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Abstract

Many program verification tools rely on the translation of code annotated with properties into an

intermediate single-assignment form (in a more or less explicit way), and then on an algorithm

that generates verification conditions from it. In this thesis, we revisit two major methods that

are widely used to produce verification conditions for single-assignment programs: predicate

transformers (used mostly by deductive verification tools) and the conditional normal form

transformation (used in bounded model checking of software). We identify different aspects in

which the methods differ and show that they can be combined to produce new hybrid verification

condition generators; together with the initial algorithms they form what we call the VCGen

cube, which we propose as a framework for synthesizing and comparing verification condition

generators. Optimizations implemented by verification tools are then integrated into the cube.

At the theoretical level we propose two fully proved verification frameworks based on the

translation into single-assignment and subsequent generation of verification conditions. On one

hand we formalize program verification based on the translation of While programs annotated

with loop invariants into an iterating single-assignment language with a dedicated iterating

construct. Soundness and completeness proofs are given for the entire workflow, including the

translation of annotated programs into iterating single-assignment form. The formalization is

based on a program logic that we show to be adaptation-complete.

On the other hand we formally define an iteration-free single-assignment language with

assume, assert, and exceptions, and introduce a program logic for this language which allows us

to prove the soundness and completeness of the VCGen cube. A verification framework based

on the translation of programs into (iteration-free) single-assignment form is then proposed,

and the entire workflow is proved to be sound and complete. We also suggest a concrete single-

assignment translation that transforms annotated loops into assumes and asserts to check that

the annotated invariants are valid and preserved during the iterations.

Finally, we compare the verification condition generators empirically, both for programs of

the LLVM intermediate representation (a concrete popular intermediate language that is based

on SA form), and in the context of the Why3 deductive verification tool. Although the results

do not indicate absolute superiority of any given method, they do allow us to identify interesting

trends.
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Resumo

No contexto da verificação de programas, são várias as ferramentas que assentam na tradução

de programas numa forma single-assignment (umas implicitamente e outras explicitamente), e

depois num algoritmo que gera condições de verificação. Nesta tese, revisitamos dois grandes

métodos tipicamente utilizados para a geração de condições de verificação a partir de programas

single-assignment : predicate transformers (utilizados maioritariamente por ferramentas dedu-

tivas) e a transformação baseada em conditional normal form (utilizados em bounded model

checking de software). Com isto, identificamos vários aspetos nos quais estes métodos diferem

e mostramos como estes podem ser combinados para produzir novos geradores de condições de

verificação. Os métodos resultantes, juntamente com os iniciais, formam aquilo que designamos

por VCGen cube e que propomos como uma framework para sintetizar e comparar a geração

de condições de verificação.

A ńıvel teórico, propomos duas abordagens para a verificação baseada na tradução de pro-

gramas em single-assignment e subsequente geração de condições de verificação. Por um lado,

formalizamos uma técnica assente na tradução de programas While, anotados com invariantes

de ciclo, em programas single-assignment contendo um comando especial para captar os res-

petivos ciclos e invariantes. Provas sobre a soundness e completeness do fluxo completo da

técnica são apresentadas. A formalização da técnica é baseada numa lógica de programas que

é adaptation-complete.

Numa segunda abordagem, definimos formalmente a noção de programa single-assignment

(sem ciclos) contendo os comandos assume e assert, e também exceções, e introduzimos uma

lógica para estes programas que nos permite mostrar que o VCGen cube é sound e complete.

Uma técnica de verificação que assenta na tradução de programas em single-assignment é então

proposta e mais uma vez, o fluxo completo da framework é provado como sendo sound e

complete. Em particular, a tradução concreta (esta também provada correta) traduz programas

contendo ciclos em programas sem ciclos.

Para a avaliação emṕırica dos geradores de condições de verificação, recorremos a duas

abordagens, uma no contexto da linguagem intermédia LLVM, e outra no contexto da ferramenta

de verificação dedutiva Why3. Embora os resultados não indiquem superioridade absoluta de

nenhum método, estes revelam tendências interessantes.
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Chapter 1

Introduction

The need for methods to reason about algorithms was identified in the late forties [57, 101],

but it was during the late sixties that Floyd and Hoare proposed a systematic approach for

reasoning about programs [53, 64]. The initial idea of Floyd was to reason about flowcharts,

while Hoare proposed to reason about text representing programming constructs. Since then,

program verification has gained an important role in the programming languages community,

and several progresses have been made. Tools can nowadays be effectively used in daily tasks

when producing and reasoning about programs.

In the last years deductive program verification has reached a stage of a certain maturity,

to the point that a number of tools are now available allowing users to prove properties of

programs written in real-world languages like C, C#, Java, or SPARK [74, 12, 49, 89]. Deductive

techniques attempt to establish the correctness of a program implementation with respect to

a specification, usually given as a set of contracts (e.g. pre and postcondition) expressed in

first-order logic. The success of the verification procedure depends on information provided by

the user in the form of annotations, in particular loop invariants.

Bounded model checking of software is an alternative approach to program verification that

has been in use for more than a decade now, and solutions have been proposed for multiple

languages [31, 91, 86, 93]. Properties are normally inserted in the code through assume and

assert clauses to be checked. The goal of bounded model checkers is to be as automatic as

possible, and for this reason the precision of the verification technique may be compromised. For

this reason they are sometimes described as bug finders rather than program verification tools,

but in our view the two families of tools, bounded model checking and deductive verification

tools, share many principles and complement each other.

To start with, at the language level, the programs to be verified typically contain pre and

postconditions, as well as a generic mechanism that allows for properties to be annotated at

any point in the program. Assume and assert statements are part of the core specification

language of most bounded model checkers of software, and more generally of software model

checkers [71]. The assert command is also included in the behavior specification languages

employed by deductive verification platforms such as Why3 [50], Dafny [83], OpenJML [35],

SPARK [89], or Frama-C [74]. Even though such tools do not usually allow for the use of

1



2 INTRODUCTION

the assume command at the programmer’s level, they often resort to it at some point in the

intermediate form.

A second shared principle is that modern tools employ internally a verification conditions

generator (VCGen), a component that takes as input a program together with a specification,

and outputs a number of proof obligations known as verification conditions (VCs), that are sent

to a backend proof tool for validity checking.

Finally, tools based on the two approaches resort, in a more or less explicit way, to an

intermediate form in which programs do not contain iterating constructs (loops) or subprogram

calls, and are in what is known as single-assignment (SA) form [40, 102], which means that

variables may not be assigned more than once. In BoogiePL [10], a language tailored for

deductive verification, assume and assert statements are used to encode loops annotated with

invariants as non-iterating commands, and the resulting program is transformed into SA. In

bounded model checking of software, on the other hand, loops are expanded a fixed number of

times (property violations may thus be found only up to a bound) and the resulting program is

then translated into SA form. Procedure and function calls are similarly eliminated, either by

inserting assume and assert statements encoding their contracts, or by inlining their code.

Typically the intermediate SA form will still contain some constructs allowing for rich

control-flow, such as a goto command or a try-catch exception mechanism, since this is usually

allowed at source level [52, 11, 50]. There are multiple reasons for the use of a single-assignment

intermediate form: (i) programs are easy to encode in this form, since no variable substitutions

have to be applied in order to capture assignments to variables; (ii) it allows for the generation

of compact VCs in a sense that was first identified by Flanagan and Saxe [52]; (iii) and it is

easy to capture aspects of specification languages such as the ability to refer to the value of a

variable at a given program point.

This thesis is born from the observation that the major approaches to the generation of ver-

ification conditions based on the translation of programs into SA have not yet been sufficiently

investigated, nor compared, either theoretically or practically. In particular, as far as we know,

no SA translation has ever been shown to be sound or complete with respect to the program-

ming languages semantics, or to preserve the validity of the loop invariants annotated in the

code. At the VCGen level, there is a clear theoretical gap between the VCGens implemented

by these tools and the correctness of the verification method as a whole. A key point is that

the VCGens used by different tools may differ substantially in the format of the VCs they gen-

erate and optimizations they employ. The VCGen and the optimization algorithms are usually

coupled tightly, and both are hidden in the internals of tools. Identifying the baseline features

that influence efficacy and efficiency of the verification techniques is far from trivial, and a thor-

ough study of these aspects is thus desirable to understand the intricacies of each technique,

contributing towards improving current verification tools, and allowing for new techniques to

be investigated systematically.
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Contributions. The contributions of this thesis can be divided in two parts. In the first part,

we formalize a verification technique for While programs annotated with invariants, based on

their conversion to an intermediate iterating single-assignment (ISA) form. The technique relies

on (i) a novel notion of single-assignment program that supports loops annotated with invariants;

(ii) a notion of translation of While programs annotated with loop invariants (resp. Hoare triples

containing such programs) into the ISA programs (resp. Hoare triples containing ISA programs);

(iii) a Hoare-style logic for these programs; and (iv) a VCGen generating compact verification

conditions for Hoare triples containing ISA programs. The entire workflow is proved to be sound

and complete – in particular, we show how invariants annotated in the initial While program

are translated into the intermediate ISA form in a way that guarantees the completeness of the

approach. This means that if the invariants annotated in the original program are appropriate

for showing its correctness, then the verification of the translated ISA program will be successful.

Adaptation completeness is an important property that establishes that a triple can be

derived from another whenever the validity of the first implies the validity of the second. An

adaptation-complete variant of the logic for ISA is also proposed, by adding to the inference

system a dedicated consequence rule with a simple side condition, that provides the highest

degree of adaptation, without the need to check any additional complicated conditions or rules,

as used to be the case in existing adaptation-complete presentations of Hoare logic [5, 4, 75].

The second part aims to formally capture the typical workflow implemented by state of the

art verification tools that rely on the translation of programs into SA. We start by presenting

a systematic study and categorization of the VCGens commonly used in deductive verification

and bounded model checking of software, and compare the verification conditions they generate.

By taking as point of departure the logical encoding of SA programs containing assumes and

asserts, (i) we identify three dimensions in which they differ, and by combining these dimensions

(ii) we introduce 6 new hybrid VCGens and (iii) organize them graphically in what we call the

VCGen cube; (iv) we propose a set of optimized hybrid VCGens, by considering optimizations

implemented by two flagship tools; (v) we extend the previous VCGens to handle programs

with exceptions; and (vi) aggregate all the VCGens into a single unifying definition.

Aiming at providing a common proved verification framework, based on the translation of

programs annotated with loop invariants into SA and the subsequent generation of verification

conditions, we propose a set of theoretical tools. More specifically, we (i) study operational and

axiomatic semantics of a language with assume, assert, and exceptions; (ii) introduce a sound

and complete logic for (non-iterating) SA programs with assume, assert, and exceptions; (iii)

prove the soundness and completeness of the VCGens in the cube; (iv) introduce an appropriate

notion of SA translation; and (v) prove that the resulting verification framework is sound and

complete.

A concrete SA translation is also provided, together with the proof that it complies with the

notion of SA translation. Note that this is not immediate since the translation must convert

programs with loops into iteration-free programs. Even though this is a translation that is

applied by several verification tools, as far as we know, it is the first time that such a translation
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is proved to be sound and complete.

Besides comparing the VCGens asymptotically, and demonstrating that all the VCGens

generate VCs that are equivalent in terms of validity, we also present some empirical results. In

a first approach we show the result of comparing them empirically with a large set of benchmark

programs in the context of LLVM intermediate representation [80], and in a second approach

we show the result of different experiments using the Why3 deductive verification tool.

The work regarding the verification of programs based on the translation into iterating

single-assignment form was published in the Proceedings of the 25th European Symposium on

Programming [87]. An initial approach at comparing the generation of verification conditions

was published in the Proceedings of the 15th International Workshop on Automated Verification

of Critical Systems [88], and the VCGen cube together with the empirical evaluation in the

context of LLVM intermediate representation is to appear in the Proceedings of the 37th Annual

IEEE Computer Software and Applications Conference [85].

Organization of the Document. The dependencies between the chapters are depicted in

the diagram below:

2 Background

3 Iterating SA Programs as a

Basis for Program Verification

4 Verification Conditions for SA

Programs with Assume, Assert,

and Exceptions

5 A Verification Workflow Based

on SA Programs

6 A Translation of Iterating

Programs into SA Form

7 Evaluation and Experiments

Chapter 2 provides an overview over the area of program verification and presents a set

of frameworks to reason about programs. The chapter may also be seen as an introduction

to program verification. In particular it presents a commonly used While language together

with the operational and axiomatic semantics, and Dijkstra’s guarded commands together with

their predicate transformers. The notion of verification condition generation and the basis of

bounded model checking of software are also presented. The chapter ends by introducing some

notation that will be used along the thesis.

Chapter 3 proposes a first approach to formalize program verification based on the use of a

single-assignment intermediate language. We propose a workflow for program verification based

on a novel iterating SA programming language and a program logic for these programs.

Chapter 4 is somewhat less formal, in the sense that its contents are justified by resorting

to what tools based on the use of single-assignment form typically do, instead of starting from
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the theoretical foundations of program verification. We propose the VCGen cube as a device to

organize and unify the presentation of the different methods used in the generation of VCs for

SA programs containing assume, assert, and try-catch exceptions.

Chapter 5 aims at bridging the gap between the previous chapter, that discusses different

methods for generating VCs, and the theoretical foundations of program verification, in partic-

ular Hoare logic and program semantics. It formalizes the notion of single-assignment program,

provides an inference system to reason about these programs, and shows that the VCGens of

Chapter 4 are all equivalent, sound, and complete with respect to the inference system. Con-

trarily to the approach from Chapter 3, the single-assignment language contains assume and

assert commands but does not contain any iterating construct, which implies that iteration has

to be captured resorting to the former constructs.

Chapter 6 proposes a single-assignment translation that is shown to be indeed an SA trans-

lation. More specifically, the translation is shown to be sound (if a translated triple is valid

then so is the original) and complete (if the original triple is valid, then so is the translated

one). This allows us to demonstrate that the workflow based on the translation of programs

into single-assignment is not vacuous, and there is at least one translation that preserves the

restrictions from the previous chapter.

Chapter 7 presents some experiments. The first part of the chapter provides a comparative

evaluation of the considered VCGens in a tool that was developed on top of the SNIPER

fault localization tool [79], and the second part carries out a comparative analysis on some

experiments that were made with the Why3 deductive verification tool [50].

Chapter 8 discusses the main conclusions of our work and presents suggestions for future

studies.
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Chapter 2

Background

This chapter introduces the necessary background for this thesis and also some preliminary

notation and results. The first part of the chapter is written in the form of a tutorial and can

also be seen as an introduction to program verification, both from the deductive and from the

bounded model checking point of view.

The typical While language that will serve as a basis for the whole thesis is presented

and immediately used to explore deductive verification of programs. We study the notion of

Hoare triple and a logic formalism to reason about those triples known as Hoare Logic. Since

the traditional Hoare logic requires user intervention, the concept of annotated program is

introduced and a new inference logic system to reason about annotated programs is presented.

With the intention of abstracting from all the intricacies of the theoretical foundations of

programming languages, Dijkstra proposed guarded commands and a method known as predicate

transformers to reason about them. These concepts have had a great impact on program

verification, in particular on the topic of (compact) verification conditions generation, which we

review here.

A light-weight introduction to bounded model checking of software is then presented. The

main concepts of the technique are exposed and explored, and a concrete example is given of

how to transform an iterating-program into a logical formula.

This chapter is organized in the following way. The next section introduces the basic prin-

ciples about the semantics of programming languages: it introduces the notion of program

expression, a concrete syntax for a While language, and also a small and big-step semantics.

Section 2.2 shows the basic principles of program verification, in particular the notion of Hoare

triple and Hoare logic. The previous principles are then extended to annotated programs with

invariants in Section 2.3. We then focus on the generation of verification conditions, by first

presenting some work in the context of Dijkstra’s guarded commands (Section 2.4) and then

in the context of our While language (Section 2.5). Section 2.6 is dedicated to bounded model

checking of software and Section 2.7 presents some additional preliminary notation and results.

7



8 BACKGROUND

2.1 While Language

This section presents the While programming language that will be used as a basis for the

work presented in this thesis. Even though the language will be extended during the thesis

to incorporate other constructs, here we present it in its simplest form as normally found in

the literature [103, 96, 95]. There are two aspects that are particularly relevant when formally

defining a programming language: the programming language syntax and the programming

language semantics. While the former is concerned with the grammar structure of the language,

the latter is concerned with the meaning of the constructs in that structure.

Let us start by the syntax. For our purposes only the abstract syntax tree of the language

is relevant: the concrete syntax, which captures how the structure is represented and handled,

can be left undefined.

The language for program expressions Exp and for Boolean expressions Expbool, both con-

structed over variables from a set Var, will not be fixed. This will make our results more general

in the sense that they are independent from the expression language. A standard instantiation

is for Exp to be a language of integer expressions and Expbool constructed from comparison

operators over Exp and Boolean operators: such a language is defined in Example 2.1. We will

use the following meta-variables: e, e1, e2 to range over Exp, b, b1, b2 to range over Expbool,

and x to range over Var.

Example 2.1. Let e ∈ Exp, b ∈ Expbool, x ∈ Var and n ∈ Z. An instantiation for Exp and

Expbool is given by the abstract syntax tree below:

e ::= n | x | −e | e+ e | e− e | e ∗ e | e/e
b ::= > | ⊥ | e = e | e < e | e ≤ e | b ∧ b | b ∨ b | ¬b

The syntax notation used in the previous example, as well as in the forthcoming syntactic

notions are based on BNF (Backus-Naur form) [76]. The syntax of the While language, C ∈
Comm is given by the following abstract syntax :

C ::= skip | x := e | C ; C | if b then C else C fi | while b do C od

Along the thesis we will use the word statement and command indiscriminately to refer to the

constructs of the respective programming language. The following is taken from Dijkstra [44]:

As everybody does, I shall use the term ‘statement’ because it has found its firm place

in jargon; when people suggested that ‘command’ was perhaps a more appropriate

term, it was already too late!

The informal meaning of each command C is the expected: skip does not produces any effect

on the state when it is executed; x := e assigns to x the value obtained by evaluating e (we

assume that the evaluation of e has no side-effects); the sequence command, C1 ; C2, executes



BACKGROUND 9

C1 and then C2; the conditional command if b then C1 else C2 fi executes C1 if the result of

evaluating b is > or C2 otherwise; finally while b do C od executes C while the condition b

evaluates to >. When adequate, we will write if b then C fi instead of if b then C else skip fi

for simplification purposes.

Example 2.2. The sequence x := y ; y := z ; z := x is an example of a command in Comm.

Example 2.3. Assuming the instantiation of Exp and Expbool as in Example 2.1, the follow-

ing is an example of a program from Comm.

f := 1 ; i := 1 ;

while i ≤ n do

f := f ∗ i ;

i := i+ 1 od

Intuitively one can observe that the program in Example 2.2 swaps the value of the variables

y and z and the program in Example 2.3 is an iterative implementation of a factorial program:

the counter i ranges from 1 to n and the accumulator f contains at each step the factorial of

i− 1. Nonetheless, in a formal setting, intuition is not enough to describe precisely what con-

structs over an abstract syntax tree are intended to mean. Some formal framework is required

for this and as such, we will use programming language semantics [62, 103, 95] to describe the

meaning of the programs and the expressions in them. Three different styles of programming

semantics are normally considered when reasoning about programming languages: operational

semantics, denotational semantics, and axiomatic semantics. These styles should not be seem

as being competing between each other, instead they simply target different purposes: opera-

tional semantics should be used to reason about the execution of a program: basically, given

a command and the state from where the command is to be executed, it returns the resulting

state; denotational semantics describes the results of the computation as mathematical objects,

and therefore, the focus is on the result that is obtained and not on how it is obtained; finally,

axiomatic semantics is intended to reason about the properties that can be observed when

executing program statements. In this thesis we will be using operational semantics to give

meaning to programs and expressions, and then we will reason about them using axiomatic

semantics.

Since we are not fixing the language of expressions, we will consider an undefined interpre-

tation structure M = (D, I) for their evaluation. Such a structure provides an interpretation

domain D as well as a concrete interpretation of constants and operators, given by I. We want

expressions to contain variables, therefore, their interpretation depends on a state, which is a

total function that maps each variable into its value in domain D (the function must be total

in the sense that it must be defined for every variable). We will write Σ = Var → D for the
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set of states. Note that if variables of different types are to be considered, this approach can

be extended to a multi-sorted setting by letting Σ become a generic function space [54]. For

s ∈ Σ, s[x 7→ a] will denote the state that maps x to a and every other variable y to s(y).

The interpretation of e ∈ Exp in M will be given by a function [[e]]M : Σ → D, and the in-

terpretation of b ∈ Expbool will be given by [[b]]M : Σ→ {⊥,>}. This reflects our assumption

that an expression has a value at every state (evaluation always terminates without error) and

that expression evaluation never changes the state (the language is free of side effects). We will

often omit the M subscripts for the sake of readability and leave the interpretation structure

implicit.

Example 2.4. Consider the expression language of Example 2.1. We define [[e]]M and [[b]]M

for M = (D, I), some s ∈ Σ, � ∈ {+,−, ∗, /,=, <,≤, >,≥}, and � ∈ {∧,∨} as follows:

[[n]](s) = I(n)

[[x]](s) = s(x)

[[−e]](s) = I(−)([[e]](s))

[[e1 � e2]](s) = I(�)([[e1]](s), [[e2]](s))

[[>]](s) = >
[[⊥]](s) = ⊥

[[¬b]](s) = I(¬)([[b]](s))

[[b1 � b2]](s) = I(�)([[b1]](s), [[b2]](s))

An obvious instantiation for M is for D to be Z and I to be the function that transforms

each operator from our language into the mathematical operator represented by the same symbol.

For instance [[e1 + e2]](s) = [[e1]](s) + [[e2]](s), and the + symbol on the right hand side is the

mathematical plus operation. Note however that, the division symbol cannot be interpreted

directly as the mathematical division, since the latter is not defined for the case in which the

denominator is zero. A solution is for it to return some default value when the denominator is

zero, or simply omit the division from the language.

When it comes to the operational semantics of commands, two different approaches come into

hand. Structural operational semantics, also known as small-step semantics describes how each

individual step of the evaluation evolves. On the other hand, natural operational semantics, also

known as big-step semantics or evaluation semantics, describes the overall result of evaluating

a command. Once again, these two styles of operational semantics should not be seen as

competing with each other, but rather as different mechanisms to address different problems.

Even though the while language used in this section can be adequately described using either

of the two styles, we will present below both small-step and big-step semantics. In fact, it is

normally easier and more natural to reason with a big-step semantics, but for certain languages

and intermediate properties about the execution of programs from such a language, it becomes

crucial to use a small-step semantics.

The big-step semantics is given by a deterministic evaluation relation  ⊆ Comm×Σ×Σ

that depends on an implicit interpretation structure M for program expressions. A natural

semantics describes the final program states that may result from running a program in a given

initial state. We write 〈C, s〉 s′ to denote the fact that if C is executed in the initial state s,

then its execution terminates, and the final state is s′.
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Definition 2.1 (Natural semantics). The evaluation relation for Comm is defined as the

smallest relation  ⊆ Comm× Σ× Σ satisfying the following set of rules:

1. 〈skip, s〉 s.

2. 〈x := e, s〉 s[x 7→ [[e]](s)].

3. if 〈C1, s〉 s′ and 〈C2, s
′〉 s′′, then 〈C1 ; C2, s〉 s′′.

4. if [[b]](s) = > and 〈C1, s〉 s′, then 〈if b then C1 else C2 fi, s〉 s′.

5. if [[b]](s) = ⊥ and 〈C2, s〉 s′, then 〈if b then C1 else C2 fi, s〉 s′.

6. if [[b]](s) = >, 〈C, s〉 s′ and 〈while b do C od, s′〉 s′′, then 〈while b do C od, s〉 s′′.

7. if [[b]](s) = ⊥, then 〈while b do C od, s〉 s.

Example 2.5. Consider the program from Example 2.2 and let s ∈ Σ be some arbitrary state

such that s(y) = 3 and s(z) = 5. Then, according to Definition 2.1 we have 〈x := y, s〉 s[x 7→
3] and 〈y := z, s[x 7→ 3]〉 s[x 7→ 3, y 7→ 5]. Therefore 〈x := y ; y := z, s〉 s[x 7→ 3, y 7→ 5].

Finally, 〈z := x, s[x 7→ 3, y 7→ 5]〉 s[x 7→ 3, y 7→ 5, z 7→ 3], and thus 〈x := y ; y := z ; x :=

3, s〉 s[x 7→ 3, y 7→ 5, z 7→ 3].

In the previous example we considered an arbitrary s because states must be defined for the

complete set of variables. Therefore it would not be enough to depart from a state described

by the set of pairs {(y, 3), (z, 5)}.

The small-step semantics is given by a deterministic transition relation ⇒⊆ Comm× Σ×
(Σ + Comm × Σ) that depends on an implicit interpretation for program expressions. The

emphasis is now on each individual step of the computation. A configuration can evolve into

a final state, progress into an intermediate configuration leaving part of the program to be

evaluated, or simply get stuck. For a program C ∈ Comm and a state s ∈ Σ, the transition

relation can be represented by one of the following:

• 〈C, s〉 ⇒ sf , to denotes that the configuration 〈C, s〉 evolves into a final state sf ∈ Σ in

one step.

• 〈C, s〉 ⇒ 〈C ′, s′〉, to denote that the execution of C from s has not yet terminated, and it

remains to compute C ′ ∈ Comm from the state s′ ∈ Σ.

• 〈C, s〉 6⇒ , to denote that the program C cannot evolve from state s.

We define below a small-step semantics for programs defined over Comm. We note however,

that this definition does not allow for configurations to be stuck because it is defined for every

command possible combination of Comm and Σ.

Definition 2.2 (Structural operational semantics). The evaluation relation for Comm is de-

fined as the smallest relation ⇒⊆ Comm× Σ× (Σ + Comm× Σ) satisfying the following set

of rules:
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1. 〈skip, s〉 ⇒ s.

2. 〈x := e, s〉 ⇒ s[x 7→ [[e]](s)].

3. if 〈C1, s〉 ⇒ s′ then 〈C1 ; C2, s〉 ⇒ 〈C2, s
′〉.

4. if 〈C1, s〉 ⇒ 〈C ′1, s′〉, then 〈C1 ; C2, s〉 ⇒ 〈C ′1 ; C2, s
′〉.

5. if [[b]] = >, then 〈if b then C1 else C2 fi, s〉 ⇒ 〈C1, s〉.

6. if [[b]] = ⊥, then 〈if b then C1 else C2 fi, s〉 ⇒ 〈C2, s〉.

7. 〈while b do C1 od, s〉 ⇒ 〈if b then {C1 ; while b do C1 od} else skip fi, s〉.

A derivation sequence describes how the execution of a program evolves using a small-

step semantics. It can be finite, if the configuration evolves into a final state or into a stuck

configuration, or infinite if it diverges. For a finite derivation we write δ0 ⇒ . . . ⇒ δn to

express that the configuration δ0 evolves into δn in n steps, and δn is a final state, or a stuck

configuration (again, in our current setting only the former can happen). The notation δ0 ⇒n δn

expresses that δn is reached after n steps when departing from δ0. If there exists a finite number

of steps n such that δ0 ⇒n δn, we can also write δ0 ⇒∗ δn (or δ0 ⇒+ δn when n > 0). Also, if

δ0 ⇒n 〈C ′, s′〉 and 〈C ′, s′〉 6⇒ then we write δ0 6⇒n (in this case we can also write δ0 6⇒∗ , or

δ0 6⇒+ if n > 0).

If the derivation sequence is infinite (e.g. in the presence of an infinite loop), we write

δ0 ⇒ . . . to express the fact that from the configuration δ0 it is not possible to reach a final

state, neither a stuck configuration.

Example 2.6. Consider again the program from Example 2.2 and let s ∈ Σ be some arbitrary

state such that s(y) = 3 and s(z) = 5. Then, using Definition 2.2 it is possible to obtain the

following derivation sequence 〈x := y ; y := z ; z := x, s〉 ⇒ 〈y := z ; z := x, s[x 7→ 3]〉 ⇒ 〈z :=

x, s[x 7→ 3, y 7→ 5]〉 ⇒ s[x 7→ 3, y 7→ 5, z 7→ 3].

Example 2.5 and Example 2.6 highlight the difference between both semantics approaches.

In the first example the emphasis, while using a big-step semantics, is on the final result; in

the second example the emphasis, while using a small-step semantics, is on the evolution of the

computation. It is also clear that the same final state is reached: s[y 7→ 5, z 7→ 3, x 7→ 3]. This

is actually a general result stated in the next proposition: either a final state is not reached in

neither of the semantics or if it is in one, then so it is in the other and both styles will agree on

the same final state.

Proposition 2.1. Let C ∈ Comm and s, s′ ∈ Σ. Then:

1. If 〈C, s〉 s′, then 〈C, s〉 ⇒∗ s′.

2. If 〈C, s〉 ⇒k s′, for some natural k, then 〈C, s〉 s′.
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Proof. 1. follows by induction on the structure of 〈C, s〉 s′; 2. follows by induction on the

length of the derivation for 〈C, s〉 ⇒k s′. See Nielson et al. [95] for a complete proof.

Let us now introduce some auxiliary functions that will be useful all along this thesis: we

will be referring to the variables occurring and assigned in a program through the respective

functions Vars and Asgn defined below. The sets Vars(e) ⊆ Var and Vars(b) ⊆ Var denote

respectively the free variables of e ∈ Exp and b ∈ Expbool.

Definition 2.3. Let C ∈ Comm. The sets Vars(C) and Asgn(C) of variables occurring and

assigned in C are defined below.

Vars(skip) = ∅
Vars(x := e) = {x} ∪ Vars(e)

Vars(C1 ; C2) = Vars(C1) ∪ Vars(C2)

Vars(if b thenC1 elseC2 fi) = Vars(b) ∪ Vars(C1) ∪ Vars(C2)

Vars(while b do C od) = Vars(b) ∪ Vars(C)

Asgn(skip) = ∅
Asgn(x := e) = {x}

Asgn(C1 ; C2) = Asgn(C1) ∪ Asgn(C2)

Asgn(if b thenC1 elseC2 fi) = Asgn(C1) ∪ Asgn(C2)

Asgn(while b do C od) = Asgn(C)

Example 2.7. Recall the Example 2.1. For this language of integer and boolean expressions

the function Vars is defined as follows:

Vars(n) = ∅
Vars(x) = {x}

Vars(−e) = Vars(e)

Vars(e1 � e2) = Vars(e1) ∪ Vars(e2)

Vars(b) = ∅
Vars(¬b) = Vars(b)

Vars(b1 � b2) = Vars(b1) ∪ Vars(b2)

With the presented set of tools it is already possible to write programs and to observe their

execution. It is even possible to reason about executions as in the following example.

Example 2.8. Consider the program from Example 2.2 and let s ∈ Σ, such that s(y) = Y and

s(z) = Z, for some constants Y,Z ∈ Z. It can be proved that if 〈x := y ; y := z ; z := x, s〉 s′

then s′(y) = Z and s′(z) = Y .

Proof. Let s ∈ Σ such that s(y) = Y and s(z) = Z. Since we have 〈x := y ; y := z ; z :=

x, s〉 s′, by the definition of  there must exist some s′′, such that 〈x := y ; y := z, s〉 s′′

and 〈z := x, s′′〉  s′, and thus also, 〈x := y, s〉  s′′′ and 〈y := z, s′′′〉  s′′. Again from

the definition of  , we have s′′′ = s[x 7→ s(y)], s′′ = s′′′[y 7→ z], and s′ = s′′[z 7→ x]. Thus

s′′ = s[x 7→ s(y), y 7→ s(z)], and s′ = s[x 7→ s(y), y 7→ s(z), z 7→ s(y)], which allows us to

conclude that s′(y) = s(z) and s′(z) = s(y).

The same proof can be done using the transition relation ⇒ from the small-step semantics.
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Even though the property that we wanted to prove in Example 2.8 was fairly simple, its

proof got complicated due to details that are actually irrelevant for that property. The problem

is that even though the semantics we used is very convenient for reasoning about concrete

executions and to observe how the state evolves, it is not so practical for relating pre and post

states. The following section introduces a new style of semantics, called axiomatic semantics

which is intended for reasoning about properties to be established before and after the execution

of a program.

2.2 Hoare Logic

Hoare logic [64] deals with the notion of correctness of a program w.r.t. a specification. A Hoare

triple, written as {φ}C {ψ}, expresses the fact that the program C conforms to the specification

(φ, ψ). The intuitive meaning is that if the program C is executed in an initial state in which

the precondition φ is true, then either execution of C does not terminate or if it does, the

postcondition ψ will be true in the final state. Because termination is not guaranteed, this is

called a partial correctness specification, which contrasts with the notion of total correctness

that forces termination. Total correctness is normally seen as an extra layer on top of partial

correctness [5], that is:

total correctness = partial correctness + termination

In practical terms if one wants to ensure total correctness of a program that has already

been shown to be partially correct w.r.t. a specification, it is enough to annotate every loop

construct with a variant and prove respectively that each variant decreases in every iteration.

In this thesis, unless stated otherwise, we will be working with the notion of partial correctness.

In addition to commands and program expressions, we need formulas that express properties

of particular states of the program, in particular for the pre and postconditions found in Hoare

triples. This language will be called specification or assertion language, and Assert will denote

the set of all formulas over it. Formulas from Assert should be much richer than Expbool

because they need to capture the behavior of programs. In this thesis we will assume that

Assert is an expansion of Expbool, because it is also useful to refer to program expressions from

the specification (a setting in which Expbool and Assert are distinct would also be possible,

see for instance [2]). Lower case Greek letters will normally be used to represent formulas

from Assert. Having this in mind, program assertions φ, θ, ψ ∈ Assert will be formulas of a

first-order language obtained as an expansion of b ∈ Expbool with at least the universal and

existential quantifier.

Example 2.9. Let b ∈ Expbool. The language of assertions can be defined by the following

syntax:

Assert 3 φ ::= b | φ→ φ | φ↔ φ | ∀x. φ | ∃x. φ
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For the interpretation of assertions we take the usual interpretation of first-order formulas,

noting two facts: since assertions build on the language of program expressions, their inter-

pretation also depends on an interpretation structure M (possibly extended to account for

user-defined predicates and functions), and states from Σ can be used as variable assignments

in the interpretation of assertions. The interpretation of assertions φ ∈ Assert is then given

by an interpretation function [[φ]]M : Σ → {⊥,>}. We will write s |=M φ as a shorthand for

[[φ]]M(s) = >, and s |=M Γ when s |=M φ for all φ ∈ Γ. Similarly to the evaluation of program

expressions we will omit theM subscript in the rest of the thesis. Moreover, the notation [[.]] for

interpretation functions is overloaded, and applies to e ∈ Exp, b ∈ Expbool, and φ ∈ Assert.

The concrete function to apply should be clear from the syntax of the expression.

Example 2.10. The interpretation function [[.]] for assertions when Assert is defined as in

Example 2.9 is given as follows:

[[φ1 → φ2]](s) = > iff [[φ1]](s) = ⊥ ∨ [[φ2]](s) = >
[[φ1 ↔ φ2]](s) = > iff [[φ1 → φ2]](s) = > ∧ [[φ2 → φ1]](s) = >

[[∀x. φ]](s) = > iff [[φ]](s[x 7→ a]) = >, for all a ∈ D
[[∃x. φ]](s) = > iff [[φ]](s[x 7→ a]) = >, for some a ∈ D

The set FV(φ) ⊆ Var denoting the free variables in φ ∈ Assert extends the notion of

Vars(.) to the language of assertions taking into account the bounded variables, as those that

are bounded to quantifiers.

Example 2.11. Let � ∈ {→,↔} and Q ∈ {∀,∃}. The set of free variables of φ ∈ Assert is

given by FV(φ) where FV is defined as follows:

FV(b) = Vars(b), for b ∈ Expbool

FV(φ� ψ) = FV(φ) ∪ FV(ψ)

FV(Qx. φ) = FV(φ) \ {x}

The section started by introducing the informal meaning of a Hoare triple {φ}C {ψ}. We

now switch to a more formal setting and define formally the validity of a Hoare triple in terms

of operational semantics of programs.

Definition 2.4. The Hoare triple {φ}C {ψ} is said to be valid, denoted |= {φ}C {ψ}, whenever

for all s, s′ ∈ Σ, if s |= φ and 〈C, s〉 s′, then s′ |= ψ.

In fact, the validity of a triple also depends on an interpretation structure M, and thus

it should actually be written |=M {φ}C {ψ}. Nonetheless, as we did with the evaluation of

expressions and assertions, we opt for omitting the subscript. If |= {φ}C {ψ} holds, we say

that C is (partially) correct w.r.t. the specification pair (φ, ψ) or that C conforms with the

specification pair (φ, ψ).
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(skip) {φ} skip {φ} (assign) {ψ[e/x]}x := e {ψ}

(seq)

{φ}C1 {θ} {θ}C2 {ψ}
{φ}C1 ; C2 {ψ} (if)

{φ ∧ b}C1 {ψ} {φ ∧ ¬b}C2 {ψ}
{φ} if b then C1 else C2 fi {ψ}

(while)

{θ ∧ b}C {θ}
{θ}while b do C od {θ ∧ ¬b} (conseq)

{φ}C {ψ}
{φ′}C {ψ′}

if
φ′ → φ and
ψ → ψ′

Figure 2.1: System H

Hoare introduced an inference system to reason about triples. Such a system can be seen as

a framework to check the validity of triples that hides all the intricacies of operational semantics.

The system is shown in Figure 2.1 and we will call it system H. Each rule consists in a set

(possibly empty) of assumptions and a conclusion. The (skip) and (assign) rules are called

axioms because they have an empty set of assumptions. On the other hand, in order to infer

the validity of, for instance, {φ}C1 ; C2 {ψ} using the (seq) rule, one must first derive the triples

{φ}C1 {θ} and {θ}C2 {ψ}, for some θ ∈ Assert. The same applies to the (if) and (while) rules.

The (conseq) rule requires more than that. If the (conseq) rule is to be applied, in order to

derive {φ′}C {ψ′}, one must derive {φ}C {ψ}, for some φ, ψ ∈ Assert and then, since the

rule is guarded by first-order conditions, these conditions must be shown to be valid. We will

write `H {φ}C {ψ} to denote the fact that the triple is derivable in system H and that all side

conditions from the derivation hold.

System H admits multiple derivations for the same Hoare triple, and does not impose any

particular strategy for constructing them. Note for instance how the (seq) rule allows assertions

to be propagated either forward or backwards: one can calculate a postcondition of C1 w.r.t.

φ and then propagate it to be the precondition of C2 or the other way around, calculate the

precondition of C2 w.r.t. ψ and then propagate it to the postcondition of C1. Since, the (assign)

rule is based on a weakest precondition calculation, derivations based on backward propagation

are in a sense more natural in this system. Note also that the (conseq) rule can be applied at

any point in the derivation.

A derivation using system H is shown in the following example. Instead of using a tree

structure for the proof (which would not fit in the page), we write it vertically using numbers

and indentation to justify each step. The triple to derive is on the top, and each direct nested

triple is the proof for the application of the indicated rule in blue.

Example 2.12. Consider the factorial program shown in Example 2.3. Obviously, it only

makes sense to calculate the factorial value of positive numbers, therefore the precondition must

include that n ≥ 0. For the postcondition it is fundamental to express that the variable f contains
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effectively the factorial of n. To express this we consider that the language of assertions contains

the postfix operator !, specified through the axioms 0! = 1 and n! = n ∗ (n− 1)!.

In the postcondition, we still need to refer to the initial value of n. For that we will use

an auxiliary variable that will only be used in the specification, to freeze the value of n in

the precondition: note that n is updated during the execution of the program and therefore it

cannot be used in the postcondition. Hence, the precondition of our program can be for instance

n ≥ 0 ∧ naux = n, and the postcondition f = naux !. A derivation of the triple {n ≥ 0 ∧ naux =

n}Fact {f = naux !} in system H is shown below.

{n ≥ 0 ∧ naux = n}Fact {f = naux !}
(seq)

1. {n ≥ 0 ∧ naux = n} f := 1; i := 1 {f = 1 ∧ i = 1 ∧ n ≥ 0 ∧ naux = n}
(conseq)

1. {1 = 1 ∧ 1 = 1 ∧ n ≥ 0 ∧ naux = n} f := 1 ; i := 1 {f = 1 ∧ i = 1 ∧ n ≥ 0 ∧ naux = n}
(seq)

1. (assign){1 = 1 ∧ 1 = 1 ∧ n ≥ 0 ∧ naux = n} f := 1 {f = 1 ∧ 1 = 1 ∧ n ≥ 0 ∧ naux = n}
2. (assign){f = 1 ∧ 1 = 1 ∧ n ≥ 0 ∧ naux = n} i := 1 {f = 1 ∧ i = 1 ∧ n ≥ 0 ∧ naux = n}

2. {f = 1 ∧ i = 1 ∧ n ≥ 0 ∧ naux = n}while i ≤ n do f := f ∗ i; i := i+ 1 od {f = naux !}
(conseq)

1. {f = (i − 1)! ∧ i ≤ n + 1 ∧ naux = n}while i ≤ n do f := f ∗ i; i := i + 1 od {f = (i − 1)! ∧ i ≤
n+ 1 ∧ naux = n ∧ ¬i ≤ n}
(while)

1. {f = (i − 1)! ∧ i ≤ n + 1 ∧ naux = n ∧ i ≤ n}while i ≤ n do f := f ∗ i; i := i + 1 od {f =

(i− 1)! ∧ i ≤ n+ 1 ∧ naux = n}
(conseq)

1. {f ∗ i = (i + 1 − 1)! ∧ i + 1 ≤ n + 1 ∧ naux = n} f := f ∗ i; i := i + 1 {f = (i − 1)! ∧ i ≤
n+ 1 ∧ naux = n}
(seq)

1. (assign) {f ∗ i = (i+1−1)!∧ i+1 ≤ n+1∧naux = n} f := f ∗ i {f = (i+1−1)!∧ i+1 ≤
n+ 1 ∧ naux = n}

2. (assign) {f = (i + 1 − 1)! ∧ i + 1 ≤ n + 1 ∧ naux = n} i := i + 1 {f = (i − 1)! ∧ i ≤
n+ 1 ∧ naux = n}

Side conditions for application of the (conseq) rule:

• n ≥ 0 ∧ naux = n =⇒ 1 = 1 ∧ 1 = 1 ∧ n ≥ 0 ∧ naux = n.

• f = 1 ∧ i = 1 ∧ n ≥ 0 ∧ naux = n =⇒ f = (i− 1)! ∧ i ≤ n+ 1 ∧ naux = n and f = (i− 1)! ∧ i ≤
n+ 1 ∧ naux = n ∧ ¬i ≤ n =⇒ f = naux !.

• f = (i− 1)! ∧ i ≤ n+ 1 ∧ naux = n ∧ i ≤ n =⇒ f ∗ i = (i+ 1− 1)! ∧ i+ 1 ≤ n+ 1 ∧ naux = n.

The fact that a triple is derivable in an arbitrary system does not necessarily imply that the

triple is valid. This implication only holds if the inference system is shown to be sound w.r.t.
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the operational semantics of the language. System H is in fact sound, and thus, it does not

derive triples that are not valid.

Proposition 2.2 (Soundness of system H). Let C ∈ Comm and φ, ψ ∈ Assert. If `H
{φ}C {ψ}, then |= {φ}C {ψ}.

Proof. By induction on the derivation of `H {φ}C {ψ}. For the while case, induction on the

definition of the evaluation relation is also required. See for instance Nielson et al. [95] for a

complete proof.

On the other hand, the notion of a system being sound does not make an inference system

useful, in the sense that an inference system that does not derive any triple is sound. The notion

of completeness of the inference system must also be analysed. This however deserves a deeper

discussion than the soundness result. The account that follows is based on [5]. First of all, it is

clear that only a relative notion of completeness can be achieved, for the simple reason that the

application of the consequence rule is guarded by assertions. System H does not contain any

rules for deriving these assertions, and moreover it would likely not be possible to extend the

system with an adequate axiomatization, since interesting assertion languages may themselves

be incomplete (it is difficult to imagine reasoning about programs without requiring arithmetics,

for instance). Cook [36] notes that restricting the specification language (i.e. the language of

assertions occurring in preconditions and postconditions) does not solve the problem, as shown

by triples of the form {>}C {⊥}, expressing that no execution of C halts. If the programming

language is such that the halting problem is undecidable, the validity of such a triple does

not imply that it can be derived in system H, which again confirms the incompleteness of the

system.

The solution to this first problem is easy. Recall that the interpretation of assertions and

Hoare triples is implicitly indexed by a model M. We will equally assume that derivation of

Hoare triples in system H is indexed by the complete theory of this structure (the set of all valid

assertions under M), so `H {φ}C {ψ} becomes shorthand for Th(M) `H {φ}C {ψ}, which

means that when constructing derivations in system H one simply checks, when applying the

guarded (conseq) rule, whether the side conditions are elements of Th(M).1

As to the second problem, rather than explaining it now we will formulate the completeness

result in a restricted way that already solves it. The problem will manifest itself as we write

the proof of completeness; we will comment on it then. Let C ∈ Comm and φ ∈ Assert, we

denote by post(φ,C) the set of states {s′ ∈ Σ | 〈C, s〉 s′ for some s ∈ Σ such that s |= φ}.

Definition 2.5 (Expressiveness). The assertion language Assert is said to be expressive with

respect to the command language Comm and interpretation structure M, if for every φ ∈
Assert and C ∈ Comm there exists ψ ∈ Assert such that s |= ψ iff s ∈ post(φ,C) for any

s ∈ Σ.
1In fact this should not be very surprising with our presentation of the (conseq) rule: the fact that the first-

order guards appear as side conditions indicates that they are not supposed to be derived within the inference
system. It is not unusual to see the guards presented as premisses of the rule, but strictly speaking the resulting
systems are incomplete.
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In other words, expressiveness guarantees the existence of the postcondition ψ of C with

respect to φ [5].

Proposition 2.3 (Completeness of system H in the sense of Cook). Let C ∈ Comm, φ, ψ ∈
Assert, and M be an interpretation structure such that Assert is expressive with respect to

Comm and M. If |= {φ}C {ψ} then Th(M) `H {φ}C {ψ}.

Proof. By induction on the structure of the program C. We show here the sequence case that

illustrates the need for the expressiveness assumption. In what follows we write [[·]] for [[·]]M, |=
for |=M, and `H for Th(M) `H.

Assume C is C1 ; C2. We assume that for all states s and s′′, if [[φ]](s) = > and 〈C1 ; C2, s〉 
s′′ then [[ψ]](s′′) = >. We have the following induction hypotheses, where we fix the formulas φ

and ψ :

IH1: For every formula θ, if |= {φ}C1 {θ} then `H {φ}C1 {θ}.

IH2: For every formula θ, if |= {θ}C2 {ψ} then `H {θ}C2 {ψ}.

Now it is apparently straightforward to conclude this proof case by applying both induction

hypotheses. But in fact we must be careful: from the semantics we know that there must

exist some s′ such that 〈C1, s〉 s′ and 〈C2, s
′〉 s′′, but the assumptions do not immediately

indicate a concrete intermediate assertion θ. It is here that Cook’s expressiveness requirement

becomes useful: we know there exists θ ∈ Assert such that s′ |= θ iff s′ ∈ post(φ,C1) for any

s′ ∈ Σ. So we immediately have |= {φ}C1 {θ}, and since |= {φ}C1 ; C2 {ψ} we also necessarily

have that |= {θ}C2 {ψ}. Both induction hypotheses then apply, which allows for the proof case

to be concluded using the (seq) rule of system H.

As a final remark, we note that completeness means in particular that (under the expres-

siveness assumption) it is always possible to write appropriate invariants for a program to be

deductively shown correct with respect to a specification, if indeed it is correct with respect to

it.

The following definition establishes notation for identifying programs that do not assign free

variables of an assertion. In particular this notation is used in the next lemma to express the

fact that a precondition is preserved after the execution of a program, if the program does not

assign free variables of it.

Definition 2.6. If FV(φ)∩Asgn(C) = ∅ we say that C does not assign free variables of φ, and

write this as φ#C.

Lemma 2.4. Let φ, ψ ∈ Assert and C ∈ Comm, such that φ#C. If `H {φ}C {ψ}, then

`H {φ}C {φ ∧ ψ}.

Proof. Consider the conjunction of assertions rule below that is admissible in system H (see for

instance [96]).
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`H {φ1}C {ψ1} `H {φ2}C {ψ2}
`H {φ1 ∧ φ2}C {ψ1 ∧ ψ2}

By induction on the structure of C one proves that `H {φ}C {φ}. Then it follows from

`H {φ}C {ψ}, by the conjunction of assertions rule shown above that `H {φ ∧ φ}C {φ ∧ ψ}.
The triple `H {φ}C {φ ∧ ψ} is obtained by applying (conseq).

2.3 An Inference System for Annotated Programs

In the previous section a systematic approach for verifying whether a Hoare triple is valid was

presented: if one is able to construct a derivation using system H and if all side conditions hold,

then the triple is valid. Constructing derivations manually is tiresome and thus a mechanized

process is desired. Nonetheless, system H is not suitable for this for two reasons that we will

now discuss.

The consequence rule of Hoare logic provides the ‘glue’ that allows derivations to be plugged

together, when the formulas do not match because they are either too strong or too weak. This

also allows for proofs to be reused. For instance if the code contains some form of sub-routine,

then instead of producing one different proof for each call of such a routine, one may construct a

single one with respect to a sufficiently rich specification (usually called a contract). This same

proof may then be plugged into different places in the overall derivation, using the consequence

rule to adapt it to the local requirements of each call. The problem with this rule is that it is

a source of nondeterminacy – it is the only rule in system H whose application is not directed

by the structure of the program, and may thus occur at any point.

Another relevant aspect to be taken into account in system H is that loop invariants must

be invented during the construction of the derivation tree. Even though research exists on the

generation of loop invariants, user intervention is often required. To avoid the need for inventing

loop invariants during the derivation we consider a syntactic class of annotated programs, which

differs from Comm only in the case of while commands [54]. The syntax of a command

C ∈ AComm, with annotated invariants θ ∈ Assert, is defined as:

C ::= skip | x := e | C ; C | if b then C else C fi | while b do {θ} C od

Example 2.13. The program below is an example of an annotated program in AComm.

f := 1 ; i := 1 ;

while i ≤ n do {f = (i− 1)! ∧ i ≤ n+ 1 ∧ naux = n}
f := f ∗ i ;

i := i+ 1

od
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(skip) {φ} skip {ψ} if φ→ ψ
(assign) {φ}x := e {ψ} if φ→ ψ[e/x]

(seq)

{φ}C1 {θ} {θ}C2 {ψ}
{φ}C1 ; C2 {ψ} (if)

{φ ∧ b}C1 {ψ} {φ ∧ ¬b}C2 {ψ}
{φ} if b then C1 else C2 fi {ψ}

(while)

{θ ∧ b}C {θ}
{φ}while b do {θ} C od {ψ} if

φ→ θ and
θ ∧ ¬b→ ψ

Figure 2.2: System Hg

Annotations do not affect the operational semantics of programs, therefore we will use the

function b·c : AComm→ Comm below to erase all the annotations from a program.

Definition 2.7. The function b·c : AComm→ Comm is defined as follows:

bskipc = skip

bx := ec = x := e

bC1 ; C2c = bC1c ; bC2c

bif b then C1 else C2 fic = if b then bC1c else bC2c fi

bwhile b do {θ} C odc = while b do bCc od

The following definition expands the notion of variables of a program and variables assigned

in a program for annotated programs.

Definition 2.8. The definition of Vars and Asgn is extended in the obvious way: Vars(while b

do {θ} C od) = Vars(b) ∪ FV(θ) ∪ Vars(C) and Asgn(while b do {θ} C od) = Asgn(C). All

other cases are as in Definition 2.3 and Example 2.11 respectively.

Determinacy is important for the purpose of verifying programs mechanically, so Figure 2.2

presents system Hg [54], a goal-directed version of Hoare logic for triples containing annotated

programs. This system is intended for mechanical construction of derivations: loop invariants

are not invented at this point but taken from the annotations, and there is no ambiguity in the

choice of rule to apply, since the consequence rule is absent. The ‘glue’ is provided instead by

modifying the remaining rules of the system.

Proposition 2.5 (Soundness of Hg). Let C ∈ AComm and φ, ψ ∈ Assert. If `Hg {φ}C {ψ}
then `H {φ} bCc {ψ}.

Proof. By induction on the derivation of `Hg {φ}C {ψ}. All cases are straightforward.
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The converse implication does not hold, since the annotated invariants may be inadequate

for deriving the triple. Instead we need the following definition:

Definition 2.9. Let C ∈ AComm and φ, ψ ∈ Assert. We say that C is correctly-annotated

w.r.t. (φ, ψ) if `H {φ} bCc {ψ} implies `Hg {φ}C {ψ}.

Note that the loop invariants annotated in a program may well depend on the specification

of the program, since their purpose is to allow for the program to be proved correct with respect

to it. Finally, the following lemma states the admissibility of the consequence rule in Hg.

Lemma 2.6. Let C ∈ AComm and φ, ψ, φ′, ψ′ ∈ Assert such that `Hg {φ}C {ψ}, |= φ′ → φ,

and |= ψ → ψ′. Then `Hg {φ′}C {ψ′}.

Proof. By induction on the derivation of `Hg {φ}C {ψ}.

Derivations in system Hg have a fixed shape – the structure of the programs determines

uniquely the rules to be applied. Different derivations can still be constructed for the same Hoare

triple, differing only in the intermediate formulas used when applying the (seq) or (try) rules.

System Hg is agnostic with respect to a strategy for choosing these assertions; two commonly

used strategies are forward propagation (based on strongest postcondition computations), and

backward propagation (based on weakest precondition). We will postpone this discussion to the

following section.

Example 2.14. Consider the factorial program shown in Example 2.13. It is easy to show that

it is correct with respect to the specification (n ≥ 0 ∧ naux = n, f = naux !). We show below

a derivation of this triple in system Hg. Again, the axioms 0! = 1 and n! = n ∗ (n − 1)! are

required to prove the side conditions.

{n ≥ 0 ∧ naux = n}Fact {f = naux !}
(seq)

1. {n ≥ 0 ∧ naux = n} f := 1; i := 1 {n ≥ 0 ∧ naux = n ∧ f = 1 ∧ i = 1}
(seq)

1. (assign) {n ≥ 0 ∧ naux = n} f := 1 {n ≥ 0 ∧ naux = n ∧ f = 1}
2. (assign) {n ≥ 0 ∧ naux = n ∧ f = 1} i := 1 {n ≥ 0 ∧ naux = n ∧ f = 1 ∧ i = 1}

2. {n ≥ 0∧naux = n∧f = 1∧ i = 1}while i ≤ n do {f = (i−1)!∧ i ≤ n+ 1∧naux = n} f := f ∗ i; i :=

i+ 1 od {f = naux !}
(while)

1. {f = (i−1)!∧ i ≤ n+1∧naux = n∧ i ≤ n} f := f ∗ i; i := i+1 {f = (i−1)!∧ i ≤ n+1∧naux = n}
(seq)

1. (assign) {f = (i−1)!∧i ≤ n+1∧naux = n∧i ≤ n} f := f ∗i {f = (i−1)!∗i∧i ≤ n+1∧naux =

n ∧ i ≤ n}
2. (assign) {f = (i−1)!∗i∧i ≤ n+1∧naux = n∧i ≤ n} i := i+1 {f = (i−1)!∧i ≤ n+1∧naux = n}

Side conditions for application of the (assign) rules:
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• n ≥ 0 ∧ naux = n =⇒ (n ≥ 0 ∧ naux = n ∧ f = 1)[1/f ].

• n ≥ 0 ∧ naux = n ∧ f = 1 =⇒ (n ≥ 0 ∧ naux = n ∧ f = 1 ∧ i = 1)[1/i].

• f = (i−1)!∧i ≤ n+1∧naux = n∧i ≤ n =⇒ (f = (i−1)!∗i∧i ≤ n+1∧naux = n∧i ≤ n)[f ∗i/f ].

• f = (i− 1)! ∗ i ∧ i ≤ n+ 1 ∧ naux = n ∧ i ≤ n =⇒ (f = (i− 1)! ∧ i ≤ n+ 1 ∧ naux = n)[i+ 1/i].

Side conditions for application of the (while) rule:

• n ≥ 0 ∧ naux = n ∧ f = 1 ∧ i = 1 =⇒ f = (i− 1)! ∧ i ≤ n+ 1 ∧ naux = n.

• f = (i− 1)! ∧ i ≤ n+ 1 ∧ naux = n ∧ ¬(i ≤ n) =⇒ f = naux !.

Before moving forward, note that there exists a line of research on loop invariant generation.

The idea is that loop invariants are automatically (or semi-automatically, since some tools allow

for user guidance) invented by the verification tool, or else, they are invented by some external

tool and then annotated in the code. Since this falls outside the context of this thesis we do not

extend this discussion, but it should be mentioned that it has been a hot topic basically since

verification of programs started to be explored [73, 38, 92, 61, 99, 3].

2.4 Predicate Transformers

Predicate transformers offer an alternative view of the semantics of programs, which are in-

terpreted as transforming logical formulas characterizing states. For instance the strongest

postcondition (SP) interpretation of a program maps a formula φ (a precondition) into another

formula ψ that characterizes final states of the program starting from initial states satisfying

φ. Our interest in the use of predicate transformers is that computing them allows for the

generation of a set of formulas that can ensure the correctness of Hoare triples [84, 52, 51] (the

topic of verification conditions will be addressed in the next section).

Aiming to focus on the core functionality of algorithms and their beauty for human readers,

Dijkstra proposed a language baptized as guarded commands and a calculus to reason about

programs in such a language [44, 45, 46]. The calculus is used as a mechanism that abstracts

away all the intricacies of operational semantics and allows one to reason about program prop-

erties without the trouble of building derivations, as done in axiomatic semantics. In some

way, it resembles denotational semantics, in the sense that it operates on mathematical objects.

Instead of considering the native guarded commands proposed by Dijkstra [45], we consider

instead a version of this language that has been used along the years in the context of program

verification.

A Kind of Guarded Commands. Even though the language we will introduce in this

section differs from the initial guarded commands of Dijkstra, and it actually does not contain

the typical guards that give the name to the language (they are replaced by assume commands,

as will be seen below), in the rest of this thesis we will refer to it as the guarded command

language. Moreover, in what follows we will omit iteration commands, because for verification
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purposes they can be captured by the rest of the commands (we will see more on this in the last

part of this section). The following abstract syntax tree defines the guarded command language

that we will use in the rest of this section over a set of variables x ∈ GVar.

GComm 3 C ::= x := e | C ; C | C � C | assert e | assume e

For the language of expressions e ∈ GExp, it is assumed that it is pure (expressions do

not contain side-effects) and it includes at least the boolean constants true and false. It is also

assumed that � has higher precedence than ; .

It should be mentioned that a guarded command can terminate normally, not terminate

at all, or it can go wrong. Let us start by analyzing each command separately. The idea of

the two first constructs is exactly the same as in Comm. In particular x := e ∈ GComm

always terminates normally, and C1;C2 ∈ GComm can go wrong if either C1 goes wrong

or if C1 terminates normally and C2 goes wrong. The third command, known as the choice

command, executes one and only one of the commands, non-deterministically. A command

C1 � C2 ∈ GComm can terminate normally or go wrong depending on whether C1 or C2

is executed and whether it terminates normally goes wrong. The command assert e is the

only atomic command that can go wrong. More precisely, assert e goes wrong if e is not

satisfied in the current state, or it terminates normally without any effect otherwise. On the

other hand an assume e statement cannot be executed in a state where the condition e is

false (when this happens we say that it blocks). Otherwise it does not produce any effect

and terminates normally. Even though the language does not contain an explicit deterministic

if statement, this can be encoded using the choice command together with the assume and

sequence commands: a statement with the form if b then C1 else C2 fi can be written as

(assume b; C1) � (assume¬b; C2).

We should mention here that even though the pair of commands assume/assert are normally

used in context of deductive verification, their use goes well beyond it. For instance as we will

see in Section 2.6, they are both used in bounded model checking of software, and in software

model checking in general.

Predicate Transformers. The question that we should ask now is how can one reason about

guarded programs. Traditionally there is a clear distinction between the operational semantics,

which interprets programs as mechanisms that update the current state, and the axiomatic

semantics, used for reasoning about programs. Dijkstra proposed to reason about commands

using a form of program calculus known as predicate transformer calculus. The main idea is to

look at guarded commands as functions from predicates to predicates: instead of reasoning with

concrete states and observing how they evolve, Dijkstra proposes to reason with predicates and

observe how commands transform those predicates. As a first example, the weakest precondition

predicate transformer is given by the following definition.

