T̃ sτ
ℓ (k, q) = − α

4πεm

c

vF

kq2

2EkEq

[
Iℓ(k, q) + csτ− (k, q)Iℓ+1(k, q) + csτ+ (k, q)Iℓ−1(k, q)

]
,

(5.60)
where we have defined:

Iℓ(k, q) =

∫ 2π

0
dθei(ℓ+1)θ q0

pk,q(θ)(pk,q(θ) + q0)
, (5.61)
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csτ± (k, q) =
1

2kq

[
Esτ

k E
sτ
q +m2

sτ ±msτ (E
sτ
k + Esτ

q )
]
, (5.62)

and
pk,q(θ) =

√
q2 + k2 − 2kq cos θ, (5.63)

where α ≈ 1/137 is the fine structure constant and c is the speed of light.
For the kernel in the non-homogeneous BSE, we write the renormalization of Rabi

frequency as:

Bsτ
kλ(t) = −

∫
dq

(2π)2
V (|k− q|)F sτ

−λ−λλλ(k,q)p
sτ
λ (q, ω) +

−
∫

dq

(2π)2
V (|k− q|)F sτ

−λλ−λλ(k,q)p
sτ
−λ(q, ω) . (5.64)

Thus, we have two kernels to consider:

K1,sτ
λ = V (|k− q|)F sτ

−λ−λλλ(k,q), (5.65a)

K2,sτ
λ = V (|k− q|)F sτ

−λλ−λλ(k,q) . (5.65b)

Note that, in this case and contrary to the homogeneous BSE, we have to keep both
terms in the renormalization of the Rabi frequency, as otherwise the real part of the
optical conductivity would not have the correct positive sign. That is because both
the resonant and off-resonance terms contribute to the optical conductivity, as is well
known in the non-interacting case. Proceeding as before, the angular decomposition
(5.59) of the kernels leads to:

T
1/2,sτ
λ,ℓ (k, q) = Csτ

k,q

[
Iℓ(k, q) + c

1/2,sτ
λ− (k, q)Iℓ+1(k, q) + c

1/2,sτ
λ+ (k, q)Iℓ−1(k, q)

]
,(5.66)

with

Csτ
k,q = − α

4πεm

c

vF

kq2

2Esτ
k E

sτ
q

, (5.67)

and

c1,sτλ± (k, q) =
1

2kq

[
Esτ

k E
sτ
q +m2

sτ ± λmsτ (E
sτ
k + Esτ

q )
]
, (5.68)

c2,sτλ± (k, q) =
1

2kq

[
−Esτ

k E
sτ
q +m2

sτ ± λmsτ (E
sτ
k − Esτ

q )
]
, (5.69)

where λ = ± and λ′ = −λ, and Iℓ(k, q) is defined in equation (5.61).
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5.C. Exchange correction around the Γ point
From equation (3.31), the exchange self-energy correction to the transition energy
between bands i and j is:

Σxc
ij (k) = S

∑
q

V (q)
∑
λ

nλ(k− q) [Fiλλi(k,k− q)− Fjλλj(k,k− q)] . (5.70)

Neglecting temperature and doping effects, for the three band-model of reference
[119], the only term that contributes to the exchange self-energy is the one with λ = 0
(the valence band):

Σxc
ij (q) = S

∑
q

V (q) [Fi00i(k,k− q)− Fj00j(k,k− q)] . (5.71)

and we make i = 1, 2 and j = 0.
To remove the integrable divergence at q = 0, that comes from the Keldysh poten-

tial, we use polar coordinates leading to the need of computing the following integral

Σxc
i0 (k) = −

6∑
j=1

∫ (j+1)π/3

jπ/3

dθ

2π

∫ q0 sec(θ−π/6−jπ/3)

0

qdq

2π
V (q)Qi(k, q, θ) (5.72)

where Qi(k, q, θ) = Fi00i(k,k− q)− F0000(k,k− q) and q0 reads

q0 =
2π

a0
√
3
. (5.73)
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6.1. Introduction
Graphene is a promising candidate to overcome one of the major existing hurdles to
bring optics and electronics together, namely the efficient conversion between opti-
cal and electronic signals. Indeed, this can be facilitated by the fact that graphene
enables strong, electric field-tunable optical transitions, and resonantly enhances
light-mater interactions in sub-wavelength volumes. In practice this can be achieved,
for instance, by integrating a graphene layer into a photonic crystal nanocavity [146].
The presence of graphene also allows for an efficient electro-optical modulation of
photonic crystals nanocavities by electrostatic gating [147, 148]. However, the inte-
gration of graphene into photonic crystals is naturally prone to unavoidable disorder
associated to the fabrication process. This constitutes per se a motivation to investi-
gate the effects of disorder in photonic crystals containing graphene layers which. In
addition to this technological and practical motivation, there is a very fundamental
one as well, namely to understand the impact of graphene on Anderson localization
of light.

The concept of Anderson localization (AL) was originally conceived in the realm
of condensed matter physics as a disorder driven metal-insulator transition [149].
Being an interference wave phenomenon, this concept has been extended to light
[150], acoustic waves [151], and even Bose-Einstein condensed matter waves [152]. As
a result, Anderson localization is today a truly interdisciplinary topic, and important
contributions have emerged from different areas, ranging from condensed matter,
photonics, acoustics, atomic physics, and seismology [153]. Dimensionality is crucial
to AL, and in 1D the vast majority of states is exponentially localised on a length
scale given by the localization length ξ, regardless of the disorder strength. In optical
systems exceptions do exist, and delocalised modes may occur in low-dimensional
systems as a result of the presence of correlations [154], necklace modes [155], or
metamaterials with negative refraction [156, 157, 158]. The question of whether these
anomalies occur when graphene is integrated into disordered optical superlattices
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remains an open question.

Bearing in mind both these technological and fundamental motivations, in the
present chapter we undertake an analytical and numerical investigation of Anderson
localization of light in one-dimensional disordered superlattices composed of dielec-
tric stacks with graphene layers in between, as depicted in Fig. 6.1. We consider two
possible, realistic ways to model disorder: compositional and structural disorder. In
the former case disorder is introduced in graphene’s material parameters, such as the
Fermi energy, whereas in the latter the dielectric components of the superlattice have
random widths. In both cases, we derive an analytic expression for the localization
length ξ, and compare it to numerical simulations using a transfer matrix technique;
an overall very good agreement is found. In the case where the medium impedances
match, we find that ξ exhibits an oscillatory behaviour as a function of frequency ω,
in contrast to the usual asymptotic decay ξ ∝ ω−2. We demonstrate that graphene
may strongly suppress the anomalously delocalised Brewster modes, as it induces
additional reflexions at the superlattice interfaces. We also investigate the effects of
inter and intraband transitions of the graphene conductivity on ξ, identifying the
regimes where Anderson localization and absorption dominates light transmission.

This chapter is organised as follows. In Sec. II we present the analytical results,
where we derive an expression for the localization length of disordered superlattices
containing graphene sheets. In Sec. III we present and discuss the numerical simula-
tions, based on transfer matrix technique, which are also compared to the analytical
calculations. Finally, Sec. IV is devoted to the concluding remarks. We also present
a number of appendices giving the details of the calculations and aiming at making
the text as self-contained as possible. To our best knowledge, there are only two pub-
lished papers[159, 160] dealing with similar problems to the one we consider in this
chapter, but in the context a metals, in which case only Drude’s conductivity plays a
role.

Figure 6.1.: Schematic representation of the system, a photonic crystal whose unit cell is:
graphene/dielectric 1/graphene/dielectric 2.
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6.2. Analytical calculation of the localization length
Light propagation in a 1D superlattice containing graphene layers (Fig. 6.1) is mod-
elled by the transfer matrix formalism [161]. The Mn = {mn

ij} transfer matrix con-
nects the fields at the right of the n−th unit cell to those at left according to:

ψn+1 =Mnψn, (6.1)

where ψn =
[
ψn
R ψn

L

]T , and ψn
R (ψn

L) refers to the right (left) propagating field in
the n−th cell. For transverse electric (TE) and transvere magnetic (TM) modes, ψ
refers to the electric andmagnetic field, respectively. We consider the particular case
where detMn = 1, which occurs for systems with preserved time reversal symmetry
[161]. In this case, one can show thatMn may be written as

Mn =

(
coshϕn1e

iϕn
2 sinhϕn1e

iϕn
3

sinhϕn1e
−iϕn

3 coshϕn1e
−iϕn

2

)
, (6.2)

where ϕni are parameters that depend on the composition of the n−th cell. (from
here on we omit the n dependence in ϕi, except when strictly necessary to avoid any
confusion.) For periodic systems with preserved time-reversed symmetry, ϕi are real
numbers and all the Mn’s are equal. We thus write Mn = M0. One can write the
photonic dispersion relation [161] as cos g = (m0

11 +m0
22)/2, where

cos g = coshϕ01 cosϕ
0
2 . (6.3)

Disorder is introduced in the parameters ϕi:

ϕi = ϕ0i + δϕi (6.4)

where δϕi describes random fluctuations around the average value, and which may
have different origins, as it will be detailed later in the chapter. For a periodic sys-
tem, a transformationMtransf =McircleMreal (see appendix 6.A) exists that maps the
variables ψn

R,L into a new set of variables, denoted by Qn and Pn, such that XT =

[Qn Pn]T = Mtransf[ψ
n
R ψn

L]
T . These new variables describe a circle in phase space

[162], with radius
√
Q2

n + P 2
n proportional to the electric field amplitude. Applying

this transformation to Eq. (6.1), the transformedmatrixM ′ =MtransfM
nM−1

transf reads

M ′ =

(
En Fn

Gn Hn

)
, (6.5)

where:

En = coshϕ1 cosϕ2 − sinhϕ1 sin δϕ3, (6.6)
Fn = −v2 (coshϕ1 sinϕ2 + sinhϕ1 cos δϕ3) , (6.7)
Gn = v−2 (coshϕ1 sinϕ2 − sinhϕ1 cos δϕ3) , (6.8)
Hn = coshϕ1 cosϕ2 + sinhϕ1 sin δϕ3. (6.9)
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with v and τ defined in appendix 6.A. When ϕi = ϕ0i , we have δϕ3 = 0 and Eqs.
(6.6)-(6.9) lead to En = Hn = cos g and Fn = −Gn = sin g. When weak disorder
is introduced, the trajectory of the points (Qn, Pn) results in a perturbation of the
circle. The recurrence equations defined by Xn+1 = M ′Xn are similar to a Hamil-
tonian map of the classical harmonic oscillator subjected to a parametric impulsive
force[163], where Qn and Pn are the coordinate and conjugated moments, respec-
tively, and g is the phase between successive kicks.

The presence of disorder introduces a key length scale, the localization length ξ.
In 1D electronic systems all eigenmodes are exponentially localised, although some
exceptions do exist in the realm of optical systems [156, 157, 158, 155] (see Introduc-
tion). The length ξ characterises the exponential decay of the eigenfunctions and is
defined in terms of the reciprocal of the Lyapunov exponent λ. In 1D λ can be written
as [161, 162]:

λ =
1

2

⟨
ln

∣∣∣∣∣ψn+1
R

ψn
R

∣∣∣∣∣
2⟩

. (6.10)

In Eq. (6.10) the brackets denote averaging over both ensembles and the system unit
cells, while the usual definition of the localization length considers only averages
over ensembles [161]. The two definitions are equivalent. The relation between λ
and ξ is:

Reλ =
d

ξ
, (6.11)

where d is the mean length of the unit cell. The advantage of the approach based on
the parameters Pn and Qn is that we can use polar (or action-angles) coordinates:

Pn = Rn sinΘn,

Qn = Rn cosΘn . (6.12)

Without disorder,Rn is a constant andΘn increases byminus the Bloch phase,−g,
as we move from unit cell to unit cell. With disorder, the radius Rn changes in every
step, with Rn+1 a function of Rn, Θn, and of the matrix elements ofMn. The angle
Θn+1 only depends on Θn and Mn. For weak disorder a recurrence equation (6.48)
exists that, in the continuum limit, becomes a stochastic Îto equation which has a
corresponding Fokker-Planck equation [164] . In this case, the first approximation
for the density probability function of Θn is uniform in the interval [0, 2π] for g ̸=
0, π/2, π.

