
Fábio André Castanheira Luís Coelho

January 2018

U
M

in
ho

|2
01

8

Towards a Transactional and Analytical
Data Management System for Big Data

To
w

a
rd

s
a

 T
ra

n
sa

ct
io

n
a

l a
n

d
 A

n
a

ly
ti

ca
l D

a
ta

 M
a

n
a

g
e

m
e

n
t

S
ys

te
m

 f
o

r
B

ig
 D

a
ta

Fá
bi

o
An

dr
é

C
as

ta
nh

ei
ra

 L
uí

s
C

oe
lh

o

Universidade do Minho

Escola de Engenharia

The MAP-i Doctoral Programme in Informatics, of
the Universities of Minho, Aveiro and Porto

Universidade do Minho

universidade de aveiro

January 2018

supervisors:

Professor Doutor Rui Carlos Oliveira

Professor Doutor José Orlando Pereira

Fábio André Castanheira Luís Coelho

Towards a Transactional and Analytical
Data Management System for Big Data

Universidade do Minho

Escola de Engenharia

The MAP-i Doctoral Programme in Informatics, of
the Universities of Minho, Aveiro and Porto

Universidade do Minho

universidade de aveiro

iv

Agradecimentos

O ano de 2011 marcou um ponto de viragem na minha vida quando, conjun-
tamente com 3 amigos, decidi rumar ao norte de Portugal. A cidade de Braga
acolheu-me e foi no seio das fantásticas pessoas que por cá encontrei que vivi,
cresci e me superei. Foi em particular no Grupo de Sistemas Distribuídos (GSD)
da Universidade do Minho que esta jornada começou, durante os dois anos que
durou o meu mestrado. Foi simultaneamente sorte e uma virtude ter encontrado
um grupo de pessoas tão coeso, que profissionalmente sempre excedeu na vontade
de entreajuda, e que a nível pessoal sempre apoiou nos momentos menos bons e
festejou nos melhores. Afinal, tudo é mais fácil quando nos rodeamos de amigos.
Foram sem dúvida alguma estes, os grandes fatores que me levaram a embarcar
neste doutoramento, cujo culminar celebramos hoje, juntos. Muito obrigado e
um bem haja a todos os que direta, ou indiretamente, participaram no percurso
do meu doutoramento e que está patente neste documento.

Não posso deixar de remeter alguns cumprimentos particulares. Gostaria em
primeiro lugar de agradecer aos meus orientadores. Ao Prof. Rui Carlos Oliveira,
pela confiança que em mim depositou e por todas as experiências académicas
e pessoais que durante todo este percurso me proporcionou. A sua motivação,
profissionalismo e amizade excederam o que lhe era exigido e levaram-me a ser
hoje a pessoa que sou, mais observador, mais confiante e pleno de motivação.
Ao Prof. José Orlando Pereira, por todos os momentos em que me aconselhou,
guiando a minha visão ao longo dos obstáculos que fomos encontrando. A sua
contribuição no sucesso deste trabalho é por isso imensurável.

Não pode passar em vão o meu profundo agradecimento para com o Laborató-
rio de Software Confiável, em particular para com o GSD. A todas as pessoas que
o compõem e que por lá passaram durante os anos em que lá estive, nomeada-
mente: Ana Alonso, Catarina Leones, Filipe Campos, Francisco Cruz, Francisco
Maia, Francisco Neves, João Paulo, Miguel Matos, Nuno Machado, Paula Ro-

v

vi

drigues, Ricardo Gonçalves, Ricardo Macedo, Ricardo Vilaça, Rui Gonçalves,
Rui Ribeiro, Rogério Pontes e demais corpo docente. A todos vós exprimo a
minha profunda gratitude por proporcionarem o substrato fértil de onde colho
hoje este trabalho, pois cada um de vós, na sua medida, contribuiu largamente
para o sucesso desta etapa. I would also like to thank Valerio Schiavoni from the
Université de Neuchâtel for all the insights and joint work in the beggining of this
PhD.

Aos meus amigos de sempre, Eunice Tudela de Azevedo, Adriana Tudela de
Azevedo e Bruno Miguel Agostinho, cuja amizade a distância não desvaneceu,
solidificando-a a cada dia. Ao Diogo da Cunha Rodrigues, Samuel Santos Almeida
e Vasco Miguel Coelho por serem os 3 com os quais esta jornada começou. Por
todos os momentos de partilha, união e amizade. Por serem os irmãos que eu
nunca tive. À Margarida Vasconcelos e ao Marcelo Dias. Por serem o casal mais
formoso, unido e resiliente que jamais conheci. A vossa energia é espelho da
nossa amizade. Por fim, a todos os amigos que fundei em Braga: Ana Capelo,
Ana Carolina, Tatiana Conde, Carlos Silva e Rosa Mariana.

Os meus pais José Maria Coelho e Maria José Castanheira Luís Coelho são
a base da minha família. É devido a eles, aos seus sacrifícios e à vontade que
sempre mostraram em que estudasse que hoje atinjo este patamar. Este trabalho
é para vós. Agradeço também aos meus tios e primos mais próximos.

Por último, agradeço à Ana que me tem acompanhado nestes últimos anos, e
que contribui todos os dias para ser hoje a pessoa que sou. Obrigado :D.

Adicionalmente, algumas instituições apoiaram o presente trabalho. Ao INESC
TEC, pelo apoio deste doutoramento através do seu financiamento pluri-anual du-
rante 3 anos. À Fundação para a Ciência e a Tecnologia (FCT), por ter apoiado
o último ano através da bolsa de doutoramento (SRFH/BD/114842/2016). Por
fim ao Departamento de Informática da Universidade do Minho e ao HASLab
pelas condições necessárias ao desenvolvimento deste trabalho.

REPÚBLICA
PORTUGUESA

UNIÃO EUROPEIA
Fundo Social Europeu

Braga, Janeiro de 2018
Fábio Coelho

The important thing is to not stop questioning.

Curiosity has its own reason for existing.

Albert Einstein

Towards a transactional and
analytical data management system
for Big Data
Hybrid database systems are on the verge of making Big Data analytics a reality.
This new class of database systems bypasses traditional methodologies considered
to update data on the analytical processing engine, moving such processing to
be computed directly on top of production data. Uncovering a unified database
engine that can achieve scalable analytics while simultaneously keep a steady op-
erational capacity, needs to overcome some of the current system hurdles, namely
the Extract, Transform and Load (ETL) process. By eschewing such process, hy-
brid database engines are poised to reduce implementation, management and
storage costs and ultimately, enabling real-time Big Data analytics.

This dissertation addresses hybrid database systems, particularly tackling
some of the inherent functional and non-functional challenges associated with
the provision of real-time analytics. This was achieved by specializing in a par-
ticular class of analytical functions designated as Window Functions. We con-
sidered this class of analytical functions as a vehicle to understand and address
the low-latency requirements in hybrid systems, by considering a highly scalable
and cloud-based operational database as foundation. While we equipped it with
the ability to compute analytical functions, new algorithms were developed to ac-
count for the highly distributed scenario. We devised a new metric and evaluation
system specifically targeted to assess hybrid database systems, showing that the
accomplished prototype is able to meet current requirements. Each one of these
achievements is presented as a novel contribution that addresses the proposed
challenges and unravels the path for a real-time analytics database.

ix

x

Rumo a sistemas de gestão de
dados transacionais e analíticos
para Big Data
As bases de dados híbridas estão prestes a tornar o processamento de dados
analíticos em Big Data numa realidade. Esta nova classe de bases de dados
evita as metodologias tipicamente consideradas para a atualização de dados nos
motores de processamento analítico, movendo-o para ser computado diretamente
sob a base de dados operacional. Alcançar uma base de dados híbrida, munida
de um motor unificado que possibilite processamento analítico escalável e seja
simultaneamente capaz de manter um nível de processamento operacional estável,
terá necessariamente que ultrapassar alguns dos obstáculos hoje encontrados,
nomeadamente o processo de transformação de dados, do Inglês (ETL). Ao evitar
este processo, as bases de dados híbridas terão um papel ativo, reduzindo custos
de implementação, gestão e armazenamento, o que em última análise promoverá
o processamento analítico de Big Data em tempo-real.

Esta dissertação centra-se em bases de dados híbridas. Em particular, aborda
alguns dos desafios funcionais e não-funcionais associados ao aprovisionamento
de uma capacidade de processamento analítico em tempo-real. Nomeadamente,
recorreu-se a uma classe de funções analíticas designadas por Window Functions
(Funções em Janela), considerado-as como veículo à percepção e adoção de requi-
sitos inerentes ao processamento híbrido. Considerou-se desta forma uma base de
dados operacional altamente escalável, fundada em tecnologias orientadas ao pro-
cessamento na nuvem. Partiu-se para a adequação do referido motor de base de
dados, por forma a equipa-lo com a capacidade de interpretação e execução desta
classe específica de funções analíticas, enquanto novos algoritmos foram desen-
hados por forma a considerar o ambiente altamente distribuído em que esta base
de dados se insere. Desenvolveu-se uma nova métrica e plataforma de avaliação,
inovadora na forma como as distintas distribuições de pedidos (transacionais e
analíticas) são combinadas numa única, capaz de avaliar sistemas de bases de
dados híbridas. Esta métrica serviu posteriormente para demonstrar que o pro-

xi

xii

tótipo desenvolvido está capacitado para responder aos desafios propostos. A
realização de cada um dos objétivos propostos está apresentado como uma nova
contribuição científica, contribuindo para desbravar o caminho com vista a um
sistema integrado e capacitado para o processamento em tempo-real de Big Data.

Contents

1 Introduction 1
1.1 Problem Statement and Objectives 4
1.2 Contributions . 4
1.3 Software Prototypes . 5
1.4 Publications . 6
1.5 Outline . 8

2 Background 11
2.1 Online Transactional Processing 11
2.2 Online Analytical Processing . 14
2.3 Discussion . 16
2.4 Hybrid Transactional, Analytical Processing 20

3 Benchmarking Hybrid Data Management Systems 23
3.1 HTAPBench Design . 25

3.1.1 Workload . 27
3.2 Result Set Homogeneity . 29
3.3 HTAPBench Metric and Components 32

3.3.1 Implementation . 36
3.3.2 Benchmark Configuration 36

3.4 Benchmarking Campaign and Validation 38
3.4.1 OLTP System . 38
3.4.2 OLAP System . 40
3.4.3 Hybrid System . 41
3.4.4 Discussion of Results . 41

3.5 Validation . 42

xiii

xiv Contents

3.5.1 Unified Metric . 43
3.5.2 Throughput Threshold Variability 44
3.5.3 Workload Representativeness 45
3.5.4 Homogeneity and Reproducibility 47

3.6 Related Work . 48
3.7 Remarks . 52

4 Distributed SQL Window Functions 53
4.1 Window Functions . 55
4.2 Window Function Query Construction 55

4.2.1 Partitioning . 57
4.2.2 Ordering . 58
4.2.3 Framing . 59

4.3 Cumulative and Ranking Analytical Functions 60
4.4 Distributed Execution . 62

4.4.1 Data Splitting . 63
4.4.2 Data Forwarding . 64

4.5 Holistic Shuffling . 66
4.5.1 Histogram Construction 67
4.5.2 Shuffler Action . 68

4.6 Similarity Awareness . 69
4.7 Evaluation . 72
4.8 Related Work . 79
4.9 Remarks . 80

5 Hybrid Query Engine Integration 81
5.1 Architecture . 81
5.2 Data Partitioning . 83
5.3 Parallel Query Planing and Execution 85

5.3.1 Query Planing . 86
5.3.2 Shuffle Histogram . 87
5.3.3 Shuffling Middleware . 90
5.3.4 Implementation . 91

5.4 Evaluation . 92
5.4.1 Experimental Setup . 93

Contents xv

5.4.2 Performance and Scalability 93
5.4.3 Partition Sizes . 97
5.4.4 Shuffled Data . 99
5.4.5 Comparison with Cloudera Impala 100
5.4.6 Hybrid Performance . 101

5.5 Related Work . 105
5.6 Remarks . 106

6 Conclusion 107
6.1 Future Work . 109

Bibliography 111

xvi Contents

Acronyms

ACID Atomicity, Consistency, Isolation and Durability. 2, 3

BI Business Analytics. 20, 21

CEP Complex Event Processing. 79

DOP Degree Of Parallelism. 63

DQE Distributed Query Engine. 62, 63, 69, 70, 73–76

ETL Extract, Transform and Load. 3, 4, 15, 21, 49, 109

HDQE Hybrid Distributed Query Engine. 5–7, 9, 81–83, 102, 105

HTAP Hybrid Transactional and Analytical Processing. 4, 6, 11, 20, 21, 24, 27,
29, 32, 36, 38, 41, 44, 45, 52, 81, 109, 110

I/O Input/Output. 3, 13, 16, 49

IoT Internet of Things. 81

JDBC Java Database Connectivity. 36, 82, 88

MR Map-Reduce. 3, 15

MVCC Multi Version Concurrency Control. 21

OLAP OnLine Analytical Processing. 2, 4, 11, 14–16, 20, 21, 23, 26, 32, 33,
36–42, 44, 52, 81, 102, 103, 109, 110

xvii

xviii Acronyms

OLTP OnLine Transaction Processing. 2–4, 11, 14–16, 20, 21, 26, 30, 32, 33,
35, 37–42, 44, 52, 81, 102, 109

PaaS Platform as a Service. 81

PBK Partition By Key. 74, 75

QE Query Engine. 62, 63, 110

QO Query Optimizer. 62

RDBMS Relational Database Management Systems. 2, 12

SPC Storage Performance Council. 48

SPEC Standard Performance Evaluation Council. 48

SQL Structured Query Language. 3, 5, 6, 9, 15

SUT System Under Test. 24, 26, 28, 36–38, 104, 105

TPC Transaction Performance Council. 48

TPC-C Transaction Processing Performance Council Benchmark C. 23, 30, 31,
33, 35, 36, 38, 48, 72

TPC-DS Transaction Processing Performance Council Benchmark DS. 23, 49,
73

TPC-E Transaction Processing Performance Council Benchmark E. 23, 49

TPC-H Transaction Processing Performance Council Benchmark H. 23, 29, 32,
34, 35, 49, 103

WF Window Functions. xix, xx, 9, 55, 66, 78–81, 103, 104, 106, 110

List of Figures

2.1 Row-oriented data layout. 13
2.2 Column-oriented data layout. 16
2.3 Shared architectures for distributed computing. 17

3.1 HTAPBench architecture. 26
3.2 HTAPBench execution. 26
3.3 Timestamp density difference. 30
3.4 TPC-H query 6. 35
3.5 OLTP SUT . 39
3.6 OLAP SUT . 40
3.7 Hybrid SUT . 41
3.8 Quadrant field plot for the unified metric. 43
3.9 Disk access pattern registered in a solo OLTP workload. 45
3.10 Disk access pattern registered in a solo OLAP workload. 46
3.11 Disk access pattern registered in a hybrid workload. 46
3.12 Result set execution cost. 47

4.1 SQL query with WF. 55
4.2 Stages of the window operator . 56
4.3 WF SQL query without ordering and framing clause. 56
4.4 WF SQL query without partitioning or framing clause. 56
4.5 WF partition example. 57
4.6 WF with cumulative and ranking aggregation 61
4.7 Simplified architecture of a distributed query engine. 62
4.8 Distributed data layout considering K as the partitioning key. . . 63
4.9 Distributed data layout considering hash functions as the parti-

tioning key. 64

xix

xx List of Figures

4.10 Example of the shuffling mechanism 65
4.11 Test WF query for the holistic technique. 72
4.12 Forwarded data using the holistic shuffler 73
4.13 Forwarded rows for the local shuffling stage. 73
4.14 Distribution of logical partitions per qualifier 75
4.15 Similarity between qualifiers . 76
4.16 Bandwidth usage between instances 77

5.1 Hybrid Distributed Query Engine architecture. 82
5.2 Data partitioning strategy. 84
5.3 Shared bytecode query plans among HDQE instances. 86
5.4 Parallel distributed query plan for ranking window function. . . . 87
5.5 Update statistics via HBase CoProcessor. 88
5.6 Structure of the shuffling queues. 91
5.7 WF query for evaluation. 93
5.8 Comparison of execution time for the naive technique across runs. 94
5.9 Comparison of execution time for the holistic technique across runs. 95
5.10 Comparison of execution time for the naive and holistic techniques. 96
5.11 Performance gain for the holistic technique. 97
5.12 Partition size impact in query execution time. 98
5.13 Shuffled data between HDQE workers. 99
5.14 Comparison of execution time for the HDQE and Cloudera Impala. 101
5.15 HTAPBench’s evaluation of the HDQE. 102
5.16 HTAPBench query Q6. 102
5.17 HTAPBench query Q6 with Window Functions (WF). 103
5.18 HDQE throughput evaluation. 103
5.19 HDQE throughput evaluation with statistics. 104

List of Tables

3.1 Workload configuration - ideal TPC-C client. 31
3.2 Density observation results. 32
3.3 Analytical results according to distinct workload profiles. 42
3.4 Client balancer throughput threshold variance. 44

4.1 Performance of each step for 2 and 8 workers for the ranking WF
computation. 74

4.2 Total bandwidth (sent) and execution time registered for each con-
figuration. 78

5.1 Number of generated partitions per configuration. 98
5.2 Analytical performance with and without statistics in a hybrid

workload. 104

xxi

xxii List of Tables

Chapter 1

Introduction

With the establishment of cloud computing as a mainstream technology, compa-
nies worldwide acquired a significant grasp on how this technology could improve
their day-to-day activities. The ubiquity brought by this new paradigm made
access to all kinds of data, be it documents, presentations, photographs, videos
or other raw formats widely accessible due to the immediate and continual avail-
ability provided. The storage, structuring and indexing of these huge amounts
of data for subsequent efficient access and processing have been a major business
opportunity, but also a great challenge for cloud service providers. At the same
time, the high availability standards and competitive offerings for cloud storage
services and processing capabilities allure an increasing number of businesses to
migrate their systems into the cloud, reducing maintenance and ownership costs.
This adds up not only to the sheer volume of data to be managed by cloud
providers, but also, to the diversity of solutions that are currently offered.

In a parallel path, data analytics experimented a Big progress, boosted by
the scalability offerings of the cloud computing trend, from where the contempo-
rary term Big Data Analytics was coined. Past years saw a meaningful growth
of related technologies as some of the largest Internet players such as Google,
Facebook, Amazon or Microsoft invested large sums of capital to expedite such
technologies. In a recent study, IDC, the International Data Corporation, esti-
mates that by the end of 2020, the investments covering Big Data Analytics and
associated technologies could reach 200 billion USD (United States Dollar) [IDC,
2015]. Despite the huge data volumes already handled by such companies, the
techniques considered are often extremely inefficient and coupled together in an

1

2 1 Introduction

ad-hoc manner, consuming tremendous amount of resources which in turn results
in a very high total cost of ownership [Stonebraker, 2008].

Nowadays, the heterogeneity found in the universe of Big Data applications is
the consequence from tailoring applications to suit a subset of Big Data problems,
such as the increase in data volume for data management systems or the process-
ing rhythm for real-time systems. Regarding data management, it is possible
to observe the flourishing of new data technologies that can somehow be better
suited to fulfill the needs of the Big Data scenario (e.g., distributed databases
within the Hadoop [Shvachko et al., 2010] ecosystem), a significant part of all
data is still being stored in data repository systems such as Relational Database
Management Systems (RDBMS).

Traditionally, RDBMS are associated with a set of guarantees that surround
operations in a safety net in what concerns to data consistency and durability.
However, this safety net is also associated with failing to comply with some
of the key non-functional characteristics of the cloud computing paradigm: the
high availability and scalability. RDBMS have now moved from centralized and
monolithic architectures to profit from the elasticity provided by cloud-based
platforms, while maintaining focus on data consistency.

RDBMS address the maintenance of some key characteristics: Atomicity, Con-
sistency, Isolation and Durability (ACID). It focuses on the transaction abstrac-
tion, enabling OnLine Transaction Processing (OLTP) systems to keep concur-
rent operations (e.g., inserts and updates) consistent. Nonetheless, the increasing
trend to perform Big Data analytics as part of a decision support system, places
a burden over OLTP systems as they are one of the main data sources for de-
cision support systems and, the requirements for maintaining data consistency
conflict with the ideal requirements for analytical workloads, such as handling
multi-dimensional queries.

OnLine Analytical Processing (OLAP) systems are typically considered in
parallel, as a way to overcome the shortcomings presented by OLTP systems
regarding data analysis. Such systems are fed with data from a variety of sources,
namely from OLTP systems, and converted to a multi-dimensional model. This
data model fits the type of analytical queries as stored data is already aggregated
according to a schema.

To achieve this multi-dimensional aggregated schema, data undergoes a trans-

3

formation procedure commonly referred to as Extract, Transform and Load (ETL).
The process considers sometimes a set of production databases to perform the
extraction of data, then performing the required transformations (i.e., combin-
ing several entities into a large dimension) and finally loading it in a multi-
dimensional database that will be ready to accept analytical queries. The trans-
formation that data undergoes during this procedure is usually very greedy in
terms of completion time and computational resources. The overhead imposed
by the ETL process is specially acute when data feeding this process originates
from an OLTP system – typically a Structured Query Language (SQL) ACID
database. This procedure can be so disruptive to the performance of the OLTP
system that its actions are usually scheduled to periods of under utilization.

Real-time analytics has now reached a level of pervasiveness beyond expecta-
tion, reaching society in new fields like social media analysis, online advertising or
more traditional domains such as trading and stock markets [Ellis, 2014, Bange
et al., 2013]. This is actually perceived as being able to collect insights and trigger
responses as fast as data is made durable [Liu et al., 2014]. The high availabil-
ity provided by the cloud computing paradigm created a good nest for several
distributed computing technologies, particularly the Hadoop/Map-Reduce (MR)
framework [Shvachko et al., 2010, Dean and Ghemawat, 2008], that observed a
large adoption and fork rate during the last decade. However, this framework
was designed with scalability and fault-tolerance in mind, being fine-tuned for
throughput and not for Input/Output (I/O) efficiency [Lee et al., 2012], which
does not meet the need for low-latency operations. Moreover, the high response
times brought by the ETL procedure reduces data analysis to a series of snap-
shots of data. Together, these concerns impose limits to the key aspects of a true
real-time processing system.

Database systems are undergoing a design change, boosted by the need for
achieving real-time analytics over production data. Hybrid database systems
introduce an opportunity to merge the transactional and analytical workloads.
The lookout for a hybrid solution that is simultaneously able to fulfill operational
and analytical workloads, must comply with low-latency operations, leveraging
all parallel opportunities and ultimately eschewing the ETL.

4 1 Introduction

1.1 Problem Statement and Objectives

The increasing demand for real-time analytics requires the fusion of Transactional
(OLTP) and Analytical (OLAP) systems and has been sparking several propos-
als for the so-called Hybrid Transactional and Analytical Processing (HTAP)
systems. As pointed out by Gartner [Pezzini et al., 2014], this new class of
database engines should be capable of handling mixed workloads with high lev-
els of transactional activity and, at the same time, providing scalable business
analytics directly over production data. By eschewing the ETL process, HTAP
systems are poised to reduce implementation, management and storage costs and,
most importantly, enable real-time analytics over production data.