Definition 2.10. Let C ∈ GComm and ψ ∈ GAssert. The weakest precondition of C with

respect to the postcondition ψ is given by wp(C,ψ) where wp : GComm×GAssert→ GAssert
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is defined as follows:

wp(assert e, ψ) = e ∧ ψ
wp(assume e, ψ) = e→ ψ

wp(x := e, ψ) = ψ[e/x]

wp(C1 ; C2, ψ) = wp(C1,wp(C2, ψ))

wp(C1 � C2, ψ) = wp(C1, ψ) ∧ wp(C2, ψ)

The set of logical formulas GAssert extends GExp with at least the boolean operators

{∧,∨,→,=} and quantifiers. The predicate wp(C,ψ), with C ∈ GComm and ψ ∈ GAssert,

captures all the initial states from which every non-blocking execution of C terminates in a

state where ψ holds. The required precondition for assert e to terminate normally in a state

where ψ holds, is given by e ∧ ψ. For the command assume e one must have as precondition

e→ ψ. Note that ψ is only required to be true in states in which the command assume e can be

executed, i.e. whenever e holds. The assignment command x := e requires the condition ψ[e/x]

to be met for it to terminate normally in a state where the condition ψ holds. For a sequence of

commands, one must first calculate the weakest precondition of the second command and use

it when calculating the weakest precondition of the first command. In the choice command the

weakest precondition must satisfy both wp(C1, ψ) and wp(C2, ψ), because independently of the

command that is executed, in the end, the postcondition ψ must be met.

The function wp presented in Definition 2.10 is just a predicate transformer among others.

As stated before this function intends to capture the weakest precondition for a command to

be executed and to terminate in a state where a postcondition is met : it is directly linked

with the notion of total correctness. An alternative predicate transformer known as weakest

liberal precondition [46] is closely linked with partial correctness: the obtained predicate does

not impose that the program has to terminate. In our setting since we do not have loops,

this distinction does not make much sense. As an alternative, in the presence of the assert

command, it is customary to define the weakest liberal precondition as being the predicate that

captures all the states from which the execution either goes wrong (some assert fails during the

execution) or terminates in a state satisfying ψ. In other words, termination is interpreted as

‘not going wrong‘. The definition of weakest liberal precondition is then given by the following

definition.

Definition 2.11. Let C ∈ GComm and ψ ∈ GAssert. The weakest liberal precondition of C

with respect to the postcondition ψ is given by wlp(C,ψ) where wlp : GComm ×GAssert →
GAssert is defined as follows:

wlp(assert e, ψ) = e→ ψ

wlp(assume e, ψ) = e→ ψ

wlp(x := e, ψ) = ψ[e/x]

wlp(C1 ; C2, ψ) = wlp(C1,wlp(C2, ψ))

wlp(C1 � C2, ψ) = wlp(C1, ψ) ∧ wlp(C2, ψ)
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Note that the only difference is in the interpretation of the assert command: the condition

ψ has to be met only if e holds. The inverse of weakest liberal precondition is the strongest

postcondition predicate transformer [46] that captures the final state of computations that start

in a state where a certain condition holds. This predicate transformer is given through the

following definition.

Definition 2.12. Let C ∈ GComm and φ ∈ GAssert. The strongest postcondition of C with

respect to the precondition φ is given by sp(φ,C) where sp : GAssert×GComm→ GAssert

is defined as follows:

sp(φ,assert e) = φ ∧ e
sp(φ,assume e) = φ ∧ e

sp(φ, x := e) = ∃x′. x = e[x′/x] ∧ φ[x′/x]

sp(φ,C1 ; C2) = sp(sp(φ,C1), C2)

sp(φ,C1 � C2) = sp(φ,C1) ∨ sp(φ,C2)

As shown in the definition above, the strongest postcondition of an assignment introduces

existential quantifiers. This is the main reason why the weakest precondition predicate trans-

formers is normally preferred to strongest postcondition, in both the theoretical context, and

verification tools. For a detailed monograph about important properties of the predicate trans-

formers, and their different forms and relations see [46].

Predicate transformers have had a great impact on the verification tools we use nowadays.

Since they are based on a calculation mechanism, they naturally provide a better foundation

for automatic verification tools than the traditional Hoare logic [43], more specifically con-

cerning the generation of verification conditions. In particular, the verification of a Hoare triple

{φ}C {ψ} is reduced to the verification of one of the formulas φ→ wlp(C,ψ) or sp(φ,C)→ ψ [58]

(more on this in the next section).

A clear consequence of using predicate transformers as a replacement for the operational and

axiomatic semantics is that the formal meaning of the language statements becomes less clear,

either operationally or axiomatically. For instance, assume and assert statements were initially

introduced in the context of guarded commands, nonetheless, it is not specified operationally

what they mean. Operationally both of them can be seen as the skip command, but, the assert

command can also be seen as a command that checks in runtime whether the given property

holds in the current state, as in ANSI C. If an operational semantics is provided for the language,

either small-step or big-step, these aspects become clear.

Avoiding Exponential Explosion. The size of the formulas generated by the predicate

transformers above can grow exponentially in the worse case w.r.t. the size of the program. Let

us focus on Definition 2.10. There are two factors contributing towards this explosion. The first

is the definition of wp in the case of the choice command: the received postcondition ψ appears

twice in the result. Consider a command consisting in a sequence of n choice commands, and

a postcondition ψ. When applying wp the condition ψ is propagated through both branches
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of the last choice command, and produces two assertions ψ1, ψ2. These will be combined in a

predicate ψ1∧ψ2, where ψ may occur twice. The (seq) rule will then use ψ1∧ψ2 as postcondition

for the prefix of the program, repeating the process and generating the exponential pattern.

Example 2.15. Take the program ChoiceEg as being (assume θ1 � assume θ2); (assume θ3 �

assume θ4); (assume θ5 � assume θ6). The function wp will generate a formula where the

desired postcondition will occur eight times. If we add one more choice command to the sequence

then the number of occurrences of the postcondition will be sixteen in the end:

wp(ChoiceEg, ψ) = (θ1 → (θ3 → (θ5 ∧ ψ) ∧ (θ6 → ψ)) ∧ (θ4 → (θ5 ∧ ψ) ∧ (θ6 → ψ)))∧

(θ2 → (θ3 → (θ5 ∧ ψ) ∧ (θ6 → ψ)) ∧ (θ4 → (θ5 ∧ ψ) ∧ (θ6 → ψ)))

A similar exponential pattern may be generated by duplicating variables rather than asser-

tions in a sequence of assignment statements whose right-hand sides contain multiple occurrences

of the same variable.

Example 2.16. Consider a postcondition ψ containing a single occurrence of z. The wp of

the sequence of assignments y := x+ x; z := y + y produces a formula containing at least four

occurrences of x, since wp(y := x + x; z := y + y, ψ) = ψ[y + y/z][x + x/y]. Note that after z

is substituted by y + y, each y will be substituted by x+ x.

It was observed by Flanagan and Saxe that assignments are the main cause of explosion

and the problem can be solved by converting programs into passive form, a form in which

assignments are removed [52]. Leino [82] later clarified that such an approach works because

passive commands are exactly the class of programs that do not change the state of the program

during execution (programs in this class are said to enjoy from the dream property).

To be able to remove assignment commands while keeping the same program behavior, one

must make use of the other commands. The idea when converting a program into passive

form consists roughly in replacing assignments by assumes. However, it is obvious that for an

assignment of the form x := e one cannot simply write assumex = e, because the condition

x = e does not make sense if x occurs in e, in which case it will probably be a contradiction

(consider for instance x = x + 1). To circumvent this limitation, a new fresh variable, which

we will call a variant of x, can be introduced each time x is assigned. This new variant of the

variable has to be used in all the subsequent reads of x (at least until x is assigned again). This

way, the assignment x := e can be replaced by the command assumex′ = e and if x is read

afterwards, then it must be substituted by x′.

The function that transforms a program into passive form presented in [52] is recursive

and carries a substitution map from variables to their variant. When the current command

is an assignment the received substitution map is used to rename its right hand side and the

introduced fresh variable is used to update the map for the subsequent commands. For the
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assume and assert commands the function basically substitutes the variables according to the

received substitution map.

The choice command introduces a new challenge: after the command the substitution map

coming from each branch must be merged, and every variable must be synchronized with the

variant resulting from each branch. Consider for instance the example x := e � assume θ. The

variable x is only assigned by the left hand side of the command. One can fall into the temptation

of translating this into x′ := e′ � assume θ′, where e′ and θ′ are the result of the replacing the

variables with their respective current variant, and x′ is a fresh variable. The problem here is

that in the translated program, x′ is not assigned in the right hand side of the choice command,

and thus its value is undefined, as opposed to the original program where the value of x was

preserved. The solution is to introduce a new assignment on the right hand side for x′ to keep

the previous variant of x. The result would then be x′ := e′ � (assume θ′; x′ := x′′), assuming

that x′′ is the previous variant of x.

Let passify(σ,C) denote the function that translates guarded commands into a passive form.

The following result taken from [52] states that the translation preserves the wp semantics.

Proposition 2.7. Let C ∈ GComm, σ be a substitution map, passify the translation func-

tion, (σ′, C ′) = passify(σ,C), and x1, . . . , xn the additional variables introduced by the transla-

tion. Then for every ψ ∈ GExp containing no free occurrences of x1, . . . , xn, σ(wp(C,ψ)) ≡
∀x1, . . . , xn. wp(C ′, σ′(ψ)), where σ( ) substitutes the variables according to the substitution map

σ.

Once a program is converted into passive form, its execution will not change the program

state, because there are no assignments. Thus, the initial state is kept throughout the execution

and the only thing that can vary is the outcome of the execution: it can terminate normally or

it can go wrong. In order to generate weakest preconditions for these programs, it suffices to

capture when they terminate normally and when they go wrong. The functions N and W in the

definition below do precisely this.

Definition 2.13. Let C ∈ GComm and consider the functions N : GComm → GAssert

and W : GComm→ GAssert defined below. The predicate N(C) characterizes the states from

which the program terminates normally; the predicate W(C) characterizes the states from which

the program goes wrong.

N(assert e) = e

N(assume e) = e

N(C1; C2) = N(C1) ∧ N(C2)

N(C1 � C2) = N(C1) ∨ N(C2)

W(assert e) = ¬e
W(assume e) = ⊥

W(C1; C2) = W(C1) ∨ ( N(C1) ∧W(C2) )

W(C1 � C2) = W(C1) ∨W(C2)

Both the assert and assume commands terminate normally if the condition is true, but only

the assert command can go wrong in the case where the condition is false – the assume command

can never go wrong. A sequence terminates normally if both parts terminate normally and it

goes wrong if either the first component goes wrong or it terminates normally and the second
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goes wrong. The choice command terminates normally (resp. goes wrong) if at least one of the

components terminate normally (goes wrong). The relation between wp and the newly defined

predicates is as follows:

Proposition 2.8. Let C ∈ GComm and ψ ∈ GAssert such that C is in passive form. Then

wp(C,ψ) ≡ ¬W(C) ∧ ( N(C)→ ψ ).

Let us go back to Examples 2.15 and 2.16 that caused an exponential explosion when fed to

wp. Following the preceding method both approaches generate a formula of linear-size.

Example 2.17. Consider the programs from Examples 2.15 and 2.16. Assume that ChoiceEg

is already in passive form, and let AsgnEg be the passive program assume y1 = x0 + x0;

assume z1 = y1 + y1. Let also ψ ∈ GExp. Then:

• ¬W(ChoiceEg) ∧ ( N(ChoiceEg)→ ψ ) = ¬⊥ ∧ ((θ1 ∨ θ2) ∧ (θ3 ∨ θ4) ∧ (θ5 ∨ θ6)→ ψ).

• ¬W(AsgnEg) ∧ ( N(AsgnEg)→ ψ ) = ¬⊥ ∧ (y1 = x0 + x0 ∧ z1 = y1 + y1 → ψ).

It can be proved by structural induction on C ∈ GComm that ¬W(C) is of quadratic size

and N(C) of linear size with respect to the size of the program C.

Dealing with Loops. At this point we should recall that our interest in predicate trans-

fomers is motivated by the generation of verification conditions for iterating programs. There

are different ways of transforming an iterating program into a loop-free program such as those

constructed over GComm. Let us first consider an approach that does not require loop invari-

ants. Such an approach was named as even weaker precondition (ewp) in Detlefs et al. [43] and

was initially used in ESC [43] and ESC Java [84]. The basic idea is to consider only the first

iterations (zero, one or more) of the loop. Obviously this makes the technique unsound, but

Detlefs et al. [43] state the following:

This apparently crude technique is remarkably effective in practice. Of course, it

is not sound. In fact, it is a good example of the wonderful liberation we get by

dropping the shackles of soundness.

Assume that we have a source programming language with a loop constructor (for instance,

GComm extended with the while constructor) of the form while b do C od. We can cap-

ture all the executions that iterate at most once with the guarded command assume¬b �
(assume b; C; assume¬b). The left-hand side of the first choice command captures executions

that do not iterate at all. The right-hand side captures executions that iterate exactly once.

For excluding executions that iterate more than once the assume¬b is used. Note that if

the internal program C does contain inner loops the same transformation should be applied

recursively. Naturally, this approach can be extended to take into account executions with
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more iterations repeating the following pattern the desired number of times: assume¬b �
(assume b; C; (assume¬b � (assume b; C; (assume¬θ � . . .)))).

If invariants are annotated in the program the same approach can be used to give some

evidence of their validity, i.e. to show that the invariant holds in the first few iterations. Con-

sider the annotated loop while b do {θ} C od. Then the following program can be obtained:

assert θ; (assume¬b � (assume b; C; assert θ; assume¬b)) that will take into account execu-

tions that iterate zero or one time. As before the same approach can be extended for considering

more iterations.

If invariants are annotated in the program, one will in principle prefer a sound mechanism to

remove loops. Remember that an invariant must be true at the beginning of the loop (invariant

initialisation) and when the loop body is executed in a state where the invariant is true then if

it terminates, it should be in a state where the invariant is kept valid. Consider that we have

a loop while b do {θ} C od and, for simplification purposes, that C does not contain nested

loops. Then we can capture its behavior as follows:

assert θ;

x1 := y1; . . . ; xn := yn;

assume θ;

(assume b; C; assert θ; assume⊥)

� assume¬b

The first assert is used to ensure the loop invariant initialisation. After that every variable

that is assigned in the loop body is assigned with a non-deterministic value (here we assume

that variables x1, . . . , xn are assigned in the loop body and that y1, . . . , yn have some non

deterministic value). Then, the possible executions in the transformed program are restricted

to those that satisfy the loop invariant (this is done with the assume θ). W.r.t. the choice

command, the left hand side corresponds to a loop iteration and thus it is assumed that the

loop condition holds and an assert statement is inserted at the end to ensure the invariant

preservation; an assume⊥ is inserted after the assert because the execution of the program

cannot continue from a random iteration (possibly not final). The other side of the choice

command corresponds to the loop termination, and therefore the negation of the loop condition

is placed in an assume statement: in the rest of the program it is possible to rely on the conditions

θ and ¬b. This is the approach followed by most tools based on deductive verification using

verification condition generation [43, 84, 83, 50].

Program Logics and the Dijkstra’s Predicate Transformers. The foundations of de-

ductive program verification have traditionally lied in two different frameworks: Dijkstra’s

predicate transformers and program logics. Guarded commands have been used as an interme-

diate language in tools like ESC/Java [84] and more recently the Boogie generic verifier. Many

pragmatic aspects of program verification have been addressed and described in this setting,

in particular the generation of efficiently provable verification conditions and the treatment of
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unstructured programs [11]. The program logic tradition on the other hand is based on sepa-

rate operational and axiomatic semantics of programming languages, which has allowed for the

study of properties like soundness and (relative) completeness of Hoare logic with respect to

the standard semantics of a While language [6], an approach that has been extended with the

treatment of pointers and aliasing in separation logic [97].

2.5 Verification Condition Generator

Let us now go back to System Hg from Section 2.3. It is possible to write an algorithm, known

as a verification conditions generator, that simply collects the side conditions of a derivation

without actually constructing it. Even though the system Hg is agnostic with respect to a

strategy for propagating assertions, the VCGen will necessarily impose one such strategy. What

we mean here is that in the (seq) rule of system Hg nothing is said about the assertion θ.

That assertion can be calculated as a postcondition of C1 w.r.t. the precondition φ and then

propagated forward to the precondition of C2, or the other way around: as a precondition of

C2 w.r.t. the postcondition ψ and then propagated back to the postcondition of C1. This is

where the predicate transformers introduced by Dijkstra and described in the previous section

come in handy. Let us see how the weakest precondition predicate transformer can be written

for AComm.

Definition 2.14. The weakest precondition approximation function wp : AComm×Assert→
Assert is defined as follows:

wp(skip, ψ) = ψ

wp(x := e, ψ) = ψ[e/x]

wp(C1;C2, ψ) = wp(C1,wp(C2, ψ))

wp(if b then C1 else C2 fi, ψ) = (b→ wp(C1, ψ)) ∧ (¬b→ wp(C2, ψ))

wp(while b do {θ} C od, ψ) = θ

The function wp calculates an approximation of the weakest precondition required for a

command to satisfy ψ if it terminates. It is now possible to use wp to generate verification

conditions in a mechanized way, following the structure of system Hg.

VCwp(φ, skip, ψ) = {φ→ ψ}

VCwp(φ, x := e, ψ) = {φ→ ψ[e/x]}

VCwp(φ,C1 ; C2, ψ) = VCwp(φ,C1,wp(C2, ψ)) ∪ VCwp(wp(C2, ψ), C2, ψ)

VCwp(φ, if b then C1 else C2 fi, ψ) = VCwp(φ ∧ b, C1, ψ) ∪ VCwp(φ ∧ ¬b, C2, ψ)

VCwp(φ,while b do {θ} C od, ψ) = {φ→ θ, θ ∧ ¬b→ ψ} ∪ VCwp(θ ∧ b, C, θ)

The suggested VCGen creates many tautologies of the form φ → φ. What is more, the

precondition of the Hoare triple that we want to validate is only used once. For instance, for
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the triple {φ}C {ψ}, the condition φ will be used only once. As a matter of fact, if we consider

the additional verification condition φ → wp(C,ψ) it is possible to create a VCGen based on

a function that only takes into account the program and the postcondition, and will avoid the

tautologies described above.

Definition 2.15 (Backward-propagation VCGen). The verification conditions generator func-

tion VCwp : Assert × AComm × Assert → P(Assert) and VCaux
wp : AComm × Assert →

P(Assert) are defined as follows:

VCaux
wp (skip, ψ) = ∅

VCaux
wp (x := e, ψ) = ∅

VCaux
wp (C1 ; C2, ψ) = VCaux

wp (C1,wp(C2, ψ)) ∪ VCaux
wp (C2, ψ)

VCaux
wp (if b then C1 else C2 fi, ψ) = VCaux

wp (C1, ψ) ∪ VCaux
wp (C2, ψ)

VCaux
wp (while b do {θ} C od, ψ) = {θ ∧ ¬b→ ψ, θ ∧ b→ wp(C, θ)} ∪ VCaux

wp (C, θ)

VCwp(φ,C, ψ) = {φ→ wp(C,ψ)} ∪ VCaux
wp (C,ψ)

The VCGen described in Definition 2.15 is sound, and for correctly-annotated programs it

is complete. From now on, when referring to the functions VCwp, we intend to refer to the

function from the previous definition, and not the one initially introduced.

Proposition 2.9 (Soundness and completeness of VCwp). Let C ∈ AComm and φ, ψ ∈
Assert. Then:

1. |= VCwp(φ,C, ψ) iff `Hg {φ}C {ψ}.

2. If |= VCwp(φ,C, ψ) then |= {φ} bCc {ψ}.

3. If C is correctly-annotated with respect to (φ, ψ) and |= {φ} bCc {ψ} then |= VCwp(φ,C, ψ).

Proof. 1. By induction on the structure of C. 2. Follows directly from 1., and Proposition 2.5.

3. Follows directly from 1., Definition 2.9, and Proposition 2.3.

If instead of using a backward propagation strategy, one wants to use a forward propagation

strategy, then the strongest postcondition predicate transformer should be used.

Definition 2.16. The strongest postcondition approximation function sp : Assert×AComm→
Assert is defined as follows:

sp(φ, skip) = φ

sp(φ, x := e) = ∃x′. x = e[x′/x] ∧ φ[x′/x]

sp(φ,C1;C2) = sp(sp(φ,C1), C2)

sp(φ, if b then C1 else C2 fi) = sp(φ ∧ b, C1) ∨ sp(φ ∧ ¬b, C2)

sp(φ,while b do {θ} C od) = θ ∧ ¬b
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Similarly to VCwp it is possible to create a VCGen based on forward propagation.

Definition 2.17 (Forward-propagation VCGen). The verification conditions generator function

VCsp : Assert×AComm×Assert→ P(Assert) and the auxiliary function VCaux
sp : Assert×

AComm→ P(Assert) are defined as follows:

VCaux
sp (φ, skip) = ∅

VCaux
sp (φ, x := e) = ∅

VCaux
sp (φ,C1 ; C2) = VCaux

sp (φ,C1) ∪ VCaux
sp (sp(φ,C1), C2)

VCaux
sp (φ, if b then C1 else C2 fi) = VCaux

sp (φ ∧ b, C1) ∪ VCaux
sp (φ ∧ ¬b, C2)

VCaux
sp (φ,while b do {θ} C od) = {φ→ θ, sp(θ ∧ b, C)→ θ} ∪ VCaux

sp (θ ∧ b, C)

VCsp(φ,C, ψ) = VCaux
sp (φ,C) ∪ {sp(φ,C)→ ψ}

The following proposition establishes the equivalence of the VCGens VCwp and VCsp. This

means that either one of these VCGens can be used to generate VCs and that VCsp is sound

and complete.

Proposition 2.10. Let C ∈ AComm and φ, ψ ∈ Assert. Then |= VCwp(φ,C, ψ) iff |=
VCsp(φ,C, ψ).

Proof. By structural induction on the program C.

The observations made about the predicate size in the previous section can be expanded to

the VCGens from this section. In particular, VCwp and VCsp can generate VCs of exponential

size, and in order to circumvent such growth, programs can be transformed into passive form.

We postpone further discussions about this topic to Chapter 4.

2.6 Bounded Model Checking of Software

Naturally this section could start by presenting the well established theoretical foundations of

model checking [30, 9]. Nonetheless, instead of doing that, we will sate the basic principles of

model checking and depart from there to the notion of bounded model checking of software: to

understand the typical approach on what is called bounded model checking of software, one

does not necessarily need to know in great depth all the details and intricacies of the model

checking technique and its optimizations.

Model checking consists basically in checking automatically whether or not a given model

satisfies a certain specification (basically a set of properties about the given model). The

model is normally created using some adequate mathematical structures and the specification

is given through a specific logic. Given the mathematical structure and a logic sentence (the

specification), a model checking algorithm checks if that model satisfies the given property.
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Initially a model would be described through a transition graph, with a number of concrete

states and another number of concrete transitions between those states, and the specification

would be described through temporal logic. An algorithm would then check whether or not

the specification is valid in the model, and if not a counter-example would be returned. Such

an approach allows for simple systems behaviors to be captured, but it is easy to imagine

that as the complexity of the system evolves so does the number of states, which leads to an

explosion of states for more complicated system behaviors. Approaches focusing on encoding

states symbolically instead of encoding them concretely [23, 90], and also on using Binary

Decision diagrams (BDDs) were proposed [22], nonetheless they only alleviate the problem and

do not solve it.

Currently the main goal in model checking (and this also applies to model checking of

software) is to control the state explosion. Two techniques are normally used for this [71]: one

is based on abstraction techniques [29], and the other is based on bounded model checking [19].

In model checking using abstraction techniques, the model only captures an abstract description

of the real system design. Therefore, these techniques are sound, but not complete: if the model

is shown to be correct w.r.t. a specification, then the respective system is correct w.r.t. that

specification. Nonetheless, if the specification is violated in the model, then it is not granted

that the specification is actually violated in the system. So, when a counter-example is reported

by the model checking algorithm, that counter-example must be confronted with the concrete

system to check whether or not it is a real counter-example. If it is a false counter-example

then the model can in principle be refined.

On the other hand, bounded model checking only captures bounded behaviors of the system.

The idea is to look for counter-examples in paths of at most length k. If a counter-example is

not found, then k can be incremented until a counter-example is found or the problem becomes

intractable. The bounded model checking technique is complete but not sound, in the sense

that if the system is correct w.r.t. a specification then the technique will return no counter-

example, but if the technique reports that the model is correct it does not mean that the concrete

system respects the specification for paths bigger than k. Nonetheless, since some systems have

naturally bounded behaviors, it is possible in those cases to conclude that the system is correct

w.r.t. a certain specification. A great advantage of bounded model checking is that the problem

can be reduced to a satisfiability problem [28, 20], and therefore fed to a SAT solver for validity

checking.

When it comes to bounded model checking of software the idea is fairly simple. The bounded

encoding of the system comes from unwinding loops and recursive functions calls a certain

number of times, let us say k. The specification is normally annotated in the code through

assume and assert commands similar (but not exactly with the same meaning) to those adopted

in the context of predicate transformers. This approach allows one to conclude that executions

not requiring more than k iterations (resp. recursive calls) have indeed the expected behavior,

in the sense that they do not violate any assertion in the code. As expected, for executions

requiring more than k iterations or recursive calls nothing is said. The main distinction between
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bounded model checking of software and the approach described in Section 2.4 for removing

loops (based on the use of assumes, asserts, and non-deterministic values) refers to how the

program is transformed before logical formulas are generated. Below we present the typical

workflow followed by bounded model checking tools such as CBMC [32, 31] and ESBMC [37]

and SMT-CBMC [8].

Since the theoretical foundations of bounded model checking of software come from the

model checking area, and this falls outside the context of this thesis, in the rest of this section

we will use a less formal approach to describe programming languages and the transformations

applied to programs. We will extend the language introduced in Section 2.1 with a nondet

expression (an expression that returns a non deterministic value), and support for arrays: the

expression a[i] is used to get the element in index i from array a; the assignment instruction

a[i] := x assigns x to the index i in array a.

Example 2.18. Consider the following program and assume that the variable l contains the

length of the array a. The program calculates the index of an occurrence of the maximum

element in the array, and saves it into the variable max.

assume l > 0 ;

max := 0 ;

i := 1 ;

while i < l do

if a[i] > a[max] then max := i else skip fi ;

i := i+ 1

od ;

ii := nondet ;

assume ii >= 0 ∧ ii < l ;

assert a[max] ≥ a[ii]

An assume is used in the beginning to restrict only executions in which the length of the

array is greater than zero, which can be seen as a precondition. After the loop a new variable

ii is assigned with a non deterministic value, and the assume that follows is intended to filter

executions in which ii is a value within the bounds of the array a. The subsequent assert is

intended to check that whatever the index ii is, the value a[ii] is always small or equal to the

value a[max]. This can be seen as the postcondition of the program, and intends to capture what

would be a quantification over the indexes of the array.

The bounded model checking method follows normally a number of stages that start with the

input program and terminate with a set of logical formulas to be fed to a logic solver. In what

follows we will describe each one of these stages and show how the program from Example 2.18

is transformed into a set of logical formulas.
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Bounding Programs. Naturally these tools start by simplifying the target program into the

simplest form possible. Examples of this might include the removal of side effects in program

expressions and the elimination of syntactic sugar commands. This process can be summarized

by translating a high level programming language into an intermediate form that is suitable for

analysis: it is easy to imagine that the fewer commands the language has, the fewer cases have

to be dealt with. The next step consists in inserting safety properties through asserts, such as,

for instance, properties to check for overflow and/or array out of bounds errors.

The workflow continues by unwinding loops k times and inlining functions calls (if a func-

tion is recursive, a bound is also applied during the inline process). For clarity purposes we

assume here that every loop and recursive function call is unwound the same number of times.

Nonetheless, tools have mechanisms for allowing different loops and recursive calls to be un-

wound a different number of times. The idea in loop unwinding is that the transformation

while b do C od −→ C ; if b then while b do C od else skip fi

is applied k times and then one of the following transformations is applied:

1. while b do C od −→ assume¬b.

2. while b do C od −→ assert¬b.

The transformation 1. is used to exclude executions requiring more than k iterations from being

taken into account by the bounded model. If the bounded model checking algorithm reports

that the model is correct w.r.t. the specification then one must bear in mind that nothing is

said about executions requiring more than k iterations, therefore, the concrete program may

still contain erroneous executions. This is the reason why bounded model checkers of software

are sometimes referred as a bug finders. On the other hand, the idea behind transformation 2.

is to check if longer executions exist. If this is actually the case, the bounded model checker will

report a counter-example, otherwise, when no counter-example exists the technique becomes

sound, because it is guaranteed that loops will not iterate more than the number they were

unwound.

Example 2.19. Recall the program from Example 2.18. The result of unwinding its loop twice

is shown below. In this case we introduced an assume⊥, so executions requiring more than two

iterations are not taken into account. In practice this means that we are just taking into account

executions where the length of the array is at most two. If one wants to check if executions

requiring more than two iterations exists, the assume⊥ could be replaced by assert⊥. Note

that the use of an assume⊥ (resp. assert⊥) at that point of the program is equivalent to use

an assume¬(i < l) (resp. assert¬(i < l)), because it appears inside a branching structure

with the condition i < l.

assume l > 0 ;

max := 0 ;
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i := 1 ;

if i < l then

if a[i] > a[max] then max := i else skip fi ;

i := i+ 1 ;

if i < l then

if a[i] > a[max] then max := i else skip fi ;

i := i+ 1 ;

if i < l then assume⊥ else skip fi

else skip fi

else skip fi ;

ii := nondet ;

assume ii >= 0 ∧ ii < l ;

assert a[max] ≥ a[ii]

Towards a Satisfiability Problem. The first step towards obtaining a logical formula con-

taining the model of the program is to convert the program into static single-assignment (SSA)

form [40]. This form limits the syntactic occurrence of each variable as L-value of a single as-

signment instruction. A construct called ‘Φ-function’ is used to synchronize versions of the same

variable used in different paths. For instance the fragment if x > 0 then x := x+ 10 else x :=

x + 20 fi could be translated as if x0 > 0 then x1 := x0 + 10 else x2 := x0 + 20 fi ; x3 :=

Φ(x1, x2). This means that the value assigned to x3 depends on whether execution has reached

this point through the first or the second branch of the conditional. In bounded model checking

of software, this is typically done using conditional expressions as found in the C programming

language [77]. For instance the program above can be translated to the following SSA form: if

x0 > 0 then x1 := x0 + 10 else x2 := x0 + 20 fi ; x3 := x0 > 0?x1 : x2.

Example 2.20. The program from Example 2.19 can be easily transformed into SSA form

as below. Note that after each if command we introduce an assignments with a conditional

expression on the right hand side to synchronize variables that are assigned inside the if body.

Note also that the assignment with the nondet expression was also removed. The reason for

this is that we assume that the ‘version’ zero of each variable contains some non deterministic

value.

assume l1 > 0 ;

max1 := 0 ;

i1 := 1 ;

if i1 < l1 then

if a1[i1] > a1[max1] then max2 := i1 else skip fi ;
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max3 := a1[i1] > a[max1] ?max2 : max1 ;

i2 := i1 + 1 ;

if i2 < l1 then

if a1[i2] > a1[max3] then max4 := i2 else skip fi ;

max5 := a1[i2] > a1[max3] ?max4 : max3 ;

i3 := i2 + 1 ;

if i3 < l1 then assume⊥ else skip fi

else skip fi ;

i4 := i2 < l1 ? i3 : i2 ;

max6 := i2 < l1 ?max5 : max3

else skip fi ;

i5 := i1 < l1 ? i4 : i1 ;

max7 := i1 < l1 ?max6 : max1 ;

assume ii0 >= 0 ∧ ii0 < l1 ;

assert a1[max7] ≥ a1[ii0]

The resulting SSA program is then transformed into Conditional Normal Form (CNF)2.

In this form programs are sequences of single-branch conditionals, each containing an atomic

command. Conversion of programs to CNF involves a number of transformation steps that are

sound for SSA programs. The resulting form consists in a sequence of commands of the form if

b then C else skip fi, where C is an atomic command and b is the necessary condition for the

command C to be executed. The following function implements precisely such a transformation:

toCNF(π, skip) = if π then skip fi

toCNF(π, x := e) = if π then x := e fi

toCNF(π,C1 ; C2) = toCNF(π,C1) ; toCNF(π,C2)

toCNF(π, if b then Ct else Cf fi) = toCNF(π ∧ b, Ct) ; toCNF(π ∧ ¬b, Cf )

toCNF(π,assume θ) = if π then assume θ fi

toCNF(π,assert θ) = if π then assert θ fi

Example 2.21. The CNF of the SSA program from Example 2.20 is as follows:

if > then assume l1 > 0 fi ;

if > then max1 := 0 fi ;

if > then i1 := 1 fi ;

if i1 < l1 ∧ a1[i1] > a1[max1] then max2 := i1 fi ;

if i1 < l1 then max3 := a1[i1] > a[max1] ?max2 : max1 fi ;

2In the rest of this thesis we will use the CNF acronym to refer to the Conditional Normal Form and never
to the most common Conjunctive Normal Form.
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if i1 < l1 then i2 := i1 + 1 fi ;

if i1 < l1 ∧ i2 < l1 ∧ a1[i2] > a1[max3] then max4 := i2 fi ;

if i1 < l1 ∧ i2 < l1 then max5 := a1[i2] > a1[max3] ?max4 : max3 fi ;

if i1 < l1 ∧ i2 < l1 then i3 := i2 + 1 fi ;

if i1 < l1 ∧ i2 < l1 ∧ i3 < l1 then assume⊥ fi

if i1 < l1 then i4 := i2 < l1 ? i3 : i2 fi ;

if i1 < l1 then max6 := i2 < l1 ?max5 : max3 fi

if > then i5 := i1 < l1 ? i4 : i1 fi ;

if > then max7 := i1 < l1 ?max6 : max1 fi ;

if > then assume ii0 >= 0 ∧ ii0 < l1 fi ;

if > then assert a1[max7] ≥ a1[ii0] fi

For a single-assignment program C, the encoding C of the operational behavior, and P of

the properties to be verified can now be extracted using (C,P) = cp(toCNF(>, C)), with cp the

function defined below. We omit for now the definition for the assume statement and postpone

it to Chapter 4.

cp(if b then skip fi) = (∅, ∅)
cp(if b then x := e fi) = ({b→ x = e}, ∅)

cp(C1 ; C2) = (C1 ∪ C2,P1 ∪ P2),
where (C1,P1) = cp(C1)

and (C2,P2) = cp(C2)

cp(if b then assert θ fi) = (∅, {b→ θ})

With the two obtained sets of formulas, the satisfiability problem is now reduced to
∧
C ∧

¬(
∧
P). If such a formula is satisfiable then any model that satisfies it will be a counter-example

corresponding to the violation of a property. On the other hand, if the formula is UNSAT then

the program is correct in the following sense: if unwinding assumes were used, the program is

correct w.r.t. the annotated specification for executions not requiring more than k iterations; if

unwinding assertions were used, the program is correct w.r.t. the specification, because there

are no executions requiring more than k iterations.

2.7 More Preliminary Notation and Results

This section provides some additional notation, definitions and properties that will be used in

different parts of this thesis.

First of all let us introduce the notation we will use for functions. A function f from A to B

will be denoted by f : A→ B when it is total (it is defined for all x ∈ A), and by f : A ↪→ B if

it is partial. Given a function f , dom(f) will denote the domain of f , and rng(f) the codomain
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of f . As usual, f [x 7→ a] is the function that maps x to a and any other value y to f(y).

For the particular case of partial functions we will use the following notation. The empty

function, that is, the function whose domain is the empty set will be represented by []. The

function whose domain is {x1, . . . , xn} and maps each xi to ai will be represented by [x1 7→
a1, . . . , xn 7→ an]. Let A be a set. Then [x 7→ g(x) | x ∈ A] will represent the function with

domain A generated by g (known as the restriction of a function). In this case, g must be

defined for all x ∈ A.

Finally with respect to functions, we introduce an operator to compose functions.

Definition 2.18. Given the partial functions f, g : A ↪→ B, the function represented as f ⊕ g :

A ↪→ B is defined as:

(f ⊕ g)(x) =

{
g(x) if x ∈ dom(g)

f(x) if x 6∈ dom(g) and x ∈ dom(f)

Note in particular that, if f : A→ B then f ⊕ g : A→ B.

It is possible to compose multiple functions and the following result establishes that in such

a case, the operator is associative.

Lemma 2.11. Let f, g, h : A ↪→ B. Then f ⊕ (g ⊕ h) = (f ⊕ g)⊕ h.

Proof. Straightforward by expanding (f ⊕ (g ⊕ h))(x) and ((f ⊕ g)⊕ h)(x) using the previous

definition, for some x ∈ A.

The operator is not commutative for arbitrary functions, although, for some particular cases

the operands can be swapped as indicated by the following lemma. Note in particular that for

the first function to be total, the second has to be the empty partial function.

Lemma 2.12. Let f, g : A ↪→ B such that dom(f) ∩ dom(g) = ∅. Then f ⊕ g = g ⊕ f .

Proof. Straightforward by expanding (f ⊕ g)(x) and (g ⊕ f)(x) using Definition 2.18, for some

x ∈ A.

Changing topics, let us now introduce a new class of programs whose commands are just

sequences of assignments from variables to variables.

Definition 2.19 (Renaming). The set Rnm ⊆ Comm of renamings consists of all programs

of the form {x1 := y1 ; . . . ; xn := yn} such that all xi and yi are distinct. The empty renaming

will be written as skip.

A renaming R = {x1 := y1 ; . . . ; xn := yn} represents also a finite bijection [x1 7→ y1, . . . ,

xn 7→ yn], which we will also denote by R. We will write dom(R) and rng(R) to denote the

domain and range of R, respectively. Furthermore, R(φ) will denote the assertion that results
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from applying the substitution [y1/x1, . . . , yn/xn] to φ. Also, for s ∈ Σ we define the state R(s)

as follows: R(s)(x) = s(R(x)) if x ∈ dom(R), and R(s)(x) = s(x) otherwise.

This class of programs has some interesting properties that can be described by the lemma

below, which will be particularly useful when transforming programs into single-assignment

form.

Lemma 2.13. Let R ∈ Rnm, φ, ψ ∈ Assert and s ∈ Σ.

1. 〈R, s〉 R(s).

2. [[R(φ)]](s) = [[φ]](R(s)).

3. |= {φ}R{ψ} iff |= φ→ R(ψ).

Proof. 1. By inspection on the evaluation relation. 2. By induction on the interpretation

assertions. 3. Follows from 1 and 2.

The previous sections cover the background that is shared by forthcoming chapters of this

thesis. Additional background will be provided as needed.
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Chapter 3

Iterating SA Programs as a Basis for

Program Verification

Translating programs into single-assignment (SA) form has been part of the standard compila-

tion pipeline for decades now [40]. As we saw in Section 2.4, passive form (a form very similar

to SA) has been used in the context of program verification to avoid exponential explosion when

generating verification conditions. Verification tools typically opt for removing loops a priori

which implies that the obtained program cannot be used for compilation purposes, and thus

the program being verified and the program being compiled diverge.

In this chapter we formalize a verification technique for While programs annotated with in-

variants, based on their translation into an intermediate iterating single-assignment (ISA) form.

Loops in ISA are annotated with invariants, have single-assignment bodies, and a renaming (see

Section 2.7) allows for the values of the initial variables to be updated between iterations. An

inference system that admits only derivations guided by the annotated loop invariants following

a forward-propagation strategy is also provided, which serves as a basis for an algorithm that

generates compact verification conditions (in the sense of Flanagan and Saxe [52]) for a given

Hoare triple.

Instead of reasoning with a concrete translation, we identify the semantic requirements that

are expected from such a translation and validate the workflow of the framework by showing

that the generation of VCs from the ISA form is sound and complete for the verification of

the initial program. The framework is completed by providing a concrete ISA translation and

proving that it complies with the given semantic restrictions.

An important issue is that of modular verification and proof reuse. Ideally, one produces a

separate proof of correctness for each occurrence (or call) of a subprogram C inside a program

P , and then adapts the proved specification of C to different ‘local’ specifications. A formalism

that always allows for this to be done is said to be adaptation-complete [75]; in its original

formulation Hoare logic is not adaptation-complete. This is a problem in the presence of re-

cursive procedures, since it leads to incompleteness of the program logic itself, but it is also a

problem for the implementation of tools where the correctness of each procedure is proved once

43
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and for all with respect to a contract that must be adapted to the local context of each call to

it. We will show that adaptation-completeness is a natural property of reasoning in the single-

assignment setting. An adaptation-complete variant of the logic will be proposed by adding

to the inference system a dedicated consequence rule with a simple side condition. This new

consequence rule is restricted to reasoning about triples in which the program does not assign

any variable occurring free in the precondition; since the Hoare logic for ISA programs propa-

gates preconditions forward in a way that preserves this property, the rule can be applied at any

point in a derivation. It provides the highest degree of adaptation, without the need to check

any additional complicated conditions or rules, as used to be the case in adaptation-complete

presentations of Hoare logic [6, 4, 75].

The chapter is organized as follows: the next section introduces a language of iterating

single-assignment programs, Section 3.2 proposes a Hoare logic and a VCGen for this language,

and Section 3.3 considers the verification workflow based on the translation of annotated While

programs into ISA form. In Section 3.4 we show how the program logic can be extended with

a special consequence rule that makes it adaptation-complete, and in Section 3.4 we provide a

concrete ISA translation together with the proof that it complies with the semantic restrictions.

Finally Section 3.6 discusses related work.

3.1 Iterating Single-assignment Language

In what follows we introduce a language based on dynamic single-assignment (DSA) form that

contains a loop construct. Such an approach allows us to identify properties about programs

constructed over the proposed language, and to study from a formal perspective the use of SA

in program verification.

It should be noted that in a strict sense it is not possible to write iterating programs in DSA

form because the body of the loop is executed multiple times. So what we propose here is a

syntactically controlled violation of the single-assignment constraints that allows for structured

reasoning. Loop bodies are still SA blocks, but two renamings, responsible for propagating the

values inside, outside and between iterations, are free of single-assignment restrictions. This will

allow us to keep loop constructs in the language, while taking the benefits of single-assignment

form.

Definition 3.1. Let ACommisa be the class of annotated single-assignment programs. Its

abstract syntax is defined by

C ::= skip | x := e | C ; C | if b then C else C fi | for (I, b,U) do {θ}C od

where:

• skip ∈ ACommisa.

• x := e ∈ ACommisa if x 6∈ Vars(e).



ITERATING SA PROGRAMS AS A BASIS FOR PROGRAM VERIFICATION 45

• C1 ; C2 ∈ ACommisa if C1, C2 ∈ ACommisa and Vars(C1) ∩ Asgn(C2) = ∅.

• if b then Ct else Cf fi ∈ ACommisa if Ct, Cf ∈ ACommisa and

Vars(b) ∩ (Asgn(Ct) ∪ Asgn(Cf )) = ∅.

• for (I, b,U) do {θ}C od ∈ ACommisa if C ∈ ACommisa, I,U ∈ Rnm, Asgn(I) =

Asgn(U), rng(U) ⊆ Asgn(C), and (Vars(I) ∪ Vars(b) ∪ FV(θ)) ∩ Asgn(C) = ∅.

and Vars and Asgn are extended to cope with the for command as follows:

• Vars(for (I, b,U) do {θ}C od)=Vars(I)∪Vars(b)∪FV(θ)∪Vars(C).

• Asgn(for (I, b,U) do {θ}C od) = Asgn(I) ∪ Asgn(C).

The previous definition imposes the typical single-assignment constraints, in particular that a

variable is only assigned once, and after it has been used, it cannot be assigned. The commands

of the language do not bring any additional novelty except for the case of loops. A skip,

command is always an ISA command. An assignment command of the form x := e is only an

ISA command if the variable x does not occur in expression e. This restriction is required to

ensure that a variable is not assigned after being used. A similar restriction is applied to the

sequence command of the form C1 ; C2 imposing that the latter command of the sequence C2

cannot assign variables that occur in the former command C1. Also in the branching command

of the form if b then C1 else C2 fi the commands C1 and C2 cannot assign variables that

occur in b. Loops have the form of for (I, b,U) do {θ}C od, where I and U are renamings

(see Section 2.7), b is a boolean condition, θ is the loop invariant and C is the loop body.

The initialization code I contains a renaming that runs exactly once, even if no iterations take

place. On the other hand the code in U is executed after every iteration. This ensures that

the variables in dom(U) (which are the same as dom(I)) always contain the appropriate output

values at the beginning of each iteration and when the loop terminates. Note that the definition

of φ#C, initially introduced in Definition 2.6 and stating that C does not assign free variables

of φ, extends to annotated programs as expected.

To understand the use of the for construct in our ISA language, let us first write a program

in a form where blocks of code consisting in a sequence of assignments are converted to SA form.

The following example shows a program where the assignments before and inside the loop were

converted to SA form (the variables occurring in the loop are signaled with an ‘a’ subscript for

clarity, but any other fresh variables would do).

Example 3.1. The program below represents the program from Example 2.13 with the blocks

converted to SA form.

f1 := 1 ;

i1 := 1 ;

I
while (ia0 ≤ n) do {fa0 = (ia0 − 1)! ∧ ia0 ≤ n+ 1}
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fa1 := fa0 ∗ ia0 ;

ia1 := ia0 + 1 ;

U
od

The initial version variables of the loop body fa0 and ia0 are the ones used in the Boolean

expression, which is evaluated at the beginning of each iteration. They are also used in the

invariant annotation. We have placed in the code the required renamings I and U , and it is

straightforward to instantiate them. The renaming I should be {ia0 := i1 ; fa0 := f1}, and U
should be {ia0 := ia1 ; fa0 := fa1}. Note that without U the new values of the counter and of

the accumulator would not be transported to the next iteration. The initial version variables

can be used after the loop to access the value of the counter and accumulator. A specification

for this program can be as follows: (n ≥ 0 ∧ naux = n, fa0 = naux !).

It is now immediate to write the program with a for command encapsulating the structure

of the loop, in accordance with Definition 3.1. This is shown in the next example. Incidentally,

note that the invariant does not contain the ‘continuous’ part naux = n of the initial code, since

it becomes unnecessary in the ISA version.

Example 3.2. The program initially presented in Example 2.13, and then converted into a

pseudo SA in Example 3.1, can now be written using only commands from ACommisa. In the

rest of this chapter, we will refer to this annotated ISA program as Factisa.

f1 := 1 ;

i1 := 1 ;

for ({ia0 := i1 ; fa0 := f1}, ia0 ≤ n, {ia0 := ia1 ; fa0 := fa1}) do

{fa0 = (ia0 − 1)! ∧ ia0 ≤ n+ 1}
fa1 := fa0 ∗ ia0 ;

ia1 := ia0 + 1

od

To be able to use the operational and axiomatic semantics introduced in the previous chapter

to reason about ACommisa programs without modifications, we will consider a function that

transforms ACommisa into AComm, by simply inlining in the assignments I and U in the

appropriate places.

Definition 3.2. The function W : ACommisa → AComm translates ISA programs to (an-
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(skip) {φ} skip {φ ∧ >}

(assign) {φ}x := e {φ ∧ x = e}

(seq)

{φ}C1 {φ ∧ ψ1} {φ ∧ ψ1}C2 {φ ∧ ψ1 ∧ ψ2}
{φ}C1 ; C2 {φ ∧ ψ1 ∧ ψ2}

(if)

{φ ∧ b}Ct {φ ∧ b ∧ ψt} {φ ∧ ¬b}Cf {φ ∧ ¬b ∧ ψf}
{φ} if b then Ct else Cf fi {φ ∧ ((b ∧ ψt) ∨ (¬b ∧ ψf ))}

(for)

{θ ∧ b}C {θ ∧ b ∧ ψ}
{φ} for (I, b,U) do {θ}C od {φ ∧ θ ∧ ¬b} if

φ→ I(θ) and

θ ∧ b ∧ ψ → U(θ)

Figure 3.1: Inference system for annotated ISA triples – System Hisa

notated) While programs as follows:

W(skip) = skip

W(x := e) = x := e

W(C1 ; C2) = W(C1) ; W(C2)

W(if b then Ct else Cf fi) = if b thenW(Ct) elseW(Cf ) fi

W(for (I, b,U) do {θ}C od) = I ; while b do {θ} W(C) ; U od

Whenever we need to observe the execution of C ∈ ACommisa using the small or big-step

semantic introduced in the previous chapter, we useW(C) to convert C into AComm and then

bW(C)c to convert it into Comm. The same method will be used for checking the derivability

of triples in system H. For system Hg it is enough to apply W. The next section introduces a

new inference system and VCGen intended for ACommisa.

3.2 Hoare Logic and Verification Conditions for Iterating SA

Programs

Regardless of the strategy used (forward or backward propagation), derivations in system Hg

(and similarly in H) may produce formulas (and thus side conditions) of exponential size in the

length n of the program, similarly to the VCGens described in Section 2.4. It suffices to consider
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a program containing 2n execution paths, for instance a sequence of n conditional statements.

If a forward (resp. backward) propagation strategy is used to construct a derivation for this

program, each instance of the (if) rule will have as conclusion a Hoare triple whose postcondi-

tion (resp. precondition) contains two occurrences of the precondition (resp. postcondition).

Repeating this process throughout the sequence will generate the exponential pattern.

We propose in Figure 3.1 an inference system for Hoare triples containing annotated ISA

programs that avoids such an explosion. The system Hisa is a goal-directed like system Hg but

it incorporates a strategy, based on forward propagation (reminiscent of strongest postcondition

computations). Note that Hisa derives triples of the form {φ}C {φ ∧ ψ}, where the program

does not interfere with the truth of the precondition. For this reason we restrict our results to

triples satisfying the φ#C condition (ISA translations should generate triples that satisfy this

restriction).

Definition 3.3 (ISA triple). Let C ∈ ACommisa and φ, ψ ∈ Assert. A Hoare triple {φ}C {ψ}
is said to be an ISA triple if φ#C.

Some properties that will be useful in the rest of this chapter can be extracted from triples

that are derived in system Hisa. In particular the free variables from the postcondition come

either from the precondition or are variables occurring in the program. Moreover, every triple

occurring in the derivation is an ISA triple.

Lemma 3.1. Let C ∈ ACommisa and φ, ψ ∈ Assert such that φ#C, `Hisa {φ}C {ψ}. Then:

1. FV(ψ) ⊆ FV(φ) ∪ Vars(C).

2. all triples {α}C ′ {β} occurring in this derivation satisfy α#C ′.

Proof. Both are proved by induction on the derivation of `Hisa {φ}C {ψ}.

The system can now be proved to be sound and complete. We show that it is sound w.r.t.

system H from Section 2.2, and complete w.r.t. Hg from Section 2.3.

Proposition 3.2 (Soundness of system Hisa). Let C ∈ ACommisa and φ, ψ′ ∈ Assert such

that φ#C. If `Hisa {φ}C {φ ∧ ψ′}, then `H {φ} bW(C)c {φ ∧ ψ′}.

Proof. By induction on the derivation of `Hisa {φ}C {φ ∧ ψ′}, using Lemma 3.1. We show the

interesting case, where the last rule applied is (for) – all the other are straightforward. Assume

the last step is

{θ ∧ b}C {θ ∧ b ∧ ψ}
{φ} for (I, b,U) do {θ}C od {φ ∧ θ ∧ ¬b} with

φ→ I(θ) and

θ ∧ b ∧ ψ → U(θ)

By Lemma 3.1, we have that (θ ∧ b)#C. So, by IH, we have `H {θ ∧ b} bW(C)c {θ ∧ b ∧ ψ}.
From the validity of the side conditions, by Lemma 2.13 and completeness of H, we have

`H {θ ∧ b ∧ ψ}U {θ} and `H {φ} I {θ}. Now applying sequentially the rules (seq), (while) and

again (seq), we get `H {φ} I ; while b do bW(C)c ; U od {θ ∧ ¬b}. Hence, by definition of W
and Lemma 2.4, we have `H {φ} bW(for (I, b,U) do {θ}C od)c {φ ∧ θ ∧ ¬b}.
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Proposition 3.3 (Completeness of system Hisa). Let C ∈ ACommisa and φ, ψ ∈ Assert

such that φ#C and `Hg {φ}W(C) {ψ}. Then `Hisa {φ}C {φ ∧ ψ′} for some ψ′ ∈ Assert such

that |= φ ∧ ψ′ → ψ.

Proof. By induction on the structure of C. Assume φ#C and `Hg {φ}W(C) {ψ}.

• Case C ≡ x := e, we must have |= φ→ ψ[e/x]. Since x 6∈ (FV(e) ∪ FV(φ)), it follows that

|= φ ∧ x = e→ ψ. As `Hisa {φ}x := e {φ ∧ x = e} we are done.

• Case C ≡ C1;C2, we must have for some γ ∈ Assert `Hg {φ}W(C1) {γ} and `Hg

{γ}W(C2) {ψ}. Since φ#C1;C2 we have φ#C1. Hence by IH we have `Hisa {φ}C1 {φ∧γ′}
for some γ′ ∈ Assert such that |= φ ∧ γ′ → γ. Therefore, by Lemma 2.6, `Hg {φ ∧
γ′}W(C2) {ψ}. From Lemma 3.1 we have that FV(φ ∧ γ′) ⊆ FV(φ) ∪ Vars(C1), and thus

(φ ∧ γ′)#C2. Hence by IH `Hisa {φ ∧ γ′}C2 {φ ∧ γ′ ∧ ψ′} for some ψ′ ∈ Assert such that

|= φ ∧ γ′ ∧ ψ′ → ψ. Applying rule (seq) we then get `Hisa {φ}C1 ; C2 {φ ∧ γ′ ∧ ψ′}.

• Case C ≡ for (I, b,U) do {θ}Ct od, we must have, for some γ ∈ Assert, that `Hg

{φ} I {θ}, `Hg {θ ∧ b}W(Ct) {γ}, `Hg {γ}U {θ}, and |= θ ∧ ¬b → ψ. We have that

(θ ∧ b)#Ct, so it follows by IH that `Hisa {θ ∧ b}Ct {θ ∧ b∧ γ′}, for some γ′ ∈ Assert and

|= θ ∧ b ∧ γ′ → γ. Therefore, by Lemma 2.6, `Hg {θ ∧ b ∧ γ′}U {θ}. Since Hg is sound,

by Lemma 2.13, it follows that |= φ → I(θ) and |= θ ∧ b ∧ γ′ → U(θ), which allow us to

apply rule (for) and get the conclusion `Hisa {φ} for (I, b,U) do {θ}C od {φ ∧ θ ∧ ¬b}.

The remaining cases are routine.

All the rules of system Hisa propagate the precondition φ forward. Note that in the (for)

rule this happens even though φ is not implied by the annotated loop invariant. Observe also

how in this same rule we reason structurally about the body of the loop (an ISA piece of code),

with the renamings applied to the invariant in the side conditions.

Example 3.3. Let Factisa be the factorial single-assignment program from Example 3.2. The

derivation of the triple {n ≥ 0 ∧ naux = n}Factisa {n ≥ 0 ∧ naux = n ∧ f1 = 1 ∧ i1 = 1 ∧ fa0 =

(ia0− 1)!∧ ia0 ≤ n+ 1∧¬(ia0 ≤ n)} in system Hisa is shown below. In particular, it is possible

to conclude that the triple {n ≥ 0 ∧ naux = n}Factisa {fa0 = naux!} is valid.

{n ≥ 0 ∧ naux = n}
Factisa

{n ≥ 0 ∧ naux = n ∧ f1 = 1 ∧ i1 = 1 ∧ fa0 = (ia0 − 1)! ∧ ia0 ≤ n+ 1 ∧ ¬(ia0 ≤ n)}
(seq)

1. {n ≥ 0 ∧ naux = n} f1 := 1; i1 := 1 {n ≥ 0 ∧ naux = n ∧ f1 = 1 ∧ i1 = 1}
(seq)

1. (assign) {n ≥ 0 ∧ naux = n} f1 := 1 {n ≥ 0 ∧ naux = n ∧ f1 = 1}

2. (assign) {n ≥ 0 ∧ naux = n ∧ f1 = 1} i1 := 1 {n ≥ 0 ∧ naux = n ∧ f1 = 1 ∧ i1 = 1}
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2. {n ≥ 0 ∧ naux = n ∧ f1 = 1 ∧ i1 = 1}
for (ia0 := i1; fa0 := f1, ia0 ≤ n, ia0 := ia1; fa0 := fa1) do {fa0 = (ia0 − 1)! ∧ ia0 ≤ n + 1} fa1 :=

fa0 ∗ ia0; ia1 := ia0 + 1 od

{n ≥ 0 ∧ naux = n ∧ f1 = 1 ∧ i1 = 1 ∧ fa0 = (ia0 − 1)! ∧ ia0 ≤ n+ 1 ∧ ¬(ia0 ≤ n)}
(for)

1. {fa0 = (ia0 − 1)! ∧ ia0 ≤ n+ 1 ∧ ia0 ≤ n}
fa1 := fa0 ∗ ia0; ia1 := ia0 + 1

{fa0 = (ia0 − 1)! ∧ ia0 ≤ n+ 1 ∧ ia0 ≤ n ∧ fa1 = fa0 ∗ ia0 ∧ ia1 = ia0 + 1}
(seq)

1. (assign) {fa0 = (ia0 − 1)! ∧ ia0 ≤ n + 1 ∧ ia0 ≤ n} fa1 := fa0 ∗ ia0 {fa0 = (ia0 − 1)! ∧ ia0 ≤
n+ 1 ∧ ia0 ≤ n ∧ fa1 = fa0 ∗ ia0}

2. (assign) {fa0 = (ia0 − 1)! ∧ ia0 ≤ n + 1 ∧ ia0 ≤ n ∧ fa1 = fa0 ∗ ia0} ia1 := ia0 + 1 {fa0 =

(ia0 − 1)! ∧ ia0 ≤ n+ 1 ∧ ia0 ≤ n ∧ fa1 = fa0 ∗ ia0 ∧ ia1 = ia0 + 1}

Side conditions for application of the (for) rule:

• n ≥ 0 ∧ naux = n ∧ f1 = 1 ∧ i1 = 1→ f1 = (i1 − 1)! ∧ i1 ≤ n+ 1.

• fa0 = (ia0−1)!∧ia0 ≤ n+1∧ia0 ≤ n∧fa1 = fa0∗ia0∧ia1 = ia0+1→ fa1 = (ia1−1)!∧ia1 ≤ n+1.

Note that in the previous example, the application of the (for) rule introduces two side

conditions, which are both valid. The derivation generates a unique postcondition for the

program, with the given precondition. Other valid triples with the same precondition may be

obtained by weakening this postcondition, following Proposition 3.3.

A set of verification conditions for a triple {φ}C {ψ} can be obtained from a candidate

derivation of a triple of the form {φ}C {φ∧ψ′} in system Hisa. The VCs are the side conditions

introduced by the (for) rule, together with φ ∧ ψ′ → ψ: the triple is valid if and only if all

these VCs are valid. It is possible to calculate the VCs and the formula ψ′ without explicitly

constructing the derivation. The following function does precisely this.

Definition 3.4 (Verification conditions generator). The VCGen function VCisa : Assert ×
ACommisa → Assert× P(Assert) is defined as follows:

VCisa(φ, skip)=(>, ∅)
VCisa(φ, x := e)=(x = e, ∅)

VCisa(φ,C1 ; C2)=(ψ1 ∧ ψ2,Γ1 ∪ Γ2), where

(ψ1,Γ1) = VCisa(φ,C1), and

(ψ2,Γ2) = VCisa(φ ∧ ψ1, C2)

VCisa(φ, if b then Ct else Cf fi)=((b ∧ ψt) ∨ (¬b ∧ ψf ),Γt ∪ Γf ), where

(ψt,Γt) = VCisa(φ ∧ b, Ct) and

(ψf ,Γf ) = VCisa(φ ∧ ¬b, Cf )

VCisa(φ, for (I, b,U) do {θ}C od)=(θ∧¬b,Γ ∪ {φ→I(θ), θ∧b∧ψ→U(θ)}), where

(ψ,Γ) = VCisa(θ ∧ b, C)
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Let (ψ′,Γ) = VCisa(φ,C). The verification conditions of C with the precondition φ are

given by the set Γ, and the formula ψ′ approximates (since it relies on loop invariants) a logical

encoding of the program; it is clear from the definition that ψ′ does not depend on the formula

φ. The VCs of a Hoare triple {φ}C {ψ} are then given by Γ ∪ {φ ∧ ψ′ → ψ}. The VCGen is

sound and complete w.r.t. system Hisa.

Proposition 3.4. Let C ∈ ACommisa, φ, ψ′, ψ′′ ∈ Assert and Γ ⊆ Assert, such that

(ψ′,Γ) = VCisa(φ,C). Then:

1. If |= Γ, then `Hisa {φ}C {φ ∧ ψ′}.

2. If `Hisa {φ}C {φ ∧ ψ′′} for some assertion ψ′′, then |= Γ and ψ′′ ≡ ψ′.

Proof. 1. By induction on the structure of C. 2. By induction on the derivation of `Hisa

{φ}C {φ ∧ ψ′′}.

Example 3.4. For our factorial example we have that VCisa(n ≥ 0∧naux = n,Factisa) = (f1 =

1 ∧ i1 = 1 ∧ fa0 = (ia0 − 1)! ∧ ia0 ≤ n+ 1 ∧ ¬(ia0 ≤ n), {n ≥ 0 ∧ naux = n ∧ f1 = 1 ∧ i1 = 1→
f1 = (i1 − 1)! ∧ i1 ≤ n + 1, fa0 = (ia0 − 1)! ∧ ia0 ≤ n + 1 ∧ ia0 ≤ n ∧ fa1 = fa0 ∗ ia0 ∧ ia1 =

ia0 + 1→ fa1 = (ia1 − 1)! ∧ ia1 ≤ n+ 1}), in accordance with the derivation in Example 3.3.