Writing Eq. (6.10) in terms ofR andΘ, and averaging overΘwith uniform density
probability, we obtain, up to second order in δϕi:

λ =
1

2

⟨
Y1 + Y2 cos 2Θn + Y3 sin 2Θn − 1

4
Y 2
2 − 1

4
Y 2
3

⟩
, (6.13)

where Yi, with i = 1, 2, 3 are defined in Appendix 6.B and depend on the matrix
elementsMn.
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In the following sections we will study the propagation of light through a disor-
dered structure of alternating graphene sheets and dielectric layers. In this case
each propagation matrix Mn is determined by the widths zi, the incidence angle
θi, the dielectric material parameters µi and εi, and the graphene conductivity σ. In
the present work we focus on the cases where disorder is present in the widths of the
stacks (structural disorder) and on graphene conductivities (compositional disorder).
Both are realistic situations that may occur in the fabrication of these structures.

For the type of structural disorder studied here the width of each layer i of the nth.

cell is a random variable
zi(n) = z0i + ζi(n), (6.14)

where ζi are uncorrelated random variables with zero mean and mean standard de-
viation si:

⟨[ζi(n)]2⟩ = s2i , (6.15)

z0i is the mean width of the i slab.
In the case of compositional disorder, the Fermi energy EF is a random variable

in each layer n
EF (n)/ℏ = ωF (n) = ω0

F + ζF (n), (6.16)

with ζF a random variable with zero mean and ⟨ζ2F ⟩ = s2F . This determines how the
graphene conductivity, given in Appendix B, is affected by disorder.

In the next section we derive analytical expressions for λ (Eq. 6.13) in different
regimes. To this end, we need to map ϕi in the system variables, calculate the differ-
entials δi, and use the results given in Appendix 6.B.

6.2.1. Unit cell made of two different dielectric materials
and a graphene sheet at the interface

Weconsider a disordered superlattice composed of dielectric bilayerswith a graphene
sheet in between. The transfer matrix for the n unit cell is given byMn = {mn

jl} and
is explicitly derived in Appendix G.1.

To proceed with the calculation of the Lyapunov exponent it is necessary to map
the system parameters of the transfer matrix (G.1) into the parametric matrix (6.2).
There is not a unique way of doing this, but in what follows we make the simplest
choice.

Disordered photonic super lattice without graphene

To model a disordered photonic super-lattice without the graphene layer we put
f = 0 in Eq. (G.1) and map ϕi into the system parameters α1, α2, χ,∆ (defined in
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Appendix G):

sinhϕ1 = ∆x sinα2,

ϕ2 = α1 + arctan (χx tanα2) ,

ϕ3 = α1 + π/2, (6.17)

where x =TE,TM. According to this mapping we can replace ϕi in the expressions for
Yi in Appendix 6.B and calculate the differentials δϕi using Eq. (6.14) with ζi ≪ z0i .
This will enable us to compute the Lyapunov exponent, given by Eq. (6.13); the final
result is

λ =
∆2

2 sin2 g

(
sin2 α2 k

2
1 s

2
1 + sin2 α1 k

2
2 s

2
2

)
, (6.18)

which agrees with the result of Ref. [162] for uncorrelated disorder. The described
procedure is repeated to calculate the Lyapunov exponents in the next sections.

Disordered superlattice containing graphene layers

The presence of graphene at the interface between the dielectrics results in a discon-
tinuity in the tangential component of the magnetic field. The role of graphene on
the optical properties of the superlattice increases as the value of the dimensionless
parameter βxi f increases, with f = σcµ0/2 and βxi given in Appendix G. We are in-
terested in the lossless regime in which the Bloch phase g, given by Eq. (G.3), is real.
This regime sets up when (i) σ (and therefore f) is a pure complex number and θi,
with i = 1, 2, is a pure real number; or (ii) σ is a pure real number so that evanescent
propagation occurs in one of the layers.

In the first case, we define Bx = iB̃x (see Appendix G), where B̃ is real, and we
map the parameters ϕi in:

sinhϕ1 = −B̃x cosα2 + (∆−Dx) sinα2,

ϕ2 = α1 + arg
[
Ax

+ cosα2 + i(χ+ Cx
+) sinα2

]
,

ϕ3 = α1 + π/2 . (6.19)

Following the procedure of Sec. 6.2.1, the Lyapunov exponent is given by:

λ =
1

2 sin2 g

(
K2

2k
2
1s

2
1 +K2

1k
2
2s

2
2

)
, (6.20)

where:
K1 = −2f̃λxβx2 cosα1 +

[
−∆+ 2f̃2λxβx1β

x
2

]
sinα1, (6.21)

and f = if̃ ,K2 is obtained by interchanging 1 ↔ 2 and ∆ → −∆. Notice that if one
plugs Eq. (6.21) with f = 0 into Eq. (6.20), Eq. (6.18) is obtained, as it should be.
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6.2.2. Unit cell made of one dielectric material and a
graphene sheet at the interface

For systems composed of bilayers of the same dielectric material with a graphene
sheet in between, it is much easier to calculate the transfer matrix, which is given in
Eq. (G.6). In this case, the ϕi parameters read

sinhϕ1 = −λxβxf̃ ,
ϕ2 = α,

ϕ3 = α+ π/2, (6.22)

Using Eq. (6.13) and the results of the Appendix 6.B we calculate the Lyapunov expo-
nent for structures containing both random graphene conductivities (compositional
disorder) and random widths (structural disorder), as detailed in the following.

Compositional disorder

Using the same procedure of subsection 6.2.1, we obtain the Lyapunov exponent:

λ =
1

2

(
sin 2α

sin 2g
βx
παc

2
sg

)2

, (6.23)

where αc is the fine structure constant and σg is the mean standard deviation of the
normalized graphene conductivity

s2g =
⟨σ2⟩ − ⟨σ⟩2

σ20
. (6.24)

Structural disorder

For structural disorder where the stacks’ widths are given by Eq. (6.14), the Lyapunov
exponent reads

λ =
f̃2βx2k2s2

2 sin2 g
. (6.25)

This concludes the analytical part of our work, which shall be compared to numer-
ical simulations in the following section.

6.3. Numerical Simulations: Results and Discussions
6.3.1. Simulation procedure

The numerical calculations are based on the transfer matrix method; the total trans-
fer matrix for light propagating in a N -layered system is

M = ΠN
n=1M

n. (6.26)
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where the elements of Mn are given by Eq. (G.1). Transmission is calculated by
applying the boundary condition related to the fact that there is no incoming wave
from the left:

T =
1

|m22|2
, (6.27)

and the localization length ξ is calculated by:

L

ξ
= −1

2
⟨lnT ⟩, (6.28)

where L = Nd and N is the total number of unit cells with mean width d. The
length L is chosen to be large enough to ensure the numerical calculation of the
localization length converges. In the numerical procedure we first generate random
variables ζi (or ζF ) [see Eqs. (6.14) and (6.16)] from a uniform distribution, and then
calculate the transfermatrix using Eq. (6.26). With the help of the results introduced
in Appendix G, we obtain the localization length using Eq. (6.28). The procedure is
repeated over nsamples and the mean value of the localization length is calculated.
We have verified that, for a sufficiently large N , the value of ξ calculated for a single
disorder realisation coincides with its average over many disorder realisations for
smaller systems; in other words, we have verified that ξ is a self-averaging quantity.
Further details of the transfer matrix method are given in Appendix G.

6.3.2. Results

Light transmission depends on the graphene conductivity σ and on the medium
impedances, defined as ( see Appendix G):

ZTE
i =

√
µiεi

µi
cos θi, Z

TM
i =

√
µiεi

εi
cos θi. (6.29)

We shall focus in the lossless regime with ℑm cos g = 0 and ℜe cos g ≤ 1. From
Eq. (G.3), this regime occurs whenever f (and consequently σ) is a pure complex
number or for ℑσ = 0, in which case one of the slabs supports a evanescent mode.
When the Drude term dominates, the imaginary part of the conductivity is positive
(see Appendix B). For frequencies slightly below 2ωF , the inter-band term dominates
and the imaginary part of the conductivity is negative (see Appendix B). When the
frequency becomes larger than 2ωF , the imaginary part goes to zero and the real part
tends to σ0 = e2/4ℏ.

In the following numerical calculations, random variables have a uniform distri-
bution with ζx ∈ [−Υx/2,Υx/2], with x = 1, 2 for structural disorder and x = F for
compositional disorder.
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6.3.3. Drude regime when: ℜeσ ≈ 0, ℑmσ > 0

When ωFγ ≪ ω2 ≪ ω2
F (where γ is the broadening entering in the conductivity),

graphene conductivity can be approximated by (see Appendix B.105):

σ = iσ0
4

π

ωF

ω
. (6.30)

For EF ≈ 0.3 eV (a typical value for the graphene Fermi energy), the range of fre-
quencies corresponds to the infrared spectral regime. In the following we focus in
three regimes: impedance matching in the double layered system [Z1 = Z2, in Eq.
(6.29)] with structural disorder, compositional disorder in one layered system, and
the attenuated field regime (ATR) with structural disorder.

Impedance matching in two-layered system with structural disorder

Using the Snell-Descartes law, Eq. (G.2), and the impedances in Appendix G, one
can verify that for materials without magnetic response (µ1 = µ2 = 1), there is
no TE mode that allows the impedance matching. In the TM mode the impedance
matching occurs when the angle of incidence in layer 1 obeys the relation sin2 θ1 =
ε2/(ε1 + ε2), for ε1 ̸= ε2.

When Zi = Z, βi = β, it follows from Eqs. (6.20) and Eq. (6.21) that:

λ = 2

(
4f̃βxωF

πc sin g

)2 2∑
i=1

εiµi cos
2 αi cos

2 θis
2
i , (6.31)

where we neglected the term f̃2 in comparison to f̃ (which in the Drude regime is
always valid for a sufficient large ω). In this case, in Fig. 6.2b the localization length
ξ is calculated, both analytically and numerically, as a function of frequency. The
dispersion relation is also shown in Fig. 6.2a. It is important to point out that the
agreement between the analytical and numerical calculations is very good, except
when g approach 0 or π. This is due to the fact that, in the analytical derivation of
the Lyapunov exponent, the recurrence equation (6.48) is ill defined at these points,
so that the distribution of random variables is not uniform. Remarkably, Fig. 6.2b
reveals that in the impedance matching regime, ξ does not follow the well-known
asymptotic power law ω−2 behaviour for low frequencies. Rather, ξ exhibits a pe-
riodic dependence on ω for low frequencies, a result that is intrinsically related to
the graphene conductivity properties. Indeed, it can be explained by the fact that
the linear increase of the wavenumber with frequency is cancelled by the simulta-
neous decrease of graphene’s conductivity (Drude term, see Eq. 6.30), which scales
with 1/ω. The periodicity in ξ follows from the periodicity in the dispersion relation,
shown in Fig. 6.2a. For the lossy and Drude regimes, ξ approaches the same value as
the frequency increases, and the real part of the Drude conductivity goes to zero.
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Figure 6.3 shows ξ as a function of frequency for two different values of the inci-
dence angle θ. It reveals that the presence of graphene layers has also an important
effect in the so-called Brewster modes in disordered systems. In 1D disordered op-
tical systems, the so-called Brewster modes occur at some specific frequencies and
incident angles for which ξ reaches anomalously high values, larger than the sys-
tem size [165, 156]. For non-magnetic (µ1 = µ2 = 1) superlattices made of positive
refractive-indexmedia, these anomalously delocalisedmodes arise from the suppres-
sion of reflexion at the interfaces of a 1D disordered system illuminated by a TM
incident wave [165, 156]. As a result, the system becomes fully transparent. The pres-
ence of graphene induces additional reflections at each interface of the superlattice,
resulting in an attenuation of this Brewster mode, as it can be seen from fig. 6.4.