This thesis is precisely focused in bridging the gap between OLTP and OLAP
systems, addressing some of the current shortcomings found in today’s attempts
to unlock HTAP database engines. For instance, it is not trivial to assess hybrid
database systems. As OLTP and OLAP database systems have been kept sepa-
rated, the respective evaluation systems have also been kept separated, focusing
in the assessment of the particular aspects of each workload type. Likewise, the
first objective is to pursue the understanding of how to assess a hybrid database
engine regarding its functional and non-functional properties, in order to validate
architectural decisions.

Hybrid database systems introduce considerable new challenges when merg-
ing OLTP with OLAP workloads, particularly the ingestion of newly produced
data from the transactional activity into the analytical execution, without ETL.
Therefore, the second objective is to understand how data aggregations can reflect
newly ingested items from the transactional activity by addressing a particular
class of analytical functions.

HTAP systems suggest new architectural challenges associated with the pro-
vision of low latency analytics. Likewise, the third objective is to leverage the
research in parallel-distributed architectures, enabling analytical SQL queries in
parallel over a distributed shared-nothing system.

1.2 Contributions

This dissertation introduces three novel contributions. The first contribution
arises from the need for a thorough evaluation of hybrid database engines. Cur-

1.3 Software Prototypes 5

rent benchmarking approaches are not able to comprehensively produce a metric
– described ahead as unified metric – that can convey all the functional char-
acteristics of a hybrid workload. The evaluation of operational and analytical
database engines was so far achieved through disjoint workloads. A new bench-
mark suite, HTAPBench is proposed, providing a new unified metric for hybrid
systems.

As a second contribution, we particularly address a specific class of analytical
functions designated as Window Functions. This subclass of analytical operators
allow data to be handled in a derived view of a given relation, considering an
execution window, built from a configurable array of consecutive tuples. This
class of analytical functions is keen to create logical data partitions defined in
a per-query basis that needs to be mapped to the actual physical partitions of
data. The efficiency of these functions is bound to the ability to establish a high
affinity among the elements of each logical partition. This contribution introduces
a holistic mechanism that learns how to exercise the affinity between elements of
logical partitions by looking at the physical location of each logical partition.

The third contribution leverages the research in parallel-distributed databases,
enabling the execution of parallel analytical SQL queries over a distributed shared-
nothing system. The understanding that logical partitions may be arranged and
forwarded in special batches improved the previous considered affinity mecha-
nism. This is achieved by exploring a correlation strategy that analyzes the
Similarity between elements of a given logical partition. The effectiveness of
the mechanism was then verified during the distributed execution of queries,
showing how data similarity can be employed across partitions to improve data
co-locality between nodes of a distributed database. The mechanisms are inte-
grated in a SQL Hybrid Distributed Query Engine (HDQE), equipping it with the
ability to compute this class of analytical functions in a setup composed from a
configurable number of instances. A thorough evaluation is provided, considering
a series of micro-benchmarks and considering the proposed benchmark suite.

1.3 Software Prototypes

We developed prototypes for all the previously described contributions:

• We have implemented HTAPBench, a benchmarking suite particularly de-

6 1 Introduction

signed to assess HTAP database systems. The evaluation and validation of
results show that it is able to provide a unified metric to evaluate a common
transactional and analytical workload.

Available at https://github.com/faclc4/HTAPBench

• We started from the Apache Derby query engine and fully implemented its
capability to interpret and execute SQLWindow Functions. The prototype
modified the SQL parser and cost optimizer, tailoring the solution to be
sensitive to the statistical mechanisms considered.

• We implemented prototypes for the Holistic and Similarity statistical mech-
anisms, considering simulated configurations that emulated a distributed
query engine.

• We have implemented the Holistic and Similarity mechanism in the HDQE
as part of its underlying data store. For this purpose we particularly lever-
age the CoProcessor Framework found in HBase.

1.4 Publications

The work presented in this thesis has been published in a number of publications
in distinct international conferences:

• Fábio Coelho, João Paulo, Ricardo Vilaça, José Pereira, Rui Oliveira.
HTAPBench: Hybrid Transactional and Analytical Processing Benchmark.
In Proceedings of the 8th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE), 2017

This conference paper presents the architecture of HTAPBench, a new
benchmarking suite designed to bridge the gap of current benchmarking so-
lutions, geared towards the assessment of hybrid database engines. HTAP-
Bench introduces a new client balancer that controls transactional and an-
alytical client flows and assembles the results in a clever new unified metric.

• Fábio Coelho, José Pereira, Ricardo Vilaça, Rui Oliveira. Holistic Shuffler
for the Parallel Processing of SQL Window Functions. In Proceedings of

https://github.com/faclc4/HTAPBench

1.4 Publications 7

16th IFIP Conference on Distributed Applications and Interoperable Sys-
tems (DAIS), 2016

This conference paper analyzes and expedites statistical properties observed
in a distributed key-value store when computing a class of analytical func-
tions designated as Window Functions. The translation of these observa-
tions into a histogram, enables a key-value store that is configured as the
data substrate of a distributed SQL query engine to judiciously forward
data to the nodes where the computation was assigned.

• Fábio Coelho, Miguel Matos, José Pereira, Rui Oliveira. Similarity Aware
Shuffling for the Distributed Execution of SQL Window Functions. Best
Paper Award in Proceedings of 17th IFIP Conference on Distributed Appli-
cations and Interoperable Systems (DAIS), 2017

This conference paper builds on previous work and pushes the query engine
technology forward, by understanding similarities between remote data par-
titions. The added knowledge enables the query engine’s data forwarding
mechanism to efficiently manage the bandwidth usage when transferring
data between remote nodes during distributed execution.

The following work is ready to be submited:

• Fábio Coelho, Rui Gonçalves, Miguel Matos, Francisco Cruz, José Pereira,
Rui Oliveira. Parallel SQL Window Functions in Distributed Databases.

This conference paper draft introduces the previously described new strate-
gies in a HDQE, particularly tackling all parallelization opportunities. This
was achieved by enabling several workers to split and share query execu-
tion, while choosing the optimum execution location that minimizes data
forwarding among workers.

Also, preliminary work has been published that greatly improved our knowl-
edge of transactional processing mechanisms on top of NoSQL key-value stores:

• Fábio Coelho, Francisco Cruz, Ricardo Vilaça, José Pereira and Rui Oliveira.
pH1: A Transactional Middleware for NoSQL. In Proceedings of 33th IEEE
International Symposium on Reliable Distributed Systems (SRDS), 2014

8 1 Introduction

This conference paper introduces a new framework, pH1, that brings the
transactional wrapping agent atop NoSQL Key-Value stores. The frame-
work was assessed with two NoSQL stores, Cassandra and HyperDex, show-
ing an overall limited performance impact. Moreover, the extensible charac-
teristics of the framework allow it to be easily plugged-in with other NoSQL
stores.

Additionally, the result of collaborations paving the way for this thesis or
leveraging its research appear in the following publications:

• Pascal Felber, Marcelo Pasin, Etienne Rivière, Valerio Schiavoni, Pierre
Sutra, Fábio Coelho, Miguel Matos, Rui Oliveira and Ricardo Vilaça. On
the Support of Versioning in Distributed Key-Value Stores. In Proceed-
ings of 33th IEEE International Symposium on Reliable Distributed Systems
(SRDS), 2014

This conference paper presents a study of the design and implementation
space for providing versioning support on top of a distributed key-value
store. A versioning API that enables multiple writers is provided as common
Key-Value stores do not offer the necessary synchronization power.

• Francisco Maia, João Paulo, Fábio Coelho, Francisco Neves, José Pereira
and Rui Oliveira. DDFlasks: Deduplicated Very Large Scale Data Store. In
Proceedings of Distributed Applications and Interoperable Systems (DAIS),
2017

This conference paper extends DataFlasks, an epidemic data store for
massive scale systems, introducing deduplication mechanisms. The design
and evaluation are provided and the results are twofold. First dedupli-
cation is able to decrease storage requirements and also decrease network
bandwidth, while maintaining a fully-decentralized and resilient design.

1.5 Outline

The rest of the document is structured as follows:
Chapter 2 starts by describing the meaningful characteristics of operational,

analytical and hybrid databases.

1.5 Outline 9

Chapter 3 introduces HTAPBench, a new benchmarking suite designed to
evaluate hybrid database systems, particularly addressing its design, workload
and component specification. Afterwards, this new benchmarking suite is evalu-
ated and the results validated. This new suite offers a new unified metric that is
able to slot the results in a quadrant field plot.

Chapter 4 introduces WF as the main class of analytical functions covered in
this dissertation, considering two new techniques that are able to expedite the
distributed execution of this class of analytical functions.

Chapter 5 presents the architecture for the SQL HDQE that is simultaneously
able to sustain an operational workload at a steady throughput, while at the same
time perform analytical WF.

Chapter 6 concludes this dissertation, discusses its achievements and addresses
future research paths.

10 1 Introduction

Chapter 2

Background

This chapter covers several meaningful aspects regarding the classification of
database systems. First, we consider key concepts behind the current classifi-
cation of database systems. We address OLTP systems, covering transactional
semantics and considered data structuring. Moreover, we address OLAP systems,
also covering data structuring and the main steps taken toward the scalability
of their operations. Afterwards, we discuss the main features and challenges in
current HTAP approches, discussing what should be taken into account when
merging both workloads types into a hybrid one.

2.1 Online Transactional Processing

OLTP systems set a type of data processing that is the standard in today’s en-
terprises. As the name suggests, such systems are based in the transactional
perspective of data management. An OLTP system is characterized by having a
large amount of rather small transactions, namely: insert, update or delete opera-
tions. The focus of such systems is to achieve a fast query processing mechanism,
while preserving data integrity by enclosing operations in a transaction.

A transaction is a sequence of operations whose execution traditionally satis-
fies the following ACID [Haerder and Reuter, 1983] properties:

• Atomicity: Either all or none of the operations within a transaction are
successfully performed.

• Consistency: Transactions preserve system constraints, as a whole. Any

11

12 2 Background

transaction takes the system from a valid state to another valid state.

• Isolation: The concurrent execution of transactions preserves the seman-
tics of the defined correctness criterion or isolation level.

• Durability: The effects of a successful transaction are durable even in the
presence of faults.

A transaction that performs successfully is said to commit, otherwise it aborts.
A transactional system enables the coexistence of concurrent transactions which
may lead to several incidents related to data being accessed and modified con-
currently. These events called anomalies are described in [Berenson et al., 1995]
and they are used to characterize four isolation levels, formally described in the
ANSI SQL standard. Namely, these isolation levels are (in ascending order from
the least to the most strict level): read uncommitted, read committed, repeatable
read and serializable.

With the existence of concurrent transactions, transactional systems rely on
concurrency control mechanisms to avoid anomalies. These mechanisms can be
based on mutual exclusion primitives, establishing read locks over data that will
be read and, write locks over data that will be written. Thus, if a transaction
acquired, for instance, a write lock over a data item, for the period of time that
the lock is held, no other concurrent transaction will be able to acquire a write
lock over the same piece of data. The different isolation levels define distinct
possible behaviors regarding the acquisition of read or write locks over a data
item by concurrent transactions, in order to avoid the described anomalies.

The most strict isolation level – Serializable – does not allow for any type of
anomalies to occur [Berenson et al., 1995]. With a concurrency control mechanism
based on mutual exclusion, locks ensure the absence of anomalies, as in the
Serializable isolation level. To provide this isolation level, the Two-Phase-Lock
protocol [Bernstein et al., 1986] is usually used to control the acquisition and lock
release.

Currently the default isolation level in most commercial RDBMS is called
Snapshot Isolation [Berenson et al., 1995, Ports and Grittner, 2012]. It uses both
multi-version concurrency control and timestamps in order to avoid locks [Re-
vilak et al., 2011], allowing a transaction to work over a consistent snapshot of
data. This is presented as one of the main advantages of this isolation level, as

2.1 Online Transactional Processing 13

Figure 2.1: Row-oriented data layout.

a transaction is never blocked performing a read operation (which is the case for
concurrency control based on mutual exclusion), potentially increasing the level
of concurrency. Snapshot Isolation is usually the most strict isolation level found
in RDBMS, and for a wide array of applications it is possible to achieve a serial
execution [Fekete et al., 2005] or even to fully implement serializability [Cahill
et al., 2009].

Data placement strategy

Database systems organize their data into tabular structures composed of several
rows built from a set of column qualifiers. Typically, columns are used as con-
tainers to characterize a given feature, while rows are used to report occurrences.

When a transaction modifies one or a group of columns regarding a given
entry (i.e., a row), the database system needs to coordinate with the underlying
operating system how and when the I/O device should be accessed. The I/O
device physically stores data in contiguous equally sized blocks. Moreover, the
layout adopted by the I/O device plays an important role that is directly related
with the workload characteristics.

To reduce the frequency and the number of blocks the I/O device needs to
access, database systems are usually faced with the choice to either use row-
oriented or column-oriented data layouts. Figure 2.1 depicts arow-oriented data
layout. Therefore, the database system adopts a data layout where the records
that account for each row are stored sequentially, using as many blocks as needed
to hold the data. Such trend provides advantages for transactional database
systems as a given transaction is likely to access and modify several attributes

14 2 Background

of a single row at each cycle. Thus, a row-oriented storage strategy reduces the
number of cycles required to acquire the required blocks, better suiting the needs
for OLTP systems.

2.2 Online Analytical Processing

OLAP sets a contrasting approach to transactional systems, allowing to answer
multi-dimensional queries. This class of systems is usually considered for report-
ing and analysis of data spread across several individual dimensions. Actually,
the border line from data warehousing methodologies and OLAP systems is not
sharp, as they are intrinsically related. Data warehousing approaches can be
seen as the data layer that will serve as base to analytical tools. Most of the
data requirements found in them end up falling into the specific details of multi-
dimensional data modeling.

A multi-dimensional schema hold tables as dimensions which relate among
them through structures called fact tables, which in turn agglomerate several
measures. OLAP systems use this structure to build the OLAP cube, a multi-
dimensional representation that enables to visualize how dimensions are corre-
lated. Each intersection in the cube represents a single measure which extends
through the dimensions as a vector space.

OLAP systems are usually categorized according to the following taxonomy:

• ROLAP: These systems allow the execution of analytical queries over re-
lational storage. The relational database in such systems, besides holding
tables for the desired dimensions also adds further tables that enable query-
ing aggregated data. The main advantage of ROLAP systems is that they
do not limit the possible business questions, as no restrictions on the di-
mensions of the OLAP cube are imposed. However, as queries are answered
straight out of the operational database, the transactional operation may
suffer delays and throughput penalties.

• MOLAP: This definition stands for Multi-dimensional OLAP and it is
the classic configuration of OLAP systems. This approach considers a
multi-dimensional data model, rather than considering a relational model.
The latter requires the OLAP cube to be pre-computed. MOLAP systems

2.2 Online Analytical Processing 15

present great performance for query execution, which is due to the index-
ing and caching capabilities found in multi-dimensional systems. However,
MOLAP has major negative points due to the need for data processing
through the use of the ETL process and difficulties related with the ability
to efficiently handle dimensions with high cardinality.

Scalable Analytics

There are currently two main trends to provide scalable analytics. The first
trend follows the MR approach [Dean and Ghemawat, 2008] with improvements
to bring it closer to SQL semantics. The standard SQL MR introduced by
Hadoop [Shvachko et al., 2010] is a programming model based in two functions:
the map and reduce. With the map function, users generate an intermediate
set of key/value pairs from the data set, while the reduce function merges all
the intermediate values associated with each key. MR is targeted to Big Data
sets and currently offers several advantages over the use of parallel database
systems in what regards storage system independence and fine grain fault toler-
ance. BigQuery [Tigani and Naidu, 2014], Tenzing [Chattopadhyay et al., 2011]
or Hive [Thusoo et al., 2010] provide a SQL interface over a MR framework and
a scalable key-value store. BigQuery allows only a subset of SQL operators with
basic data aggregation and projections. Hive maps operators like equi-joins or
unions to MR jobs. Tenzing also relies on MR to provide a query language closer
to SQL. Such projects are OLAP oriented and as a consequence, they require ETL
procedures, generating duplicated data and harming real-time analytics.

The second trend leverages parallel-distributed databases that fully support SQL
semantics, making it more expressive when compared with the former MR ap-
proach for normalized datasets. Nevertheless, solutions for this approach such as
Vertica [Lamb et al., 2012] or GreenPlum [Waas, 2008] are strict OLAP oriented
projects, requiring ETL and lacking the ability to perform OLTP workloads also
relying on the ETL approach.

Data placement strategy

OLAP systems provide a query centric approach to compute data aggregations.
Unlike OLTP systems, where transactions span over a sub-set of the available
column qualifiers, the queries in OLAP systems are commonly restricted to a

16 2 Background

single or a small set of column qualifiers.
Figure 2.2 depicts a column-oriented data layout, where each distinct element

is serialized in batches fed from sequences composed by elements in each column
qualifier.

Figure 2.2: Column-oriented data layout.

A single aggregation (e.g., sum(x)) considers all the occurrences (i.e., rows)
of a given attribute (i.e., column qualifier) and computes the aggregated value.
The column-oriented data layout allows to sequentially read the data elements
regarding a single aggregation with the least required effort, as the data layout
matches the read pattern. If analytical systems consider the same row-oriented
strategy as the transactional system, the operation would generate a significant
larger number of calls to the underlying I/O system. That is, column-oriented
data layouts keep each column individually, enabling queries to read only the
required column and not having to acquire full data rows and afterwards discard
the unneeded attributes. Moreover, OLAP systems benefit from column-oriented
layouts as it allows for better data compression [Abadi et al., 2013], since typically,
sequential elements show smaller deltas between them when compared to row-
oriented layouts.

2.3 Discussion

OLTP and OLAP systems establish distinct goals that are intrinsically related
with their target workloads. Beyond the limits imposed to the ideal data layouts,
the underlying architecture also impacts on the scalability of the system, thus
restricting approaches for parallel processing.

2.3 Discussion 17

The parallel execution of tasks in database systems can be classified in two
different classes in respect to how data is stored and acquired for processing.
The two strategies are often referred in the literature as: shared-everything and
shared-nothing systems. The key difference between these two approaches lies
in how physical data is partitioned and accessed for processing. Figures 2.3(a)
and 2.3(b) depicts both categories.

A-Z

CPU

CPU

CPU

CPU

CPU

CPU

Memory

bus

(a) Shared-everything.

A-H

CPU

CPU

CPU

CPU

CPU

CPU

I-P Q-Z

Memory Memory Memory

(b) Shared-nothing.

Figure 2.3: Shared architectures for distributed computing.

In a shared-everything system, no data partitioning strategy is considered.
Data is stored as a whole in a single storage system. Hence, the computing nodes
involved in completing a given database task will share the same data source.
By opposition, in a shared-nothing system, data is physically split among several
devices. In principle, and considering no replication, a range of the data spectrum
only exists in a single location. Each computing node in such a system would
then only have access to its partition.

Consider, as an example, a database that would store all the first names of
citizens in a country. The shared-everything system has all the names started
from ’A’ to ’Z’ in the same data location. The shared-nothing system partitions
the key range across several locations. Considering three distinct nodes, each one
would roughly handle a third of total amount of keys. To achieve such behavior,
the partition of data has to be planned upfront, usually by using a hashing
algorithm. The hashing algorithm will take into consideration the range of keys
and the number of partitions in order to evenly split the key range by each data
location. As the computing nodes in a shared-nothing architecture only have
access to a particular partition location, they necessarily have to be coordinated
in order to only receive requests concerning the range of keys they own.

18 2 Background

Hashing algorithms are usually considered to divide the key range according
to the required amount of data partitions. They are also required to provide a co-
ordinator with information regarding where each data tuple is stored. Fine tuning
of the hashing algorithm becomes decisive to the overall performance of the sys-
tem. The adequate fragmentation of data and allocation of the database is then
key to whole system. As each data node can only access its own partition of data,
poorly deciding on how data is partitioned could have severe consequences, as it
largely determines where the database operations are performed, thus affecting
node utilization and communication. As complex queries could possibly target
several data partitions and multiple possible data distributions, the partitioning
strategy must inevitably constitute a compromise for a specific workload.

Trade-offs for write operations

In a shared-everything architecture, since all computing nodes share the same
data source, write operations can be performed by any node (i.e., no coordination
is required to redirect operations to specific nodes). This may possibility cause
a consistency problem if two or more nodes attempt to update the same data
item. To prevent this, the management system requires lock mechanisms or to
communicate its intentions with all the participant nodes, which may impair the
scalability of the system.

Shared-nothing architectures, in principle, do not suffer from any issues re-
lated with distributed locks, since a given tuple can only be modified by one
computing node (provided that the request is correctly forwarded to the correct
node). From the perspective of write operations, a shared-nothing architecture
is better positioned to scale linearly. To ensure data consistency, transactions
that need to access several partitions require a distributed coordination primi-
tive, ensuring that a write operation spanning more than one partition is done
atomically.

Trade-offs for read operations

The constraints imposed to both architectures when performing read operations
are different from the ones just presented. First, as shared-everything architec-
tures consider the same data source for all requesting nodes, some level of con-
tention may be expected as the number of nodes accessing data grows. Second,

2.3 Discussion 19

the read throughput may be affected in cases where cache sizes are not correctly
adjusted. This opposes to the shared-nothing architecture as in principle, a given
node would only have to cache its partition (roughly 1/n being n the number
of nodes). Shared-nothing architectures present one major hurdle related with
queries having to read data from other partitions besides their own. This is par-
ticularly true considering aggregations that need to contact all data partitions,
which clearly becomes prohibitive for data systems that should be able to scale.

Therefore, while performing read operations, shared-everything architectures
could face performance degradation due to contention and inefficient use of caches.
Shared-nothing architectures could potentially suffer from decreased scalability,
if the workload imposes read operations that end up transversing all or a majority
of data partitions.

From the presented trade-offs, shared-nothing architectures show several advan-
tages to data management due to their inherent decentralized nature and scalabil-
ity possibilities. Actually, there has been a current trend to introduce databases
that employ the above presented considerations in their architecture. These are
called NoSQL databases and they usually present a decentralized architecture
and data partitioning strategies, even though they rely in weaker consistency
criteria and restricted querying capabilities.

Shared-everything systems contrast with the previous as they rely in an ar-
chitecture composed by a centralized data source. This architecture presents
advantages in what regards to the coordination of tasks, but can place a burden
to the underlying data system regarding scalability and access control.

Ultimately, the contrasts between these two types of architectures favors
shared-nothing systems. These systems do not introduce resource contention
as each node operates only on its data partition and has access to its own mem-
ory and operating system. The independence between nodes of a shared-nothing
system also places them ahead of shared-everything architectures, showing better
parallel capabilities as the system is able to scale horizontally (i.e., the number of
symmetric nodes grows). This is derived from a possibly larger number of tasks,
each one operating a smaller and more confined dataset in each node.

20 2 Background

2.4 Hybrid Transactional, Analytical Processing

HTAP defines a system with the capability to efficiently handle simultaneous
transactional and analytical workloads. As pointed out by Gartner [Pezzini et al.,
2014], this new class of database systems must be capable of delivering high levels
of transactional operation (OLTP), providing at the same time scalable business
analytics (OLAP) directly over production data.