Consider the calculation of VCisa(φ, {if b thenCt elseCf fi};C2). The recursive call on C2

will be VCisa(φ ∧ ((b ∧ ψt) ∨ (¬b ∧ ψf )), C2), where ψt, ψf do not depend on φ. The resulting

VCs avoid the exponential pattern described at the beginning of Section 3.2, since a single

copy of the precondition φ is propagated to C2. In fact the size of the VCs is quadratic in

the size of the program. It is clear from the VCisa(φ,C1 ; C2) clause of the definition that

the propagated precondition φ is duplicated, with one copy used to generate VCs for C1, and

another propagated to C2 together with the encoding of C1. Now observe that each loop in the

program generates two VCs, one corresponding to the initialization of the invariant (φ→I(θ)),

and another to its preservation. The size of loop preservation VCs depends only on the size of

the loop’s body, but initialization conditions contain an encoding of the prefix of the program

leading to the loop (propagated in the φ parameter), so they have size linear in the size of that

prefix. The worst case occurs for a program consisting in a sequence of n loops: the ith loop

will generate an initialization VC of size O(i), so the total size of the VCs is O(n2).

3.3 Program Verification Using Iterating SA Form

We will now put up a framework for the verification of annotated While programs, based on their

translation to single-assignment form and the subsequent generation of compact verification

conditions from this intermediate code.

The translation into ISA form will operate at the level of Hoare triples, rather than of isolated

annotated programs. Such a translation must of course abide by the syntactic restrictions of

ACommisa (as ilustrated by the factorial example), with additional requirements of a semantic
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nature. In particular, the translation will annotate the ISA program with loop invariants

(produced from those contained in the original program), and Hg-derivability guided by these

annotations must be preserved. On the other hand, the translation must be sound: it will not

translate invalid triples into valid ones. These requirements are expressed by translating back

to While programs.

Definition 3.5 (ISA translation). A function T : Assert×AComm×Assert→ Assert×
ACommisa × Assert is said to be a single-assignment translation if when T (φ,C, ψ) =

(φ′, C ′, ψ′) we have φ′#C ′, and both the following hold:

1. If |= {φ′} bW(C ′)c {ψ′}, then |= {φ} bCc {ψ}.

2. If `Hg {φ}C {ψ}, then `Hg {φ′}W(C ′) {ψ′}.

The following propositions establish that translating annotated programs to ISA form before

generating VCs results in a sound and complete technique for deductive verification.

Proposition 3.5 (Soundness of verification technique). Let C ∈ AComm, C ′ ∈ ACommisa,

φ, φ′, ψ, ψ′, γ ∈ Assert and Γ ⊆ Assert, such that (φ′, C ′, ψ′) = T (φ,C, ψ) for some ISA

translation T , and (γ,Γ) = VCisa(φ′, C ′). If |= Γ, φ′ ∧ γ → ψ′ then |= {φ} bCc {ψ}.

Proof. From Proposition 3.4(1) we have `Hisa {φ′}C ′ {φ′ ∧ γ} and from Definition 3.5 we have

φ′#C ′. Thus Proposition 3.2 applies yielding `H {φ′} bW(C ′)c {φ′ ∧ γ}. From soundness of H,

and because |= φ′ ∧ γ → ψ′, it follows that |= {φ′} bW(C ′)c {ψ′}. Finally, by Definition 3.5, we

have |= {φ} bCc {ψ}.

Proposition 3.6 (Completeness of verification technique). Let C∈AComm, C ′∈ACommisa,

φ, φ′, ψ, ψ′, γ ∈ Assert and Γ ⊆ Assert such that (φ′, C ′, ψ′) = T (φ,C, ψ) for some ISA

translation T , and (γ,Γ) = VCisa(φ′, C ′). If |= {φ} bCc {ψ} and C is correctly-annotated w.r.t.

(φ, ψ), then |= Γ, φ′ ∧ γ → ψ′.

Proof. First note that by completeness of system H we have `H {φ} bCc {ψ}. By Definitions 2.9

and 3.5 it follows that `Hg {φ}C {ψ} and `Hg {φ′}W(C ′) {ψ′}. The latter definition implies

that φ′#C ′, and by Proposition 3.3 `Hisa {φ′}C ′ {φ′ ∧ ψ′′} for some ψ′′ ∈ Assert such that

|= φ′ ∧ ψ′′ → ψ′. Proposition 3.4(2) then gives us |= Γ and ψ′′ ≡ γ, which concludes the

proof.

Even though the rest of the results are formulated w.r.t. Definition 3.5, and we do not

impose any concrete translation, Section 3.5 presents an example of such a concrete translation,

together with the proof that it complies with Definition 3.5.

3.4 Adaptation Completeness of Iterating SA Programs

Ideally one would like to create a derivation for a triple and then to be able to use it to derive

all other triples whose validity is semantically implied by the validity of the first. For a more
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formal explanation, let (φ, ψ) and (φ′, ψ′) be specifications, and assume that (φ, ψ) is satisfiable

(there exists some program that is correct w.r.t. it). Suppose now that C is a program such

that if the Hoare triple {φ}C {ψ} is valid then so is {φ′}C {ψ′}. An inference system for Hoare

logic is said to be adaptation-complete if whenever this happens, then {φ′}C {ψ′} is derivable

in that system from the triple {φ}C {ψ}.

Adaptation is closely linked to the existence of a consequence rule that dictates when a triple

is derivable in one step from another triple containing the same program. Therefore, it is by

design entirely absent from goal-directed systems like Hg or Hisa, which have no consequence

rule. System H is capable of adaptation, but not in a complete way. For a simple example of how

adaptation fails in system H, consider for instance the triple {n ≥ 0∧naux = n}Fact {f = naux !}.
The specification makes use of an auxiliary variable naux . These variables do not have a special

status; they are simply not used as program variables, and can be safely employed for writing

specifications relating the pre-state and post-state. According to the above, the program Fact

computes the factorial of the initial value of n. Now suppose Fact is part of a bigger program,

and one would like to establish the validity of the triple {n = K}Fact {f = K!}, with K a

positive constant. Adaptation-completeness would mean that one would be able to derive this

from the specification of Fact without constructing a dedicated proof – indeed, it should not

even be necessary to know the implementation of Fact, since it has already been proved correct.

The (conseq) rule of Hoare logic is meant precisely for this, but it cannot be applied here, since

both side conditions are clearly not valid.

{n ≥ 0 ∧ naux = n}Fact {f = naux !}
{n = K}Fact {f = K!} if

n = K → n ≥ 0 ∧ naux = n and

f = naux !→ f = K!

For an even simpler example consider the triple {x > 0}P {y = x} where x is now a program

variable, used outside P , but not assigned in P . Again let K be some positive constant. Clearly

if the triple is valid then so is {x = K}P {y = K}, since the value of x is preserved. However,

attempting to apply the consequence rule would yield the following, where the first side condition

is valid, but the second is invalid

{x > 0}P {y = x}
{x = K}P {y = K} if x = K → x > 0 and y = x→ y = K

The problem of adaptation was raised by the study of complete extensions of Hoare logic for

reasoning about recursive procedures. Assuming that an identity axiom is present, and system

H rules are lifted to work with Gentzen-style sequents [55], the initial proposal by Hoare [65]

was to derive a triple concerning a procedure call by assuming that same triple as a hypothesis

when reasoning about the procedure’s body:

{φ} call p {ψ} ` {φ}body p {ψ}
` {φ} call p {ψ}
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Example 3.5. As an example of a recursive procedure consider the following program taken

from [5]. Assume that the procedure FACTR is defined as:

if x = 0 then y := 1 else x := x− 1 ; call FACTR ; x := x+ 1 ; y := y ∗ x fi

The triple {x ≥ 0} call FACTR {y = x!} is derivable in system H with the addition of

the recursion rule shown above. According to the recursion rule, we must prove that {x ≥
0} call FACTR {y = x!} ` {x ≥ 0}body FACTR {y = x!}. For simplification purposes, we leave

implicit the antecedent of the sequents which is always {x ≥ 0} call FACTR {y = x!}:

{x ≥ 0}body FACTR {y = x!}
(if)

1. {x ≥ 0 ∧ x = 0} y := 1 {y = x!}
(conseq)

1. {1 = x!} y := 1 {y = x!}(assign)

2. {x ≥ 0 ∧ ¬x = 0}x := x− 1 ; call FACTR ; x := x+ 1 ; y := y ∗ x {y = x!}
(seq)

1. {x ≥ 0 ∧ ¬x = 0}x := x− 1 {x ≥ 0}
(conseq)

1. {x− 1 ≥ 0}x := x− 1 {x ≥ 0}(assign)

2. {x ≥ 0} call FACTR ; x := x+ 1 ; y := y ∗ x {y = x!}
(seq)

1. {x ≥ 0} call FACTR {y ∗ (x+ 1) = (x+ 1)!} (conseq)

1. {x ≥ 0} call FACTR {y = x!}[cancellation using the antecedent {x≥0} call FACTR {y=x!}]
2. {y ∗ (x+ 1) = (x+ 1)!}x := x+ 1 ; y := y ∗ x {y = x!}

(conseq)

1. {y ∗ (x+ 1) = (x+ 1)!}x := x+ 1 {y ∗ x = x!}(assign)

2. {y ∗ x = x!} y := y ∗ x {y = x!}(assign)

Side conditions for application of the (conseq) rules:

• x ≥ 0 ∧ x = 0 =⇒ 1 = x!.

• x ≥ 0 ∧ ¬x = 0 =⇒ x− 1 ≥ 0.

• y = x! =⇒ y ∗ (x+ 1) = (x+ 1)!.

As stated by Hoare [65] in his seminal work, the traditional Hoare inference system with the

addition of this rule is not complete:

It has been shown that it is possible by axiomatic methods to define an important

programming language feature in such a way as to facilitate the demonstration of the

correctness of programs and at the same time to permit flexibility and high efficiency

of implementation. The combination of these two advantages can be achieved only
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if the programmer is willing to observe certain disciplines in his use of the

feature, namely that all actual parameters which may be changed by a procedure

must be distinct from each other, and must not be contained in any of the other

parameters.

Even though the arguments given by Hoare for the incompleteness of the inference system

are based on parameter passing, Apt [5] shows that this incompleteness is visible even in pa-

rameterless procedures, if one wants to reason with auxiliary variables (it was later shown that

those are orthogonal issues [75]). For instance if we consider the program FACTR from Exam-

ple 3.5, it is not possible to show that the program never changes the value of x, that is, it is

not possible to derive the triple {x = z}FACTR {x = z}. The proof of such impossibility follows

by contradiction and is shown in [5].

Along the years several attempts were made to create a sound and complete inference system

capable of dealing with procedure calls and/or auxiliary variables. Among those works are the

work of Gorelick [59] and Sokolwski [100] which were used as a basis by Apt [5] to introduce

a new set of rules to create a system that is shown to be complete. Nonetheless, America and

de Boer [4] showed that such a system becomes unsound if total correctness is to be considered

and propose a set of additional structural rules [4] to fix it.

Years later the topic was addressed again by Kleymann [75], who showed that the adapta-

tion problem is orthogonal to the handling of recursive procedures: if the base system is made

adaptation-complete, then Hoare’s rule for recursive procedure calls is sufficient to achieve

a Cook-complete system, with no need for further structural rules. Kleymann obtains an

adaptation-complete inference system for Hoare logic by proposing the following consequence

rule, whose side condition is a meta-level formula with quantification over states/variable as-

signments:

(conseqK)
{φ}C {ψ}
{φ′}C {ψ′}

if ∀Z.∀σ.[[φ′]](Z, σ)→
∀τ.(∀Z1.[[φ]](Z1, σ)→ [[ψ]](Z1, τ))

→ [[ψ′]](Z, τ)

where [[φ′]](Z, σ) denotes the truth value of φ′ in the state (Z, σ), partitioned between auxiliary

(Z) and program (σ) variables. With the addition of this rule, for reasoning about partial

correctness in the presence of recursive functions calls one would use the initial Hoare rule for

recursive calls (presented above). Note however that, the (conseqK) rule as it is presented

above, is not a first-order formula due to the quantification over states, and therefore it cannot

be handled directly by an SMT solver.

In what follows, we will show that reasoning with single-assignment programs is advanta-

geous from the point of view of adaptation: our Hisa system will be made adaptation-complete

by adding a rule with a simple syntactic side condition.

Let us start with a result showing that the side condition of a consequence rule that always

leads to adaptation-completeness, in general terms, turns out to be the result of stripping away
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the states and quantifiers in the side condition of (conseqK) above.

Lemma 3.7. Let φ, φ′, ψ, ψ′ ∈ Assert. If there exists at least one program C0 ∈ AComm such

that |= {φ}C0 {ψ}, and for arbitrary C one has that |= {φ}C {ψ} implies |= {φ′}C {ψ′}, then

it must be the case that |= φ′ → (φ→ ψ)→ ψ′.

Proof. We assume 6|= φ′ → (φ → ψ) → ψ′, i.e. there exists a state s0 such that s0 |= φ′,

s0 |= φ → ψ, and s0 6|= ψ′. To show that in this context |= {φ′}C {ψ′} does not follow

from |= {φ}C {ψ} for arbitrary C, we construct a particular program C1 with the following

behavior: 〈C1, s0〉 s0 and for s 6= s0,〈C1, s〉 s′ whenever 〈C0, s〉 s′. To see that {φ}C1 {ψ}
is a valid triple, observe that if s0 |= φ and C1 is executed in state s0 we will have s0 |= ψ since

s0 |= φ → ψ, and for other executions we note that |= {φ}C0 {ψ}. The triple {φ′}C1 {ψ′} is

however not valid, since s0 |= φ′, but 〈C1, s0〉 s0 and s0 6|= ψ′.

The problem is that a consequence rule with side condition φ′ → (φ → ψ) → ψ′ would not

be sound. But it is sound for triples satisfying the simple syntactic restriction that free variables

of the precondition are not assigned in the program.

Lemma 3.8. Let C ∈ Comm and φ ∈ Assert. If φ#C and 〈C, s〉 s′, then [[φ]](s) = [[φ]](s′).

Proof. Since φ#C, s(x) = s′(x) for every x ∈ FV(φ). Hence, [[φ]](s) = [[φ]](s′).

Lemma 3.9. Let C ∈ Comm and φ, φ′, ψ, ψ′ ∈ Assert, such that φ#C and φ′#C. If |=
{φ}C {ψ} and |= φ′ → (φ→ ψ)→ ψ′, then |= {φ′}C {ψ′}.

Proof. Assume s |= φ′ and 〈C, s〉 s′. Since φ′#C, by Lemma 3.8, we get s′ |= φ′. We also have

s′ |= φ → ψ because, if s′ |= φ, then s |= φ (by Lemma 3.8, since φ#C) so, as |= {φ}C {ψ},
we get s′ |= ψ. Now, s′ |= ψ′ follows directly from |= φ′ → (φ → ψ) → ψ′, s′ |= φ′ and

s′ |= φ→ ψ.

Recall from Lemma 3.1 that Hisa derivations consist entirely of triples {φ}C {ψ} satisfying

the φ#C condition, which means that an adaptation rule with the side condition given above

can be naturally incorporated in the system. We must however be careful to ensure that the

new rule preserves Lemma 3.1; in particular, the postcondition ψ′ should not contain free

occurrences of variables not occurring either in the program or free in the precondition φ′. The

following result will allow us to eliminate these free occurrences.

Lemma 3.10. Let C ∈ Comm, φ, ψ ∈ Assert and x ∈ Var, such that x 6∈ FV(φ) ∪ Vars(C).

If |= {φ}C {ψ} then |= {φ}C {∀x. ψ}.

Proof. Assume s |= φ and 〈C, s〉 s′. As x 6∈ FV(φ) ∪ Vars(C), for every a ∈ D, s[x 7→ a] |= φ

and 〈C, s[x 7→ a]〉 s′[x 7→ a]. Since |= {φ}C {ψ}, it follows that s′[x 7→ a] |= ψ. Hence,

s′ |= ∀x. ψ.
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Let Hisa+ be the inference system consisting of all the rules of system Hisa together with

the following rule:

(conseqa)
{φ}C {φ ∧ ψ}

{φ′}C {φ′ ∧ (∀ ~x. φ→ ψ)}
if φ#C and

~x = FV(φ)\(FV(φ′) ∪ Vars(C))

Recall that Hisa is a forward propagation system, so the rule will be applied when we reach

C with the propagated precondition φ′ (in which case Lemma 3.1 ensures that φ′#C holds).

The rule will produce a postcondition not directly by propagating φ′ through the structure

of C, but instead by adapting the triple {φ}C {φ ∧ ψ}. The conditions φ and ψ may well

contain occurrences of variables not occurring either in C or free in φ′, but the quantification

ensures that Lemma 3.1 remains valid in system Hisa+. Note that the lemma guarantees that

FV(ψ) ⊆ FV(φ) ∪ Vars(C), so FV(ψ) does not need to be included in ~x.

System Hisa+ is not goal-directed, since there will always be a choice to apply the rule

specific to the command at hand or the (conseqK) rule, but it is still a forward-propagation

system (the postcondition is the strongest allowed by Lemma 3.9).

Proposition 3.11 (Soundness of Hisa+). Let C ∈ ACommisa and φ, ψ′ ∈ Assert such that

φ#C and `Hisa+ {φ}C {φ ∧ ψ′}. Then `H {φ} bW(C)c {φ ∧ ψ′}.

Proof. The proof, by induction on the derivation of `Hisa+ {φ}C {φ ∧ ψ′}, extends the proof of

Proposition 3.2 with the (conseqa) rule case. Assume the last step is

{φ1}C {φ1 ∧ ψ1}
{φ}C {φ ∧ (∀ ~x. φ1 → ψ1)}

with φ1#C and ~x = FV(φ1)\(FV(φ) ∪ Vars(C))

By IH we have `H {φ1} bW(C)c {φ1∧ψ1} and since H is sound it follows that |= {φ1} bW(C)c {φ1
∧ ψ1}. As |= φ→ (φ1 → φ1 ∧ ψ1)→ φ ∧ (φ1 → ψ1), we get |= {φ} bW(C)c {φ ∧ (φ1 → ψ1)} by

Lemma 3.9. Now note that ~x ∩ (FV(φ) ∪ Vars(C)) = ∅, thus Lemma 3.10 can be applied, and

it follows that |= {φ} bW(C)c {φ ∧ (∀ ~x. φ1 → ψ1)}. Finally, by completeness of H we obtain

`H {φ} bW(C)c {φ ∧ (∀ ~x. φ1 → ψ1)}.

The system is obviously complete in the same sense as Hisa, since it extends it. But unlike

Hisa it is also adaptation-complete.

Proposition 3.12 (Adaptation completeness of Hisa+).

Assume that (φ, ψ) is satisfiable and that for all C ∈ ACommisa, such that φ#C, it holds that

|= {φ} bW(C)c {ψ} implies |= {φ′} bW(C)c {ψ′}.
Let C ′ ∈ ACommisa such that φ#C ′, and `Hisa+ {φ}C ′ {φ ∧ γ} for some γ ∈ Assert such

that |= φ∧ γ → ψ. Then {φ′}C ′ {φ′ ∧ (∀ ~x. φ→ γ)} with ~x = FV(φ)\(FV(φ′)∪Vars(C ′)) can be

derived from that triple in system Hisa+, and |= φ′ ∧ (∀ ~x. φ→ γ)→ ψ′.

Proof. From `Hisa+ {φ}C ′ {φ∧γ} we can apply the (conseqa) rule to produce `Hisa+ {φ′}C ′ {φ′

∧ (∀ ~x. φ → γ)} with ~x = FV(φ)\(FV(φ′) ∪ Vars(C ′)), since φ#C ′. So it just remains to prove

the validity of the formula φ′ ∧ (∀ ~x. φ→ γ)→ ψ′.
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From |= φ ∧ γ → ψ it follows that |= (φ → γ) → (φ → ψ), and so we also have |=
(∀ ~x. φ → γ) → (∀ ~x. φ → ψ). Consequently |= φ′ ∧ (∀ ~x. φ → γ) → φ′ ∧ (∀ ~x. φ → ψ), and

thus φ′ ∧ (∀ ~x. φ → γ) |= φ′ ∧ (∀ ~x. φ → ψ). On the other hand, as ~x ∩ FV(φ′) = ∅, we have

φ′ ∧ (∀ ~x. φ→ ψ) |= φ′ ∧ (φ→ ψ). Now, since |= {φ} bW(C)c {ψ} implies |= {φ′} bW(C)c {ψ′},
it follows by Lemma 3.7 that |= φ′ → (φ→ ψ)→ ψ′, and hence we get φ′ ∧ (∀ ~x. φ→ γ) |= ψ′.

Now we can conclude that |= φ′ ∧ (∀ ~x. φ→ γ)→ ψ′.

Consider again the example referred at the beginning of the section, now in ISA form as in

Example 3.2. Let K be a positive constant; the Hoare triple {n = K}Factisa {fa0 = K!} can

now be derived from {n ≥ 0 ∧ naux = n}Factisa {n ≥ 0 ∧ naux = n ∧ fa0 = naux !}:

{n ≥ 0 ∧ naux = n}Factisa {n ≥ 0 ∧ naux = n ∧ fa0 = naux !}
{n = K}Factisa {n = K ∧ (∀naux . n ≥ 0 ∧ naux = n→ fa0 = naux !)}

since |= n = K ∧ (∀naux . n ≥ 0 ∧ naux = n → fa0 = naux !) → fa0 = K!. As to the second

example, consider the following derivation, recalling that x is not assigned in P :

{x > 0}P {x > 0 ∧ y = x}
{x = K}P {x = K ∧ (x > 0→ y = x)}

This proves {x = K}P {y = K} holds since |= x = K ∧ (x > 0→ y = x)→ y = K.

3.5 Iterating SA Translation

The definition of a valid ISA translation was introduced in Section 3.3, and the subsequent

results were established with respect to it. Nonetheless, at that point nothing was said about

a concrete translation, neither if such a translation existed. In this section we shown that it is

possible to define such a translation by presenting a concrete one, and in this way we show that

our results are not vacuous.

The translation will be given through a function that transforms annotated programs into

ISA form, that is, it transforms AComm programs into ACommisa programs. In order to

be able to create unique symbols for the introduced ISA variables some new notation must

be introduced. Without loss of generality, it will be assumed that each ISA variable (a single

variable of the universe of variables from ISA programs) will be divided into two parts: the

variable identifier and the variable version. The identifier will be taken from the provided

program and the version will consist in a non-empty list of positive integers. Using a list

for the version part will be particularly advantageous when dealing with nested loops. The

set of ISA variables will be given by Varisa = Var × N+ and xl will denote the ISA variable

(x, l) ∈ Varisa. The set of states over ISA variables will be denoted by Σisa = Varisa → D, with

D being the interpretation domain. Finally, the set of program expressions, boolean expressions,

and assertions over ISA variables will be respectively given by Expisa, Expisa
bool, Assertisa.

For convenience purposes, along this section we will overload function names, but this should



ITERATING SA PROGRAMS AS A BASIS FOR PROGRAM VERIFICATION 59

not impose any additional challenge since it is implicit from the context which specific function

to apply. The version function V : Var→ N+ assigns versions to variables and V̂ : Var→ Varisa

renames variables according to V, such that V̂(x) = xV(x). The same function is lifted to Exp,

Expbool, and Assert as shown below (we omit here the case of Expbool due to its similarity

to Exp).

V̂ : Exp→ Expisa

V̂(e) = e[V̂(x1)/x1, . . . , V̂(xn)/xn]

for all x1, . . . , xn ∈ FV(e)

V̂ : Assert→ Assertisa

V̂(φ) = φ[V̂(x1)/x1, . . . , V̂(xn)/xn]

for all x1, . . . , xn ∈ FV(φ)

Lastly, if s ∈ Σ and V : Var → N+, then V(s) ∈ Varisa ⇀ D is the partial function

[V̂(x) 7→ s(x) | x ∈ Var].

With the presented foundations, we are now ready to introduce a function that translates

programs into ISA. The following definition does precisely this.

Definition 3.6 (Concrete ISA translation). The translation function for annotated While

programs T : (Var → N+) × AComm → (Var → N+) × ACommisa is defined in Fig-

ure 3.2 (top). The translation function for Hoare triples with annotated While programs T :

Assert×AComm×Assert→ Assertisa×ACommisa×Assertisa is defined as T(φ,C, ψ) =

(V̂(φ), C ′, V̂ ′(ψ)), where (V ′, C ′) = T(V, C) and V(x) = 0, for all x ∈ Var.

The function T for annotated While programs receives the initial version of the variable

identifier and the annotated program, and returns a pair with the final version of each variable

and the ISA translated program. In particular note that the initial versions of the variables are

not fixed - any version will do. The definition of T relies on various auxiliary functions that are

defined using Haskell-like syntax in Figure 3.2 (bottom). The main goal of each function is as

follows:

• next increments the head of a variable version.

• new appends a new element to the variable version list.

• jump removes the head of the variable version list and increments the head of the resulting

list – can only be used with a list of at least length two.

• sup creates a new version function using the highest version for each variable from the two

version functions received – variable versions are compared using ≺.

• mrg creates a Rnm (see Definition 2.19) to advance the variables from the first version

function to the second.

• upd uses the previous mentioned function jump to create assignments to propagate ISA

variables.



60 ITERATING SA PROGRAMS AS A BASIS FOR PROGRAM VERIFICATION

T : (Var→ N+)×AComm→ (Var→ N+)×ACommisa

T(V, skip) = (V, skip )

T(V, x := e) = (V[x 7→ next(V(x))], xnext(V(x)) := V̂(e) )

T(V, C1 ; C2) = (V ′′, C ′1 ; C ′2 ),

where (V ′, C ′1) = T(V, C1) and (V ′′, C ′2) = T(V ′, C2)

T(V, if b then Ct else Cf fi) = ( sup(V ′,V ′′), if V̂(b) then {C ′t ; mrg(V ′,V ′′)}

else {C ′f ; mrg(V ′′,V ′)} fi ),

where (V ′, C ′t) = T(V, Ct) and (V ′′, C ′f ) = T(V, Cf )

T(V,while b do {θ} C od) = (V ′′′, for (I, V̂ ′(b),U) do {V̂ ′(θ)}C ′ od ; upd(dom(U)) ),

where I = [xnew(V(x)) := xV(x) | x ∈ Asgn(C)],

V ′ = V[x 7→ new(V(x)) | x ∈ Asgn(C)],

(V ′′, C ′) = T(V ′, C),

U = [xnew(V(x)) := xV ′′(x) | x ∈ Asgn(C)],

and V ′′′ = V ′′[x 7→ jump(l) | xl ∈ dom(U)]

next : N+ → N+

next (h : t) = (h+ 1) : t

new : N+ → N+

new l = 1 : l

jump : N+ → N+

jump (i : j : t) = (j + 1) : t

(h : t) ≺ (h′ : t′) = h < h′

sup : (Var→ N+)2 → (Var→ N+)

sup (V,V ′)(x) =


V(x) if V ′(x) ≺ V(x)

V ′(x) otherwise

mrg : (Var→ N+)2 → Rnm

mrg (V,V ′) = [xV ′(x) := xV(x) | x ∈ Var ∧ V(x) ≺ V ′(x)]

upd : P(Varisa)→ Rnm

upd (X) = [xjump(l) := xl | xl ∈ X]

Figure 3.2: ISA translation function
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For the sake of simplicity, it will be assumed that the renaming sequences I and U , defined

in the case of while commands, follow some predefined order established over Var (any order

will do).

Example 3.6. To illustrate the application of T to a particular example, let us consider a

different factorial program that only uses sum arithmetic expressions. The following triple is

based on the Turing notes ‘Checking a Large Routine’ [101], and in addition to its historical

significance, is particularly interesting here because it allows us to demonstrate how to rename

variables inside nested loops. For simplification purposes this program will be referred to as

FACTT.

f := 1 ;

i := 1 ;

while i ≤ n do {f = (i− 1)! ∧ i ≤ n+ 1}
j := 1 ;

r := 0 ;

while j ≤ i do {j ≤ i+ 1 ∧ r = f ∗ (j − 1)}
r := r + f ;

j := j + 1

od ;

f := r ;

i := i+ 1

od

Let V : (Var → N+) be the version function that maps every variable to the list containing

the sole element 0. The result of applying T to V and FACTT is the version function V[f 7→
2, i 7→ 2, j 7→ 1, r 7→ 1] and the program below. For the sake of presentation, index lists are

depicted using ‘.’ as a separator and omitting the empty list constructor.

f1 := 1 ;

i1 := 1 ;

for ({j1.0 := j0 ; r1.0 := r0 ; f1.1 := f1 ; i1.1 := i1},
i1.1 ≤ n0,
{j1.0 := j3.0 ; r1.0 := r3.0 ; f1.1 := f2.1 ; i1.1 := i2.1}) do {f1.1 = (i1.1 − 1)! ∧ i1.1 ≤ n0 + 1}

j2.0 := 1 ;

r2.0 := 0 ;

for ({r1.2.0 := r2.0 ; j1.2.0 := j2.0}, j1.2.0 ≤ i1.1, {r1.2.0 := r2.2.0 ; j1.2.0 := j2.2.0}) do {
j1.2.0 ≤ i1.1 + 1 ∧ r1.2.0 = f1.1 ∗ (j1.2.0 − 1)}

r2.2.0 := r1.2.0 + f1.1 ;

j2.2.0 := j1.2.0 + 1
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od ;

r3.0 := r1.2.0 ;

j3.0 := j1.2.0 ;

f2.1 := r3.0 ;

i2.1 := i1.1 + 1

od ;

j1 := j1.0 ;

r1 := r1.0 ;

f2 := f1.1 ;

i2 := i1.1

This program will be referred to as FACTisa
T . The initial and final version functions can be

used to translate a Hoare triple whose program is FACTT. For instance, the Hoare triple {n ≥
0 ∧ aux = n}FACTT {f = aux!} can be translated into the ISA Hoare triple {n0 ≥ 0 ∧ aux0 =

n0}FACTisa
T {f2 = aux0!}. As expected, the program does not assign free variables from the

preconditions, that is, {n0 ≥ 0 ∧ aux0 = n0}#FACTisa
T holds.

Let us now focus on the proof that T is indeed an ISA translation. For that we start by

considering some lemmas. In particular, we start by establishing some results relating version

functions, program states and the evaluation of expressions and asserts. This is particularly

useful to relate ISA variables with non-ISA variables.

Lemma 3.13. Let V ∈ Var → N+, s ∈ Σ and s′ ∈ Σisa. If ∀x ∈ Var. s(x) = s′(V̂(x)), then

s′ = s′0 ⊕ V(s) for some s′0 ∈ Σisa.

Proof. Follows directly from the definitions.

The lemma states basically that if some s ∈ Σ agrees with s′ ∈ Σisa for all variables in some

version given by V, then s′ can be defined by resorting to V(s). Since V(s) is a partial function

that assigns values only to the ISA variables whose version agree with V, and the functions from

Σisa should be total, some s′0 ∈ Σisa must exist that renames all other versions. Note however

that nothing is known about s′0.

With the previous result it is obvious to conclude that if all variables from some expression or

assert are renamed with a particular version function V, then the evaluation of that expression

or assert in some state s′ ⊕ V(s) only depends on s.

Lemma 3.14. Let e ∈ Exp, b ∈ Expbool, φ ∈ Assert, V ∈ Var→ N+, s ∈ Σ and s′ ∈ Σisa.

1. [[V̂(e)]](s′ ⊕ V(s)) = [[e]](s).

2. [[V̂(b)]](s′ ⊕ V(s)) = [[b]](s).

3. [[V̂(φ)]](s′ ⊕ V(s)) = [[φ]](s).

Proof. By induction on the structure of e (resp. b or φ).
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It is guaranteed that the function T never touches the version of variables that are not

assigned in the program, therefore the initial and final version functions will always agree on

the version of those variables.

Lemma 3.15. Let C ∈ AComm and V ∈ Var → N+. If T(V, C) = (V ′, C ′), then for every

x ∈ Var \ Asgn(C), V(x) = V ′(x).

Proof. By induction on the structure of C.

The following lemma plays a central role in the proof of the while command case in the

subsequent proposition. It captures the fact that the translation of the loop preserves the

operational semantics and that the final value of the variables in the original program correspond

to the version of the variables in V ′.

Lemma 3.16. Let Ct ∈ AComm, V ∈ Var→ N+, si, sf ∈ Σ, s′, s′f ∈ Σisa and

V ′ = V[x 7→ new(V(x)) | x ∈ Asgn(Ct)]

T(V ′, Ct) = (V ′′, C ′t)

U = [xnew(V(x)) := xV ′′(x) | x ∈ Asgn(Ct)]

If 〈while b do bCtc od, si〉 sf and 〈while V̂ ′(b) do bW(C ′t)c;U od, s′ ⊕ V(si)〉 s′f then

∀x ∈ Var. sf (x) = s′f (V̂ ′(x)).

Proof. By induction on the derivation of the evaluation relation  . Assume 〈while b do bCtc
od, si〉 sf and 〈while V̂ ′(b) do bW(C ′t)c;U od, s′ ⊕ V(si)〉 s′f . From the definition of  ,

two cases can occur:

• Case [[b]](si) = ⊥, if and only if (from Lemma 3.14), [[V̂ ′(b)]](s′ ⊕V ′(si)) = [[b]](si) = ⊥. In

this case, from definition of , sf = si and s′f = s′⊕V ′(si). Hence, ∀x ∈ Var. s′f (V̂ ′(x)) =

si(x) = sf (x).

• Case [[b]](si) = >, if and only if (again, from Lemma 3.14), [[V̂ ′(b)]](s′⊕V ′(si)) = [[b]](si) =

>. In this case we must have, for some s1 ∈ Σ,

〈bCtc, si〉 s1 (3.1)

〈while b do bCtc od, s1〉 sf (3.2)

and also, for some s′0, s
′
1 ∈ Σisa,

〈bW(C ′t)c, s′ ⊕ V ′(si)〉 s′0 (3.3)

s′0 = s′2 ⊕ V ′′(si) (3.4)

〈U , s′0〉 s′1 (3.5)

s′1 = s′0[xnew(xV(x)) 7→ [[xV ′′(x)]](s
′
0) | x ∈ Asgn(Ct)] = s′0 ⊕ V ′(s1) (3.6)

〈while V̂ ′(b) do bW(C ′t)c;U od, s′1〉 s′f (3.7)
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Note that (3.4) follows from (3.3) by Lemma 3.15, and that justifies (3.6). From (3.2),

(3.7) and (3.6), by IH, we get ∀x ∈ Var. sf (x) = s′f (V̂ ′(x)).

It can now be proved that the T translation preserves the operational semantics of the

original program.

Proposition 3.17. Let C ∈ AComm, V ∈ Var→ N+, si, sf ∈ Σ, s′, s′f ∈ Σisa and T(V, C) =

(V ′, C ′). If 〈bCc, si〉 sf and 〈bW(C ′)c, s′ ⊕ V(si)〉 s′f , then ∀x ∈ Var. sf (x) = s′f (V̂ ′(x)).

Proof. By induction on the structure of C.

• Case C ≡ skip: T(V, skip) = (V, skip), 〈bskipc, si〉 si, and 〈bW(skip)c, s′ ⊕ V(si)〉 
s′ ⊕ V(si). As for every x ∈ Var, (s′ ⊕ V(si))(V̂(x)) = si(x) we are done.

• Case C ≡ x := e. The hypotheses are:

T(V, x := e) = (V[x 7→ next(V(x))], xnext(V(x)) := V̂(e))

〈bx := ec, si〉 sf with sf = si[x 7→ [[e]](si)]

〈bW(xnext(V(x)) := V̂(e)))c, s′ ⊕ V(si)〉 s′f with

s′f = (s′ ⊕ V(si))[xnext(V(x)) 7→ [[V̂(e)]](s′ ⊕ V(si))]

We want to prove that ∀ y ∈ Var. sf (y) = s′f ( ̂V[x 7→ next(V(x))](y)). Two cases can

occur:

– If y = x, we have sf (y) = sf (x) = [[e]](si) and s′f ( ̂V[x 7→ next(V(x))](x)) =

s′f (xnext(V(x))) = [[V̂(e)]](s′ ⊕ V(si)) = [[e]](si).

– If y 6= x, we have sf (y) = si(y) and s′f ( ̂V[x 7→ next(V(x))](y)) = s′f (V̂(y)) =

(s′ ⊕ V(si))(V̂(y)) = si(y).

• Case C ≡ C1;C2. The hypotheses are:

T(V, C1;C2) = (V ′′, C ′1;C ′2) with T(V, C1) = (V ′, C ′1) and T(V ′, C2) = (V ′′, C ′2)

〈bC1;C2c, si〉 sf

〈bW(C ′1;C
′
2)c, s⊕ V(si)〉 s′f

We must have, for some s0 ∈ Σ and s′0 ∈ Σisa

〈bC1c, si〉 s0 (3.8)

〈bC2c, s0〉 sf (3.9)

〈bW(C ′1)c, s⊕ V(si)〉 s′0 (3.10)

〈bW(C ′2)c, s′0〉 s′f (3.11)
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From (3.8) and (3.10), by IG, we have ∀x ∈ Var. s0(x) = s′0(V̂ ′(x)). Therefore, by

Lemma 3.13, we have s′0 = s′1 ⊕ V ′(s0) for some s′1 ∈ Σisa. Consequently, from (3.9) and

(3.11), by IH, we conclude that ∀x ∈ Var. sf (x) = s′f (V̂ ′′(x)).

• Case C ≡ if b then Ct else Cf fi. The hypotheses are:

T(V, C) = (sup(V ′,V ′′), if V̂(b) then {C ′t; mrg(V ′,V ′′)} else {C ′f ; mrg(V ′′,V ′)} fi )

with T(V, Ct) = (V ′, C ′t) and T(V, Cf ) = (V ′′, C ′f )

〈bif b then Ct else Cf fic, si〉 sf

〈if V̂(b) then {C ′t; mrg(V ′,V ′′)} else {C ′f ; mrg(V ′′,V ′)} fi, s′ ⊕ V(si)〉 s′f

– Case [[b]](si) = >, then by Lemma 3.14 [[V̂(b)]](s′ ⊕ V(si)) = > . Therefore one must

have, for some s′0 ∈ Σisa,

〈bCtc, si〉 sf (3.12)

〈bW(C ′t)c, s′ ⊕ V(si)〉 s′0 (3.13)

〈mrg(V ′,V ′′), s′0〉 s′f (3.14)

From (3.12) and (3.13), by IH we have that

∀x ∈ Var. sf (x) = s′0(V̂ ′(x)) (3.15)

We also have that mrg (V ′,V ′′) = [xV ′′(x) := xV ′(x) | x ∈ Var ∧ V ′(x) ≺ V ′′(x)] so,

s′f = s′0[xV ′′(x) 7→ [[xV ′(x)]](s
′
0) | x ∈ Var ∧ V ′(x) ≺ V ′′(x)]. Moreover, sup (V ′,V ′′)(x)

is V ′(x) if V ′′(x) ≺ V ′(x) or V ′′(x) otherwise.

We will now prove that ∀x ∈ Var. sf (x) = s′f ( ̂sup(V ′,V ′′)(x)). Let x ∈ Var.

∗ If V ′(x) ≺ V ′′(x), then s′f ( ̂sup(V ′,V ′′)(x)) = s′f (V̂ ′′(x)) = [[xV ′(x)]](s
′
0) =

s′0(V̂ ′(x)) = sf (x) by (3.15).

∗ If V ′(x) 6≺ V ′′(x), then s′f ( ̂sup(V ′,V ′′)(x)) = s′f (V̂ ′(x)) = s′0(V̂ ′(x)) = sf (x) by

(3.15).

– Case [[b]](si) = ⊥. Analogous to the previous case.

• Case C ≡ while b do {θ} Ct od. The hypotheses are:

T(V,while b do {θ} Cy od) = (V ′′′, for (I, V̂ ′(b),U) do {V̂ ′(θ)}C ′t od) (3.16)

with I = [xnew(V(x))|x ∈ Asgn(Ct)] (3.17)

V ′ = V[x 7→ new(V(x)) | x ∈ Asgn(Ct)] (3.18)

(V ′′, C ′t) = T(V ′, Ct) (3.19)

U = [xnew(V(x)) := xV ′′(x) | x ∈ Asgn(Ct)] (3.20)

V ′′′ = V ′′[x 7→ jump(l) | xl ∈ dom(U)] (3.21)
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〈while b do bCtc od, si〉 sf (3.22)

〈I; while V̂ ′(b) do bW(C ′t)c;U od; upd(dom(U)), s′ ⊕ V(si)〉 s′f (3.23)

From (3.17), (3.18) and (3.23), we must have for some s′0, s
′
1 ∈ Σisa that:

〈I, s′ ⊕ V(si)〉 s′1

〈while V̂ ′(b) do bW(C ′t)c;U od; upd(dom(U)), s′1〉 s′f (3.24)

s′1 = s′0 ⊕ V ′(si)

There are the following cases to consider:

– Case [[b]](si) = ⊥, then sf = si and [[V̂ ′(b)]](s′ ⊕ V ′(si)) = ⊥, by Lemma 3.14.

Therefore one must have 〈while b do bCtc od, si〉 si, 〈while V ′(b) do bW(C ′t)c;
U od, s′1〉 s′1, and 〈upd(dom(U)), s′1〉 s′f . Moreover, we know that upd(dom(U)) =

[xjump(l) := xl | xl ∈ dom(U)] so:

〈upd(dom(U)), s′0 ⊕ V ′(si)〉 s′f (3.25)

s′f = (s′0 ⊕ V ′(si))[xjump(l) 7→ [[xl]](s
′
0 ⊕ V ′(si)) | xl ∈ dom(U)] (3.26)

We now prove that ∀x ∈ Var. sf (x) = s′f (V̂ ′(x)).

∗ If y 6∈ Asgn(Ct), then s′f (V̂ ′′′(y)) = s′f (V̂ ′′(y)) = s′f (V̂ ′(y)) = si(y), using

Lemma 3.15.

∗ If x ∈ Asgn(Ct), then s′f (V̂ ′′′(x)) = s′f (xjump(l)) for some xl ∈ dom(U) and

s′f (xjump(l)) = [[xl]](s
′
0 ⊕ V ′(si)) = [[V̂ ′(x)]](s′0 ⊕ V ′(si)) = [[x]](si) = si(x), using

Lemma 3.13.

– Case [[b]](si) = >, then [[V̂ ′(b)]](s′0 ⊕ V ′(si)) = >, by Lemma 3.14. From (3.22), we

must have, for some s2 ∈ Σ,

〈bCtc, si〉 s2 (3.27)

〈while b do bCtc od, s2〉 sf (3.28)

and also, from (3.24), for some s′2, s
′
3, s
′
4 ∈ Σisa,

〈bW(C ′t)c, s′0 ⊕ V ′(si)〉 s′4 (3.29)

〈U , s′4〉 s′2 (3.30)

s′2 = s′4[xnew(xV(x)) 7→ [[xV ′′(x)]](s
′
4) | x ∈ Asgn(Ct)] (3.31)

〈while V̂ ′(b) do bW(C ′t)c;U od, s′2〉 s′3 (3.32)

〈upd(dom(U)), s′3〉 s′f (3.33)

From (3.27), (3.29) and (3.19), by IH, we have that ∀x ∈ Var. s2(x) = s′4(V̂ ′′(x)).
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Using this fact, (3.31) and (3.18), we can conclude that s′2 = s′4⊕V ′(s2). Because of

this, (3.28) and (3.32), we get by Lemma 3.16

∀x ∈ Var. sf (x) = s′3(V̂ ′(x)) (3.34)

upd(dom(U)) = [xjump(l) := xl | xl ∈ dom(U)] and 〈upd(dom(U)), s′3〉 s′f , so s′f =

s′3[xjump(l) 7→ [[xl]](s
′
3) | xl ∈ dom(U)]. We will now prove that ∀x ∈ Var. sf (x) =

s′f (V̂ ′′′(x)).

∗ If y 6∈ Asgn(Ct), then s′f (V̂ ′′′(y)) = s′f (V̂ ′′(y)) = s′3(V̂ ′(y)) = sf (y), using

Lemma 3.15 and (3.34).

∗ If x ∈ Asgn(Ct), then s′f (V̂ ′′′(x)) = s′f (xjump(l)) for some xl = xnew(V(c) ∈ dom(U),

and s′f (xjump(l)) = [[xl]](s
′
3) = sf (x), using (3.34).

The previous lemma establishes basically that if a program starts executing in a certain

state, for instance si, and its translation starts in any state where the initial versions of the

variables agree with si, then both programs will terminate and the final states will agree on the

final version of the variables. Before establishing that the translation is sound for ISA triples

an additional lemma that is similar to Lemma 3.13 must be considered. It basically says that

the final version of the variables can be isolated in a partial function.

Lemma 3.18. Let C ∈ AComm, V ∈ Var → N+, and si, sf ∈ Σ. If 〈bCc, si〉 sf and

T(V, C) = (V ′, C ′), then 〈bW(C ′)c, s′1 ⊕ V(si)〉 s′2 ⊕ V ′(sf ), for some s′1, s
′
2 ∈ Σisa.

Proof. By induction on the structure of C using Proposition 3.17.

It can now be proved that the translation function is sound, in the sense that if the translated

triple is valid then the original triple is also valid.

Proposition 3.19. Let C ∈ AComm, φ, ψ ∈ Assert, V ∈ Var→ N+ and T(V, C) = (V ′, C ′).
If |= {V̂(φ)} bW(C ′)c {V̂ ′(ψ)}, then |= {φ} bCc {ψ}.

Proof. Let T(V, C) = (V ′, C ′) and assume that |= {V̂(φ)} bW(C ′)c {V̂ ′(ψ)} holds. Assume

also that for some si, sf ∈ Σ, [[φ]](si) = > and 〈bCc, si〉  sf . By Lemma 3.18, we have

for some s′1, s
′
2 ∈ Σisa, that 〈bW(C ′)c, s′1 ⊕ V(si)〉 s′2 ⊕ V ′(sf ). By Lemma 3.14, we have

[[V̂(φ)]](s′1 ⊕ V(si)) = > and thus [[V̂ ′(ψ)]](s′2 ⊕ V ′(sf )) = >. Again, by Lemma 3.14, it follows

that [[ψ]](sf ) = >. Hence |= {φ} bCc {ψ} holds.

Finally it will be shown that the translation T preserves Hg-derivations, in the sense that if a

Hoare triple is derivable in Hg, then the translated triple is also derivable in Hg. Some additional

lemmas will be useful to help us reason about the auxiliary functions and the renamings.

Lemma 3.20. Let V,V ′ ∈ Var→ N+, ψ ∈ Assert, and I ∈ Rnm. The following derivations

hold:
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1. `Hg {V̂(ψ)}mrg(V,V ′) { ̂sup(V,V ′)(ψ)}.

2. `Hg {V̂(ψ)}mrg(V ′,V) { ̂sup(V,V ′)(ψ)}.

3. `Hg {ψ} I {I−1(ψ)}.

Proof. 1. We have mrg (V,V ′) = [xV ′(x) := xV(x) | x ∈ Var ∧ V(x) ≺ V ′(x)] and sup(V,V ′)(x)

= V(x) if V ′(x) ≺ V(x) or V ′(x) otherwise. The validity of the triple `Hg {V̂(ψ)}mrg(V,V ′)
{ ̂sup(V,V ′)(ψ)} follows from successively applying the (assign) and (seq) rules, using as precon-

dition the postcondition with the substitution [xV(x)/xV ′(x)] for each assigment xV ′(x) := xV(x)

of the renaming sequence, since ̂sup(V,V ′)(ψ)[xV(x)/xV ′(x) | x ∈ Var ∧ V(x) ≺ V ′(x)] = V̂(ψ).

2. Analogous to 1.

3. Follows directly from Lemma 2.13.

Lemma 3.21. Let V ∈ Var → N+, C ∈ AComm, V ′ = V[x 7→ new(V(x)) | x ∈ Asgn(C)],

T(V ′, C) = (V ′′, C ′) and U = [xnew(V(x)) := xV ′′(x) | x ∈ Asgn(C)]. Then `Hg {V̂ ′′(θ)}U {V̂ ′(θ)}.

Proof. The derivability of the triple {V̂ ′′(θ)}U {V̂ ′(θ)} in Hg follows from successively applying

the (assign) and (seq) rules, using as precondition the postcondition with the substitution

[xV ′′(x)/xnew(V(x))] for each assigment xnew(V(x)) := xV ′′(x) of the renaming sequence, since

(V̂ ′(θ))[xV ′′(x)/xnew(V(x)) | x ∈ Asgn(C)]

= ( ̂V[x 7→ new(V(x)) | x ∈ Asgn(C)](θ))[xV ′′(x)/xnew(V(x)) | x ∈ Asgn(C)]

= V̂ ′′(θ)

Lemma 3.22. Let V ∈ Var → N+, C ∈ AComm, V ′ = V[x 7→ new(V(x)) | x ∈ Asgn(C)],

T(V ′, C) = (V ′′, C ′), U = [xnew(V(x)) := xV ′′(x) | x ∈ Asgn(C)] and V ′′′ = V ′′[x 7→ jump(l) | xl ∈
dom(U)]. Then `Hg {V̂ ′(ψ)} upd(dom(U)) {V̂ ′′′(ψ)}.

Proof. Recall that upd (dom(U)) = [xjump(l) := xl | xl ∈ dom(U)]. Then, the validity of

`Hg {V̂ ′(ψ)} upd(dom(U)) {V̂ ′′′(ψ)} follows from successively applying the (assign) and (seq)

rules, using as precondition the postcondition with the substitution [xl/xjump(l)] for each as-

sigment xjump(l) := xl of the renaming sequence, since (V̂ ′′′(ψ)[xl/xjump(l) | xl ∈ dom(U)]) =

( ̂V ′′[x 7→ jump(l) | xl ∈ dom(U)](ψ)[xl/xjump(l) | xl ∈ dom(U)]) = V ′(ψ).

It can now be proved that the translation is complete, in the sense that if a triple is derivable

in system Hg then its translation is also derivable in system Hg.

Proposition 3.23. Let C ∈ AComm, φ, ψ ∈ Assert, V ∈ Var→ N+ and T(V, C) = (V ′, C ′).
If `Hg {φ}C {ψ}, then `Hg {V̂(φ)}W(C ′) {V̂ ′(ψ)}.

Proof. By induction on the structure of `Hg {φ}C {ψ}. The proof is straightforward if the last

step is (skip) and (seq).
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• Assume the last step is {φ}x := e {ψ} with φ→ ψ[e/x] , and T(V, x := e) = (V[x 7→

next(V(x))], xnext(V(x)) := V̂(e)). Since |= φ → ψ[e/x], it follows that |= V̂(φ → ψ[e/x]).

Moreover,

V̂(φ)→ ̂V[x 7→ next(V(x))](ψ)[V̂(e)/xnext(V(x))]

= V̂(φ)→ V̂(ψ[xnext(V(x))/x])[V̂(e)/xnext(V(x))]

= V̂(φ)→ V̂(ψ[xnext(V(x))/x][e/xnext(V(x))]) , because xnext(V(x)) /∈ FV(ψ)

= V̂(φ)→ V̂(ψ[e/x])

= V̂(φ→ ψ[e/x])

Hence `Hg {V̂(φ)}xnext(V(x)) := V̂(e) { ̂V[x 7→ next(V(x))](ψ)} follows from the (assign)

rule.

• Assume the last step is
{φ ∧ b}Ct {ψ} {φ ∧ ¬b}Cf {ψ}
{φ} if b then Ct else Cf fi {ψ} , and T(V, C) = (sup(V ′,V ′′),

if V̂(b) then {C ′t; mrg(V ′,V ′′)} else {C ′f ; mrg(V ′′,V ′)} fi ) with T(V, Ct) = (V ′, C ′t) and

T(V, Cf ) = (V ′′, C ′f ).

By induction hypothesis we have `Hg {V̂(φ ∧ b)}W(C ′t) {V̂ ′(ψ)}. By Lemma 3.20 we

have `Hg {V̂ ′(ψ)}mrg(V ′,V ′′) { ̂sup(V ′,V ′′)(ψ)}. So, applying the (seq) rule, we get `Hg

{V̂(φ ∧ b)}W(C ′t) ; mrg(V ′,V ′′) { ̂sup(V ′,V ′′)(ψ)}. Similarly we can obtain `Hg {V̂(φ ∧
¬b)}W(C ′f ) ; mrg(V ′′,V ′) { ̂sup(V ′,V ′′)(ψ)}.

From the above, using (if) rule we get `Hg {V̂(φ)} if V̂(b) then {W(C ′t); mrg(V ′,V ′′)}
else {W(C ′f ); mrg(V ′′,V ′)} { ̂sup(V ′,V ′′)(ψ))}.

• Assume the last step is
{θ ∧ b}C {θ}

{φ}while b do {θ} C od {ψ} with φ→ θ and θ ∧ ¬b→ ψ, and

also that

T(V,while b do {θ} C od) = (V ′′′, for (I, V̂ ′(b),U) do {V̂ ′(θ)}C ′ od; upd(dom(U)))

with I = [xnew(V(x)) := xV(x) | x ∈ Asgn(C)]

V ′ = V[x 7→ new(V(x)) | x ∈ Asgn(C)]

(V ′′, C ′) = T(V ′, C)

U = [xnew(V(x)) := xV ′′(x) | x ∈ Asgn(C)]

V ′′′ = V ′′[x 7→ jump(l) | xl ∈ dom(U)]

and W(for (I, V̂ ′(b),U) do {V̂ ′(θ)}C ′ od ; upd(dom(U)))

= I ; while V̂ ′(b) do {V̂ ′(θ)} W(C ′) ; U od ; upd(dom(U))

We must prove that `Hg {V̂(φ)} I ; while V̂ ′(b) do {V̂ ′(θ)} W(C ′) ; U od ; upd(dom(U))
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{V̂ ′′′(ψ)}, which follows from applying rule (seq) twice, to the following premisses:

`Hg {V̂(φ)} I {I−1(V̂(φ))} (3.35)

`Hg {I−1(V̂(φ))}while V̂ ′(b) do {V̂ ′(θ)} W(C ′) ; U od {V̂ ′(ψ)} (3.36)

`Hg {V̂ ′(ψ)} upd(dom(U)) {V̂ ′′′(ψ)} (3.37)

The derivation of the triple in (3.35) follows from Lemma 3.20, and the triple in (3.37) from

Lemma 3.22. By IH, we have `Hg {V̂ ′(θ) ∧ V̂ ′(b)}W(C ′) {V̂ ′′(θ)} and by Lemma 3.21 we

also have `Hg {V̂ ′′(θ)}U {V̂ ′(θ)}. Thus, by rule (seq), `Hg {V̂ ′(θ)∧V̂ ′(b)}W(C ′) ; U {V̂ ′(θ)}.

Since (I−1(V̂(φ)) → V̂ ′(θ)) and (V̂ ′(θ) ∧ ¬V̂ ′(b) → V̂ ′(ψ)) both hold, we can now apply

rule (while), and obtain `Hg {I−1(V̂(φ))}while V̂ ′(b) do {V̂ ′(θ)} W(C ′) ; U od {V̂ ′(ψ)}.

Proposition 3.24. The T function from Definition 3.6 is an ISA translation in the sense of

Definition 3.5.

Proof. Let C ∈ AComm, φ, ψ ∈ Assert, V ∈ Var → N+, and T(V, C) = (V ′, C ′). It fol-

lows from Proposition 3.19 that if |= {V̂(φ)} bW(C ′)c {V̂ ′(ψ)} then |= {φ} bCc {ψ}, and from

Proposition 3.23 that if `Hg {φ}C {ψ} then `Hg {V̂(φ)}W(C ′) {V̂ ′(ψ)}.

3.6 Related Work

As explained in Chapter 2, the original notion of static single-assignment (SSA) form [40]

limits the syntactic occurrence of each variable as L-value of a single-assignment instruction.

On the other hand in dynamic single-assignment (DSA) form [102] variables may occur as

L-value in multiple assignments in different execution paths. Abstracting from the fact that

assignments are replaced by assume statements, the original notion of passive form of [52]

can be seen as a kind of dynamic SA where assignment instructions are replaced by assume

commands, but similarly to the static notion, variable synchronization is achieved by introducing

fresh variables assigned in both branches. Adapting this to standard imperative syntax, the

fragment if x > 0 then x := x + 10 else x := x + 20 fi would be translated as if x0 >

0 then x1 := x0 + 10 ; x3 := x1 else x2 := x0 + 20 ; x3 := x2 fi. Our translation resembles the

passify function introduced in [52], but there are significant differences: passify generates fresh

variables abstractly, whereas we provide a concrete mechanism for this purpose; while passify

only handles loop-free programs, our translation considers programs with loops annotated with

invariants; passify is proved to be sound in the sense that it preserves the weakest precondition

interpretation of programs, while our translation is proved to be sound with respect to the

validity of Hoare triples, and moreover it is shown to be complete since it preserves derivability

guided by the invariants. This is a crucial issue from the point of view of the completeness of

using an intermediate ISA form for verification.
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Finally, passify does not generate version-optimal programs; the notion of version-optimal

passive form, which uses the minimum number of version variables, is defined for unstructured

programs in [60], together with a translation algorithm. In this form the above fragment becomes

simply if x0 > 0 then x1 := x0 + 10 else x1 := x0 + 20 fi. The algorithm differs from the

translation of Section 3.5 in that it does not contemplate annotated loops, and no proof of

soundness is given. However, they are similar in the use of variables: for loop-free programs,

the DSA form produced by our translation is version-optimal.

In terms of verification single-assignment form has played an important role in two different

families of efficient program verification techniques: in the line of work that was originated by

Flanagan et. al. [52], and that had a great impact on the efficiency of deductive verification

methods; and in bounded model checking as an intermediate step towards reaching a logical

formula.

With respect to the former, where the idea is to use predicate transformers to reason about

programs, there exists a single semantics of guarded commands, given by the definition of the

predicate transformers, from which a VCGen is directly derived. This stands in contrast to our

approach: soundness and relative completeness of the logic and VCGen are established with

respect to a standard operational semantics of While programs. A second important difference

is the treatment of iteration. The fixpoint definition of predicate transformers for iterating

commands are of no use in the verification of programs annotated with loop invariants, and on

the other hand iteration is not directly supported in a dynamic SA setting, since it is not allowed

for the same variable to be assigned more than once. The approach used in ESC/Java and Boogie

has been to convert each program into an iteration-free program (see the end of Section 2.4), such

that the verification conditions generated for the latter guarantee the soundness of the initial

program. We should start by noting that a soundness proof of this approach is given for the first

time later in this thesis (see Chapter 6). Our work in the current chapter differs from this in that

loops are part of the intermediate SA language and are translated into this language together

with their invariants. The soundness and completeness properties are established based on the

standard semantics of iteration. Annotated programs are treated explicitly, and the notion of

correctly-annotated program is introduced, which allows us to distinguish between incorrect

programs and correct programs containing ‘wrong’ invariants.
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Chapter 4

Verification Conditions for SA

Programs with Assume, Assert, and

Exceptions

In the previous chapter we addressed program verification from a traditional point of view.

Knowing that SA has a clear benefit on the generation of VCs, we proposed the notion of

iterating SA language and a translation of While programs into such a language. A framework

to verify this new category of programs was presented, and the complete workflow was shown

to be sound and relatively complete. It was also shown that considering such a language has

multiple benefits in terms of program verification.

In the second part of the thesis, starting with the present chapter, we address program

verification from a different perspective. Instead of proposing a new workflow with a justified

theoretical background, we capture what verification tools based on the generation of verification

conditions typically do, and establish theoretical results from that. In particular we try to bring

together the notions from deductive verification and bounded model checking of software and

to close the gap between the theoretical foundations of program verification and the state of the

art verification tools. This chapter explores the algorithms that are typically used by tools to

generate verification conditions. We leave all the theoretical results to the next chapter, where

we will establish a bridge to the theoretical foundations of program verification, and focus for

now on the details of the VCGens. In particular, we identify interesting trends on the generation

of verification conditions, mix them together to create new VCGens, and organize them into a

cube of VCGens.

Aiming at capturing the essence of verification tools, as a source programming language, we

will initially consider a While language extended with assume and asserts as typically found in

program verification tools and described in Sections 2.4 and 2.6. As an intermediate language, a

notion of SA language (without iteration) will be used, and trying to mimic the tools’ workflow,

we will assume that loops are captured in this intermediate SA language as described at the

end of Section 2.4. Although While programs simply extended with assumes and asserts are

73



74 VCS FOR SA PROGRAMS WITH ASSUME, ASSERT, AND EXCEPTIONS

already enough to motivate the creation of a cube of VCGens, we later extend the language

with exceptions and study how they influence the previous analysis.

The chapter is organized as follows. Section 4.1 motivates our study of VCGens. It analyses

the state of the art VCGens for branching SA programs with assume and assert commands, and

identifies three aspects in which the methods differ: logical encoding of control flow, use of con-

texts and the semantics of assert statements. These aspects are then combined to produce what

we call a VCGen cube in Section 4.2. The VCGens from the cube are compared asymptotically

and then optimized in Section 4.3. The chapter proceeds by extending the VCGens for pro-

grams with exceptions (Section 4.4) and then by presenting a unified VCGen that agglomerates

all the VCGens previously presented. Finally, the last section presents related work.