Figure 6.2.: (a) Dispersion relation in the impedance matching regime and TM mode. (b) Localization
length as a function of frequency with Υi = 5µm, z0i = 1.2mm, EF = 0.2 eV, ℏγ =
260µeV, N = 5000, nsamples = 100, ε1 = µ1 = µ2 = 1, ε2 = 3, θ = π/3.The blue solid
line in (b) is the analytical result, whereas the dots and dashed line correspond to two
different numerical simulations for different regimes of the optical conductivity of graphene:
(i) σ = ℑmσD (red points) and (ii) σ = σD + σI (green dashed line).

ATR regime in one-layered system

The plasmon-polariton mode in graphene can be excited for example, by a prism in
the Otto configuration [166]. This is the regime we will explore in this section. We
consider a periodic array of graphene/air unit cells (medium 2) in between a dielec-
tric (medium 1). In this case the total transfer matrixM is obtained considering the
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Figure 6.3.: Localization length as a function of frequency in the impedance matched regime for two
values of incidence angle: θ = 60◦ (blue line), θ = 45◦ (red line). Υi = 0.5µm, z0i =
120µm, EF = 0.2 eV, ℏγ = 0µeV, N = 5000, nsamples = 100.

boundaries between the prism and the superlattice:

M =M1→2

∏
j

(Mj)M2→1, (6.32)

whereM1→2 refers to the transfermatrix describing light propagation from themedium
1 (dielectric) to medium 2 (air); M2→1 refers to the reverse propagation. Mj is the
transfer matrix of the unit cell air/graphene with random widths (medium 2).

From Eq. (G.7) one can see that for the evanescent mode α is a pure complex num-
ber and the first term in the right hand side becomes a hyperbolic cosine, which is
greater than 1 for any α. As a result, the Bloch phase is real only if the second term in
the right hand side of G.7 is negative. This situation occurs for pure positive complex
f ; in this case β is also a pure positive complex number, which is only possible in the
TM mode [see Eqs. (6.33) and (G.4)].

For an incidence angle θ1 above the critical angle for total reflection at the interface
1/2, a plasmon-polariton can be excited, allowing for frustrated total internal reflec-
tion. In this case light propagation occurs due to the presence of periodic graphene
sheets. The effective impedance in the medium 2 depends on the properties of the
layer 1 as:

ZTE
2 = i

κ

µ2
, ZTM

2 = i
κ

ε2
, (6.33)
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Figure 6.4.: Localization length as a function of incidence angle in the impedance matched regime at
the vicinities of a Brewster mode. Υi = 50µm, z0i = 120µm, N = 5000, nsamples = 100.
The blue line corresponds to the grapheneless case; blue line correspond to the case where
graphene is present in the superlattice (EF = 0.2 eV and ℏγ = 0 eV.)

where

κ =

√
ε1µ1 sin

2 θ1 − ε2µ2. (6.34)

In Fig. 6.5 the localization length is calculated in the ATR regime using both nu-
merical and analytical methods; the agreement is excellent. In the Drude regime ξ
is inversely proportional to the Fermi energy. Also shown is the localization length
when the dielectric necessary to excite the ATR field is removed; we call this situa-
tion the normal field. The ATR field is characterized by exponentials with argument
±ωκz/c. When the frequency increases and the length c/κω becomes smaller than
the width z of the dielectric slab (air in this case) light propagation comes to a halt,
as the plasmon-polariton localized in a graphene layer cannot excite the adjacent
layer. We can see that the ATR for the parameters of Fig. 6.5 fills the band gap of the
normal field. Also the increase of disorder implies in the decrease of ξ, as expected.

Notice that ignoring the interband term and making EF = 0 is equivalent to re-
move the graphene sheets, therefore making disorder in random widths of air mean-
ingless. Hence the localization length diverges, as can be seen in Eq. (6.25), where
σ → 0 implies in a vanishing Lyapunov exponent.

One layer system with compositional disorder

In the compositional disorder regime and for the one layered system, ξ decreases as β
increases. For the TE mode, β can only be greater than 1 for materials with magnetic
response, µ > 1. For the TM mode, β is proportional to the dielectric constant and
to cos θ, thus for grazing incidence, the system becomes fully opaque.

In the Drude regime the asymptotic behaviour of the localization length goes as
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Figure 6.5.: (a) Dispersion relation for the ATR regime (red) and for normal field (blue). (b) Lo-
calization length as a function of frequency for z0 = 12µm, EF = 0.1 eV, θ1 = π/3,
ε1 = 2,µ1 = µ2 = ε1 = 1, N = 50000, nsamples = 1. The purple circles (green squares)
and red diamonds (blue triangles) refer to the ATR (normal) field with Υ = 0.5µm and
Υ = 5µm, respectively. The cyan and red lines refer to the analytical approximation.

ω2. This can be understood as follows: as the frequency increases the graphene con-
ductivity decreases as ω−1 and thus the influence of the graphene layer disappears.

The effect of compositional disorder is shown in Fig. 6.6, where the Fermi energy
is randomly distributed around the mean value E0

F = 0.6 eV. ξ is inversely propor-
tional to the mean standard deviation of the Fermi energy. We study the effect of
increasing absorption in graphene layers, which depends on the real part of the con-
ductivity and is proportional to the relaxation rate γ. The length ξ decays rapidly
when the frequency reaches 2ωF , and interband transitions start to occur, an effect
that may be related either to absorption or to Anderson localization. The numerical
calculation is performed with the full graphene conductivity (Drude plus interband)
and then compared to the case where only the Drude term is present. The analytical
approximation is calculated with the Drude term only, and agrees very well with the
numerical simulation except at the band edges g = 0, π/2, π. As already discussed,
this disagreement is related to the fact that the probability distribution of Θn is not
uniform for these values of g. The analytical approximation has a peak at g = π/2
(see denominator of Eq. 6.23). The numerical calculations show that near the band
gap (g = 0, π see Eq. 6.23) ξ goes to zero, and the peak at g = π/2 does not occur.
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Figure 6.6.: (a) Real and imaginary parts of the graphene optical conductivity in the compositional
disordered case, σ = σD+σI , and the Drude conductivity σD when γ = 0. (b) Localization
length as a function of frequency with z0 = 1.2µm, θ = π/4, ε = µ = 1, E0

F = 0.6 eV,
ΥF = 0.12 eV, N = 5000 and increasing relaxation rate γ. ωF ≈ 3 × 1014 Hz. The
blue triangles (and solid blue line) refer to a calculation where only the Drude conductivity
with γ = 0 is used. The other data sets refer to the use of the full optical conductivity of
graphene with different γ values.

6.3.4. Complex interband regime when: ℜeσ ≈ 0, ℑmσ < 0

When ω ≲ 2ωF , the imaginary part of the optical conductivity of graphene becomes
negative and can be approximated by

σ = σ′′I + iσ0
4

π

ωF

ω
, (6.35)

where σ′′I is given by Eq. (B.107). In this case the imaginary part of σ becomes nega-
tive, and the ratio between the imaginary and real parts of σ becomes lower than in
the Drude regime for typical values of γ andEF . Therefore, in this case the exponen-
tial decay of transmission is essentially due to absorption rather than to Anderson
localization. Therefore, in this case, our approach for studying Anderson localization
using the localization length is inadequate. It is worth commenting that experimen-
tally it is possible to distinguish between absorption and Anderson localization by
investigating the variance of the normalized total transmission, as proposed in Ref.
[167]. For a one-layered system in the ATR regime with transfer matrix given by Eq.
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(G.6), the change in the sign of f has qualitatively the same effect in the dispersion
relation (G.7) of interchanging TE and TM modes, which changes the sign of β.

When the frequency becomes larger than 2ωF , the real part of the conductivity ap-
proachs σ0 while the imaginary part vanishs. In this regime, the role of the graphene
sheets consists, essentially, in absorbing light leading to a vanishing transmission
after few stacks.

6.4. Conclusions

In conclusion, we have investigated light propagation in 1D disordered superlattices
composed of dielectric stacks and graphene sheets in between. We introduced dis-
order either in the graphene material parameters (compositional disorder), such as
the Fermi energy, or in the widths of the dielectric stacks (structural disorder). For
both cases we derived an analytical expression for the localization length ξ and com-
pared the results with numerical calculations based on the transfermatrixmethod. A
very good agreement between numerics and the analytical expression was found. We
demonstrated that, for structural disorder and when the impedances of the layers are
equal, the localization length does not follow the well-known asymptotic behaviour
ξ ∝ ω−2. Rather, it exhibits an oscillatory dependence on frequency, as a result of
the presence of the Drude term in the graphene conductivity. Also in the impedance
matching regime, we show that graphene has an important impact on the Brewster
modes, anomalously delocalised modes at given frequencies and incident angles at
which ξ diverges. Indeed, the presence of graphene induces additional reflections in-
side the disordered medium, leading to a strong attenuation of the Brewster modes.
We investigated how intra and interband transitions in the graphene conductivity
impact on ξ, identifying the regimes where Anderson localization and absorption
dominates light transmission. Altogether, our findings unveil the role of graphene
on Anderson localization of light, paving the way for the design of graphene-based,
disordered photonic devices in the THz spectral range.

6.A. Matrix transformation

The relation ψn+1 =Mnψn can be interpreted as a discrete set of points in the phase
space ψR, ψL. With the transformationMreal:

Mreal =
1

2

(
1− i 1 + i
−1 + i 1 + i

)
, (6.36)

the matrix MrealM
nM−1

real is now real, and defining ψ′n = Mrealψ
n, we have in the

phase space ψ′
R, ψ

′
L that in the system without disorder the trajectory is given by a
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ellipse. From this we can find a transformationMcircle to a circle:

Mcircle =

(
v−1 cos τ v sin τ
−v−1 sin τ v cos τ

)
, (6.37)

where:

v2 = − sin g

coshϕ01 sinϕ
0
2 + sinhϕ01

,

τ =
π

4
− ϕ03

2
, (6.38)

and making [Q P ]T =Mcircleψ
′,

(
Qn

Pn

)
=

(
v−1 cos τ v sin τ
−v−1 sin τ v cos τ

)(
xn
yn

)
, (6.39)

6.B. Lyapunov Exponent
The Lyapunov exponent is given by:

λ =
1

2

⟨
Y1 + Y2 cos 2Θn + Y3 sin 2Θn − 1

4
Y 2
2 − 1

4
Y 2
3

⟩
, (6.40)

where
Y1 =

1

sin2 g

[
U1δϕ

2
1 + U2δϕ

2
2 + U3δϕ

2
3 + U4δϕ1δϕ2

]
, (6.41)

with:

U1 = 2 sin2 ϕ02, (6.42)
U2 = 2 sinh2 ϕ01 cos

2 g, (6.43)
U3 = 2 sinh2 ϕ01 sin

2 g, (6.44)
U4 = − sinh 2ϕ01 sin 2ϕ

0
2, (6.45)

Y2 =
[
−2 sinϕ02δϕ1 + cosϕ02 sinh 2ϕ

0
1 (δϕ2 − δϕ3)

]
, (6.46)

Y3 = 2
sinhϕ01

(
cos2 gδϕ2 + sin2 gδϕ3

)
− cos g sinϕ02δϕ1

− sin g
. (6.47)

the angle Θ obeys the recurrence equation:

Θn+1 = Θn − g+ ϵn csc g, (6.48)

with:

ϵn =
[
cos g sinhϕ01δϕ2 − sinϕ02δϕ1

]
cos (2Θn − g) + sinhϕ01 cos g sin(2Θn − g)δϕ3.

(6.49)
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“To go past the Bojador, one must go beyond pain”, as Fernando Pessoa said. During
the Middle Ages seafarers believed that beyond the african cape Bojador, the world
ended in boiling seas inhabited by monstrous mythic creatures. Only after a series
of voyages by brave Portuguese navigators those ungrounded beliefs were dissipated,
the Discovery Age began, and slowly all the world would be connected. It is possible
to make a parallel with the 2D material field: the Mermin-Wagner theorem stated
that phonon fluctuations would destroy any long-range order in a crystalline mem-
brane. The Mergin-Wagner

theorem is not violated,
but bypassed, see ref. [11]
for details.

However, in 2004, Geim and Novoselov discovered a single atomic layer of
carbon from exfoliation of graphite. As the expedition to go beyond the cape Bo-
jador opened the gates for new maritme routes around all the world, the synthesis of
graphene started the search for other two-dimensional materials. As a consequence,
dozens of new 2D materials were discovered and a lot more were predicted. This re-
cent discovered two-dimensional world can be seen as a playground both to discover
new physical effects and to create novel technological devices.