Traditionally, both workloads are handled through separate engines, peri-
odically feeding the OLAP with data from the OLTP engine through an ETL
process. The approach seeks to ensure the best performance of each individual
engine at the expense of data freshness for analytics. However, the ongoing trend
for real-time analytics powering data-driven decision making is not compatible
with the traditional approach to post-process analytical data offline. Instead, it
requires repeatable reads over recently updated transactional data to be merged
with historical data, which restricts the underlying data architectures selected for
each engine.

The plethora of proposals for hybrid database systems considers mainly two
approaches regarding data placement [Özcan et al., 2017], namely: employing a
single system for both workload types or considering distinct systems for OLTP
and OLAP.

Architectures built to perform transactional and analytical activity over a
unified engine have been proposed since the dawn of the Business Analytics (BI)
era. They were built from introducing the parsing capability of analytical queries
into pre-existing transactional database systems (e.g., IBM’s DB2 [IBM, 2013]
or SAP Hana [SAP, 2014]) or, the other way around, introducing optional trans-
actional semantics into pre-existing analytical database systems. Recent updates
to this architecture through database systems like Hyper [Kemper and Neumann,
2011] or Pelaton [Pavlo et al., 2017], provide the ability to re-organize the under-
lying data layouts from row to column-wise, or vice-versa, powering high trans-
actional or analytical throughput according to demand. However, the use of
these techniques prevents the use of the last committed data due to the data
transformations required.

Architectures built from distinct database systems for each workload type,
typically imply disjoint storage systems. It is then up to the database engine
to establish and maintain the hybrid architecture and querying semantics. With

2.4 Hybrid Transactional, Analytical Processing 21

distinct data stores, the operational data is kept in the OLTP storage (e.g., row-
oriented) and then fed into the OLAP storage (e.g., column-oriented) through
the ETL process. This has been the standard approach since the inception of BI.
Likewise, the array of technologies targeting the Big Data environment also con-
siders a similar layout, decoupling the storage back-ends for each system type. As
NoSQL databases become a commodity technology, hybrid approaches consider
these databases such as Cassandra [Lakshman and Malik, 2010] for transactional
storage and then feed groomed data (i.e., performing a prior data selection and
aggregation) into a set of column-oriented storage back-ends for SQL-on-Hadoop
systems, such as Parquet [Hadoop, 2017b] or ORC [Hadoop, 2017a]. Disjoint
database engines may also be configured to share a common dataset. This ap-
proach has been pursued in configurations like SAP Vora [SAP, 2017], where
the transactional activity is run and persisted by HANA [SAP, 2014] and the
analytical activity is executed through Spark SQL [Armbrust et al., 2015] over
Vora’s data. Others are purely built from SQL-on-Hadoop systems consider-
ing HBase [George, 2011] as the transactional manager and Impala [Kornacker
et al., 2015] for the analytical processing, accessing a common dataset through
HDFS [Borthakur et al., 2008]. However, these systems have poor connectors to
power the joint workload activity, which typically renders average transactional
throughput with subpar analytical performance.

HTAP systems must overcome the limitations found in OLTP or OLAP en-
gines, which are broadly related to their inability to scale. First, HTAP systems
must accommodate Multi Version Concurrency Control (MVCC) techniques (e.g.,
Snapshot Isolation [Berenson et al., 1995]) to enable the execution of long-running
queries, avoiding contention related with the acquisition and release of locks over
data. Second, these systems must be highly scalable, leveraging all parallelization
opportunities and data partitioning strategies.

In spite of the previously addressed trade-offs, the upcoming chapters consider
a shared-nothing architecture, as it renders better scalability opportunities for a
hybrid workload.

22 2 Background

Chapter 3

Benchmarking Hybrid Data
Management Systems

Benchmarking has long lived alongside database technologies, providing estimates
regarding performance, cost, dependability of specific components or a system
as a whole [Gray, 1992]. Most importantly, benchmarks provide a systematic
understanding on what are the meaningful, often critical, features of a system and
how it should be assessed, ultimately enabling the comparison between systems.

Reasoning about a system’s strengths or shortcomings directly correlates with
the ability of a benchmark to rigorously quantify how much distinct systems
differ. The answer to such question becomes domain-specific and justifies the
existence of several benchmark types that account for distinct functional and
non-functional requirements, defining distinct metrics in terms of the meaningful
logical units they try to capture.

In the database domain and given the taxonomy of OLTP and OLAP systems,
the industry along with independent organizations defined benchmarking ap-
proaches specially tailored for either transactional or analytical workloads, such as
the Transaction Processing Performance Council Benchmark C (TPC-C) [Coun-
cil, 2010a] and the Transaction Processing Performance Council Benchmark E
(TPC-E) [Council, 2015d] for OLTP workloads and the Transaction Processing
Performance Council Benchmark H (TPC-H) [Council, 2010b] or the Transac-
tion Processing Performance Council Benchmark DS (TPC-DS) [Nambiar and
Poess, 2006] for OLAP workloads. Each benchmark focuses on the optimization
challenges associated with each system type, defining evaluation suites with very

23

24 3 Benchmarking Hybrid Data Management Systems

different and contradicting goals. This is so as optimizing an OLTP targeted
operation would intrinsically degrade OLAP performance and vice-versa [French,
1995]. OLTP and OLAP workloads generate specific sets of queries that require
distinct storage layouts in order to be efficient. They can also accommodate
different-sized datasets, employing the concept of warehouse as scaling factor.
Optimizing a storage layout to support both access patterns efficiently is not a
trivial task, but it must be accomplished in order to have efficient hybrid systems.
Storage accesses generated by OLTP workloads are mostly random while OLAP
workloads are mainly sequential. Likewise, a hybrid workload will assess the
ability of the System Under Test (SUT) to simultaneously schedule random and
sequential access patterns to storage mediums and manage both light and intense
operations regarding memory allocation and processor time. These are some of
the reasons why these workloads have until now been evaluated independently.

Most importantly, it is not easy to combine and directly translate results from
distinct benchmarks to the effectiveness of a system to handle a HTAP workload.
Gartner states that a HTAP system should prioritize a sustained transactional
throughput, delivering at the same time scalable analytical processing without
disrupting the operational activity [Pezzini et al., 2014]. Consequently, even
if both workloads can be run on the same engine, it is not straightforward to
meaningfully and consistently reconcile the results of both workloads in a single
HTAP metric. This is so as each workload is usually oblivious to the presence of
the other, trying to independently reach the maximum qualified throughput in
each separate workload, and therefore producing uncorrelated metrics.

This chapter presents HTAPBench, a new benchmark suite designed to eval-
uate hybrid systems with mixed OLTP and OLAP workloads. HTAPBench in-
troduces a new unified metric for hybrid workloads. It provides a reading of the
analytical capability as the system scales while a steady operational throughput
is ensured. The hybrid workload proposed in this benchmark simultaneously
exercises operational and analytical activity over the same system. The opera-
tion is governed by a new client balancer that controls how and when analytical
clients are launched, ensuring that the OLTP activity stays within a configured
threshold and that the results are kept comparable across runs by addressing data
uniformity of the workload. The current chapter considers a specific nomencla-
ture: database when referring to the stored data, engine when referring to the

3.1 HTAPBench Design 25

software and SUT or system when referring to the composition of software and
underlying hardware.

The remainder of this chapter is organized as follows: section 3.1 introduces
the design and workload of HTAPBench. Section 3.2 presents the considerations
taken into account, enabling the analytical operation to consider newly modified
data by the transactional part of the workload. Section 3.3 specifies all the
components within HTAPBench, in particular the new unified metric proposed.
Moreover, section 3.4 deploys a benchmarking campaign, aiming to demonstrate,
evaluate and validate the meaningfulness of the benchmarking suite. Section 3.6
reviews relevant work for this chapter and section 3.7 offers a discussion of the
achieved results.

3.1 HTAPBench Design

The Hybrid Transactional and Analytical Processing Benchmark was designed to
assess database engines capable of delivering mixed workloads composed of OLTP
transactions and OLAP business queries without resorting to ETL. Typically,
in environments with mixed workloads, the relative weight given to OLTP and
OLAP is governed by delivering a high OLTP throughput while still being able to
simultaneously perform analytical business queries Pezzini et al. [2014]. This goal
should be met in such a way that the OLTP throughput is kept within expected
intervals. Likewise, HTAPBench focuses its operation on ensuring a stable OLTP
throughput and assessing the capability of the SUT to cope with an increasing
demand on the OLAP counterpart.

Transactional systems conform to a group of well defined properties often
referred by ACID: Atomicity, Consistency, Isolation and Durability. These prop-
erties ensure that the integrity and consistency of data is maintained despite
faults or concurrent accesses; and have been the keystone of traditional relational
database management systems [Garcia-Molina, 2008]. The underlying system is
therefore required to provide operational activity governed by these properties.

The design of HTAPBench is composed of several modules as depicted in
Figure 3.1. The Density Consultant, the Client Balancer and the Dynamic Query-
H Generator modules provide the foundation of this approach and are discussed
in this section.

26 3 Benchmarking Hybrid Data Management Systems

Hybrid OLTP/OLAP Database

S
tre

a
m

O
L

A
P

S
tre

a
m

O
L

T
P

Dynamic Query-H Generator
QH1 QH2 QHx

Loader

Client Balancer

 OLTP
 Agent

Results
Monitor

OLAP
 Agent

Density
Consultant

HTAPBench

Figure 3.1: HTAPBench architecture.

HTAPBench decomposes the execution into three main stages as depicted in
Figure 3.2: (i) the populate stage, (ii) the warm-up stage and (iii) the execution
stage. Two of the modules, which are defined as agents, will regulate the OLTP
and the OLAP activity. During system start, HTAPBench will be configured
with a target OLTP throughput, triggering an OLTP workload configured with
the required number of clients to meet the required throughput.

Δt

time

OLAP worker

Execution Warmup

O
LT

P
O

LA
P

OLAP worker

OLTP client

OLAP worker

OLTP client

OLTP client

 Populate

OLTP Client

OLTP Client

OLTP Client

Figure 3.2: HTAPBench execution.

Periodically, HTAPBench will assess the ability of the SUT to handle an
increasing OLAP activity, while ensuring that the transactional throughput does
not decrease below a configured threshold.

The unified metric is central to the design, and its genesis is directly trans-

3.1 HTAPBench Design 27

lated from the need of HTAP systems to scale without disturbing the OLTP
activity. It mirrors the ability of a given analytical worker to complete queries, in
a scenario composed of an increasing number of analytical workers and a stable
transactional activity. Analyzing this behavior will enable the identification of
situations where adding an additional OLAP worker degrades the OLTP/OLAP
engine performance.

3.1.1 Workload

The mixed workload used in this benchmark is composed of a transactional agent
and an analytical agent that simultaneously instruct the system to perform op-
erations over the same dataset.

TPC-C and TPC-H were respectively selected as the operational and ana-
lytical agents, as each one is able to stress the inherent characteristics of each
workload type. TPC-C was chosen due to its high rate of read-write operations,
being one of the most used workloads for OLTP evaluation. TPC-C specification
models a real-world scenario where a company, comprised of several warehouses
and districts, processes orders placed by clients. The workload scales according
to the number of configured warehouses.

TPC-H also specifies a real-world scenario, modeling a wholesale supplier
and employing a schema that is very close in structure to TPC-C. Moreover, we
selected TPC-H over TPC-DS [Council, 2012] since the workload in TPC-DS is
data warehouse-driven, not only relying on a star schema but also requiring the
use of ETL to keep data updated and in conformity with such a schema. On
the basis that analytical queries in a hybrid workload should exercise a dataset
common to the operational workload, TPC-H better fits the requirement as it
does not use a star schema, placing it closer to the workload schema in TPC-C.

The mixed workload in HTAPBench uses all the entities in TPC-C and TPC-
H’s Nation, Region and Supplier, as proposed in [Cole et al., 2011]. The remain-
ing TPC-H entities were merged in a non-intrusive way into TPC-C’s workload.
The result is a workload that matches Gartner’s recommendations for hybrid
workloads, where data should not be moved from operational to data warehouses
in order to support analytics, but live under the same schema allowing drill-
down analytical operations to point toward the freshest data produced by the
operational activity [Pezzini et al., 2014].

28 3 Benchmarking Hybrid Data Management Systems

The OLTP execution in HTAPBench runs according to a target number of
transactions per second (tps). It is thus necessary to ensure the optimal config-
uration regarding some TPC-C specific parameters such as the total number of
warehouses and clients, defining the number of transactions per minute (tpmC).

To compute these parameters, we refer to the TPC-C specification [Council,
2010a] and use the characterization for the TPC-C’s ideal client, considering the
minimum think time for each transaction type, and provided that transactions
do not fail, no rollback operations. According to TPC-C, a single client should
not be able to execute more than 1.286 tpmC. Under these conditions, it is
possible to extract the target tpmC from the target tps (3.1), as well as the total
number of clients (3.2) and warehouses (3.3). The required target tps is one of
the configurable criteria in HTAPBench and directly relates with the expected
scalability of the system and respective database size (further details are provided
in subsection 3.3.2).

target(tpmC) = target(tps)× 60× %NewOrder

100
(3.1)

#clients =
target(tpmC)

1.286
(3.2)

#warehouses =
#clients

10
(3.3)

The business queries in TPC-H are built from filtering, aggregation and group-
ing operations over a given result set. Filtering operations use SQL operators such
as where, having or between. Their main goal is to limit the number of con-
sidered rows. Since the transactional activity will feed the analytical queries in
HTAPBench, the number of filtered rows will grow over time. If not safeguarded,
the results of these analytical queries are poised to become incomparable across
runs. On the one hand, data distributions regulate how the parameters for filter-
ing operators are selected, enabling the queries to dynamically exercise several
regions of the dataset while exhibiting comparable complexity. On the other
hand, if the queries are not dynamically generated, the use of fixed bounds on
the filters would end up traversing the full qualifier domains, preventing the query
planner of the SUT to be exercised.

To verify the impact from using fixed or dynamic parameters, we conducted

3.2 Result Set Homogeneity 29

an experiment where we considered the execution of the 22 TPC-H queries over 2
setups. The first used a set of fixed parameters that would resemble full domain
searches. The second considered dynamically generated parameters that were not
bound to a particular data distribution. The configuration of dynamically gen-
erated parameters created a new set for each run, while the fixed configuration
reuses the same set across runs. Each setup considers the average of 5 indepen-
dent executions. Queries were computed against a column-oriented engine. In
each run, the database was populated with one warehouse and the queries were
executed without any of the filtering operators in their composition, establishing
a baseline comparison that represents the universe of rows in each query.

The experiment observes the average difference of result set row count in con-
secutive executions of each run, for a given setup, as a percentage of the baseline
result. When considering fixed parametrization, the result set cardinality did not
change across consecutive runs, and in most cases, queries ended up selecting
a considerably broader space of tuples. When we used dynamically generated
filters in the TPC-H queries, a variation of up to 77% in result set cardinality
was observed in comparison with the baseline. This was due to not using a dis-
tribution to feed the date fields during the population stage of the benchmark.
By not using a distribution to regulate how these fields are generated, it be-
comes likely that the items inserted during the populate stage of the benchmark
present uneven time distributions when compared with the ones created during
the execution stage. The next section introduces a way to generate a workload
distribution that ensures analytical queries with comparable complexity across
runs.

3.2 Result Set Homogeneity

The analytical queries composing a hybrid workload are fed with data created or
manipulated by the transactional agent, either during the initial populate stage,
or during the transactional execution part of the hybrid workload. The engine
qualifying as HTAP should operate under an isolation criterion that enables the
analytical queries to observe data committed by the transactional agent at the
time the analytical queries started. Likewise, a given analytical query should
freely access the entire dataset, spanning from the first to the last committed

30 3 Benchmarking Hybrid Data Management Systems

transaction.

Figure 3.3: Timestamp density difference.

As discussed in the previous section, the absence of a regulating mechanism
would result in the use of randomized query boundaries, producing incompara-
ble results across runs. The same may happen when analytical queries observe
data generated in the populate and execution stages of the hybrid workload. Fig-
ure 3.3 depicts an example of the patterns where data is created or changed by the
transactional agent. On the one hand, the OLTP populate stage (Figure 3.3(a))
promotes bursts of transactions inserting data, causing a high concentration of
timestamps in a short time period. On the other hand, during the OLTP execu-
tion stage, the OLTP transaction rate is regulated by TPC-C.

What is desirable is that the pattern generated by the OLTP execution
within TPC-C is also observed by analytical queries whenever they traverse the
data loaded during the populate stage. To mitigate this issue, we introduce a
density extraction mechanism that ensures the same data pattern across stages.
Briefly stated, our approach observes the amount of generated date fields during
the execution stage of TPC-C, allowing the system to apply the extracted density
during population.

Density Function

The populate and execution stages of TPC-C generate different date densities
across the whole dataset, varying according to the configured transaction mix
within TPC-C. Moreover, as not all transaction types generate the same number
of new timestamps, we configured our density function to reflect that behavior.

txnMix =
%NewOrder + %Payment + 10×%Delivery

100
(3.4)

3.2 Result Set Homogeneity 31

d(TS/s) = tps× txnMix (3.5)

Both the New Order and Payment transactions generate one timestamp each,
while each Delivery transaction generates ten. The Order Status and the
Stock Level transactions do not generate any timestamps. The amount of
generated timestamps is a direct consequence of the complexity associated with
each transaction. A transaction that considers more timestamps introduces more
modifications in fields of the workload schema that directly impact the density
observed. It is then possible to express density as a function between the tar-
get number of transactions per second and the ratio of New Order, Payment and
Delivery transactions, as defined by (3.5). In the following, we set up an exper-
iment that allowed us to observe the expected density.

tpmC clients warehouses
635 495 49
741 576 58
886 689 69

Table 3.1: Workload configuration - ideal TPC-C client.

This experiment was conducted on a server with an Intel Xeon x3220 2.4
GHz QuadCore, 8GB of memory and 128GB Solid State Drive. For the purpose
of this test, we relied on a hybrid system. The configurations considered are
depicted in table 3.1, reflecting workloads with more than 70GB in total size.
In each experiment, the database was dropped and populated. Afterwards, we
ran TPC-C under the standard transaction mix in runs that lasted 60 minutes.

The results depicted in table 3.2 are the average of 5 independent runs re-
garding each target. The results depict an increasing amount of newly issued
timestamps (T) as the defined target increases, thus reflecting a density function
that also presents an increasing trend.

The results also show that the density function provides results that are only
3% apart when comparing with the experimental observation.

The timestamp density will introduce a change in the standard TPC-C speci-
fication. It is worth noting that this modification does not introduce any change
in TPC-C business logic. The individual TPC-C results are kept comparable
with a same-sized TPC-C installation.

32 3 Benchmarking Hybrid Data Management Systems

tpmC
Total Expected Experimental

Observed (Ts) d(Ts/s) d(Ts/s)

635 108,051 30.24 30.01
741 125,500 35.14 34.86
886 150,114 42.02 41.69

Table 3.2: Density observation results.

3.3 HTAPBench Metric and Components

Unified Metric

The disparity in workload complexity and structure between OLTP and OLAP
workloads is a major hurdle when trying to define a unified metric for a HTAP
system. So far, one of the main disadvantages of previous approaches was the
fact that they would enable both OLTP and OLAP executions to grow in or-
der to achieve the maximum throughput for each. The non-regulated growth
induced by OLTP execution would inherently degrade OLAP performance since
analytical queries would have to scan more data. HTAPBench removes one axis of
variability by regulating the OLTP workload. The database size is key to measure
the complexity of OLAP queries, as they commonly traverse full data domains,
directly causing an impact on data acquisition. The assurance of a constant
transactional execution leads to a sustained and known database growth; that is,
the rate at which OLAP queries observe new data is fixed and predictable, by-
passing the need to normalize the OLAP results in terms of the observed growth.
In a scenario of unknown growth rate of the database, analytical results would
have to be normalized in order to be comparable across runs.

QpHpW =
QphH

#OLAPworkers
@tpmC (3.6)

Expression 3.6 defines the metric we propose, QpHpW or Queries of type H
per Hour, per Worker. It reads as the number of analytical queries executed
per OLAP worker. In a system that is able to sustain the configured tps. It
is defined by the ratio between TPC-H’s metric and the total number of regis-
tered OLAP workers induced by the client balancer. A higher QpHpW corre-
sponds to a system that is able to compute more queries per analytical worker,

3.3 HTAPBench Metric and Components 33

thus representing a higher overall analytical throughput. Achieving the best
configuration for a given installation becomes a multi-run optimization problem
regarding a given target tps.

Client Balancer

The client balancer module is responsible for monitoring and deciding whether
or not to launch additional OLAP workers. When the OLTP agent ensures that
the target tps is stable, the client balancer will periodically assess whether or not
the SUT is capable of handling an extra OLAP worker. This assessment relies
on a proportional-integral feedback controller.

output = KP∆tps + KI

∫
∆t (3.7)

The feedback control mechanism (3.7) is characterized by a proportional (KP)
and an integral (KI) gain adjustment. The gain parameters are used over the
found system deviation (∆tps = target_tps − measured_tps) to compute the
output value. The correct adjustment of either gain factor is vital to ensure
that the feedback controller does not exceed too quickly the SUT’s capabilities,
which in turn would launch a higher number of OLAP workers, causing disruption
on the throughput of the OLTP execution. We tuned the proportional-integral
feedback controller by experimentation to use the gain adjustment characterized
by KP = 0.4 and kI = 0.03. Algorithm 1 presents the client balancer decision
process.

The client balancer will periodically (∆t) poll the engine regarding the current
number of transactions being delivered. This information is then fed into the
feedback controller. To launch another OLAP worker, the client balancer ensures
that the output value produced by the feedback mechanism is within a given
threshold of the configured target tps and that the system is not saturated. The
point of saturation is reached when the current number of OLTP transactions
per second being delivered drops below the chosen threshold.

Density Consultant & Loader

HTAPBench follows the standard TPC-C transaction mix. The density consul-
tant computes the correct density according to the chosen target tps and trans-

34 3 Benchmarking Hybrid Data Management Systems

Algorithm 1 Client Balancer
1: procedure
2: wait(∆t)
3: threshold← target_tps−measured_tps
4: integral← integral + threshold× 1

∆t

5: output← KP × threshold + KI × integral
6: previous_threshold← threshold
7:
8: if output > (target_tps×margin) and ¬saturated then
9: start OLAP worker

10: else
11: saturated← true
12: end if
13: end procedure

action mix. During the populate stage, in order to generate timestamps that
follow the required density, the loader component is equipped with a clock that
initiates with the system time at which the populate stage is initiated. The clock
then computes how much time should elapse between clock ticks (∆TS) in order
to fulfill the required density, as defined in (3.8).

∆TS(ms) =
1

d(TS/s)
× 1000 (3.8)

The HTAPBench loader will proceed to create and load all the table entities
represented in the hybrid data schema, built from merging TPC-H’s schema into
TPC-C’s. The final installation will scale in size according to the computed
number of warehouses. When loading tables with references to date items, the
load worker makes use of the clock, increasing one tick for each new date field
to be loaded. After completion, applying the density function ensures that the
temporal density in the date fields matches the observed density during execution
of the transactional workload.