4.1 Verification Conditions for SA Programs with Asserts

Similarly to the beginning of Chapter 3 the programs we will consider in this chapter will be

assumed to be already in SA form, not containing iteration. The SA program can be written

directly by a programmer, or else, obtained by a translation that takes a non SA program and

generates an SA program. Recall that an SA program is any program that does not assign

a variable more than once during an execution, and that once a variable is read it cannot be

assigned.

As in the guarded commands, the idea of the statement assert θ as a specification mechanism

is that it produces an error if θ is false in the present state. A program is correct if no error

may occur in any execution. For example, the fragment x1 := x0 + 10 ; assertx1 > 10 admits

erroneous executions (for initial values x0 ≤ 0) and normal executions (for x0 > 0). The

fragment x1 := x0 + 10 ; assertx1 > x0 on the other hand is correct, since the assert statement

may never fail (assuming no overflow occurs).

Example 4.1. The program below containing a sequence of three conditionals, each followed by

an assert, will be used as a running example. This program is simple enough for us to explore

the generation of VCs and identify differences in each VCGen method.

if x0 > 0 then y1 := 1 else y1 := 0 fi ;

assert y1 = 0 ∨ y1 = 1 ;

if x0 > 0 then y2 := 1 else y2 := 0 fi ;

assert y2 = y1 ;

if x0 > 0 then y3 := 1 else y3 := 0 fi ;

assert y3 = y1 ;

One way, maybe the simplest, to approach the problem of generating logical formulas that

guarantee the correctness of programs, is by symbolic execution, i.e. by enumerating execution

paths: it suffices to produce, for each assert statement in the program, a different formula for
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each path that reaches the statement (which is straightforward for programs in SA form). The

validity of these formulas ensures that every execution that reaches that assert is safe (i.e. does

not violate any assert). Doing this for every execution path covers the entire space of executions

of the program.

Example 4.2. The generated VCs based on symbolic execution for the program in Example 4.1

are as follows:

1. x0 > 0 ∧ y1 = 1→ y1 = 0 ∨ y1 = 1 .

2. ¬x0 > 0 ∧ y1 = 0→ y1 = 0 ∨ y1 = 1.

3. x0 > 0 ∧ y1 = 1 ∧ (y1 = 0 ∨ y1 = 1) ∧ x0 > 0 ∧ y2 = 1→ y2 = y1.

4. ¬x0 > 0 ∧ y1 = 0 ∧ (y1 = 0 ∨ y1 = 1) ∧ x0 > 0 ∧ y2 = 1→ y2 = y1.

5. x0 > 0 ∧ y1 = 1 ∧ (y1 = 0 ∨ y1 = 1) ∧ ¬x0 > 0 ∧ y2 = 0→ y2 = y1.

6. ¬x0 > 0 ∧ y1 = 0 ∧ (y1 = 0 ∨ y1 = 1) ∧ ¬x0 > 0 ∧ y2 = 0→ y2 = y1.

7. x0 > 0∧y1 = 1∧ (y1 = 0∨y1 = 1)∧x0 > 0∧y2 = 1∧y2 = y1∧x0 > 0∧y3 = 1→ y3 = y1.

8. ¬x0 > 0∧y1 = 0∧(y1 = 0∨y1 = 1)∧x0 > 0∧y2 = 1∧y2 = y1∧x0 > 0∧y3 = 1→ y3 = y1.

9. x0 > 0∧y1 = 1∧(y1 = 0∨y1 = 1)∧¬x0 > 0∧y2 = 0∧y2 = y1∧x0 > 0∧y3 = 1→ y3 = y1.

10. ¬x0 > 0∧y1 = 0∧(y1 = 0∨y1 = 1)∧¬x0 > 0∧y2 = 0∧y2 = y1∧x0 > 0∧y3 = 1→ y3 = y1.

11. x0 > 0∧y1 = 1∧(y1 = 0∨y1 = 1)∧x0 > 0∧y2 = 1∧y2 = y1∧¬x0 > 0∧y3 = 0→ y3 = y1.

12. ¬x0 > 0∧y1 = 0∧(y1 = 0∨y1 = 1)∧x0 > 0∧y2 = 1∧y2 = y1∧¬x0 > 0∧y3 = 0→ y3 = y1.

13. x0 > 0∧y1 = 1∧(y1 = 0∨y1 = 1)∧¬x0 > 0∧y2 = 0∧y2 = y1∧¬x0 > 0∧y3 = 0→ y3 = y1.

14. ¬x0 > 0∧y1 = 0∧(y1 = 0∨y1 = 1)∧¬x0 > 0∧y2 = 0∧y2 = y1∧¬x0 > 0∧y3 = 0→ y3 = y1.

A VC is generated for each execution path and for each assert. Recall that the number of

execution paths is in the worst case exponential in the length of the program, and consequently

so is the size of the VCs. The third assert alone generates eight VCs, since it is preceded by

a sequence of three conditionals, each of which duplicates the number of paths. Overall, path

enumeration generates a total number of 2 + 4 + 8 = 14 VCs for this program. If we were to

add one more branching command and an assert the number of VCs would duplicate.

We remark that the well-know formalisms supporting deductive program verification tech-

niques – program logics (Section 2.2 and 2.3) and predicate transformers (Section 2.4) – do not

require programs to be converted to SA form. Instead, they rely on variable substitutions to

encode assignments. Even though calculating predicate transformers in a naive way still causes
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exponential explosion of VC size, in the context of SA, such an explosion can be avoided, follow-

ing the discussion of Section 2.4 describing the work by Flanagan et al. [52]. In this formulation

each assert generates a verification condition of linear size, which globally results in a set of VCs

of quadratic-size in the worst case. The compact VCs for the program of Example 4.1 (which

is in fact a worst-case example) are given in the following example.

Example 4.3. The generated VCs based on the strongest postcondition predicate transformer

for the program in Example 4.1 are as follows:

1. (x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)→ y1 = 0 ∨ y1 = 1.

2. ((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0))∧ (y1 = 0∨ y1 = 1)∧ ((x0 > 0∧ y2 = 1)∨ (¬x0 >
0 ∧ y2 = 0))→ y2 = y1.

3. ((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0))∧ (y1 = 0∨ y1 = 1)∧ ((x0 > 0∧ y2 = 1)∨ (¬x0 >
0 ∧ y2 = 0)) ∧ y2 = y1 ∧ ((x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0))→ y3 = y1.

A different VC is generated for each assert statement. The right hand side of each VC

is the property to be checked, and the left hand side corresponds to the compact operational

encoding of the program that precedes it. As opposed to symbolic execution, it encodes all

possible execution paths into a single formula.

Shortly after Flanagan and Saxe’s study of compact verification conditions, an alternative

VC generation method was proposed by Clarke et al. [31] in the context of the development of

the CBMC bounded model checker (Section 2.6). The VCs are generated from the Conditional

Normal Form of the program which is obtained after a number of transformations on the initial

program. Even though this method can generate quadratic size VCs in the worst case (as we

will see below), for this example it generates a single VC of size linear on the size of the program.

Example 4.4. The generated VC based on CNF for the program in Example 4.1 is as follows:

(x0 > 0→ y1 = 1) ∧ (¬x0 > 0→ y1 = 0) ∧ (x0 > 0→ y2 = 1) ∧

(¬x0 > 0→ y2 = 0) ∧ (x0 > 0→ y3 = 1) ∧ (¬x0 > 0→ y3 = 0)

→ (> → y1 = 0 ∨ y1 = 1) ∧ (> → y2 = y1) ∧ (> → y3 = y1)

The single generated VC contains the complete operational encoding of the program on the

left hand side of the outer implication, and the properties to be checked on the right hand

side. Each assignment is composed by an implication, where the right hand side corresponds

to the encoding of an assignment and the left hand side the path condition for the respective

assignment to be reached. The properties to be checked are composed in a similar way, but the

right hand side is the result of encoding assert statements.
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The fact that both the predicate transformers and CNF method (used in BMC of software)

generate VCs of quadratic size in the worst case, motivates the discussion of three dimensions

in which the methods differ. Let us analyze each one individually:

• The first dimension in which the methods differ is in the logical encoding of the program.

The VCGens based on predicate transformers, encode programs following their branching

structure and conditionals are captured using disjunctions of the form (b∧ . . .)∨(¬b∧ . . .).
On the other hand, VCGens based on CNF encode programs through a conjunction of

implicative formulas, with path conditions guarding atomic statements of the form (b →
. . .) ∧ (¬b→ . . .).

• The second dimension is the use of contexts for each VC. The predicate transformers

method produces one VC for each assert ; each VC is an implicative formula whose an-

tecedent is a partial context that encodes only the part of the program that is relevant for

that assert. The CNF method produces a global context that encodes the behavior of the

entire program. This context is used for all the asserted properties.

• Finally, the VCGens differ in the semantics of the assert command. The traditional

interpretation of guarded commands implies that an execution stops whenever assert θ

produces an error. In other words, one cannot rely on the validity of VCs that follow

a failed assert because that assert will introduce a contradiction in the context. In the

VCs based on predicate transformers generated from the program in Example 4.1, assert

conditions are introduced in the context to be used in subsequent VCs, which is consistent

with this interpretation. The CNF method treats asserts as commands that check the

value of assertions, but are not used in the context of subsequent VCs; when an assert is

reached, it is not known whether previous asserts have been passed successfully or not. In

the VCs obtained from Example 4.1, using the CNF method, the global context C does

not contain assert conditions.

Example 4.5. The last dimension is maybe the least intuitive. Consider for instance the

program x := 1; assertx = 2; assertx = 3. Then with predicate transformers we would have

the VC ( i) x = 1 → x = 2 and ( ii) x = 1 ∧ x = 2 → x = 3. Obviously ( i) is not valid, but

( ii) is, because it has as antecedent a contradiction. On the other hand, the CNF method would

generate the VC x = 1→ x = 2∧x = 3, which deals with each assert separately. Even if the VC

is split into ( i) x = 1→ x = 2 and ( ii) x = 1→ x = 3, both ( i), and ( ii) would fail.

Let us then compare these dimensions with respect to the relevant aspects for both the

traceability and efficiency of the verification method. The term traceability will be used to refer

to the degree of connection between the program and the VCs. On the other hand, the term

efficiency will be used to refer to the solving time, that is, the time a solver takes to give a

verdict about a certain VC.

Traceability. With a global context, if a VC is invalid then the only way to locate the error is

to interpret the counter-example (if it exists), which will give us a concrete execution that
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violates a particular property (a common approach in software model checking). This

may not be required with a partial context encoding, since there is a clear association

between invalid VCs and violated properties. In fact, the degree of traceability would be

even greater if a different VC were generated for each execution path reaching an assert

as in symbolic execution.

Economy of Contexts. From the strict viewpoint of checking each assert statement, partial

contexts are preferable to a global context, which may contain unnecessary information.

Consider a big program with a single assert placed at the beginning: with partial contexts

a small VC will be generated, but with a global context the encoding of the entire program

will be part of the VC.

Redundancy. When verifying a whole program, the use of partial contexts has the disadvan-

tage of replicating operational and axiomatic information in the different VCs, potentially

increasing the overall size.

Lemmas. Including assertions in the context, as in the predicate transformers VCGen, implies

that intermediate assertions play the role of lemmas: once they are proved they can be

used to prove subsequent assertions, which may be advantageous for the automated proofs.

In summary, partial contexts seem to be preferable regarding traceability and the verification

of each individual assert, whereas global contexts reduce the overall redundancy of generated

VCs.

Dealing with Assumes in CNF: axiomatic context vs. operational context. The

presence of assume commands brings an additional layer of discussion, which requires a careful

consideration of the semantics of assume statements. In short, assume statements cannot go

into the global context! Consider for instance the following sequence of statements:

assumex0 > 0 ; x1 := x0 + 1 ; assert y0 = x1 ; assume y0 = x1 ; assert y0 = x1

It is obvious that when considering the semantics of the assume statements as in Section 2.4,

the first assert does not hold for every execution (e.g. the execution where x0 = 1 and y0 = 0

will fail). Nonetheless, if we take the assume statement into the global context, the VC will be

trivially valid: x0 > 0∧ x1 = x0 + 1∧ y0 = x1 → y0 = x1 ∧ y0 = x1. This happens because the

encoding of the first assert is implied by an assume that occurs after it in the program.

It should be noted that we just consider this to be an erroneous behavior, because we had in

mind the semantics discussed in Section 2.4. If another interpretation was given to the assume

statement, for instance that it influences all the asserts in the code, then we would not consider

the previous logical formula to be a bad description of the program correctness. Nonetheless,

since the current state of the art verification tools are based on the former semantics, we

should find a way to generate VCs without introducing inconsistencies. Therefore, we will

introduce a new and particular context, in addition to the global context, containing all the
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assumed properties that lead to a certain asserted property. This particular context will be

called axiomatic context, and the global one will be from now on operational context. For

the previous example the generated VC will be as follows: x1 = x0 + 1 → (x0 > 0 → y0 =

x1) ∧ (x0 > 0 ∧ y0 = x1 → y0 = x1). Note that the axiomatic encoding of the first asserted

property does not contain the second assumed property.

4.2 A Cube of VCGens

The three VCGen dimensions identified in the previous section are orthogonal, and can now be

freely combined to produce hybrid VCGens. The idea is to use some particular dimension to

modify a VCGen such that it will generate VCs that are different in shape, but still logically

equivalent to the original.

Let us see how the VCs of Examples 4.3 and 4.4 would be modified if hybrid VCGens were

used. It is straightforward to see the effect of not including assertions in the context of predicate

transformers VCs.

Example 4.6. Changing the VCs of Example 4.3 to not include asserts as lemmas is trivial.

Basically one just needs to remove them from the context in every VC.

1. (x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)→ y1 = 0 ∨ y1 = 1.

2. ((x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 = 0))∧((x0 > 0∧y2 = 1)∨(¬x0 > 0∧y2 = 0))→ y2 = y1.

3. ((x0 > 0∧y1 = 1)∨ (¬x0 > 0∧y1 = 0))∧ ((x0 > 0∧y2 = 1)∨ (¬x0 > 0∧y2 = 0))∧ ((x0 >

0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0))→ y3 = y1.

Note that this transformation will in fact reduce the size of the VC. Moving forward, it

is equally easy to change the logical encoding of predicate transformers VCs to CNF, while

keeping the partial contexts that are typical of predicate transformers.

Example 4.7. The context of the VCs in the previous example can be changed, so it is written

using the CNF method of capturing the the operational encoding.

1. (x0 > 0→ y1 = 1) ∧ (¬x0 > 0→ y1 = 0)→ y1 = 0 ∨ y1 = 1.

2. (x0 > 0 → y1 = 1) ∧ (¬x0 > 0 → y1 = 0) ∧ (x0 > 0 → y2 = 1) ∧ (¬x0 > 0 → y2 = 0)→
y2 = y1.

3. (x0 > 0 → y1 = 1) ∧ (¬x0 > 0 → y1 = 0) ∧ (x0 > 0 → y2 = 1) ∧ (¬x0 > 0 → y2 =

0) ∧ (x0 > 0→ y3 = 1) ∧ (¬x0 > 0→ y3 = 0)→ y3 = y1.
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The context of each VC is now a conjunction of implications: each of one of these implications

is composed by the encoding of an assignment as consequent and the respective path condition

for it to be reached as antecedent.

It seems less trivial to include assertions in the context in the CNF VCGen, while keeping

a single global context. This is in fact directly linked to the discussion regarding assume

commands, at the end of the previous section. Each asserted property has to go into the

axiomatic context of the subsequent assert statements in the form of a lemma. Once again, if

the property was inserted instead into the operational context, all the VCs would be trivially

and erroneously valid.

Example 4.8. Changing the VC of Example 4.4 to include asserts as lemmas results in the

following VC.

(x0 > 0→ y1 = 1) ∧ (¬x0 > 0→ y1 = 0) ∧ (x0 > 0→ y2 = 1) ∧

(¬x0 > 0→ y2 = 0) ∧ (x0 > 0→ y3 = 1) ∧ (¬x0 > 0→ y3 = 0)→

(y1 = 0∨ y1 = 1) ∧ (y1 = 0 ∨ y1 = 1→ y2 = y1) ∧ ((y1 = 0 ∨ y1 = 1) ∧ y2 = y1 → y3 = y1)

Note that the use of these axiomatic partial contexts reintroduces redundancy in the en-

coding of axiomatic information, since it will replicate each lemma in the VCs referring to the

subsequent asserts, but not of operational behavior.

Finally, we can also create a single VC with a global context based on predicate transformers.

Example 4.9. The VC of the previous example can be changed to use predicate transformers.

((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ ((x0 > 0 ∧ y2 = 1) ∨

(¬x0 > 0 ∧ y2 = 0)) ∧ ((x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0))

→ (y1 = 0∨ y1 = 1) ∧ (y1 = 0∨ y1 = 1→ y2 = y1) ∧ ((y1 = 0∨ y1 = 1∧ y2 = y1)→ y3 = y1)

The pair of original VCGens and the hybrid VCGens that result from combining aspects

from each one can be depicted visually in what we call the VCGen cube, Figure 4.1. Each vertex

of the cube represents a VCGen and the edges represent transformations over those VCGens.

The original VCGens, are shown in shaded boxes, and all their derivations are shown in regular

boxes. Moreover, each face of the cube explores a dimension:

Left/right: SP versus CNF encoding of the control flow. Each VCGen that belongs to the

left hand side of the cube, uses the predicate transformers encoding of branches, while all

the VCGens that are on the right hand side of the cube use the CNF method of encoding

commands.
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SP G
global context

CNF G
global context

SP GA
global context

asserts

CNF GA
global context

asserts

SP P
partial contexts

CNF P
partial contexts

SP PA
partial contexts

asserts

CNF PA
partial contexts

asserts

Figure 4.1: A Cube of VCGens

Top/bottom: Use of global versus partial contexts. VCGens on the top of the cube use global

context while VCGens on the bottom use partial contexts.

Front/back: Asserts are included in the context versus asserts are not included in the context.

The VCGens on the front face of the cube include asserts in the context, and the VCGens

on the back do not include them in the context.

The VCGens in the cube will be defined by two generic algorithms. Basically, each generic

algorithm corresponds to the left and right faces of the cube, and a parameter can be passed

to indicate which kind of VC is to be generated. We will start by considering programs with-

out exceptions in order to explore the dimensions discussed above, and then expand them to

programs with exceptions. As suggested in Figure 4.1, the parameters G, and P will be used

to refer respectively to global and partial context. The optional parameter A will be used to

generate VCs with asserts in the context.

The Generic Strongest Postcondition VCGen. The generic VCGen based on predicate

transformers, defined in Figure 4.2, comprises the four concrete versions of VCSP: VCSPP,

VCSPPA, VCSPG, and VCSPGA. As discussed before, to standardize the VCGen definition while

allowing for the use of either partial or a global context, incoming executions need to be encoded

by two different formulas φ and ρ capturing the operational (state changing) and axiomatic

(assume and assert) aspects of executions. Note however that this separation only happens to

make possible writing all the versions in a single definition, therefore, if one wants to implement

a VCGen this separation is not required in the partial context variants (which will reduce

redundancy). The type of the function is merely informative. The ACommsa is the class of
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VCSPi : Assert×Assert×ACommsa → Assert×Assert× P(Assert)

VCSPi(φ, ρ, skip) = (>,>, ∅)

VCSPi(φ, ρ, x := e) = (x = e,>, ∅)

VCSPi(φ, ρ,assume θ) = (>, θ, ∅)

VCSPi(φ, ρ,assert θ) =


(>,>, {φ ∧ ρ→ θ}) if i = P

(>, θ, {φ ∧ ρ→ θ}) if i = PA

(>,>, {ρ→ θ}) if i = G

(>, θ, {ρ→ θ}) if i = GA

VCSPi(φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2,Γ1 ∪ Γ2)

where (ψ1, γ1,Γ1) = VCSPi(φ, ρ, C1) and (ψ2, γ2,Γ2) = VCSPi(φ ∧ ψ1, ρ ∧ γ1, C2)

VCSPi(φ, ρ, if b then C1 else C2 fi) = ((b ∧ ψ1) ∨ (¬b ∧ ψ2), (b ∧ γ1) ∨ (¬b ∧ γ2),Γ1 ∪ Γ2)

where (ψ1, γ1,Γ1) = VCSPi(φ ∧ b, ρ ∧ b, C1) and (ψ2, γ2,Γ2) = VCSPi(φ ∧ ¬b, ρ ∧ ¬b, C2)

Figure 4.2: Predicate transformer VCGens for i ∈ {P,PA,G,GA}

single-assignment programs (the notation will be made clear in the next chapter).

The result of VCSPi(φ, ρ, C) is a tuple (ψ, γ,Γ) where Γ is a set of logical formulas, and ψ,

γ encode the operational and axiomatic aspects of the behavior of C. The set Γ can represent

different kind of formulas depending on the parameter that was used to generate VCs. When

the intention is to generate VCs with a global context, then the formulas in Γ will correspond

to the properties to be checked. Therefore, if i ∈ {G,GA}, the global context VC is {ψ →
∧

Γ},
that is, the VC is formed by adding the operational context to the formulas in Γ (note that

the axiomatic context is already in the formulas of Γ). On the other hand, if the intention is

to generate VCs with partial context, that is, when i ∈ {P,PA}, then the formulas in Γ will

correspond to the final VCs.

The Generalized Conditional Normal Form VCGen. We now turn our focus to the

CNF method. The generic CNF VCGen, defined in Figure 4.3, differs from the previous one

in that the encoding of both the operational and axiomatic parts of programs are based on

conditional normal form. This requires separating path conditions from the accumulator cor-

responding to the axiomatic component of executions. Thus, a new parameter is used to carry

the path condition that enables commands to be executed. In the call VCCNFi(π, φ, ρ, C) the

formula π is the path condition enabling the execution of C, and as before φ and ρ encode

respectively the operational and axiomatic contents of incoming executions. Once again, the

concrete VCGens only diverge from each other in the assert clause, depending on the variant

to be used (P,PA,G,GA).

The VCs are generated the following way: let (ψ, γ,Γ) = VCCNFi(>,>,>, C). If i ∈ {P,PA},



VCS FOR SA PROGRAMS WITH ASSUME, ASSERT, AND EXCEPTIONS 83

VCCNFi : Assert×Assert×Assert×ACommsa → Assert×Assert× P(Assert)

VCCNFi(π, φ, ρ, skip) = (>,>, ∅)

VCCNFi(π, φ, ρ, x := e) = (π → x = e,>, ∅)

VCCNFi(π, φ, ρ,assume θ) = (>, π → θ, ∅)

VCCNFi(π, φ, ρ,assert θ) =


(>,>, {φ ∧ ρ→ π → θ}) if i = P

(>, π → θ, {φ ∧ ρ→ π → θ}) if i = PA

(>,>, {ρ→ π → θ}) if i = G

(>, π → θ, {ρ→ π → θ}) if i = GA

VCCNFi(π, φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2,Γ1 ∪ Γ2)

where (ψ1, γ1,Γ1) = VCCNFi(π, φ, ρ, C1) and (ψ2, γ2,Γ2) = VCCNFi(π, φ ∧ ψ1, ρ ∧ γ1,C2)

VCCNFi(π, φ, ρ, if b then C1 else C2 fi) = (ψ1 ∧ ψ2, γ1 ∧ γ2,Γ1 ∪ Γ2)

where (ψ1, γ1,Γ1) = VCCNFi(π ∧ b, φ, ρ, C1) and (ψ2, γ2,Γ2) = VCCNFi(π ∧ ¬b, φ, ρ, C2)

Figure 4.3: Conditional normal form VCGens for i ∈ {P,PA,G,GA}

the partial contexts VC are given by Γ. Otherwise, if i ∈ {G,GA}, the global context VC is

{ψ →
∧

Γ}.

Asymptotic Analysis of the VCGens. Let us now study the size of the VCs generated by

the previous VCGens. We have stated before that the original VCGens based on SP and CNF,

both generate VCs whose size can be in the worst case quadratic w.r.t. the size of the program.

In this section we investigate each different variant of the VCGen, using a concrete example,

and analyze how the size of the VCs can vary.

Our case study example is representative of programs with a dense presence of assert state-

ments. This will allow us to investigate whether including asserts in the context or having a

global context has in fact influence on the size of the VCs. We will consider a program of size N

containing a number of asserts that is linear in N , such that executions may go through all the

asserts. An easy way to generate such a program is by expanding iterations of a loop containing

asserts, as the one shown in Example 4.10 (left). If the program is unwound N times then the

resulting loop-free program will have 2N assert conditions. Note however, that the discussion

in this section is not, in any way, related to unwinding loops: we use loop unwinding to obtain

programs that have interesting properties and hence, our sole interest is in the program obtained

after the loop expansion.

Example 4.10. The program below (left) contains a loop that is unwound twice (middle) and

then converted to SA (right).
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assumex ≥ 0 ∧ x ≤ 50 ;

assume y < x ;

while x < 100 do

assert y < 100 ;

x := x+ 1 ;

y := y + 1 ;

assert y ≤ 100

od

assumex ≥ 0 ∧ x ≤ 50 ;

assume y < x ;

if x < 100 then

assert y < 100 ;

x := x+ 1 ;

y := y + 1 ;

assert y ≤ 100 ;

if x < 100 then

assert y < 100 ;

x := x+ 1 ;

y := y + 1 ;

assert y ≤ 100 ;

if x < 100 then

assume⊥ fi

fi

fi

assumex0 ≥ 0 ∧ x0 ≤ 50 ;

assume y0 < x0 ;

if x0 < 100 then

assert y0 < 100 ;

x1 := x0 + 1 ;

y1 := y0 + 1 ;

assert y1 ≤ 100 ;

if x1 < 100 then

assert y1 < 100 ;

x2 := x1 + 1 ;

y2 := y1 + 1 ;

assert y2 ≤ 100 ;

if x2 < 100 then

assume⊥ fi

else

x2 := x1 ; y2 := y1

fi

else

x2 := x0 ; y2 := y0

fi

We will now study how the VCGens behave when generating VCs for this example. The

VCs that will be presented in this section will be the result of unwinding the program once

or twice, but we will draw our conclusions over an arbitrary number N for unwinding loops.

In what follows the axiomatic context will be shown in gray. Let us start with VCSPPA and

consider the case in which the loop is unwound just once. The generated VCs are as follows:

1. x0 < 100 ∧ x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ x0 < 100→ y0 < 100.

2. x0 < 100∧x1 = x0 + 1∧ y1 = y0 + 1∧x0 ≥ 0∧x0 ≤ 50∧ y0 < x0 ∧x0 < 100∧ y0 < 100→
y1 ≤ 100.

Both VCs have size that is linear on the size of the initial program, which for this case is

the same as the unwound program. It becomes more interesting if we unwind the loop further.

When the loop is unwound twice (N = 2) the generated VCs will be as follows:

1. x0 < 100 ∧ x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ x0 < 100→ y0 < 100.
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2. x0 < 100∧x1 = x0 + 1∧ y1 = y0 + 1∧x0 ≥ 0∧x0 ≤ 50∧ y0 < x0 ∧x0 < 100∧ y0 < 100→
y1 ≤ 100.

3. x0 < 100 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ x1 < 100 ∧ x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ x0 <
100 ∧ y0 < 100 ∧ y1 ≤ 100 ∧ x1 < 100→ y1 < 100.

4. x0 < 100∧x1 = x0 + 1∧ y1 = y0 + 1∧x1 < 100∧x2 = x1 + 1∧ y2 = y1 + 1∧x0 ≥ 0∧x0 ≤
50 ∧ y0 < x0 ∧ x0 < 100 ∧ y0 < 100 ∧ y1 ≤ 100 ∧ x1 < 100 ∧ y1 < 100→ y2 ≤ 100.

The first two VCs are exactly the same as before, but the two new VCs, corresponding to

the second iteration of the loop, have linear size on the number of times that the loop was

unwound. Therefore, each VC is still of linear size w.r.t. the program being verified, that is,

the program that was obtained by unwinding the loop twice. This pattern is observed as the

value N is incremented: each VC will be of size θ(1), . . . , θ(N), and thus the total size will be

θ(N2).

If asserts are not to be used in the context, as in VCSPP, the overall size of the VCs will

still be of θ(N2). The reason for this is that both the operational and axiomatic context of each

VC are of linear size and therefore adding them together or not does not change the overall

size. The quadratic size comes in fact from the duplication of context (either operational or

axiomatic) in each VC.

Let us now turn to the global context variant. Consider the VCs generated by VCSPGA for

the program that results from unwinding the loop once.

(x0 < 100∧x1 = x0 + 1∧ y1 = y0 + 1)∨ (¬x0 < 100∧x1 = x0∧ y1 = y0)→ (x0 ≥ 0∧x0 ≤
50 ∧ y0 < x0 ∧ x0 < 100 → y0 < 100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ x0 < 100 ∧ y0 <
100→ y1 ≤ 100)

Note that the operational context (left hand side of the implication) is still linear and is not

replicated. Nonetheless, the axiomatic context (shown in gray) is replicated for each assert. This

becomes even clearer when the VCs are generated for the program that results from unwinding

the loop twice.

(x0 < 100∧x1 = x0+1∧y1 = y0+1∧((x1 < 100∧x2 = x1+1∧y2 = y1+1)∨(¬x1 < 100∧
x2 = x1∧y2 = y1)))∨(¬x0 < 100∧x2 = x0∧y2 = y0)→ (x0 ≥ 0∧x0 ≤ 50∧y0 < x0∧x0 <
100→ y0 < 100)∧ (x0 ≥ 0∧ x0 ≤ 50∧ y0 < x0 ∧ x0 < 100∧ y0 < 100→ y1 ≤ 100)∧ (x0 ≥
0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ x0 < 100 ∧ y0 < 100 ∧ y1 ≤ 100 ∧ x1 < 100 → y1 < 100) ∧ (x0 ≥
0∧ x0 ≤ 50∧ y0 < x0 ∧ x0 < 100∧ y0 < 100∧ y1 ≤ 100∧ x1 < 100∧ y1 < 100→ y2 ≤ 100)

Now it becomes clear that the axiomatic context for each assert will grow in the form of

θ(1), . . . , θ(N). For instance the axiomatic context of the condition of the first assert is replicated

through all the conditions of the subsequent asserts. If assert conditions are not to be used as

lemmas, as in VCSPG, the overall size of the VC is actually not affected. This is due to the

assume conditions before the if statements and also to the if conditions (which correspond to
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the loop condition in the initial program) that are still replicated through all the properties. For

instance, if lemmas are removed from the previous VCs, we would obtain the VC below. Note

how the assume conditions and the branching conditions are replicated before each property

coming from the assert statements.

(x0 < 100 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ((x1 < 100 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1) ∨ (¬x1 <
100 ∧ x2 = x1 ∧ y2 = y1))) ∨ (¬x0 < 100 ∧ x2 = x0 ∧ y2 = y0)→ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 <
x0 ∧ x0 < 100→ y0 < 100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ x0 < 100→ y1 ≤ 100) ∧ (x0 ≥
0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ x0 < 100 ∧ x1 < 100 → y1 < 100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 <
x0 ∧ x0 < 100 ∧ x1 < 100→ y2 ≤ 100)

So, for the verification of the program that results from unwinding the loop in Example 4.10,

in terms of VC size it is irrelevant which concrete variant of VCSP is used. The overall size for

the example is always θ(N2).

This is however not the case when a VCGen from the VCCNF family is used. Consider for

instance the VC that is generated by VCCNFG for the program that results from unwinding the

loop once.

(x0 < 100→ x1 = x0 + 1) ∧ (x0 < 100→ y1 = y0 + 1) ∧ (¬x0 < 100→ x1 = x0) ∧ (¬x0 <
100→ y1 = y0)→ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 < 100→ y0 < 100) ∧ (x0 ≥ 0 ∧ x0 ≤
50 ∧ y0 < x0 → x0 < 100→ y1 ≤ 100)

Note that the loop condition is replicated through all the implications in the operational

context. More precisely, in this case, it is replicated twice because there are two assignments,

and its negation is also replicated twice to synchronize variables. The conditions referring to

the assumes in the program are also replicated in the axiomatic context of the two properties

to be checked. This replication grows as the size of the program grows. Consider now that the

loop is unwound twice:

(x0 < 100 → x1 = x0 + 1) ∧ (x0 < 100 → y1 = y0 + 1) ∧ (x0 < 100 ∧ x1 < 100 → x2 =

x1 +1)∧ (x0 < 100∧x1 < 100→ y2 = y1 +1)∧ (x0 < 100∧¬x1 < 100→ x2 = x1)∧ (x0 <

100 ∧ ¬x1 < 100 → y2 = y1) ∧ (¬x0 < 100 → x2 = x0) ∧ (¬x0 < 100) → y2 = y0) →
(x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 < 100 → y0 < 100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 →
x0 < 100 → y1 ≤ 100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 < 100 ∧ x1 < 100 → y1 <

100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 < 100 ∧ x1 < 100→ y2 ≤ 100)

This confirms the pattern described above. So, if the loop is unwound N times, the loop

condition will be replicated N times. When transforming the program into CNF, since the

unwound program consists in a set of nested if commands, the first if condition, corresponding

to the first iteration, will be replicated N × 2 times (it will be replicated through all the inner

atomic commands), the second (N − 1) × 2 times and so on, such that the condition referring

to the last iteration will be replicated 1× 2 times. This pattern leads to an operational context

of size θ(N2), which is visible in the VC above.
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With respect to the right hand side of the VC, note that each of the properties to be verified

is guarded by 1, . . . , N conditions. Since we have 2N asserts, the size of the properties to be

checked will be 2N ×N , which leads to a size of N2. In total, the size of the VC is θ(N2).

The overall size of the VC becomes N3 when asserts are used as lemmas, as in VCCNFGA.

Consider the VC below obtained by expanding the program twice.

(x0 < 100 → x1 = x0 + 1) ∧ (x0 < 100 → y1 = y0 + 1) ∧ (x0 < 100 ∧ x1 < 100 → x2 =

x1 +1)∧ (x0 < 100∧x1 < 100→ y2 = y1 +1)∧ (x0 < 100∧¬x1 < 100→ x2 = x1)∧ (x0 <

100 ∧ ¬x1 < 100→ y2 = y1) ∧ (¬x0 < 100→ x2 = x0) ∧ (¬x0 < 100→ y2 = y0)→ (x0 ≥
0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 < 100 → y0 < 100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ (x0 <

100 → y0 < 100) → x0 < 100 → y1 ≤ 100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ (x0 < 100 →
y0 < 100) ∧ (x0 < 100→ y1 ≤ 100)→ x0 < 100 ∧ x1 < 100→ y1 < 100) ∧ (x0 ≥ 0 ∧ x0 ≤
50 ∧ y0 < x0 ∧ (x0 < 100→ y0 < 100) ∧ (x0 < 100→ y1 ≤ 100) ∧ (x0 < 100 ∧ x1 < 100→
y1 < 100)→ x0 < 100 ∧ x1 < 100→ y2 ≤ 100)

Note now that each assert condition that is used as lemma is guarded by 1, . . . , N conditions

and since it is replicated through all the subsequent assert conditions, it will contribute to a

θ(N3) overall size in the right hand side of the VC. The same overall size is obtained when using

VCSPG with a program that includes assumes in the loop body.

Changing now to partial contexts, the VCCNFP variant generates the following VCs when

the loop is unwound twice.

1. x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 → (x0 < 100→ y0 < 100).

2. (x0 < 100 → x1 = x0 + 1) ∧ (x0 < 100 → y1 = y0 + 1) ∧ x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 →
(x0 < 100→ y1 ≤ 100).

3. (x0 < 100 → x1 = x0 + 1) ∧ (x0 < 100 → y1 = y0 + 1) ∧ x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 →
(x0 < 100 ∧ x1 < 100→ y1 < 100).

4. (x0 < 100 → x1 = x0 + 1) ∧ (x0 < 100 → y1 = y0 + 1) ∧ (x0 < 100 ∧ x1 < 100 → x2 =

x1 + 1) ∧ (x0 < 100 ∧ x1 < 100 → y2 = y1 + 1) ∧ x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 → (x0 <

100 ∧ x1 < 100→ y2 ≤ 100).

First of all note that a total of 2N VCs will be generated because there are two asserts in

the loop. Each VC is of size θ(12), θ(22), . . . , θ(N2), resulting in an overall size of θ(N3).

If asserts are included in the context, the global context VC also becomes of size θ(N3),

because each lemma will be guarded by a formula of size θ(12), . . . , θ(N2). In this case, the

resulting VCs are as follows:

1. x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 → (x0 < 100→ y0 < 100).

2. (x0 < 100→ x1 = x0 + 1)∧ (x0 < 100→ y1 = y0 + 1)∧x0 ≥ 0∧x0 ≤ 50∧ y0 < x0 ∧ (x0 <

100→ y0 < 100)→ (x0 < 100→ y1 ≤ 100).
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3. (x0 < 100→ x1 = x0 + 1)∧ (x0 < 100→ y1 = y0 + 1)∧x0 ≥ 0∧x0 ≤ 50∧ y0 < x0 ∧ (x0 <

100→ y0 < 100) ∧ (x0 < 100→ y1 ≤ 100)→ (x0 < 100 ∧ x1 < 100→ y1 < 100).

4. (x0 < 100 → x1 = x0 + 1) ∧ (x0 < 100 → y1 = y0 + 1) ∧ (x0 < 100 ∧ x1 < 100 → x2 =

x1 + 1) ∧ (x0 < 100 ∧ x1 < 100 → y2 = y1 + 1) ∧ x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ (x0 <

100 → y0 < 100) ∧ (x0 < 100 → y1 ≤ 100) ∧ (x0 < 100 ∧ x1 < 100 → y1 < 100) → (x0 <

100 ∧ x1 < 100→ y2 ≤ 100).

In summary, the size of the generated VCs for the program that results from unwinding the

program from Example 4.10 (left) N times, are given as follows:

G GA P PA

VCCNF θ(N2) θ(N3) θ(N3) θ(N3)

VCSP θ(N2) θ(N2) θ(N2) θ(N2)

4.3 VCGens Optimizations

The previous section shows a concrete example that led the presented VCGens to generate

VCs with redundancy of conditions. Identifying the source of these redundancies motivates

the introduction of optimizations that may reduce the overall size of the VCs. Moreover, the

foremost deductive verification and bounded model checking tools are usable in practice because

of their advanced optimization techniques. These techniques are usually tied to specific VCGen

algorithms, and thus it is not clear whether they can be applicable to others. This section

addresses this issue by showing how two important practical optimization techniques [11, 31]

are applicable to different VCGens. The VCGen cube helps clarifying the intricacies between

the optimization techniques and VCGens.

To start with, it is possible to optimize Flanagan and Saxe’s predicate transformers VCGen

to produce VCs [11] that reduce the amount of redundancy. The idea is fairly simple: even

though the size of each VC is linear, the overall quadratic size comes from the possible existence

of a linear number of such VCs, each replicating partially the encoding of the program. It is

however possible to transform this set of VCs into a single VC, applying the following equivalence

(φ→ θ) ∧ (φ ∧ θ ∧ γ → ψ) ≡ φ→ θ ∧ (θ ∧ γ → ψ)

the required number of times (with θ and ψ being the encoding of assert conditions). The idea

is that if we have two VCs, φ→ θ and φ∧ θ∧ γ → ψ and the context of the second expands the

context of the first, then, this context should not be replicated, but instead placed such that it

will serve as context for both assert conditions. In this case, the first assert condition is used

as a lemma for the second condition, and therefore, it must be replicated.

Consider again the three VCs of Example 4.3. Applying the equivalence described before

we obtain the following VC, where the properties to be checked are in bold, and the axiomatic

context in gray:
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(x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)→ (y1 = 0 ∨ y1 = 1)

∧ (y1 = 0 ∨ y1 = 1→ (x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)→ y2 = y1

∧ (y2 = y1 → (x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0)→ y3 = y1))

If asserts are not to be introduced in the context we simply note that φ→ θ∧ (θ∧γ → ψ) ≡
φ→ θ ∧ (γ → ψ), and thus it can be simply removed from the context of the subsequent assert

conditions as follows:

(x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)→ (y1 = 0 ∨ y1 = 1)

∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)→ y2 = y1

∧ ((x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0)→ y3 = y1))

The same method can also be used with global contexts, applying the equivalence described

before to the operational and axiomatic context. This optimization, can actually be applied to

the entire left-hand face of the VCGens cube.

((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 =

0)) ∧ ((x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0)) → (y1 = 0 ∨ y1 = 1) ∧ (y1 = 0 ∨ y1 =

1→ y2 = y1 ∧ (y2 = y1 → y3 = y1))

If asserts are not to be used as lemmas they can simply be removed from the axiomatic

context.

((x0 > 0∧y1 = 1)∨ (¬x0 > 0∧y1 = 0))∧ ((x0 > 0∧y2 = 1)∨ (¬x0 > 0∧y2 = 0))∧ ((x0 >

0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0))→ (y1 = 0 ∨ y1 = 1) ∧ y2 = y1 ∧ y3 = y1

The VCLini generic VCGen is defined in Figure 4.4. Note that, it does not use the accumula-

tor parameters and the result of VCLini(C) is a tuple (ψ, γ, δ ) where the first two components

are the same as with VCSPi, and δ is a single formula. Again, if i ∈ {P,PA}, the partial context

VC is δ, otherwise, if i ∈ {G,GA}, the global context VC is ψ → δ.

Considering the program from Example 4.10 (right), VCLinPA would generate the following

VC:

x0 ≥ 0 ∧ x0 ≤ 50 → y0 < x0 → x0 < 100 → y0 < 100 ∧ (y0 < 100 → x1 = x0 + 1 → y1 =

y0 + 1→ y1 ≤ 100∧ (y1 ≤ 100→ x1 < 100→ y1 < 100∧ (y1 < 100→ x2 = x1 + 1→ y2 =

y1 + 1→ y2 ≤ 100)))

The only part of the program that is duplicated in VC above corresponds to the asserted

conditions. Nonetheless, the duplication only happens once and just because asserts are to be

used as lemmas. The VCLinG would generate a similar VC but without the duplication of the



90 VCS FOR SA PROGRAMS WITH ASSUME, ASSERT, AND EXCEPTIONS

VCLini : ACommsa → Assert×Assert×Assert

VCLini(skip) = (>,>,>)

VCLini(x := e) = (x = e,>,>)

VCLini(assume θ) = (>, θ,>)

VCLini(assert θ) =

{
(>,>, θ) if i ∈ {P,G}
(>, θ, θ) if i ∈ {PA,GA}

VCLini(C1 ; C2) =

{
(ψ1 ∧ ψ2, γ1 ∧ γ2, δ1 ∧ (ψ1 ∧ γ1 → δ2)) if i ∈ {P,PA}
(ψ1 ∧ ψ2, γ1 ∧ γ2, δ1 ∧ (γ1 → δ2)) if i ∈ {G,GA}

where (ψ1, γ1, δ1) = VCLini(C1) and (ψ2, γ2, δ2) = VCLini(C2)

VCLini(if b then C1 else C2 fi) = ((b ∧ ψ1) ∨ (¬b ∧ ψ2), (b ∧ γ1) ∨ (¬b ∧ γ2),

(b→ δ1) ∧ (¬b→ δ2))

where (ψ1, γ1, δ1) = VCLini(C1), and (ψ2, γ2, δ2) = VCLini(C2)

Figure 4.4: Lin optimization VCGen, for i ∈ {P,PA,G,GA}

asserted conditions. Turning to the global context variants, the VCLinGA generates the following

VC:

(x0 < 100 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ ((x1 < 100 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1) ∨ (¬x1 <
100 ∧ x2 = x1 ∧ y2 = y1))) ∨ (¬x0 < 100 ∧ x2 = x0 ∧ y2 = y0) → (x0 ≥ 0 ∧ x0 ≤ 50 →
y0 < x0 → x0 < 100→ y0 < 100 ∧ (y0 < 100→ y1 ≤ 100 ∧ (y1 ≤ 100→ x1 < 100→ y1 <

100 ∧ (y1 < 100→ y2 ≤ 100))))

Now the operational context is separated from the axiomatic context and the properties to

be verified. This imposes that the loop condition is duplicated in the operational and axiomatic

context, but it does not change the overall size of the VC. For this example, all VCGens from

the VCLin family generate VCs of size θ(N).

An entirely different optimization, integrated in the CBMC tool [31], can be applied to the

right-hand side face of the cube. This optimization requires converting programs to a static

single-assignment (SSA) form, where variables may occur in the code (syntactically) at most

once as an l-value (the conversion of programs to SSA was covered in Section 2.6).

The basis of the optimization is the observation that path conditions introduced in the

VCCNF variants for assignment statements are not required. The idea is that only the values

of the variables that are effectively assigned are propagated by the φ-function (in our setting

φ-function will be captured by conditional expressions, as in Section 2.6). For instance, without

the optimization the program if b then x1 := e1 else x2 := e2 fi ; x3 := b ?x1 : x2 would be

encoded as the formula (b → x1 = e1) ∧ (¬b → x2 = e2) ∧ (b → x3 = x1) ∧ (¬b → x3 = x2).

Note that, if the condition b is true then only the value of the variable x1 is propagated,
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since we have b → x3 = x1. In this case, the value of the variable x2 will not be used in

subsequent conditions and therefore it can be assigned anyway. The inverse argument can be

made for when b does not hold. With the optimization the encoding of the program becomes

x1 = e1 ∧ x2 = e2 ∧ (b→ x3 = x1) ∧ (¬b→ x3 = x2). The guards for encoding the assignment

to x1 and x2 are removed, but only the value of the correct variable will be assigned.

Example 4.11. Below is a version of the program of Example 4.1 in SSA. Note that in order

to convert the program into SSA one has to increase the number of variables.

if x0 > 0 then y1 := 1 else y2 := 0 fi ;

y3 := x0 > 0 ? y1 : y2 ;

assert y3 = 0 ∨ y3 = 1 ;

if x0 > 0 then y4 := 1 else y5 := 0 fi ;

y6 := x0 > 0 ? y4 : y5 ;

assert y6 = y3 ;

if x0 > 0 then y7 := 1 else y8 := 0 fi ;

y9 := x0 > 0 ? y7 : y8 ;

assert y9 = y3 ;

The VCCNFG VCGen can be optimized to generate the VC below, where the duplication of

the loop condition is avoided in the operational encoding:

y1 = 1 ∧ y2 = 0 ∧ (x0 > 0 → y3 = y1) ∧ (¬x0 > 0 → y3 = y2) ∧ y4 = 1 ∧ y5 = 0 ∧ (x0 >

0→ y6 = y4)∧ (¬x0 > 0→ y6 = y5)∧ y7 = 1∧ y8 = 0∧ (x0 > 0→ y9 = y7)∧ (¬x0 > 0→
y9 = y8)→ (y3 = 0 ∨ y3 = 1) ∧ y6 = y3 ∧ y9 = y3

Note how in the operational context, the if conditions only appear to synchronize variables.1

In this case, having asserts as lemmas would not bring any additional complications (either

the context is global or partial). The partial context VCs with the optimization would be as

follows:

1. y1 = 1 ∧ y2 = 0 ∧ (x0 > 0→ y3 = y1) ∧ (¬x0 > 0→ y3 = y2)→ (y3 = 0 ∨ y3 = 1).

2. y1 = 1 ∧ y2 = 0 ∧ (x0 > 0 → y3 = y1) ∧ (¬x0 > 0 → y3 = y2) ∧ y4 = 1 ∧ y5 = 0 ∧ (x0 >

0→ y6 = y4) ∧ (¬x0 > 0→ y6 = y5)→ y6 = y3.

3. y1 = 1 ∧ y2 = 0 ∧ (x0 > 0 → y3 = y1) ∧ (¬x0 > 0 → y3 = y2) ∧ y4 = 1 ∧ y5 = 0 ∧ (x0 >

0→ y6 = y4)∧ (¬x0 > 0→ y6 = y5)∧ y7 = 1∧ y8 = 0∧ (x0 > 0→ y9 = y7)∧ (¬x0 > 0→
y9 = y8)→ y9 = y3.

1We remark that, if the logic language allows for ite-like operators as found for instance in the SMT-LIB [14],
then the if conditions do not even need to be duplicated. The encoding of the first if statement would be of the
form y3 = ite (x0 > 0) y1 y2.
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The generic VCGen based on this optimization will be denoted by VCSSAi and differs from

VCCNFi only in the assignment case. In the special case of assignments with conditionals

expressions it becomes VCSSAi(π, φ, ρ, x := b ? y : z) = ( (b → x = y) ∧ (¬b → x = z), >, ∅ )

and for other cases it becomes VCSSAi(π, φ, ρ, x := e) = (x = e, >, ∅ ).

Example 4.12. The program below is the conversion into SSA of the one in Example 4.10

(center). Note that the only difference in this case w.r.t. the program in Example 4.10 (right) is

in the last version of the variables. While in the former case, the variables x2 and y2 are to be

used by subsequent expressions, here it is the new variables introduced to synchronize branches

that should be used.

assumex0 ≥ 0 ∧ x0 ≤ 50 ;

assume y0 < x0 ;

if x0 < 100 then

assert y0 < 100 ;

x1 := x0 + 1 ;

y1 := y0 + 1 ;

assert y1 ≤ 100 ;

if x1 < 100 then

assert y1 < 100 ;

x2 := x1 + 1 ;

y2 := y1 + 1 ;

assert y2 ≤ 100 ;

if x2 < 100 then

assume⊥ fi

fi

x3 := x1 < 100 ?x2 : x1 ;

y3 := x1 < 100 ? y2 : y1

fi

x4 := x0 < 100 ?x3 : x0 ;

y4 := x0 < 100 ? y3 : y0

For the example above, the VCSSAG will generate the following VC, that avoids the dupli-

cation of path conditions in the operational encoding. Note however that they are still present

in the axiomatic context.

x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ (x1 < 100 → x3 = x2) ∧ (¬x1 <
100 → x3 = x1) ∧ (x1 < 100 → y3 = y2) ∧ (¬x1 < 100 → y3 = y1) ∧ (x0 < 100 → x4 =

x3) ∧ (¬x1 < 100→ x4 = x0) ∧ (x0 < 100→ y4 = y3) ∧ (¬x1 < 100→ y4 = y0)→ (x0 ≥
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0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 < 100 → y0 < 100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 <

100→ y1 ≤ 100)∧(x0 ≥ 0∧x0 ≤ 50∧y0 < x0 → x0 < 100∧x1 < 100→ y1 < 100)∧(x0 ≥
0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 < 100 ∧ x1 < 100→ y2 ≤ 100)

The operational encoding becomes of size θ(N) because the optimization dispenses entirely

with the accumulated path conditions. Nonetheless, since they cannot be avoided in the assumed

and asserted properties, the consequent of the VC is still of size θ(N2), because it contains

2N assert conditions, each guarded by a path condition of size in θ(N). If asserts are to be

introduced in the context, the following VC would be generated:

x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ x2 = x1 + 1 ∧ y2 = y1 + 1 ∧ (x1 < 100 → x3 = x2) ∧ (¬x1 <
100 → x3 = x1) ∧ (x1 < 100 → y3 = y2) ∧ (¬x1 < 100 → y3 = y1) ∧ (x0 < 100 → x4 =

x3) ∧ (¬x1 < 100→ x4 = x0) ∧ (x0 < 100→ y4 = y3) ∧ (¬x1 < 100→ y4 = y0)→ (x0 ≥
0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 < 100 → y0 < 100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ (x0 <

100 → y0 < 100) → x0 < 100 → y1 ≤ 100) ∧ (x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 ∧ (x0 < 100 →
y0 < 100) ∧ (x0 < 100→ y1 ≤ 100)→ x0 < 100 ∧ x1 < 100→ y1 < 100) ∧ (x0 ≥ 0 ∧ x0 ≤
50 ∧ y0 < x0 ∧ x0 < 100 ∧ (x0 < 100 → y0 < 100) ∧ (x0 < 100 → y1 ≤ 100) ∧ (x0 <

100 ∧ x1 < 100→ y1 < 100)→ x0 < 100 ∧ x1 < 100→ y2 ≤ 100)

Due to the duplication of conditions and asserted properties in the axiomatic context the

size of the VC using asserts as lemmas becomes θ(N3), since it contains 2N assert conditions,

each guarded by a path condition of size in θ(N2).

It is in the partial contexts version (with no asserts) that the optimization becomes more

interesting, since it will now generate 2N VCs, of size θ(1) to θ(N) (each having a single assert

condition as consequent), with overall size in θ(N2) as follows:

1. x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 < 100→ y0 < 100.

2. x1 = x0 + 1 ∧ y1 = y0 + 1 ∧ x0 ≥ 0 ∧ x0 ≤ 50 ∧ y0 < x0 → x0 < 100→ y1 ≤ 100.

3. x1 = x0 + 1∧ y1 = y0 + 1∧x0 ≥ 0∧x0 ≤ 50∧ y0 < x0 → x0 < 100∧x1 < 100→ y1 < 100.

4. x1 = x0 + 1∧ y1 = y0 + 1∧ x2 = x1 + 1∧ y2 = y1 + 1∧ x0 ≥ 0∧ x0 ≤ 50∧ y0 < x0 → x0 <

100 ∧ x1 < 100→ y2 ≤ 100.

The overall results corresponding to Example 4.10 can now be summarized in Table 4.1 (left),

which includes the optimizations presented in this section. The worst-case results are on the

right. In the worst case, the VCCNF and VCSSA family of VCGens will all generate VCs of

size in O(N3). A trivial way of creating a program that generates such a growth on the size

of the VC for all the VCGens, is by considering the program from Example 4.10 and inserting

an assume statement after each assert (with the same condition, for instance). The variants

of VCSP generate VCs of size O(N2) and the variants of VCLin of size O(N2). The latter

can actually come as a surprise, but we should recall that the function VCLin returns the VC

δ1 ∧ (ψ1 ∧ γ1 → δ2) (resp. δ1 ∧ (γ1 → δ2)) for the partial context variants (resp. global context
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G GA P PA

VCSP θ(N2) θ(N2) θ(N2) θ(N2)
VCLin θ(N) θ(N) θ(N) θ(N)
VCCNF θ(N2) θ(N3) θ(N3) θ(N3)
VCSSA θ(N2) θ(N3) θ(N2) θ(N3)

G GA P PA

VCSP θ(N2) θ(N2) θ(N2) θ(N2)
VCLin θ(N2) θ(N2) θ(N2) θ(N2)
VCCNF θ(N3) θ(N3) θ(N3) θ(N3)
VCSSA θ(N3) θ(N3) θ(N3) θ(N3)

Table 4.1: Overall results for the running example (left), and worst-case VC size (right)

variants). The duplication of ψ1 and γ1 may originate VCs of quadratic size w.r.t. the program

size. An example of this is shown below.

Example 4.13. Consider the following program (left) consisting in a sequence of asserts. As

shown below, the sequence of asserts can be associated to the right or to the left.

assert θ1 ;

assert θ2 ;

assert θ3 ;

assert θ4

assert θ1 ;

(assert θ2 ;

(assert θ3 ;

assert θ4))

((assert θ1 ;

assert θ2) ;

assert θ3) ;

assert θ4

The VC for the program that associates parentheses to the right is θ1 ∧ (θ1 → θ2 ∧ (θ2 →
θ3 ∧ (θ3 → θ4))), which is clearly of linear size w.r.t. the size of the program. Nonetheless,

when parentheses are associated to the left, the situation is different: the VC is now θ1 ∧ (θ1 →
θ2) ∧ (θ1 ∧ θ2 → θ3) ∧ (θ1 ∧ θ2 ∧ θ3 → θ4), which constantly duplicates conditions, originating a

VC that is quadratic w.r.t. the size of the program.

If the problem was just a matter of association, it could easily be solved by associating all

the commands to the right. However, the problem is not with the association, but else with

nested ‘blocks’ of code containing asserts and followed by other asserts. Such blocks can be

avoided in the previous example, but they cannot be avoided when those ‘blocks’ are branches

of an if command. We postpone further details about this topic to Section 7.2.

It is clear from the above that each of the two original optimizations generates four new

hybrid VCGens that can be added to our cube as in Figure 4.5. One new face is added on the

left, representing an optimization of the VCSP family of VCGens, and another on the right,

representing an optimization of the VCCNF family of VCGens.

4.4 Generic VCGens for Programs with Exceptions

The language constructs presented in Section 2.1 and their respective semantics allow for a

single flow of execution. Abstracting from the fact that an assume or an assert can fail and

make the program terminate immediately in a special state where the value of the variables is
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VCLinG VCSPG VCCNFG VCSSAG

VCLinGA VCSPGA VCCNFGA VCSSAGA

VCLinP VCSPP VCCNFP VCSSAP

VCLinPA VCSPPA VCCNFPA VCSSAPA

Figure 4.5: An expansion of the Cube of VCGens

unknown, the execution of a program may terminate normally or else it may never terminate

at all. Note also that it is not possible to recover once an assert or an assume fails. However,

it is sometimes desirable to consider alternative flows of execution for unexpected behaviors

(unpredictable or erroneous) or just for the sake of structuring the program in a different way.

Exceptions are commonly used for this [52, 63]. Whenever an exception is raised, the program

continues to execute, but through a different flow. It is possible to go back into the normal flow,

by catching the exception that was raised, and recover from it. To support exceptions handling

in the while language, we extend the syntax of Comm (and AComm) as follows:

C ::= . . . | throw | tryC catchC hc

The command throw will raise an exception, and the command tryC1 catchC2 hc will

execute C1 and if it terminates exceptionally it will then execute C2, otherwise C2 is just not

executed. For the sequence statement C1 ; C2, the command C2 is only executed if C1 terminates

normally. With this, program can now terminate normally or exceptionally.

Example 4.14. The program on the left divides y by x and places the result in x whenever x

is not zero. In this case, it also adds 2 to x and then terminates normally. If x is equal to zero

an exception is raised and the assignment x := x + 2 is not executed: the program terminates

exceptionally. The program on the right uses a try-catch block, therefore when x is equal to

zero an exception is raised and the flow continues in the catch block. Since the skip terminates

normally, the execution of the whole program terminates always normally (once again, assuming

that the evaluation of an expression does not raise an exception).

if x = 0 then throw else x := y/x fi ;

x := x+ 2

try

if x = 0 then throw else x := y/x fi ;

x := x+ 2

catch

skip

hc
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As stated before, exceptions may be used for recovering from unexpected behaviours or just

as a choice of implementation. It is sometimes useful to consider multiple kinds of exceptions

for distinguishing the different reasons for an exception to occur. For instance, if an exception

is raised due to erroneous behaviour, the recovery may be different depending on the error that

occurred. Moreover, from the implementation point of view one may want to use different kinds

of exceptions just for structuring the code with multiple execution flows. Nonetheless, in this

thesis, for the sake of clarity, we will consider a single kind of exception. The presented results

can however be easily extended when considering different types of exceptions.

The formal semantics of the language with exceptions will be given in Chapter 5. For

now let us see how the VCGens presented in the previous section must be adapted adequately

for programs with exceptions. The difference is that in the presence of exceptions a program

can terminate in two different and disjoint sets of states: it can terminate normally or it can

terminate exceptionally. In terms of VCGens two additional formulas will be generated to

capture the encoding of the program when it terminates exceptionally: one will encode the

operational encoding and the other will capture the axiomatic encoding.

Example 4.15. The annotated program below calculates the greatest common divisor between

u and v, using the Euclidean algorithm (adapted from the Why3 gallery2). We consider that the

modulo operator % belongs to the language of expressions and gcd to the language of assertions.