This thesis explored a small bit of this newworld, focusing on the relation between
light and 2D materials. We went from a microscopic view, studying non-equilibrium
distribution in graphene and excitons in transition metal dichalcogenides, to macro-
scopic properties, the passage of light through a disordered array of dielectrics and
graphene sheets. The interplay of quantum and classical description in this field
of research is a beautiful way to see that “physics is only one”. The tools developed
throughout this thesis are as important as the choice of problems to study. They are
not meant to be an end in itself: the author intention is to go far beyond where this
thesis finishes in search of uncharted seas. To quote Pessoa again: “God gave the sea
the danger and the abyss, but it was in it that He mirrored the sky”.
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TĎČčę-ćĎēĉĎēČ ĒĔĉĊđ Ĕċ
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A
The graphene tight-binding Hamiltonian, considering nearest neighbors only, in sec-
ond quantization reads [168]:

Ĥ0 =
∑
i,n

tTB â
†
Rn
b̂Rn+δi + h.c., (A.1)

where â†Rn
and b̂Rn+δi obey anti-commutation relations and δi are the nearest neigh-

bors vectors connecting an atom in sub-latticeA to another one in sub-latticeB. We
can define the Fourier transform as:

âk =
1√
Nc

∑
n

e−ik·Rn âRn , (A.2a)

b̂k =
1√
Nc

∑
n

e−ik·(Rn+δi)b̂Rn+δi , (A.2b)

with the inverse transform:

âRn =
1√
Nc

∑
k∈1B.Z.

eik·Rn âk, (A.3a)

b̂Rn+δi =
1√
Nc

∑
k∈1B.Z.

eik·(Rn+δi)b̂k, (A.3b)

where the sum over n is performed over the entire lattice and the sum in k is per-
formed over the first Brillouin zone.

After a Bogoliubov transformation the basis that diagonalizeH0 is:

ĉk =
eiφk

√
2

(
âk + eiΘk b̂k

)
, (A.4a)

d̂k =
eiφk

√
2

(
âk − eiΘk b̂k

)
, (A.4b)
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and the inverse transformation reads:

âk =
e−iφk

√
2

(
ĉk + d̂k

)
, (A.5a)

b̂k =
e−iφke−iΘk

√
2

(
ĉk − d̂k

)
, (A.5b)

where φk is a global arbitrary phase. The phase Θk is the argument of

ϕk =

3∑
i=1

eik·δi , (A.6)

that is, Θk = arg ϕk. In the basis (A.4) the Hamiltonian H0 is written as:

Ĥ0 =
∑
k

Ek

(
ĉ†kĉk − d̂†kd̂k

)
. (A.7)

where the eigenvalue is:
Ek = tTB|ϕ(k)|. (A.8)

For writing the interaction term with the electric field, ĤI = eE · R̂ , we need the
position operator written as:

R̂A =
∑
n

Rnâ
†
Rn
âRn , (A.9a)

R̂B =
∑
n

(Rn + δ1) b̂
†
Rn+δ1

b̂Rn+δ1 , (A.9b)

which in the basis given by Eq. (A.4) it reads:

R = − (2π)2i

2Nca20

∑
k,q

[∇qδ (q)] e
i(φk+q−φk)

[(
1 + ei(Θk+q−Θk)

)(
ĉ†k+qĉk + d̂†k+qd̂k

)
+

+
(
1− ei(Θk+q−Θk)

)(
ĉ†k+qd̂k + d̂†k+qĉk

)]
,

(A.10)

where δ (q) is the Dirac delta-function of zero momentum. The dipole-coupling
Hamiltonian ĤI = eE · R̂ is written as:

ĤI = eE ·
∑
k

[
i∇k (n̂c,k + n̂v,k) +

∇kΘk

2
(p̂cv,k + p̂vc,k)

]
, (A.11)
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Figure A.1.: Graphene crystal lattice. A and B are carbons in different sublattices. The blue vectors a1,
a2 are primitive vectors and the red vectors δi, i = 1, 2, 3 are the three possible choices
of basis vector.

where we have defined:

n̂c,k = c†kck, (A.12a)

n̂v,k = d†kdk, (A.12b)

p̂cv,k = c†kdk, (A.12c)

p̂vc,k = d†kck, (A.12d)

φk+q = −
Θk+q

2
. (A.12e)

Expressions for the gradient of the phase Θk

In this subsection we present some useful functions that appear in the Chapter 4.
First we recall the function defined in Eq. (A.6):

ϕk =

3∑
j=1

eik·δj , (A.13)
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where we have used the following choice of vectors for the orientation of the nearest
neighbor hopping (see Fig. A.1):

δ1 = a0(1, 0), (A.14a)

δ2 = a0/2
(
−1,−

√
3
)
, (A.14b)

δ3 = a0/2
(
−1,

√
3
)
. (A.14c)

With this choice of vectors, the eigenvalues ofH0 are the solution of:(
Ek

tTB

)2

= 1 + 4 cos

(
3

2
kx

)
cos

(√
3

2
ky

)
+ 4 cos2

(√
3

2
ky

)
, (A.14d)

and the Θk function (the argument of ϕk) is written as:

tanΘk =
sin kx − 2 sin kx

2 cos
√
3ky
2

cos kx + 2 cos kx
2 cos

√
3ky
2

. (A.15)

We can calculate ∇kΘk through:

∇kΘk =
u∇kv − v∇ku

E2
k

, (A.16)

where we have split the function ϕk in Eq. (A.13) into real and imaginary parts ϕk =
u+ iv. It then follows that we can obtain the components of the gradient of the Θk

function as:

∂kxΘk =
1− 2 cos2

(√
3
2 ky

)
+ cos

(
3
2kx
)
cos
(√

3
2 ky

)
1 + 4 cos

(
3
2kx
)
cos
(√

3
2 ky

)
+ 4 cos2

(√
3
2 ky

) , (A.17a)

∂kyΘk =

√
3 sin

(
3
2kx
)
sin
(√

3
2 ky

)
1 + 4 cos

(
3
2kx
)
cos
(√

3
2 ky

)
+ 4 cos2

(√
3
2 ky

) . (A.17b)
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B
In this appendix we calculate explicitly the bare graphene susceptibility and from
this the optical conductivity.

The susceptibility in graphene, considering that electronic excitations are described
by the massless 2D Dirac equation, is given by [15]:

χ(q, ω) =
∑

α,α′=±
χαα′

(q, ω), (B.1)

where:

χαα′
(q, ω) = 4

∫
d2k

4π2
nF (αEk)− nF (α

′Ek+q)

ℏω + αEk − α′Ek+q + iη
Fαα′(q,k) (B.2)

with α, α′ = +,− labeling the conductance and valence bands, nF is the Fermi-
Dirac distribution and the limit η → 0 is implicit. We define the overlap of graphene
wavefunctions as:

Fαα′(q,k) =
1

2

(
1 + αα′k

2 + k · q
k|k+ q|

)
, (B.3)

nF (E) = [exp(β(E − µ)) + 1]−1 , (B.4)

now we consider µ > 0 and T = 0, that implies nF (E) → θ(E − µ), with θ the
Heaviside step function.

We define:

χαα′
U (q, ω) = 4

∫
d2k

4π2
1

α′ω − Ek − Ek+q + iη
F+−(q,k), (B.5)

with α ̸= α′. and is given by:

χU (q, ω) = χ+−
U (q, ω) + χ−+

U (q, ω), (B.6)
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where χU is the susceptibility when µ = 0. We define χD as

χD(q, ω) = χD(q, ω)− χU (q, ω). (B.7)

The susceptibility can be split in doped and undoped parts:

χ(q, ω) = χD(q, ω) + χU (q, ω), (B.8)

now before we proceed to calculate each piece of the susceptibility we recall the
Sokhotski-Plemelj formula:

1

x± iη
= P

1

x
∓ iπδ(x), (B.9)

this can be used to separate the real and imaginary part of the integration of a real
function as:

I =

∫
dx

f(x)

x± iη
= P

∫
dx
f(x)

x
∓ iπf(x), (B.10)

and so the real part is:

ℜI = P

∫
dx
f(x)

x
(B.11)

and the imaginary part is:
ℑI = ∓iπf(x). (B.12)

From now we will hide the (q, ω) dependence of the susceptibility.

B.1. Undoped susceptibility
Imaginary Part

The imaginary part of χ+−
U is null and the imaginary part of χ−+

U is given by:

ℑχU = −π
∫
kdkdθ

π2
δ(ω − k − |k+ q|)F−+(q,k), (B.13)

where we used the Sokhotski-Plemelj theorem. First we perform the integral in θ and
we arrive:

ℑIχU =

∫ ω

q+ω
2

kdk

π

2|ω − k|θ(q − ω)√
4k2q2 − (ω2 − 2kω − q2)2

(
2k2 + ω2 − 2kω − q2

2k(ω − k)
− 1

)
,

(B.14)

ℑIχU =

∫ q+ω
2

ω−q
2

kdk

π

2|ω − k|θ(ω − q)√
4k2q2 − (ω2 − 2kω − q2)2

(
2k2 + ω2 − 2kω − q2

2k(ω − k)
− 1

)
,

(B.15)
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where we used also ω − k = |k+ q|. A factor of 2 appear because of there’s two
solutions of the Dirac delta zero in the trigonometric plane. The first integral (B.14)
is null because necessary ω < (q + ω)/2.

The above integrals can be simplifed to

ℑχU = 0, q > ω, (B.16a)

ℑχU = − 1

π

∫ q+ω
2

ω−q
2

dk
q2 − ω2 + 4kω − 4k2√

(ω2 − q2)(q2 − ω2 + 4kω − 4k2)
, q < ω, (B.16b)

and Eq. (B.16b) can be simplified:

ℑχU = − 1

π
√
ω2 − q2

∫ q+ω
2

ω−q
2

dk
√
q2 − ω2 + 4kω − 4k2, q < ω, (B.17)

and after perfoming the integral, we have finally:

ℑχU = 0, q > ω,

ℑχU = − q2

4
√
ω2 − q2

, q < ω. (B.18a)

Real Part

To obtain the real part of the susceptibility we use the Kramers-Kronig relation:

ℜχx =
2

π
P

∫ ∞

0
dω′ω

′ℑχx(q, ω
′)

ω′2 − ω2
, (B.19)

that is valid for both components x = U,D. Using equation (B.18a) we have:

ℜχU = − q2

2π
P

∫ ∞

q
dω′ ω′

ω′2 − ω2

1√
ω′2 − q2

, (B.20)

making the change of variables x = ω′2 − ω2 with dx = 2ω′dω′ we have:

ℜχU = − q2

4π
P

∫ ∞

q2−ω2

dx
1

x

1√
x+ ω2 − q2

, (B.21)

if q > ω then we can make x = (q2 − ω2)y and

ℜχU = − q2

4π
√
q2 − ω2

P

∫ ∞

1
dy

1

y

1√
y − 1

, (B.22)

and

ℜχU = − q2

4
√
q2 − ω2

, if q > ω, (B.23)
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else
ℜχU = 0, if q < ω. (B.24)

We can combine the real and imaginary part in a single expression:

χU = −q
2 Sign[q − ω]

4
√
q2 − ω2

. (B.25)

where we use the convention
√
−x = i

√
x for x > 0.