Dynamic Query-H Generator

The analytical queries within HTAPBench are constructed according to the TPC-
H specification, which requires them to be built with randomized parameters
within given boundaries. The dynamic query-H generator module is responsible
for building the SQL statements for the queries, ensuring that the random values

3.3 HTAPBench Metric and Components 35

select sum(ol_amount) as revenue from order_line from order_line
where ol_delivery_d between [Date] and [Date+1 year] and

ol_quantity between [ammount a] and [amount b]

Figure 3.4: TPC-H query 6.

comply with the TPC-H specification. This module integrates with the client
balancer module that will launch the analytical workers, with its output after-
wards fed into the TPC-H worker. The dynamic query-H generator computes the
window frames that should be considered for query execution. It dynamically ad-
justs the window frame generation to reflect a sliding window behavior to include
items generated by the transactional activity. This contrasts with the static time
frames specified in TPC-H. Take as an example query Q6, that computes the total
revenue for orders placed within a given period. This particular query restricts
the result set to orders placed within a one-year time frame, starting on January
the first of a randomly selected year between 1993 and 1997, and ending in the
following year. In TPC-H, this is possible since it does not consider database
growth. However, in HTAPBench, the database grows at the pace dictated by
the OLTP execution of the benchmark. Thus, if window frames were to be kept
static, the new regions on the dataset would never be queried. To produce a
homogeneous result set that is representative of the whole dataset, the dynamic
query-H generator ensures that queries comply with the time range imposed by
the specification while simultaneously leveraging the density consultant module
to shift the starting date of the range to meet the speed at which the OLTP exe-
cution is making the database grow. Hence, the sliding window behavior not only
ensures that the entire dataset is considered, but also, that consecutive executions
of the same query are kept comparable.

Results Monitor

The results monitor collects the execution results produced by each worker. The
final measurements are only collected after the configured execution time elapsed
and all the workers finalized all procedures. The transactional activity is char-
acterized according to TPC-C’s metric (tpmC) while, the analytical activity is
characterized by TPC-H’s metric (QphH). Together with both metrics, this mod-
ule also outputs data from the client balancer, characterizing each run in terms

36 3 Benchmarking Hybrid Data Management Systems

of how many OLAP workers were launched, when they were launched and the
result set volume and latency for each analytical query executed.

3.3.1 Implementation

HTAPBench is available as an open source project.1 It was implemented in
Java for improved portability and includes all the aforementioned components.
The current prototype was implemented as an extension of OLTPBench [Difallah
et al., 2013], a framework that enables the execution of several benchmarking
approaches. However, OLTPBench’s implementation of TPC-C does not con-
sider the think time used during transaction execution. The TPC-C specification
requires a time in which each transaction simulates (by entering a sleep stage)
the time required by the terminal user to insert data, as well as the terminal’s
processing time (TPC-C’s simulation of a real-world scenario). Consequently, as
part of our extension to OLTPBench to implement HTAPBench, we introduced
the think time processing stage for each transaction of TPC-C.

HTAPBench relies on Java Database Connectivity (JDBC) to establish a con-
nection with the SUT. Since JDBC defines a standard interface to connect with
several engines, it is possible to use HTAPBench with a wide range of engines.

3.3.2 Benchmark Configuration

HTAPBench has several system requirements. The machine running HTAPBench
should be provisioned with a Java distribution and the appropriate database
engine driver.

HTAPBench requires the user to provide the engine JDBC connection URL,
the fully qualified name of engine driver class and the target number of transac-
tions per second (tps). The required target tps for a given configuration derives
from an expectation regarding the performance compliance for the SUT. The
user should start with a small target tps value and progressively increase the
target tps until the SUT is saturated, as it happens with the warehouse scal-
ability in TPC-C. Other configurations are allowed, enabling customization of
the workload, namely: the client balancer ∆t and throughput threshold, the

1https://github.com/faclc4/HTAPBench.git

3.3 HTAPBench Metric and Components 37

TPC-C transaction mix, the TPC-H query mix and the execution time. We
briefly describe the impact of these mandatory parameters on the system.

• Client Balancer ∆t: This parameter configures the period in seconds
used by the client balancer module to assess if further OLAP workers should
be launched. On the one hand, assigning the appropriate evaluation period
has a direct impact on the convergence time and precision of the benchmark.
Choosing a small value may cause the system to converge too quickly and
overestimate the number of admissible OLAP clients. On the other hand,
choosing a large value improves the client balancer decision by exposing it to
a larger number of samples, but delays the overall process. This parameter
defaults to 60 seconds.

• Client Balancer throughput threshold: This parameter configures how
sensitive to change the client balancer should be, setting up the range of
allowed tps computed in percentage of the target tps. It has a default value
of 20%, which by experimentation we consider to be a reasonable trade-off
of loss OLTP throughput in favor of having OLAP capability.

• Execution time: This parameter configures the duration of time that each
run of the execution stage of the benchmark should last. This parameter
defaults to 60 minutes, configuring a reasonable execution time after the
warmup stage for the client balancer to exercise the SUT.

The execution of HTAPBench is straightforward. After system configuration,
the user should run the populate script that generates the appropriate Comma-
Separated-Values (CSV) files for the configured tps. Afterwards, the user should
consult the documentation of the engine to be tested in order to use the correct
procedure to load the CSV files (optionally, it is possible to directly populate
the SUT, but this operation usually takes longer, since it does not load data in
batch mode). To start the execution stage, which includes the initial warmup,
the user should use the execution script, automatically deploying the required
number of clients. The execution will run for the configured time and will after-
wards produce result files, characterizing the OLTP and OLAP executions and
computing the unified metric.

38 3 Benchmarking Hybrid Data Management Systems

3.4 Benchmarking Campaign and Validation

The benchmarking examples presented in this section result from an extensive
study intended to evaluate the key properties of HTAPBench. As such, the
main purpose of the presented scenarios is not to quantitatively compare differ-
ent SUTs, but rather to demonstrate the expressiveness of the benchmark suite
and its metrics.

Three different SUT were selected, namely: (i) an OLTP system, (ii) an OLAP
system and (iii) a HTAP system. Besides the target tps and the client balancer
throughput threshold, the same HTAPBench configuration was used across ex-
periments. The client balancer was set to use an evaluation period (∆t) of 60
seconds and the OLTP activity was regulated by the standard transaction mix
within TPC-C. For the OLAP activity, we set up HTAPBench so that each busi-
ness query would be chosen according to a uniform distribution. Across experi-
ments, we configured HTAPBench to inject 100 transactions per second, which
according to our density extraction mechanism amounts to 2,099 active OLTP
clients and 210 warehouses, rendering a dataset with a total of 117GB of data.
The selected target tps was chosen as the number of configured warehouses gener-
ate a dataset with over 100GB, which is above the third recommended scale factor
for the OLAP agent (e.g., 1GB, 10GB, 100GB). All the following experiments
reflect the average of 5 independent 60 minute runs.

3.4.1 OLTP System

The current experiment used a server with an Intel Xeon E5-2670 v3 CPU with
24 physical cores (48 virtual) at 2.3 GHz and 72GB of memory, running Ubuntu
12.04 LTS as the operating system. We deployed an OLTP row-oriented engine
and configured the level of memory that would allow the required number of
clients. The client balancer within HTAPBench was configured to consider the
default throughput threshold of 20%. The admissible loss of OLTP through-
put induced by the configuration of the threshold is depicted as a gray area in
figures 3.5, 3.6 and 3.7. HTAPBench was launched from the same machine.

The results in Figure 3.5 depict that HTAPBench was able to launch and
sustain the required target tps throughout the entire execution time. This can be
read from the OLTP line that is the linear interpolation of the plotted points. The

3.4 Benchmarking Campaign and Validation 39

required target tps was reached on the first minute of execution and, from that
moment on, the client balancer started its configuration by launching an OLAP
worker at each minute. The evolution regarding when and how many OLAP
workers exist is read by looking at the plotted line resembling a staircase.

 0

 20

 40

 60

 80

 100

 120

0 10 20 30 40 50 60
0

10

30

50

80

th
ro

u
g
h

p
u

t
−

 t
x
n
/s

e
c

#
O

L
A

P
 W

o
rk

e
rs

time (min)

OLTP OLAP target

Figure 3.5: OLTP SUT

With a configured throughput threshold of 20%, the bottom tps barrier was
only surpassed after 50 minutes, saturating the system at that point in time, and
therefore not launching further OLAP workers. By default HTAPBench’s client
balancer introduces a single OLAP worker in each evaluation period (∆t). It may
however be configured to deploy more than one OLAP worker at time. For the
current experiments, in order to understand the impact in the OLTP throughput
from increasing the OLAP activity with a higher granularity, we deployed only a
single OLAP worker at a time.

Throughout the test, a declining trend in the OLTP throughput becomes
evident. In what strictly concerns the OLAP activity, the engine under test
was able to hold up to 50 OLAP clients. As previously stated, the main goal
in HTAPBench’s evaluation scheme is to discover how many OLAP workers are
required to stress out a given SUT, while ensuring that the transactional activity
does not degrade beyond a configurable threshold. In addition to the temporal
evaluation of both OLTP and OLAP workers within the system, HTAPBench
outputs the unified metric. Within this setup, the SUT was able to sustain
756 tpmC and 7 QphH, resulting in 0.14 QpH in each OLAP worker (7 QpH /
50 OLAP workers). As such, the unified metric, QpHpW , amounts to 0.14 @ 756
tpmC.

40 3 Benchmarking Hybrid Data Management Systems

3.4.2 OLAP System

For this experiment reused the previous configuration. We deployed an OLAP
column-oriented engine, only setting up the required level of clients allowed in
the engine.

The results in Figure 3.6 depict that the SUT sustained the OLTP throughput
for a shorter period. This behavior is not surprising since the focus of this engine is
not on OLTP activity. From the moment the threshold was broken (6th minute),
the client balancer stopped triggering new OLAP clients. From this time on,
albeit at a lower throughput, the OLTP activity was kept stable until the end
of the run time. The SUT was able to register 217 tpmC while sustaining 4
individual OLAP clients. Cumulatively, the OLAP activity reached a peak of
123 QphH. As such, the unified metric we propose, QpHpW , reaches 30.75@217
tpmC.

 0

 20

 40

 60

 80

 100

 120

0 10 20 30 40 50 60
0

2

4

10

th
ro

u
g
h
p
u
t
−

 t
x
n
/s

e
c

#
O

L
A

P
 W

o
rk

e
rs

time (min)

OLTP OLAP target

Figure 3.6: OLAP SUT

Compared to the previous system, it can sustain a larger number of analytic
queries, despite the fact that this particular system was only able to launch
4 OLAP streams, compared to 50 OLAP streams with the first SUT. This may
seem counter-intuitive, considering that we are working atop a column-based
engine specifically designed for an analytical workload. However, the 4 OLAP
streams in the current SUT are much more efficient when compared with the
50 OLAP streams in the OLTP SUT.

3.4 Benchmarking Campaign and Validation 41

3.4.3 Hybrid System

Next, we use HTAPBench to characterize a HTAP engine. As such systems
are designed to scale out, they are usually made available over a distributed
architecture.

We deployed this system over 10 nodes, 9 of which are responsible for handling
and storing data, and the remaining node provides coordination and other global
services. Each node has an Intel i3-2100-3.1GHz 64 bit processor with 2 physical
cores (4 virtual), 8GB of RAM memory and 1 SATA II (3.0Gbit/s) hard drive,
running Ubuntu 12.04 LTS as the operating system and interconnected by a
switched Gigabit Ethernet network.

 0

 20

 40

 60

 80

 100

 120

0 10 20 30 40 50 60
0

5

12

20

th
ro

u
g
h
p
u
t
−

 t
x
n
/s

e
c

#
O

L
A

P
 W

o
rk

e
rs

time (min)

OLTP OLAP target

Figure 3.7: Hybrid SUT

The results depicted in Figure 3.7 reveal that the OLTP throughput reached
the assigned target in the first minute of execution. From the first minute onward,
the client balancer started to deploy OLAP streams until the OLTP throughput
degraded beyond the considered threshold, which happened after 20 minutes,
registering a maximum of 12 OLAP streams. From that moment on, the OLTP
throughput slowly degraded over the remainder of the test. Cumulatively, the
SUT was able to sustain 530 tpmC and 169 QphH. Therefore, our unified metric
QpHpW , evaluates as 14.14@530 tpmC.

3.4.4 Discussion of Results

The results of these three tests are summarized in table 3.3. Although the OLTP
SUT achieved the highest number of OLAP workers, the results in Figure 3.3 also

42 3 Benchmarking Hybrid Data Management Systems

OLAP workers QpH QpHpW
OLTP 50 7 0.14 @ 756
OLAP 4 123 30.75 @ 217
Hybrid 12 169 14.14 @ 530

Table 3.3: Analytical results according to distinct workload profiles.

show that it achieved the lowest OLAP performance (0.14 QpHpW). On the one
hand, the OLAP workers in the OLTP engine spend most of their time waiting for
the OLAP queries to be processed and therefore complete relatively few OLAP
queries. On the other hand, the OLAP engine processes significantly more ana-
lytical queries, but fails to cope with the required OLTP throughput that is used
by the client balancer to launch additional OLAP workers. Overall the OLTP
engine completed 7 QpH and the OLAP engine completed 123 QpH. This results
show that the OLAP SUT was better at handling the OLAP workload, but its
inability to cope with the OLTP workload in the hybrid configuration harmed
the overall scalability.

The ideal hardware configuration for the Hybrid SUT is significantly different
from the OLTP system or the OLAP system, which prevents a direct comparison
among them. Nevertheless, HTAPBench was able to evaluate the Hybrid SUT,
enabling 12 OLAP streams and achieving a total of 169 OLAP queries. The
results reveal that the Hybrid SUT can sustain a considerable OLTP throughput
with a moderate OLAP scalability.

3.5 Validation

In order to validate the expressiveness of our metrics, we studied the system’s
representativeness, workload accuracy, homogeneity, throughput threshold vari-
ability and cost. Moreover, we discuss the benchmark portability, reproducibility
and repeatability. For that matter, we used all the previous SUT configurations.

First, we show that the proposed metric can both identify systems with similar
or very different goals. Second, we analyze HTAPBench’s accuracy by verifying
the storage traces produced in three distinct scenarios. Third, we verify that the
produced query result sets are homogeneous. Fourth, we conduct a variability

3.5 Validation 43

analysis which presents the consequences of varying HTAPBench’s throughput
threshold. Finally we discuss the cost of using the suite.

3.5.1 Unified Metric

The unified metric allows us to establish a comparison across two dimensions.
Figure 3.8 uses a quadrant field plot to visually compare the relationship between
QpHpW and the target OLTP throughput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0.14 14.14 30.75

OLTP 1

OLAP

HYBRID

OLTP 2

tp
m

C

Unified Metric (QpHpW)

Figure 3.8: Quadrant field plot for the unified metric.

While an increase in the vertical axis translates into a higher OLTP through-
put, the horizontal axis evaluates the capability to perform more analytical
queries per OLAP worker. The best result would be a reading on the upper
right quadrant. The analysis depicts that while the SUT labeled OLTP 1 regis-
tered a QpHpW of 0.14@756 tpmC, the OLAP observed 30.75@217 tmpC and
the hybrid 14.14@534.1 tpmC. Overall, we can state that the analyzed systems
follow the trend in which the increase of OLTP activity diminishes the OLAP
capability. The hybrid system reached a position close to the middle of the plot,
indicating better support for the mixed workload with simultaneous OLTP and
OLAP activity.

So far, the presented results allow us to conclude that the benchmarking suite
is able to compare systems with very distinct work plans. In order to verify if the
suite is able to distinguish systems designed for similar workloads, we reproduced
the same experimental scenario as in subsection 3.4.1 but changed the SUT to
a different engine designed for OLTP workloads. We evaluated its performance

44 3 Benchmarking Hybrid Data Management Systems

and plotted it in Figure 3.8 with the label "OLTP 2". The results place OLTP
2 very close to system OLTP 1 in the same quadrant, which indicates that both
systems must belong to the same class (i.e., OLTP, OLAP or HTAP).

All of the previous experiments were integrated in a statistical study from
where we were able to compute the variation coefficient of the computed metrics,
pointing to a variation of 1.2%.

3.5.2 Throughput Threshold Variability

The client balancer in HTAPBench controls whether further OLAP streams are
deployed or not, evaluating at each point in time if the current OLTP throughput
does not go below a threshold defined by the throughput threshold configuration.
Intuition leads us to believe that by increasing the throughput threshold, the
client balancer will naturally allow more OLAP clients to be deployed, thus in-
creasing the overall amount of analytical queries performed.

Throughput threshold QpH tpmC OLAP Clients

10 % 70.99 130.64 1

20 % 168.9 131.36 5

40 % 265.99 138.30 11

Table 3.4: Client balancer throughput threshold variance.

The current experiment assesses if in fact such behavior translated into the
actual behavior of the benchmark. For this purpose, we set up the OLAP SUT
as in subsection 3.4.2 but varied the throughput threshold across runs.

First, by analyzing table 3.4, the reader shall notice that the consecutive
executions registered similar OLTP throughputs as expected. Moreover, as we
increase the allowed threshold, we verify that more analytical queries were per-
formed, which is a consequence of having more OLAP clients on the system, thus
increasing the registered QpH and consequently the QpHpW.

3.5 Validation 45

3.5.3 Workload Representativeness

Database systems must be evaluated with representative workloads that test re-
alistically the storage back-end capabilities. To better understand the represen-
tativeness of HTAPBench we analyzed the storage traces produced. The 3 previ-
ously tested SUT were evaluated with these workloads and the resulted storage
traces were collected and analyzed with the blktrace tool.2 This tool allows us
to collect storage traces for a given block device. With these traces it is possible
to extract useful information, such as the access patterns of storage requests, the
ratio of storage reads and writes, the throughput and latency of each request,
etc. Each SUT was deployed in a single machine as in subsection 3.4.1.

 1.935×10
8

 1.94×10
8

 1.945×10
8

 1.95×10
8

 1.955×10
8

 0 500 1000 1500 2000 2500 3000 3500 4000

S
to

ra
g
e
 o

ff
s
e
t

Time (sec)

write read

Figure 3.9: Disk access pattern registered in a solo OLTP workload.

Figures 3.9, 3.10 and 3.11 depict the access patterns registered by the storage
medium for an HTAP SUT. The figures plot the offset of the storage medium
(vertical axis) being accessed during execution time of the benchmark (horizontal
axis). Black and red marks respectively depict read and write operations. The
analysis of the traces collected allowed us to confirm that; on the one hand OLTP
workloads are dominated by random storage accesses (Figure 3.9) while OLAP
workloads do mostly sequential storage accesses (Figure 3.10) dominated by read-

2blktrace manual: http://linux.die.net/man/8/blktrace.

http://linux.die.net/man/8/blktrace.

46 3 Benchmarking Hybrid Data Management Systems

 1.895×10
8

 1.9×10
8

 1.905×10
8

 1.91×10
8

 1.915×10
8

 1.92×10
8

 1.925×10
8

 0 500 1000 1500 2000 2500 3000 3500 4000

S
to

ra
g
e
 o

ff
s
e
t

Time (sec)

write read

Figure 3.10: Disk access pattern registered in a solo OLAP workload.

 1.9×10
8

 1.92×10
8

 1.94×10
8

 1.96×10
8

 1.98×10
8

 2×10
8

 0 500 1000 1500 2000 2500 3000 3500 4000

S
to

ra
g
e
 o

ff
s
e
t

Time (sec)

write read

Figure 3.11: Disk access pattern registered in a hybrid workload.

3.5 Validation 47

 0.001

 0.01

 0.1

 1

 10

 100

 1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

(%
)

TPC−H queries

HTAPBench
No Density

Figure 3.12: Result set execution cost as a percentage of the baseline across
independent runs. The vertical axis is presented in logarithmic scale. The

absence of columns represents null variability.

only requests. On the other hand, mixed workloads generated by HTAPBench
present a mix of these access patterns, as expected (Figure 3.11). Moreover, the
ratio of storage reads and writes is according to the specification of each workload.

In summary, these results show that HTAPBench is able to simulate a realis-
tic storage load for a hybrid SUT that process both OLAP and OLTP workloads
simultaneously. Consequently, HTAPBench’s representativeness of the analytical
capability on top of a sustained transactional operation is ensured by the experi-
mental data, but also by the individual representativeness of the TPC workloads
used. Moreover, the results show that current proposals for hybrid SUT must
be aware that processing simultaneously OLAP and OLTP workloads generates
a mix of random and sequential storage accesses. This challenge can drive novel
research proposals for both hybrid engines and the back-end storage systems
supporting them.

3.5.4 Homogeneity and Reproducibility

The present experiment validates the effectiveness of our density mechanism.
Figure 3.12 depicts 2 different scenarios, where we compare a distribution using
random field generation with the density approach we propose. The depicted
results relate to a baseline comparison where all queries were executed without
any of their filtering operators, thus allowing us to extrapolate the total universe
of rows considered in each analytical query. The value presented for each query is
the absolute difference in produced result set rows in two consecutive executions:
first, with random parameters that do not follow any distribution and, second,
with the density mechanism proposed in HTAPBench.

48 3 Benchmarking Hybrid Data Management Systems

In the first scenario, the analytical queries ran with the introduction of ran-
domized parameters. The results show that consecutive executions of such queries
produced variable result sets. The measured variability of result set lines across
all query executions for this setup amounted to 12%, with a registered maximum
of 20%. For the second scenario, we used HTAPBench’s density mechanism to
generate the random parameters to be used in all analytical queries. Queries
Q13, Q21 and Q22 produce variabilities of 0% as the consecutive runs always
produced the same number of result set rows.

The results show that by using our approach, we were able to produce query
result sets with comparable costs. Consecutive executions of the same query regis-
tered a variability of just 0.17% on average across the different SUT and different
configuration settings. These results confirm a very high level of reproducibility
of results for a given configuration.

3.6 Related Work

Several organizations proposed benchmarking standards to assess either trans-
actional or analytical systems, namely: the Transaction Performance Council
(TPC) [Council, 2015c], the Standard Performance Evaluation Council (SPEC) [Coun-
cil, 2015a] and the Storage Performance Council (SPC) [Council, 2015b]. Follow-
ing, several systems are categorized into OLTP, OLAP or Hybrid and a brief
presentation of their main characteristics and shortcomings is provided.

Benchmarks for Transactional Systems

Online Transactional Benchmarking systems, such as TPC-C [Council, 2010a],
focus on assessing a system’s ability to cope with a large amount of small-sized
transactions. Usually, OLTP systems rely on row-oriented data stores, in which
the transactions operate over a restricted space of tuples, ensuring at the same
time properties such as consistency and isolation in what is commonly referred
to as ACID [Haerder and Reuter, 1983].

The TPC-C specification models a real-world scenario where a company, com-
prised of several warehouses and districts, processes orders placed by clients. The
workload is defined over 9 tables operated by a transaction mix comprised of five
different transactions, namely: New Order, Payment, Order-Status, Delivery and

3.6 Related Work 49

Stock-Level. Each transaction is composed of several read and update operations,
where 92% are update operations, which characterizes this as a write heavy work-
load. The benchmark is divided into a load and an execution stage. During the
first stage, the database tables are populated and, during the second stage, the
transaction mix is executed over that dataset. TPC-C defines how these tables
are populated and also defines their size and scaling requirements, which is in-
dexed to the number of configured warehouses in the system. The outcome of
this benchmark is a metric defined as the maximum qualified throughput of the
system, tpmC, or the number of New Order transactions per minute.