The auxiliary variables uaux and vaux contain respectively the initial value of u and v and the

result is returned in u.

try

while > do {u ≥ 0 ∧ v ≥ 0 ∧ gcd (u, v) = gcd (uaux, vaux)}
if v = 0 then

throw

else

t := v ;

v := u % v ;

u := t

fi

od

catch

skip

hc

Let us focus on the generic predicate transformers VCGen presented in Figure 4.6. Note

that the formulas received as parameters are the same as before. These formulas capture all

the executions that reach the current command (the first is the operational encoding and the

2http://toccata.lri.fr/gallery/gcd.en.html

http://toccata.lri.fr/gallery/gcd.en.html
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VCSPi : Assert×Assert×ACommsa

→ Assert×Assert×Assert×Assert× P(Assert)

VCSPi(φ, ρ, skip) = (>,>,⊥,⊥, ∅)

VCSPi(φ, ρ, throw) = (⊥,⊥,>,>, ∅)

VCSPi(φ, ρ, x := e) = (x = e,>,⊥,⊥, ∅)

VCSPi(φ, ρ,assume θ) = (>, θ,⊥,⊥, ∅)

VCSPi(φ, ρ,assert θ) =


(>,>,⊥,⊥, {φ ∧ ρ→ θ}) if i = P

(>, θ,⊥,⊥, {φ ∧ ρ→ θ}) if i = PA

(>,>,⊥,⊥, {ρ→ θ}) if i = G

(>, θ,⊥,⊥, {ρ→ θ}) if i = GA

VCSPi(φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∨ (ψ1 ∧ ε2), µ1 ∨ (γ1 ∧ µ2),Γ1 ∪ Γ2)

where (ψ1, γ1, ε1, µ1,Γ1) = VCSPi(φ, ρ, C1)

and (ψ2, γ2, ε2, µ2,Γ2) = VCSPi(φ ∧ ψ1, ρ ∧ γ1, C2)

VCSPi(φ, ρ, tryC1 catchC2 hc) = (ψ1 ∨ (ε1 ∧ ψ2), γ1 ∨ (µ1 ∧ γ2), ε1 ∧ ε2, µ1 ∧ µ2,Γ1 ∪ Γ2)

where (ψ1, γ1, ε1, µ1,Γ1) = VCSPi(φ, ρ, C1)

and (ψ2, γ2, ε2, µ2,Γ2) = VCSPi(φ ∧ ε1, ρ ∧ µ1, C2)

VCSPi(φ, ρ, if b then C1 else C2 fi) = ((b ∧ ψ1) ∨ (¬b ∧ ψ2), (b ∧ γ1) ∨ (¬b ∧ γ2),

(b ∧ ε1) ∨ (¬b ∧ ε2), (b ∧ µ1) ∨ (¬b ∧ µ2),Γ1 ∪ Γ2)

where (ψ1, γ1, ε1, µ1,Γ1) = VCSPi(φ ∧ b, ρ ∧ b, C1)

and (ψ2, γ2, ε2, µ2,Γ2) = VCSPi(φ ∧ ¬b, ρ ∧ ¬b, C2)

Figure 4.6: Predicate transformer VCGens for programs with exceptions (i ∈ {P,PA,G,GA})

second the axiomatic encoding). Regarding the result of the VCGen note that a tuple of five

elements is now returned. The first two elements correspond respectively to the operational

and axiomatic encoding of the current command when the program terminates normally, and

the next two correspond to the operational and axiomatic encoding of the current command

when the program terminates exceptionally. Finally, the last element is the set of VCs that are

generated for the current command. Focusing on the skip command, it is possible to observe

that the formulas corresponding to the normal (resp. exceptional) termination are simply >
(resp. ⊥), meaning that the skip command always terminates normally (resp. never terminates

exceptionally). The opposite happens in the throw command: it never terminates normally

and it always terminates exceptionally. In fact throw is the only atomic command that can

terminate exceptionally.
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VCCNFi : Assert×Assert×Assert×ACommsa

→ Assert×Assert×Assert×Assert× P(Assert)

VCCNFi(π, φ, ρ, skip) = (>,>, π → ⊥, π → ⊥, ∅)

VCCNFi(π, φ, ρ, throw) = (π → ⊥, π → ⊥,>,>, ∅)

VCCNFi(π, φ, ρ, x := e) = (π → x = e,>, π → ⊥, π → ⊥, ∅)

VCCNFi(π, φ, ρ,assume θ) = (>, π → θ, π → ⊥, π → ⊥, ∅)

VCCNFi(π, φ, ρ,assert θ) =


(>,>, π → ⊥, π → ⊥, {φ ∧ ρ→ π → θ}) if i = P

(>, π → θ, π → ⊥, π → ⊥, {φ ∧ ρ→ π → θ}) if i = PA

(>,>, π → ⊥, π → ⊥, {ρ→ π → θ}) if i = G

(>, π → θ, π → ⊥, π → ⊥, {ρ→ π → θ}) if i = GA

VCCNFi(π, φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∨ (ψ1 ∧ ε2), µ1 ∨ (γ1 ∧ µ2),Γ1 ∪ Γ2)

where (ψ1, γ1, ε1, µ1,Γ1) = VCCNFi(π, φ, ρ, C1)

and (ψ2, γ2, ε2, µ2,Γ2) = VCCNFi(π, φ ∧ ψ1, ρ ∧ γ1, C2)

VCCNFi(π, φ, ρ, tryC1 catchC2 hc) = (ψ1 ∨ (ε1 ∧ ψ2), γ1∨ (µ1 ∧ γ2), ε1∧ ε2, µ1 ∧ µ2,Γ1 ∪ Γ2)

where (ψ1, γ1, ε1, µ1,Γ1) = VCCNFi(π, φ, ρ, C1)

and (ψ2, γ2, ε2, µ2,Γ2) = VCCNFi(π, φ ∧ ε1, ρ ∧ µ1, C2)

VCCNFi(π, φ, ρ, if b then C1 else C2 fi) = (ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∧ ε2, µ1 ∧ µ2,Γ1 ∪ Γ2)

where (ψ1, γ1, ε1, µ1,Γ1) = VCCNFi(π ∧ b, φ, ρ, C1)

and (ψ2, γ2, ε2, µ2,Γ2) = VCCNFi(π ∧ ¬b, φ, ρ, C2)

Figure 4.7: Conditional normal form VCGens for programs with exceptions (i ∈ {P,PA,G,GA})

The analysis of the VCGen becomes more interesting in the composite commands. In these

cases, both sub-commands can terminate normally and exceptionally, therefore, the results of

applying the VCGen recursively to these sub-commands must be merged together. Basically

the sequence command only terminates normally if both C1 and C2 terminate normally. Hence

the operational (resp. axiomatic) encoding is ψ1 ∧ ψ2 (resp. γ1 ∧ γ2). On the other hand, it

can terminate exceptionally if either C1 terminates exceptionally or C1 terminates normally

but then C2 terminates exceptionally. Thus the exceptional operational (resp. axiomatic)

encoding is ε1 ∨ (ψ1 ∧ ε2) (resp. µ1 ∨ (γ1 ∧ µ2)). Note how in the try-catch command the

opposite happens: the program terminates normally if either C1 terminates normally or, if C1

terminates exceptionally and C2 normally; on the contrary it terminates exceptionally only if C1

and C2 terminate exceptionally. The if command does not bring any additional complication:

it terminates normally if b is true and C1 terminates normally, or else, if b is false and C2

terminates normally; analogously for exceptional termination.

The verification conditions of the program C are obtained as follows. Let (ψ, γ, ε, µ, Γ ) =
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VCLini : ACommsa → Assert×Assert×Assert×Assert×Assert

VCLini(skip) = (>,>,⊥,⊥,>)

VCLini(throw) = (⊥,⊥,>,>,>)

VCLini(x := e) = (x = e,>,⊥,⊥,>)

VCLini(assume θ) = (>, θ,⊥,⊥,>)

VCLini(assert θ) =

{
(>,>,⊥,⊥, θ) if i ∈ {P,G}
(>, θ,⊥,⊥, θ) if i ∈ {PA,GA}

VCLini(C1 ; C2) =


(ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∨ (ψ1 ∧ ε2),
µ1 ∨ (γ1 ∧ µ2), δ1 ∧ (ψ1 ∧ γ1 → δ2))

if i ∈ {P,PA}

(ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∨ (ψ1 ∧ ε2),
µ1 ∨ (γ1 ∧ µ2), δ1 ∧ (γ1 → δ2))

if i ∈ {G,GA}

where (ψ1, γ1, ε1, µ1, δ1) = VCLini(C1) and (ψ2, γ2, ε2, µ2, δ2) = VCLini(C2)

VCLini(tryC1 catchC2 hc) =


(ψ1 ∨ (ε1 ∧ ψ2), γ1 ∨ (µ1 ∧ γ2),
ε1 ∧ ε2, µ1 ∧ µ2, δ1 ∧ (ε1 ∧ µ1 → δ2))

if i ∈ {P,PA}

(ψ1 ∨ (ε1 ∧ ψ2), γ1 ∨ (µ1 ∧ γ2),
ε1 ∧ ε2, µ1 ∧ µ2, δ1 ∧ (µ1 → δ2))

if i ∈ {G,GA}

where (ψ1, γ1, ε1, µ1, δ1) = VCLini(C1) and (ψ2, γ2, ε2, µ2, δ2) = VCLini(C2)

VCLini(if b then C1 else C2 fi) = ((b ∧ ψ1) ∨ (¬b ∧ ψ2), (b ∧ γ1) ∨ (¬b ∧ γ2),

(b ∧ ε1) ∨ (¬b ∧ ε2), (b ∧ µ1) ∨ (¬b ∧ µ2),

(b→ δ1) ∧ (¬b→ δ2))

where (ψ1, γ1, ε1, µ1, δ1) = VCLini(C1) and (ψ2, γ2, ε2, µ2, δ2) = VCLini(C2)

Figure 4.8: Lin VCGens (i ∈ {P,PA,G,GA})

VCSPi(>,>, C). If i ∈ {P,PA}, the partial contexts VC are given by Γ. Otherwise, if

i ∈ {G,GA}, the global context VCs are {ψ →
∧

Γ, ε →
∧

Γ}. With a global context the

VCs are formed by adding the context to the conditions in Γ. However, in a language with

exceptions, there might be as many contexts as the number of possible terminations (i.e. kinds

of exceptions): in the simple case we are considering here, we have the normal operational

context ψ and the exceptional operational context ε.

The previous discussion about extending VCSP to programs with exceptions also applies

to the rest of the generic VCGens. The generic VCGen based on conditional normal form is

presented in Figure 4.7. Again, the result of the algorithm is a tuple of five elements as in VCSP

for capturing the normal and exceptional program encoding.

Let (ψ, γ, ε, µ, Γ ) = VCCNFi(>,>,>, C). If i ∈ {P,PA}, the partial contexts VC are given



100 VCS FOR SA PROGRAMS WITH ASSUME, ASSERT, AND EXCEPTIONS

by Γ. Otherwise, if i ∈ {G,GA}, the global context VCs are {ψ →
∧

Γ, ε →
∧

Γ}. Again, the

VCSSAi differs from VCCNFi only in the assignment case. In the special case of assignments with

conditionals expressions it becomes VCSSAi(π, φ, ρ, x := b ? y : z) = ( (b→ x = y)∧ (¬b→ x =

z), >, ⊥, ⊥, ∅ ) and for other cases it becomes VCSSAi(π, φ, ρ, x := e) = (x = e, >, ⊥, ⊥, ∅ ).

For the VCLin presented in Figure 4.8 the VCs are generated as follows. If (ψ, γ, ε, µ, δ ) =

VCLini(C), and i ∈ {G,GA} then the VC is δ, otherwise, if i ∈ {G,GA} then the global context

VCs are {ψ → δ, ε→ δ}.

Asymptotic Analysis of VCLin and VCSP for Programs with Exceptions. The inclusion

of exceptions in the language changes completely the overall size of the VCs in the worst case.

In fact, it is well known that the presence of exceptions can lead to VCs of exponential size with

respect to the program being verified [52, 11] but the intuition for this not clear in the cited

works. We describe below how exceptions influence the size of the VCs.

Let us start with the VCLin and VCSP family of VCGens. For this discussion we will only

consider the normal and exceptional operational encoding of programs, and thus it is indifferent

which variant of VCLin or VCSP is used: for the sake of consistency with [11], we will use VCLinPA,

but the discussion extends to the others. Assume that C0, C1, C2, . . . are arbitrary programs that

can terminate either normally or exceptionally, and that VCLinPA(Ci) = (ψi, , εi, , ), for each

i ∈ {0, 1, 2, . . .}. Therefore the operational encoding of Ci is captured by ψi in case of normal

termination and by εi in case of exceptional termination. Having this in mind, it follows directly

from the definition of VCLinPA that VCLinPA(C0 ; C1) = (ψ0 ∧ ψ1, , ε0 ∨ (ψ0 ∧ ε1), , ), and thus

VCLinPA(tryC0 ; C1 catchC2 hc) = (ψ0∧ψ1∨ ((ε0∨ (ψ0∧ ε1))∧ψ2), , (ε0∨ (ψ0∧ ε1))∧ ε2, , ).

Note that, the encoding of the program C0 was replicated once in the operational encoding

corresponding to normal termination. In order to keep things understandable, in what follows

we will consider that ψ0,1,2 = ψ0 ∧ ψ1 ∨ ((ε0 ∨ (ψ0 ∧ ε1)) ∧ ψ2) and ε0,1,2 = (ε0 ∨ (ψ0 ∧ ε1)) ∧ ε2.

Let us now consider an additional command C3. Then VCLinPA(tryC0 ; C1 catchC2 hc ; C3)

= (ψ0,1,2 ∧ ψ3, , ε0,1,2 ∨ (ψ0,1,2 ∧ ε3), , ). In the formula corresponding to normal termination,

there was no change in the formulas being replicated. Nonetheless, in the formula corresponding

to exceptional termination, ψ0 occurs now three times and ε0, and ε1 occur twice. Again, let

ψ0,1,2,3 = ψ0,1,2 ∧ ψ3 and ε0,1,2,3 = ε0,1,2 ∨ (ψ0,1,2 ∧ ε3). Then VCLinPA(try tryC0 ; C1 catchC2

hc ; C3 catchC4 hc) = (ψ0,1,2,3 ∨ (ε0,1,2,3 ∧ ψ4), , ε0,1,2,3 ∧ ε4, , ). Now, in terms of replication

nothing changed w.r.t. exceptional termination, but in the formula capturing normal termina-

tion, ψ0 occurs now five times, ψ1 and ψ2 twice, and ε0 and ε1 three times. Now if we consider the

encoding of the command try try tryC0 ; C1 catchC2 hc ; C3 catchC4 hc ; C5 catchC6 hc in

case of normal termination, the number of occurrences of these formulas will actually duplicate

which justifies the exponential explosion in the worst case.

Example 4.16. The following program, let us call it C, originates the replication described

above.
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try

if b1 then x1 := y1 else x1 := z1 ; throw fi ;

if b2 then x2 := y2 else x2 := z2 ; throw fi

catch

if b3 then x3 := y3 else x3 := z3 ; throw fi

hc

For this program we have VCLinPA(C) = ((b1 ∧ x1 = y1 ∧ b2 ∧ x2 = y2) ∨ (((¬b1 ∧ x1 =

z1) ∨ ((b1 ∧ x1 = y1) ∧ (¬b2 ∧ x2 = z2))) ∧ (b3 ∧ x3 = y3)), , ((¬b1 ∧ x1 = y1) ∨ (b1 ∧ x1 =

y1 ∧ ¬b2 ∧ x2 = z2)) ∧ (¬b3 ∧ x3 = z3), , ), and as shown in bold, the part of the encoding

b1 ∧ x1 = y1 is duplicated. If we increase the size of this program as described above the growth

of the size of the VCs will be exponential.

Towards Avoiding Explosion in CNF. The variants of VCCNF presented in Figure 4.7

also lead to exponential explosion due to the same reasons as explained above. Let C be a

program that can terminate either normally or exceptionally. The difficulty of avoiding the

duplication of formulas in the encoding of C, comes from the fact that we have one formula to

capture the normal termination and another to capture the exceptional termination, and the

only way to know when C terminates normally or exceptionally is by inspecting these formulas.

As such, in the sequence and in the try-catch case, they need to be merged together to capture

the correct flow of execution.

Note that in CNF each atomic command is guarded by a path condition, but such a path

condition in the VCGens of Figure 4.7 only take into account the branching conditions. For

instance, assume that we have a program of the form C1 ; C2, and that C1 can terminate either

normally or exceptionally. Moreover, assume that the path condition for the program C1 ; C2

to be executed is π. With this information we know that C1 will be executed whenever π holds,

and thus each sub-command of C1 will have π in its path condition. But what about C2? It

is clear that π must hold, but it is also required that C1 terminates normally. The problem is

that the VCGen of Figure 4.7 does not have any condition that indicates when C1 terminates

normally or exceptionally.

This motivates the introduction of a new VCGen based on the one of Figure 4.7. The idea is

that we will have only one formula that will capture both the normal and exceptional execution

of a program, but additional formulas will capture the path conditions for a program to termi-

nate normally or exceptionally. Such a generic VCGen is given in Figure 4.9 and incorporates

the variants {P,PA,G,GA} as in the previous cases. The function receives a program and the

respective path condition for it to be reached, and it returns a tuple containing the following:

• the operational encoding of the program (covering both normal or exceptional termina-

tion).

• the axiomatic encoding of the program (covering both normal or exceptional termination).
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VCCNFe
i : Assert×ACommsa

→ Assert×Assert×Assert×Assert×Assert

VCCNFe
i(π, skip) = (>,>,>,⊥,>)

VCCNFe
i(π, throw) = (>,>,⊥,>,>)

VCCNFe
i(π, x := e) = (π → x = e,>,>,⊥,>)

VCCNFe
i(π,assume θ) = (>, π → θ,>,⊥,>)

VCCNFe
i(π,assert θ) =

{
(>,>,>,⊥, π → θ) if i ∈ {P,G}
(>, π → θ,>,⊥, π → θ) if i ∈ {PA,GA}

VCCNFe
i(π,C1 ; C2) =


(ψ1 ∧ ψ2, γ1 ∧ γ2, λ1 ∧ λ2,
τ1 ∨ (λ1 ∧ τ2), δ1 ∧ (ψ1 ∧ γ1 → δ2))

if i ∈ {P,PA}

(ψ1 ∧ ψ2, γ1 ∧ γ2, λ1 ∧ λ2,
τ1 ∨ (λ1 ∧ τ2), δ1 ∧ (γ1 → δ2))

if i ∈ {G,GA}

where (ψ1, γ1, λ1, τ1) = VCCNFe
i(π,C1) and (ψ2, γ2, λ2, τ2) = VCCNFe

i(π ∧ λ1, C2)

VCCNFe
i(π, tryC1 catchC2 hc) =


(ψ1 ∧ ψ2, γ1 ∧ γ2, λ1 ∨ (τ1 ∧ λ2),
τ1 ∧ τ2, δ1 ∧ (ψ1 ∧ γ1 → δ2))

if i ∈ {P,PA}

(ψ1 ∧ ψ2, γ1 ∧ γ2, λ1 ∨ (τ1 ∧ λ2),
τ1 ∧ τ2, δ1 ∧ (γ1 → δ2))

if i ∈ {G,GA}

where (ψ1, γ1, λ1, τ1, δ1) = VCCNFe
i(π,C1) and (ψ2, γ2, λ2, τ2, δ2) = VCCNFe

i(π ∧ τ1, C2)

VCCNFe
i(π, if b then C1 else C2 fi) = (ψ1 ∧ ψ2, γ1 ∧ γ2, (b ∧ λ1) ∨ (¬b ∧ λ2),

(b ∧ τ1) ∨ (¬b ∧ τ2), δ1 ∧ δ2)

where (ψ1, γ1, λ1, τ1, δ1) = VCCNFe
i(π ∧ b, C1)

and (ψ2, γ2, λ2, τ2, δ2) = VCCNFe
i(π ∧ ¬b, C2)

Figure 4.9: Conditional normal form VCGens avoiding replication of code (i ∈ {P,PA,G,GA})

• the condition for the program to terminate normally.

• the condition for the program to terminate exceptionally.

• the property to be proved.

The skip and throw command do not produce any operational or axiomatic encoding and

thus return >. Moreover, skip, assume, and assert commands always terminate normally and

never exceptionally, and vice-versa for the throw command. The assignment will originate

a formula guarded with the received path condition. Note that if the code is in SSA, the

optimization described in Section 4.3 can be used. Nonetheless, the path condition cannot be

avoided in the axiomatic context produced by the assume and assert command (when using

PA or GA) in the property to be proved. With respect to the if command, the condition for it
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to terminate normally consists in a disjunction of the condition for each branch to terminate

normally with its branching condition (analogously for the condition capturing exceptional

termination).

Finally, in the sequence and in the try-catch command the operational and axiomatic encod-

ings are both just a conjunction of formulas, which avoids the exponential explosion described

above. However, the VCGen introduces another source for a possible exponential growth. The

problems are on the path condition for a sequence to terminate exceptionally, and for a try-

catch to terminate normally. For the former the condition is τ1 ∨ (λ1 ∧ τ2), and for the latter

λ1 ∨ (τ1 ∧ λ2). These conditions clearly mix the path conditions corresponding to normal and

exceptional termination and may lead to an exponential explosion in the size of the path con-

ditions.

Example 4.17. Consider the program in Example 4.16 and a variant of VCCNFe. The condi-

tion for the program to terminate normally is b1 ∧ b2 ∨ ((¬b1 ∨ (b1 ∧ ¬b2)) ∧ b3). Note how the

condition b1 in bold is duplicated. Nonetheless, the encoding containing the atomic commands

is not duplicated. In this case, the VCGen generates the following operational encoding.

(b1 → x1 = y1) ∧ (¬b1 → x1 = z1)∧
(b1 ∧ b2 → x2 = y2) ∧ (b1 ∧ ¬b2 → x1 = z2)∧

((¬b1 ∨ (b1 ∧ ¬b2)) ∧ b3 → x3 = y3) ∧ ((¬b1 ∨ (b1 ∧ ¬b2)) ∧ ¬b3 → x3 = z3)

In fact the duplication of path conditions is not the only limitation of the VCCNFe family

of VCGens. Note that the returned path conditions are never simplified.

Example 4.18. Consider the following program:

try

if b1 then x1 := y1 else x1 := z1 ; throw fi

catch

if b2 then x2 := y2 else x2 := z2 fi

hc

The condition capturing normal termination is b1∨(¬b1∧(b2∨¬b2)), which is equivalent to the

condition >, but the VCGen does not make this type of simplification. Therefore, if the program

above, let us call it C, is part of a sequence of commands, such as for instance C ; x3 := y3 then

the operational encoding of x3 := y3 is b1 ∨ (¬b1 ∧ (b2 ∨ ¬b2))→ x3 = y3.

The limitation referred in the example above motivates the use of some solver in order to

keep path conditions in a simplified form. We postpone the discussion of a concrete method

for dealing with this to Chapter 7, nonetheless it should be noted that such a solver will never
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VCGT : Assert×ACommsa ×Assert×Assert

×{SP,CNF, LIN, SSA} × {P,PA,G,GA} → P(Assert)

VCGT(φ′, C, ψ′, ε′, SP, i) = let (ψ, γ, ε, µ,Γ) = VCSPi(>, φ′, C) in

if i ∈ {P,PA} then Γ ∪ {φ′ ∧ ψ ∧ γ → ψ′, φ′ ∧ ε ∧ µ→ ε′}

else {φ′ ∧ (ψ ∨ ε)→
∧

Γ, φ′ ∧ ψ ∧ γ → ψ′, φ′ ∧ ε ∧ µ→ ε′}

VCGT(φ′, C, ψ′, ε′,CNF, i) = let (ψ, γ, ε, µ,Γ) = VCCNFi(>,>, φ′, C) in

if i ∈ {P,PA} then Γ ∪ {φ′ ∧ ψ ∧ γ → ψ′, φ′ ∧ ε ∧ µ→ ε′}

else {φ′ ∧ (ψ ∨ ε)→
∧

Γ, φ′ ∧ ψ ∧ γ → ψ′, φ′ ∧ ε ∧ µ→ ε′}

VCGT(φ′, C, ψ′, ε′, LIN, i) = let (ψ, γ, ε, µ, δ) = VCLini(C) in

if i ∈ {P,PA} then {φ′ → δ, φ′ ∧ ψ ∧ γ → ψ′, φ′ ∧ ε ∧ µ→ ε′}

else {φ′ ∧ (ψ ∨ ε)→ δ, φ′ ∧ ψ ∧ γ → ψ′, φ′ ∧ ε ∧ µ→ ε′}

VCGT(φ′, C, ψ′, ε′,SSA, i) = let (ψ, γ, ε, µ,Γ) = VCSSAi(>,>, φ′, C) in

if i ∈ {P,PA} then Γ ∪ {φ′ ∧ ψ ∧ γ → ψ′, φ′ ∧ ε ∧ µ→ ε′}

else {φ′ ∧ (ψ ∨ ε)→
∧

Γ, φ′ ∧ ψ ∧ γ → ψ′, φ′ ∧ ε ∧ µ→ ε′}

Figure 4.10: Unified VCGen for Hoare triples

eliminate the problem of exponential explosion, since the conditions originated by a program

that grows with the pattern described in Example 4.16, cannot be simplified.

4.5 Unifying the Generation of Verification Conditions

All the VCGens can be integrated into a single unified generator that will receive a triple and

return a set of verification conditions, that are valid if and only if the triple is valid. The function

implementing such a unified VCGen is given in Figure 4.10 and it receives a precondition, an

SA program, two postconditions (one for normal and another for exceptional termination), the

generic VCGen to be used (SP, CNF, LIN, or SSA), and the respective variant (P, PA, G, or

GA). With this, the function uses the generic VCGens from the previous section to generate

the encoding of the program and the VCs, and returns a set of VCs to be proved. If the VCs

are valid then so is the Hoare triple.

Note that in the VCSP, VCCNF, and VCSSA families of VCGens, the precondition from the

received triple is passed to the concrete VCGen as axiomatic context, which will imply that it

will appear in all the VCs referring to asserts in the program. In the VCLin family of VCGens,

since only the program is passed as parameter, the precondition must be used to prove the

single VC that is generated from all the asserts in the program. Moreover, in order to prove

that the postconditions are met when the program terminates normally (resp. exceptionally),
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two new VCs must be added to those generated from the program: these news VCs will ensure

that the precondition, together with the operational and axiomatic contexts are sufficient to

prove the normal (resp. exceptional) postcondition.

If one wants to check the validity of the asserts in a program C, then it is possible to use

the function VCGT to check the validity of the triple {>}C {>,>}. A different approach for

checking the validity of a triple would be to add the precondition and the postconditions as part

of the program through assumes and asserts. So, for a triple {φ}C {ψ, ε} we would create the

program C ′ = assumeφ ; tryC ; assertψ catch assert εhc, and then use a different unified

VCGen that would receive only a program and generate a set of VCs.

4.6 Related Work

Based on different families of verification tools, we have identified in this chapter a visual

representation and a unified method for generating verification conditions. The VCGens from

this chapter differ from the one of the previous chapter in that the input programs may contain

assume, assert, and exceptions and do not contain an iterating construct. Even though VCisa

from the previous section generates VCs that are similar to those generated by VCSP with

partial contexts, the rest of the VCGens could easily be adapted for generating VCs for programs

ranging over ACommisa.

Some published works have already contributed towards a uniform formulation for verifica-

tion condition generation. A first step taken by Gordon et al. [58] covers some ground on proving

the correctness of Hoare triples based on forward computation of postconditions and comparing

predicate transformers with software model checking techniques. Godefroid et al. [56] report

on the techniques used by some tools for creating logical encodings of programs. The authors

briefly mention the complexity of each method but no comparisons between the logical encod-

ings are offered, neither empirically nor theoretically. Cruz et al. [41] present in a systematic

way VCGen algorithms for code in static single-assignment (SSA) form. Although these works

demonstrate the importance of such an approach, they fall short of both proposing a uniform

framework at the theoretical level and presenting a suitable empirical evaluation of different

VCGens. Moreover, the interplay between baseline methods and optimization techniques was

not addressed.

Let us now consider how the existing verification tools fit in our extended cube. First of all,

it should be said that no tool, as far as we know, uses global contexts: all existing tools are

located in the bottom face of the cube. Although the pure VCCNFG, using a global context, was

originally introduced for CBMC [32], and described in [8, 37], the current version of the tool

seems to use the CNF-encoding with partial contexts together with the SSA-based optimization.

Therefore, CBMC is likely based on VCSSAP.

The Boogie [10] and Why3 [50] deductive verifiers are located on the left-hand face. Both

use partial contexts and while Boogie uses assert conditions as lemmas, Why3 has two different

commands: one that uses assert as lemmas and another that does not (more on this at the
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beginning of Section 7.2). Boogie incorporates VCLinPA, and allows VCs to be split which

originates VCs similar to those generated by VCSP. Why3 has traceability as an important

feature. The method used by default to generate VCs is based on a potentially exponential

path enumeration (see Section 7.2 for details), which has advantages from the point of view of

traceability: the Why3 graphical interface is able to highlight execution paths corresponding to

selected VCs. Nevertheless, Why3 also implements and makes available (through a command-

line switch) the VCLinPA algorithm, and a splitting operation can then be used explicitly to

separate the single VC into a set of ‘single-goal’ VCs.

We note that there exists other deductive verification tools that were not examined here

because they do not rely on the generation of verification conditions in the sense considered in

this thesis. For instance, VeriFast [69], which has support for separation logic [97], relies on

forward symbolic execution [58]; KIV [47] also supports separation logic, but it is an interactive

tool based on higher-order logic. KeY [1] is also an interactive tool and relies on dynamic logic

based on a sequent calculus [16].

Finally, it should be mentioned that tools based on other families of software analysis tech-

niques, such as model checkers based on existential abstraction and symbolic execution tools,

often also integrate a VCGen as an auxiliary component. For instance, in the TRACER tool [70],

a VCGen is used to determine when a given execution path subsumes another (the problem of

exponential explosion is solved by resorting to an interpolation technique). Therefore we believe

that our work here may also, indirectly, be of use to developers of verification tools outside the

deductive and bounded model checking families.



Chapter 5

A Verification Workflow Based on

SA Programs

The previous chapter explored multiple ways of generating verification conditions for single-

assignment programs. This was done by providing different algorithms, based on different

program verification techniques, that take a program and return a set of verification conditions

to be checked by a logic solver. Supposedly, if the VCs are shown to be valid, then the program

is correct with respect to the specification. Nonetheless, no formal relation was shown to exist

between the VCGens introduced in the previous chapter, and no formal relation was established

with the theoretical foundations of program verification.

In this chapter we do precisely this. We start by expanding the language semantics, initially

presented in Chapter 2 for programs with assumes, asserts, and, exceptions, and then adapt

the inference system for Hoare triples containing programs constructed over this new class.

We then introduce a new class of SA programs that stands in contrast with the one from

Chapter 3 because it does not contain an iterating construct. An inference system for Hoare

triples containing SA programs is then proposed and shown to be sound and relatively complete

with respect to the semantics of SA programs. This system will be particularly useful for showing

that the VCGens from the previous sections are all sound and complete (besides generating

equivalent VCs).

In a similar way to the approach of Chapter 3, and since our main goal is to check the

correctness of non-SA programs, we also formalize the correctness of a verification framework’s

workflow based on the translation of programs into SA form. We present in this chapter the

notion of SA translation and leave for the next chapter the proposal of a concrete translation

together with the proof that it complies with the notion of SA translation.

The chapter is organized in the following way. The next section expands the While language

with assume, assert and exceptions, and introduces an adequate operational and axiomatic pro-

gramming semantics. Section 5.2 introduces the notion of single-assignment program, together

with an inference system that is shown to be sound and complete. The soundness and com-

pleteness proof for the VCGen cube is given in Section 5.3 together with the equivalence result.

107
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Finally Section 5.4 introduces a proved verification framework building on the previous results,

and Section 5.5 presents related work.

5.1 Semantics for Programs with Assume, Assert, and Excep-

tions

The language for this and the next chapter will be based on a While language like the one

presented in Sections 2.1 and 2.3 but extended with exceptions, assume and assert commands.

The abstract syntax for C ∈ AComm is as follows:

C ::= skip | throw | x := e | assume θ | assert θ | C ; C | tryC catchC hc

| if b then C else C fi | while b do {θ} C od

Observe that the while command is annotated with an invariant, and thus, it should be

referred that we are in fact extending the class of annotated programs AComm introduced in

Section 2.3, and not the class Comm of programs introduced in Section 2.1. Nonetheless, since

we did not provide an operational semantics for AComm (in Section 2.3 we had a function

to transform programs from AComm into commands from Comm), we will adapt the opera-

tional semantics introduced Section 2.1 and simply ignore the loop invariants annotated in the

program. We made this decision to avoid the introduction of multiple classes of program and

causing obfuscation in the formulation of results. The results that will be presented can be easily

adapted to an approach based on two classes of programs, like the one used in Chapters 2 and 3,

where two classes of programs are considered (one where loops are not annotated and another

with annotated loops). Still with respect to this matter, in what follows and when reasoning

exclusively about the semantics of programs we will omit the annotations in loops, meaning

that the result holds for every annotation. This means that we will write while b do C od

instead of while b do {θ} C od, whenever θ is not relevant for the result being established.

The above syntax declaration also has some degree of redundancy, in the sense that in terms

of verification, loops can be encoded through assume and asserts statements as explained at the

end of Section 2.4. We should note two facts: first of all, the referred approach for removing

loops has never, as long as we know, been shown to be sound and/or complete prior to our work

(we do prove its soundness and completeness in the next chapter); the second justification is that

following this approach we allow for a verification workflow where the source language contains

while loops and does not contain assume and asserts commands, and a different intermediate

language, intended for verification, contains assume and assert commands and does not contain

while loops.

As was said in the previous chapter, a program with exceptions may terminate in different

kinds of states and thus, the set of states representing normal termination should be distinct

from the set of states representing exceptional termination. A termination state representing

normal termination will be represented by n(s), and a termination state representing exceptional
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termination will be represented by e(s). What is more, since our language has assumes and

asserts, the program can terminate in other kinds of states as well. When an asserted property

does not hold in the current state, the execution of the program should fail in some way and

terminate immediately. On the other hand, when an assumed property does not hold in the

current state, the execution of the program blocks, since the state in which the subsequent

commands would be executed is seen as inconsistent. Having this in mind, when an assert fails,

the program terminates immediately in a special termination state error denoted by •; when an

assume does not hold in the current state, the program goes into a blocked state, denoted by

�. It will be relevant to distinguish between the set of states that contain the � state and the

set that does not contain it. The set of termination states containing normal and exceptional

termination, as well as the error state, will be denominated by Σ•. The syntax for σ ∈ Σ• is as

follows:

σ ::= n(s) | e(s) | •

The set of states containing the previous and the blocked state will be denoted by Σ�• and the

syntax for σ ∈ Σ�• is given as follows:

σ ::= n(s) | e(s) | • | �

We are now ready to introduce a big-step semantics for programs with exceptions, assume

and assert commands. Note that the relation has now a different set of initial states Σ, and

termination states Σ�•. Programs always execute from some s ∈ Σ and terminate in some state

σ ∈ Σ�•.

Definition 5.1 (Natural semantics). The evaluation relation for AComm is defined as the

smallest relation  ⊆ AComm× Σ× Σ�• satisfying the following set of rules:

1. 〈skip, s〉 n(s).

2. 〈throw, s〉 e(s).

3. 〈x := e, s〉 n(s[x 7→ [[e]](s)]).

4. if s |= θ then 〈assume θ, s〉 n(s).

5. if s 6|= θ then 〈assume θ, s〉 �.

6. if s |= θ then 〈assert θ, s〉 n(s).

7. if s 6|= θ then 〈assert θ, s〉 •.

8. if 〈C1, s〉 � then 〈C1 ; C2, s〉 �.

9. if 〈C1, s〉 • then 〈C1 ; C2, s〉 •.

10. if 〈C1, s〉 e(s′) then 〈C1 ; C2, s〉 e(s′).
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11. if 〈C1, s〉 n(s′) and 〈C2, s
′〉 σ then 〈C1 ; C2, s〉 σ.

12. if 〈C1, s〉 � then 〈tryC1 catchC2 hc, s〉 �.

13. if 〈C1, s〉 • then 〈tryC1 catchC2 hc, s〉 •.

14. if 〈C1, s〉 n(s′) then 〈tryC1 catchC2 hc, s〉 n(s′).

15. if 〈C1, s〉 e(s′) and 〈C2, s
′〉 σ then 〈tryC1 catchC2 hc, s〉 σ.

16. if s |= b and 〈C1, s〉 σ, then 〈if b then C1 else C2 fi, s〉 σ.

17. if s 6|= b and 〈C2, s〉 σ, then 〈if b then C1 else C2 fi, s〉 σ.

18. if s |= b, 〈C, s〉 � then 〈while b do C od, s〉 �.

19. if s |= b, 〈C, s〉 • then 〈while b do C od, s〉 •.

20. if s |= b, 〈C, s〉 e(s′) then 〈while b do C od, s〉 e(s′).

21. if s |= b, 〈C, s〉 n(s′) and 〈while b do C od, s′〉 σ, then 〈while b do C od, s〉 σ.

22. if s 6|= b, then 〈while b do C od, s〉 n(s).

In what follows we extend the notion of validity of a Hoare triple to programs containing

exceptions, assert and assume commands. These are programs that already contain their own

built-in specification, conferred by the assume and assert commands. Our interpretation of

Hoare triples must handle this ‘internal’ specification in addition to the ‘external’ specification

given by the precondition and the postcondition. In particular, the postcondition will now be

divided into two conditions, one that must hold when the program terminates normally and

another when the program terminates exceptionally. Having these aspects in mind, for assessing

the validity of a Hoare triple it suffices to state that executions that do terminate in the � state,

do not enter the • state (because of a failed assert), and also satisfy the normal or exceptional

postcondition, depending on the termination. Note that this is a partial notion of correctness,

since it does not require termination.

Definition 5.2 (Validity of a Hoare triple). The Hoare triple {φ}C {ψ, ε} is said to be valid,

denoted |= {φ}C {ψ, ε}, whenever for every s ∈ Σ and σ ∈ Σ�•, if s |= φ and 〈C, s〉 σ then:

1. σ 6= •.

2. if σ = n(s′), for some s′ ∈ Σ, then s′ |= ψ.

3. if σ = e(s′), for some s′ ∈ Σ, then s′ |= ε.

If |= {φ}C {ψ, ε} holds, we say that C is correct w.r.t. the specification (φ, ψ, ε).

Hoare logic’s inference system H can be extended for Hoare triples with exceptions, assumes

and asserts. This system is shown in Figure 5.1 and, similarly to the original system, contains
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(skip) {φ} skip {φ,⊥} (throw) {φ} throw {⊥, φ}

(assign) {ψ[e/x]}x := e {ψ,⊥}

(assert) {θ ∧ ψ}assert θ {ψ,⊥} (assume) {θ → ψ}assume θ {ψ,⊥}

(seq)

{φ}C1 {θ, ε} {θ}C2 {ψ, ε}
{φ}C1 ; C2 {ψ, ε} (try-catch)

{φ}C1 {ψ, θ} {θ}C2 {ψ, ε}
{φ} tryC1 catchC2 hc {ψ, ε}

(if)

{φ ∧ b}C1 {ψ, ε} {φ ∧ ¬b}C2 {ψ, ε}
{φ} if b then C1 else C2 fi {ψ, ε}

(while)

{θ ∧ b}C {θ, ε ∧ ¬b}
{θ}while b do C od {θ ∧ ¬b, ε ∧ ¬b}

(conseq)

{φ}C {ψ, ε}
{φ′}C {ψ′, ε′}

if
φ′ → φ and
ψ → ψ′ and ε→ ε′

Figure 5.1: System H

the rule (conseq) that is guarded by first-order side conditions, whose validity must be checked

when constructing derivations. Note also that if while loops are annotated with invariants,

those will not be used in the derivation.

The new (assume) and (assert) rules follow the assignment rule in this respect: they prop-

agate the normal postcondition ψ backward, according to the definition of the weakest pre-

condition predicate transformer for the guarded commands language [45]. A derivation using

system H of the program Example 4.1 is given in Appendix A.

Proposition 5.1 (Soundness of system H). If `H {φ}C {ψ, ε}, then |= {φ}C {ψ, ε}.

Proof. By induction on the derivation of `H {φ}C {ψ, ε}. We only include here some cases.

The remaining cases are proved in a similar manner.

Case (assert). Assume `H {θ ∧ ψ}assert θ {ψ,⊥}. If s |= θ ∧ ψ, then s |= θ and s |= ψ.

Hence, 〈assert θ, s〉 n(s) and |= {θ ∧ ψ}assert θ {ψ,⊥}.
Case (assume). Assume `H {θ → ψ}assume θ {ψ,⊥}. If s |= θ → ψ, then we have two

cases: 1. if s 6|= θ, then 〈assume θ, s〉 �. 2. if s |= θ and s |= ψ, then 〈assume θ, s〉 n(s).

Hence |= {θ → ψ}assert θ {ψ,⊥}.
Case (try-catch). Assume `H {φ} tryC1 catchC2 hc {ψ, ε} follows from `H {φ}C1 {ψ, θ}

and `H {θ}C2 {ψ, ε}. We want to prove that |= {φ} tryC1 catchC2 hc {ψ, ε} so, assume s |= φ.

By IH |= {φ}C1 {ψ, θ}, so we have three cases:

1. 〈C1, s〉 � and we are done.
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2. 〈C1, s〉 n(s′) and s′ |= ψ. Therefore 〈tryC1 catchC2 hc, s〉 n(s′) and we are done.

3. 〈C1, s〉 e(s′) and s′ |= θ. Therefore 〈tryC1 catchC2 hc, s〉 σ where 〈C2, s
′〉 σ. By

IH |= {θ}C2 {ψ, ε} so, we have three subcases: (a) σ = �. (b) σ = n(s′′) and s′′ |= ψ.

(c) σ = e(s′′) and s′′ |= ε.

Hence |= {φ} tryC1 catchC2 hc {ψ, ε}.

The notion of the assertions language must be adapted for triples with exceptions. Naturally

and since each program can terminate normally or exceptionally, two sets of intermediate states

must be taken into account. For C ∈ AComm and φ ∈ Assert, we denote by postN(φ,C) the

set of states {s′ ∈ Σ | 〈C, s〉 n(s′) for some s ∈ Σ such that s |= φ} and by postE(φ,C) the set

of states {s′ ∈ Σ | 〈C, s〉 e(s′) for some s ∈ Σ such that s |= φ}. The notion of expressiveness

is given by the following definition.

Definition 5.3 (Expressiveness). The assertion language Assert is said to be expressive with

respect to the command language AComm and interpretation structure M, if for every φ ∈
Assert and C ∈ AComm there exist ψ, ε ∈ Assert such that for any s ∈ Σ, (i) s |= ψ iff

s ∈ postN(φ,C) and (ii) s |= ε iff s ∈ postE(φ,C).

With the notion of expressiveness, system H can be shown to be complete w.r.t. the seman-

tics of the programming language.

Proposition 5.2 (Completeness of system H in the sense of Cook). Let C ∈ AComm, φ, ψ, ε ∈
Assert, and M be an interpretation structure such that Assert is expressive w.r.t. AComm

and M. If |= {φ}C {ψ, ε}, then `H {φ}C {ψ, ε}.

Proof. By induction on the structure of the program C. We show here the proof for the cases

of the new constructs of the present language. The throw case is trivial.

Assume |= {φ}assume θ {ψ, ε}, for some φ, ψ, ε ∈ Assert. Let s ∈ Σ and assume that

s |= φ. Then either s 6|= θ or s |= θ, 〈assume θ, s〉 n(s), and s |= ψ. So, from the axiom `Hg
{θ → ψ}assume θ {ψ,⊥}, applying (conseq) rule, we conclude that `Hg {φ}assume θ {ψ, ε},
because |= φ→ (θ → ψ) and |= ⊥ → ε.

Assume |= {φ}assert θ {ψ, ε}, for some φ, ψ, ε ∈ Assert. Let s ∈ Σ and assume that s |= φ.

Then it must be the case that s |= θ, 〈assert θ, s〉 n(s) and s |= ψ. So, from the axiom

`Hg {θ ∧ ψ}assert θ {ψ,⊥}, applying (conseq) rule, we conclude that `Hg {φ}assert θ {ψ, ε},
because |= φ→ θ ∧ ψ and ⊥ → ε.

Assume |= {φ} tryC1 catchC2 hc {ψ, ε}, for some φ, ψ, ε ∈ Assert. Let s ∈ Σ such that

s |= φ. If 〈C1, s〉 n(s′) then s′ |= ψ. Also, by Definition 5.3 there exist some θ ∈ Assert

such that s′′ |= θ for any s′′ ∈ postE(φ,C1). Then we have that |= {φ}C1 {ψ, θ}, and

since |= {φ}C1 ; C2 {ψ, ε}, also that |= {θ}C2 {ψ, ε}. Therefore, using both IH, we have

that `Hg {φ}C1 {ψ, θ} and `Hg {θ}C2 {ψ, ε}, and applying the (try-catch) rule we conclude

`Hg {φ}C1 ; C2 {ψ, ε}.
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(skip) {φ} skip {ψ, ε} if φ→ ψ
(throw) {φ} throw {ψ, ε} if φ→ ε

(assign) {φ}x := e {ψ, ε} if φ→ ψ[e/x]

(assert) {φ}assert θ {ψ, ε} if φ→ θ ∧ ψ
(assume) {φ}assume θ {ψ, ε} if φ ∧ θ → ψ

(seq)

{φ}C1 {θ, ε} {θ}C2 {ψ, ε}
{φ}C1 ; C2 {ψ, ε} (try-catch)

{φ}C1 {ψ, θ} {θ}C2 {ψ, ε}
{φ} tryC1 catchC2 hc {ψ, ε}

(while)

{θ ∧ b}C {θ, ε}
{φ}while b do {θ} C od {ψ, ε} if

φ→ θ and
θ ∧ ¬b→ ψ

(if)

{φ ∧ b}C1 {ψ, ε} {φ ∧ ¬b}C2 {ψ, ε}
{φ} if b then C1 else C2 fi {ψ, ε}

Figure 5.2: System Hg

Of the remaining cases, the sequence case also makes use of the expressiveness of the lan-

guage.

Let us now turn our focus to annotated programs. Up to this point, although loops were

annotated with invariants, the latter were not being taken into account by the semantics of the

programming language neither by system H. Similarly to what was done in Section 2.3, we

propose now a system to reason about annotated programs that is deterministic on the rule

to apply, and as such does not contain a consequence rule. The goal-directed system Hg for

annotated programs containing exceptions, assumes, and asserts is shown in Figure 5.2. It is

straightforward to show that the system is sound w.r.t. system H.

Proposition 5.3 (Soundness of Hg). If `Hg {φ}C {ψ, ε}, then `H {φ}C {ψ, ε}.

Proof. By induction on the derivation of `Hg {φ}C {ψ, ε}.

As explained in Section 2.3, the reverse implication does not hold, since there may well be

valid triples that are impossible to derive since they contain wrong annotations. We note that

if a triple {φ}C {ψ, ε} is derivable in H, then it is certain that there exists an annotated version

C ′ of C such that {φ}C ′ {ψ, ε} is derivable in Hg (it suffices to use the invariants that were

used in the derivation of the non-annotated triple). So instead of working with a completeness

result, we extend the previous notion of correctly-annotated program to the language of this

section.

Definition 5.4. Let C ∈ AComm and φ, ψ ∈ Assert. The program C is correctly-annotated

with respect to (φ, ψ, ε) if `H {φ}C {ψ, ε} implies `Hg {φ}C {ψ, ε}.
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The following lemma states the admissibility of the (conseq) rule in system Hg.

Lemma 5.4. If `Hg {φ}C {ψ, ε}, |= φ′ → φ, |= ψ → ψ′, and |= ε→ ε′, then `Hg {φ′}C {ψ′, ε′}.

Proof. By induction on the derivation of `Hg {φ}C {ψ, ε}.

A derivation using system Hg based on the weakest precondition of the program of Exam-

ple 4.1 is given in Appendix A. Note that, as described at the beginning of Section 3.2, the

system Hg may produce side conditions of exponential size in the length of the program.

In the next section we will focus on a subclass of single-assignment programs, introduce a

program logic specifically for these programs, and show that such a logic avoids the exponential

explosion referred above. We will also show how the logic is related to VCGens. System Hg will

play an important role in the proof of completeness of that logic.

5.2 SA Program with Assume, Assert, and Exceptions

Let us now introduce a subclass of programs. We will be focusing on a dynamic notion of

single-assignment programs, and as such, we will introduce syntactic restrictions on the language

introduced in the previous section. In terms of commands, the language will preserve the assume

and assert commands but will not contain any iterating construct. A clear consequence of this

is that programs over this SA language will always terminate. We will then define a suitable

notion of Hoare triple for these programs, and introduce a specific inference system for them.

The system will be shown to be suitable for program verification because (i) it is goal-directed

(no consequence rule is present), and moreover (unlike system Hg) it admits a single derivation

for each valid triple; and (ii) it dispenses with variable substitutions and produces derivations

that are, in the absence of try-catch statements, free from the problem of exponential explosion

of the size of formulas.

We start with the notion of single-assignment program, that can be defined inductively,

based on the sets of variables occurring in, and assigned by, a program. The following definition

expands the previous notions of Vars and Asgn to the language of this chapter.

Definition 5.5. Let C ∈ AComm. The sets Vars(C) and Asgn(C) of variables occurring and

assigned in C ∈ AComm, which were initially introduced in Definition 2.3, are extended to

programs containing exceptions, assumes and asserts as follows:

Vars(throw) = ∅
Vars(assume θ) = FV(θ)

Vars(assert θ) = FV(θ)

Vars(tryC1 catchC2 hc) = Vars(C1) ∪ Vars(C2)

Asgn(throw) = ∅
Asgn(assume θ) = ∅

Asgn(assert θ) = ∅
Asgn(tryC1 catchC2 hc) = Asgn(C1) ∪ Asgn(C2)
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Using the previous definition it is now possible to capture the class of single-assignment

programs, which is a subclass of the programs constructed over AComm. The following notion

of SA program guarantees that variables are assigned at most once in any execution and never

after they have been read.

Definition 5.6 (SA program). The set ACommsa ⊂ AComm of single-assignment programs

is defined inductively as follows:

• skip,assert θ,assume θ, throw ∈ ACommsa.

• x := e ∈ ACommsa if x 6∈ Vars(e).

• C1 ; C2 ∈ ACommsa if C1, C2 ∈ ACommsa, and Vars(C1) ∩ Asgn(C2) = ∅.

• tryC1 catchC2 hc ∈ ACommsa if C1, C2 ∈ ACommsa, and Vars(C1) ∩ Asgn(C2) = ∅.

• if b thenC1 elseC2 fi ∈ ACommsa if C1, C1 ∈ ACommsa, and Vars(b) ∩ (Asgn(C1) ∪
Asgn(C2)) = ∅.

The previous definition is similar to Definition 3.1 for the commands that are present in

both. The commands that are not present in the previous definition, assert θ, assume θ, and

throw are always in SA form when considered alone. Moreover, the try-catch command has

a restriction that is very similar to the sequence command. The second part of the command

cannot assign variables that occur in the first part.

Focusing on the verification of SA programs using Hoare logic, it will be convenient to forbid

programs from assigning variables occurring free in the precondition. We note that there is not

much use for free occurrences of variables that are assigned in the program, since in the paths

containing these assignments the initial values of the variables cannot be read. Remember that

φ#C is used to denote that the program C does not assign free variables of φ.

Definition 5.7 (SA triple). Let C ∈ ACommsa and φ, ψ, ε ∈ Assert. A Hoare triple

{φ}C {ψ, ε} is said to be single-assignment if φ#C.

Figure 5.3 contains the rules of the goal-directed system Hsa, which is based on forward

propagation of assertions. It derives triples of the form {φ}C {φ ∧ ψ, φ ∧ ε}, where φ encodes

logically all incoming executions, ψ and ε encode the normal and exceptional executions of C,

and φ∧ψ, φ∧ ε are respectively the normal and exceptional strongest postconditions of C with

respect to φ.

We will prove the soundness of this system with respect to system H by first noting the

following:

Lemma 5.5. Let C ∈ ACommsa and φ, ψ, ψ′, ε, ε′ ∈ Assert such that φ#C, and `Hsa

{φ}C {ψ, ε}. Then:

1. FV(ψ) ∪ FV(ε) ⊆ FV(φ) ∪ Vars(C).
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(skip) {φ} skip {φ ∧ >, φ ∧ ⊥} (throw) {φ} throw {φ ∧ ⊥, φ ∧ >}

(assign) {φ}x := e {φ ∧ x = e, φ ∧ ⊥}

(assert) {φ}assert θ {φ ∧ θ, φ ∧ ⊥} if φ→ θ
(assume) {φ}assume θ {φ ∧ θ, φ ∧ ⊥}

(seq)

{φ}C1 {φ ∧ ψ1, φ ∧ ε1} {φ ∧ ψ1}C2 {φ ∧ ψ1 ∧ ψ2, φ ∧ ψ1 ∧ ε2}
{φ}C1 ; C2 {φ ∧ (ψ1 ∧ ψ2), φ ∧ (ε1 ∨ (ψ1 ∧ ε2))}

(try-catch)

{φ}C1 {φ ∧ ψ1, φ ∧ ε1} {φ ∧ ε1}C2 {φ ∧ ε1 ∧ ψ2, φ ∧ ε1 ∧ ε2}
{φ} tryC1 catchC2 hc {φ ∧ (ψ1 ∨ (ε1 ∧ ψ2)), φ ∧ (ε1 ∧ ε2)}

(if)

{φ ∧ b}C1 {φ ∧ b ∧ ψ1, φ ∧ b ∧ ε1} {φ ∧ ¬b}C2 {φ ∧ ¬b ∧ ψ2, φ ∧ ¬b ∧ ε2}
{φ} if b then C1 else C2 fi {φ ∧ ((b ∧ ψ1) ∨ (¬b ∧ ψ2)), φ ∧ ((b ∧ ε1) ∨ (¬b ∧ ε2))}

Figure 5.3: System Hsa

2. If `Hsa {φ}C {ψ′, ε′}, then ψ′ = ψ and ε′ = ε.

Proof. 1. By induction on the derivation of `Hsa {φ}C {ψ, ε}. We write here the case where the

last step is the rule (seq). For the remaining cases the proofs are either trivial or similar to this

case. Assume C1 ; C2 ∈ ACommsa and φ#(C1 ; C2). Then we have Vars(C1) ∩ Asgn(C2) = ∅
and φ#C1. Assume also that `Hsa {φ}C1 ; C2 {φ ∧ (ψ1 ∧ ψ2), φ ∧ (ε1 ∨ (ψ1 ∧ ε2))} follows from

`Hsa {φ}C1 {φ ∧ ψ1, φ ∧ ε1} and `Hsa {φ ∧ ψ1}C2 {φ ∧ ψ1 ∧ ψ2, φ ∧ ψ1 ∧ ε2}. Then, by IH,

FV(φ∧ψ1)∪ FV(φ∧ ε1) ⊆ FV(φ)∪Vars(C1). Moreover, it follows that (φ∧ψ1)#C2. Therefore,

by IH, FV(φ ∧ ψ1 ∧ ψ2) ∪ FV(φ ∧ ψ1 ∧ ε2) ⊆ FV(φ ∧ ψ1) ∪ Vars(C2). Hence FV(φ ∧ ψ1 ∧ ψ2) ∪
FV(φ ∧ (ε1 ∨ (ψ1 ∧ ε2))) ⊆ FV(φ) ∪ Vars(C1) ∪ Vars(C2).

2. By induction on C. The proof is trivial for the base cases because the derivation is unique.

Next follows the proof for the case that C is tryC1 catchC2 hc, and the proof of the missing

cases are similar. Assume `Hsa {φ} tryC1 catchC2 hc {φ∧(ψ1∨(ε1∧ψ2)), φ∧(ε1∧ε2)}. Then we

must have that `Hsa {φ}C1 {φ∧ψ1, φ∧ε1} and `Hsa {φ∧ε1}C2 {φ∧ε1∧ψ2, φ∧ε1∧ε2}, for some

θ ∈ Assert. Assume now that `Hsa {φ} tryC1 catchC2 hc {φ ∧ (ψ′1 ∨ (ε′1 ∧ ψ′2)), φ ∧ (ε′1 ∧ ε′2)}.
Then it must be the case that `Hsa {φ}C1 {φ∧ψ′1, φ∧ε′1}, and since φ#C1 because φ#(C1 ; C2),

by IH we have that ψ′1 = ψ1 and ε′1 = ε1. It must also be the case that `Hsa {φ ∧ ε′1}C2 {φ ∧
ε′1 ∧ ψ′2, φ∧ ε′1 ∧ ε′2} and since (φ∧ ε′1)#C2, because from 1. FV(φ∧ ε′1) ⊆ FV(φ)∪Vars(C1) and

Vars(C1) ∩ Asgn(C2) = ∅, by IH we have that ψ′2 = ψ2 and ε′2 = ε2.

The first part of the lemma above states that the free variables that occur in the normal and

exceptional postcondition are not invented: they come either from the precondition or from the

program. On the other hand, the second part, states that system Hsa is deterministic, in the
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sense that for a certain Hoare triple, there is only one possible derivable pair of postconditions.

Note that the soundness result does not hold for C ∈ AComm since system Hsa only derives

SA triples. For instance, system Hsa does not provides a rule for while loops. Therefore, the

result must be established for C ∈ ACommsa only.

Proposition 5.6 (Soundness of Hsa). Let C ∈ ACommsa and φ, ψ, ε ∈ Assert such that

φ#C. If `Hsa {φ}C {ψ, ε}, then `H {φ}C {ψ, ε}.

Proof. By induction on the derivation of `Hsa {φ}C {ψ, ε}, using Lemma 5.5. We show here the

cases of the (assign) and the (try-catch) rules. For the remaining cases the proofs are similar.

Case (assign). Assume φ#(x := e) and `Hsa {φ}x := e {φ ∧ x = e, φ ∧ ⊥}. We know that

`H {(φ ∧ x = e)[e/x]}x := e {φ ∧ x = e,⊥}. Moreover, as φ#(x := e), x 6∈ FV(φ) ∪ Vars(e), we

have φ → (φ ∧ x = e)[e/x]. Also φ ∧ ⊥ → ⊥. So, by the (conseq) rule, `H {φ}x := e {φ ∧ x =

e, φ ∧ ⊥}.
Case (try-catch). Assume φ#(tryC1 catchC2 hc) and that `Hsa {φ} tryC1 catchC2 hc {

φ ∧ (ψ1 ∨ (ε1 ∧ ψ2)), φ ∧ (ε1 ∧ ε2)} follows from `Hsa {φ}C1 {φ ∧ ψ1, φ ∧ ε1} and `Hsa {φ ∧
ε1}C2 {φ ∧ ε1 ∧ ψ2, φ ∧ ε1 ∧ ε2}. Since φ#C1, we get by IH `H {φ}C1 {φ ∧ ψ1, φ ∧ ε1} and, as

φ∧ψ1 → φ∧ (ψ1 ∨ (ε1 ∧ψ2)), by (conseq) we get `H {φ}C1 {φ∧ (ψ1 ∨ (ε1 ∧ψ2)), φ∧ ε1}. Using

Lemma 5.5, we have that (φ∧ε1)#C2, so we get by IH `H {φ∧ε1}C2 {φ∧ε1∧ψ2, φ∧ε1∧ε2} and,

since φ∧ε1∧ψ2 → φ∧(ψ1∨(ε1∧ψ2)), by (conseq) we get `H {φ∧ε1}C2 {φ∧(ψ1∧(ε1∧ψ2), φ∧ε∧ε2}.
Finally, we apply the (try-catch) rule to obtain `H {φ} tryC1 catchC2 hc {φ∧(ψ1∨(ε1∧ψ2)), φ∧
(ε1 ∧ ε2)}.

The completeness of Hsa on the other hand will be established with respect to the goal-

directed system Hg. Observe that the Hsa system is not capable of deriving every valid triple,

and the completeness result takes this into account.

Proposition 5.7 (Completeness of Hsa). Let C ∈ ACommsa and φ, ψ, ε ∈ Assert such that

φ#C and `Hg {φ}C {ψ, ε}. Then `Hsa {φ}C {φ∧ψ′, φ∧ ε′} for some ψ′, ε′ ∈ Assert such that

|= φ ∧ ψ′ → ψ and |= φ ∧ ε′ → ε.

Proof. By induction on C, using lemmas 2.6 and 5.5. We write here the cases of assigment and

the try-catch commands. The remaining cases are proved in a similar manner.

Case C = x := e. Assume φ#(x := e) and `Hg {φ}x := e {ψ, ε} with φ→ ψ[e/x]. We have

`Hsa {φ}x := e {φ ∧ x = e, φ ∧ ⊥}. As φ#(x := e), whenever φ → ψ[e/x] holds the assertion

φ ∧ x = e→ ψ holds. Hence have φ ∧ x = e→ ψ. Moreover φ ∧ ⊥ → ε. So, we are done.

Case C= tryC1 catchC2 hc. Assume φ#(tryC1 catchC2 hc) and `Hg {φ} tryC1 catchC2

hc {ψ, ε} follows from `Hg {φ}C1 {ψ, θ} and `Hg {θ}C2 {ψ, ε}. From φ#(tryC1 catchC2 hc)

we get φ#C1 and φ#C2. From IH, we have for some ψ1, ε1 that `Hsa {φ}C1 {φ ∧ ψ1, φ ∧ ε1},
|= φ ∧ ψ1 → ψ and |= φ ∧ ε1 → θ. So, by Lemma 2.6, `Hg {θ ∧ ε1}C2 {ψ, ε}. More-

over, using Lemma 5.5, we have (φ ∧ ε1)#C2. By IH we have, for some ψ2, ε2, that `Hsa

{φ∧ ε1}C2 {φ∧ ε1 ∧ψ2, φ∧ ε1 ∧ ε2}, |= φ∧ ε1 ∧ψ2 → ψ and φ∧ ε1 ∧ ε2 → ε. We can now derive

`Hsa {φ} tryC1 catchC2 hc {φ∧ (ψ1 ∨ (ε1 ∧ψ2)), φ∧ (ε1 ∧ ε2)} by applying the (try-catch) rule.

Moreover we have |= ψ ∧ (ψ1 ∨ (ε1 ∧ ψ2)→ ψ and |= φ ∧ (ε1 ∧ ε2)→ ε.
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To check the validity of {φ}C {ψ, ε} (where φ#C) one attempts to construct a Hsa derivation

with root {φ}C {φ∧ψ′, φ∧ε′} for some formulas ψ′, ε′. This may not be possible if there exists an

execution in which an assert statement fails (in which case some side condition is not valid), but

if all conditions are valid, then the derivation is unique (and so are ψ′, ε′, following Lemma 5.5).