B.2. Contribution from the Fermi sea
First we start with the intraband term:

χ++
D = 4

∫
d2k

4π2
nF (Ek)− nF (Ek+q)

ω + Ek − Ek+q + iη
F++(q,k), (B.26)

splitting the above integral in two:

χ++
D = χintra1

D + χintra2
D = 4

∫
d2k

4π2
nF (Ek)

ω + Ek − Ek+q + iη
F++(q,k) +

4

∫
d2k

4π2
−nF (Ek+q)

ω + Ek − Ek+q + iη
F++(q,k), (B.27)

and making in the second integral k → k− q we have:

χintra2
D = 4

∫
d2k

4π2
−nF (Ek)

ω + Ek−q − Ek + iη
F++(q,k− q), (B.28)

but

Fαα′(q,k− q) =
1

2

(
1 + αα′ |k− q|2 + (k− q) · q

|k− q|k

)
=

1

2

(
1 + αα′k

2 − k · q
k|k− q|

)
= Fαα′(q,−k), (B.29)

making k → −k in (B.28) and using Ek = E−k we arrive at:

χintra2
D = 4

∫
d2k

4π2
−nF (Ek)

ω + Ek+q − Ek + iη
F++(q,k), (B.30)

χintra1
D = 4

∫
d2k

4π2
nF (Ek)

ω + Ek − Ek+q + iη
F++(q,k). (B.31)
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The interband part is:

χ+−
D = 4

∫
d2k

4π2
nF (Ek)

ω + Ek + Ek+q + iη
F+−(q,k), (B.32)

and

χ−+
D = 4

∫
d2k

4π2
−nF (Ek+q)

ω − Ek − Ek+q + iη
F−+(q,k), (B.33)

using the same trick of the intraband part, the integral in (B.33) becomes:

χ−+
D = −4

∫
d2k

4π2
nF (Ek)

ω − Ek+q − Ek + iη
F+−(q,k), (B.34)

we sum B.32 and B.31 to obtain χ1
D, B.34 and B.30 to obtain χ2

D:

χ1
D =

1

π2

∫ 2π

0
dθ

∫ kF

0
dk

2k2 + kω + kq cos θ

ω2 + 2ωk − q2 − 2kq cos θ + iη
, (B.35)

χ2
D = − 1

π2

∫ 2π

0
dθ

∫ kF

0
dk

kω − 2k2 − kq cos θ

ω2 − 2ωk − q2 − 2kq cos θ + iηSign(ω − k)
, (B.36)

using the Sokhotski-Plemelj theorem we can calculate the complex part as:

ℑIχ1
D(q, ω) = −

∫ 2π

0

dθ

π

∫ kF

0
dk
[
2k2 + kω + kq cos θ

]
δ(ω2 + 2ωk− q2 − 2kq cos θ),

(B.37)

ℑIχ2
D(q, ω) =

∫ 2π

0

dθ

π

∫ kF

0
dk
[
kω − 2k2 − kq cos θ

]
δ(ω2 − 2ωk − q2 − 2kq cos θ)×

×Sign(ω − k),
(B.38)

the δ integral can be perfomed in the angle variable θ, resulting in:

ℑIχ1
D = − 2

2π

∫ kF

0
dk

4k2 + 2kω +A+√
B2 −A2

+

G1(k), (B.39)

ℑIχ2
D =

2

2π

∫ kF

0
dk

2kω − 2k2 −A−√
B2 −A2

−

G2(k)Sign(ω − k) (B.40)

where we used:
cos θ =

A±
B

(B.41)
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and:
A± = ω2 ± 2kω − q2 , B = 2kq, (B.42)

Gi(k) =

{
1, if k solve the δ function
0, otherwise

(B.43)

after some algebra we can write:

ℑχ1
D =

2

2π

∫ kF

0
dk

q2 − (2k + ω)2√
(ω2 − q2)(q2 − (2k + ω)2)

G1(k), (B.44)

ℑIχ2
D =

1

π

∫ kF

0
dk

q2 − (ω − 2k)2√
(ω2 − q2)(q2 − (2k − ω)2)

G2(k)Sign(ω − k) (B.45)

Calculation of ℑIχ1
D

For q > ω > q − 2kF :

ℑχ1
D = − 1

π
√
q2 − ω2

∫ kF

q−ω
2

dk
√
(2k + ω)2 − q2, (B.46)

that results in:

ℑχ1
D = − q2

4π
√
q2 − ω2

−acosh
(
2kF + ω

q

)
+

2kF + ω

q

√(
ω + 2kF

q

)2

− 1

 ,
(B.47)

otherwise is null.

Calculation of ℑχ2
D

First for ω > q:

ℑχ2
D =

1

π
√
ω2 − q2

∫ kF

ω−q
2

dk
√
q2 − (ω − 2k)2θ(ω + q − 2k)Sign(ω − k), (B.48)

if 2kF > ω + q then Sign(ω − k) = +1 and:

ℑχ2
D =

q2

4
√
ω2 − q2

, (B.49)

else if ω − q < 2kF and ω + q > 2kF :

ℑχ2
D =

q2

4π
√
ω2 − q2

π
2
+ arcsin

(
2kF − ω

q

)
+

2kF − ω

q

√
1−

(
ω − 2kF

q

)2
 ,

(B.50)
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after some trigonometric steps we can write:

ℑχ2
D =

q2

4π
√
ω2 − q2

π − arccos
(
2kF − ω

q

)
+

2kF − ω

q

√
1−

(
ω − 2kF

q

)2
 .

(B.51)
For q > ω and 2kF > ω + q:

ℑχ2
D =

1

π
√
q2 − ω2

∫ kF

ω+q
2

dk
√
(ω − 2k)2 − q2, (B.52)

that results:

ℑχ2
D =

q2

4π
√
q2 − ω2

2kF − ω

q

√(
2kF − ω

q

)2

− 1− arcosh
(
2kF − ω

q

) ,

(B.53)
otherwise is null.

Real Part

The real part is given by the Cauchy principal value of the expressions (B.35) and
(B.36):

ℜχ1
D =

1

π2
P

∫ 2π

0
dθ

∫ kF

0
dk

2k2 + kω + kq cos θ

ω2 + 2ωk − q2 − 2kq cos θ
, (B.54)

ℜχ2
D = − 1

π2
P

∫ 2π

0
dθ

∫ kF

0
dk

kω − 2k2 − kq cos θ

ω2 − 2ωk − q2 − 2kq cos θ
, (B.55)

the above numerators can be written as a

2k2 + kω + kq cos θ =
q2 − ω2

2
− ωk + kq cos θ +

ω2 − q2 + 4k2 + 4kω

2
, (B.56)

kω − 2k2 − kq cos θ =
ω2 − q2

2
− ωk − kq cos θ +

q2 − ω2 + 4ωk − 4k2

2
, (B.57)

and B.54 and B.55 become:

ℜχ1
D =

1

2π2
P

∫ 2π

0
dθ

∫ kF

0
dk

[
ω2 − q2 + 4k2 + 4kω

ω2 + 2ωk − q2 − 2kq cos θ
− 1

]
, (B.58)

ℜχ2
D = − 1

2π2
P

∫ 2π

0
dθ

∫ kF

0
dk

[
q2 − ω2 + 4ωk − 4k2

ω2 − 2ωk − q2 − 2kq cos θ
+ 1

]
(B.59)

and

ℜχ1
D =

1

2π2

[
−2πkF +P

∫ 2π

0
dθ

∫ kF

0
dk

(2k + ω)2 − q2

ω2 + 2ωk − q2 − 2kq cos θ

]
, (B.60)
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ℜχ2
D = − 1

2π2

[
2πkF +P

∫ 2π

0
dθ

∫ kF

0
dk

q2 − (ω − 2k)2

ω2 − 2ωk − q2 − 2kq cos θ

]
, (B.61)

integrating in θ we have:

ℜχ1
D =

1

2π2

[
−2πkF + 2πθ(ω − q)

∫ kF

0
dk

(2k + ω)2 − q2√
(ω2 + 2ωk − q2)2 − 4k2q2

+

+2πθ(q − ω)

∫ k2

0
dk

(2k + ω)2 − q2√
(ω2 + 2ωk − q2)2 − 4k2q2

sign(2k + ω − q)

]
, (B.62)

ℜχ2
D =

1

2π2

[
−2πkF − 2πθ(ω − q)

∫ k1

0
+

∫ kF

k2

dk
q2 − (ω − 2k)2√

(ω2 − 2ωk − q2)2 − 4k2q2
+

−2πθ(q − ω)

∫ k2

0
dk

q2 − (ω − 2k)2√
(ω2 − 2ωk − q2)2 − 4k2q2

sign(2k − ω − q)

]
(B.63)

where k1 = min(|ω − q|/2, kF ), k2 = min((ω + q)/2, kF ). We can rework the above
integrals to:

ℜχ1
D =

1

2π2

[
−2πkF +

2πθ(ω − q)√
ω2 − q2

∫ kF

0
dk
√
(2k + ω)2 − q2+

− 2πθ(q − ω)√
q2 − ω2

∫ k1

0
dk
√
q2 − (2k + ω)2sign(2k + ω − q)

]
, (B.64)

ℜχ2
D =

1

2π2

[
−2πkF +

2πθ(ω − q)√
ω2 − q2

∫ k1

0
+

∫ kF

k2

dk
√
(2k − ω)2 − q2

−2πθ(q − ω)√
q2 − ω2

∫ k2

0
dk
√
q2 − (2k − ω)2sign(2k − ω − q)

]
. (B.65)

Integrating we arrive at the final expressions for the real part of the susceptibility:

ℜχ1
D = −kF

π
+

q2

4π
√
ω2 − q2

[
F

(
2kF + ω

q

)
− F

(
ω

q

)]
θ(ω − q)+

+
q2

4π
√
q2 − ω2

[
F2

(
2k1 + ω

q

)
− F2

(
ω

q

)]
θ(q − ω), (B.66)

If 2kF < ω − q:

ℜχ2
D = −kF

π
+

q2

4π
√
ω2 − q2

[
F

(
ω

q

)
− F

(
ω − 2kF

q

)]
. (B.67)
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If ω − q < 2kF < ω + q:

ℜχ2
D = −kF

π
+

q2

4π
√
ω2 − q2

F

(
ω

q

)
. (B.68)

If 2kF > ω + q:

ℜχ2
D = −kF

π
+

q2

4π
√
ω2 − q2

[
F

(
ω

q

)
− F

(
2kF − ω

q

)]
, (B.69)

and if q > ω

ℜχ2
D = −kF

π
+

q2

4π
√
q2 − ω2

[
F2

(
2k2 − ω

q

)
− F2

(
−ω
q

)]
, (B.70)

where
F (x) = x

√
x2 − 1− arcosh(x), (B.71)

F2(x) = x
√

1− x2 + arcsin(x), (B.72)

we can rewrite F2 as:

F2(x) = x
√

1− x2 +
π

2
− arccos(x) =

π

2
+ C(x), (B.73)

where
C(x) = x

√
1− x2 − arccos(x), (B.74)

where the image of arccos is defined to be [0, π].
Summing all the contributions we have for each region in the plane (q, ω), that we

separate in six pieces (see Fig. B.1):
1B: ω > q and ω + q < 2kF

ℜχD = −2kF
π

+
q2

4π
√
ω2 − q2

[
F

(
2kF + ω

q

)
− F

(
2kF − ω

q

)]
, (B.75)

2B: ω > q, ω + q > 2kF and ω − q < 2kF

ℜχD = −2kF
π

+
q2

4π
√
ω2 − q2

[
F

(
2kF + ω

q

)]
, (B.76)

3B: ω − q > 2kF

ℜχD = −2kF
π

+
q2

4π
√
ω2 − q2

[
F

(
2kF + ω

q

)
− F

(
ω − 2kF

q

)]
, (B.77)
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Figure B.1.: The analytical integration defines six regions in the q × ω space.