The TPC-E [Council, 2015d] benchmark builds on TPC-C, introducing a vari-
able number of client terminals. It models a scenario where a brokerage firm
receives stock purchase requests from customers, trying to acquire the correspon-
dent stock bonds from a stock pool. The purchase orders placed by clients are
based on asynchronous transactions while stock requests between the brokerage
firm and the stock exchange are based on synchronous transactions. Compared
with TPC-C, this benchmark builds a much wider and more complex system as
it is composed of 33 tables and 10 transactions, 6 of which are read-only and
the remainder are read-write transactions; the latter accounting for 23% of all
requests.

Both specifications build benchmarking suites strictly intended to evaluate
OLTP engines. Despite their representativity of OLTP workloads, the character-
istic short operational transactions prevent the workload from exercising OLAP
requirements. Engines designed to provide a high OLTP throughput are typically
row oriented as the nature of a single transaction induces I/O bound operations
in several attributes per transaction. This behavior translates into random access
patterns to the storage medium and does not produce CPU and memory bound
operations as OLAP workloads do.

Benchmarks for Analytical Systems

Online Analytical Systems such as TPC-H [Council, 2010b, Poess and Floyd,
2000] or TPC-DS [Council, 2012] focus on assessing a system’s ability to perform
multi-dimensional operations, usually on top of column-oriented data stores.

TPC-H builds a workload that does not require ETL, modeling a real world-
scenario where a wholesale supplier must perform deliveries worldwide. The

50 3 Benchmarking Hybrid Data Management Systems

business queries perform complex data operations (e.g., aggregations) across large
sets of data. The workload defines a query mix comprised of 22 business queries
that access 8 different tables. The execution is divided into three stages. The first
stage loads the database. During the second stage, a single user executes all 22
business queries, while during the third stage, a multi-user setup is used in order
to evaluate the system’s ability to schedule concurrent operations. TPC-H does
not consider any growth factor during runtime, which means that the dataset does
not change in terms of its total size. The outcome of this benchmark is computed
through a metric that accounts for the total number of completed queries per
hour (QphH).

TPC-DS builds a workload that requires ETL, particularly to ensure data
freshness. It models a scenario where orders must be processed from physical
and online stores of a wholesale supplier, mapping it into a star schema composed
of 7 fact tables and 18 dimensions. The workload holds 4 different query types,
namely: Reporting, Iterative, Data Mining and Ad-hoc queries. The database
populated for TPC-DS, and as in TPC-H, it does not consider any growth factor;
still, the initial population is regulated in terms of a scale factor that has direct
influence over the data size. The output metric is defined as the number of queries
per hour at a given scale factor, QphDS@ScaleFactor.

TPC-DS is seen as an evolution of TPC-H, addressing oversimplifications that
prevent the proper evaluation of OLAP systems. However, the need to use ETL
to promote updates on the star schema prevents us from using it as an OLAP
agent in our hybrid workload.

The high prevalence of read operations in these workloads mostly generate
sequential accesses to storage mediums, and therefore are not able to simulate
the short and cross attribute nature of OLTP workloads that also live in a hybrid
workload.

Benchmarks for Hybrid Systems

Hybrid workloads should capture both access patterns observed in the previous
individual specifications [Funke et al., 2011]. There are a few benchmarking
suites that use both access patterns, namely CH-benCHmark [Cole et al., 2011]
and CBTR [Bog et al., 2011b,a, 2008, 2012].

CH-benCHmark creates a mixed workload also based on TPC standard bench-

3.6 Related Work 51

marks, enabling two types of clients. A transactional client provides a TPC-C
agent, while an analytical client provides a TPC-H agent. To allow the analyt-
ical workload across the transactional relations, CH-benCHmark merged both
schema into a single one, comprising relations from TPC-C and TPC-H. The re-
lations accessed by the OLTP execution scale according to TPC-C’s specification.
Relations accessed by the OLAP execution are kept unchanged. However, CH-
benCHmark neglects aspects within TPC-H’s specification. Namely, the analyti-
cal queries should hold random parameters in order not to constantly transverse
the same regions of the dataset. It also disregards the required distributions for
date fields, impacting the produced analytical results.

CBTR defines a benchmarking system aimed at mixed workloads, which does
not account for any previous standardized specifications, considering them too
predictable. It introduces a workload built from real enterprise data that models
an order-to-cash workflow. For that matter, a new schema and the respective
transactional activity is presented. By using real data, CBTR bypasses the need
to use numerical distributions to populate or to generate data during benchmark
execution.

The major differentiator of HTAPBench when compared with the previous
approaches lies specifically in its client balancer module that governs how both
workloads coexist. Both CH-Benchmark and CBTR use naive approaches to
find the maximum qualified throughput for both the transactional and analytical
workloads. The main concern that arises is that neither workload agent in each
benchmarking suite is aware of the other agent, creating a dispute for resources as
each agent tries to saturate the SUT. The client balancer in HTAPBench follows
Gartner’s recommendation to specify how the transactional and analytical agents
coexist; instructing the transactional agent to sustain a configured throughput
and allowing the analytical agent to saturate the SUT up to the point when the
transactional throughput is affected. Moreover, HTAPBench also addresses the
issues found in CH-Benchmark relating to non-uniform result sets by using the
density mechanism to regulate that behavior.

52 3 Benchmarking Hybrid Data Management Systems

3.7 Remarks

This chapter focused on providing an insight on how different it is to assess
hybrid database systems, introducing HTAPBench, a new benchmarking suite
specifically engineered to evaluate hybrid database engines. The high levels of
transactional activity and a simultaneous scalable performance, introduces new
challenges to database systems targeted to solo OLTP or OLAP workloads, as
demonstrated by the proposed unified metric. This new metric enables to quan-
tify the analytical scalability factor observed while the transactional activity is
kept within a configurable and bounded threshold. Moreover, the new client bal-
ancer orchestrates how both the transactional and analytical operation agents
cooperate to assess the system’s scalability.

HTAPBench introduced a mechanism that guarantees comparable results
across runs, maintaining the expected randomness of the workloads but miti-
gating the previously observed complexity disparities. The action of the suite
was validated on top of OLTP, OLAP and HTAP systems, demonstrating the
expressiveness of the produced metrics. HTAPBench was able to distinguish dif-
ferent classes of systems (e.g., OLTP from OLAP), as well as systems within the
same class with high precision, while ensuring that the storage layout is exercised
as expected for each workload type. Moreover, HTAPBench also contributed
to validate the effectivenes of a distributed shared-nothing archicture to support
a HTAP system.

Chapter 4

Distributed SQL Window Functions

Window Functions (WF) or OLAP Analytical Functions define a sub-set of an-
alytical operations that allows the formulation of analytical queries in a derived
view of a given relation. They were first introduced in the SQL:1999 standard as
an optional feature but it was only in SQL:2011 that most database systems like
Oracle [Corporation, 2015], IBM DB2 [IBM, 2013], Microsoft SQL Server [Copo-
ration, 2013], SAP Hana [SAP, 2014], Cloudera Impala [Kornacker et al., 2015] or
PostgreSQL [Postgresql, 2015] started offering the capability to interpret them.

WF enable a large set of useful analytical operators, offering a highly config-
urable environment together with a straightforward syntax. WF are particularly
appealing for OLAP or hybrid workloads, allowing to compute time series anal-
ysis, cumulative sums, rankings, percentiles or aggregations over configurable
logical data frames, customizing them to reflect newly ingested items from ETL
or real-time production data. The benefits of this class of functions goes beyond
windowed aggregates as they can also be considered for reducing both execution
and syntactical complexity of other analytical queries [Zuzarte et al., 2003]. Ul-
timately, WF are frequently used in finance and science to provide trend and
outlier analysis, which motivates their presence in around 10% of the queries in
TPC-DS [Transaction Processing Performance Council, 2012], a benchmark suite
built to evaluate data warehouse systems.

Database systems offer, to some extent, parallel capabilities that enable their
analytical workloads to scale. Tipically these systems are designed to live in
legacy-type servers that at most offer Many-Core architectures [Corporation,
2015, IBM, 2013, SAP, 2014]. Others combine this architecture with vast mem-

53

54 4 Distributed SQL Window Functions

ory arrays for an in-memory only operation and fail to scale beyond the vertical
scalability limit of the specific configuration.

A distributed configuration seeks to ensure modularity and better scalability,
but this comes at the expense of increased coordination, resource costs or data
partitioning. Particularly important for several classes of analytical functions
such as WF is data partitioning. WF introduce the ability to compute moving
aggregates over several configurable logical partitions of data. Parallel imple-
mentations of the WF environment need to account for the disparities between
physical and logical partitioning of data in order to promote efficient executions.
This requirement comes from the need to avoid unnecessary sorting of data in all
stages of the execution, as it configures the costliest stage [Cao et al., 2012] in
this environment.

This chapter focuses on WF, particularly leveraging their inherently parallel
abstraction to expedite execution over a distributed layout. The building blocks
of this class of analytical functions are addressed, providing an overview of the WF
query construction and introducing the main properties of each clause that builds
this environment. Data movement is particularly addressed, showing the cases
where its mandatory action can be improved. For that matter, two statistical
approaches are introduced to account for disparities found between physical and
logical data layouts. First, a Holistic technique considers the logical partitioning
induced by a query to guide the decision regarding which location should compute
each section of a query plan. This is done by promoting intra-partition affinity of
data. Second, a Similarity technique is introduced to exploit correlations between
logical partitions, optimizing the required data movement between computing
locations of the distributed architecture.

The remainder of this chapter is organized as follows: section 4.1 and sec-
tion 4.2 address the building blocks of the WF environment. Section 4.3 particu-
larly explores the impact that aggregations may have on the environment, while
section 4.5 and 4.6 respectively cover the Holistic and Similarity mechanisms.
Section 4.7 evaluates both techniques. Finally, section 4.8 reviews related work
and section 4.9 discusses the achievements.

4.1 Window Functions 55

4.1 Window Functions

WF were introduced to enable complex analytical queries such as moving aver-
ages or cumulative sums to be easily expressed in SQL. Previously, some queries
holding analytical functions were either impossible to express or required ex-
tensive joins and recursive computations, causing SQL queries to be extremely
verbose [Zuzarte et al., 2003]. Unlike SQL, WF depend on the implicit or explicit
order of tuples. The ordering independence in SQL introduces several optimiza-
tion opportunities that may not be directly applied to WF. In fact, the ordering
requirement is the costliest operation in the workload [Cao et al., 2012]. This in-
troduces several challenges related to data partitioning in distributed approaches
and the need for order. WF embody three concepts: the processing order, the
partitioning of results and the notion of the current row being computed. They
are expressed in SQL through the operator OVER and take the shape depicted in
Figure 4.1.

select analytical_function() OVER(PARTITION BY A ORDER BY B ROWS

BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) from R

Figure 4.1: SQL query with WF.

The understanding of the concepts in the upcoming sections is based on the
following considerations:

• WF are computed after most statements (e.g., JOIN, WHERE, GROUP BY or
HAVING) but immediately before the final ordering (i.e., ORDER BY outside
the WF statement), if it exists;

• The result corresponding to the aggregation being computed will be added
as an extra qualifier.

The produced results will not modify or filter the source relation, maintaining
the cardinality of rows.

4.2 Window Function Query Construction

The WF environment can be decomposed into three stages, as depicted in Fig-
ure 4.2, defining the processing sequence: partitioning (1), ordering (2) and fram-

56 4 Distributed SQL Window Functions

ing (3) stages. Each stage considers specific clauses, respectively: PARTITION BY,
ORDER BY and ROWS BETWEEN or RANGE BETWEEN.

w
in

do
w

 m
ov

em
en

t

or
de

r b
y

current row

partition by

R

} frame

(1)
(2)

(3)

Figure 4.2: Stages of the Window operator: partitioning (1), ordering (2) and
framing (3).

The environment combines different clauses, enabling the inclusion or exclu-
sion of each clause type. For instance, it is possible to declare a WF with just a
partitioning (e.g., Figure 4.3) or ordering clause (e.g., Figure 4.4). If no parti-
tioning clause is declared, the entire relation is considered as a single partition. If
no ordering clause is declared, then the natural ordering of the relation’s key, or
partitioning clause (if present) is considered. Moreover, each analytical function
may implicitly influence computation logic set by the aforementioned clauses.

select analytical_function() OVER(PARTITION BY A) from R

Figure 4.3: WF SQL query without ordering and framing clause.

select analytical_function() OVER(ORDER BY B) from R

Figure 4.4: WF SQL query without partitioning or framing clause.

The next subsections analyze each part of the query construction.

4.2 Window Function Query Construction 57

4.2.1 Partitioning

The partitioning stage is defined by the PARTITION BY clause. It defines sets
of distinct elements considered as logical partitions according to the qualifier or
expression considered as argument for this clause. A single partition is built from
each set of distinct elements in the qualifier defined as argument. The concept of
partition will bound the analytical processing, meaning that the outcome of each
analytical function will be restarted when a partition boundary is reached. If no
partitioning clause is used, then the relation as a whole is considered.

The partition abstraction is particularly relevant for the intra-partition par-
allelism. That is, each logical partition becomes independent, allowing to deploy
the processing of each logical partition to a single location, be it a CPU on a
multi-core machine or a remote distributed computing instance.

w
in

do
w

 m
ov

em
en

t

or
de

r b
y

(a) (b)

2
2
2
3
3

2
3
3
2
1

3 20

2
2
2

3
3

2
3
3

2
1

3 20

A B C D A B C D

Figure 4.5: WF partition example. (a) Data sample Partition by qualifier A.
(b) Data sample Partition by qualifier B.

Figure 4.5 depicts two data samples as the outcome of the WF query in Fig-
ure 4.3, but varying the qualifier set in the PARTITION BY clause. The data
sample on the left (Figure 4.3 (a)) considered qualifier A as the partitioning key,
while the data sample on the right (Figure 4.3(b)) considered qualifier B as the
partitioning key. As the qualifier chosen for the PARITION BY clause changes,
the arrangement of data also changes. The most efficient execution in this en-
vironment, as covered in the next subsection, implies that each logical partition
undergoes the ordering cycle only once. Thus, all members of each logical parti-

58 4 Distributed SQL Window Functions

tion (as imposed by query construction) must be processed in the same instance
or location.

4.2.2 Ordering

The sorting stage is defined through the ORDER BY clause. Considering the pre-
vious established logical partitions, the intra-partition ordering will execute ac-
cording to the qualifier or expression considered as argument for this clause. The
ordering stage takes special relevance for a group of non-cumulative functions
such as the ones belonging to the ranking class. Briefly, this class of functions
always requires a sorting criterion in order to produce a deterministic result.
With an empty ordering clause, the result will only be possible for the group of
functions belonging to the cumulative class (i.e., sum), as they are not order
dependent.

The overall cost of the ordering stage varies depending on the underlying
chosen architecture for storing and computing the results, but also from the
analytical function chosen. In the following expressions, we consider a partition
to be the result of the PARTITION BY clause and a shard to be the result of the
distribution in the underlying data store. R denotes a relational table and Ri

one of its ith shards, while P denotes one logical partition and Pi one of its ith
portions. Cost(R) and cost(Pi, R) respectively denote the total cost of ordering
relation R and the cost of reordering a given partition within the relation.

On the one hand, a common legacy-type architecture benefits from a shared-
everything storage where the sorting cost is bounded by the number of tuples to
be ordered in each partition, as depicted in (4.1).

Cost(R) =

partitions∑
i=1

cost(Pi, R) (4.1)

That is, without data distribution, the elements of a given logical partition are
not spread across several locations. Therefore, the sorting cost is only bounded
by the number of tuples to be sorted.

On the other hand, the shared-nothing architecture that is commonly em-
ployed in a distributed layout incurs additional sorting costs in each of the dis-
tributed instances, as depicted in (4.2). That is, in a distributed layout, the total

4.2 Window Function Query Construction 59

sorting cost is computed from sorting each distinct logical partition in each node.

Cost(R) =
nodes∑
j=1

partitions∑
i=1

cost(Pi, Rj) (4.2)

However, this only applies if each logical partition is restricted to a single node,
defining the locality requirement for optimal execution, which enables the sorting
procedure to benefit from the inter-partition independence.

This is usually not the case. Since data is horizontally partitioned, no single
node has the complete logical partition in order to satisfy the sorting required in
just one cycle. In a distributed configuration, the final node replying to a client
is required to re-sort the results, introducing the added sorting cost as depicted
in (4.3).

Cost(R) =

(
nodes∑
j=1

partitions∑
i=1

cost(Pi, Rj)

)
+

partitions∑
i=1

cost(Pi, R) (4.3)

4.2.3 Framing

The framing stage introduces a set of possible clauses bounding the rows that
build the window (frame) around the current row within a given partition. The
frame is available from two separate constructions, the ROWS BETWEEN and the
RANGE BETWEEN. Each one is complemented by formalizing the start and end of
the frame, specifying how many units before and after the current row should
be considered. In the ROWS BETWEEN mode, the row should be considered as the
unit. For the RANGE BETWEEN mode, the numerical value in the cell should be
considered as the unit. These constructions are complemented with boundary
constraints.

In the following, we present a brief description of each clause:

• n PRECEEDING: The frame starts n units before the current row;

• n FOLLOWING: The frame ends n units after the current row.;

• UNBOUNDED PRECEEDING: The frame starts at the beginning of the partition;

• UNBOUNDED FOLLOWING: The frame ends at the end of the partition.

60 4 Distributed SQL Window Functions

In contrast to the ordering stage, the framing stage is independent of the
aggregate function.

The framing stage builds on the provided ordering, taking into account the
current row being considered to introduce the concept of window or frame. The
frame is built from a group of adjacent rows surrounding the current row and
changes as the current row moves toward the end of the partition. The framing
is set by either the ROWS BETWEEN or the RANGE BETWEEN clauses. The former
considers n rows before and after the current row, while the latter restricts the
window by creating a range of admissible values and, the current row is considered
if the stored values fit in the provided range.1

4.3 Cumulative and Ranking Analytical Functions

Modern analytical engines provide a vast array of analytical functions that can be
categorized according to their behavior in a simple two class taxonomy: cumulative
and ranking. The former class produces cumulative and moving aggregates and,
tipically, they are not order-dependent. The sum(x), avg(x) or count(x) are just
some examples of this class of functions. The latter class produces rankings or
percentiles and they are typically order-dependent. The rank(), dense_rank()

or ntile() are just some examples of ranking analytical functions.
Figure 4.6(a) depicts the result of computing a WF structured as select

analytical_function() OVER (Partition By A Order By D) from table, im-
mediately before applying the analytical function. The source relation was parti-
tioned according to qualifier A and ordered according to qualifier D. The following
two examples depict the differences between a cumulative and a ranking analyti-
cal function. Figure 4.6(b) considers the sum(D) as the analytical function to be
computed. The result qualifier is computed by adding all the values of qualifier D
in each logical partition (e.g., partition 2), and applying that result to all the rows
of that partition. Figure 4.6(c) considers the rank() as the analytical function
to be computed. The result is bounded by the ordering offered by qualifier D, in
each logical partition, producing a different result for each row of the partition.

Cumulative analytical functions such as sum(x) are not order-dependent as
they are commutative and associative. Such properties largely improve their par-

1Typically, the use of this clause is restricted to numeric types.

4.3 Cumulative and Ranking Analytical Functions 61

w
in

do
w

 m
ov

em
en

t

or
de

r b
y

(a) (b)

res

(c)

36
36
36
36
36

2
2
2
2
2

2
2
2
2
2

2
2
2
2
2

2
3
5
9
17

1
2
3
4
5

2
3
5
9

17

2
3
5
9

17

DCBADCBA resDCBA

Figure 4.6: WF query as: select analytical_function() OVER
(PARTITION BY A ORDER BY D) FROM table. (a) WF where the partition by
clause generated 1 partitions. (b) Cumulative (sum) analytical function over

WF in (a). (c) Ranking (rank) analytical function over WF in (a).

allelization potential. While the commutative property ensures that the absence
of an ordering criterion does not compromise a deterministic result, the associa-
tive property ensures that parallelization approaches requiring data partitioning
satisfy a deterministic result.

Ranking analytical functions such as rank() do not benefit from the previous
properties since they establish an ordinal association between the rank output
and the ordinal variables. This introduces several difficulties in parallelizing the
execution when dealing with data partitioning. This is due to a given logical
partition being possibly scattered among a group of instances that may not match
the physical partitioning in the database, not fulfilling the locality requirement
for optimal execution.

On the other hand, the parallelization of cumulative analytical functions is
much simpler since the results can be computed in each physical partition without
compromising the determinism of the overall final result. Despite the limitation
of the latter class of analytical functions, provided that the WF holds a partition-
ing clause, the parallelization of each logical partition can be achieved as each
one can be assigned to a different computing node. Nevertheless, intra-logical-
partition parallelism of the ranking analytical functions can be further improved
in a distributed setup.

62 4 Distributed SQL Window Functions

4.4 Distributed Execution

Distributed databases take advantage of data distribution, considering several
computing nodes in order to scale query execution. Each database node is split
in two layers, the Distributed Query Engine (DQE) and the Data Substrate layer.
The latter holds the Data Nodes and manages the data partitions manipulated
in each Query Engine (QE) instance.

SQL Application
SELECT AGG() OVER(PARTITION BY ‘B’ ORDER BY ‘X’) FROM

QE Worker

QE Instance

Storage Node

Di
st

rib
ut

ed
 Q

ue
ry

 E
ng

in
e

Da
ta

 S
ub

st
ra

te

QO

QE Worker

QE Instance

QO

Storage Node

Figure 4.7: Simplified architecture of a distributed query engine.

Figure 4.7 depicts a simplified version for the architecture that models the
considered system. Each DQE instance holds a QE, a Query Optimizer (QO)
and abstracts a larger set of essential services that are required to cope with dis-
tribution, such as the transactional managers in order to ensure data consistency
across instances or activity loggers for fault tolerance purposes. The QE trans-
lates SQL syntax into sets of single operators, while the QO considers several
statistical techniques to improve the execution plan of a query.

In a nutshell, the QE splits the execution of a query into two separate stages:
the query planning and the query execution (detailed in section 5.3). During the
first stage, the QE decides how the query is executed during the second stage,
and which operators are used in such a query plan. The QO uses hints about

4.4 Distributed Execution 63

data in the form of statistical approximations, allowing the QE to optimize query
execution based on the approximation cost of each individual operator in a given
data set.

4.4.1 Data Splitting

The DQE applies data partitioning techniques in order to distribute data among
instances, defining the number of available computing nodes and configuring the
installed Degree Of Parallelism (DOP). The data distribution techniques are com-
monly accomplished by means of a hash function or by assigning ranges of keys
to specific storage nodes, considering a single or a collection of attributes as key
to guide the splitting decision.

Storage Node 2Storage Node 1

 9 a 1 x x
10 b 1 x x
11 b 4 x x
12 a 6 x x
13 a 1 x x
14 b 1 x x
15 b 4 x x
16 a 6 x x

1 a 1 x x
2 b 1 x x
3 b 4 x x
4 a 6 x x
5 a 1 x x
6 b 1 x x
7 b 4 x x
8 a 6 x x

‘K’ ‘B’ ‘C’ ‘X’ ‘Y’ ‘K’ ‘B’ ‘C’ ‘X’ ‘Y’

G
ro

up
 1

G
ro

up
 2

G
ro

up
 3

G
ro

up
 4

Figure 4.8: Distributed data layout considering K as the partitioning key.

Figure 4.8 depicts the resulting distributed data layout from applying a data
splitting strategy across two storage nodes. In this example, data rows are placed
in groups composed from ranges of values (guided by qualifier K). The number
of groups grows as the number of rows in each one exceeds a configurable group
size. This distribution strategy is currently considered in a popular data store,
HBase [George, 2011].