If additionally the formulas φ ∧ ψ′ → ψ and φ ∧ ε′ → ε are valid, then so is the initial triple.

The following example uses system Hsa to do precisely this.

Example 5.1. Consider the program from Example 4.1. We will refer to the statements of each

line as C1, . . . , C6. The derivation of the triple {>}C1 ; C2 ; C3 ; C4 ; C5 ; C6 {>,⊥} is below.

Since the side conditions are all valid and |= >∧ ((x0 > 0∧y1 = 1)∨ (¬x0 > 0∧y1 = 0))∧ (y1 =

0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) ∧ y2 = y1 ∧ ((x0 > 0 ∧ y3 = 1) ∨ (¬x0 >
0∧ y3 = 0))∧ y3 = y1 → >, one can conclude that the program terminates always without error

and never in an exceptional state.

{>}C1;C2;C3;C4;C5;C6 {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 >

0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) ∧ y2 = y1 ∧ ((x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0)) ∧ y3 = y1,⊥}
(seq)

1. {>}C1;C2;C3 {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 =

1) ∨ (¬x0 > 0 ∧ y2 = 0)),⊥}
(seq)

1. {>} if x0 > 0 then y1 := 1 else y1 := 0 fi {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)),⊥}
(if)

1. {> ∧ x0 > 0} y1 := 1 {> ∧ x0 > 0 ∧ y1 = 1,⊥}
2. {> ∧ ¬x0 > 0} y1 := 0 {> ∧ ¬x0 > 0 ∧ y1 = 0,⊥}

2. {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0))}C2;C3 {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 =

0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)),⊥}
(seq)

1. {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0))}assert y1 = 0 ∨ y1 = 1 {> ∧ ((x0 > 0 ∧ y1 =

1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1),⊥}
2. {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1)} if x0 > 0 then y2 :=

1 else y2 := 0 fi {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 >

0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)),⊥}
(if)

1. {>∧((x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 = 0))∧(y1 = 0∨y1 = 1)∧x0 > 0} y2 := 1 {>∧((x0 >

0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ x0 > 0 ∧ y2 = 1,⊥}
2. {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ∧¬x0 > 0} y2 :=

0 {> ∧ ((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0))∧ (y1 = 0∨ y1 = 1)∧∧¬x0 > 0∧ y2 = 0,⊥}

2. {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 >
0 ∧ y2 = 0))}C4;C5;C6 {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 >

0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) ∧ y2 = y1 ∧ ((x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0)) ∧ y3 = y1,⊥}
(seq)

1. {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 >
0 ∧ y2 = 0))}assert y2 = y1 {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 =

1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) ∧ y2 = y1,⊥}
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2. {>∧((x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 = 0))∧(y1 = 0∨y1 = 1)∧((x0 > 0∧y2 = 1)∨(¬x0 > 0∧y2 =

0)) ∧ y2 = y1}C5;C6 {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 >

0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) ∧ y2 = y1((x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0)) ∧ y3 = y1,⊥}
(seq)

1. {>∧ ((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0))∧ (y1 = 0∨ y1 = 1)∧ ((x0 > 0∧ y2 = 1)∨ (¬x0 >
0 ∧ y2 = 0)) ∧ y2 = y1} if x0 > 0 then y3 := 1 else y3 := 0 fi {> ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 >
0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) ∧ y2 = y1((x0 >

0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0)),⊥}
(if)

1. {>∧((x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 = 0))∧(y1 = 0∨y1 = 1)∧((x0 > 0∧y2 = 1)∨(¬x0 >
0∧ y2 = 0))∧ y2 = y1 ∧x0 > 0} y3 := 1 {>∧ ((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0))∧ (y1 =

0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) ∧ y2 = y1 ∧ x0 > 0 ∧ y3 = 1,⊥}
2. {>∧((x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 = 0))∧(y1 = 0∨y1 = 1)∧((x0 > 0∧y2 = 1)∨(¬x0 >

0∧y2 = 0))∧y2 = y1∧¬x0 > 0} y3 := 0 {>∧((x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 = 0))∧(y1 =

0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)) ∧ y2 = y1 ∧ ¬x0 > 0 ∧ y3 = 0,⊥}

2. {>∧ ((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0))∧ (y1 = 0∨ y1 = 1)∧ ((x0 > 0∧ y2 = 1)∨ (¬x0 >
0 ∧ y2 = 0)) ∧ y2 = y1 ∧ ((x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0))}assert y3 = y1 {> ∧ ((x0 >

0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 =

0)) ∧ y2 = y1 ∧ ((x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0)) ∧ y3 = y1,⊥}

Side conditions for application of the (assert) rules:

• > ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0))→ (y1 = 0 ∨ y1 = 1).

• > ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 >
0 ∧ y2 = 0))→ y2 = y1.

• > ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (y1 = 0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 >
0 ∧ y2 = 0)) ∧ y2 = y1 ∧ ((x0 > 0 ∧ y3 = 1) ∨ (¬x0 > 0 ∧ y3 = 0))→ y3 = y1.

We remark that, in the absence of try-catch statements, derivations in system Hsa avoid the

exponential explosion of the size of the formulas illustrated at the end of the previous section,

since in the (if) rule, the postconditions in the conclusion triple contain each a single copy

of the precondition φ. Avoiding exponential explosion is not however possible in this system

when exception handling is considered: the observations that were first made in the context of

weakest precondition computations for guarded commands in ESC/Java [52], and explored in

the previous chapter, apply to our forward-propagation inference system.

Finally, we note that, from the point of view of a program logic, the idea behind a verification

conditions generator is that it is possible to write a function that takes a Hoare triple and

produces a set of assertions, whose validity implies that the triple is derivable in the inference

system. The properties of system Hsa make it straightforward to relate it with the VCSP family

of VCGens from the previous chapter, more precisely with the VCSPPA VCGen.
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5.3 Correctness of the Cube of VCGens

System Hsa introduced in the previous section can now be used to show that the VCGens

introduced in the previous chapter are sound and complete w.r.t. the semantics of the program-

ming language introduced in the previous section. The first part of this section shows that the

VCGens from the VCSP family are all sound and complete and the second part expands these

results to the VCCNF family. As in the previous chapter, in what follows, we will use the term

variant of a VCGen family to refer to a concrete VCGen, that can be of the form, VCSPi or

VCCNFi, where i can be one of the following: P, PA, G, GA.

The Generic Strongest Postcondition VCGen Family. The VCGens of Figure 4.6 are

sound and complete with respect to system Hsa. The proof follows by showing that VCSPPA is

sound and complete w.r.t. system Hsa, and then proving that all other VCGens generate VCs

that are equivalent to those generated by VCSPPA. For a matter of simplification, in what follows

we will be consistent regarding the symbols to use for the meta-variables. The operational and

axiomatic context with which a certain command is reached (the first two parameters of the

VCSP family of functions), will be denoted by φ ∈ Assert and ρ ∈ Assert respectively. The

returned operational context will be denoted by ψ ∈ Assert in case of normal termination

and ε ∈ Assert in case of exceptional termination, and the returned axiomatic context will be

denoted by γ ∈ Assert in case of normal termination and µ ∈ Assert in case of exceptional

termination. Finally the set of returned VCs, or properties to be checked, will be represented

by Γ ∈ P(Assert). Moreover, along this section we only consider SA programs and will use

normally C,C1, C2 ∈ ACommsa to refer to them.

Before presenting soundness and completeness results for VCSPPA, consider the following

lemma that reflects the fact that a program terminates either normally or exceptionally. It

does so by stating that the formulas that correspond to normal and exceptional termination are

contradictory.

Lemma 5.8. Let i ∈ {P,PA,G,GA}. If VCSPi(φ, ρ, C) = (ψ, γ, ε, µ,Γ), then |= ψ ∧ ε → ⊥,

|= ψ ∧ µ→ ⊥, |= γ ∧ ε→ ⊥, and |= γ ∧ µ→ ⊥.

Proof. By induction on C. All cases are straightforward.

It is now possible to formulate the correctness result for the VCSPPA through the following

proposition. In particular, it captures the fact that the VCGen makes the distinction between

the operational and axiomatic context, in contrast with system Hsa.

Proposition 5.9 (Hsa and VCSPPA). Let VCSPPA(φ, ρ, C) = (ψ, γ, ε, µ,Γ) and φ′ ≡ φ∧ρ. Then

the following holds:

1. If |= Γ then `Hsa {φ′}C {φ′ ∧ ψ′, φ′ ∧ ε′}, for some ψ′, ε′ ∈ Assert, such that ψ′ ≡ ψ ∧ γ
and ε′ ≡ ε ∧ µ.

2. If `Hsa {φ′}C {φ′ ∧ ψ′, φ′ ∧ ε′}, for some ψ′, ε′ ∈ Assert, then |= Γ, ψ′ ≡ ψ ∧ γ and

ε′ ≡ ε ∧ µ.
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Proof. 1. By induction on C. We show here the proof for the case that C is assert θ or C1 ; C2.

The other cases are trivial or analogous.

Case C = assert θ. We have VCSPPA(φ, ρ,assert θ) = (>, θ,⊥,⊥, {φ ∧ ρ → θ}), Assume

that |= φ ∧ ρ → θ. Then `Hsa {φ′}assert θ {φ′ ∧ θ, φ′ ∧ ⊥} because |= φ′ → θ holds since

φ′ ≡ φ ∧ ρ. Moreover, θ ≡ > ∧ θ and ⊥ ≡ ⊥ ∧⊥.

Case C = C1 ; C2. We have VCSPPA(φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∨ (ψ1 ∧ ε2), µ1 ∨
(γ1 ∧ µ2), Γ1 ∪ Γ2 ) with

VCSPPA(φ, ρ, C1) = (ψ1, γ1, ε1, µ1, Γ1 ) (5.1)

VCSPPA(φ ∧ ψ1, ρ ∧ γ1, C2) = (ψ2, γ2, ε2, µ2, Γ2 ) (5.2)

Assume |= Γ1∪Γ2. So, we have in particular |= Γ1 and thus from (5.1), by IH `Hsa {φ′}C1 {φ′∧
ψ′1, φ

′ ∧ ε′1}, for some ψ′1, ε
′
1 such that ψ′1 ≡ ψ1 ∧ γ1 and ε′1 ≡ ε1 ∧ µ1. Since (φ∧ψ1)∧ (ρ∧ γ1) ≡

φ′ ∧ ψ′1, from (5.2), by IH `Hsa {φ′ ∧ ψ′1}C2 {φ′ ∧ ψ′1 ∧ ψ′2, φ′ ∧ ψ′1 ∧ ε′2}, for some ψ′2, ε
′
2, such

that ψ′2 ≡ ψ2 ∧ γ2 and ε′2 ≡ ε2 ∧ µ2. Therefore, we have `Hsa {φ′}C1 ; C2 {φ′ ∧ (ψ′1 ∧ ψ′2), φ′ ∧
(ε′1 ∨ (ψ′1 ∧ ε′2))}. Moreover, ψ′1 ∧ψ′2 ≡ (ψ1 ∧ψ2)∧ (γ1 ∧ γ2) and ε′1 ∧ ε′2 ≡ ε′1 ∨ (ψ′1 ∧ ε′2), because

ε′1 ∨ (ψ′1 ∧ ε′2) ≡ (ε1 ∧µ1)∨ (ψ1 ∧ ε2 ∧µ1)∨ (ε1 ∧ γ1 ∧µ2)∨ (ψ1 ∧ ε2 ∧ γ1 ∧µ2) and, by Lemma 5.8,

ψ1 ∧ µ1 → ⊥ and ε1 ∧ γ1 → ⊥.

Of the remaining cases, the try-catch case also uses Lemma 5.8.

2. By induction on the derivation of `Hsa {φ′}C {φ′ ∧ ψ, φ′ ∧ ε′}. We only show here the

case of the try-catch rule. Assume φ′ ≡ φ∧ ρ and that `Hsa {φ′} tryC1 catchC2 hc {φ′ ∧ (ψ1 ∨
(ε1 ∧ ψ2)), φ

′ ∧ (ε1 ∧ ε2)} follows from `Hsa {φ′}C {φ′ ∧ ψ1, φ
′ ∧ ε1} and `Hsa {φ′ ∧ ε1}C2 {φ′ ∧

ε1 ∧ ψ2, φ
′ ∧ ε1 ∧ ε2}. We have VCSPPA(φ, ρ, tryC1 catchC2 hc) = (ψ1 ∨ (ε1 ∧ ψ2), γ1 ∨ (µ1 ∧

γ2), ε1 ∧ ε2, µ1 ∧ µ2, Γ1 ∪ Γ2 ) with

VCSPPA(φ′, ρ, C1) = (ψ1, γ1, ε1, µ1, Γ1 ) (5.3)

VCSPPA(φ ∧ ε1, ρ ∧ µ1, C2) = (ψ2, γ2, ε2, µ1, Γ2 ) (5.4)

So, from (5.3), by IH, we obtain |= Γ1, ψ
′
1 ≡ ψ1 ∧ γ1 and ε′1 ≡ ε1 ∧ µ1. Hence (φ0 ∧ ε1) ∧

(ρ ∧ µ1) ≡ φ′ ∧ ε1. So, from (5.4), by IH, we obtain |= Γ2, ψ
′
2 ≡ ψ2 ∧ γ2 and ε′2 ≡ ε2 ∧ µ2.

Hence we have |= Γ1 ∪ Γ2, and ψ′1 ∨ (ε′1 ∧ ψ′2) ≡ (ψ1 ∨ (ε1 ∧ ψ2)) ∧ (γ1 ∨ (µ1 ∧ γ2)) because

(ψ1 ∨ (ε1 ∧ψ2))∧ (γ1 ∨ (µ1 ∧ γ2)) ≡ (ψ1 ∧ γ1)∨ (ε1 ∧ψ2 ∧ γ1)∨ (ψ1 ∧µ1 ∧ γ2)∨ (ε1 ∧ψ2 ∧µ1 ∧ γ2)
and, by Lemma 5.8, ψ1 ∧ γ1 → ⊥ and ψ1 ∧ µ1 → ⊥. Moreover, ε′1 ∧ ε′2 ≡ (ε1 ∧ ε2) ∧ (µ1 ∧ µ2).

Of the remaining cases, the sequence case also uses Lemma 5.8.

When one wants to generate a set of VCs for a program C, we will have VCSPPA(>,>, C) =

(ψ, γ, ε, µ,Γ) and it is trivial that > = > ∧ >. It is also possible to feed a precondition to the

VCGen in the parameter ρ, as long as, the previous mentioned conditions are met.

To prove that the triple {φ}C {ψ, ε}, where φ#C, is valid, we use VCSPPA to obtain the

program encoding and set of VCs as VCSPPA(>, φ, C) = (ψ′, γ′, ε′, µ′,Γ), and prove that |= Γ,

|= ψ′∧γ′ → ψ, and |= ε′∧µ′ → ε. From the previous proposition we have that there exists some
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ψ′′, ε ∈ Assert such that ψ′′ ≡ ψ′ ∧ γ′, ε′′ ≡ ε′ ∧µ′, and `Hsa {φ∧>}C {φ∧>∧ψ′′, φ∧>∧ ε′′}.
Then from Propositions 5.1, 5.3 and 5.6 it holds that |= {φ ∧ >}C {φ ∧ > ∧ ψ′′, φ ∧ > ∧ ε′′}.

Let us now prove that all other variants generate VCs that are equivalent to VCSP and also

that the encoding of the programs returned by the different variants are in some way related.

The lemma below establishes that for all the variants, the returned encoding of the program,

both operational and axiomatic, only depends on the input program.

Lemma 5.10. Let i ∈ {P,PA,G,GA}. If VCSPi(φ, ρ, C) = (ψ, γ, ε, µ,Γ) and VCSPi(φ′, ρ′, C)

= (ψ′, γ′, ε′, µ′,Γ′), then ψ = ψ′, γ = γ′, ε = ε′, and µ = µ′.

Proof. By induction on C. All cases are straightforward.

With respect to the encoding of the program, observe that the generated operational en-

coding is the same for all the variants and that the axiomatic encoding varies depending on

whether asserts are used as lemmas or not, as stated in the lemma below.

Lemma 5.11. If VCSPP(φ1, ρ1, C)=(ψ1, γ1, ε1, µ1,Γ1), VCSPPA(φ2, ρ2, C)=(ψ2, γ2, ε2, µ2,Γ2),

VCSPG(φ3, ρ3, C) = (ψ3, γ3, ε3, µ3,Γ3), and VCSPGA(φ4, ρ4, C) = (ψ4, γ4, ε4, µ4,Γ4), then ψ1 =

ψ2 = ψ3 = ψ4, ε1 = ε2 = ε3 = ε4, γ1 = γ3, γ2 = γ4, µ1 = µ3, and µ2 = µ4.

Proof. By induction on C. All cases are straightforward.

From this point onward, we will use this result without mentioning it. Moreover, we also

need to rely on the fact that all variables occurring in the generated tuple come only from the

received arguments, that is, the VCGens do not produce new variables.

Lemma 5.12. Let i ∈ {P,PA,G,GA}. If VCSPi(φ, ρ, C) = (ψ, γ, ε, µ,Γ), then FV(ψ)∪ FV(γ)∪
FV(ε) ∪ FV(µ) ⊆ Vars(C), and FV(

∧
Γ) ⊆ FV(φ) ∪ FV(ρ) ∪ Vars(C).

Proof. By induction on C. All cases are straightforward.

We will now relate the variants that use asserts as lemmas and those that do not. Basically,

even if asserts are not used as lemmas, they can be obtained by putting together all the other

components.

Lemma 5.13. Let (i, j) ∈ {(P,PA), (G,GA)}. If φ ∧ ρ → ρ′, ρ′ → ρ, VCSPi(φ, ρ, C) =

(ψ, γ, ε, µ,Γ), VCSPj(φ, ρ′, C) = (ψ′, γ′, ε′, µ′,Γ′), and either |= Γ or |= Γ′, then the following

hold:

1. |= φ ∧ ψ ∧ ρ ∧ γ → γ′ and |= γ′ → γ.

2. |= φ ∧ ε ∧ ρ ∧ µ→ µ′ and |= µ′ → µ.

Proof. The proof proceeds by induction on C for the case in which (i, j) = (P,PA). For (i, j) =

(G,GA) the proof is analogous.

Case C = assert θ. Since µ = µ′ = ⊥ we have (2). If |= {φ∧ρ→ θ} we have (1). Otherwise,

we must have that |= {φ ∧ ρ′ → θ} and since we have φ ∧ ρ→ ρ′ we can conclude (1).
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Case C = C1 ; C2. We have

VCSPP(φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∨ (ψ1 ∧ ε2), µ1 ∨ (γ1 ∧ µ2), Γ1 ∪ Γ2 )

with (ψ1, γ1, ε1, µ1, Γ1 ) = VCSPP(φ, ρ, C1) (5.5)

(ψ2, γ2, ε2, µ2, Γ2 ) = VCSPP(φ ∧ ψ1, ρ ∧ γ1, C2) (5.6)

VCSPPA(φ, ρ′, C1 ; C2) = (ψ1 ∧ ψ2, γ
′
1 ∧ γ′2, ε1 ∨ (ψ1 ∧ ε2), µ′1 ∨ (γ′1 ∧ µ′2), Γ′1 ∪ Γ′2 )

with (ψ1, γ
′
1, ε1, µ

′
1, Γ′1 ) = VCSPPA(φ, ρ′, C1) (5.7)

(ψ2, γ
′
2, ε2, µ

′
2, Γ′2 ) = VCSPPA(φ ∧ ψ1, ρ

′ ∧ γ′1, C2) (5.8)

and |= Γ1 ∪ Γ2 holds or |= Γ′1 ∪ Γ′2 holds.

From φ ∧ ρ→ ρ′, ρ′ → ρ, and the assumption that |= Γ1 ∪ Γ2 or |= Γ′1 ∪ Γ′2 by IH we obtain

φ ∧ ψ1 ∧ ρ ∧ γ1 → γ′1, γ′1 → γ1, φ ∧ ε1 ∧ ρ ∧ µ1 → µ′1, µ′1 → µ1 (5.9)

and with this result by IH we also get:

φ ∧ ψ1 ∧ ψ2 ∧ ρ ∧ γ1 ∧ γ2 → γ′2, γ′2 → γ2, φ ∧ ψ1 ∧ ε2 ∧ ρ ∧ γ1 ∧ µ2 → µ′2, µ′2 → µ2 (5.10)

From (5.9) and (5.10) it follows that φ∧ψ1∧ψ2∧ρ∧γ1∧γ2 → γ′1∧γ′2, γ′1∧γ′2 → γ1∧γ2, and

(µ′1∨(γ′1∧µ′2))→ µ1∨(γ1∧µ2). We are then left to prove φ∧(ε1∨(ψ1∧ε2))∧γ∧(µ1∨(γ1∧µ2))→
µ′1 ∨ (γ′1 ∧ µ′2). Using Lemma 5.8 it follows that φ ∧ (ε1 ∨ (ψ1 ∧ ε2)) ∧ γ ∧ (µ1 ∨ (γ1 ∧ µ2)) ≡
(φ ∧ ρ ∧ ε1 ∧ µ1) ∨ (φ ∧ ρ ∧ ψ1 ∧ ε2 ∧ γ1 ∧ µ2), and therefore, from (5.9) and (5.10) we get

µ′1 ∨ (γ′1 ∧ µ′2).

Case C = if b then C1 else C2 fi. We have

VCSPP(φ, ρ, if b then C1 else C2 fi) = ((b ∧ ψ1) ∨ (¬b ∧ ψ2), (b ∧ γ1) ∨ (¬b ∧ γ2),

(b ∧ ε1) ∨ (¬b ∨ ε2), (b ∧ µ1) ∨ (¬b ∧ µ2),Γ1 ∪ Γ2)

with (ψ1, γ1, ε1, µ1, Γ1 ) = VCSPP(φ ∧ b, ρ ∧ b, C1) (5.11)

(ψ2, γ2, ε2, µ2, Γ2 ) = VCSPP(φ ∧ ¬b, ρ ∧ ¬b, C2) (5.12)

VCSPPA(φ, ρ′, if b then C1 else C2 fi) = ((b ∧ ψ1) ∨ (¬b ∧ ψ2), (b ∧ γ′1) ∨ (¬b ∧ γ′2),

(b ∧ ε1) ∨ (¬b ∧ ε2), (b ∧ µ′1) ∨ (¬b ∧ µ′2),Γ′1 ∪ Γ′2)

with (ψ1, γ
′
1, ε1, µ

′
1, Γ′1 ) = VCSPPA(φ, ρ′, C1) (5.13)

(ψ2, γ
′
2, ε2, µ

′
2, Γ′2 ) = VCSPPA(φ ∧ ψ1, ρ

′ ∧ γ′1, C2) (5.14)

and |= Γ1 ∪ Γ2 holds or |= Γ′1 ∪ Γ′2 holds.
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From φ ∧ ρ→ ρ′, ρ′ → ρ, and the assumption that |= Γ1 ∪ Γ2 or |= Γ′1 ∪ Γ′2, by IH we obtain:

φ ∧ b ∧ ψ1 ∧ ρ ∧ γ1 → γ′1, γ′1 → γ1, φ ∧ b ∧ ε1 ∧ γ ∧ µ1 → µ′1, µ′1 → µ1 (5.15)

φ ∧ ¬b ∧ ψ2 ∧ ρ ∧ γ2 → γ′2, γ′2 → γ2, φ ∧ ¬b ∧ ε2 ∧ γ ∧ µ2 → µ′2, µ′2 → µ2 (5.16)

The following proposition equivalence holds φ∧((b∧ψ1)∨(¬b∧ψ2))∧ρ∧((b∧γ1)∨(¬b∧γ2)) ≡
(φ ∧ ρ ∧ b ∧ ψ1 ∧ γ1) ∨ (φ ∧ ρ ∧ ¬b ∧ ψ2 ∧ γ2), and therefore, from (5.15) and (5.16) we get

(b ∧ γ′1) ∨ (¬b ∧ γ′2), and (b ∧ γ′1) ∨ (¬b ∧ γ′2) → (b ∧ γ1) ∨ (¬b ∧ γ2). The rest of the proof is

analogous.

The other cases are analogous.

It is now possible to prove that, in terms of validity of the generated VCs, it is indifferent

whether asserted conditions are added to contexts or not. In particular for the partial context

variants we have the following:

Proposition 5.14 (VCSPP and VCSPPA). If φ∧ρ→ ρ′, ρ′ → ρ, VCSPP(φ, ρ, C) = (ψ, γ, ε, µ,Γ),

and VCSPPA(φ, ρ′, C) = (ψ, γ′, ε, µ′,Γ′), then |= Γ iff |= Γ′.

Proof. The proof follows by induction on C.

Case C = assert θ. We have that φ ∧ ρ→ ρ′ and ρ′ → ρ. Assume that |= φ ∧ ρ→ θ holds.

Then |= φ∧ ρ′ → φ∧ ρ→ θ. Otherwise |= φ∧ ρ′ → θ holds and therefore |= φ∧ ρ→ φ∧ ρ′ → θ.

Case C = C1;C2. We have

VCSPP(φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∨ (ψ1 ∧ ε2), µ1 ∨ (γ1 ∧ µ2), Γ1 ∪ Γ2 )

with (ψ1, γ1, ε1, µ1, Γ1 ) = VCSPP(φ, ρ, C1) (5.17)

(ψ2, γ2, ε2, µ2, Γ2 ) = VCSPP(φ ∧ ψ1, ρ ∧ γ1, C2) (5.18)

VCSPPA(φ, ρ′, C1 ; C2) = (ψ1 ∧ ψ2, γ
′
1 ∧ γ′2, ε1 ∨ (ψ1 ∧ ε2), µ′1 ∨ (γ′1 ∧ µ′2), Γ′1 ∪ Γ′2 )

with (ψ1, γ
′
1, ε1, µ

′
1, Γ′1 ) = VCSPPA(φ, ρ′, C1) (5.19)

(ψ2, γ
′
2, ε2, µ

′
2, Γ′2 ) = VCSPPA(φ ∧ ψ1, ρ

′ ∧ γ′1, C2) (5.20)

Assume |= Γ1 ∪ Γ2. From Lemma 5.13 we have that φ ∧ ψ1 ∧ ρ ∧ γ1 → γ′1 and γ′1 → γ1.

Therefore, by IH (twice) we have |= Γ′1 ∪ Γ′2. The inverse implication is analogous.

The other cases are analogous.

In order to make the bridge between the partial and global context variants, we will need

a few more lemmas. The following states that if the axiomatic context fed to the VCGen is

contradictory with some other condition then, using that other condition to prove the set of

VCs originates an inconsistency, and therefore, the set of VCs becomes trivially valid. The

intuition behind this is that the condition ρ∧ δ will appear in the left hand side of all the VCs,

and appending to it the condition θ creates the inconsistency.
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Lemma 5.15. Let i ∈ {G,GA}. If δ ∧ θ → ⊥ and VCSPi(φ, ρ ∧ δ, C) = (ψ, γ, ε, µ,Γ), then

|= θ →
∧

Γ.

Proof. By induction on C. All cases are straightforward.

At this point, it becomes essential to state that the encoding of the program is never in-

consistent, in the sense that, there is always some state that satisfies one of the operational

encodings referring to normal or exceptional termination. This is captured by the following

lemma, and is crucial to prove the subsequent one.

Lemma 5.16. Let s ∈ Σ, and i ∈ {G,GA}, such that s |= φ and φ#C. If VCSPi(φ, ρ, C) =

(ψ, γ, ε, µ,Γ), then there is some s′ ∈ Σ such that for all x ∈ Var \ Asgn(C), s′(x) = s(x), and

either s′ |= φ ∧ ψ or s′ |= φ ∧ ε.

Proof. The proof follows by induction on C for i = G. For i = GA the proof is analogous.

Case C = skip, C = assume θ, C = assert θ or C = throw. Trivial, since Asgn(C) = ∅,
and either ψ is a tautology or ε is a tautology.

Case C = x := e. We can take s′ = s[x 7→ [[e]](s)]. Clearly for all y ∈ Var \ {x}, s′(y) = s(y)

and since x := e ∈ ACommsa, we have x /∈ FV(e) and therefore s′ |= x = e.

Case C = C1 ; C2. Since we have s |= φ and φ#C, by IH we have that there some s′ ∈ Σ

such that for all x ∈ Var \ Asgn(C1), s
′(x) = s(x), and either s′ |= φ ∧ ψ1 or s′ |= φ ∧ ε1.

• If s′ |= φ∧ ε1 we are done, because Asgn(C1) ⊆ Asgn(C1 ; C2) and s′ |= φ∧ (ε1∨ (ψ1∧ ε2)).

• If s′ |= φ∧ψ1 then from Lemma 5.12 and Definition 5.6 we have (φ∧ψ1)#C2 and therefore,

by IH we have that exists some s′′ ∈ Σ, such that for all x ∈ Var\Asgn(C2), s
′′(x) = s′(x)

and either s′′ |= φ∧ψ1∧ψ2 or s′′ |= φ∧ψ1∧ε2. We have that for all x ∈ Var\Asgn(C1 ; C2),

s′′(x) = s(x) because x /∈ Asgn(C2) and x /∈ Asgn(C1) we therefore s′′(x) = s′(x) = s(x).

Finally we have that either s′′ |= φ ∧ ψ1 ∧ ψ2 or s′′ |= φ ∧ (ε1 ∨ (ψ1 ∧ ε2)).

Case C = tryC1 catchC2 hc. Analogous to the sequence case.

Case C = if b then C1 else C2 fi. Since s |= φ, we clearly have that s |= φ∧ b or s |= φ∧¬b.

• If s |= φ ∧ b, since (φ ∧ b)#C1, by IH there exists some s′ ∈ Σ, such that for all x ∈
Var \ Asgn(C1), s

′(x) = s(x), and s′ |= φ ∧ b ∧ ψ1 or s′ |= φ ∧ b ∧ ε1. We have that for

all x ∈ Var \ Asgn(if b then C1 else C2 fi), s′(x) = s(x), because Asgn(C1) ⊆ Asgn(if

b then C1 else C2 fi).

– Now, if s′ |= φ ∧ b ∧ ψ1 then we are done because s′ |= φ ∧ ((b ∧ ψ1) ∨ (¬b ∧ ψ2)).

– Otherwise, s′ |= φ ∧ b ∧ ε1 and we are done because s′ |= φ ∧ ((b ∧ ε1) ∨ (¬b ∧ ε2)).

• For the case s |= φ ∧ ¬b the proof is analogous.



126 A VERIFICATION WORKFLOW BASED ON SA PROGRAMS

Using the lemma above, we can now prove that if we have two programs, for instance C1

and C2, and if C2 does not assign variables from C1 then the encoding coming from C2 does

not influence the proof of the properties generated for C1. The idea here is to isolate the part

of the context that is relevant to prove the set of properties and exclude the rest.

Lemma 5.17. Let i ∈ {G,GA}. If Vars(C1) ∩ Asgn(C2) = ∅, φ#C1, φ#C2, ρ#C1, ρ#C2,

VCSPi(φ, ρ, C1) = (ψ, γ, ε, µ,Γ), and VCSPi(φ′, ρ′, C2) = (ψ′, γ′, ε′, µ′,Γ′), then the following

hold:

1. If |= φ ∧ ψ ∧ ψ′ →
∧

Γ and |= φ ∧ ψ ∧ ε′ →
∧

Γ then |= φ ∧ ψ →
∧

Γ.

2. If |= φ ∧ ε ∧ ψ′ →
∧

Γ and |= φ ∧ ε ∧ ε′ →
∧

Γ then |= φ ∧ ε→
∧

Γ.

Proof. (1) The proof follows by contradiction. Assume that

|= φ ∧ ψ ∧ ψ′ →
∧

Γ and |= φ ∧ ψ ∧ ε′ →
∧

Γ (5.21)

Assume also that 6|= φ∧ψ →
∧

Γ, that is, there exists some s ∈ Σ such that s |= φ∧ψ and s 6|=∧
Γ. From Vars(C1)∩Asgn(C2) = ∅, φ#C2 and Lemma 5.12 we have that (φ∧ψ)#C2. Therefore,

by Lemma 5.16 we have that there exists some s′ ∈ Σ, such that for all x ∈ Var \ Asgn(C2),

s′(x) = s(x), and either s′ |= φ ∧ ψ ∧ ψ′ or s′ |= φ ∧ ψ ∧ ε′. Since FV(
∧

Γ) ∩ Asgn(C2) = ∅ and

s 6|=
∧

Γ we have that s′ 6|=
∧

Γ, which is a contradiction of (5.21).

(2) Analogous to the previous.

Relying on the previous lemmas, it is now possible to prove that the VCs generated by

VCSPP are equivalent to those generated by VCSPG.

Proposition 5.18 (VCSPP and VCSPG). Let φ#C, VCSPP(φ, ρ, C) = (ψ, γ, ε, µ,Γ), and

VCSPG(φ, ρ, C) = (ψ, γ, ε, µ,Γ′). Then |= Γ iff |= φ ∧ ψ →
∧

Γ′ and |= φ ∧ ε→
∧

Γ′.

Proof. The proof follows by induction on C.

Cases C = skip, x := e, C = assume θ, and C = throw are trivial, since Γ = Γ′ = ∅.
Case C = assert θ. In this case we have VCSPP(φ, ρ,assert θ) = (>,>,⊥,⊥, {φ ∧ ρ→ θ})

and VCSPG(φ, ρ,assert θ) = (>,>,⊥,⊥, {ρ → θ}). Therefore, it holds that |= φ ∧ ρ → θ iff

|= φ ∧ > → ρ→ θ and |= φ ∧ ⊥ → ρ→ θ.

Case C = C1 ; C2. We have

VCSPP(φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∨ (ψ1 ∧ ε2), µ1 ∨ (γ1 ∧ µ2), Γ1 ∪ Γ2 )

with (ψ1, γ1, ε1, µ1, Γ1 ) = VCSPP(φ, ρ, C1) (5.22)

(ψ2, γ2, ε2, µ2, Γ2 ) = VCSPP(φ ∧ ψ1, ρ ∧ γ1, C2) (5.23)

VCSPG(φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∨ (ψ1 ∧ ε2), µ1 ∨ (γ1 ∧ µ2), Γ′1 ∪ Γ′2 )

with (ψ1, γ1, ε1, µ1, Γ′1 ) = VCSPG(φ, ρ, C1) (5.24)

(ψ2, γ2, ε2, µ2, Γ′2 ) = VCSPG(φ ∧ ψ1, ρ ∧ γ1, C2) (5.25)
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From φ#C and ρ#C it follows φ#C1 and ρ#C1. So, from (5.22) and (5.24), by IH, we have

that

|= Γ1 iff |= φ ∧ ψ1 →
∧

Γ′1 and |= φ ∧ ε1 →
∧

Γ′1 (5.26)

Using Lemma 5.12 we also have (φ ∧ ψ1)#C2 and (ρ ∧ γ1)#C2. Therefore, from (5.23) and

(5.25), by IH, it follows that

|= Γ2 iff |= φ ∧ ψ1 ∧ ψ2 →
∧

Γ′2 and |= φ ∧ ψ1 ∧ ε2 →
∧

Γ′2 (5.27)

Let us now prove that

|= Γ1 ∪ Γ2 iff |= φ ∧ ψ1 ∧ ψ2 →
∧

(Γ′1 ∪ Γ′2) and |= φ ∧ (ε1 ∨ (ψ1 ∧ ε2))→
∧

(Γ′1 ∪ Γ′2)

Assume |= Γ1 ∪ Γ2. From (5.24), by Lemma 5.8, we have |= γ1 ∧ ε1 → ⊥, and from (5.25),

using Lemma 5.15 we have |= ε1 →
∧

Γ′2. Hence, by (5.26) and (5.27), we can conclude that

|= φ ∧ ψ1 ∧ ψ2 →
∧

(Γ′1 ∪ Γ′2) and |= φ ∧ (ε1 ∨ (ψ1 ∧ ε2)) →
∧

(Γ′1 ∪ Γ′2). On the other hand,

assume |= φ ∧ ψ1 ∧ ψ2 →
∧

(Γ′1 ∪ Γ′2) and |= φ ∧ (ε1 ∨ (ψ1 ∧ ε2)) →
∧

(Γ′1 ∪ Γ′2). From the last

statement we get |= φ ∧ ε1 →
∧

(Γ′1 ∪ Γ′2) and |= φ ∧ ψ1 ∧ ε2 →
∧

(Γ′1 ∪ Γ′2). By Lemma 5.17 we

get |= φ ∧ ψ1 →
∧

Γ′1 and, using (5.26) and (5.27), we can now conclude that |= Γ1 ∪ Γ2.

Case C = tryC1 catchC2 hc. Analogous to the previous case.

Case C = if b then C1 else C2 fi. We have

VCSPP(φ, ρ, if b then C1 else C2 fi) = ( (b ∧ ψ1) ∨ (¬b ∧ ψ2), (b ∧ γ1) ∨ (¬b ∧ γ2),

(b ∧ ε1) ∨ (¬b ∨ ε2), (b ∧ µ1) ∨ (¬b ∧ µ2), Γ1 ∪ Γ2 )

with (ψ1, γ1, ε1, µ1, Γ1 ) = VCSPP(φ ∧ b, ρ ∧ b, C1) (5.28)

(ψ2, γ2, ε2, µ2, Γ2 ) = VCSPP(φ ∧ ¬b, ρ ∧ ¬b, C2) (5.29)

VCSPG(φ, ρ, if b then C1 else C2 fi) = ( (b ∧ ψ1) ∨ (¬b ∧ ψ2), (b ∧ γ1) ∨ (¬b ∧ γ2),

(b ∧ ε1) ∨ (¬b ∧ ε2), (b ∧ µ1) ∨ (¬b ∧ µ2), Γ′1 ∪ Γ′2 )

with (ψ1, γ1, ε1, µ1, Γ′1 ) = VCSPG(φ ∧ b, ρ ∧ b, C1) (5.30)

(ψ2, γ2, ε2, µ2, Γ′2 ) = VCSPG(φ ∧ ¬b, ρ ∧ ¬b, C2) (5.31)

From φ#C and ρ#C it follows (φ ∧ b)#C1 and (ρ ∧ b)#C1. So, from (5.28) and (5.30), by IH,

we have that

|= Γ1 iff |= φ ∧ b ∧ ψ1 →
∧

Γ′1 and |= φ ∧ b ∧ ε1 →
∧

Γ′1 (5.32)

We also have (φ∧¬b)#C2 and (ρ∧¬b)#C2. Therefore, from (5.29) and (5.31), by IH, it follows
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that

|= Γ1 iff |= φ ∧ ¬b ∧ ψ2 →
∧

Γ′2 and |= φ ∧ ¬b ∧ ε2 →
∧

Γ′2 (5.33)

From (5.30) and (5.31), by Lemma 5.15, we know that for every θ it holds that b ∧ θ →
∧

Γ′1
and ¬b ∧ θ →

∧
Γ′2. So, using (5.32) and (5.33) we can conclude that: |= Γ1 ∪ Γ2 iff

|= φ ∧ ((b ∧ ψ1) ∨ (¬ ∧ ψ2))→
∧

(Γ′1 ∪ Γ′2) and |= φ ∧ ((b ∧ ε1) ∨ (¬ ∧ ε2))→
∧

(Γ′1 ∪ Γ′2)

Finally, regarding VCSP variants we can conclude that the VCs generated by VCSPPA are

equivalent to those generated by VCSPGA. The proof is analogous to the proof of the previous

lemma, and it relies on the lemmas that were presented before.

Proposition 5.19 (VCSPPA and VCSPGA). Let VCSPPA(φ, ρ, C) = (ψ, γ, ε, µ,Γ) and

VCSPGA(φ, ρ, C) = (ψ′, γ′, ε′, µ′,Γ′). Then |= Γ iff |= φ ∧ ψ′ →
∧

Γ′ and |= φ ∧ ε′ →
∧

Γ.

Proof. By induction on C. All cases are analogous to the proof of Proposition 5.18.

We conclude that in terms of validity, it is indifferent to use any of the concrete VCGens

from the VCSP family in order to generate VCs. With this, we move our discussion to the

VCGens from the VCCNF family.

The Generalized Conditional Normal Form VCGen. Although this family of VCGens

is used extensively in bounded model checking of software, none of its variants have, at least

as far as we know, been proved sound nor complete w.r.t. a programming semantics. We will

now proceed with the correspondence between this family of VCGens and the VCSPG, which

will allow us to establish a relation with the program semantics from the previous section.

Note that the main difference between these two families of VCGens is the way they encode

path conditions, therefore, the following lemma makes a correspondence between the path

conditions used by VCCNFG and the operational and axiomatic context of VCSPG.

Lemma 5.20. Let C∈ACommsa and φ, φ′, ρ, ρ′, π ∈ Assert. If VCSPG(φ, ρ, C)=(ψ, γ, ε, µ,Γ)

and VCCNFG(π, φ′, ρ′, C) = (ψ′, γ′, ε′, µ′,Γ′), then (π → ψ) ≡ ψ′, (π → γ) ≡ γ′, (π → ε) ≡ ε′,

and (π → µ) ≡ µ′.

Proof. By induction on C. All cases are straightforward.

With this, we are now ready to establish the relation between the two VCGens. First we

show that the set of properties generated by VCCNFG is valid, if and only if, the set generated

by VCSPG is valid. Since this is not enough to establish the relation between the two VCGens,

because it does not say anything about the operational encoding, we postpone the final result

for the subsequent proposition.
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Lemma 5.21. Let C ∈ ACommsa and ρ′ ∧ π ≡ ρ. If VCSPG(φ, ρ, C) = (ψ, γ, ε, µ,Γ) and

VCCNFG(π, φ′, ρ′, C) = (ψ′, γ′, ε′, µ′,Γ), then |= Γ iff |= Γ′.

Proof. By induction on C.

Case C = assert θ. Since we have ρ′ ∧ π ≡ ρ, the following holds
∧
{ρ→ θ} ≡

∧
{ρ′ → π →

θ}
Case C = C1 ; C2. We have

VCSPG(φ, ρ, C1 ; C2) = (ψ1 ∧ ψ2, γ1 ∧ γ2, ε1 ∨ (ψ1 ∧ ε2), µ1 ∨ (γ1 ∧ µ2), Γ1 ∪ Γ2 )

with (ψ1, γ1, ε1, µ1, Γ1 ) = VCSPG(φ, ρ, C1) (5.34)

(ψ2, γ2, ε2, µ2, Γ2 ) = VCSPG(φ ∧ ψ1, ρ ∧ γ1, C2) (5.35)

VCCNFG(π, φ′, ρ′, C1 ; C2) = (ψ′1 ∧ ψ′2, γ′1 ∧ γ′2, ε′1 ∨ (ψ′1 ∧ ε′2), µ′1 ∨ (γ′1 ∧ µ′2), Γ′1 ∪ Γ′2 )

with (ψ′1, γ
′
1, ε
′
1, µ

′
1, Γ′1 ) = VCCNFG(π, φ′, ρ′, C1) (5.36)

(ψ′2, γ
′
2, ε
′
2, µ

′
2, Γ′2 ) = VCCNFG(π, φ′ ∧ ψ′1, ρ′ ∧ γ′1, C2) (5.37)

From Lemma 5.20 we have π → γ1 ≡ γ′1, therefore, the following holds ρ′ ∧ γ′1 ∧ π ≡ ρ′ ∧ (π ∧
γ1) ∧ π ≡ ρ′ ∧ γ1 ∧ π ≡ ρ ∧ γ1 (last step comes from ρ′ ∧ π ≡ ρ). By IH we have |= (Γ1 ∪ Γ2) iff

|= (Γ′1 ∪ Γ′2).

Other cases are analogous.

Now, putting the last two lemmas together, we can conclude that VCSPG is indeed equivalent

to VCCNFG.

Proposition 5.22 (VCSPG and VCCNFG). If φ′ ∧ π ≡ φ, ρ′ ∧ π ≡ ρ, VCSPG(φ, ρ, C) =

(ψ, γ, ε, µ,Γ), and VCCNFG(π, φ′, ρ′, C) = (ψ′, γ′, ε′, µ′,Γ′) then, |= φ ∧ ψ →
∧

Γ iff |= φ′ ∧
π ∧ ψ′ →

∧
Γ′, and |= φ ∧ ε→

∧
Γ iff |= φ′ ∧ π ∧ ε′ →

∧
Γ′.

Proof. By Lemma 5.21 we have that |= Γ iff |= Γ′. Using Lemma 5.20 we have that φ ∧ ψ ≡
π ∧ φ′ ∧ ψ′ and φ ∧ ε ≡ π ∧ φ′ ∧ ε.

It is now possible to show that VCCNFG is sound and relatively complete (in the sense of

Cook) w.r.t. the program semantics. Since traditionally this VCGen is used to check properties

asserted in the code, we state the following corollary with respect to a program and not a Hoare

triple. Nonetheless, the corollary is easily adapted for the former.

Corollary 5.23. If VCCNFG(>,>,>, C) = (ψ, γ, ε, µ,Γ), then |= ψ → Γ and |= ε → Γ, iff for

all s ∈ Σ, 〈C, s〉 σ implies σ 6= •.

Proof. Follows from Propositions 5.22, 5.18, 5.14, 5.9, 5.6, 5.3, and 5.1.

In order to expand the previous corollary for the other variants of the VCCNF family, we

need to create lemmas that are analogous to those used in the proofs of equivalence of the
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VCGens from the VCSP family. Since this would be tedious and pretty straightforward, we

will omit here the proofs for the rest of the cases and state only the equivalence results in the

following propositions.

Proposition 5.24 (VCCNFP and VCCNFPA). If φ ∧ ρ → ρ′, ρ′ → ρ, VCCNFP(π, φ, ρ, C) =

(ψ, γ, ε, µ,Γ), and VCCNFPA(π, φ, ρ′, C) = (ψ, γ′, ε, µ′,Γ′), then |= Γ iff |= Γ′.

Proof. Analogous to the proof of Proposition 5.14.

Proposition 5.25 (VCCNFP and VCCNFG). If φ#C, VCCNFP(π, φ, ρ, C) = (ψ, γ, ε, µ,Γ), and

VCCNFG(π, φ, ρ, C) = (ψ, γ, ε, µ,Γ′), then |= Γ iff |= φ∧π∧ψ →
∧

Γ′ and |= φ∧π∧ ε→
∧

Γ′.

Proof. Analogous to the proof of Proposition 5.18.

Proposition 5.26 (VCCNFPA and VCCNFGA). If VCCNFPA(π, φ, ρ, C) = (ψ, γ, ε, µ,Γ) and

VCCNFGA(π, φ, ρ, C) = (ψ′, γ′, ε′, µ′,Γ′) then |= Γ iff |= φ∧π∧ψ′ →
∧

Γ′ and |= φ∧π∧ε′ →
∧

Γ.

Proof. Analogous to the proof of Proposition 5.19.

Using the propositions presented in this section, it is now possible to show that all VCGens

generate VCs that are equivalent. This result will be particularly useful when proving the

correction of the verification framework in the next section.

Corollary 5.27. Let v, v′ ∈ {SP,CNF}, d, d′ ∈ {P,PA,G,GA}, VCGT(φ,C, ψ, ε, v, d) = Γ, and

VCGT(φ,C, ψ, ε, v′, d′) = Γ′. Then |= Γ iff |= Γ′.

Proof. The proof follows by expanding the function VCGT and by analysis of cases using Propo-

sitions 5.26, 5.25, 5.24, 5.22, 5.19, 5.18, and 5.14.

5.4 A Proved Verification Framework

Recall that our goal is to have a completely proved verification workflow based on the translation

of programs into SA. At this point, we have a set of frameworks to reason about non-SA

programs and also a set of optimized frameworks to reason about SA programs (the system Hsa

and the VCGens that were shown to be sound and complete in the previous section) . However,

our main goal is not to reason about SA programs, but else to reason about non-SA programs

by translating them into SA. For us to have a completely proved verification framework, such

a translation of non-SA programs into SA programs needs to be formalized. In particular, a

translation must preserve the validity of Hoare triples and must not translate invalid triples

into valid ones.

Similarly to Section 3.1, in this section instead of proposing a concrete SA translation and

showing that it fits in our verified framework, we introduce formally the notion of SA translation

and then prove that any translation that complies with such a notion can be plugged into the

verification framework without compromising the soundness and completeness of the verification

method. Let us start by the defining what is an SA translation. The formulation of the following
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definition follows closely Definition 3.1, but it uses the tools and concepts about programs

presented in this chapter.

Definition 5.8 (SA translation). Let C ∈ AComm, φ, ψ, ε ∈ Assert, and T : Assert ×
AComm×Assert×Assert ↪→ Assert×ACommsa ×Assert×Assert. The function T is

said to be a SA translation if when T(φ,C, ψ, ε) = (φ′, C ′, ψ′, ε′), we have that φ′#C ′, and both

the following hold:

1. If |= {φ′}C ′ {ψ′, ε′}, then |= {φ}C {ψ, ε}.

2. If `Hg {φ}C {ψ, ε}, then `Hg {φ′}C ′ {ψ′, ε′}.

With this, it is now possible to reason about the translation of programs into SA form

without actually defining a concrete translation. In particular, this allows us to consider the

complete verification workflow, based on the use of SA form, and the generation of VCs using

the VCGens from the cube. We start by showing that when all the VCs generated by VCGT

(defined in Figure 4.10) are valid, then the original triple is semantically valid, that is, the

verification workflow is sound.

Proposition 5.28. Let C ∈ AComm, φ, ψ, ε ∈ Assert, v ∈ {SP,CNF}, d ∈ {P,PA,G,GA},
and T : Assert×AComm×Assert×Assert ↪→ Assert×ACommsa×Assert×Assert such

that T is a valid SA translation. Then, if T(φ,C, ψ, ε) = (φ′, C ′, ψ′, ε′) and |= VCGT(φ′, C ′, ψ′, ε′,

v, d), we have that |= {φ}C {ψ, ε}.

Proof. Assume T(φ,C, ψ, ε) = (φ′, C ′, ψ′, ε′), VCGT(φ′, C ′, ψ′, ε′, v, d) = Γ, and |= Γ. From

Corollary 5.27, we have that VCGT(φ′, C ′, ψ′, ε′,SP,PA) = Γ′ and |= Γ′, and by inspection of

function VCGT, it must be that VCSPPA(>, φ′, C ′) = (ψ1, γ1, ε1, µ1,Γ1), |= Γ1, |= φ′ ∧ψ1 ∧ γ1 →
ψ′, and |= φ′ ∧ ε1 ∧ µ1 → ε′. By Proposition 5.9 we have that `Hsa {φ′}C ′ {φ′ ∧ ψ2, φ

′ ∧ ε2}, for

some ψ2, ε2 ∈ Assert such that ψ2 ≡ ψ1∧γ1 and ε2 ≡ ε1∧µ1. Since φ′#C ′, by Proposition 5.6 we

obtain `H {φ′}C ′ {φ′∧ψ2, φ
′∧ε2} and applying the (conseq) rule we have that `H {φ′}C ′ {ψ′, ε′},

because ψ2 ≡ ψ1∧γ1 and |= φ′∧ψ1∧γ1 → ψ′, and also because ε2 ≡ ε1∧µ1 and |= φ′∧ε1∧µ1 → ε′.

Finally, by Proposition 5.1, we have |= {φ′}C ′ {ψ′, ε′}, and from Definition 5.8, we conclude

that |= {φ}C {ψ, ε}.

We also need to express that whenever a triple is originally valid and the program correctly-

annotated w.r.t. the specification, then the VCs that will be obtained by converting it into

SA, and generating a set of VCs using one of the VCGens from the cube, will be valid. This

shows basically that the verification workflow is complete (in the sense of Cook) for correctly

annotated programs.

Proposition 5.29. Let C ∈ AComm, φ, ψ, ε ∈ Assert, v ∈ {SP,CNF}, d ∈ {P,PA,G,GA}
and T : Assert ×AComm ×Assert ×Assert ↪→ Assert ×ACommsa ×Assert ×Assert

such that T is an SA translation and T(φ,C, ψ, ε) = (φ′, C ′, ψ′, ε′). If |= {φ}C {ψ, ε} and C is

correctly-annotated w.r.t. (φ, ψ, ε), then VCGT(φ′, C ′, ψ′, ε′, v, d) = Γ, for some Γ, and |= Γ.
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Proof. Assume that T(φ,C, ψ, ε) = (φ′, C ′, ψ′, ε′), |= {φ}C {ψ, ε} and C is correctly-annotated

w.r.t. (φ, ψ, ε). From Proposition 5.2, we have that `H {φ}C {ψ, ε} and from Definition 5.4,

`Hg {φ}C {ψ, ε}. Now, from Definition 5.8 we have that `Hg {φ′}C {ψ′, ε′}, and since φ′#C ′,

by Proposition 5.7 it is possible to obtain `Hsa {φ′}C {φ′ ∧ ψ1, φ
′ ∧ ε1}, |= φ′ ∧ ψ1 → ψ′,

|= φ′ ∧ ε1 → ε′. It follows from Proposition 5.9 that if VCSPPA(>, φ′, C ′) = (ψ2, γ2, ε2, µ2,Γ2),

then |= Γ2, ψ1 ≡ ψ2 ∧ γ2, and ε1 ≡ ε2 ∧ µ2. Finally, by definition VCGT(φ′, C ′, ψ1, ε1,SP,PA) =

Γ2 ∪ {φ′ ∧ ψ2 ∧ γ2 → ψ1, φ
′ ∧ ε2 ∧ µ2 → ε1}. Since we have Γ2, and φ′ ∧ ψ2 ∧ γ2 → ψ1 (resp.

φ′∧ε2∧µ2 → ε1) follows from ψ1 ≡ ψ2∧γ2 and φ′∧ψ1 → ψ′ (resp.ε1 ≡ ε2∧µ2 and φ′∧ε1 → ε′),

we conclude from Corollary 5.27 that VCGT(φ′, C ′, ψ′, ε′, v, d) = Γ, for some Γ, and |= Γ.

5.5 Related Work

The verification framework of this chapter stands in contrast with the one of Chapter 3 in

that it is based on the translation of programs into a non-iterating single-assignment form.

Moreover it also considers a richer language by allowing assume, assert, and exceptions at both

the source and intermediate language. Even though these commands can be omitted in the

source language without affecting the overall formalization, they are essential for capturing

loops in the SA translation.

A first attempt to verify programs with exception handling was proposed by Cristian [39].

The author formally defines a programming language with support for exceptions, and then

proposes a deductive system Hoare triples. Along the years research was made towards the

verification of programs with exceptions, in particular in the context of Java [67, 94]. It is

common for the state of the art deductive verification tools to support exception handling. For

instance, Why3 [50] provides a programming language called WhyML that contains exceptions.

The KeY [1] verification tools, also deals with exceptions since it addresses verification of Java

programs annotated with Java Modeling Language (JML) [81].

The formalization of verification condition generation is not new. It has been addressed in

different contexts (e.g. [58, 54]), but they fall short of both unifying the different methods and

considering an SA intermediate form. Verification condition generation based on Hoare logic

has also been formalized using Higher-Order Logic, see for instance [66, 98], but not in the SA

setting.

In bounded model checking of software, loops are not converted to SA form, but instead

eliminated by a bounded expansion before conversion (see Section 2.6). A number of transfor-

mations are then performed on the SA form, and the resulting program is easily encoded as a

satisfiability problem. The transformations avoid exponential explosion, although they are not

based on the observations that led to the definition of efficient predicate transformers. To the

best of our knowledge, no proofs of soundness or completeness are available for bounded model

checking of software techniques.



Chapter 6

A Translation of Iterating Programs

into SA Form

This chapter is completely dedicated to a concrete translation of programs into SA form that

will be shown to be indeed an SA translation in the sense of Definition 5.8. The translation to be

presented is based on the one discussed in Section 2.4 and, as far as we know, this is the first time

that a translation of iterating programs into loop-free programs is proved correct. The results

from this chapter together with the results from the previous one allow us to have a completely

proved verification technique based on the translation of programs into (non-iterating) SA form

with assumes and asserts.

The function implementing the translation receives a program C ∈ AComm, that may in

particular contain annotated loops, and returns an SA (loop-free) program C ′ ∈ ACommsa.

Basically, the translation is responsible for renaming the variables in order to generate an SA

program, but also for replacing loops with code that checks that the annotated invariants are

valid and preserved during the iterations.

In what follows we will start by presenting a set of theoretical artifacts and results that

will allow us to present an SA translation as described above. In particular we will resort to

a small-step semantics, instead of the big-step style that was used in the previous chapters.

We will show that both styles are equivalent for our source language (and thus also for the SA

language). The SA translation that transforms loops into assumes and asserts is proposed and

the proof that it is indeed an SA translation w.r.t. Definition 5.8 is shown. This will allow us

to conclude that the translation is sound, in the sense that, if a translated triple is valid then

so is the original one, and complete w.r.t. system Hg, in the sense that, if the original triple is

derivable in system Hg, then so is the translated triple.

It should be mentioned that in general, for the sake of legibility, we use the same notation

for the same concepts as used in the translation of Chapter 3; however, those concepts can be

slightly different here. For instance, we will refer to versioned variables through the class named

Varsa, but the version will now be just a number, instead of a list of numbers.

The chapter is organized as follows: the next section presents a small-step semantics that is
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shown to be equivalent to the big-step semantics of the previous chapters. The SA translation

together with some initial results and auxiliary functions are proposed in Section 6.2. Sec-

tions 6.3 and 6.4 show that the translation is indeed an SA translation and Section 6.5 presents

related work.

6.1 A Small-step Semantics

It was referred in the background that a small-step semantics is sometimes convenient to prove

certain properties about certain programming languages. For reasons that will become clear

along the chapter this is precisely one of these cases. Therefore, we use this section to propose

a small-step semantics for programs with exceptions, assumes and asserts, and will prove that

it is equivalent to the big-step semantic of the previous chapter.

We start by noting that we inherit the notation introduced in Section 2.1, in particular the

notion of stuck configuration, derivation sequence and the respective symbols. The small-step

program semantics for programs with exceptions, assumes and asserts is given by a deterministic

transition relation ⇒ ⊆ AComm×Σ× (Σ• + AComm×Σ) which is defined below. A given

configuration can evolve into another intermediate configuration; end its execution in a terminal

state from Σ•; or else, get stuck. The last two alternatives are specially relevant here, since

the current semantics allow for executions to get stuck: note that the transition relation is not

defined for the configuration 〈assume θ, s〉 when s 6|= θ. This is exactly the reason why the set

of termination states does not need to include the blocked state: in a small-step setting, we can

distinguish commands that block by observing that the derivation sequence evolves into a stuck

configuration.

Definition 6.1 (Structural operational semantics). The transition relation for AComm is

defined as the smallest relation ⇒ ⊆ AComm × Σ × (Σ• + AComm × Σ) satisfying the

following set of rules:

1. 〈skip, s〉 ⇒ n(s).

2. 〈throw, s〉 ⇒ e(s).

3. 〈x := e, s〉 ⇒ n(s[x 7→ [[e]](s)]).

4. if s |= θ then 〈assume θ, s〉 ⇒ n(s).

5. if s |= θ then 〈assert θ, s〉 ⇒ n(s).

6. if s 6|= θ then 〈assert θ, s〉 ⇒ •.

7. if 〈C1, s〉 ⇒ • then 〈C1 ; C2, s〉 ⇒ •.

8. if 〈C1, s〉 ⇒ e(s′) then 〈C1 ; C2, s〉 ⇒ e(s′).

9. if 〈C1, s〉 ⇒ n(s′) then 〈C1 ; C2, s〉 ⇒ 〈C2, s
′〉.
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10. if 〈C1, s〉 ⇒ 〈C ′1, s′〉, then 〈C1 ; C2, s〉 ⇒ 〈C ′1 ; C2, s
′〉.

11. if 〈C1, s〉 ⇒ • then 〈tryC1 catchC2 hc, s〉 ⇒ •.

12. if 〈C1, s〉 ⇒ e(s′) then 〈tryC1 catchC2 hc, s〉 ⇒ 〈C2, s
′〉.

13. if 〈C1, s〉 ⇒ n(s′) then 〈tryC1 catchC2 hc, s〉 ⇒ n(s′).

14. if 〈C1, s〉 ⇒ 〈C ′1, s′〉, then 〈tryC1 catchC2 hc, s〉 ⇒ 〈tryC ′1 catchC2 hc, s′〉.

15. if s |= b, then 〈if b then C1 else C2 fi, s〉 ⇒ 〈C1, s〉.

16. if s 6|= b, then 〈if b then C1 else C2 fi, s〉 ⇒ 〈C2, s〉.

17. 〈while b do C1 od, s〉 ⇒ 〈if b then {C1 ; while b do C1 od} else skip fi, s〉.

For the sake of proving the correctness of our translation w.r.t. the framework from the

previous section, the equivalence of both semantics should be established. For that, we start

by introducing some lemmas about the execution of the sequence and try-catch commands

in the small-step semantics. The following lemma observes that the second command (either

from the sequence, or try-catch structured commands) does not influence the execution of the

first. In particular for the sequence command, the second command is only executed if the

first terminates normally; analogously, for the try-catch command, the second command is only

executed if the first terminates exceptionally.