1A: q > ω and ω + q < 2kF :

ℜχD = −2kF
π

+
q2

4
√
q2 − ω2

, (B.78)

2A: q − 2kF < ω q > ω and ω + q > 2kF ,

ℜχD = −2kF
π

+
q2

4π
√
q2 − ω2

[
π + C

(
2kF − ω

q

)]
, (B.79)

3A: q − 2kF > ω

ℜχD = −2kF
π

+
q2

4π
√
q2 − ω2

[
π + C

(
2kF + ω

q

)
+ C

(
2kF − ω

q

)]
, (B.80)

B.3. Summary

Now summing the undoped and doped contributions, we have for the susceptibility,
recovering the units:
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Real Part

1B: ω > vF q and ω + vF q < 2vFkF

ℜχ = − 2kF
ℏvFπ

+
q2

4πℏ
√
ω2 − v2F q

2

[
F

(
2vFkF + ω

vF q

)
− F

(
2vFkF − ω

vF q

)]
, (B.81)

2B: ω > vF q, ω + vF q > 2vFkF and ω − vF q < 2vFkF

ℜχ = − 2kF
ℏvFπ

+
q2

4πℏ
√
ω2 − v2F q

2

[
F

(
2vFkF + ω

vF q

)]
, (B.82)

3B: ω − vF q > 2vFkF

ℜχ = − 2kF
ℏvFπ

+
q2

4πℏ
√
ω2 − v2F q

2

[
F

(
2vFkF + ω

vF q

)
− F

(
ω − 2vFkF

vF q

)]
, (B.83)

1A: vF q > ω and ω + vF q < 2vFkF :

ℜχ = − 2kF
ℏvFπ

, (B.84)

2A: q − 2vFkF < ω vF q > ω and ω + vF q > 2vFkF ,

ℜχ = − 2kF
ℏvFπ

+
q2

4πℏ
√
v2F q

2 − ω2

[
C

(
2vFkF − ω

vF q

)]
, (B.85)

3A: vF q − 2vFkF > ω

ℜχ = − 2kF
ℏvFπ

+
q2

4πℏ
√
v2F q

2 − ω2

[
C

(
2vFkF + ω

vF q

)
+ C

(
2vFkF − ω

vF q

)]
. (B.86)

Imaginary Part

1B:
ℑχ = 0, (B.87)

2B:

ℑχ =
q2

4πℏ
√
ω2 − v2F q

2
C

(
2vFkF − ω

vF q

)
, (B.88)

3B:

ℑχ = − q2

4ℏ
√
ω2 − v2F q

2
, (B.89)
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1A:

ℑχ =
q2

4πℏ
√
v2F q

2 − ω2

[
F

(
2vFkF − ω

vF q

)
− F

(
2vFkF + ω

vF q

)]
, (B.90)

2A:

ℑχ = − q2

4πℏ
√
v2F q

2 − ω2
F

(
2vFkF + ω

vF q

)
, (B.91)

3A:
ℑχ = 0. (B.92)

Equations (B.81–B.92) are ready to use, however, we can put all those equations
together into a single expression with the correct analytical continuation:

χ(q, ω) = − 2kF
ℏvFπ

+
q2

ℏ
S(ω2 − v2F q

2)

[
F̃

(
2vFkF + ω

vF q

)
Sign

[
2vFkF + ω

vF q
− 1

]
−

−F̃
(
2vFkF − ω

vF q

)]
,

(B.93)

where we recovered the units (ℏ and vF ) and S(x) and F (x) are functions with image
in the complex domain:

S(x) =

{
x−

1
2 if x > 0,

−i(−x)−
1
2 if x < 0,

(B.94)

and

F̃ (x) =


F (x), if x > 1,

−iC(x), if 1 > x > −1,

iπ + F (−x), if x < −1,

(B.95)

and F (x) is defined in Eq. (B.71) and C(x) in Eq. (B.74).

B.4. Mermin’s Formula and Optical Conductivity
Using the Mermin’s equation for the susceptibility [92, 169] we have:

χM (q, ω) =
(1− iωτ)χ(q, ω + iγ)χ(q, 0)

−iωτχ(q, 0) + χ(q, ω + iγ)
, (B.96)

where χ was calculated in the previous section and τ is the relaxation time and γ the
relaxation rate: τ = 1/γ.
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The longitudinal component of the optical conductivity is given by

σL(q, ω) =
ie2ω

q2
χM (q, ω), (B.97)

and taking the limit q → 0

σ(ω) = lim
q→0

σL(q, ω), (B.98)

From the equations (B.25) we have the following long wavelength limits:

χ(q, 0) = −q
4
− 2kF

π
+
q

4
+O(q2), (B.99a)

χ(q, ω) =
kF q

2

πω2
− i

q2

4ω
+


q2

4πω ln
(
2kF+ω
2kF−ω

)
+ i q

2

4ω +O(q4), ω < 2kF
q2

4πω ln
(
2kF+ω
ω−2kF

)
+O(q4), ω > 2kF .

(B.99b)

The limit (B.98) can be written as: We can separete those
two limits because both
are finite.

σ(ω) = (1− iωτ)σM (ω + iγ) lim
q→0

χ(q, 0)

−iωτχ(q, 0) + χ(q, ω + iγ)
, (B.100)

where, using (B.99):

σM (ω + iγ) = lim
q→0

ie2ω

q2
χ(q, ω + iγ) =

ie2ω
kF
πω2

+ e2ω
1

4ω
+ ie2ω ×


1

4πω ln
(
2kF+ω
2kF−ω

)
+ i 1

4ω , ω < 2kF

1
4πω ln

(
2kF+ω
ω−2kF

)
, ω > 2kF ,

(B.101)

taking the q → 0 limit with the help of (B.99) we have

lim
q→0

χ(q, 0)

−iωτχ(q, 0) + χ(q, ω + iγ
=

1

−iωτ
, (B.102)

and so:

σ(ω) =
1

4
+ i

kF
πω′ +


i
4π ln

[
2kF−ω′

2kF+ω′

]
− 1

4 , ω < 2kF

i
4π ln

[
ω′−2kF
2kF+ω′

]
, ω > 2kF

(B.103)

where ω′ = ω + iγ.
Using ln reiθ = ln r + iθ for r > 0 and −π

2 < θ < π
2 we have:

σ(ω)

σ0
= − 4kF

π(iω − γ)
+

i

2π
ln

[
(2kF − ω)2 + γ2

(2kF + ω)2 + γ2

]
+

1

π
arctan

(
ω − 2kF

γ

)
−

− 1

π
arctan

(
ω + 2kF

γ

)
, (B.104)
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where σ0 = e2/4ℏ, and we separate the conductivity into a Drude and an interband
terms:

σ(ω) = σDrude(ω) + σI(ω), (B.105)

now we define ωF = EF /ℏ so we can recover the units:

σDrude(ω)

σ0
= −4ωF

π

1

iω − γ
, (B.106)

and the interband conductivity

σI(ω)

σ0
= 1 +

1

π
arctan

(
ω − 2ωF

γ

)
− 1

π
arctan

(
ω + 2ωF

γ

)
+

+
i

2π
ln

[
(2ωF − ω)2 + γ2

(2ωF + ω)2 + γ2

]
. (B.107)

In figure B.2 we show the graphene conductivity given by Eq. B.105.

Figure B.2.: Graphene optical conductivity. EF = 0.5 eV, ℏγ = 260µeV.
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ĉĔĒĆĎē

C
The Bloch equations for graphene was calculated in section and reads:

−∂tnc,k = γ0 (nc,k − fc,k)− iΩk(t)∆pk, (C.1a)
−∂tnv,k = γ0 (nv,k − fv,k) + iΩk(t)∆pk, (C.1b)

(∂t − iωk + γp) pcv,k = iΩk(t)∆nk, (C.1c)
(∂t + iωk + γp) pvc,k = −iΩk(t)∆nk, (C.1d)

where ℏωk = 2Ek, ∆nk = nc,k − nv,k, ∆pk = pcv,k − pvc,k, fc/v,k is the Fermi-
Distribution for the conduction/valence band, and γ0(γp) is a relaxation term. The
time dependence on nc/v,k, pvc/cv,k, and E is omitted, and we have defined:

Ωk(t) =
ea0E(t) ·∇kΘk

2ℏ
, (C.2)

where a0 is the graphene lattice parameter.
Summing Eqs. (C.1a) and (C.1b) we obtain:

∂t(nc,k + nv,k) = −γ0 (nc,k + nv,k − (fc,k + fv,k)) , (C.3)

which has the exact solution:

nc,k(t) + nv,k(t) = c(k)e−γ0t + fc,k + fv,k, (C.4)

where c(k) depends on the initial conditions.
For a system that is initially in thermal equilibrium, c(k) = 0 and:

nc,k(t) + nv,k(t) = fc,k + fv,k, (C.5)

thus we introduce the deviation υk(t) through:

nc,k(t) = fc,k + υk(t), (C.6a)
nv,k(t) = fv,k − υk(t) . (C.6b)
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We also note that the complex conjugate of (C.1d) reads:

(∂t − iωk + γp) p
∗
vc,k = iΩk(t)∆nk, (C.7)

and using Eq. (C.1c)

(∂t − iωk + γp)
(
pcv,k(t)− p∗vc,k(t)

)
= 0, (C.8)

we find the solution:

pcv,k(t) = p∗vc,k(t) + c1(k)e
(−iωk−γp)t, (C.9)

where again c1(k) depends on the initial conditions. If we assume that the system is
initially in thermal equilibrium it follows that c1(k) = 0 and:

pvc,k(t) = p∗cv,k(t) ≡ xk(t) + iyk(t) . (C.10)

The set of four complex equations (C.1) can be reduced to a set of three real equa-
tions for the functions xk, yk, and υk. From Eqs. C.1 we have:

∂tυk = −γ0υk − 2Ωk(t)yk, (C.11a)

(∂t + iωk + γp) [xk + iyk] = −iΩk(t)
(
∆n0k + 2υk

)
, (C.11b)

where ∆fk = fc,k − fv,k. From Eq. (C.11b) finally follows that:

ẋk = −γpxk + ωkyk, (C.12a)
ẏk = −ωkxk − ykγp +Ωk(t) (2υk +∆fk) , (C.12b)
υ̇k = −γ0υk − 2Ωk(t)yk. (C.12c)

These latter set of equations is the one we have solved in chapter 4.
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D
The effective potential in the random phase approximation for a bare scalar potential
V0(q) is given by [4]:

VRPA(q) =
V0(q)

1− V0(q)χ(q)
, (D.1)

where the static susceptibility is written as:

χ(q) =
1

S

∑
k,q,λ1,λ2

fk+q,λ1 − fk,λ2

Ek+q,λ1 − Ek,λ2

⟨k+ q, λ1|k, λ2⟩. (D.2)

For a 2D material, de Coulomb potential reads:

V0(q) =
e2

2εmq
, (D.3)

and thus the RPA potential reads:

VRPA(q) =
e2

2εmε0q − e2χ(q)
. (D.4)

Supposing that in the long wavelength limit q → 0 χ(q) is an analytic function
and so it has a power series expansion, we can write:

e2χ(q) = −2ε0kTF − 2ε0εiq − 2r0q
2 +O(q3), (D.5)

where kTF, εi and r0 are the coefficients of the expansion. Substituing in (D.4):

VRPA(q) =
e2

2ε0

1

kTF + (εm + εi)q + r0q2
. (D.6)
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For r0 = 0, we have the Thomas-Fermi screened potential in a 2D material. For
kTF = 0, this potential reduces to the Keldysh potential[170, 6, 122]:

VRPA(q) =
e2

2ε0

1

q(εm + εi + r0q)
. (D.7)

This expression can be obtained as the electrostatic field of a charge inside a thin
slab with width w in the limit w → 0 [170]. Also can be obtained as the electrostatic
potential of a charge bounded to a 2D material [122].

D.1. Gapless 2D Dirac system
For the 2D Dirac equation with m = 0, we calculated the static susceptibility in
appendix B. We can consider three cases: kF = 0, q < kF and q ≫ kF .

kF = 0 case:

In the first one, we have that the static susceptibility is (B.25):

χ(q) = −
Nfq

16ℏvF
= −

ε0cπαNfq

4e2vF
, (D.8)

where Nf is the degeneracy number, c is the speed of light, and α the fine structure
constant. In this case the exact RPA potential is:For graphene,Nf = 4

because of spin and valley
degeneracy.