64 4 Distributed SQL Window Functions

Storage Node 2Storage Node 1

 9 a 1 x x 10 b 1 x x
11 b 4 x x 12 a 6 x x
13 a 1 x x 14 b 1 x x
15 b 4 x x 16 a 6 x x

1 a 1 x x 2 b 1 x x
3 b 4 x x 4 a 6 x x
5 a 1 x x 6 b 1 x x
7 b 4 x x 8 a 6 x x

‘K’ ‘B’ ‘C’ ‘X’ ‘Y’ ‘K’ ‘B’ ‘C’ ‘X’ ‘Y’

Figure 4.9: Distributed data layout considering hash functions as the
partitioning key.

Figure 4.9 depicts the resulting distributed data layout from applying hash
functions as the partitioning strategy. Considering hash functions as the under-
lying data partitioning mechanism, typically induces uniform data distributions,
evenly placing sets of tuples across all available storage nodes. This distribu-
tion strategy is often designated as Consistent Hashing [Karger et al., 1997] and
maybe found in data stores such as Cassandra [Lakshman and Malik, 2010].

Despite the partitioning strategy, the data distribution will only favor the
attribute (or composition of attributes) as key. In a dynamic query execution
scenario, queries may consult several of the available qualifiers, disabling any
chance to settle on a specific data partitioning strategy that would favor all
qualifiers. A closer look at both figures 4.8 or 4.9 shows that if a query considers,
for example qualifier B for the PARTITION BY clause, no single node holds all the
items for that particular logical partitioning scheme (partitions a and b according
to the example). In order to promote intra-partition parallelism, all data rows
that build a logical partition may need to be relocated to a remote instance to
achieve the co-location of all elements of a logical partition.

4.4.2 Data Forwarding

Data movement during the distributed execution of a WF query is required,
ensuring that all the elements of each logical partition are in the same location,

4.4 Distributed Execution 65

in order to fulfill the co-location requirement for efficient execution. In order to
forward data while at the same time minimizing the transfer cost, we introduce a
statistical technique coupled with a data transfer mechanism, which we designate
as shuffler, promoting the co-location of logical partitions. This was achieved by
considering a histogram characterizing the universe of elements present in each
logical partition, mapping how data is distributed in the storage nodes.

Briefly, the histogram considers the cardinality of each distinct element in each
possible column qualifier. Each storage node be characterized by the specific data
distribution of the partitioning qualifiers. The introduction of this mechanism
along with the shuffler allows data to be forwarded during query execution time
to the specific node that, according to this mechanism, is responsible to process
a given logical partition.

Network

DQE w1 DQE w2

ol_w
2
4
6
10
12
14
8
16
20
18

ol_d
1
1
1
1
1
1
2
2
2
3

ol_o
2
4
6
1
3
2
2
2
2
1

ol_num
1
1
1
1
7
2
1
2
4
1

ol_num
1
1
1
1
6
1
2
4

ol_o
1
3
5
1
2
2
3
3

ol_d
1
1
1
1
1
2
2
3

ol_w
1
3
5

13
11
7

17
9

w
in

do
w

 m
ov

em
en

t

or
de

r b
y (p1)

(p2)

(p3)

(p1)

(p2)

(p3)

Figure 4.10: Shuffling instances partitioned by ol_w. In WF context, they
were partitioned by ol_d and Ordered by ol_num. The DQE instances will use
the network to combine partitions during execution time. Instance w1 will hold
partitions ol_d = 1, instance w2 will hold partitions ol_d = 2 and ol_d = 3,

respectively.

Consider Figure 4.10 where a table similar to the table in Figure 4.6(a) was
split into two partitions in the storage layer. This initial partitioning was de-
fined by hashing the value of the nodes ol_w qualifier and performing the arith-
metic modulo between the hash result and the number of computing instances
(Hash(value in ol_w) % #Nodes). Guided by the query in Figure 4.1, the re-
sults were then ordered according to the qualifier ol_d (set as the partitioning

66 4 Distributed SQL Window Functions

clause). Both nodes of the storage layer hold elements from the available three
partitions in ol_d (p1, p2, p3). To promote intra-logical-partition co-location,
ol_d partitions (p2) and (p3) in instance DQE w1 will be relocated to instance
DQE w2 and ol_d partition (p1) will be relocated from instance DQE w2 to
instance DQE w1.

4.5 Holistic Shuffling

Indexes [Garcia-Molina, 2008] or Histograms [Poosala et al., 1999] are commonly
used by query optimizers as they provide a fairly accurate estimate on the data
distribution. This is crucial for a query planner, allowing to map keys to their
observed frequencies. Database systems use these structures to measure the car-
dinality of key ranges. Without histograms, the query planner would need to
assume a uniform distribution of data, leading to incorrect partitioning. Con-
sider the following example where a relation R characterizes citizens of three
different countries: USA, Germany and Brazil, where each row represents a sin-
gle citizen. Consider also that USA has 322 million citizens, Germany has 81
million and Brazil has 205 million, thus the relation R would hold a total of 608
million rows. If a given query planner had to deal with a query that would require
to partition the data by country into 3 workers, without the histogram it would
consider them to be equally distributed, which for this case is not true. This
simple example demonstrates the special relevance of relying in histograms when
data is skewed [Poosala et al., 1996], a common characteristic of non-synthetic
data.

When a query engine has to generate parallel WF query execution plans,
each worker would ideally hold a whole logical data partition. However, the
cardinality and location of logical partitioning candidates alone do not completely
present a heuristic that could be used to enhance how parallel workers would share
preliminary and final results. In order to expedite data movement through the
improvement of bandwidth usage, the histogram also needs to reflect the volume
of data existing in each node, thus creating samples of the size of each candidate
logical partition. Together, these metrics allow to co-locate distributed elements
of logical partitions while promoting the lowest possible usage of bandwidth in
the network interconnect.

4.5 Holistic Shuffling 67

4.5.1 Histogram Construction

The histogram considers the row cardinality and average row size for each logical
partition. Both could be seen as global metrics that a given query engine may
be able to produce and maintain, as this type of information is already used for
similar purposes.

The histogram considers the cardinality of each value in each attribute of
the relation. Since the construction of the histogram should not be done during
query planning time, the QE cannot know beforehand the partitioning clauses
induced by queries. As such, we consider all distinct groups of values in each
attribute. Each partition will contribute to the histogram with the same num-
ber of attributes as the original relation, plus a key, reflecting the data in that
partition.

Algorithm 2 Histogram Construction in Partition n

1: Initially:
2: Pn ← [attr1, attr2, attrn]
3: hist_Pn ← [key, attr1, attr2, attrn]
4: procedure count_distinct_keys(attr)
5: for each key ∈ attr do
6: count← number of key in attr
7: size← size(key)
8: hist_Pn(key, attr)← (count, size)
9: end for

10: end procedure
11: function Global Histogram(Pn)
12: for each attr ∈ Pn do
13: count_distinct_keys(attr)
14: end for
15: end function

Algorithm 2 depicts how each partition histogram (hist_Pn) should be built.
The selected attribute (attr) is traversed and, for each key, the total number of
distinct occurrences is computed along with its size. The pair of values is then
added to the histogram.

Afterwards, workers share their completed local histograms with a designated
master worker, so that the global histogram is assembled. The global histogram
considers each physical partition histogram and evaluates, for each key, which
is the physical partition that holds the largest volume (in size, evaluating the

68 4 Distributed SQL Window Functions

cardinality × average_row_size). The global histogram is built with the same
number of qualifiers from each partition histogram.

4.5.2 Shuffler Action

The holistic shuffler mechanism leverages the data collected by the global his-
togram to expedite shuffling operations. During the workflow for processing a
window operator, there are two different steps where data needs to be shuffled.
The first is when the operator starts to reunite logical partitions, thus fulfilling
the co-locality requirement. The second is at the end of the operator and recon-
ciles partial results to produce the final result. Therefore, two shuffle operators
were considered, each one with a distinct policy: the local shuffle and the global
shuffle.

Algorithm 3 Local Shuffle Operation
1: Initially:
2: worker_id← worker unique identifier
3: row ← [key, attr1, attrn]
4: hist_Pn ← [key, row]
5: partition_by ← attr1

6: function LShuffle(local_partition)
7: for each row ∈ local_partition do
8: partition← row[attr1]
9: destination← hist_pn[partition, attr1]

10:
11: if worker_id 6= destination then
12: send(destination, row)
13: end if
14: end for
15: end function

The local shuffle shown in Algorithm 3 dispatches rows of a given logical
partition to the worker responsible for that logical partition as dictated by the
global histogram. As each row is read from scanning the partition, the value con-
tained in that row for the attribute that dictates the partition clause is collected
(partition). This value is then used together with the partitioning attribute to
obtain the destination worker from the global histogram.

The global shuffle shown in Algorithm 4 forwards all aggregated rows to the
master worker holding the overall largest data volume. The input data considered

4.6 Similarity Awareness 69

Algorithm 4 Global Shuffle Operation
1: Initially:
2: worker_id← worker unique identifier
3: master_worker ← hist_Pn

4: function GShuffle(aggregated_data)
5: for each row ∈ aggregated_data do
6:
7: if worker_id 6= master_worker then
8: send(master_worker, row)
9: end if

10: end for
11: end function

by the global shuffler is composed by the ordered and aggregated rows, both
produced during execution time. Such rows will now have to be sent in the
master node, whose identity is retrieved from the histogram. Afterwards, as each
aggregated row is handled by the operator, it is forwarded to the master worker,
if it is not the current one.

Even though the histogram mechanism identifies the ideal worker to compute
a given logical partition, forwarding a single row does not maximize bandwidth
usage.

Due to the asynchronous nature of the considered DQE, latency is usually not
the bottleneck and thus, data movement may be delayed until network usage can
be maximized [Gonçalves et al., 2016]. This enables the use of batching in order
to improve network usage. A batch payload is formed by grouping rows that need
to be forwarded to a common destination and it is regulated by a buffer within
the shuffling mechanism, whose size and delivery timeout are configurable.

The understanding of up to what level a given logical partition may or not ben-
efit from batching is shaped in a correlation mechanism, regulating the decision
by identifying the logical partitions that are good candidates to form batches.

4.6 Similarity Awareness

The Query Optimizer (QO) considers several statistical mechanisms to explore
data features, in order to improve query execution performance. Without them,
independence assumptions between attributes are preserved, which commonly

70 4 Distributed SQL Window Functions

Algorithm 5 Similarity Aware Shuffling Mechanism
1: Initially:
2: P (r) =< r0, r1, r2, rn >← partition
3: ri ← current_row
4: pbk ← partition_by_key
5: w_id← worker_id
6: H ← histogram
7: t← similarity_threshold
8: procedure Similarity(attr_A, attr_B)
9: Sim← unique(attr_A∩attr_B)

unique(attr_A∪attr_B)

10: end procedure
11: procedure BatchShuffling(P (r), dest)
12: send P (r) to dest
13: end procedure
14: procedure HashShuffling(ri, dest)
15: send ri to dest
16: end procedure
17: function Shuffler
18: dest← H(ri.pbk)
19: if w_id 6= dest then
20: Sim← similarity(w_id_pbk,dest_pbk)
21: if Sim > t then
22: BatchShuffling(P (r), dest)
23: else
24: HashShuffling(ri, dest)
25: end if
26: end if
27: end function

leads to under or over provisioned query plans. As in real-world data, correla-
tions between relation attributes are the rule and not the exception, the array
of correlation or other algebraic extraction mechanisms in the literature is vast,
namely [Brown and Hass, 2003], [Fan et al., 2008] and [Liu et al., 2016]. Cor-
relations can also be used in DQEs to improve how data distribution is handled.
When logical data partitions need to be relocated to improve co-locality, the
correlation between qualifiers in different locations of the storage layer can be
explored to minimize the required data movement.

The similarity measure quantifies to what level the logical partitions of a
given attribute held by different storage nodes are alike. Data partitions with

4.6 Similarity Awareness 71

high similarity are good candidates to be shuffled in a batch payload. This is
so as a high similarity implies a high common number of logical partitions. On
the other hand, data partitions with low similarity are better candidates to be
immediately shuffled for their destination. This is so as they share a low number
of common partitions.

This is efficiently achieved through Algorithm 5. The similarity measure quan-
tifies in a universe between 0 (not similar) and 1 (similar) how similar two at-
tributes are, by considering the number of unique values in each one of them to
compute the metric. The algorithm is considered during the first shuffling stage.
It considers each logical partition (P (r)), the previously introduced Histogram
(H) and a configurable similarity threshold. Three auxiliary procedures are con-
sidered. The SIMILARITY procedure computes the similarity measure from the set
of unique values in the qualifiers considered as argument. The BATCHSHUFFLING

procedure marshals all the rows of partition P (r) and sends it to the destination
worker dest. The HASHSHUFFLING procedure marshals a single row ri and sends
it to destination dest.

When the shuffler action is required, it uses histogram H to verify what is
the optimal destination from row ri. When the destination is a remote instance
(line 19), the shuffling mechanism computes the similarity measure between the
local (attrA) and destination (attrB) qualifiers (line 20). The partition P (r) is
marshaled to the appointed destination when the observed similarity is above
threshold t (line 22) (BATCHSHUFFLING), or each row ri is otherwise sent to desti-
nation (line 24) (HASHSHUFFLING). The parameter t sets a threshold above which
rows are forwarded in batch to the destination instance. This parameter de-
faults to 0.5 meaning that if not modified, rows are batch forwarded if the origin
contains at least half the number of unique partition values of the destination.

72 4 Distributed SQL Window Functions

4.7 Evaluation

Along the current section, we present the evaluation for the Holistic and Similarity
mechanisms.

Holistic shuffling

In order to evaluate the Holistic shuffling technique, we considered RX-Java [RXJ,
2015] to simulate the parallel execution of the window operator in several workers.
This framework provides bindings to the Java language, enabling it to use the
semantics of Reactive Programming [RX, 2015]. We selected this framework as
it allows to establish a series of data streams, mimicking the window operator
data flow. Throughout the evaluation, the single ranking query in Figure 4.11
was considered, holding a window function over TPC-C’c synthetically-generated
ORDER_LINE relation, characterized by 10 distinct column attributes. The values
considered for each one of these attributes were distributed according to TPC-C’s
specification. Generated data is characterized by 100 distinct logical partitions,
each one with 500 rows. Globally, the configured relation held 50× 103 tuples.

select rank() OVER(PARTITION BY OL_D_ID ORDER BY OL_NUMBER) from

ORDER_LINE

Figure 4.11: Test WF query for the holistic technique.

Experiments were performed on a system with an Intel i3-2100-3.1GHz 64 bit
processor with 2 physical cores (4 virtual), 8GB of RAM memory and SATA II
(3.0Gbit/s) hard drives, running Ubuntu 14.04 LTS as the operating system.

For comparison purposes, we report the results by using a naive approach
and the Holistic Shuffler. The naive approach does not consider any knowledge
to forward data, broadcasting data among all workers.

The results in Figure 4.12 and Figure 4.13 are presented in a logarithmic scale,
as the average of 5 independent runs for each configuration.

4.7 Evaluation 73

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0 2 4 6 8 10 12

K
 t
u
p
le

 r
o
w

s

workers

Naive Holistic

Figure 4.12: Average forwarded rows for the local and global shuffling stage.

In Figure 4.12, the Shuffler technique required on average only 14.7% of the
rows required for the naive approach to reunite all the logical partitions in each
computing node. The results regarding the Local Shuffling stage are depicted
in Figure 4.13. This experiment varied the number of computing nodes that
participate in the computation of the ranking query, verifying the number of
rows that were forwarded according to each technique.

The large difference is justified by the fact that the naive approach reunites
logical partitions by forwarding data among all participating nodes, which intrin-
sically creates duplicates in each node.

 1

 2

 4

 8

 16

 32

 64

 0 2 4 6 8 10 12

K
 t
u
p
le

 r
o
w

s

workers

Naive Holistic

Figure 4.13: Forwarded rows for the local shuffling stage.

Algorithm Phases

The complexity distribution for each stage of the WF environment is depicted in
table 4.1. It provides a detailed description regarding the execution time for con-

74 4 Distributed SQL Window Functions

figurations with 2 and 8 workers. It shows that considering the Holistic Shuffler
provides better results in each step of the computation, reducing the number of
shuffled rows in each shuffling stage. As a consequence, the ordering and ranking
operations also benefit since each node holds less rows to be processed, reducing
the overall computing time.

2 workers 8 workers
stage Naive Holistic Naive Holistic

Local shuffle [K rows] 499 200 3596 399
Sort [ms] 537 252 201 15
Rank [ms] 20 18 26 8

Global shuffle [K rows] 591 299 34763 1000

Table 4.1: Performance of each step for 2 and 8 workers for the ranking WF
computation.

Similarity

We validated that by batch shuffling tuples between DQE instances we save
bandwidth, improving execution time of the shuffling stage. We considered a
synthetic data set and shuffled rows between distinct DQE instances. The data
set used was extracted from the TPC-DS [Transaction Processing Performance
Council, 2012]. We extracted a single relation (WEB_SALES) which is composed
of 35 distinct attributes, configuring TPC-DS with a scale factor of 50GB. This
resulted in a relation with 9.4GB corresponding to 36× 106 rows.

The outcome of the mechanism we propose is directly related with the data
distribution considered. In order to bound the outcome in terms of the lower
and upper performance values, we statistically analyzed the considered relation.
The lower bound is set by not using the similarity mechanism. The upper bound
is set by considering the relation attributes that would favor data distribution.
This was achieved by identifying the placement key attribute, but also a candi-
date attribute to be the partitioning clause or shuffling key (Partition By Key
(PBK)) of the WF. The placement key attribute will define the data distribution
in each DQE Storage Node through the use of a Hash function, and the PBK will
define the runtime partitioning within the WF environment.

4.7 Evaluation 75

0
1

100

1.0E4

1.0E6

1.0E8

0 PBK 10 PK PBK 25 35

Number of partitions per attribute

0
1

100

1.0E4

1.0E6

1.0E8

0 PBK 10 PK PBK 25 35

Average number of elements per partition/attribute

Figure 4.14: Number of partitions per attribute (top) and the average number
of elements per partition/attribute (bottom).

The results are depicted in Figure 4.14. The top plot presents the number
of partitions for each single attribute in the considered relation. That is, the
number of unique values in each attribute. The bottom plot depicts the average
cardinality of each partition. That is, the average number of elements in each
group of unique values in each one of them. The horizontal axis represents the
attribute index, while the vertical axis quantifies each measure in logarithmic
scale. The attribute considered for placement key (PK) is shown in black and
the candidates for WF Partition By key (PBK) are shown in dark gray.

The ideal candidate attribute to become the relation placement key is the
attribute that displays the highest partition number and at the same time holds
the smallest cardinality, ensuring an even data distribution and reduced data
skew. On the one hand, observing both plots leads us to consider attribute with
index 17 (ws_order_number), displaying the highest number of partitions, each
one with a single element. On the other hand, the candidate attributes to be
selected as WF PBK are the attributes that would hold at the same time a
high number of partitions and high partition cardinality. These are good PBK
candidates since they will induce a number of logical partitions that is above
the configured DOP. The observation of the plots leads to identify as candidates
the attribute indexes depicted in dark gray, from which we select attribute 0
(ws_sold_date_sk) as PBK.

After the election for the PK and PBK keys, we conducted a second experiment
to verify the computed similarity measure. Figure 4.15 depicts the results of
applying the metric in two scenarios. In both cases, we consider our scenario to

76 4 Distributed SQL Window Functions

be built from several DQE instances and corresponding Storage Nodes.

1.0E−5

1.0E−3

0.5
1

 0 5 10 15 20 25 30 35

(PBK)

1.0E−5

1.0E−3

0.5
1

 0 5 10 15 20 25 30 35

(randomly chosen).

Figure 4.15: Similarity between qualifiers in two data nodes. Horizontal axis
represents the attribute index. Vertical axis represents the Similarity measure

in logarithmic scale.

On all experiments, we considered only the communication layer of the DQE
where our contribution is, thus avoiding the SQL parsing and optimization stages.
Each data partition was computed by applying a Hash function with the elected
PK dividing the data into as many partitions as configured DQE instances. We
first considered the configuration with 2 instances A and B. In the experiment
in the top plot we computed the similarity measure between the the PBK of
location A and each distinct attribute in location B. It is possible to observe that
attribute 0 in location B presents the highest similarity, followed by attribute
2. These are also the only attributes that are above the set up threshold of 0.5
denoted by the horizontal line. The remaining attributes have a residual similarity
measure. The bottom plot depicts a different configuration where attribute 15 was
randomly chosen among all non-candidate attributes. The similarity measure in
this attribute is lower than our threshold, even though it seems to be equal given
the logarithmic scale required to observe the remainder attributes. Therefore,
the results achieved during the first configuration would induce the shuffler to
use batching mechanisms to forward partitions among DQE instances, instead of
hash forwarding. The latter would culminate in sending a single row at a time.

In order to verify the impact regarding network usage, we conducted an ex-
periment to assess the magnitude of the network savings promoted. Namely,
we considered configurations with 2, 4 and 8 DQE and Storage instances. The
computing nodes were only set up with the communication layer responsible for

4.7 Evaluation 77

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

b
a
n

d
w

id
th

 (
M

B
 /
 s

e
c
)

time (sec)

2 Nodes−Baseline
2 Nodes−Similarity
4 Nodes−Baseline
4 Nodes−Similarity
8 Nodes−Baseline
8 Nodes−Similarity

Figure 4.16: Bandwidth (outbound) registered during shuffling between
instances.

the shuffling in the WF environment. Each node is comprised of commodity
hardware, with an Intel i3-2100-3.1GHz 64 bit CPU with 2 physical cores (4 vir-
tual), 8GB of RAM memory and one SATA II (3.0Gbit/s) hard drive, running
Ubuntu 14.04 LTS as the operating system and interconnected by a switched Gi-
gabit Ethernet network. During execution, each computing node acts as a DQE
instance shuffler, forwarding data to the remainder instances. In a distributed
deployment, the DQE instance will be co-located with other services (e.g., storage
node) which will typically restrict the available memory to the DQE instance.

We evaluated two configurations where the first represents a baseline compar-
ison, forwarding all data by hash shuffling, and a second where data is forwarded
according to our similarity mechanism.

The results depicted in Figure 4.16 are twofold. The similarity measure reg-
istered both a decrease in bandwidth and it also promoted a shorter execution
period for the shuffling technique. This is the result of pairing the batch shuf-
fling mechanism together with the proposed similarity measure. The savings
induced come at a residual cost, since the statistical information is not collected
for the single purpose of this improvement, nor it has to be updated in each
query execution. The similarity measure technique only proved effective from
the configuration with 4 instances onward, since it is only from that configura-
tion that both bandwidth and execution time are lower than the baseline. For
the configuration with only two nodes, the baseline technique proved to be better
by both shortening the shuffling time and registered bandwidth. However, in the
configurations with 4 and 8 nodes, the similarity measure was able to reduce the
bandwidth and execution time when compared with the baseline approach. As

78 4 Distributed SQL Window Functions

2 nodes 4 nodes 8 nodes
Baseline (MB) 1,132.45 4,172.59 7,237.56

similarity (MB) 2,365.34 1,695.24 991.72
Bandwidth Gain (x) -0.48 2.46 7.30

Shuffle time

Baseline (sec) 149 172 170
similarity (sec) 226 114 65
Speed up (x) -0.48 1.55 2.61

Table 4.2: Total bandwidth (sent) and execution time registered for each
configuration.

the number of partitions in the system increase, each single partition becomes
responsible for a shorter set of data, promoting bandwidth savings up to 7.30
times for the 8 node configuration.