Lemma 6.1. Let C1, C2 ∈ AComm and s, s′ ∈ Σ. Then the following holds:

1. If 〈C1, s〉 6⇒n , then 〈C1 ; C2, s〉 6⇒n .

2. If 〈C1, s〉 ⇒n •, then 〈C1 ; C2, s〉 ⇒n •.

3. If 〈C1, s〉 ⇒n e(s′), then 〈C1 ; C2, s〉 ⇒n e(s′).

4. If 〈C1, s〉 ⇒n n(s′), then 〈C1 ; C2, s〉 ⇒n 〈C2, s
′〉.

5. If 〈C1, s〉 6⇒n , then 〈tryC1 catchC2 hc, s〉 6⇒n .

6. If 〈C1, s〉 ⇒n •, then 〈tryC1 catchC2 hc, s〉 ⇒n •

7. If 〈C1, s〉 ⇒n n(s′), then 〈tryC1 catchC2 hc, s〉 ⇒ n(s′).

8. If 〈C1, s〉 ⇒n e(s′), then 〈tryC1 catchC2 hc, s〉 ⇒n 〈C2, s
′〉.

Proof. All proofs are by strong induction on the length k of the derivation sequence. Below the

proofs for 1. and 4. are shown. The other proofs are analogous.

1. Base case: Assume 〈C1, s〉 6⇒0 . So 〈C1, s〉 6⇒ and thus, by analysis of the Definition 6.1,

〈C1 ; C2, s〉 6⇒ . Therefore 〈C1 ; C2, s〉 6⇒0 .

Induction step: Assume that if 〈C1, s〉 6⇒k , then 〈C1 ; C2, s〉 6⇒k , for all k ≤ k0. Assume

also that 〈C1, s〉 6⇒k0+1 . We want to prove that 〈C1 ; C2, s〉 6⇒k0+1 . Since 〈C1, s〉 6⇒k0+1 , it
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must be the case that 〈C1, s〉 ⇒ 〈C ′1, s′〉 6⇒k0 , for some C ′1 and s′. By IH and Definition 6.1, we

have that 〈C1 ; C2, s〉 ⇒ 〈C ′1, s′〉 6⇒k0 . Hence 〈C1 ; C2, s〉 6⇒k0+1 .

4. Base case: Trivial, since there is no derivation sequence of length 0 from 〈C1, s〉 to n(s′).

Induction step: For all k ≤ k0, assume that if 〈C1, s〉 ⇒k n(s′), for some s′ ∈ Σ, then

〈C1 ; C2, s〉 ⇒k 〈C2, s
′〉. Assume also that 〈C1, s〉 ⇒k0+1 n(s1) for some s1 ∈ Σ. Then it must

be the case that 〈C1, s〉 ⇒ δ ⇒k0 n(s1), for some configuration δ. By analysis of the derivation

sequence starting in 〈C1 ; C2, s〉 we have two cases:

• the first rule is 〈C1 ; C2, s〉 ⇒ 〈C2, s2〉 because 〈C1, s〉 ⇒ n(s2) for some s2 ∈ Σ. Since the

semantics is deterministic we are done because s2 = s1 and k0 = 0.

• the first rule is 〈C1 ; C2, s〉 ⇒ 〈C ′1 ; C2, s2〉 because 〈C1, s〉 ⇒ 〈C ′1, s2〉 for some s2 ∈ Σ.

Then it must be the case that 〈C ′1, s2〉 ⇒k0 n(s1), and by IH we have that 〈C ′1 ; C2, s〉 ⇒k0

〈C2, s1〉. Therefore 〈C1 ; C2, s〉 ⇒ 〈C ′1 ; C2, s2〉 ⇒k0 〈C2, s1〉.

Whenever there exists a derivation sequence for a sequence or try-catch command, that

derivation can possibly be broken as stated by the following lemma. For instance, if a sequence

command gets stuck (resp. terminates in error state, or terminates in an exceptional state) then

either the first command got stuck (resp. terminated in error state, or terminated in exceptional

state), and the second never executed, or else the first terminated normally in a finite number

of steps and the second got stuck (resp. terminated in error state, or in exceptional state). On

the other hand, if a sequence command terminates normally, then it must be the case that both

sub-commands terminated normally. The same applies for the try-catch command in case of

stuck configuration and error termination. For normal termination and exceptional termination

the interpretation is analogous.

Lemma 6.2. Let C1, C2 ∈ AComm and s ∈ Σ. Then the following holds:

1. If 〈C1 ; C2, s〉 6⇒n , then 〈C1, s〉 6⇒n , or there exist n1, n2 ∈ N and s′ ∈ Σ such that

〈C1, s〉 ⇒n1 n(s′), 〈C2, s
′〉 6⇒n2 and n = n1 + n2.

2. If 〈C1 ; C2, s〉 ⇒n •, then 〈C1, s〉 ⇒n •, or there exist n1, n2 ∈ N and s′ ∈ Σ such that

〈C1, s〉 ⇒n1 n(s′), 〈C2, s
′〉 ⇒n2 • and n = n1 + n2.

3. If 〈C1 ; C2, s〉 ⇒n e(s′) for some s′ ∈ Σ, then 〈C1, s〉 ⇒n e(s′), or there exist n1, n2 ∈ N
and s′′ ∈ Σ such that 〈C1, s〉 ⇒n1 n(s′′), 〈C2, s

′′〉 ⇒n2 e(s′) and n = n1 + n2.

4. If 〈C1 ; C2, s〉 ⇒n n(s′) for some s′ ∈ Σ, then there exist n1, n2 ∈ N and s′′ ∈ Σ such that

〈C1, s〉 ⇒n1 n(s′′), 〈C2, s
′′〉 ⇒n2 n(s′) and n = n1 + n2.

5. If 〈tryC1 catchC2 hc, s〉 6⇒n , then 〈C1, s〉 6⇒n , or there exist n1, n2 ∈ N and s′ ∈ Σ

such that 〈C1, s〉 ⇒n1 e(s′), 〈C2, s
′〉 6⇒n2 and n = n1 + n2.

6. If 〈tryC1 catchC2 hc, s〉 ⇒n •, then 〈C1, s〉 ⇒n •, or there exist n1, n2 ∈ N and s′ ∈ Σ

such that 〈C1, s〉 ⇒n1 e(s′), 〈C2, s
′〉 ⇒n2 • and n = n1 + n2.
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7. If 〈tryC1 catchC2 hc, s〉 ⇒n n(s′) for some s′ ∈ Σ, then 〈C1, s〉 ⇒n n(s′), or there exist

n1, n2 ∈ N and s′′ ∈ Σ such that 〈C1, s〉 ⇒n1 e(s′′), 〈C2, s
′′〉 ⇒n2 n(s′) and n = n1 + n2.

8. If 〈tryC1 catchC2 hc, s〉 ⇒n e(s′) for some s′ ∈ Σ, then there exist n1, n2 ∈ N and

s′′ ∈ Σ such that 〈C1, s〉 ⇒n1 e(s′′), 〈C2, s
′′〉 ⇒n2 e(s′) and n = n1 + n2.

Proof. Again, all the proofs are by strong induction on the length k of the derivation sequence.

The proof for 7. is shown below and the other cases are analogous.

7. Base case: This case is trivial, since there is no derivation sequence of length 0 from

〈tryC1 catchC2 hc, s〉 to n(s).

Induction step: Assume that the property holds for all k ≤ k0. Assume also that 〈tryC1

catchC2 hc, s〉 ⇒k0+1 n(s1). Then it must be the case that 〈tryC1 catchC2 hc, s〉 ⇒ δ ⇒k0

n(s1) for some δ. We proceed by analysis of the derivation 〈tryC1 catchC2 hc, s〉 ⇒ δ. If the

applied rule is 12. then we have 〈tryC1 catchC2 hc, s〉 ⇒ 〈C2, s2〉 because 〈C1, s〉 ⇒ e(s2). In

this case we are done because it must be the case that 〈C2, s2〉 ⇒k0 n(s1). If the applied rule

is 14., then 〈tryC1 catchC2 hc, s〉 ⇒ 〈tryC ′1 catchC2 hc, s2〉 because 〈C1, s〉 ⇒ 〈C ′1, s2〉. It

must then be the case that 〈tryC ′1 catchC2 hc, s2〉 ⇒k0 n(s1), therefore by IH we have one of

the following:

• 〈C ′1, s2〉 ⇒k0 n(s1). In this case we are done because 〈C1, s〉 ⇒ 〈C ′1, s2〉 ⇒k0 n(s1). Hence,

〈C1, s〉 ⇒k0+1 n(s1).

• there exist some k1, k2 ∈ N and s3 ∈ Σ such that 〈C ′1, s2〉 ⇒k1 e(s3), 〈C2, s3〉 ⇒k2 n(s1)

and k0 = k1 + k2. Then 〈C1, s〉 ⇒ 〈C ′1, s2〉 ⇒k1 e(s3) and 〈C2, s3〉 ⇒k2 n(s1). Hence,

〈C1, s〉 ⇒k1+1 e(s3) and 〈C2, s3〉 ⇒k2 n(s1).

With the lemmas above, we can now establish the equivalence of both semantics. In partic-

ular if one of the semantics terminates in a state that is not blocked, the other should terminate

exactly in the same state. Moreover, a derivation sequence gets into a stuck configuration in the

small-step semantics, if and only if it terminates in the blocked state in the big-step semantics.

Proposition 6.3. Let C ∈ AComm, s ∈ Σ, σ ∈ Σ�•, and σ′ ∈ Σ•. Then the following holds:

1. If 〈C, s〉 σ and σ 6= � then 〈C, s〉 ⇒∗ σ.

2. If 〈C, s〉 ⇒k σ′ then 〈C, s〉 σ′.

3. 〈C, s〉 � if and only if 〈C, s〉 6⇒∗ .

Proof. All proofs follow by induction. The proof of 3. uses 1. and 2.

1. By induction on the derivation of 〈C, s〉 σ. The proof is straightforward using Lemma 6.1.

2. By induction on the pair (k, ]C) using lexicographic order, where ]C denotes the number

of constructs in C.
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Base case: (0, ]C ′). Trivial for any C ′, since there is no derivation from 〈C, s〉 to state σ

in 0 steps.

Induction step: Assume that if 〈C ′, s′〉 ⇒k σ then 〈C ′, s′〉 σ, for all (k, ]C ′) < (k0, ]C).

We want to prove that if 〈C, s〉 ⇒k0 σ then 〈C, s〉 σ. If k0 = 0 then the proof is trivial

for the same reason as the base case. If k0 > 0, then assume that 〈C, s〉 ⇒k0 σ. Then

it must be the case that 〈C, s〉 ⇒ δ ⇒k0−1 σ. We proceed by analysis of the derivation

〈C, s〉 ⇒ δ and show here the case where the rule 17 is the last one applied. The remaining

cases are similar to this one or just trivial.

From C = while b do C1 od we have that 〈while b do C1 od, s〉 ⇒ 〈if b then C1 ; C

else skip fi, s〉 and we have the following cases:

• if s |= b then 〈if b then C1 ; C else skip fi, s〉 ⇒ 〈C1 ; C, s〉. It must then be the

case that 〈C1 ; C, s〉 ⇒k0−2 σ. Let us now inspect the shape of σ:

– if σ = •, then by Lemma 6.2 we have one of the following cases:

∗ 〈C1, s〉 ⇒k0−2 •. In this case, by IH we have 〈C1, s〉 •, and by Defini-

tion 5.1-19, 〈while b do C1 od, s〉 •.
∗ there are some k1, k2 ∈ N and s′ ∈ Σ such that 〈C1, s〉 ⇒k1 n(s′), 〈C, s′〉 ⇒k2

•, and k0 − 2 = k1 + k2.

– if σ = e(s′) for some s′ ∈ Σ, then the proof is similar to the previous.

– if σ = n(s′), for some s′ ∈ Σ, then by Lemma 6.2, there exists some k1, k2 ∈ N and

s′′ ∈ Σ such that 〈C1, s〉 ⇒k1 n(s′′), 〈C, s′′〉 ⇒k2 n(s′), and k0−2 = k1+k2. By IH

〈C1, s〉 n(s′′) and 〈C, s′′〉 n(s′) and by Definition 5.1-21 〈C1 ; C, s〉 n(s′).

• if s 6|= b then the proof is trivial using Definition 5.1-22.

3. The proof that if 〈C, s〉 � then 〈C, s〉 6⇒∗ follows by induction on the shape of the

derivation 〈C, s〉 �. All cases are straightforward using Lemma 6.1 and 1.

We now demonstrate that if 〈C, s〉 6⇒∗ then 〈C, s〉 �. The proof follows by induction

on the pair (k, ]C), where ]C denotes the number of constructs in C.

Base case: (0, 1). The proof is trivial when C is skip, throw, x := e, or assert θ. When

C is assume θ we must have that s 6|= θ, and therefore it holds that 〈assume θ, s〉 �.

Induction step: Assume that if 〈C ′, s′〉 6⇒k then 〈C ′, s′〉 �, for all (k, ]C ′) < (k0, ]C).

We want to prove that if 〈C, s〉 6⇒k0 then 〈C, s〉 �. If k0 = 0 then 〈C, s〉 6⇒0 only

if C is of the form assume θ ; C ′, for some C ′ ∈ AComm. In this case s 6|= θ and thus

〈C, s〉 �. If k0 > 0, then it must be the case that 〈C, s〉 ⇒ δ 6⇒k0−1. We proceed by

analysis of the derivation 〈C, s〉 ⇒ δ.

We show here the proof for the case that C is C1 ; C2. From Lemma 6.2, we have one of

the following:

• 〈C1, s〉 6⇒k0 . Since (k0, ]C1) < (k0, ](C1 ; C2)), by IH we have that 〈C1, s〉 �.
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• there are some k1, k2 ∈ N and s′ ∈ Σ such that 〈C1, s〉 ⇒k1 n(s′), 〈C2, s
′〉 6⇒k2

and k0 = k1 + k2. From 2. we have that 〈C1, s〉  n(s′) and since (k2, ]C2) <

(k0, ](C1 ; C2)), by IH we have that 〈C2, s
′〉 �. Therefore, using Definition 5.1 we

have that 〈C1 ; C2, s〉 �.

The other cases are similar to the previous and also analogous to the proof of 2.

It should be noted that up to this point, whenever we were referring to the validity of a

Hoare triple, written |= {φ}C {ψ, ε}, it was implicit that the validity was w.r.t. the big-step

semantic style. Nonetheless, we can now equivalently define the validity of a Hoare triple w.r.t.

a small-step semantic style as follows:

Definition 6.2. The Hoare triple {φ}C {ψ, ε} is said to be valid, denoted |= {φ}C {ψ, ε},
whenever for every s ∈ Σ and σ ∈ Σ•, if s |= φ and 〈C, s〉 ⇒∗ σ then:

1. σ 6= •.

2. if σ = n(s′) for some s′ ∈ Σ, then s′ |= ψ.

3. if σ = e(s′) for some s′ ∈ Σ, then s′ |= ε.

From now on, and since we have two semantic styles, we should indicate the definition we

are referring to (Definition 6.2 or 5.2). Nonetheless, and since both semantics are equivalent

as exposed by the previous lemma, we will continue writing |= {φ}C {ψ, ε} without identifying

the semantics, unless this is necessary.

Corollary 6.4. A Hoare triple is valid w.r.t. the small-step semantics, if and only if, it is valid

w.r.t. the big-step semantics.

Proof. Follows, directly from Definitions 5.2 and 6.2, and Proposition 6.3.

Having said this, in the remaining of this chapter we will use the small-step semantics, and

so we should see validity as given by Definition 6.2.

6.2 SA Translation

The translation will transform programs containing annotated loops into single-assignment,

loop-free, programs. Basically, it will transform AComm into ACommsa. The variables in

the SA program obtained by our translation will have an identifier and a version. The set of all

SA variables will be given by Varsa = Var×N, and xi will denote the SA variable (x, i) ∈ Varsa.

In particular, in the translation we will propose ahead, the variable identifier will be inherited

from the original program and the version will be generated along the translation. The set

of states over SA variables will be denoted by Σsa = Varsa → D, where D is the domain of

interpretation, and the sets of program expressions, boolean expressions, and assertions over

SA variables will be respectively Expsa, Expsa
bool, and Assertsa.
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Once more we will overload some function identifiers, but again, it will always be clear from

the context which specific function to apply. Version functions with the form V : Var → N
will assign a version to variables and the following definition will introduce functions to rename

variables, expressions, and assertions according to a given version function. Moreover, the

partial function V(s) : Var ↪→ D, will be defined as [V̂(x) 7→ s(x) | x ∈ Var], for s ∈ Σ.

Definition 6.3. The function ̂ : (Var→ N)×Var→ Varsa is defined as V̂(x) = xV(x), and

is lifted to Exp, Expbool and Assert as follows (the definition for Expbool is omitted because

it is analogous to Exp):

̂ : (Var→ N)×Exp→ Expsa

V̂(e) = e[V̂(x1)/x1, . . . , V̂(xn)/xn],

for all x1, . . . , xn ∈ FV(e)

̂ : (Var→ N)⊥ ×Assert→ Assertsa

⊥̂(φ) = ⊥
V̂(φ) = φ[V̂(x1)/x1, . . . , V̂(xn)/xn],

for all x1, . . . , xn ∈ FV(φ)

With the concepts introduced, it is already possible to relate states from Σ and Σsa. In

the following lemma, the state V(s) only assigns SA variables whose versions are given by V,

therefore an additional state function must exist that assigns the other variables that do not

belong to the domain of V(s).

Lemma 6.5. Let V ∈ Var→ N, s ∈ Σ and s′ ∈ Σsa. If for all x ∈ Var, s(x) = s′(V̂(x)), then

s′ = s′0 ⊕ V(s) for some s′0 ∈ Σsa.

Proof. Follows directly from the definition of V(s) and ⊕.

Obviously, evaluating an expression (resp. assertion) that was renamed using a version

function V in a state ‘dominated’ by V(s) results in the same value as evaluating the original

expression (resp. assertion) in the state s.

Lemma 6.6. Let e ∈ Exp, b ∈ Expbool, φ ∈ Assert, V ∈ Var→ N, s ∈ Σ and s′ ∈ Σsa.

1. [[V̂(e)]](s′ ⊕ V(s)) = [[e]](s).

2. [[V̂(b)]](s′ ⊕ V(s)) = [[b]](s).

3. [[V̂(φ)]](s′ ⊕ V(s)) = [[φ]](s).

Proof. By induction on the structure of e (resp. b or φ).

From this lemma it follows directly that a certain assertion is valid, if and only if its trans-

lation into SA is valid.

Lemma 6.7. Let φ ∈ Assert and V ∈ Var→ N. Then |= φ iff |= V̂(φ).

Proof. Follows directly from Lemma 6.6.
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Recall from Lemma 2.11 that the operator ⊕ is associative. Even though it is not commu-

tative for arbitrary states, for some partial states, the operands can be swapped as described in

Lemma 2.12. Nonetheless, the restrictions that allow the lemma to be applied are too strong.

Aiming at weakening these restrictions we start by defining below the notion of compatible states

w.r.t. version functions. This notion will allow us to relax the cases in which the operands can

be swapped.

Definition 6.4. Let s, s′ ∈ Σ, and V,V ′ ∈ Var → N. The states s and s′ are said to be

compatible w.r.t. V and V ′, if for every x ∈ Var such that V(x) = V ′(x), it holds that s(x) =

s′(x).

Compatible states can in fact be swapped without changing the meaning of the state func-

tion.

Lemma 6.8. Let s ∈ Σsa, s, s′ ∈ Σ and V,V ′ ∈ Var → N. If s, s′ are compatible w.r.t. V,V ′,
then s⊕ V(s)⊕ V ′(s′) = s⊕ V ′(s′)⊕ V(s).

Proof. Straightforward by expanding s⊕V(s1)⊕V ′(s2) and s⊕V ′(s2)⊕V(s1) using Definition 2.18

and Definition 6.4.

Before presenting the single-assignment translation, let us introduce some auxiliary functions

to operate over version functions and some lemmas over those functions. We recall that Rnm

was introduced in Definition 2.19 and represents a sequence of assignments in which all the

variables are distinct. The function mrg will be used to synchronize version functions and the

function sup to join version functions.

Definition 6.5. The functions mrg and sup are defined as follows:

mrg : (Var→ N)2⊥ → Rnm

mrg(⊥,V) = []

mrg(V,⊥) = []

mrg(V,V ′) = [V̂ ′(x) := V̂(x) | x ∈ Var ∧
V(x) < V ′(x)]

sup : (Var→ N)2⊥ → (Var→ N)

sup(⊥,V) = V
sup(V,⊥) = V

sup(V,V ′)(x) =

{
V(x) if V(x) > V ′(x)

V ′(x) otherwise

First of all, note that the functions receive a pair of elements and each of those elements is

a version function or ⊥. As usual (Var → N)⊥ denotes (Var → N) + ⊥. The ⊥ will be used

when no version function is provided by the translation.

Some basic results concerning these functions will now be given. As observed by the following

lemma, the order in which the elements are passed to the function sup is irrelevant.

Lemma 6.9. Let V,V ′ ∈ (Var→ N)⊥. Then sup(V,V ′) = sup(V ′,V).

Proof. Follows directly from the definition.

The evaluation of renamings obtained by the function mrg can be predicted a priori and are

captured by the next lemma.
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Lemma 6.10. Let V,V ′ ∈ Var→ N, s′ ∈ Σsa, and s ∈ Σ. Then the following hold:

1. 〈mrg(V,V ′), s′ ⊕ V(s)〉 ⇒∗ n(s′ ⊕ V(s)⊕ sup(V,V ′)(s)).

2. 〈mrg(V,V ′) ; throw, s′ ⊕ V(s)〉 ⇒∗ e(s′ ⊕ V(s)⊕ sup(V,V ′)(s)).

Proof. Follows from the definition of mrg, sup, and ⇒, noting that mrg(V,V ′) only assigns

variables xi ∈ Varsa if V ′(x) = i and i < V(x).

In particular the evaluation of a renaming never gets into a stuck configuration, and never

terminates in exception nor error. In the second item of the previous lemma an exception is

raised for the execution to terminate in an exceptional state.

Some triples containing renamings can be assumed to be derivable in system Hg if they

satisfy some restrictions as indicated by the following lemma.

Lemma 6.11. Let V,V ′ ∈ Var→ N and ψ, ε ∈ Assert. The following derivations hold:

1. `Hg {V̂(ψ)}mrg(V,V ′) { ̂sup(V,V ′)(ψ), ε}.

2. `Hg {V̂(ε)}mrg(V,V ′) ; throw {ψ, ̂sup(V,V ′)(ε)}.

Proof. Similar to the proof of Lemma 3.20.

The function that translates a program into SA can now be proposed. It uses mrg and sup

from Definition 6.5 as auxiliary functions to synchronize and to find the appropriate version

of each variable when different branches of the program meet. The function receives a version

function (any will do) and an annotated program and returns a triple, where the first element

corresponds to the versions of the variables when the program terminates normally, the second

to the versions of the variables when the program terminates exceptionally, and the final element

is the translated program.

Definition 6.6 (Concrete SA translation). Let C ∈ AComm, V ∈ Var → N. The SA

translation function T is defined in Figure 6.1. If (V ′,V ′e, C ′) = T(V, C), then C ′ is the translated

SA program, V gives the initial versions of the variables and V ′ (resp. V ′e ) the final versions of

the variables when the program terminates normally (resp. exceptionally). A triple {φ}C {ψ, ε}
can be translated into SA as {V̂(φ)}C ′ {V̂ ′(ψ), V̂ ′e(ε)}

There are some aspects that deserve a deeper discussion. The type of the translation function

indicates that the elements from the returned triple, corresponding to the version functions for

normal and exceptional termination, can in fact be the ⊥ element. The reason for this is that

a program may actually never terminate normally (resp. exceptionally), and in these cases

the version of the variables is not relevant. Note also from the type that the function is only

partially defined (indicated by ↪→). Basically the function is not defined for programs that

contain syntactic dead code, that is, code that can be syntatically seen as never executing.

For instance, in the program try skip catchx := 2 hc, the assignment x := 2 will never be
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T : (Var→ N)×AComm ↪→ (Var→ N)⊥ × (Var→ N)⊥ ×ACommsa

T(V, skip) = (V,⊥, skip )

T(V, throw) = (⊥,V, throw )

T(V,assume θ) = (V,⊥,assume V̂(θ) )

T(V,assert θ) = (V,⊥,assert V̂(θ) )

T(V, x := e) = (V ′,⊥, V̂ ′(x) := V̂(e) ), where V ′ = V[x 7→ V(x) + 1]

T(V, C1 ; C2) = (V ′′, sup(V ′e,V ′′e ),

tryC ′1 catch mrg(V ′e,V ′′e ) ; throw hc ;

tryC ′2 catch mrg(V ′′e ,V ′e) ; throw hc ),

where (V ′,V ′e, C ′1) = T(V, C1), V ′ 6= ⊥,

and (V ′′,V ′′e , C ′2) = T(V ′, C2)

T(V, tryC1 catchC2 hc) = ( sup(V ′,V ′′),V ′′e ,

tryC ′1 ; mrg(V ′,V ′′) catchC ′2 ; mrg(V ′′,V ′) hc ),

where (V ′,V ′e, C ′1) = T(V, C1), V ′e 6= ⊥,

and (V ′′,V ′′e , C ′2) = T(V ′e, C2)

T(V, if b then C1 else C2 fi) = ( sup(V ′,V ′′), sup(V ′e,V ′′e ),

if V̂(b) then

tryC ′1 ; mrg(V ′,V ′′) catch mrg(V ′e,V ′′e ) ; throw hc else

tryC ′2 ; mrg(V ′′,V ′) catch mrg(V ′′e ,V ′e) ; throw hc fi ),

where (V ′,V ′e, C ′1) = T(V, C1),

and (V ′′,V ′′e , C ′2) = T(V, C2)

T(V,while b do {θ} C od) = (V ′′,V ′′e , assert V̂(θ) ; assume V̂ ′(θ) ;

if V̂ ′(b) then C ′ ; assert V̂ ′′(θ) ; assume⊥

else mrg(V ′,V ′′) fi ),

where V ′ = V[x 7→ V(x) + 1 | x ∈ Asgn(C)],

and (V ′′,V ′′e , C ′) = T(V ′, C)

Figure 6.1: SA translation function for programs with exceptions
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executed no matter what; the same happens for the program throw ; x := e. The restriction

that programs do not contain this syntatic dead code can be seen in the sequence command

in which it is imposed that V ′ 6= ⊥, and in the try-catch command where it is imposed that

V ′e 6= ⊥. This should not however be seen as a limitation of the translation function because

if programs contain syntatic dead code, that code can be easily and automatically removed a

priori without changing the semantics of the program.

Let us analyze the application of the function for the different commands. The translation

of atomic commands is fairly simple. If the command contains expressions or assertions, then

those will be renamed according to the received version, and in the case it is an assignment, the

version of the variable that is assigned is incremented and the new value propagated through the

returned version function. The throw command is the only atomic command that can terminate

exceptionally; the skip, assume, assert, and assignment command always terminate normally.

Things get more complicated for composite commands because the version of the variables

may require synchronization after each step. For instance, in the sequence C1 ; C2, the sub-

command C2 is only executed when C1 terminates normally, and it can then terminate normally

or exceptionally. On the other hand if C1 terminates exceptionally, C2 is not even executed. So,

it is clear that there is only one way for the sequence to terminate normally (C1 and C2 terminate

normally), but there are two ways for it to terminate exceptionally (C1 terminates exceptionally

and C2 is not even executed, or C1 terminates normally and then C2 terminates exceptionally).

The fact that there are two alternatives for the command to terminate exceptionally imposes

that after the translation, independently of the way it terminates exceptionally there is a version

function that contains the current version of the variables. Obviously, the translation of C1

must use the current version of the variables, which is represented by V in our function. The

translation will produce a version function for the case of normal and exceptional termination

(represented respectively by V ′ and V ′e), and the translated program C ′1. If V ′ = ⊥ the function

is simply not defined (we are in the case that syntatic dead code exists), otherwise the sub-

program C2 is translated using V ′ and the triple (V ′′,V ′′e , C ′2) will be obtained. It is obvious from

the previous discussion that the final version of the variables in case of normal termination will

be V ′′. However, it may not be immediate to obtain a version function that captures the version

of the variables after the sequence terminates exceptionally: they can come from V ′e or from V ′′e .

In the case that at least one of these version functions is ⊥ then the final version function will

be the other (in case both are ⊥ the result will also be ⊥). Nonetheless, when both are different

from ⊥ they must be combined to produce a version function that will propagate the adequate

versions of the variables. This can be done by encapsulating each part of the sequence into

a try-catch, such that when one of these parts terminates exceptionally, the exception will be

caught, the variables synchronized according to the other part and then the exceptions raised

again. After this, following this approach it becomes easy to capture the current version of the

variables, which is given by the version function sup(V ′e,V ′′e ).

For the try-catch command we have the inverted scenario. We simply return the version

function of the second component for exceptional termination, and for normal termination we



A TRANSLATION OF ITERATING PROGRAMS INTO SA FORM 145

use sup to select the most recent variables’ version, and also append to each component the

appropriate code to synchronize variables.

For the if command, things get even more complicated and both version functions (for

normal and exceptional termination), must be merged together. So, for each component a

renaming sequence is appended to synchronize variables in case of normal termination, and the

result is encapsulated in a try-catch to synchronize variables in case of exceptional termination.

Essentially, here we put together the method used in the sequence and in the try-catch command.

The application of the function to the while command generates a sequence of commands

without any loop construct that will (hopefully) capture the axiomatic semantics of the anno-

tated while loop. The approach is similar to the one explained at the end of Section 2.4. The

first assert ensures that the invariant θ is initially satisfied. The assume uses fresh versions to

rename the variables such that they become isolated from what comes before. Basically the idea

here is to capture an arbitrary iteration of the loop. The if command is used to check if after

such an iteration the loop condition still holds or not. If it does, that is, if V̂ ′(b) holds in the

current state, then the translated loop body, C ′, should be executed. If C ′ terminates normally,

then the loop invariant must remain valid, which is ensured by assert V̂ ′′(θ). After this, if

the invariant is in fact preserved, the execution should block because it is not certain that the

current iteration was the last, which explains the assume⊥. Note also that if the execution of

C ′ terminates exceptionally then it is not required that the invariant is preserved and the final

version of the variables is in fact V ′′e . If the V̂ ′(b) condition is not satisfied, it means that the

execution corresponds to the last iteration and thus the variables are synchronized w.r.t. the

other branch. In this case, all versions from V ′ will be advanced to the version in V ′′.
Note that we are assuming that some kind of ‘smart-constructors’ are being used to create

sequences and try-catch commands for the synchronization commands that avoid the introduc-

tion of redundant code. This is particularly important because most part of the steps will not

require synchronization, since one of the version functions, if not both, will be ⊥. For instance,

in the case of the sequence, if V ′e = ⊥ the translation as it is would generate the command

tryC ′1 catch skip ; throw hc for synchronization, which is exactly the same as writing simply

C ′1. So, we assume that these smart-constructors will detect these situations and apply these

optimizations. The following examples would be much more complicated and full of redundant

code if the translation was applied blindly without smart-constructors.

Example 6.1. Consider the FACTT program introduced in Example 3.6 that calculates the nth

factorial number. Let V ∈ Var → N such that V(x) = 0, for all x ∈ V. Then T(V,FACTT) =

(V ′,V ′e,FACTSA), where V ′ = V[f 7→ 3, i 7→ 3, r 7→ 3, j 7→ 3, ], V ′e = V, and FACTSA is the

program below. Hence, the triple {n ≥ 0∧aux = n}FACTT {f = aux!,⊥} can be translated into

the SA triple {n0 ≥ 0 ∧ aux0 = n0}FACTSA {f3 = aux0!,⊥}.

f1 := 1 ;

i1 := 1 ;

assert f1 = (i1 − 1)! ∧ i1 ≤ n0 + 1 ;
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assume f2 = (i2 − 1)! ∧ i2 ≤ n0 + 1 ;

if i2 ≤ n0 then

j1 := 1 ;

r1 := 0 ;

assert j1 ≤ i2 + 1 ∧ r1 = f2 ∗ (j1 − 1) ;

assume j2 ≤ i2 + 1 ∧ r2 = f2 ∗ (j2 − 1) ;

if j2 ≤ i2 then

r3 := r2 + f2 ;

j3 := j2 + 1 ;

assert j3 ≤ i2 + 1 ∧ r3 = f2 ∗ (j3 − 1) ;

assume⊥
else r3 := r2 ; j3 := j2 fi

f3 := r3 ;

i3 := i2 + 1 ;

assert f3 = (i3 − 1)! ∧ i3 ≤ n0 + 1 ;

assume⊥
else f3 := f2 ; i3 := i2 ; r3 := r0 ; j3 := j0 fi

Example 6.2. Recall the program GCD from Example 4.15, and let V ∈ Var → N such that

V(x) = 0, for all x ∈ Var. Then T(V,GCD) = (V ′,⊥,GCDSA), where V ′ = V[u 7→ 2, v 7→ 2, t 7→
1] and GCDSA is shown below. Hence, the triple {uaux = u∧vaux = v∧u ≥ 0∧v ≥ 0}GCD {u =

gcd (uaux, vaux),⊥} can be translated into the SA triple {uaux = u0 ∧ vaux = v0 ∧ u0 ≥ 0 ∧ v0 ≥
0}GCDSA {u2 = gcd (uaux, vaux),⊥}.

try

assertu0 ≥ 0 ∧ v0 ≥ 0 ∧ gcd (u0, v0) = gcd (uaux, vaux) ;

assumeu1 ≥ 0 ∧ v1 ≥ 0 ∧ gcd (u1, v1) = gcd (uaux, vaux) ;

if > then

if v1 = 0 then

throw

else

t1 := v1 ;

v2 := u1 % v1 ;

u2 := t1

fi ;

assertu2 ≥ 0 ∧ v2 ≥ 0 ∧ gcd (u2, v2) = gcd (uaux, vaux) ;

assume⊥
else
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u2 := u1 ; v2 := v1

fi

catch

skip ;

u2 := u1 ; v2 := v1

hc

The question that remains to be answered after a program is translated into SA using the

translation above, is whether its correction forces the correction of the initial program and

vice-versa. The following sections make this clear.

6.3 Soundness of SA Translation

The present section proves that whenever a translated triple is semantically valid then so is

the original triple. If we have a triple {φ}C {ψ, ε} and the result of applying the translation

is as T(V, C) = (V ′,V ′e, C ′), for some V ∈ Var→ N, then whenever |= {V̂(φ)}C ′ {V̂ ′(ψ), V̂ ′e(ε)}
holds, it must also hold that |= {φ}C {ψ, ε}. The proof is based on the analysis of the execution

of the translated and the original program. Note however that this is not immediate since the

original program contains loops and the translated triple does not.

What is more, the translated program contains asserts that were originated from invariants

of the original program: basically the invariants are not taken into account in the executions of

the original program, but they are in the translated program. We should note here that although

invariants do not interfere in the execution of the original program, they play a crucial role in

the axiomatic semantics when proving the correctness of a program w.r.t. some specification.

Note also that, we aim to show that if the translated triple is valid, then so it is the original.

Thus if some invariant does not hold in some execution of the translated program we have

that 6|= {V̂(φ)}C ′ {V̂ ′(ψ), V̂ ′e(ε)}, and thus we do not have to care about the correction of the

original triple. On the other hand, if it does hold for every execution in the translated program

it must be preserved in the original program. In order to formally capture this argument we

will consider an intermediate transformation that gives operational meaning to the invariants

by placing appropriate asserts in the code.

Definition 6.7. The function A : AComm → AComm that gives semantic meaning to loop
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invariants is defined as follows:

A(while b do {θ} C1 od) = assert θ ; while b do A(C1) ; assert θ od

A(skip) = skip

A(throw) = throw

A(assume θ) = assume θ

A(assert θ) = assert θ

A(x := e) = x := e

A(C1 ; C2) = A(C1) ; A(C2)

A(tryC1 catchC2 hc) = tryA(C1) catchA(C2) hc

A(if b then C1 else C2 fi) = if b then A(C1) else A(C2) fi

With this translation we can start stating some results about the execution of programs

containing annotated loops C and programs where those annotations were transformed into

asserts A(C). The following lemma starts by capturing the fact that if A(C) terminates in a

state that is not error then C will also terminate in that state. This is actually easy to observe

when looking at the definition of A: the translation only inserts additional assert conditions and

those either fail, and the program terminates in the error state, or do not fail and in that case

do not change the program state. The second and third property indicate that if C executes

from some arbitrary state and terminates in a final number of steps then A(C) will certainly

terminate, but possibly in a different state. In particular, the third property indicates that if

the original program terminates in the error state, then so will the translated program (the

same cannot be said if the original program does not terminate in the error state).

Lemma 6.12. Let C ∈ AComm, si ∈ Σ, and σ ∈ Σ•. Then, the following properties hold:

1. If 〈A(C), si〉 ⇒∗ σ and σ 6= •, then 〈C, si〉 ⇒∗ σ.

2. If 〈C, si〉 ⇒∗ σ and σ 6= •, then ∃σ′ ∈ Σ•. 〈A(C), si〉 ⇒∗ σ′.

3. If 〈C, si〉 ⇒∗ •, then 〈A(C), si〉 ⇒∗ •.

Proof. 1. Follows by induction on the pair (k, ]C), for the derivation sequence 〈A(C), si〉 ⇒k σ.

The proof uses Lemmas 6.1 and 6.2 and, in the induction step, follows by analysis of the first

step of the derivation sequence. All cases are straightforward.

2. Follows by induction on the pair (k, ]C) for the derivation sequence 〈A(C), si〉 ⇒k σ.

Base case. Trivial, since there is no derivation from 〈C, si〉 to σ in zero steps.

Induction step. Assume that the property holds for every pair (k′, ]C ′) < (k, ]C). We want

to prove that it holds for the pair (k, ]C). Since the derivation sequence has at least one step,

we must have that 〈C, si〉 ⇒ δ ⇒k−1 σ and σ 6= •. We proceed by analysis of cases on the first

step of the derivation sequence.

We show here the cases when C is C1 ; C2 or while b do {θ} C1 od. The other cases are

analogous or trivial.

If C is C1 ; C2, then we can have two cases:
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• σ = e(s′) for some s′ ∈ Σ. Then by Lemma 6.2 we will have one of two cases:

– 〈C1, s〉 ⇒k e(s′). By IH there exists σ′ ∈ Σ• such that 〈A(C1), s〉 ⇒∗ σ′. If σ′ = •
then we are done because 〈A(C1) ; A(C2), s〉 ⇒∗ •. If σ′ 6= •, then we are also done

because from 1. we have that σ′ = e(s′) and thus 〈A(C1) ; A(C2), s〉 ⇒∗ e(s′).

– there exist k1, k2 ∈ N and s′′ ∈ Σ such that 〈C1, s〉 ⇒k1 n(s′′), 〈C2, s
′′〉 ⇒k2 e(s′) and

k = k1+k2. By IH, there exists σ′ ∈ Σ• such that 〈A(C1), s〉 ⇒∗ σ′. If σ′ = • then we

are done, otherwise from 1, we have that σ′ = n(s′′) and thus by IH 〈A(C2), s
′′〉 ⇒∗

e(s′). Using Lemma 6.1, we have 〈A(C1) ; A(C2), s〉 ⇒∗ 〈A(C2), s
′′〉 ⇒∗ e(s′).

• σ = n(s′) for some s′ ∈ Σ. The proof is analogous to the previous case, also using

Lemmas 6.1 and 6.2.

If C is while b do {θ} C1 od, we can have two cases:

• s 6|= b. Then, either s 6|= θ and 〈A(C), s〉 ⇒ •, or s |= θ and 〈A(C), s〉 ⇒ n(s).

• s |= b. Then we must have that 〈C, s〉 ⇒ 〈if b then C1 ; C else skip fi, s〉 ⇒ 〈C1 ; C, s〉.
From here, the proof is analogous to the sequence case.

3. Follows by induction on the pair (k, ]C) for the derivation sequence 〈A(C), si〉 ⇒k •.
Base case. Trivial, since there is no derivation sequence from 〈C, si〉 to • in zero steps.

Induction step. Assume that the property holds for every pair (k′, ]C ′) < (k, ]C). We want

to prove that it holds for the pair (k, ]C). Since the derivation sequence has at least one step,

we must have that 〈C, si〉 ⇒ δ ⇒k−1 •. We proceed by analysis of cases on the first step of the

derivation sequence.

We show here the case when C is tryC1 catchC2 hc or while b do {θ} C1 od. The other

cases are analogous or trivial.

If C is tryC1 catchC2 hc, by Lemma 6.2, we will have one of the following cases:

• 〈C1, s〉 ⇒k •. In this case, by IH 〈A(C1), s〉 ⇒k • and by lemma Lemma 6.1, 〈tryA(C1)

catchA(C2) hc, s〉 ⇒k •.

• there exist k1, k2 ∈ N and s′ ∈ Σ such that 〈C1, s〉 ⇒k1 e(s′), 〈C2, s
′〉 ⇒k2 •, and

k = k1 + k2. From 2. there exists some σ ∈ Σ• such that 〈A(C1), s〉 ⇒∗ σ. If σ = •, then

〈tryA(C1) catchA(C2) hc, s〉 ⇒∗ • and we are done. Otherwise, if σ 6= • then σ = n(s′)

because 1. and therefore by IH we have that 〈A(C2), s
′〉 ⇒∗ •. Using Lemma 6.1, we

conclude that 〈tryA(C1) catchA(C2) hc, s〉 ⇒∗ •.

If C is while b do {θ} C1 od then one of the following can happen:

• s 6|= θ and we are done because 〈A(C), s〉 ⇒ •, or

• s 6|= b and we are done because 〈C, s〉 ⇒3 n(s) and n(s) 6= •, or

• s |= b ∧ θ, 〈C, s〉 ⇒ 〈if b then C1 ; C else skip fi, s〉 ⇒ 〈C1 ; C, s〉 ⇒k−2 •, and from

Lemma 6.2, we have one of the following:
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– 〈C1, s〉 ⇒k−2 •. In this case by IH 〈A(C1), s〉 ⇒∗ • and thus 〈A(C), s〉 ⇒∗ •, because

〈A(C1), s〉 ⇒∗ •.

– there exist k1, k2 ∈ N, s′ ∈ Σ such that 〈C1, s〉 ⇒k1 n(s′), 〈C, s′〉 ⇒k2 • and k − 2 =

k1 + k2. In this case, from 2. we have that there exists some σ ∈ Σ• such that

〈A(C1), s〉 ⇒∗ σ. If σ = • then 〈A(C1) ; A(C), s〉 ⇒∗ • and we are done. Otherwise,

σ 6= • and from 1 we have that σ = n(s′). By IH 〈A(C), s′〉 ⇒∗ • and thus by

Lemma 6.1, 〈A(C1) ; A(C), s〉 ⇒∗ •.

Using the previous lemmas it is now possible to relate C and A(C) in terms of Hoare triples.

Lemma 6.13. If |= {φ}A(C) {ψ, ε}, then |= {φ}C {ψ, ε}.

Proof. Assume that |= {φ}A(C) {ψ, ε}. Let s ∈ Σ be such that s |= φ. So, if 〈C, s〉 6⇒∗ we are

done, otherwise, if 〈C, s〉 ⇒∗ σ then:

• σ 6= •, because if σ = • then by Lemma 6.12 〈A(C), s〉 ⇒∗ •, which is a contradiction.

• if σ = n(s′) by Lemma 6.12 we have that there exists some σ′ such that 〈A(C), s〉 ⇒∗ σ′

and since from the hypothesis σ′ 6= •, again by Lemma 6.12 we have that σ′ = σ = n(s′)

and thus s′ |= ψ.

• if σ = n(s′) we also have that s′ |= ε for the same reason as in the previous case.

With the previous lemma it remains to prove that the validity of the translated triple

{V̂(φ)}C ′ {V̂ ′(ψ), V̂ ′e(ε)} implies the validity of the triple {φ}A(C) {ψ, ε}. For that purpose,

let us make a small remark about the execution of loops in A(C) that will possibly give some

intuition for what is to come. Consider that C is the program while b do {θ} C1 od. When

evaluating the program assert θ ; while b do C1 ; assert θ od (which is the result of A(C))

from a state s ∈ Σ, if s |= θ ∧ b and 〈A(C1), s〉 ⇒∗ n(s′) then 〈A(C), s〉 ⇒+ 〈A(C), s′〉. If we

continue the evaluation from this configuration, it is possible that 〈A(C), s′〉 ⇒+ 〈A(C), s′′〉.
Basically, the initial program A(C) can possibly be obtained over and over again with (possibly)

different states, while the loop condition holds.

Before going any further, let us make some remarks. The first is that the values of the

variables that are not assigned in the loop remain constant. The second is that the intermediate

states resulting from evaluating iterations are always compatible with version functions that are

used to translate loops. These observations are captured by the following lemma.

Lemma 6.14. Let V,V ′ ∈ Var → N be such that V ′ = V[x 7→ V(x) + 1 | x ∈ Asgn(C1)]. If

〈assert θ ; while b do A(C1) ; assert θ od, s〉 ⇒∗ 〈assert θ ; while b do A(C1) ; assert θ od, s′〉
then the following holds:

1. ∀x 6∈ Asgn(C1). s(x) = s′(x).

2. s, s′ are compatible w.r.t. V,V ′.
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Proof. Both proofs are straightforward.

Still with respect to the previous lemma, note that it always holds that 〈A(C), s〉 ⇒∗

〈A(C), s′〉, since it is always possible to go in zero steps into the same configuration (in this

case s = s′).

Let us now turn our focus to the execution of SA programs. Since the translation always

uses the most recent version of the variables, changing the value of older versions in the initial

state does not change the way the program behaves, neither the value of the final version of the

variables in the final state (if it is not error). The lemma below might seem to be going a bit

further due to the restriction V(x) ≤ V ′(x), nonetheless note that for an arbitrary variable x

such that V(x) = V ′(x), according to Definition 2.18 the value will be given by V ′(s).

Lemma 6.15. Let T(V ′, C) = (V ′′,V ′′e , C ′) and V(x) ≤ V ′(x), for every x ∈ Var.

1. If 〈C ′, s′ ⊕ V ′(s)〉 ⇒∗ n(sf ) then, ∀ s′′ ∈ Σsa. 〈C ′, s′ ⊕ V(s′′) ⊕ V ′(s)〉 ⇒∗ n(s′f ) and

∀x ∈ Var. s′f (V̂ ′′(x)) = sf (V̂ ′′(x)).

2. If 〈C ′, s′ ⊕ V ′(s)〉 ⇒∗ e(sf ) then, ∀ s′′ ∈ Σsa. 〈C ′, s′ ⊕ V(s′′) ⊕ V ′(s)〉 ⇒∗ e(s′f ) and

∀x ∈ Var. s′f (V̂ ′′e (x)) = sf (V̂ ′′e (x)).

3. If 〈C ′, s′ ⊕ V ′(s)〉 ⇒∗ • then, ∀ s′′ ∈ Σsa. 〈C ′, s′ ⊕ V(s′′)⊕ V ′(s)〉 ⇒∗ •.

Proof. All the cases are proved by induction on the length of the derivation.

We will need to confine certain states to assign values only to a part of the variables. The

definition below introduces the notation for that.

Definition 6.8. Let s ∈ Σsa, V ∈ Var → N, and � ∈ {<,≤,≥, >}. Then s
∣∣�
V represents the

partial function defined as [xi 7→ s(xi) | xi ∈ dom(s) ∧ i� V(x)].

Basically the state s
∣∣�
V only assigns values to variables whose version satisfy a given con-

straint expressed by the operator � and the version function V. For instance s
∣∣>
V will assign

values to all xi ∈ dom(s) such that i > V(x), in which case s
∣∣>
V (xi) = s(xi).

Similarly to Lemma 6.15, the lemma below observes that the only part of the state that is

relevant for the execution of the program is the part that assigns values to the variables whose

version is equal or greater than the version given by the function that was used to translate the

program.

Lemma 6.16. The following holds:

1. If 〈C ′, s′ ⊕ V(s)〉 ⇒∗ •, then ∀ s′′ ∈ Σsa. 〈C ′, s′′ ⊕ s′
∣∣>
V ⊕ V(s)〉 ⇒∗ •.

2. If 〈C ′, s′ ⊕ V(s)〉 ⇒∗ n(sf ), then ∀ s′′ ∈ Σsa. 〈C ′, s′′ ⊕ s′
∣∣>
V ⊕ V(s)〉 ⇒∗ n(s′f ) and ∀x ∈

Var. s′f (V̂ ′(x)) = sf (V̂ ′(x)).

3. If 〈C ′, s′ ⊕ V(s)〉 ⇒∗ e(sf ), then ∀ s′′ ∈ Σsa. 〈C ′, s′′ ⊕ s′
∣∣>
V ⊕ V(s)〉 ⇒∗ e(s′f ) and ∀x ∈

Var. s′f (V̂ ′e(x)) = sf (V̂ ′e(x)).
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Proof. By derivation on the structure of C.

The following lemma states that the execution of an SA program does not change the value

of the variables whose version is greater than the final version function.

Lemma 6.17. Let T(V, C) = (V ′,V ′e, C ′). Then:

1. If 〈C ′, s〉 ⇒∗ n(sf ), then ∀ s′ ∈ Σsa. 〈C ′, s⊕ s′
∣∣>
V ′〉 ⇒∗ n(sf ⊕ s′

∣∣>
V ′).

2. If 〈C ′, s〉 ⇒∗ e(sf ), then ∀ s′ ∈ Σsa. 〈C ′, s⊕ s′
∣∣>
V ′
e
〉 ⇒∗ e(sf ⊕ s′

∣∣>
V ′
e
).

Proof. By derivation on the structure of C.

We are now in a position to establish a relation between the execution of programs obtained

by A and T. For a program C, the next proposition states that if the execution of A(C) from

si ∈ Σ terminates, then it is certain that there exists some state s′ ∈ Σsa that when combined

with V(si) will make the SA program terminate. For the case that A(C) terminates normally

or exceptionally, the lemma goes even further and relates the final states.

Proposition 6.18. Let T(V, C) = (V ′,V ′e, C ′). The following hold:

1. If 〈A(C), si〉 ⇒∗ n(sf ), then ∃ s′, s′f ∈ Σsa. 〈C ′, s′ ⊕ V(si)〉 ⇒∗ n(s′f ) and ∀x. sf (x) =

s′f (V̂ ′(x)).

2. If 〈A(C), si〉 ⇒∗ e(sf ), then ∃ s′, s′f ∈ Σsa. 〈C ′, s′ ⊕ V(si)〉 ⇒∗ e(s′f ) and ∀x. sf (x) =

s′f (V̂ ′e(x)).

3. If 〈A(C), si〉 ⇒∗ •, then ∃ s′ ∈ Σsa. 〈C ′, s′ ⊕ V(si)〉 ⇒∗ •.

Proof. The proof follows by simultaneous induction on the structure of C.

Case C is skip, throw, x := e, assume θ, or assert θ the proof is trivial.

Case C is while b do {θ} C1 od. Then we have:

T(V,while b do {θ} C1 od) = (V ′′,V ′′e , assert V̂(θ) ; assume V̂ ′(θ) ;

if V̂ ′(b) then C ′1 ; assert V̂ ′′(θ) ; assume⊥
else mrg(V ′,V ′′) fi ),

V ′ = V[x 7→ V(x) + 1 | x ∈ Asgn(C1)], and (V ′′,V ′′e , C ′1) = T(V ′, C1)

For 1, assume that 〈A(C), si〉 ⇒∗ n(sf ). Then it must be the case that si |= θ and

〈A(C), si〉 ⇒∗ 〈A(C), s〉, for some s ∈ Σsa such that s |= θ ∧¬b. From Lemma 6.6 it holds that

s0⊕V(si)⊕V ′(s) |= V̂ ′(θ)∧ V̂ ′(¬b), for some s0 ∈ Σsa, and from Lemmas 6.6, 6.8 and 6.14 that

s0⊕V ′(s)⊕V(si) |= V̂(θ)∧V̂ ′(θ)∧V̂ ′(¬b). Hence there exists indeed some s′ = s0⊕V ′(s)⊕V(si)

such that 〈C ′, s′〉 ⇒3 〈mrg(V ′,V ′′), s′〉 ⇒∗ n(s′ ⊕ V ′′(s)). The last step is justified by Lem-

mas 6.8, 6.10 and 6.14, and by the fact that sup(V ′,V ′′) = V ′′. From Lemma 6.5 it holds that

∀x ∈ Var. (s′ ⊕ V ′′(s))(V̂ ′′(x)).

For 2, assume that 〈A(C), si〉 ⇒∗ e(sf ). Then it must be the case that si |= θ and

〈A(C), si〉 ⇒∗ 〈A(C), s〉, for some s ∈ Σsa such that s |= θ ∧ b and 〈A(C1), s〉 ⇒∗ e(sf ).
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By IH, ∃ s0, s′f ∈ Σsa. 〈C ′1, s0⊕V ′(s)〉 ⇒∗ e(s′f ), and ∀x ∈ Var. sf (x) = s′f (V̂ ′′e (x)). From Lem-

mas 6.8, 6.14 and 6.15, 〈C ′1, s0 ⊕ V ′(s)⊕ V(si)〉 ⇒∗ e(s′f ). Note also that s0 ⊕ V ′(s)⊕ V(si) |=
V̂(θ) ∧ V̂ ′(θ) ∧ V̂ ′(b), hence 〈s0 ⊕ V ′(s)⊕ V(si), C

′〉 ⇒∗ e(s′f ).

For 3, assume that 〈A(C), si〉 ⇒∗ • and note that in this case, one of three cases must occur:

• si 6|= θ. In this case s′ ⊕ V(si) 6|= V̂(θ) for any s′ ∈ Σsa, and thus 〈C ′, s′ ⊕ V(si)〉 ⇒∗ •.

• si |= θ∧b, 〈A(C), si〉 ⇒∗ 〈A(C), s〉, for some s ∈ Σsa such that s |= θ∧b and 〈A(C1), s〉 ⇒∗

•. By IH, ∃ s′ ∈ Σsa. 〈C ′1, s′ ⊕ V ′(s)〉 ⇒∗ • and from Lemmas 6.8, 6.14 and 6.15, ∃ s′ ∈
Σsa. 〈C ′1, s′ ⊕ V ′(s) ⊕ V(si)〉 ⇒∗ •. Since s′ ⊕ V ′(s) ⊕ V(si) |= V̂(θ) ∧ V̂ ′(θ) ∧ V̂ ′(b), it is

possible to conclude that 〈C ′, s′ ⊕ V ′(s)⊕ V(si)〉 ⇒∗ •.

• si |= θ ∧ b, 〈A(C), si〉 ⇒∗ 〈A(C), s〉, for some s ∈ Σsa such that s |= θ ∧ b, 〈A(C1), s〉 ⇒∗

n(sf ) and sf 6|= θ. By IH, and using Lemmas 6.8, 6.14 and 6.15 it is possible to obtain

∃ s′ ∈ Σsa. 〈C ′1, s′ ⊕ V ′(s) ⊕ V(si)〉 ⇒∗ n(s′f ) and ∀x ∈ Var. sf (x) = s′f (V̂ ′′(x)). Since

s′ ⊕ V ′(s) ⊕ V(si) |= V̂(θ) ∧ V̂ ′(θ) ∧ V̂ ′(b), it is the case that 〈C ′, s′ ⊕ V ′(s) ⊕ V(si)〉 ⇒∗

〈assert V̂ ′′(θ) ; assume⊥, s′f 〉 ⇒ •. Note that, it holds that s′f 6|= V̂ ′′(θ) because sf 6|= θ

and s′f = s′′ ⊕ V ′′(sf ) for some s′′ ∈ Σsa.

With the previous cases, we conclude that ∃ s′ ∈ Σsa. 〈C ′, s′ ⊕ V(si)〉 ⇒∗ •.
Case C is C1 ; C2. Then we have:

T(V, C1 ; C2) = (V ′′, sup(V ′e,V ′′e ), tryC ′1 catch mrg(V ′e,V ′′e ) ; throw hc ;

tryC ′2 catch mrg(V ′′e ,V ′e) ; throw hc ),

(V ′,V ′e, C ′1) = T(V, C1), V ′ 6= ⊥, and (V ′′,V ′′e , C ′2) = T(V ′, C2)

For 1, assume that 〈A(C), si〉 ⇒∗ sf . Then, there exists some s ∈ Σ such that 〈A(C1), si〉 ⇒∗

s and 〈A(C2), s〉 ⇒∗ sf . By IH, and using also Lemma 6.5, we have ∃ s0 ∈ Σsa. 〈C ′1, s0 ⊕
V(si)〉 ⇒∗ n(s′′ ⊕ V ′(s)), for some s′′ ∈ Σsa. Again, by IH we have ∃ s1, s′f ∈ Σsa. 〈C ′2, s1 ⊕
V ′(s)〉 ⇒∗ n(s′f ) and ∀x ∈ Var. sf (x) = s′f (V̂ ′′(x)). Now, using Lemma 6.16, 〈C ′2, s′′ ⊕
s1
∣∣>
V ′ ⊕ V ′(s)〉 ⇒∗ n(s′′f ) for some s′′f such that s′′f (V̂ ′′(x)) = s′f (V̂ ′′(x)). Going back to 〈C ′1, s0 ⊕

V(si)〉 ⇒∗ n(s′′ ⊕ V ′(s)), from Lemma 6.17 we have that 〈C ′1, s0 ⊕ V(si) ⊕ s1
∣∣>
V ′〉 ⇒∗ n(s′′ ⊕

V ′(s) ⊕ s1
∣∣>
V ′) and from Lemma 2.12 that 〈C ′1, s0 ⊕ s1

∣∣>
V ′ ⊕ V(si)〉 ⇒∗ n(s′′ ⊕ s1

∣∣>
V ′ ⊕ V ′(s)).

So, 〈C ′, s0 ⊕ s1
∣∣>
V ′ ⊕ V(si)〉 ⇒∗ 〈tryC ′2 catch mrg(V ′′e ,V ′e) hc, s′′ ⊕ s1

∣∣>
V ′ ⊕ V ′(s)〉 ⇒∗ n(s′′f ), and

s′′f (V̂ ′′(x)) = s′f (V̂ ′′(x)) = sf (x) which allows us to conclude 1.

For 2 and 3 the proof is analogous. It starts by using Lemma 6.2, which results in two

distinct cases, and then for each case follows by applying IH and using Lemmas 6.16 and 6.17.

Case C is tryC1 catchC2 hc. The proof is analogous to the case in which C is C1 ; C2.

Case C is if b then C1 else C2 fi. Then we have:

T(V, if b then C1 else C2 fi) = ( sup(V ′,V ′′), sup(V ′e,V ′′e ),

if V̂(b) then tryC ′1 ; mrg(V ′,V ′′) catch mrg(V ′e,V ′′e ) ; throw hc

else tryC ′2 ; mrg(V ′′,V ′) catch mrg(V ′′e ,V ′e) ; throw hc fi ),

(V ′,V ′e, C ′1) = T(V, C1), and (V ′′,V ′′e , C ′2) = T(V, C2)
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We show here the proof for 2. The proof for 1 and 3 are analogous. Assume that 〈A(C), si〉 ⇒∗

e(sf ). Then one of two cases must occur:

• si |= b. In this case, 〈A(C1), si〉 ⇒∗ e(sf ) and thus, by IH ∃ s0 ∈ Σsa. 〈C ′1, s0 ⊕V(si)〉 ⇒∗

e(s′f ) and ∀x ∈ Σsa. sf (x) = s′f (V̂ ′e(x)). From Lemma 6.5, s′f = s′ ⊕ V ′e(sf ). Then,

s0⊕V(si) |= V̂(b), 〈C ′, s0⊕V(si)〉 ⇒∗ 〈mrg(V ′e,V ′′e ) ; throw, s′⊕V ′e(sf )〉 ⇒∗ e(s′⊕V ′e(sf )⊕
sup(V ′e,V ′′e )(sf )), where the last step is justified by Lemma 6.10, and thus we conclude the

proof because ∀x ∈ Var. sf (x) = (s′ ⊕ V ′e(sf )⊕ sup(V ′e,V ′′e )(sf ))( ̂sup(V ′e,V ′′e )(x)).

• si |= ¬b. The proof is analogous.

This allow us to conclude that ∃ s′, s′f ∈ Σsa. 〈C ′, s′ ⊕ V(si)〉 ⇒∗ s′f and ∀x ∈ Σ. sf (x) =

s′f ( ̂sup(V ′e,V ′′e )(x)).

Resorting to the previous result, we are now able to prove the soundeness of the translation

w.r.t. the axiomatic semantics.

Theorem 6.19. Let T(V, C) = (V ′,V ′e, C ′) and assume that |= {V̂(φ)}C ′ {V̂ ′(ψ), V̂ ′e(ε)}. Then

|= {φ}A(C) {ψ, ε}.

Proof. First of all assume that |= {V̂(φ)}C ′ {V̂ ′(ψ), V̂ ′e(ε)}. Let si ∈ Σ be such that si |= φ and

assume also that 〈A(C), si〉 ⇒∗ σ (note that if the execution of A(C) gets stuck or does not

terminate we are done). Then:

• σ 6= •, because if σ = • then by Proposition 6.18, ∃ s′ ∈ Σsa. 〈C ′, s′ ⊕V(si)〉 ⇒∗ •, which

contradicts the hypothesis.