VRPA(q) =
e2

2ε0

(
εm + απ

Nf c
8vF

)
q
, (D.9)

where the intrinsic dielectric constant is εi = απ
Nf c
8vF

, in agreement with [171]. In

the case of graphene, vF ≈ c/300, and we have εgraphenei ≈ 3.44. Note that (D.9) is
an exact result in the static RPA for graphene: it was not necessary a power series
expansion.

q < kF case:

For this case, the static susceptibility reads (B.84):

χ(q) = −
NfkF
2ℏvFπ

=
2ε0cαNfkF

e2vF
, (D.10)

thus the potential reads:

VRPA(q) =
e2

2ε0
(
εmq + k0TF

) , (D.11)
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where the Thomas-Fermi wavenumber for the gapless Dirac system is:

k0TF =
αcNfkF
vF

. (D.12)

and for graphene k0TF ≈ 8.76kF .

q ≫ kF case:

For k > kF , the static susceptibility of a gapless Dirac system is (B.86):

χ(q) = −
NfkF
2ℏvFπ

+
Nfq

8πℏvF
C

(
2kF
q

)
, (D.13)

withC(x) = x
√
1− x2−arccos(x). The first term is the same of the previous section,

and when q ≫ kF we can show that:

χ(q) → −
NfkF
ℏπvF

−
Nfq

16ℏvF
+O

(
k2F
q2

)
, (D.14)

in this case the potential is:

VRPA(q) =
e2

2ε0

1(
εm + απ

Nf c
8vF

)
q + k1TF

(D.15)

where in this case the Thomas-Fermi wavenumber is half of what we found in the
previous case (D.12):

k1TF =
αcNfkF
2vF

. (D.16)

D.2. Gapped 2D Dirac system
The static susceptibility of a gapped Dirac system reads [172, 173]:

χ(q) = −
NfEF

2πℏ2v2F

1− θ(q − 2kF )


√
q2 − 4k2F

2q
−

ℏ2v2F q2 − 4∆2

4ℏvF qEF
×

× arctan
ℏvF

√
q2 − 4k2F

2EF

 , (D.17)

where∆ is half the band gap andEF =
√
(ℏvFkF )2 +∆2, now we consider the same

three cases of the previous section.
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TMDC MoS2 MoSe2 WS2 WSe2
∆(eV) 0.797 0.648 0.685 0.524
rDFT
0 (Å) 41.4 51.7 37.9 45.1
r0 (Å) 12.1 14.8 14.0 18.3

Table D.1.: Comparison of the r0 parameter, gapped Dirac model for TMDCs and DFT [107].

kF = 0 case:

In this case Eq. (D.17) becomes:

χ(q) = −
Nf∆

2πℏ2v2F

[
1

2
+

ℏ2v2F q2 − 4∆2

4ℏvF q∆
arctan

ℏvF q
2∆

]
, (D.18)

and after a power series expansion up to second order in q we obtain:

χ(q) = −
Nf∆

2πℏ2v2F

[
1

2
+

ℏ2v2F q2 − 4∆2

4ℏvF q∆

(
ℏvF q
2∆

− 1

3

(
ℏvF q
2∆

)3
)]

+O(q4), (D.19)

and after simplyfing:

χ(q) ≈ −
Nfq

2

12π∆
, (D.20)

and the correspondent potential reads:

V (q) =
e2

2ε0q

1

εm + r0q
, (D.21)

where
r0 =

Nfαℏc
24π∆

, (D.22)

we can compare the RPA r0 with the ones from a DFT calculation for the TMDCs,
and we show the results in the table D.1.

q < kF case:

From Eq. (D.17) we obtain:

χ(q) = −
NfEF

2πℏ2v2F
, (D.23)

thus the correspondent potential has the form of a Thomas-Fermi one:

V (q) =
e2

2ε0

1

εmq + k1TF
, (D.24)

where:
k1TF =

αcNfEF

ℏv2F
. (D.25)

132



D.3. FĎēĆđ ĈĔĒĒĊēęĘ

q ≫ kF case:

In this case is possible to show that:

χ(q) → −
Nfq

16ℏvF
, (D.26)

thus the potential is the same as we found before in Eq. (D.9):

VRPA(q) =
e2

2ε0

(
εm + απ

Nf c
8vF

)
q
. (D.27)

D.3. Final comments
The RPA approach is valid when Nf ≫ 1, in the case of graphene and TMDCs, we
have Nf = 4. Thus all the results presented in this appendix can be somewhat ques-
tioned. The electron-electron interaction of graphene was intensively studied and
is still an active area of research with open questions [174]. The first aspect to note
is that the effective intrinsic dielectric constant obtained for graphene in Eq. (D.9),
that corresponds to an one-loop calculation, is not accurate. A two-loop analysis
[175] shows a contribution of the same order of the one loop. This happens because
the effective “fine structure” constant of graphene is αc/vF /εm ≈ 2.2/εm and can-
not be treated pertubatively in the same way as it is done in QED with α ≈ 137−1.
A renormalization group analysis of electron-electron correlations in graphene in
the strong coupling regime [176, 174] shows that the electron-electron interaction is
not screened and is marginally irrelevant in the charge neutrality point. The gapped
Dirac equation has a different behavior [174] but has not yet had a careful analysis as
the Dirac equation in the context of graphene.

Here we have shown that the Keldysh potential does not applies in graphene de-
scribed by the Dirac equation, however, it can be applied as an effective potential in
the gapped Dirac equation depending on the values of the Fermi moment. The evi-
dences found in table D.1 shows that the static RPA of the Dirac model is not enough
to describe the Keldysh potential. However, a more careful analysis is beyond the
scope of this appendix.
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E
In this appendix we will calculate the optical conductivity of a gapped Dirac system
neglecting the electron-electron interactions. Those equations can be combinated
with the Elliot formula (see appendix F) to describe approximately the optical prop-
erties of TMDCs and hBN, two materials whose low energy excitations are described
by a 2D gapped Dirac equation.

We consider the Dirac Hamiltonian:

H0 = vF τσ1px + vFσ2py + σ3mv
2
F − Iµ, (E.1)

where σi are the Pauli matrices, I is the identity matrix, vF is a material dependent
velocity, m the excitation mass, µ the diagonal element of the Hamiltonian, and
τ = ± is the valley index. From now we choose units with vF = ℏ = e = 1. The
eigenvectors and eigenvalues are:

ϕλ(k) =

√
Ek + λm

2Ek

(
1

τkx−iky
λEk+m

)
, (E.2)

Ek =
√
k2 +m2. (E.3)

The dipole coupling Hamiltonian reads:

ĤI = Ex(t)x̂+ Ey(t)ŷ, (E.4)

The optical conductivity can be obtained from the polarization P from J = ∂tP
[76], for a electric field with time dependence as E(t) = E0e

−iωt. For a electric field
in the i direction, the current in the j direction will be: Jj = σij(ω)Ei:

σij(ω) = −iω
Pj(ω)

SEi
. (E.5)
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E.1. Polarization operator and dipole-coupling Hamiltonian
For obtaining the optical conductivity and the absorbance, we have to compute the
expectation value of the polarization operator. Using the field operators:

ψ̂(r, t) =
1√
S

∑
k,λ

ϕλ(k)âλk(t)e
ik·r, (E.6)

the polarization operator reads:

P̂(t) =

∫
dr ψ̂†(r, t)(−er)ψ̂(r, t). (E.7)

The integral can be explicitly computed with the help of the eigenfunctions ofH0 in
position space: ϕkλ(r) = ϕλ(k)e

ik·r. Using these eigenfunctions it follows that∫
drϕ†k′λ′(r)rϕk,λ(r) =

⟨
k′, λ′ |r|k, λ

⟩
=

⟨k′, λ′ |[r,H0(r)]|k, λ⟩
λEk − λ′Ek′

. (E.8)

Noting that [r,H0(r)] = −i (τuxσ1 + uyσ2) we obtain for the dipole matrix element
the result: ⟨

k′, λ′ |−r|k, λ
⟩
= −δkk′

ivλ′(k)

2λ′Ek
, (E.9)

for λ ̸= λ′ (inter-band transitions). We defined the matrix element of the velocity
operator (τuxσ1 + uyσ2) as

vλ(k) = ⟨k, λ |(τuxσ1 + uyσ2)|k,−λ⟩ , (E.10)

the dipole matrix elements in each direction read as:

dλ,x(k) ≡
⟨
k, λ |−x|k, λ′

⟩
= i

iEkλ sin θ + τm cos θ

2λE2
k

, (E.11)

dλ,y(k) ≡
⟨
k, λ |−y|k, λ′

⟩
= i

m sin θ − iλEkτ cos θ

2λE2
k

, (E.12)

with θ = arctan ky/kX .
Finally, we can express the polarization operator as:

P̂(ω) =
∑
kλ

dλ(k)ρ̂kλ,−λ(ω), (E.13)

to obtain the expectation value of the polarization operator we need to calculate the
expectation value of the density matrix ρ̂kλ,−λ(ω). This can be done with the SBE
(3.64), where we neglect the electron-electron interaction terms:

− ωpλ(k, ω) = ωλkpλ(k, ω) + E0 · d−λ(k)∆fλ(k), (E.14)
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where we recognized dk,k
−λ,λ = d−λ(k), and so:

pλ(k, ω) = −E0 · d−λ(k)∆fλ(k)

ω + ωλk + iγ
, (E.15)

where we added a relaxation rate γ, as done before. The expectation value of the
polarization reads:

⟨P̂(ω)⟩ = −S
∫

dk

(2π)2
dλ(k)

E0 · d−λ(k)∆fλ(k)

ω + ωλk + iγ
, (E.16)

and so the conductivity reads

σij(ω) = iω
∑
λ

∫
dk

(2π)2
dλ,i(k)d−λ,j(k)∆fλ(k)

ω + ωλk + iγ
, (E.17)

following appendix (E.1), where we show that in the Mermin Formula for the optical
conductivity we need to make to multiply by a factor 1 + i γω , doing this we have:

σij(ω) = i(ω + iγ)
∑
λ

∫
dk

(2π)2
dλ,i(k)d−λ,j(k)∆fλ(k)

ω + ωλk + iγ
, (E.18)

now we consider the system at T = 0 and with an effective chemical potential
µeff > 0, that means the system has the conductance band partially populated, so
the electronic distribution is given by:

∆fλ(k) = −λθ(Ek − µeff), (E.19)

the neutral system corresponds to µeff < m.

E.2. Longitudinal conductivity
From Eq. (E.18) we have for the longitudinal conductivity i = j = x:

σxx(ω) = −i(ω + iγ)
∑
λ

λ

∫
dk

(2π)2
E2

k sin
2 θ +m2 cos2 θ

ω + 2λ
√
k2 +m2 + iγ

θ(Ek − µeff)

4E4
k

, (E.20)

performing the angular integral we obtain:

σxx(ω) = −i(ω + iγ)
∑
λ

λ

∫
kdk

4π

E2
k +m2

ω + 2λ
√
k2 +m2 + iγ

θ(Ek − µeff)

4E4
k

, (E.21)

now performing the change of variables u2 = E2
k = k2 +m2, we have:

σxx(ω) = −i(ω + iγ)
∑
λ

λ

∫ ∞

µeff

du

4π

u2 +m2

ω + 2λu+ iγ

1

4u3
, (E.22)
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now doing the variable change z = 2λu and calling ω′ = ω + iγ, we have:

σxx(ω) = − i(ω + iγ)

16π

∑
λ

λ

∫ ∞

2λµeff

du
z2 + 4m2

ω′ + z

1

z3
. (E.23)

Now we use the following primitivesAt the end of the
calculation, it is a bit

tricky to take the correct
value of the multivaluated

logarithm: this is done
checking some limits.

:∫
dz

1

z + a

1

z3
= − 1

2a3

[
a(a− 2z)

z2
+ 2 ln

(
a+ z

z

)]
, (E.24a)∫

dz
1

z + a

1

z
= −1

a
ln

(
a+ z

z

)
, (E.24b)

therefore:

σxx(ω) = − iω′

16π

∑
λ

λ

{
1

2ω′3

[
ω′(ω′ − 4λµeff)

4µeff
2

+ 2 ln

(
ω′ + 2λµeff

2λµeff

)]
4m2+

+
1

ω′ ln

(
ω′ + 2λµeff

2λµeff

)}
, (E.25)

and reordering:

σxx(ω) = − i

32πω′2

∑
λ

λ

{
ω′(ω′ − 4λµeff)

µeff
2

m2 +
(
8m2 + 2ω′2

)
ln

(
ω′ + 2λµeff

2λµeff

)}
,

(E.26)
and performing the sum in λ:

σxx(ω) = − iω

16πω′3

{
−4m2ω′

µeff
+
(
4m2 + ω′2

)[
ln

(
ω′ + 2µeff

ω′ − 2µeff

)
+ iπ

]}
, (E.27)

where we used that ln(−1) = iπ (this is the correct analytic continuation for this
term), and the other logarithm term can be written as:

ln

(
ω′ + 2µeff

ω′ − 2µeff

)
= −1

2
ln

(
(ω − 2µeff)

2 + γ2

(ω + 2µeff)2 + γ2

)
+ i arctan

(
ω − 2µeff

γ

)
.