The previous experiment evaluated the shuffling mechanism by considering
an attribute with ideal similarity measure and partitioning on the storage layer.
In order to demonstrate the impact of selecting an attribute that does not favor
a uniform distribution of data among data partitions, we conducted a second
experiment that considered an attribute with poor partitioning properties (i.e.,
reduced number of partitions). The results consider the same component config-
uration, but selected attribute 15 (ws_warehouse_sk) for the partitioning. When
selecting an attribute that lacks the desirable distribution, the logical partitions
will present an imbalance, thus promoting a low similarity measure. Therefore,
the shuffling mechanism will not be able to maximize network usage and will end
up having to consider the HASHSHUFFLING mechanism to forward data. However,
we point out that they are in line with the considered baseline results presented
in table 4.2, registering a bandwidth variance of ±4%. Moreover, even though
we do not consider it, the use of compression techniques may further increase the
observed savings.

4.8 Related Work 79

4.8 Related Work

Window functions were introduced in the SQL:2003 ANSI SQL Standard. They
provide a powerful, yet simple syntax, that enables complex queries to be ex-
pressed. These functions allow different aggregation types, namely: cumulative
or ranking, to be computed over a group of logical data partitions. Most leading
database systems now offer the ability to interpret WF or at least a sub-set of
the capabilities of the environment, namely: Oracle [Corporation, 2015], IBM
DB2 [IBM, 2013], Microsoft SQL Server [Coporation, 2013], SAP Hana [SAP,
2014], Cloudera Impala [Kornacker et al., 2015] or PostgreSQL [Postgresql, 2015].

Despite its relevance, parallel implementations and optimizations considering
this operator are almost non-existing, to the best of our knowledge, we feel that
the few existing works can be categorized using a simple taxonomy: Complexity
Reducers or Many-Core Parallelization strategies. The first category holds works
that either try to reduce the complexity of the window operator or use it as a
tool to reduce the complexity of queries that originally did not hold any WF.
Works such as [Cao et al., 2012] or [Zuzarte et al., 2003] fit in the first category,
respectively tackling optimization challenges related with having multiple window
functions in the same query, and showing that it is possible to use them as a way to
avoid sub-queries and lowering quadratic complexity. However, such approaches
do not offer parallel implementations of this operator. Also in the first category,
a vast array of correlation mechanisms have been so far deeply studied in the
literature. Nonetheless, most of the conducted studies focus on efficient ways to
discover and exploit soft and hard correlations [Ilyas et al., 2004], allowing to find
different types of functional dependencies.

The second category holds works that try to expedite the execution in ar-
chitectures composed by servers with multiple CPUs per machine, thus improv-
ing parallelization. The distributed architectures powered by the cloud com-
puting paradigm must accommodate a third and new class: Distributed Strate-
gies, where execution is spread through a group of several computing instances.
Works like [Leis et al., 2015] introduced mechanisms to improve the performance
of the WF environment when many-core architectures are used. Distinct ap-
proaches and algorithm improvements are introduced, enabling to parallelize the
distinct stages of the operator. Finally, the third category holds works that con-
sider distributed architectures to improve scalability of the WF operator. This

80 4 Distributed SQL Window Functions

contribution is placed in this final category.
When addressing WFs, a common misconception generally brings a compar-

ison between SQL WF (in which our contribution focuses) and Complex Event
Processing (CEP) windowing. Differences are both semantical and syntactical.
On the one hand, the CEP environment is characterized by an incoming and
infinite stream of events. From there, a configurable, but constant sample (e.g.,
window) builds a sketch [Garofalakis et al., 2013] where aggregations are derived.
On the other hand, SQL WF are computed over finite sets built from SQL rela-
tions. While the former windows are fixed and the data moves through, in the
latter, the data is fixed and the window performs the movement. Moreover each
approach considers distinct SQL keywords (e.g., OVER, RETAIN) and subsequent
syntax.

4.9 Remarks

This chapter focused on a specific class of analytical functions, introducing WF’s
syntactical interface and covering important aspects regarding their organiza-
tion, implementation and, most importantly, the key factors that hurdle the way
toward the parallel execution of these functions (e.g., holistic sorting of parti-
tioning). The particular challenges associated with the distributed execution of
this analytical class were presented. Moreover, two distinct but complementary
techniques were introduced in order to mitigate the lack of holistic awareness for
the distributed placement of logical partitions.

Results show that considering the Holistic shuffling technique promoted and
improvement in the number of rows that effectively had to be moved; requiring
to shuffle only 14.7% of rows when compared with the naive approach. More-
over, the similarity measure considered how remote partitions of a given column
qualifier relate in order to improve data movement through the use of batch-
ing mechanisms, rendering a speedup of 2.61 when compared with the baseline
approach considered.

Chapter 5

Hybrid Query Engine Integration

This chapter addresses the architecture of the Hybrid Distributed Query Engine
(HDQE). Moreover, it addresses how analytical queries are deployed while tak-
ing advantage from the parallel execution capabilities. It addresses the impact
that data partitioning has on the locality requirement for analytical execution,
particularly in the WF environment.

The rest of this chapter is organized as follows: section 5.1 addresses the HDQE
architecture. Section 5.2 details the data partitioning mechanism, while sec-
tion 5.3 presents the parallel query strategies deployed in the HDQE. Section 5.4
evaluates the system and section 5.5 presents related work. Finally, section 5.6
discusses the achievements.

5.1 Architecture

The architecture of the HDQE is based in a highly transactional Platform as
a Service (PaaS) [Jimenez-Peris et al., 2015]. The hybrid processing capabil-
ities, means that it can process transactional (OLTP) and analytical (OLAP)
workloads over the same dataset. Our contribution focuses on the OLAP part,
providing a parallel implementation of WF that leverages the distributed nature
of the HDQE. The distributed design merges the horizontal scaling capability
offered by NoSQL databases (e.g., HBase [George, 2011], Cassandra [Lakshman
and Malik, 2010] or Riak [Klophaus, 2010], etc.) with the consistency guarantees
provided by common RDBMS (e.g., Oracle [Corporation, 2015], IBM DB2 [IBM,
2013] or SAP HANA [SAP, 2014], etc).

81

82 5 Hybrid Query Engine Integration

The HDQE architecture is depicted in Figure 5.1 and builds a multi-tier sys-
tem comprised of several layers, namely: the Query Engine (QE), Query Opti-
mizer (QO), Transactional Manager (TM) and the Data Substrate layers. The
Query Engine offers a standard relational SQL interface and is responsible for
planing and executing the queries received by clients through a JDBC interface.
The Data Substrate takes the responsibility to store and maintain data persis-
tent. A Zookeeper [Hunt et al., 2010] ensemble is used to provide coordination
services to all components. Components are spread along a set of computing
instances that are typically, but not necessarily, symmetric.

SQL Application
SELECT AGG() OVER(PARTITION BY ‘B’ ORDER BY ‘X’) FROM

OLTP Worker

HDQE Instance

OLAP Worker
…

OLTP Worker

HDQE Instance

OLAP Worker
…

OLTP Worker

HDQE Instance

OLAP Worker
…

Region

M
as

te
r

Lo
gg

er

Tr
an

sa
ct

io
n

M
an

ag
er

Region

Region Server

Region Region

Region Server

Region Region

Region Server

HBase

HDQE
JDBC proxy JDBC proxy JDBC proxy

JDBC client

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

M
id

dl
ew

ar
e

Coprocessor Coprocessor Coprocessor

Hy
br

id
 D

ist
rib

ut
ed

 Q
ue

ry
 E

ng
in

e
Da

ta
 S

ub
st

ra
te

Zo
ok

ee
pe

r

Figure 5.1: Hybrid Distributed Query Engine architecture.

The HDQE is built on the Apache Derby Query Engine [Apache, 2016] (i.e.,
including the compiler and query runtime), while the Data Substrate is HBase [George,
2011]. HBase is an elastic key-value data store that spreads data among a group of
instances named RegionServers. Previous work introduced several modifications
to Derby in order to replace its file based storage with HBase as its persistence

5.2 Data Partitioning 83

layer [Vilaça et al., 2013]. This includes the required translation from the rela-
tional into the appropriate schema of the data store.

Tables translated from the relational schema are horizontally split into a set
of partitions designated as Regions. Each RegionServer is then accountable for
a group of Regions where data resides. HBase uses the Hadoop Distributed
File System (HDFS) [Shvachko et al., 2010] for replication and fault-tolerance
purposes. Moreover it introduces a mechanism designated as CoProcessors that
allows execute of custom server-side code. Each HBase RegionServer is typically,
but not necessarily co-located with one HDQE instance.

The transaction management provides the ACID properties to all layers.
Moreover, the transaction management implementation relies on distinct com-
ponents, which can be scaled independently, to provide each ACID property. To-
gether with other optimizations, such as asynchronous messaging and batching,
it allows the HDQE to scale to hundreds of nodes [Jimenez-Peris et al., 2012].

The previously described components build the core of the system regarding
the execution of OLTP operations. Moreover, the query engine component of
the HDQE is also able to perform OLAP operations. The OLAP architecture is
blended with the previously described components. This way, both the OLTP
and OLAP operations share a common data source, bypassing the need to migrate
data to a secondary database engine. The visibility for OLAP operations is pro-
vided through the Snapshot Isolation criterion [Berenson et al., 1995], bounding
the visible tuples to the most recent updates on query start time.

The HDQE was extended with the ability to perform WF, particularly ad-
dressing the provisioning of parallel execution capabilities. The contribution pre-
sented lies within the components depicted in gray and it is discussed in the
following sections.

5.2 Data Partitioning

Data partitioning in the HDQE is provided by HBase’s scalable design. This is
achieved through the individual management of Regions, distributing them across
the available RegionServers. More Regions are created when the configurable
Region size is reached or by custom request. In runtime, HBase resorts to a
data placement component to reassign Regions to different RegionServers, thus

84 5 Hybrid Query Engine Integration

HBase Region ServerHBase Region ServerHBase Region Server

SQL Application
SELECT AGG() OVER(PARTITION BY ‘B’ ORDER BY ‘X’) FROM

JDBC client

HDQE
JDBC proxy

 9 a 1 x x
10 b 1 x x
11 b 4 x x
12 a 6 x xRe

gi
on

 3
13 a 1 x x
14 b 1 x x
15 b 4 x x
16 a 6 x xRe

gi
on

 4

HDQE
JDBC proxy

17 a 1 x x
18 b 1 x x
19 b 4 x x
20 a 6 x xRe

gi
on

 5

21 a 1 x x
22 b 1 x x
23 b 4 x x
24 a 6 x xRe

gi
on

 6

HDQE
JDBC proxy

‘K’ ‘B’ ‘C’ ‘X’ ‘Y’ ‘K’ ‘B’ ‘C’ ‘X’ ‘Y’
1 a 1 x x
2 b 1 x x
3 b 4 x x
4 a 6 x xRe

gi
on

 1

5 a 1 x x
6 b 1 x x
7 b 4 x x
8 a 6 x xRe

gi
on

 2

‘K’ ‘B’ ‘C’ ‘X’ ‘Y’

Figure 5.2: Data partitioning strategy.

ensuring an even load throughout the cluster. Each region is composed by sets
of rows with primary key values, lexicographically sorted. Each row may have a
different number of qualifiers. With row placement governed by the key in each
row, several regions may contain a given column qualifier, which can then be
spread along several RegionServers.

Figure 5.2 depicts a table composed by a key and 4 column qualifiers. Consid-
ering the query in Figure 5.2 and the establishment of logical partitions governed
by qualifier B, the horizontal partitioning provided by the data substrate prevents
the use of intra-partition parallelism as each logical partition is spread across all
nodes. Any attempt to execute the plan for this query in parallel would incur
in the extra cost presented in expression 4.3 as data partitioning considers only
the table’s primary key, hence, there is no co-location of logical partitions. In a
dynamic environment characterized by a hybrid execution where queries consult
several possible qualifiers, it is not possible to settle on a specific data partitioning
strategy that would favor all qualifiers. We therefore consider a mechanism that
dynamically forwards data during query execution, favoring the qualifier consid-
ered in the query’s Partition by clause. This way, the elements of each logical
partition will share the same location, fulfilling the locality requirement.

5.3 Parallel Query Planing and Execution 85

5.3 Parallel Query Planing and Execution

The parallel implementation of the HDQE for OLAP queries follows the single
program multiple data (SPMD) [Darema, 2001] model, where multiple symmetric
workers (threads) on different HDQE instances execute the same query, but each
of them deals with different portions of the data.

When a connection is established, the connection thread (the Master worker)
uses a coordination middleware that handles the initialization of the multiple
worker threads, and for each query received, it broadcasts the query plan to all
workers and collects the results. Each query goes through a prepare stage where
the query plan is assembled, optimized and converted to bytecode. Next, the
execute stage executes the prepared plan, producing the query results.

Query plans need to be adapted so that they can be executed in parallel. The
HDQE starts by producing an optimized query plan for single-threaded execution,
which is later adapted for parallel execution, as depicted in Figure 5.3. This
requires mainly two changes:

• restrict the scan operators that read the table data from the data store, to
disjoint ranges of the data;

• rewrite sub-trees of the query plan involving stateful operators, adding the
needed shuffle operators.

This enables the same worker thread to process related rows in the same
location. The former relies on a scheduler, which divides the table range requested
by the query in multiple disjoint shards, and assigns each of them to a different
worker.

For the latter, shuffle operators are used to redirect rows to a certain worker
based on a key, typically a hash-code (computed from the attributes used as key
by the stateful operator being parallelized). Additionally, shuffle operators are
used to collect all rows in the Master worker at the end of the query execution
(as the Master worker is in charge of returning the result rows to the client), and
to broadcast rows from sub-queries.

When the execution starts, the schedules for scans are initialized to determine
the shards that each worker will read. The schedule is built based on histograms
of the tables, which allows to partition the scan range in multiple shards of similar

86 5 Hybrid Query Engine Integration

SQL Application
SELECT * FROM

M
id

dl
ew

ar
e

HDQE Instance
SELECT

*
…

FROM

M
id

dl
ew

ar
e

HDQE Instance

M
id

dl
ew

ar
e

HDQE Instance

M
id

dl
ew

ar
e

Byte
code

Byte
code

Figure 5.3: Shared bytecode query plans among HDQE instances.

size. Moreover, the histogram contains information regarding the location of each
shard. This enables the scheduler to assign shards to workers, and when possible,
collocate them with the RegionServer holding the shard being handled, in this
way optimizing data locality.

5.3.1 Query Planing

In order to take advantage of the distributed nature of the architecture, the
prototype distributes the execution of logical partitions across all available HDQE
instances, while considering the parallel execution of WF with non-cumulative
order bound aggregations.

Figure 5.4 depicts the distributed logical query execution plan for a WF com-
puting a ranking aggregation, with a partitioning and ordering clause, each one
considering a single argument.

The numbers depicted in Figure 5.4 dictate the relative execution order be-
tween stages in each participating HDQE instance. Data is first collected through
a range-scan in each instance (step 1). At this point data may need to be re-
located to a different HDQE instance. This is achieved by consulting a pre-
computed histogram, verifying the ideal location (the location that requires to
transfer the lowest amount of data) of the value within the qualifier serving the
shuffling stage (the qualifier provided in the Partition by clause). This is per-
formed in the Shuffle Histogram stage (step 2), that forwards the data row if

5.3 Parallel Query Planing and Execution 87

Storage Node 1

Scan

Storage Node 2

Scan

Sort (PB,OB) Sort (PB,OB)

Rank Rank

Aggregate Result

Client

Shuffle Histogram (PBkey)

Shuffle Histogram (Master Worker)

(1)

(2)

(3)

(4)

(5)

(6)

Figure 5.4: Parallel distributed query plan for ranking window function.

the computing location reside in a remote instance. Afterwards, rows arriving
from either the local storage or from a remote location are locally sorted. The
considered statistical mechanism enables the co-location of rows belonging to the
same logical partition in the same HDQE instance. This ensures that all mem-
bers of each logical partition are located in the same instance and, since logical
partitions are independent, the holistic ordering is not compromised. After the
sorting stage, the aggregation itself is computed and the partial result is sent to
the Master worker to be delivered to the JDBC client that issued the query.

5.3.2 Shuffle Histogram

The shuffling mechanism pre-analyzes the distributed Regions that exist in all
RegionServers, to relocate rows to remote HDQE instances. That is, it verifies
which is the ideal location for each qualifier to be computed based on the stored

88 5 Hybrid Query Engine Integration

values. This was achieved by employing the Shuffler introduced in Section 4.5,
providing a mechanism to learn about the location of distributed data partitions,
and creating a statistical data sketch that maps the ideal location for distributed
data partitions.

SQL Application
SYSCS_UPDATE_STATISTICS(TABLE, QUALIFIER)

HDQEHDQE HDQE

Region

H
Ba

se
 M

as
te

r

Region

HBase Region Server

Region Region Region Region
Coprocessor Coprocessor Coprocessor

HBase Region Server HBase Region Server

JDBC client

EXEC
UPD
…

Figure 5.5: Update statistics via HBase CoProcessor.

We built on this contribution and refer to the architecture in Figure 5.1 to
place this mechanism as close as possible to data, considering HBase’s CoProces-
sor framework. This way, the impact of computing statistics is minimal, as data
transfer to a client computing the statistics outside RegionServers is avoided.
This framework establishes several types of CoProcessors to be used under dif-
ferent circumstances, namely: Observer or EndPoint [George, 2011]. Briefly the
first type transparently reacts to client issued operations such as put, read and
scan; while the second type reacts to a specific client request. We focus on the
EndPoint type, as it behaves as a common stored procedure in a RDBMS, being
triggered by a client Remote Procedure Call (RPC).

The statistics are computed for a given qualifier of a given table by issuing
an UPDATE_STATISTICS call as depicted in Figure 5.5. Any HDQE instance is
able to handle the request which is forwarded to HBase through its Master node.
The HBase Master node keeps track about which RegionServer is serving a given
Region at any point in time. Likewise, the HBase Master asynchronously forwards
the request to the RegionServers that are responsible for the Regions where the
specific table is stored.

5.3 Parallel Query Planing and Execution 89

Algorithm 6 CoProcessor update statistics stage 1
1: Initially:
2: q ← Input qualifier
3: Rs_id← RegionServer ID
4: Region_List← Region ServerRegions
5: procedure create_table(RegionServer ID, qualifier q)
6: RegionServer ← add table with column RegionServer ID
7: end procedure
8: procedure Stage_1(qualifier q)
9: Map(value, count)← null

10: for each region ∈ Region_List do
11: (value, count)← scan q in region and count values
12: Map(value, count)← insert (value, count)
13: end for
14: Stage1_Table← insert Map(value, count)
15: end procedure
16: function Compute Statistics Stage 1(q)
17: Stage_1_Table← create_table(Rs_id, q)
18: Stage_1(q)
19: end function

The RegionServers then execute a two stage procedure, creating for each one
an intermediate system table. As depicted in Algorithm 6, the first stage triggers
an action in each RegionServer that locally scans the requested qualifier, and
analyzes the cardinality of the distinct elements. This is done as each value may
afterwards become a logical partition if a WF query requests an execution that
partitions data according to the requested qualifier.

Moreover, it also registers the unique RegionServer identifier that produced
each result, creating a map between the qualifier cardinalities and their location.
The second stage is depicted in Algorithm 7. It triggers one of the available Re-
gion Servers to process the results from the first stage. Merging the results will
identify which RegionServer should process each logical partition by comparing
the registered cardinality of each distinct value read. For each value read, the
RegionServer holding the largest cardinality will be elected as the optimum des-
tination to process that value and ultimately, the logical partitions created by it.
The results from computing the second stage are also kept in a system table in
HBase.

During execution of a WF query, the shuffler mechanism will consider the pro-

90 5 Hybrid Query Engine Integration

Algorithm 7 CoProcessor update statistics stage 2
1: Initially:
2: Stage_1_Table← RegionServer
3: RegionServer_List← Region ServerRegions
4: procedure create_table(RegionServer_List)
5: RegionServer ← add table with columns from
6: RegionServer_List
7: end procedure
8: procedure Stage_2(Stage_1_Table)
9: for each row ∈ Stage_1_Table do

10: (q, Rs_1 ... Rs_n)← row
11: Rs_max_id← largest (q, Rs_1, Rs_2, Rs_n)
12: end for
13: Stage2_Table← insert (q, Rs_max_id)
14: end procedure
15: function Compute Statistics Stage 2(q)
16: Stage_2(q)
17: end function

duced statistics and partition qualifier to obtain the assigned remote destination
for the logical partition being computed. In order not to observe performance
penalties associated with acquiring the destination for each row from HBase,
the shuffling mechanism uses a Bloom Filter (BF) structure [Clearspring, 2017]
configured to produce less than 5% of false positives to represent each available
RegionServer. This structure is loaded into memory during the prepare statement
stage of a query and it is kept in the HDQE memory for a configurable period
of time. Testing each BF structure will find the row’s destination by obtaining a
positive answer from one of the BFs. If a BF produces a false positive reading and
incorrectly forwards one row, the receiving remote destination will simply relay
the row to where it thinks is the correct destination. Therefore, the probability
of not being able to place a given row in the correct execution location, is bound
to the probability of acquiring as many false positive readings as RegionServers,
which becomes very small as the system size grows.

5.3.3 Shuffling Middleware

Shuffle operators are implemented over a communication middleware, enabling
efficient intra-query synchronization and data exchange [Gonçalves et al., 2016],

5.3 Parallel Query Planing and Execution 91

M
id

dl
ew

ar
e

HDQE Instance

M
id

dl
ew

ar
e SELECT

*
…

FROM

local

in

out

in

out

Figure 5.6: Structure of the shuffling queues.

and enabling intra-query parallelism for stateful operators. The middleware al-
lows the distribution of data to multiple nodes through the establishment of a
non-blocking socket-based overlay that interconnects available instances. The
shuffle operator follows a push-based approach. When forwarding a row to a
remote destination, the shuffler immediately attempts to deliver it. Each mid-
dleware instance holds a set of shuffling queues that enables it to asynchronously
receive messages as depicted in Figure 5.6.

When a parallel connection is requested, the non-blocking communication
sockets are established between HDQE instances along with the input and output
buffers. As rows are pushed to the shuffler, the middleware verifies if the shuffling
queues received rows from other remote instances. When a row is received its
ideal destination is collected based on the partitioning clause requested by the
query. If this row is meant to be locally computed, the middleware delivers it to
the local incoming buffer to reach the local HDQE instance. If the row is meant
to be sent to a remote location, the shuffler consults the BF structure to obtain
the ideal remote location. The row is then serialized to the outgoing buffer of the
remote location and written to the socket channel. In case the shuffler operator
has no rows to forward to remote locations, it reads from its child operator (in
this case the local storage) as dictated by the query plan, delivering them to the
local HDQE instance. The shuffler remains active and does not block provided
that further local rows are available to be read.