• if σ = n(s′f ) for some sf ∈ Σsa, then by Proposition 6.18, ∃ s′, s′f ∈ Σsa. 〈C ′, s′⊕V(si)〉 ⇒∗

s′f and ∀x ∈ Var. sf (x) = s′f (V ′(x)). From Lemma 6.5, s′f = s0⊕V ′(sf ) for some s0 ∈ Σsa

and thus from Lemma 6.6 and the hypothesis we have that s′f |= V ′(ψ).

• if σ = e(s′f ) for some s′f ∈ Σsa, it also holds that s′f |= V ′e(ε). The proof is analogous to

the previous case.

From the above we conclude that |= {φ}A(C) {ψ, ε}.

Corollary 6.20. If T(V, C) = (V ′, C ′) and |= {V̂(φ)}C ′ {V̂ ′(ψ)}, then |= {φ}C {ψ}.

Proof. Follows directly from Theorem 6.19 and Lemma 6.13.

The next section proves that the translation is also complete w.r.t. system Hg.
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6.4 Completeness of SA Translation

It remains to be proved that the translation is complete in the sense that if the original triple

is derivable in system Hg then so is the translated triple. This together with the result from

the previous section will allow us to conclude that the translation is indeed an SA translation

in the sense of Definition 5.8.

Proposition 6.21. Let V ∈ Var → N and C ∈ AComm. If T(V, C) = (V ′,V ′e, C ′) and

`Hg {φ}C {ψ, ε} then `Hg {V̂(φ)}C ′ {V̂ ′(ψ), V̂ ′e(ε)}.

Proof. By induction on the derivation of `Hg {φ}C {ψ, ε}.
If the last step is (skip), (assume), (assert), or (throw), then the proof is straightforward.

If the last step is (assign), then the proof is similar to the respective case in the proof of

Proposition 3.23.

If the last step is (seq), we have:

T(V, C1 ; C2) = (V ′′, sup(V ′e,V ′′e ), tryC ′1 catch mrg(V ′e,V ′′e ) ; throw hc ;

tryC ′2 catch mrg(V ′′e ,V ′e) ; throw hc ),

(V ′,V ′e, C ′1) = T(V, C1), V ′ 6= ⊥, and (V ′′,V ′′e , C ′2) = T(V ′, C2)

Let C = C1 ; C2 and C ′ = tryC ′1 catch mrg(V ′e,V ′′e ) ; throw hc ; tryC ′2 catch mrg(V ′′e ,V ′e) ;

throw hc. The goal is to prove that `Hg {V̂(φ)}C ′ {V̂ ′′(ψ), ̂sup(V ′e,V ′′e )(ε)}. Note that from

`Hg {φ}C {ψ, ε}, we have that `Hg {φ}C1 {θ, ε} and `Hg {θ}C2 {ψ, ε} for some θ ∈ Assert.

From T(V, C1 ; C2) = (V ′′, sup(V ′e,V ′′e ), C ′), we have that T(V, C1) = (V ′,V ′e, C ′1) and T(V ′, C2) =

(V ′′,V ′′e , C ′2). Therefore, by IH we get that `Hg {V̂(φ)}C ′1 {V̂ ′(θ), V̂ ′e(ε)}, and with the derivation

given for free by Lemma 6.11, applying the (try-catch) rule, we conclude that `Hg {V̂(φ)} tryC ′1
catch mrg(V ′e,V ′′e ) hc {V̂ ′(θ), ̂sup(V ′e,V ′′e )(ε)}. Using the same strategy, it is possible to obtain

that `Hg {V̂ ′(θ)} tryC ′2 catch mrg(V ′′e ,V ′e) hc {V̂ ′′(ψ), ̂sup(V ′e,V ′′e )(ε)}, and applying the (seq)

rule, it follows that `Hg {V̂(φ)}C ′ {V̂ ′′(ψ), ̂sup(V ′e,V ′′e )(ε)}.
If the last step is (try-catch), the proof is analogous to the previous case.

If the last step is (if), we have:

T(V, if b then C1 else C2 fi) = ( sup(V ′,V ′′), sup(V ′e,V ′′e ),

if V̂(b) then tryC ′1 ; mrg(V ′,V ′′) catch mrg(V ′e,V ′′e ) ; throw hc

else tryC ′2 ; mrg(V ′′,V ′) catch mrg(V ′′e ,V ′e) ; throw hc fi ),

(V ′,V ′e, C ′1) = T(V, C1), and (V ′′,V ′′e , C ′2) = T(V, C2)

Let C = if b then C1 else C2 fi and C ′ = if V̂(b) then tryC ′1 ; mrg(V ′,V ′′) catch

mrg(V ′e,V ′′e ) ; throw hc else tryC ′2 ; mrg(V ′′,V ′) catch mrg(V ′′e ,V ′e) ; throw hc fi. Since from

the hypothesis we have that `Hg {φ ∧ b}C1 {ψ, ε} and T(V, C1) = (V ′,V ′e, C ′1), by IH we obtain

`Hg {V̂(φ ∧ b)}C ′1 {V̂ ′(ψ), V̂ ′e(ε)}. With the derivation given for free by Lemma 6.11, apply-

ing (seq) we obtain `Hg {V̂(φ ∧ b)}C ′1 ; mrg(V ′,V ′′) { ̂sup(V ′,V ′′)(ψ), V̂ ′e(ε)}, and then by ap-

plying (try) with the derivation given for free by Lemma 6.11 we conclude that `Hg {V̂(φ ∧



156 A TRANSLATION OF ITERATING PROGRAMS INTO SA FORM

b)} tryC ′1 ; mrg(V ′,V ′′) catch mrg(V ′e,V ′′e ) ; throw hc { ̂sup(V ′,V ′′)(ψ), ̂sup(V ′e,V ′′e )(ε)}. Applying

the same strategy it is possible to obtain that `Hg {V̂(φ ∧ ¬b)} tryC ′2 ; mrg(V ′′,V ′) catch

mrg(V ′′e ,V ′e) ; throw hc { ̂sup(V ′,V ′′)(ψ), ̂sup(V ′e,V ′′e )(ε)} and then we finish by applying (if).

If the last step is (while), then we have:

T(V,while b do {θ} C1 od) = (V ′′,V ′′e , assert V̂(θ) ; assume V̂ ′(θ) ;

if V̂ ′(b) then C ′1 ; assert V̂ ′′(θ) ; assume⊥
else mrg(V ′,V ′′) fi ),

V ′ = V[x 7→ V(x) + 1 | x ∈ Asgn(C1)], and (V ′′,V ′′e , C ′1) = T(V ′, C1)

From the hypothesis it also holds that `Hg {θ∧b}C1 {θ, ε}, |= φ→ θ, and |= θ∧¬b→ ψ. By

applying (assert) we have `Hg {V̂(φ)}assert V̂(θ) {>, V̂ ′′e (ε)} because |= φ→ θ and thus V̂(φ)→
V̂(θ), and by applying (assume) we have `Hg {>}assume V̂ ′(θ) {V̂ ′(θ), V̂ ′′e (ε)}. Therefore, by

applying (seq) we have that `Hg {V̂(φ)}assert V̂(θ) ; assume V̂ ′(θ) {V̂ ′(θ), V̂ ′′e (ε)}.
By IH, we have that `Hg {V̂ ′(θ ∧ b)}C ′1 {V̂ ′′(θ), V̂ ′′e (ε)}, and since we have `Hg {V̂ ′′(θ)}

assert V̂ ′′(θ) ; assume⊥{V̂ ′′(ψ), V̂ ′′e (ε)}, because `Hg {V̂ ′′(θ)}assert V̂ ′′(θ) {>, V̂ ′′e (ε)}, and `Hg
{>}assume⊥{V̂ ′′(ψ), V̂ ′′e (ε)}, we can apply (seq) to obtain `Hg {V̂ ′(θ ∧ b)}C ′1 ; assert V̂ ′′(θ) ;

assume⊥{V̂ ′′(ψ), V̂ ′′e (ε)}. Note that sup(V ′,V ′′) = V ′′ and V̂ ′(θ) ∧ V̂ ′(b) → V̂ ′(ψ) because

|= θ ∧ ¬b → ψ. Therefore, by Lemma 6.11, and Lemma 5.4 we have that `Hg {V̂ ′(φ) ∧ V̂ ′(b)}
mrg(V ′,V ′′) {V̂ ′′(ψ), V̂ ′′e (ε)}. Applying the (if) rule we obtain `Hg {V̂ ′(θ)} if V̂ ′(b) then C ′1 ;

assert V̂ ′′(θ) ; assume⊥ else mrg(V ′,V ′′) fi {V̂ ′′(ψ), V̂ ′′e (ε)}. We finalize by applying the (seq)

rule.

We can now conclude that the translation is indeed a valid SA translation according to

Definition 5.8.

Corollary 6.22. The function T presented in Figure 6.1 is an SA translation in the sense of

Definition 5.8.

Proof. Follows directly from Proposition 6.21 and Corollary 6.20.

6.5 Related Work

The translation in this chapter differs from the translation of Chapter 3 mainly because it

translates iterating programs into non-iterating SA programs. What is more, the source pro-

gramming language may contain assume, assert and exception commands as opposed to the

While language of Chapter 3. We should refer once more that it is optional for the source

language to include assume and assert commands, since they may be present exclusively in the

intermediate language just to encode loops. This is sufficient if one just wants to check the

validity of Hoare triples annotated with loop invariants.

The idea of encoding loops through assumes and asserts was already used in the context of

tools like ESC/Modula-3 [43] and was later inherited by tools like ESC/Java [51], Boogie [10] and

Why3 [50]. Similarly, the translation of programs into SA is also not new. It was introduced
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by Flanagan and Saxe [52] and used in the context of different tools such as ESC/Java and

Boogie. Also in the context of model checking the use of SSA is a common practice, as already

mentioned in Section 2.6. Basically, both the removal of iteration and the translation into SA

have been seen as two different stages of the generation of verification conditions: in a first

stage loops were removed through the use of a command that assigns non-deterministic values

to variables, and in a second stage, the non-iterating program was converted into SA form.

Even though Flanagan and Saxe [52] have shown that the second stage preserves the weakest-

precondition semantics, as far as we know none of these stages has been shown to be sound or

complete with respect to a program semantics. In particular (and again, as far as we know)

it has never been shown that the translation preserves the validity of loop invariants. Our

translation, as opposed to the works mentioned above, generates directly a non-iterating SA

program, and is shown to be sound and complete with respect to a program semantics. In

particular this allows us to conclude that the translation preserves the validity of annotated

triples and that it does not translate invalid triples into valid triples.
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Chapter 7

Evaluation and Experiments

With the aim of evaluating empirically the contributions of the previous chapters, we have put

them into practice in different ways. As a first approach, in order to test and validate the

single-assignment translations and the VCGens in practice, we created a prototype in Haskell

(available from https://bitbucket.org/belolourenco/while-lang). The prototype imple-

ments a parser1 for While programs possibly containing annotated loops, assumes, asserts and

exceptions, applies a selected single-assignment translations, and then generates a set of VCs

using a selected VCGen. Either the SA translation and the VCGen can be chosen by the user.

Moreover, it is also possible to remove loops by unwinding them as explained in Section 2.6.

The produced VCs can then be converted into Why3 goals2 and discharged in Why3.

Since our goal is to generate VCs for real world programs, our first evaluation is done over

the LLVM intermediate representation (IR) [80]. We have chosen LLVM IR firstly because it is

already in SSA form, and secondly because different languages, such as C, Ada or Objective-C,

can be compiled into LLVM IR, which means that a single framework can be used for multiple

input languages (our work however focuses only on a subset of the C programming language).

We have implemented the VCGens discussed in Chapter 4 in a tool that was initially intended

for fault localization of LLVM IR, and with the resulting framework we were able to compare

the VCGens empirically using a set of existing benchmarks [7, 61].

The evaluation mentioned above was done by unwinding loops, and thus it resembles a

bounded model checker of software. With the aim of comparing the VCGens on a major

deductive verification tool, we have implemented them in Why3, done several experiments,

and compared our implementation with the Why3 native VCGens. In particular we explore the

worst-cases (in terms of VC size) of each VCGen in Why3, and present in the appendix sketches

of the programs that lead to the worst-case in each VCGen.

The following section presents the empirical evaluation of the VCGens developed in the

context of LLVM IR and Section 7.2 presents several experiments with the Why3 native VCGens

and our implementations.

1Based in https://github.com/davnils/while-lang-parser
2Encoding done using https://hackage.haskell.org/package/why3
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7.1 Experimental Evaluation with SNIPER-VCGen

The cube sets the basis for a thorough comparative evaluation of the VCGens with respect

to different criteria, using a representative set of benchmark programs. Since no existing tool

implements all the algorithms, we developed one on top of SNIPER [79] to analyze the effect

of solving VCs generated by different VCGens. This tool, baptized SNIPER-VCGen (available

from http://alfa.di.uminho.pt/~belolourenco/sniper-vcgen.html), targets the verifica-

tion of iteration-free LLVM intermediate representation [80]. The use of LLVM as intermediate

language is convenient for our purposes, since loop expansion and optimizations involving con-

stant propagation and simplification are readily implemented by the LLVM toolset prior to VC

generation. Naturally, an empirical comparison of VCGens requires the generation of VCs of

substantial size, which we obtain by expanding loops.

The resulting formulas are encoded in the SMT-LIB v2 language [14], and are then directly

sent to different solvers for checking in the QF AUFLIA logic, which supports quantifier-free

formulas, (unbounded) integer arithmetic, and integer arrays. In our experiments we used the

Z3 [42] (v. 4.4.1), CVC4 [12] (v. 1.4), and MathSAT [27] (v. 5.3.10) SMT solvers, to evaluate

whether our VCGen comparison results hold consistently across a diverse set of solvers, or

whether they are solver-dependent. The evaluation was performed on a 1.7 Ghz Intel Core i5

MacBook Air, with 4 GB of RAM and running OS X Yosemite. The given time values represent

wall clock time (seconds), and correspond to the solving time only, taken by the solver to run

on the SMT-LIB files, excluding generation of the VCs and encoding into SMT-LIB language.

For the first part of the evaluation, we take the program of Example 4.10, translate it to

LLVM, unwind loops N times, and generate a set of VCs using one of the VCGens mentioned in

Chapter 4. We have measured experimentally the size and the solving time of the corresponding

SMT problem for each VCGen. The detailed results for N = 100, 200, 300 when feasible (the

tool times out after 5 minutes) are shown in Figures 7.1 and 7.2.

The file size data supports the asymptotic analysis that was performed in Chapter 4. With

respect to the VCGens based on CNF, the SSA optimization produces a dramatic decrease on

the file size when partial contexts are used, in particular if no asserts are included. For VCSP,

the file size for both global and partial contexts without asserts are similar to those obtained

for SSA, but now the inclusion of assertions as lemmas in the context has only marginal impact

on the file size. With the VCLin optimization, VC size becomes linear in all cases; the data

confirms that this is by far the most efficient of all the evaluated VCGens regarding file size.

As to the solver execution time, VCCNFG performs much better than the remaining VCGens

based on CNF (more than 10 times faster than the partial contexts VCCNFP). The SSA opti-

mization improves solving time only marginally with global contexts, but with partial contexts

reduces it to roughly 1/3 (or to 1/2 if asserts are included in contexts). Nonetheless, VCSSAG

beats VCSSAP (resulting in roughly 5 times faster solving). With the SP VCGens again the use

of a global context results in several times faster solving than partial contexts: VCSPG stands

http://alfa.di.uminho.pt/~belolourenco/sniper-vcgen.html
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Figure 7.1: Results for the program of Example 4.10: VCCNF (left) and VCSSA (right)
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Figure 7.2: Results for program of Example 4.10: VCSP (left) and VCLin (right)
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Figure 7.3: Overall Z3 solving time (seconds) for benchmark programs

roughly between VCCNFG and VCSSAG, and VCSPP has similar performance to VCSSAP. Fi-

nally, and as expected from the analysis of VC size, VCLin leads to significantly more efficient

solving than any other VCGen. Although in all other cases it is preferable to use a global

context, VCLin performs slightly better with partial contexts.

Although in theory it seems that the example program will expose the benefits of using

asserts as lemmas, this kind of reasoning is misleading. In practice, when an automated solver

is used, there is no way to influence the proof, and asserts are best left out of contexts, since

they result in worse performance (with the exception of VCLin, for which adding asserts does

not seem to affect performance).

In addition to the example program of Example 4.10, we evaluated the VCGens using

a suite consisting of several case studies from the Eureka and InvGen benchmarks [7, 61],

that have been used before to test, validate and evaluate other program verification tools.

These programs are algorithmically more complicated, and therefore allow us to compare the

VCGens in a more realistic setting. In particular, the Eureka benchmark was created with the

aim of assessing the scalability of software model checking tools, with programs of increasing

complexity. Nonetheless, since assert statements are scarce in Eureka programs we also use case

studies from the InvGen benchmarks, which are rich in asserts and allow us to evaluate the

effect of including them in the context (one of the dimensions of the VCGen cube). The Eureka

benchmark contains both correct and faulty annotated programs, while the InvGen benchmark

contains only correct annotated programs. The properties found in both sets of programs rely

on Boolean expressions of the C language, and therefore do not contain any quantifiers.

For the correct bounded Eureka programs, loops were expanded the required number of times,

and unwinding assertions were introduced to ensure that the expansion was sufficient. For the

other programs, loops were expanded a reasonable number of times, with unwinding assumptions

introduced to prevent executions with more iterations from being considered. Figure 7.3 shows

the overall solving time in Z3 for the VCs generated from the full set of programs, and Table 7.1

shows the results separated by benchmark. The column labeled Correct (resp. Faulty) refers

to the total solving time for all VCs generated from the correct Eureka programs (resp. faulty
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Eureka InvGen Total

VCGen Correct (s) # Faulty (s) # Total (s) # Total (s) # (s) #

VCCNFGA 464 2 146 3 610 5 150 1 760 6

VCCNFG 417 2 126 2 543 4 101 0 644 4

VCCNFPA 842 1 447 1 1289 2 564 0 1853 2

VCCNFP 850 1 520 2 1370 3 553 0 1923 3

VCSSAGA 183 5 149 4 332 9 117 2 449 11

VCSSAG 92 7 123 27 215 34 70 2 285 36

VCSSAPA 463 5 376 3 839 8 436 0 1275 8

VCSSAP 417 4 368 2 785 6 392 0 1177 6

VCSPGA 325 2 111 8 436 10 70 2 506 12

VCSPG 301 10 114 10 415 20 63 1 478 21

VCSPPA 437 1 129 8 566 9 247 1 813 10

VCSPP 559 1 244 3 803 4 291 0 1094 4

VCLinGA 328 18 109 5 437 23 46 12 483 35

VCLinG 291 35 109 9 399 44 43 14 442 58

VCLinPA 331 11 76 21 408 32 41 9 449 41

VCLinP 312 7 92 10 404 17 39 12 443 29

Table 7.1: Z3 solving time for benchmark programs (time in seconds)

programs). The columns marked with Total refer to the total solving time for each benchmark

set of programs; the sum of both is also shown in the final column. Columns marked with #

show the number of times that each VCGen performed better than the others. The detailed

results for each program can be found in the tool’s webpage.

A considerable number of Eureka programs use assumes and asserts simply as pre- and

postconditions, as opposed to InvGen programs which are densely populated with asserts. This

is reflected in the table: the solving time difference between VCGens based on partial and global

contexts is greater in the InvGen benchmark than it is in the Eureka benchmark. The results

also confirm the trends identified previously (global contexts lead to faster solving; placing

asserts in contexts increases solving time), but allow for an exception to be identified: in all

three data sets (Eureka Correct, Eureka Faulty, and InvGen), VCSPPA performs better than

VCSPP (nonetheless, VCSPG behaves much better).

As before, the solving times for VCSPG and VCCNFG are close, with VCSPG performing

consistently better in all three benchmark datasets. The optimizations improve performance:

VCSSAG performs better than VCCNFG in all three datasets, and the VCLin variant outperform

all the others. Note that this observation is not immediately visible in the Eureka Correct
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MathSAT CVC4

VCGen Eureka # Invgen # Total # Eureka # Invgen # Total #

VCCNFGA 6911 6 356 1 3355 1 5169 4 1570 0 5117 1

VCCNFG 6723 30 230 4 3123 20 4347 9 1040 0 4085 1

VCCNFPA 8147 7 1376 0 4907 0 8677 2 4800 0 10595 0

VCCNFP 8368 7 1265 0 4725 1 8507 1 4693 0 10210 0

VCSSAGA 5906 7 436 0 2926 5 4073 8 1145 2 4130 5

VCSSAG 5683 15 312 11 2672 19 3319 26 531 29 3049 36

VCSSAPA 7911 7 1176 1 4306 6 9391 12 2787 0 8528 4

VCSSAP 7960 7 1053 0 4078 4 9247 9 2120 1 7784 4

VCSPGA 7338 14 307 5 3400 13 4928 9 1036 3 4307 10

VCSPG 7281 15 247 3 3257 10 4835 14 907 1 4155 11

VCSPPA 7704 5 825 0 3722 2 4638 16 3195 1 6454 7

VCSPP 8260 6 892 0 3875 1 4979 7 3650 1 6946 2

VCLinGA 7120 13 163 5 2963 13 4305 23 891 6 3600 19

VCLinG 7131 24 159 12 2986 27 4499 28 850 5 3745 27

VCLinPA 7227 18 474 4 3385 14 4534 11 1115 0 4097 8

VCLinP 7142 21 477 7 3329 15 4908 17 1044 4 4232 11

Table 7.2: Overall solving time results for benchmark programs in MathSAT and CVC4 (time
in seconds)

data, because the dataset contains an outlier program that biases the data heavily in favor of

VCSSA. If this program is removed, the supremacy of VCLin is restored. Finally, it remains

to discuss which variant of the VCLin performs better. The aggregate solving time for the

benchmarks is inconclusive (with G, PA and P resulting in similar times), but if we take the

number of programs in which each VCGen outperforms the others, the clear winner is VCLinG

(58 programs against 41 for VCLinPA). This is in accordance with the general trend that using

a global context without asserts seems to be the best choice.

The analysis of the data obtained with CVC4 and MathSAT in Table 7.2 confirms the

general trends described above, but reveals some points that are solver-specific. In particular it

reinforces the fact that VCSPPA performs better than VCSPP with all solvers; and with MathSAT

several programs in the benchmarks timeout with all VCGens except VCSSA, which causes the

latter to have the best aggregate solving time, supplanting VCLin. It is also interesting to note

that VCSSAG performs better with CVC4 than all other VCGens in most case studies.
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7.2 Experiments with Why3

Our second experimental analysis was performed with the Why3 verification tool set [50], which

is entirely based on deductive reasoning with invariants and contracts, and does not support

loop unrolling. The results that will be presented in this section were obtained with a work-

ing branch of Why33 and the modifications we implemented on the tool are available in the

following repository: https://bitbucket.org/belolourenco/why3_claudio. We will refer to

this modified version as Why3-vcgens. With respect to the SMT solvers, our experiments used

the Alt-Ergo version 1.30 [21] and Z3 version 4.5.0 [42]. The experiments were performed on a

4.00GHz Intel Core i7 iMAC with 8GB of RAM.

We should start by mentioning that since the tool is normally used to prove the functional

correctness of complicated algorithms it has traceability as an important feature. When a

VC cannot be proved, having a higher level of traceability helps identifying the part of the

specification that cannot be proved. In particular the VCGen that is used in the tool by default

is based on weakest-precondition computations, and can generate VCs of exponential size (see

Section 2.4), and has advantages from the point of view of traceability: the Why3 graphical

interface is able to highlight execution paths corresponding to selected VCs. Note however

that the explosion on the size of the VCs in Why3 come exclusively from the duplication of the

postcondition (e.g. Example 2.15) and not from the duplication of variables (e.g. Example 2.16):

the VCGen is not based on variable substitution, such as the one in Definition 2.15, but instead it

uses different version for the variables in a similar way to what happens when a single-assignment

form is used. Nevertheless, Why3 also implements and makes available (through a command-

line switch) a VCGen based on strongest-postcondition computations, which corresponds to

VCLinPA in our framework. For simplification purposes, in the rest of this section we will refer

to the Why3 VCGen based on weakest-precondition as w3wp and to the one based on strongest-

postcondition as w3sp.

Let us note the fact that the Why3 VCGens start by generating only a single VC and just

then allow the user to split it into a set of ‘single-goal’ VCs. These VCs can then be split even

further to reach the desired level of traceability. If the VCGen based on weakest-precondition

is used, it is possible to obtain separate VCs for each branch in conditional constructs. When

the VC obtained with w3sp is split, it originates a set of VCs that are analogous to those

generated by VCSPPA. Note however that Why3 provides several theories that are required for

proving the VCs, therefore whenever a VC is split, the axiomatization of such theories must be

replicated as well, so they appear in the context of each VC. In what follows if split is applied

to a VC obtained with w3wp (resp. w3sp) we will denote the corresponding ‘splitting’ VCGen

as w3wp-split (resp. w3sp-split).

The Why3 programming language has two different commands that are similar to the assert

command of the previous chapters (in addition to the typical invariants and contracts of deduc-

tive verification). The first command is called assert and should be used whenever one wants

to annotate the code to verify the validity of a property at a given point, and then use it in the

3Our copy of Why3 is based on the commit SHA: 4b3854a2c9fdc7fc753a01ed8936a3f3952f88f8

https://bitbucket.org/belolourenco/why3_claudio
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w3wp : ACommsa ×Assertsa → Assertsa

w3wp(skip, ψ) = ψ

w3wp(x := e, ψ) = x = e→ ψ

w3wp(assume θ, ψ) = θ → ψ

w3wp(assert θ, ψ) = θ ∧ ψ

w3wp(C1 ; C2, ψ) = w3wp(C1, w3wp(C2, ψ))

w3wp(if b then C1 else C2 fi, ψ) = (b→ w3wp(C1, ψ)) ∧ (¬b→ w3wp(C2, ψ))

w3wp(check θ, ψ) = θ

Figure 7.4: Description of Why3 default VCGen based on weakest-precondition

context of the subsequent properties. Basically, it can be seen as the assert command of our

language in a VCGen that introduces asserts in the context (the variants denoted by PA and

GA). The other command is called check and is used exclusively to verify if a property holds

at the current point of the program, being not used in the context of subsequent properties.

It can be seen as our assert command, in the VCGens that do not use asserts as lemmas (the

variants denoted by P and G). So, Why3 leaves it to the user to choose the properties to be

used as lemmas, which stands in contrast with our methodology (we just have a single command

for checking properties and then depending on the VCGen that is chosen, those properties are

inserted in the context or not).

In order to make the discussion of this section easier to follow, let us present the idea be-

hind w3wp. First of all, note that Why3 does not rely on the translation of programs into SA

form: the tool’s workflow relies on different intermediate forms, but only during the genera-

tion of verification conditions it produces unique identifiers on the fly for the variables in the

program. Nonetheless, the whole idea, and the generated VCs, are basically the same as if

single-assignment form is used. The w3wp VCGen, adapted to the SA setting, is outlined in

Figure 7.4. The function receives a command and a postcondition, and returns the VC based

on the weakest-precondition. Since we are assuming that the program is in SA form, the as-

signment consists simply of an implication, where the left hand-side captures the assignment

and the right-hand side is the received postcondition. Note that it does not rely on variable

substitution. The check command is a special case, and only makes sense due to a translation

that Why3 performs before generating the VCs: basically commands of the form check θ ; C

are translated into check θ � C, where � is the choice command of Section 2.4. Therefore,

properties that are found in check commands will not influence subsequent properties as ex-

plained above. Finally note that the if command originates a duplication of the postcondition,

which originates the explosion in the size of the generated VCs, as explained before.
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Figure 7.5: Solving time (in seconds) for the VCs obtained by unwinding the program of
Example 4.10

Why3 default VCGens and Quantifiers Let us start by comparing the Why3 VCGens

with the program of Example 4.10. For this to be possible we implemented loop unrolling in

Why3. This is done in one of the intermediate forms before the VCs are generated, and the idea is

pretty straightforward: loops are unwound a certain number of times; if invariants are annotated

in the program we insert them as asserts at the beginning of the unwound code and after each

iteration; and after the last iteration an unwinding assumption or assertion (see Section 2.6) is

inserted, depending on the user’s choice. Loop unrolling is available in Why3-vcgens through

the command line switch --bmc-assume N, to unroll loops N times and use an unwinding

assumption, or --bmc-assert N, to unroll loops N times and use an unwinding assertion.

The program of Example 4.10 was implemented in a Why3 module (see Appendix B) and

can be found in the Why3-vcgens repository (as is the case for all the programs presented

throughout this section). To evaluate whether or not having proved properties in the context

reduces the solving time, we wrote two versions of the program: one using the Why3 assert

(in module Tassert) and another using the Why3 check command (in module Tcheck). Note

that in our setting of the previous chapters this corresponds basically to compare the variants

P (resp. G) with PA (resp. GA). Our first experiment consists in unwinding the loop a number

of times and observing the solving time for the generated VCs, as well as the solving time for

the result of applying the split option.

Our first experiment consists in unwinding loops from 10 to 110, by increments of ten. The

total solving times with Z3 for the generated VCs are shown in Figure 7.5. In both charts,

the x-axis shows the number of times the loop was unwound, and the y-axis the solving time.

Since we have two versions of the same program (one with asserts and another with checks), we

identify the VCs from the program with checks by appending a ‘-c’ to the VCGen name. For

instance, the line labeled ‘w3wp-c’ corresponds to the solving time for the VCs generated from the

program annotated with checks using the native Why3 VCGen based on weakest-precondition;

and similarly the line labeled ‘w3wp-split-c’ corresponds to splitting of these same VCs. Note

that since there are two asserts in each loop, splitting the VC will originate 2 × N VCs, with

N the number of times the loop was unwound.
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Figure 7.6: Solving time (in seconds) for the VCs obtained by unwinding the program of
Example 4.10 (the line referring to w3wp is not visible because it coincides with w3sp)

The chart on the left in the figure shows that it does not make much difference on whether

w3wp or w3sp is used to generate VCs. Similarly, there is no signifficant difference between using

checks or asserts to annotate the properties in the program. The reason for the similarity in the

solving time between w3wp and w3sp is that for this program the VCs generated are themselves

very similar. In fact both VCGens generate VCs with the same shape when checks are used,

and the difference when asserts are used comes only from the fact that the VCGen based on

WP generates a formula of the form θ ∧ ψ for each assert θ and postcondition ψ, while the

VCGen based on SP generates formulas of the form θ ∧ (θ → ψ), which duplicates θ.

From the chart on the right in Figure 7.5 it is possible to see that checks generate VCs

that are more efficient in terms of solving time. This seems to agree with our conclusion in

Section 7.1 that having asserts as lemmas in the context of the present program only increases

the VC size and thus the solving time.

Let us now consider the Alt-Ergo SMT solver. For this solver, we will unroll loops from

10 to 21 by increments of one. Figure 7.6 shows the solving time for the VCs generated using

w3wp and w3sp (on the left), and then using w3wp-split and w3sp-split (on the right). Once

again observe that there is not much difference between using a VCGen based on weakest-

precondition or strongest postcondition. We should also mention that these results are for the

program annotated with asserts, but the same results are produced for the one annotated with

checks. Observe that in the current scenario the split version of the VCGens is much more

efficient. In fact the solving time when the VCs are not split grows exponentially, which makes

the split versions of the VCGen ideal for this setting.

After some analysis we concluded that the explosion was caused by the method used by

Why3 to quantify variables in the generated VC. It does so, by placing the quantifier as close

as possible to the quantified variables, therefore, quantifiers (both existential and universal)

appear in several places in the generated VCs. In our modified version of Why3, we changed

the VCGens in such a way that variables are not quantified during VC generation; instead they

are globally quantified in the end, so quantifiers are placed externally. These modified versions
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Figure 7.7: The result of moving the quantifiers to the outermost position of the VCs

of the VCGens will be denoted in what follows respectively by wpqf, spqf, wpqf-split, and spqf-

split. Figure 7.7 shows that moving quantifiers to the outermost position in the VC is clearly

beneficial. If VCs are split then the solving time does not change, but if they are not split then

the solving time is drastically reduced, as shown on the left hand-side of the figure.

In fact this observation is not only useful in the context of Alt-Ergo but also when the

Z3 solver is used. Even though in Z3 the solving time does not grow exponentially, as shown

in Figure 7.8, it grows considerably when comparing to our version of the VCGens. Another

difference w.r.t. Alt-Ergo is that in Z3 the solving time is also reduced when VCs are split.

Lastly, it should be noted that the observations made for the results obtained with Z3 also hold

consistently across CVC3 [15] and CVC4 [13] SMT solvers.

VCGen based on WP vs SP. Let us now focus on the differences between the VCGens

based on WP and SP. The results that will be discussed next, hold consistently across the

native Why3 VCGens and our versions, in which quantifiers are moved outside the VC, and

thus, as a matter of simplification we will only discuss results obtained with the native Why3

VCGens. Moreover, since the results also hold across different solvers, we will only show results

obtained with the Z3 SMT solver. To make this discussion more interesting we will add the
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trivial postcondition x ≤ 101 to the previous program. The resulting Why3 input program

is given in Appendix B, under the module name TassertPostcondition for the version with

asserts and TcheckPostcondition for the version with checks. Once again, since the results

hold consistently for both versions, we only discuss the version with asserts. With respect to

our version of the program of Example 4.10, we can imagine that the postcondition is added

as an assert at the end of the program (this is in fact what Why3 does in the intermediate

language that is used before the VCs are generated).

The charts in Figure 7.9 show the solving time using Z3 and the VC formula’s size originated

for this solver. The main observation is that w3sp generates bigger formulas, and thus less

efficient VCs (in terms of solving time), than w3wp, which reinforces the idea that even though

w3wp generates formulas of exponential size in the worst case, it is in many cases more efficient

than w3sp. Let us then analyze the reasons for w3wp to behave better than w3sp for this concrete

case.

In order to make the explanation easier to follow, let us consider a new program that

abstracts the relevant part of the program under analysis as a set of nested if constructs followed

by an assert statement with the post condition. The parts of the program that influences the

difference on the solving time are the if statements containing asserts and followed by other

asserts. So, let us consider the program if b then x1 := e1 ; assert θ1 else x1 := e2 fi ; assert θ2

that has exactly these ingredients. For this program, the VCGen based on SP generates the VC

(b→ x1 = e1 → θ1) ∧ ((b ∧ x1 = e1 ∧ θ1) ∨ (¬b ∧ x1 = e2)→ θ2), which duplicates the encoding

x1 = e1 of the assignment x1 := e1. This might not seem a big deal in this abstract case, but

if we go back to our concrete running example, the encoding of the whole set of nested ifs will

be duplicated. We should note however that this duplication only occurs once, and does not

generate any kind of explosion.

As a matter of fact, the VCGen based on WP also duplicates formulas, more precisely it

duplicate the postcondition. For the abstract program referred above, w3wp will generate the

VC (b → x1 = e1 → θ1 ∧ θ2) ∨ (¬b → x1 = e2 → θ2), in which the condition θ2 occurs twice.

Note that even though the condition is duplicated, the encoding of the structure of the program

is preserved, and thus the replication of the postcondition is done in a controlled way. In our
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the postcondition x ≤ 101

concrete running example, the postcondition will be replicated through all the execution paths

that can possibly reach it, that is, it will be propagated to the innermost then branch, and

then through all the else branches. The idea is that the postcondition can be reached from the

innermost then branch, if all the branching conditions hold, or else through an else branch, if

one of the branching conditions fails to hold.

The situation, both in terms of VC size and solving time, becomes different when VCs are

split. The charts in Figure 7.10 shows the results for this scenario. It is possible to observe

that in this case w3sp generates smaller, and thus more efficient VCs. The reason for this is

not because the duplication referred above disappeared, but because of the number of VCs that

result from splitting the VC. When using w3sp, the split will originate one VC for each assert

in the program, so if we unwind the program N times, this will originate 2×N + 1 VCs, that

is, one for each assert and another one for the postcondition. Nonetheless, as we mentioned

previously, the postcondition in w3wp is propagated backwards through all the else branches and

also to the innermost then branch. Therefore, splitting the VC will originate 2×N+N+1 VCs,

that is, one for each assert, N VCs of the else branches and another one from the innermost

then branch.

VCGens from the Cube. As we have explained at the beginning of this section, Why3 does

not use an implicit translation of programs into SA form. Instead it produces unique symbols

for the variables in the program on the fly during the generation of VCs. To fill the gap between

our work and the Why3 tool, we have implemented an explicit translation of programs into SA

form, which captures what the default VCGen functions do, returning a new program in SA

form instead of a VC. The VCs are then generated from this SA program.

Using this translation, we have implemented some of the VCGens discussed in Chapter 4.

Since the translation produces DSA programs we were unable to implement the VCSSA family

of VCGens, and due to the existence of the check and assert command in Why3, we do not

distinguish between the P and PA (resp. G and GA) variants. Therefore, it is left to the user

to choose which properties are (not) to be used as lemmas through the use of the assert (resp.
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check) command. Moreover, in what follows the results for the global variants will be omitted

because the number of valid VCs and their solving time are always poor in terms of efficiency

and traceability when compared to the partial context variants.

We have compared our VCGens with the native Why3 VCGens using the gallery of Why3

programs, and the results obtained with the Z3 SMT solver are shown in Figure 7.11. The chart

on the left shows the number of functions that were shown to be valid w.r.t. their contract, and

the one on the right shows the average solving time. When using w3sp or VCLinP a timeout

of twenty seconds was considered for the single-generated VC, and when using w3sp-split,

VCLinP, or VCSPP the timeout value was of five seconds for each VC.

It is possible to observe that w3sp with split is the one that generates the greatest amount

of VCs that can be discharged. In total, Z3 can prove that 431 out of 647 functions are correct

with respect to their contracts. The second best VCGens in terms of proved functions are w3sp

(with no split) and w3wp-split, which can prove 424 functions. The Why3 default VCGen

with no splitting can only prove 405 functions. Regarding our VCGens based on the translation

into SA, VCLinP can only prove the correctness of 418 functions. For VCSPP and VCCNFP, this

number is 416 and 413 respectively. In terms of average solving time, we note that even though

VCCNFP is the VCGen that generates the greatest amount of VCs that are not proved correct

for the given timeout, the average time is the lowest, immediately followed by VCSPP and the

native w3wp-split and w3sp-split.

Even though we are not certain about the reason for the poor performance of VCLinP when

compared to w3sp, we discuss here some possibilities. One of the reasons might be because we

were unable to implement some optimizations that are present in the Why3 native VCGens, such

as for instance the elimination of some variables that are introduced by the Why3 intermediate

representations. Another reason might be that we are quantifying variables in the outermost

position of the VC, as opposed to w3sp: while this seems to improve the solving time in some

cases, it may have the opposite effect in other cases.
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Exploring the Worst Cases. Let us now explore the worst-case scenario for each VCGen in

terms of the size of the generated VCs w.r.t. the input program. The VCGens used in this part

of the experiment are based on the translation of programs into SA, and therefore, quantifiers

always appear in the outermost position of the VC. Moreover, the sole purpose of the programs

considered in this part of the thesis is to explore the growth of the VCs, and thus they do

nothing in particular (in fact most of the generated VCs are not even valid). We first consider

the worst-case for programs with no exceptions and then for programs containing exceptions.

Our first program together with a VCGen based on weakest-precondition originates an

explosion in the size of the VCs. The program is shown in Appendix B under the module name

WPExplosion and, in order to explore the growth of the VC, we considered different versions

of the same program replicating the initial structure. To make the comparison fair, the results

that will be presented here do not correspond to the native Why3 VCGen, but to our own

implementation over the SA intermediate form (as a matter of fact, the overall observations

hold across the native Why3 VCGens).

The chart in Figure 7.12 (left) shows the growth of the VCs generated by our version of

sa-wpqf, VCLinPA, VCSPPA and VCCNFPA. The chart seems to indicate that the size of the

VCs generated by sa-wpqf grow exponentially w.r.t. the size of the program, while VCSPPA,

VCCNFPA have quadratic growth, and VCLinPA linear growth.

Recall the program of Example 4.13. It was shown that such a program with the sequences

associated to the left originates VCs that have quadratic size even when VCLin is used. In fact

this quadratic growth does not occur in Why3 because one of the intermediate steps of the

Why3 associates all sequences to the right. Nonetheless, in Section 4.3 we also mentioned that

the problem is not only the association of sequences. Having ‘blocks’ of code containing asserts

that are also followed by other asserts also causes a quadratic growth. A way of generating a

program with such a pattern is by creating a chain of nested if commands, and inserting an

assert command after each one. A sketch of such a program in Why3 is shown in Appendix B

under the module name SPCNFWorstCase.

The chart on the right in Figure 7.12 shows the size of the VCs as the number of nested if
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commands is incremented. In fact the current example is not only the worst-case for the VCLinPA

VCGen, but also for VCSPPA and VCCNFPA. As explained in sections 4.2 and 4.3 VCSPPA and

VCLinPA generates quadratic size VCs, and VCCNFPA cubic size VCs, which is confirmed in the

chart. Finally, it can also be seen that the VCGen based on WP is now the one that generates

smaller VCs, being for this case of linear size with respect to the size of the program.

Section 4.4 has already given an overview of the worst-case when exceptions are taken into

account. In short, all the VCGens may produce VCs of exponential size w.r.t. the size of the

input program. Here we just confirm the discussion of Section 4.4 with the data obtained with

the VCGens that were implemented in Why3. Once again, the same overall results hold also

for the original Why3 VCGens.

The chart in Figure 7.13 shows the growth of the VCs for a program similar to the one in

Example 4.18. A sketch of the Why3 program that was used in practice is shown in Appendix B

under the module name ExceptionsWorstCase (the exponential growth is obtained when the

code of the current try-catch command is replicated in a nested way).

The first conclusion one may draw from the chart is that all VCGens indeed generate VCs

that grow exponentially. In our experiments we also considered the VCCNFe (by using Reduced

Ordered Binary Decision Diagrams for keeping path conditions simplified) alternative of the

VCCNF but, as can be observed in the chart, the size of the generated VCs is even worse than

those generated by VCCNF.

7.3 Related Work

The experiments presented in this chapter resemble the ones that are typically carried out to

evaluate two distinct families of tools. In the first family stand tools like software model checkers

that unwind or abstract loops, and check for (simple) Boolean properties annotated in the code

through assert statements. In this kind of setting the logic is normally decidable, and related

to how fast a tool is to prove that the program is correct, or what the required resources for

that are. Therefore, tools belonging to this family of tools resort normally to a large set of
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benchmark programs to test their efficiency [72, 37, 70, 17]. Verification competitions targeting

this type of tools, such as for instance SV-COMP [18], also employ a large set of benchmark

programs to compare and evaluate the participating tools (e.g. [78, 24]) in different categories.

On the other hand, in the context of deductive verification tools such as Why3, programs

are algorithmically more complicated; properties are expressed through a more expressive logic;

and loops are annotated with invariants. In this setting the challenge is not only on how fast the

tool is to check a property, but also whether the properties can be proved (sometimes the proof

is only possible resorting to an interactive theorem prover). Therefore, deductive verification

tools are normally used to establish the correctness of complicated algorithms with respect to a

specification, such as in [25, 26, 34]. Verification competitions targeting this type of tools, such

as VerifyThis [68] focus on complicated problems (e.g. [47, 33]), and the challenge is not only

the proof but also the implementation of the algorithm in a way that allows it to be proved

with respect to the specification.

SNIPER-VCGen together with the evaluation of Section 7.1 belong to the first family,

whereas the experiments of Section 7.2 belong to the second.
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Chapter 8

Conclusion

Motivated by the fact that single-assignment intermediate forms are used extensively in software

verification, both in model checking and in deductive verification, we have proposed two proved

verification frameworks. Both families of tools eliminate iterating constructs before programs are

converted to SA form. In our first approach we deviate from this notion and introduce the notion

of iterating single-assignment program. Based on a Hoare-style logic for these programs, we

have formalized a program verification technique that consists in translating annotated programs

and specifications into an intermediate SA language, and generating compact VCs from it. An

adaptation-complete variant of the logic is obtained by adding a dedicated consequence rule with

a simple condition. The framework’s workflow is proved to be sound and complete, including the

translation of annotated programs to SA form. We remark that the translation of loop invariants

is a crucial component of the workflow, that does not trivially lead to completeness. To the

best of our knowledge, this is the first time that completeness is established for a verification

technique based on the use of an intermediate SA form for programs annotated with invariants.

Our second approach was prompted by an inspection of different methods for generating

verification conditions for (non-iterating) SA programs. Based on two well-known fundamental

VCGen algorithms, we have identified three orthogonal design dimensions, and proposed a

conceptual framework (the VCGen cube) that allowed us to define in a uniform way 6 hybrid

VCGens. The VCGen cube was then extended to incorporate two optimizations implemented

in popular tools. We remark that the two fundamental VCGens from which we departed have

their origins in two different traditions and families of tools and thus we expect that our work

here will help bridging a gap between the deductive verification and software model checking

communities, contributing towards a uniform framework for program verification.

Tools based on predicate transformers and bounded model checking incorporate many ad-

vanced features that our framework does not cover. For instance, Boogie includes automatic

inference of loop invariants based on abstract interpretation, and CBMC, which natively uses

a SAT (rather than SMT) solver, incorporates constant propagation and simplification func-

tionality that is essential for making bounded verification work in practice. Still, our work

here proposes a common theoretical foundation for program verification based on intermediate

single-assignment form, unifying ideas from predicate transformers, bounded model checking of
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software, and program logic.

From the theoretical point of view, we have introduced a program logic for (non-iterating)

single-assignment language with assume, assert, and exceptions. Based on this logic we were

able to prove the soundness and completeness of the VCGens in the cube, including the two

foremost VCGens used in deductive verification and bounded model checking of software. As

stated before, these two families of VCGens were developed in a completely independent way

and thus have not before been proved to be equivalent or compared in any way. With respect to

the conditional normal form transformation, this is the first time (as far as we know) that VC

generation is formulated for programs with exceptions, and that soundness and completeness

results are studied. For predicate transformers, not all the results are new, but the use of

a theoretical framework based on program logic is (the results available in the literature are

based on the predicate transformer semantics, which collapses the operational and axiomatic

semantics into a single definition).

A verification framework based on the translation of programs into (non-iterating) single-

assignment and on the subsequent generation of verification conditions with one of the VCGens

of the cube is formalized and proved sound and complete w.r.t. a programming semantics. Al-

though commonly used by verification tools, this is the first time that such a technique, includ-

ing the translation of programs containing annotated loops into non-iterating single-assignment

form, is proved to be sound and complete.

Finally we have presented results obtained in two distinct empirical experiments comparing

different VCGens. The first was carried out in the context of LLVM intermediate representation,

and was based on unwinding loops before generating VCs. The main goal of this experiment

was to observe the behavior of the VCGens in the context of a tool that resembles a bounded

model checker of software: loops do not contain annotated invariants; they are unwound a

given number of times; and properties to be verified are inserted through assumes and asserts.

Even though the benchmarks considered are perhaps not entirely representative of real world

programs, their diversity is sufficient to provide evidence of the importance of studying different

methods for verification condition generation. In particular by observing the results we believe

that studying different VCGens can lead to improvements in state-of-the-art verification tools.

The second experiment was performed in the Why3 deductive verification tool. We started

by studying the native Why3 VCGens, which were later compared with our VCGen algorithms

that rely on a translation into SA form and subsequent generation of VCs. Additionally we also

used the Why3 native VCGens and our own versions to study the worst-case of each VCGen.

The results obtained with the two experiments should be compared with caution. First of

all note that the LLVM programs were subject to loop unwinding, while the Why3 programs

were annotated with invariants. Moreover, the programs used in the context of LLVM depend

only on the QF AUFLIA logic (quantifier-free, linear integer arithmetic with uninterpreted

functions, and arrays), and normally the verification procedure is a simple matter of time and

resources. On the other hand, Why3 relies on different background theories, some of which

are not decidable. Finally, Why3 is a well established verification framework that has been
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used in different contexts and extensively validated, while SNIPER-VCGen has its origins in

a fault localization tool and does not implement optimizations targeting verification condition

generation.

As future work we identify the following topics:

• Even tough we are confident in the formalization and proofs that were exposed throughout

this thesis, it would be interesting to express those with the help of a proof assistant, such

as for instance Coq. In particular this can serve as a basis for creating a ‘correct by

construction’ verification tool.

• In terms of defining a proved framework for bounded verification we see two possible

pathways: (i) to use the iterating single-assignment language from Chapter 3 and study

a bounded logic (resp. bounded VCGen) that constructs bounded derivations (resp.

bounded VCs); or (ii) to create a translation into (non-iterating) SA that unwinds loops

during the translation. In both cases the main goal would be to establish soundness

and/or completeness results, depending on whether unwinding assumptions or assertions

were used. We remark that our work in this thesis addresses VC generation as imple-

mented by BMC tools after loop expansion, but not loop expansion itself.

• As far as the target programming language is concerned, initially we considered a fully

structured language and then moved into a ‘less structured’ language by considering excep-

tions. The next step would be to consider a non structured language with goto statements,

starting with a restricted form allowing only backward jumps.

• Additionally, it will be interesting to investigate how other important features of verifi-

cation tools, such as ghost code [48], or the ability to handle aliasing and pointer-based

dynamic data structures, would be affected by (and could take advantage of) the use of a

single-assignment setting.

• In our experiments in Why3 we observed that moving quantifiers to the outermost position

of the VC has benefits for some particular cases in terms of solving time. Even though for

the examples we considered this does not seem to introduce any inconsistency, it deserves

a deeper analysis for it to be used as default.

• We also believe that it would be interesting to implement and test the VCGens in other

verification tools, for instance in Boogie which is another major deductive verification

tool, and in the flagship bounded model checker tool CBMC which uses by default a SAT

instead of SMT solver.
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Appendix A

Derivations

In this chapter we present the derivation in system H and Hg from Chapter 5, of the program

from Example 4.1. For simplicity reasons, and since this program never throws exceptions, we

simplify the exceptional postcondition to false. This way, when using system H we avoid to use

the consequence rule with the trivial side condition of the form ⊥ → δ, for some δ ∈ Assert.

We will sometimes use C1, . . . , C6 to refer to the statements of the program as follows:

C1 : if x0 > 0 then y1 := 1 else y1 := 0 fi

C2 : assert y1 = 0 ∨ y1 = 1

C3 : if x0 > 0 then y2 := 1 else y2 := 0 fi

C4 : assert y2 = y1
C5 : if x0 > 0 then y3 := 1 else y3 := 0 fi

C6 : assert y3 = y1

In the derivation using system H we omit part of the derivation because it is analogous to the

other part.

Derivation in H.

{>}C1;C2;C3;C4;C5;C6 {>,⊥}
(seq)

1. {>}C1;C2;C3 {((x0 > 0∧y1 = 1)∨ (¬x0 > 0∧y1 = 0))∧ ((x0 > 0∧y2 = 1)∨ (¬x0 > 0∧y2 = 0)),⊥}
(seq)

1. {>} if x0 > 0 then y1 := 1 else y1 := 0 fi {(x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0),⊥}
(if)

1. {> ∧ x0 > 0} y1 := 1 {(x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0),⊥}
(conseq)

1. (assign) {x0 > 0 ∧ 1 = 1} y1 := 1 {x0 > 0 ∧ y1 = 1,⊥}

2. {> ∧ ¬x0 > 0} y0 := 0 {(x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0),⊥}
(conseq)

1. (assign) {¬x0 > 0 ∧ 0 = 0} y1 := 0 {¬x0 > 0 ∧ y1 = 0,⊥}
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2. {(x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0)}C2;C3 {((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0))∧ ((x0 >

0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)),⊥}
(seq)

1. {(x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)}assert y1 = 0 ∨ y1 = 1 {(x0 > 0 ∧ y1 = 1) ∨ (¬x0 >
0 ∧ y1 = 0),⊥}
(conseq)

1. (assert) {(y1 = 0 ∨ y1 = 1) ∧ ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0))}assert y1 = 0 ∨ y1 =

1 {(x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0),⊥}
2. {(x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0)} if x0 > 0 then y2 := 1 else y2 := 0 fi {((x0 > 0∧ y1 =

1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)),⊥}
(if)

1. {((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ x0 > 0} y2 := 1 {((x0 > 0 ∧ y1 = 1) ∨ (¬x0 >
0 ∧ y1 = 0)) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)),⊥}
(conseq)

1. (assign) {((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (x0 > 0 ∧ 1 = 1)} y2 := 1 {((x0 >
0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (x0 > 0 ∧ y2 = 1),⊥}

2. {((x0 > 0∧ y1 = 1)∨ (¬x0 > 0∧ y1 = 0))∧¬(x0 > 0)} y2 := 0 {((x0 > 0∧ y1 = 1)∨ (¬x0 >
0 ∧ y1 = 0)) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0)),⊥}
(conseq)

1. (assign) {((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (¬x0 > 0 ∧ 0 = 0)} y2 := 0 {((x0 >
0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (¬x0 > 0 ∧ y2 = 0),⊥}

2. {((x0 > 0∧y1 = 1)∨ (¬x0 > 0∧y1 = 0))∧ ((x0 > 0∧y2 = 1)∨ (¬x0 > 0∧y2 = 0))}C4;C5;C6 {>,⊥}
(seq)

. . .

Side conditions for application of the (conseq) rules:

• > ∧ x0 > 0→ x0 > 0 ∧ 1 = 1 and x0 > 0 ∧ y1 = 1→ (x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)

• > ∧ ¬x0 > 0→ ¬x0 > 0 ∧ 0 = 0 and ¬x0 > 0 ∧ y1 = 0→ (x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)

• (x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 = 0)→ (y1 = 0∨y1 = 1)∧((x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 = 0))

and (x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)→ (x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)

• ((x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 = 0))∧x0 > 0→ ((x0 > 0∧y1 = 1)∨(¬x0 > 0∧y1 = 0))∧(x0 >

0 ∧ 1 = 1) and ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (x0 > 0 ∧ y2 = 1) → ((x0 > 0 ∧ y1 =

1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0))

• ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ ¬(x0 > 0) → ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 =

0)) ∧ (¬x0 > 0 ∧ 0 = 0) and ((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ (¬x0 > 0 ∧ y2 = 0) →
((x0 > 0 ∧ y1 = 1) ∨ (¬x0 > 0 ∧ y1 = 0)) ∧ ((x0 > 0 ∧ y2 = 1) ∨ (¬x0 > 0 ∧ y2 = 0))

• . . .

Derivation in Hg

{>}C1;C2;C3;C4;C5;C6 {>,⊥}
(seq)

1. {>}C1;C2;C3 {((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ y2 = y1,⊥}
(seq)
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1. {>} if x0 > 0 then y1 := 1 else y1 := 0 fi {(y1 = 1∧ x0 > 0)∨ (y1 = 0∧¬x0 > 0)∧ (y1 = 0∨ y1 =

1),⊥}
(if)

1. (assign) {> ∧ x0 > 0} y1 := 1 {(y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0) ∧ (y1 = 0 ∨ y1 = 1),⊥}
2. (assign) {> ∧ ¬x0 > 0} y1 := 0 {(y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0) ∧ (y1 = 0 ∨ y1 = 1),⊥}

2. {(y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0) ∧ (y1 = 0 ∨ y1 = 1)}C2;C3 {((y1 = 1 ∧ x0 > 0) ∨ (y1 =

0 ∧ ¬x0 > 0)) ∧ y2 = y1,⊥}
(seq)

1. (assert) {(y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0) ∧ (y1 = 0 ∨ y1 = 1)}assert y1 = 0 ∨ y1 =

1 {(y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0),⊥}
2. {(y1 = 1∧ x0 > 0)∨ (y1 = 0∧¬x0 > 0)} if x0 > 0 then y2 := 1 else y2 := 0 fi {((y1 = 1∧ x0 >

0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ y2 = y1,⊥}
(if)

1. (assign) {((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ x0 > 0} y2 := 1 {((y1 = 1 ∧ x0 >
0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ y2 = y1,⊥}

2. (assign) {((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ ¬x0 > 0} y2 := 0 {((y1 = 1 ∧ x0 >
0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ y2 = y1,⊥}

2. {((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ y2 = y1}C4;C5;C6 {y3 = y1,⊥}
(seq)

1. (assert) {((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ y2 = y1}assert y2 = y1 {(y1 = 1 ∧ x0 >
0) ∨ (y1 = 0 ∧ ¬x0 > 0),⊥}

2. {(y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)}C5;C6 {y3 = y1,⊥} (seq)

1. {(y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)} if x0 > 0 then y3 := 1 else y3 := 0 fi {y3 = y1,⊥}
(if)

1. (assign) {((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ x0 > 0} y3 := 1 {y3 = y1,⊥}
2. (assign) {((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ ¬x0 > 0} y3 := 0 {y3 = y1,⊥}

2. (assert) {y3 = y1}assert y3 = y1 {>,⊥}

Side conditions for application of the (assign) rules:

• > ∧ x0 > 0→ ((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0) ∧ (y1 = 0 ∨ y1 = 1))[1/y1]

• > ∧ ¬x0 > 0→ ((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0) ∧ (y1 = 0 ∨ y1 = 1))[0/y1]

• ((y1 = 1∧x0 > 0)∨ (y1 = 0∧¬x0 > 0))∧x0 > 0→ (((y1 = 1∧x0 > 0)∨ (y1 = 0∧¬x0 > 0))∧y2 =

y1)[1/y2]

• ((y1 = 1 ∧ ¬x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ x0 > 0 → (((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 >
0)) ∧ y2 = y1)[0/y2]

• ((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ x0 > 0→ (y3 = y1)[y1/y3]

• ((y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0)) ∧ ¬x0 > 0→ (y3 = y1)[y1/y3]

Side conditions for application of the (assert) rules:

• (y1 = 1 ∧ x0 > 0) ∨ (y1 = 0 ∧ ¬x0 > 0) ∧ (y1 = 0 ∨ y1 = 1) → (y1 = 0 ∨ y1 = 1) ∧ (y1 = 1 ∧ x0 >
0) ∨ (y1 = 0 ∧ ¬x0 > 0)
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• ((y1 = 1∧x0 > 0)∨(y1 = 0∧¬x0 > 0))∧y2 = y1 → y2 = y1∧((y1 = 1∧x0 > 0)∨(y1 = 0∧¬x0 > 0))

• y3 = y1 → y3 = y1



Appendix B

Why3 Experimental Programs

module Tassert

use import int.Int

use import ref.Ref

let h (x:int) (y:int)

requires { x >= 0 /\ x <= 50}

requires {y < x}

= let x,y = ref x, ref y in

while !x < 100 do

assert {!y < 100}; x := !x + 1; y := !y + 1; assert {!y <= 100}

done;

!x

end

module Tcheck

use import int.Int

use import ref.Ref

let h (x:int) (y:int)

requires { x >= 0 /\ x <= 50}

requires {y < x}

= let x,y = ref x, ref y in

while !x < 100 do

check {!y < 100}; x := !x + 1; y := !y + 1; check {!y <= 100}

done;

!x

end

185
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module TassertPostcondition

use import int.Int

use import ref.Ref

let h (x:int) (y:int)

requires { x >= 0 /\ x <= 50}

requires {y < x}

ensures {result <= 101}

= let x,y = ref x, ref y in

while !x < 100 do

assert {!y < 100}; x := !x + 1; y := !y + 1; assert {!y <= 100}

done;

!x

end

module TcheckPostcondition

use import int.Int

use import ref.Ref

let h (x:int) (y:int)

requires { x >= 0 /\ x <= 50}

requires {y < x}

ensures {result <= 101}

= let x,y = ref x, ref y in

while !x < 100 do

check {!y < 100}; x := !x + 1; y := !y + 1; check {!y <= 100}

done;

!x

end

module WPExplosion

use import int.Int

use import ref.Ref

let f (x:ref int) (y:ref int)

requires {!x > 0}

= if !x = 0 then (x := !x + 1; assert {!x = !y + 1})

else (y := !y + 10; assert {!y = !x + 1});
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if !x = 0 then (x := !x + 1; assert {!x = !y + 2})

else (y := !y + 10; assert {!y = !x + 2});

(* ... *)

assert {!x + 999 = !y - 999}

end

module SPCNFWorstCase

use import int.Int

use import ref.Ref

let h (x:ref int) (y:ref int) (z: ref int)

requires { !x >= 0}

= x := !x + !y + 1;

if !x = 0 then

(x := !x + !y + 2;

if !x = 0 then

(* ... *)

x := !x + !y + 11

else x := !x + !z + 2;

assert {!x + 1 = !y + 2})

else x := !x + !z + 1;

assert {!x + 1 = !y + 1}

end

module ExceptionsWorstCase

use import int.Int

use import ref.Ref

exception Jump

let h (z:int) (y:int)

requires {z > 0 /\ y <= z}

ensures {result <= y}

raises {Jump -> true}

= let x = ref z in

try

if !x = 10 then x := !x + 1 else raise Jump;

if !x = 20 then x := !x + 2 else raise Jump

with Jump ->
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if !x = 10 then x := !x + 1 else raise Jump;

if !x = 20 then x := !x + 2 else raise Jump

end;

(* ... *)

!x + 10

end
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