−i arctan

(
ω + 2µeff

γ

)
, (E.28)

so the total conductivity reads:

σxx(ω) =
1

16π

{
i

4m2

µeff(ω + iγ)
+

(
4m2

(ω + iγ)2
+ 1

)[
π + arctan

(
ω − 2µeff

γ

)
+

− arctan

(
ω + 2µeff

γ

)
+

i

2
ln

(
(ω − 2µeff)

2 + γ2

(ω + 2µeff)2 + γ2

)]}
,

(E.29)

here µeff should be replaced bym if µeff < m. Also we have that σyy(ω) = σxx(ω).
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E.3. Transverse conductivity
The transverse conductivity, i = x, j = y in Eq. Eq. (E.18), reads:

σxy(ω) = (γ−iω)
∑
λ

∫
dk

(2π)2
∆fλ(k)

4E4
k

[iτλEk sin θ +m cos θ] [m sin θ + iτλEk cos θ]

ω + 2λEk + iγ
,

(E.30)
the terms with sin θ cos θ will disappear after the angular integration, so:

σxy(ω) = (γ − iω)τ
∑
λ

λ

∫
dk

(2π)2
1

4E3
k

iλm sin2 θ + iλm cos2 θ

ω + 2λEk + iγ
θ(Ek − µeff), (E.31)

after the angular integration:

σxy(ω) = 2(ω + iγ)τm
∑
λ

∫
kdk

4π

1

4E3
k

1

ω + 2λEk + iγ
θ(Ek − µeff), (E.32)

now making the variable change z = 2λEk, we have:

σxy(ω) = 2(ω + iγ)τm
∑
λ

∫ ∞

2λµeff

dz

8π

1

z2
1

ω′ + z
, (E.33)

where again we did ω′ = ω + iγ. We have the following primitive:∫
dz

1

z2
1

z + a
= − 1

a2

[
a

z
+ ln

(
z

a+ z

)]
, (E.34)

and so
σxy(ω) =

ω′τm

4π

∑
λ

1

ω′2

[
ω′

2λµeff
+ ln

(
2λµeff

ω′ + 2λµeff

)]
, (E.35)

and performing the sum in λ:

σxy(ω) =
τm

4π

1

ω′ ln

(
−4µ2eff

ω′2 − 4µ2eff

)
, (E.36)

we can write the logarithm as:

ln

(
−4µ2eff

ω′2 − 4µ2eff

)
=

1

2
ln

(
16µ4eff

γ4 + (ω2 − 4µ2eff)
2 + 2γ2

(
ω2 + 4µ2eff

))+

+i arctan

(
ω + 2µeff

γ

)
+ i arctan

(
ω − 2µeff

γ

)
, (E.37)

the transverse conductivity reads: We have that
σyx(ω) = −σxy(ω). Note
that when we sum the
contributions for the two
valleys (τ = ±) the
transverse conductivity is
zero.

σxy(ω) =
τm

4π

1

ω + iγ

[
1

2
ln

(
16µ4eff

γ4 + (ω2 − 4µ2eff)
2 + 2γ2

(
ω2 + 4µ2eff

))+

+i arctan

(
ω + 2µeff

γ

)
+ i arctan

(
ω − 2µeff

γ

)]
. (E.38)
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Figure E.1.: MoS2 optical absorption for a circular polarized left handed wave. Parameters used are
ℏvF = 2.76 eV, mv2F = 0.872 eV, Λ1 = 0.027 eV, the effective mass is given by msτv

2
F =

mv2F − sτΛ1, EF = 0, and ℏγ = 26 meV.

E.4. Absorption by a circular polarized light
For a polarized circular field, with E± = (ux ± iuy)E0e

−iωt, the conductivity reads:From J± =(
σL(ω) σT (ω)
−σT (ω) σL(ω)

)
E±

we can obtain that J± =
(σL(ω)± iσT (ω))E±:

this results comes from
the particular case of a

circular polarized electric
field is an eigenvector of
this conductivity tensor.
From this we can define
the circular polarized

conductivity σ±(ω), as
the corresponding

eigenvector.

σ±(ω) = σL(ω)± iσT (ω), (E.39)

where the ± refers to the right- and left-hand circular polarization, σL(ω) = σxx(ω)
and σT (ω) = σxy(ω) = −σyx(ω). The absorbance coefficient for small conductivities
(πασ(ω)/σ0 ≪ 1 ) can be written as [15]:

A±(ω) = παℜσ±(ω)
σ0

, (E.40)

where α is the fine structure constant. For a TMDC, the conductivity has a valley τ
and a spin s index. To use Eqs. (E.29) and (E.38) we need to make the substitution
m → msτ and µeff → µsτeff. In the small absorption regime, we can decompose the
absorbance for each valley as:

Aτ
±(ω) =

∑
s

παℜ
σsτ± (ω)

σ0
, (E.41)

and we plot each component of the absorbance for MoS2 in Fig. E.1 for a left handed
circular polarized field. For the right handed one, the result is exactly the same if we
switch the K and K′ valley labels.
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F
F.1. Derivation of Elliot’s formula
The solution of the homogeneous problem presented in equation (5.36) can be used
to calculate the optical conductivity of the system. We now detail the derivation of
Elliot’s formula for TMDCs. First we decompose the excitonic wave function into a
complete set of eingenfunctions of (5.36):

Ψsτ
ℓ (k) =

∑
n

csτℓnψ
sτ
ℓ,n(k) +

∫ ∞

0
dq gsτℓ (q)ψsτ

ℓ (q, k), (F.1)

where we have separated the discrete and continuum states of the exciton spectrum,
with n and q the radial quantum numbers, respectively. We further recall the orthog-
onality relations: ∫ ∞

0
dkk[ψsτ

ℓ,n′(k)]†ψsτ
ℓ,n(k) = δn′,n (F.2)∫ ∞

0
dkk[ψsτ

ℓ,n(k)]
†ψsτ

ℓ (q, k)ψ = 0, (F.3)∫ ∞

0
dkk[ψsτ

ℓ (q′, k)]†ψsτ
ℓ (q, k) = δ(q − q′), (F.4)

The non-homogeneous equation (5.21) for psτ− (k, ω) (the resonant part), neglect-
ing the term proportional to psτ+ (k, ω), after we substitute the expansion for Ψsτ

ℓ (k)
into the eigenfunctions of the KernelKBS (5.34) that appears in Eq. (5.33), and inte-
grating in θ, becomes:

(ω −KBS
ℓ )

(∑
n

csτℓnψ
sτ
ℓ,n(k) +

∫ ∞

0
dq gsτℓ (q)ψsτ

ℓ (q, k)

)
= −dsτℓ,+,x(k) . (F.5)
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where the angular decomposition of the dipole matrix element (5.7) is dsτℓ,λ,x(k) =∫ 2π
0

dθ
2πd

sτ
λ,x(k)e

−i(ℓ+1)θ, is composed of two terms: dsτℓ,λ,x = dsτ0,ℓ,xδ0,λ + dsτ−2,λ,xδ−2,ℓ,,
remembering that the angular decomposition has an extra θ phase:

dsτ0,λ,x(k) = i
Ekλ+ τm

4λE2
k

, (F.6a)

dsτ−2,λ,x(k) = i
−Ekλ+ τm

4λE2
k

. (F.6b)

Using the eigenfunction orthogonality andneglecting the continuumpartψsτ
ℓ (q, k),

we arrive at: ∑
n

(ω − Esτ
ℓn)c

sτ
ℓnψ

sτ
ℓ,n(k) = −dsτℓ,+,x(k), (F.7)

from where it follows the coefficients csτℓs after usign (F.4):

csτℓn = − 1

ω − Esτ
ℓn

∫ ∞

0
kdk

[
ψsτ
ℓ,n(k)

]†
dsτℓ,+,x(k), (F.8)

Using the last result, the exciton contribution to the polarization is, using equation
(5.23), given by:

P (ω)

S
= − 1

2π

∑
sτ,ℓ={0,2},n

∣∣∣∣∫ ∞

0
qdq dsτℓ,+,x(q) [ψ

sτ
nℓ(q)]

∗
∣∣∣∣2 1

ω − Esτ
ℓn + iγ

E0, (F.9)

remembering here that we are using units such that vF = ℏ = e = 1. We also in-
troduced a phenomenological relaxation rate γ. Note that the θ integral has been
performed, and we are summing over all the spin/valley indexes. Now we define the

weight function M sτ
nℓ as M sτ

nℓ =
v2F
2π

∣∣∣∫∞
0 qdq dsτℓ,+,x(q) [ψ

sτ
nℓ(q)]

∗
∣∣∣2 , where we explicitly

wrote the v2F term so the weight function is an adimensional quantity. The polariza-
tion follows as

P (ω)

S
= −

∑
sτ,ℓ={0,2},n

M sτ
ℓn

ω − Esτ
ℓn + iγ

E0, (F.10)

where we have introduced a phenomenological relaxation rate γ. From σ(ω) =
−iωP (ω)/S, the conductivity reads after reintroducing the units:

σ(ω)

σ0
= 4iℏω

∑
sτ,ℓ={0,2},n

M sτ
ℓn

ℏω − Esτ
ℓn + iℏγ

. (F.11)

Finally, the absorbance coefficient A(ω) = 1−T(ω)−R(ω), where T(ω) [R(ω)] is
the electromagnetic transmission [reflection] for a TEM wave, is given by:

A(ω) ≈ ω

c
√
εm

ℑ{χ2D(ω)} =
4παωγ
√
εm

∑
sτ,ℓ={0,2},n

M sτ
ℓn

(ω − Esτ
ℓn/ℏ)2 + γ2

, (F.12)

where α ≈ 1/137 is the fine-structure constant.
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G
G.1. Unit cell made of two different dielectrics and a

graphene sheet at the interfaces

The transfer matrix whose elements are [28] 1

mj
11 =

[
Ax

− cosα2 + i(χ+ Cx
+) sinα2

]
e−iα1 ,

mj
12 = [Bx cosα2 + i (∆ +Dx) sinα2] e

iα1 ,

mj
21 = [−Bx cosα2 − i (∆ +Dx) sinα2] e

−iα1 ,

mj
22 =

[
Ax

+ cosα2 − i
(
χ+ Cx

−
)
sinα2

]
eiα1 , (G.1)

where x = TE,TM and the diverse parameters are given in appendix G.
The Snell-Decartes law hold:

√
ε1µ1 sin θ1 =

√
ε2µ2 sin θ2, (G.2)

and the dispersion relation is given by:

cos g = cosα1 cosα2 −
(
χ+ 2f2βx1β

x
2

)
sinα1 sinα2

+2if (βx1 cosα1 sinα2 + βx2 cosα2 sinα1) . (G.3)

with:

βTM
i = ZTM

i , βTE
i =

1

ZTE
i

, (G.4)

1there are some typos in the transfer matrix elements given in reference [28]
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where:

ki =
√
εiµiω/c cos θi,

αi = kizi,

Ax
± = (1± 2fβx1 ),

Bx = 2fλxβx1 ,

Cx
± = ±2fβx2 + 2f2βx1β

x
2 ,

Dx = 2f2λxβx1β
x
2 ,

ηx =
Zx
1

Zx
2

,

∆x =
1

2

(
ηx − ηx−1

)
,

χx =
1

2

(
ηx + ηx−1

)
,

f =
σcµ0
2

,

ZTE
i =

√
µiεi

µi
cos θi,

ZTM
i =

√
µiεi

εi
cos θi, (G.5)

with λTM = +1, λTE = −1.

G.2. Unit cell made of one dielectric and a graphene sheet
at the interface

When there is only one dielectric, with width z and ε, µ permissivity and permeabil-
ity, intercalated by graphene sheets, the transfer matrix is given by:

M =

(
(1− βxf)eiα −λxβxfeiα
λxβxfe−iα (1 + βxf)e−iα

)
, (G.6)

where α =
√
µεz cos θ with the dispersion relation:

cos g = cosα− iβxf sinα. (G.7)
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