5.3.4 Implementation

The mechanisms presented were implemented in the HDQE. The engine was
extended with the ability to interpret WF, particularly targeting the execution

92 5 Hybrid Query Engine Integration

with ranking analytical operators. The engine is based on the Apache Derby
project, which along all extra components described in section 5.1 build the Java
based Hybrid Query Engine considered, a complex system assembled from custom
and off-the-shelf components. The parallelism provided by the HDQE follows the
VOLCANO [Graefe, 1990, 1993] plan-based approach, where the query operators
themselves are oblivious to parallelism. Data is exchanged between instances
and the operators in each instance are orchestrated to process disjoint sections
of the workload. The required changes involved introducing new parsing options
in the SQL parser, but also to customize the optimizer paths of such analytical
queries.

The statistical collection and processing mechanisms were directly introduced
atop the data substrate servers as HBase CoProcessors. This framework does
not require any changes to HBase, as the CoProcessor itself is made available to
all RegionServers as an external library that is loaded during RegionServer boot
time.

To take advantage of the distributed nature of the HDQE’s architecture, the
query execution plans were modified to introduce the shuffling mechanism, allow-
ing to distribute data rows across active HDQE instances. The communication
middleware is based on a naive approach regarding data locality, simply consid-
ering the hash of the partitioning key as way to choose the remote destination of
data. The modified communication middleware considers the statistical mecha-
nism to actively forward data rows during query execution time by taking into
account the statistical mechanism.

5.4 Evaluation

The HDQE alongside with the contributions introduced is evaluated in this sec-
tion. We first start with an evaluation of the scalability of our proposal, by
studying the impact of the statistical mechanism introduced. This was achieved
by providing a fine grained evaluation that shows reduced variability across repe-
titions of the total execution time of a test query. From the same experiment we
evaluated the total amount of data transfered during the scale out of the number
of HDQE instances. We show the impact of handling different sized partitions
on total query execution time and compare our proposal with Cloudera Impala,

5.4 Evaluation 93

select rank() OVER(PARTITION BY ss_customer_sk ORDER BY
ss_store_sk) from store_sales

Figure 5.7: WF query for evaluation.

a leading cloud-based system for analytics over Hadoop.

5.4.1 Experimental Setup

The experiments considered a variable set of nodes with of either one of two con-
figurations, namely (i) an Intel i3-2100-3.1GHz 64 bit processor with 2 physical
cores (4 virtual), 8GB of RAM memory and 1 SATA II (3.0Gbit/s) 7200 RPM
hard drive or (ii) an Intel i3-4170 3.7 GHz 64 bit processor with 2 physical cores
(4 virtual), 8 GB of RAM and 1 SSD hard drive. All machines ran Ubuntu 14.04
LTS as the operating system and are interconnected by a switched Gigabit Eth-
ernet network, deployed to provide a one hop connection between all hosts. In
each configuration, one node provides the coordination service (Zookeeper), while
another node holds the remaining coordination services, particularly: the HDFS
Namenode, HBase Master and the HDQE’s Transaction Manager and system
loggers for fault tolerance. Each of the remaining nodes co-locate one instance
of the HDFS Datanode, HBase RegionServer and HDQE. For every experiment
we considered HBase 0.98. For every node, each component (HDFS Datanode,
HBase RegionServer, HDQE instance and the operating system) was allocated
with 2GB of main memory.

5.4.2 Performance and Scalability

The benchmarking suites from TPC are amongst the ones with the largest user
base. From TPC’s standards we chose TPC-DS, as it is the only one that con-
siders WF in its queries. We considered the basic structure of one of TPC-DS’s
queries and extracted one sub-query holding a WF. From query Q51 we extracted
the sub-query structure holding a WF with a partitioning and ordering criterion,
such as the ones considered in the rest of this chapter. For all experiments, we
considered the query defined in Figure 5.7.

In all experiences, number of HDQE instances (each one with a single worker),
does not take into account the two nodes reserved for coordination services. For

94 5 Hybrid Query Engine Integration

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

0 2 4 6 8 10 12 14 16

E
x
e

c
 t
im

e
 [
s
e

c
]

HDQE workers

Repetitions
AVG

Figure 5.8: Comparison of execution time for the naive technique across runs.

the following experiments the database was populated with the STORE_SALES

relation from TPC-DS, configured for a scale factor of 50GB. For each test, 10
independent runs (repetitions) were considered. Prior to query execution, the
HDQE was instructed to activate the statistical mechanism by analyzing the
qualifier set as the partitioning clause in the considered demo query, the ss_-

customer_sk qualifier.

The first experiment explores the execution time for the WF query along
with its variability. This was done for the naive and holistic techniques. On one
hand, in the Naive mode, the query plan does not consider the statistical mech-
anism. Instead, the shuffler component produces the destination for a given row
by producing the hash result of the value read from the qualifier controlling the
partitioning. On the other hand, in the Holistic mode, the query plan considers
the shuffling mechanism that is fed with data from the processed statistics, thus
shifting data rows among nodes according to the partitioning criterion considered.

Figure 5.8 depicts the results for the Naive technique. It depicts all 10 rep-
etitions (the dashed lines) and the computed average (solid line). We started
by assessing the query execution time by resorting to a single HDQE instance
and therefore considering no parallelism. We afterwards considered an increas-
ing number of workers, namely: 2, 4, 6, 8 and 16, and conducted the following
analysis based on the average. With no parallelism, one single HDQE instance
was able to execute the example query in an average of 344 seconds. Overall, as
we scale the number of HDQE workers we start to observe a reduction of execu-

5.4 Evaluation 95

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

0 2 4 6 8 10 12 14 16

E
x
e

c
 t
im

e
 [
s
e

c
]

HDQE workers

Repetitions
AVG

Figure 5.9: Comparison of execution time for the holistic technique across
runs.

tion time. With 2 HDQE workers, the execution time slightly decreases to 327
seconds. However, with 4 HDQE workers the execution spikes and takes more
than 450 seconds to execute the query. This is explained by simply hashing the
values from the partitioning qualifier promoted a large shift of data to a subgroup
of the available HDQE workers, imposing an imbalance in data distribution. As
some HDQE workers have to deal with such an imbalance, the uneven number
of rows to be processed causes all CPU bound stages of the query plan (sorting
and computing the aggregation) to contribute to a higher execution time. As
more HDQE workers are added, the data imbalance decreases. From 6 work-
ers onwards, the registered execution times kept dropping with the increase in
the amount of workers, namely 231 seconds with 6 workers, 168 seconds with 8
workers and 158 seconds with 16 workers. Overall, scaling the naive technique
promoted a performance gain of 52%. Moreover, it is also possible to observe a
standard deviation of 11.57% across all performed repetitions.

Figure 5.9 depicts the results for the Holistic technique we propose. This
experiment considered all 10 repetitions and the computed average. We do not
provide a data point for the absence of parallelism as the previous reading stands
for the current experiment. The remaining experiments followed the same con-
figuration as in the previous setup. Overall, we were able to sustain a significant
decrease in query execution time by scaling the number of workers involved. With
2 workers, the parallel execution took 517 seconds to complete, registering the

96 5 Hybrid Query Engine Integration

 100

 200

 300

 400

 500

0 2 4 6 8 10 12 14 16

E
x
e

c
 t
im

e
 [
s
e

c
]

HDQE workers

Naive
Holistic

Figure 5.10: Comparison of execution time for the naive and holistic
techniques.

highest value from our result set. The following configurations observed a steep
decrease in execution time, decreasing to 404 seconds. Scaling to 6 workers, con-
figured the largest decrease to 194 seconds, which represents a performance gain
of 2 times when compared with the previous configuration. With 8 and 16 work-
ers we were able to lower even more the execution time respectively to 148 and
111 seconds. Overall, scaling the holistic technique rendered a performance gain
of 78% and a standard deviation of 3.16% across runs.

Moreover, we observed a lower variability between all repetitions. This is
directly connected to the determinism provided by the statistical mechanism
considered. The holistic technique is able to chose the ideal location for each
logical partition, selecting the location that a priori holds more data of the logical
partition being handled. This is not taken into account in the naive mechanism,
which justifies the results.

Figure 5.10 presents the comparison between both techniques as we scale
up the number of HDQE workers. Figure 5.11 renders the achieved performance
gain between techniques across configurations. Overall, with the exception for the
configuration with 2 workers, the Holistic mechanism was able to reduce execution
time in all remaining configurations, being 17% faster on average. Considering
the configuration with 2 workers, the Naive technique achieved a result 57%
faster. That is, with only 2 workers, the Holistic mechanism introduces a large
penalty by having to consult the BF structure to determine the ideal destination.

5.4 Evaluation 97

−60

−40

−20

 0

 20

 40

0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p
 [

%
]

HDQE workers

Performance Gain

Figure 5.11: Performance gain for the holistic technique.

In comparison, the Naive technique only produces the hash for the value in the
partitioning qualifier and pushes the data to be forwarded. From 2 workers
onwards, the Holistic technique was always able to turn out a lower execution
time when compared with the Naive technique. The performance gain analysis
also shows that when we scale the number of workers beyond 2, we are always
able to be at least 10% more efficient. Moreover, we were able to reach 27%
performance gain when scaling up to 16 workers, reducing query execution time
to 111 seconds. We did not scale our system above 16 workers, as the analysis of
Figure 5.10 renders a marginal performance gain beyond that point.

5.4.3 Partition Sizes

To assess the impact that modifying the number of partitions and the size of
each partition had on query execution time, we changed the distribution of logi-
cal partitions within the considered column qualifier. For this particular qualifier,
TCP-DS’s distribution creates logical partitions composed of 221 data rows. To
perform this experiment, we considered the previous workload and modified the
distribution considered for the ss_customer_sk qualifier. We traded the dis-
tribution considered by TPC-DS for a custom one. That is, we changed the
ss_customer_sk qualifier and assigned it with a constant partition size through-
out the entire qualifier, namely with 1 thousand and 1 million items. Thus, the
number of logical partitions in a given configuration will change accordingly.

98 5 Hybrid Query Engine Integration

Partition size 221 1000 1000000
Partitions 651.583 144.000 144

Table 5.1: Number of generated partitions per configuration. The items in
bold depict the original distribution.

Table 5.1 details the number of generated logical partitions according to the
selected partition size. For this experiment, we used the 16 worker configuration.

Regarding STORE_SALES’s ss_customer_sk qualifier, TPC-DS establishes a
fixed size number of elements per partition. Increasing the benchmark’s scale
factor does not result in an increase in the partition size, but rather an increase
in the total amount of partitions observed.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

221 1000 1M

E
x
e
c
 t
im

e
 [
s
e
c
]

Partition size

Naive
Holistic

Figure 5.12: Partition size impact in query execution time. The horizontal
axis is presented in logarithmic scale.

The results depicted in Figure 5.12 show that by increasing the partition size,
the query total execution time decreased in both considered techniques. The
Holistic technique proved to be on average 18% better across all tested config-
urations. The most favorable result was achieved for partitions with 1 million
elements, which generated 144 partitions and the lowest registered execution time
of 68 seconds.

Overall, this experiment shows how partition sizing is particularly relevant for
the execution of this class of analytical functions. The considerations regarding
the ideal distribution are obviously directly related to the number of parallel

5.4 Evaluation 99

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2 4 6 8 16

S
h

u
ff

le
d
 D

a
ta

 [
M

B
]

HDQE workers

Naive
Holistic

Figure 5.13: Shuffled data between HDQE workers.

workers considered. The results allow us to conclude that for achieving the best
results, the data distribution should favor having a higher partition size.

5.4.4 Shuffled Data

From the previous experiments, we measured the data that was transfered through
the shuffling mechanism. We considered the same hosts and workload as in the
previous experiments and varied the number of workers. The results are depicted
in Figure 5.13.

The results show that across all evaluated configurations, the Holistic mecha-
nism was able to reduce the amount of data that had to be forwarded as opposed
to the Naive technique. Overall, this result came up to 8%, on average, being
more pronounced for the 8 worker configuration, with a decrease of 19%. For the
configuration with 16 workers, the savings introduced by the Holistic technique
were marginal, reaching 1%.

These results are a direct outcome of both the data workload, whose primary
key influences the data placement on each HBase RegionServer, but also, of the
distribution in each qualifier, particularly the one selected in the Partition by
clause. As the number of workers grows, the number of row redirects (when a
row is forwarded to one worker and needs to forwarded again) can also grow.
This is a consequence from the use of Bloom Filters. Nevertheless, this can be
adjusted by tuning the false positive configuration of the Bloom Filters, trading

100 5 Hybrid Query Engine Integration

precision for memory in the HDQE.

5.4.5 Comparison with Cloudera Impala

Next, we provide a comparison between the HDQE and Cloudera Impala [Kor-
nacker et al., 2015], an open-source SQL query engine architected for the Hadoop
ecosystem. We chose Impala since it is widely used and shares a similar archi-
tecture with the HDQE. That is, Impala is built from several daemons that act
as query engines, and a group of coordination daemons.

The architecture of the HDQE uses HBase as its data store, proving OLTP
and OLAP capabilities. In both cases, data is stored in HBase.

In this experiment we intended to establish a comparison between both sys-
tems, considering only the OLAP performance. We considered a scenario with a
16 worker configuration. The HDQE was deployed as in Section 5.4.1. We con-
sidered the query depicted in Figure 5.7 and the same dataset built TPC-DS’s
STORE_SALES table.

Impala requires two coordination daemons, namely: Impala’s StateStore, re-
sponsible to track the health of Impala’s daemons and Impala’s Catalog, re-
sponsible for relaying metadata changes across the cluster. Both were deployed
in the same machines considered for the HDQE’s coordination services. More-
over, metadata from SQL tables and statements are managed through Apache
Hive [Thusoo et al., 2010], which is a mandatory dependency. Likewise, Hive was
deployed a third coordination host.

The results depicted in Figure 5.14 show that the HDQE performance is
superior in both configurations. The Naive HDQE configuration was able to
be 28% better, while the Holistic HDQE configuration was able to reduce the
query execution time by 48%. Impala achieves worse results as it was unable to
evenly distribute data processing along its active daemons. Moreover, it relies in
Hive to retrieve metadata regarding data location and data schema translation
between SQL and the data store.

These results corroborate the effectiveness from the proposed technique. These
techniques are particularly relevant when is not possible to change the database’s
schema in order to adopt a data distribution scheme that would benefit a particu-
lar workload, as the dynamism of the workload renders no ideal data partitioning
scheme (i.e., queries consider a diversity of different partitioning attributes and

5.4 Evaluation 101

 0

 50

 100

 150

 200

 250

Impala HDQE−Naive HDQE−Holistic

E
x
e
c
 t

im
e

 [
s
e

c
]

Figure 5.14: Comparison of execution time for the HDQE and Cloudera
Impala.

change constantly).

5.4.6 Hybrid Performance

The previous experiments focused on the evaluation of the HDQE’s performance
regarding the OLAP only operation. To assess the capability of the HDQE to
execute hybrid workloads, this subsection presents an experiment where we con-
sidered the hybrid workload induced by HTAPBench. First, we revisit subsec-
tion 3.4.3 where HTAPBench demonstrated its effectiveness to assess a hybrid
database, where in fact the hybrid database considered was the HDQE described
in this chapter. Nevertheless it was configured without any of the improvements
introduced that took shape as the statistical mechanisms covered. Figure 3.7 is
afterwards revisited as Figure 5.15.

This experiment was configured in a distributed environment comprised of 10
commodity hosts, 9 of which are responsible for handling and storing data, and
the remaining node provides coordination and other global services, such as the
Zookeeper ensemble, transactional manager and loggers. Each node is equipped
with an Intel i3-2100-3.1GHz 64 bit processor with 2 physical cores (4 virtual),
8GB of RAM memory and 1 SATA II (3.0Gbit/s) hard drive, running Ubuntu
12.04 LTS as the operating system and interconnected by a switched Gigabit
Ethernet network, with a 1 hop max distance in-between hosts. The following

102 5 Hybrid Query Engine Integration

 0

 20

 40

 60

 80

 100

 120

0 10 20 30 40 50 60
0

5

12

20

th
ro

u
g
h
p
u
t
−

 t
x
n
/s

e
c

#
O

L
A

P
 W

o
rk

e
rs

time (min)

OLTP OLAP target

Figure 5.15: HTAPBench’s evaluation of the HDQE.

SELECT sum(ol_amount) AS revenue FROM app.order_line WHERE
ol_delivery_d >= X AND ol_delivery_d < Y AND ol_quantity BETWEEN W

AND Z;

Figure 5.16: HTAPBench query Q6.

experiments consider the exact same configuration.

The HDQE was able to sustain the most balanced result in terms of the hybrid
workload imposed by HTAPBench, in comparison with the OLTP and OLAP
systems considered in subsection 3.4.3. However, as described in subsection 3.1,
HTAPBench’s OLAP portion of the workload is based on TPC-H. Thus, no WF
analytical queries are provided. Therefore, HTAPBench’s analytical workload
was modified to introduce a set of WF as part of its analytical workload.

A group of analytical queries were selected to be changed and afterwards
power the assessment of the effectiveness of the mechanisms introduced in a hy-
brid workload. The selected queries followed a criterion where the original TPC-H
queries comprehended cumulative or ranking aggregations (e.g., Q1, Q3, Q5, Q6, Q9,
Q11, Q18 or Q19). The full list of modifications is provided in the appendixes. As
an example, we take into consideration query Q6, which is depicted in its original
shape in Figure 5.16, as in HTAPBench, and the modified version holding WF
in Figure 5.17.

Considering the previously introduced configuration, we verified the impact
that the statistical mechanism had on the analytical portion of the hybrid work-

5.4 Evaluation 103

SELECT rank() OVER (PARTITION BY ol_d_id ORDER BY ol_amount) AS
revenue FROM app.order_line WHERE ol_delivery_d >= X AND

ol_delivery_d < Y AND ol_quantity BETWEEN W AND Z;

Figure 5.17: HTAPBench query Q6 with WF.

 0

 20

 40

 60

 80

 100

 120

0 10 20 30 40 50 60
0

5

12

20

th
ro

u
g
h
p
u
t
−

 t
x
n
/s

e
c

#
O

L
A

P
 W

o
rk

e
rs

time (min)

OLTP OLAP target

Figure 5.18: HDQE throughput evaluation.

load. HTAPBench was configured with an throughput threshold of 20% and a
target throughput of 100 tps.

Figure 5.18 depicts results without considering the statistical mechanisms.
This SUT was able to sustain 570 tpmC and 74 Qph, 21 of which held WF in their
construction. These results are supported by 13 analytical streams, independently
launched by HTAPBench’s client balancer up to the 23rd minute, producing a
QpHpW of 5.69 @ 570 tpmC.

Figure 5.19 depicts the results from executing the same workload but consid-
ering the mechanisms introduced to expedite the distributed execution of WF.
This SUT was able to sustain 575 tmpC and 85 Qph, 30 of which held WF. The
increase in the number of analytical queries executed was observed even though,
the SUT was not able to deploy as many analytical workers as in the previous
experiment.

The results from the previous experiments are compared in table 5.2. The re-
sults achieved for these experiments are in-line with the results in subsection 5.4.5,
showing that when we the HDQE was equipped with the proposed statistical
mechanism, a direct increase in the number of analytical queries was observed,

104 5 Hybrid Query Engine Integration

 0

 20

 40

 60

 80

 100

 120

0 10 20 30 40 50 60
0

5

12

20

th
ro

u
g
h
p
u
t
−

 t
x
n
/s

e
c

#
O

L
A

P
 W

o
rk

e
rs

time (min)

OLTP OLAP target

Figure 5.19: HDQE throughput evaluation with statistics.

OLAP workers QpH QpHpW
HDQE without statistics 13 74 5.69 @ 570

HDQE with Statistics 11 85 7.72 @ 575

Table 5.2: Analytical performance with and without statistics in a hybrid
workload.

even in the presence of a hybrid workload.

5.5 Related Work

The Apache processing environment provides a set of tools that expedite the
data manipulation process, offering solutions targeted to analyze data stored in
distributed layouts. For instance, Hive [Thusoo et al., 2009, Graefe, 1993] provides
OLAP data warehousing capabilities, offering the ability to execute WF but
relying in ETL, bypassing real-time processing. Impala [Kornacker et al., 2015]
offers a OLAP oriented SQL query engine that leverages the HDFS or HBase to
deploy a set of distributed query engine daemons. Impala, is not engineered to
account for Hybrid workloads, focusing only on read-mostly queries and bypassing
transactional semantics. Even though these systems can be clustered together and
theoretically use the same data, it is not clear what is the overall cost penalties
or the issues that may derive from the concurrent execution of all components.

5.6 Remarks 105

Nevertheless, Impala, due to its distributed architecture and ability to process
WF is actually the best candidate for a direct comparison with our proposal, in
a OLAP only configuration.

The fast-paced field of databases saw in recent years the inception of sev-
eral new projects specifically engineered to take advantage of cloud-based infras-
tructures in order to scale. Particularly, the need for real-time analytics and
the associated requirement for data freshness or real-time operational analytics,
largely contributed to the development of new Hybrid database solutions [Lar-
son et al., 2015, Plattner, 2009]. They merge the consistency requirements for
transactional systems with the need to perform fast analytical operations on top
of production data. For example, SAP HANA [SAP, 2014] used multi-version
concurrency control (MVCC) mechanisms alongside with in-memory data struc-
tures which are periodically fed with deltas of the operational data. Microsoft
SQL Server offers two specialized engines for OLTP and OLAP [Larson et al.,
2015]. Oracle [Lahiri et al., 2015, Corporation, 2015] also keeps separate engines
but considers in-memory versions, allowing for fast execution while relying in the
same durable data, employing a publish-subscribe methods to propagate changes
between them. Hyper [Kemper and Neumann, 2011] provides hybrid workload
capabilities by using the fork primitive of the operating system to provide MVCC,
enabling serializability for transaction processing along with snapshot isolation
for analytical workloads. MemSQL [Shamgunov, 2014] provides in-memory hy-
brid workloads with distributed query processing capabilities. BatchDB [Makre-
shanski et al., 2017] provides a new system for hybrid workload that considered
primary-secondary replication mechanism to feed replicas that specialize in either
OLTP or OLAP operation, but does not offer full SQL compliance and therefore
no WF capability.

5.6 Remarks

In this chapter, we addressed the need for parallel implementations of Window
Functions in hybrid distributed databases. The architecture presented shares
some of the principles considered in current state-of-the-art. It is built from
modular and off-the-shelf components, pertaining a more flexible environment
and taking advantage of the inherent optimizations offered by each single com-

106 5 Hybrid Query Engine Integration

ponent. Our approach leverages statistics collected from the underlying data
to guide the shuffling of rows among distributed workers in order to reduce data
movement. This results, not only in reduced resource usage, but also in improved
execution time of analytical workloads built from queries with WF.

Our extensive evaluation showed that the considered architecture, together
with the proposed mechanisms achieved an improvement of over 17% when com-
pared to a naive approach, oblivious to data distribution and an improvement
of over 38% when compared to a state of the art approach such as Cloudera’s
Impala. Moreover, when considering the benchamarking suite proposed in chap-
ter 3, HTAPBench, the proposed mechanisms introduced analytical throughput
gains in the order of 14% during a hybrid workload.

Chapter 6

Conclusion

In this dissertation, we focused on three main challenges associated with the
provision of data analytics over a HTAP database system, namely: how to assess
a HTAP system, how to design analytical functions in a hybrid context and how
to take advantage of current distributed database architectures to expedite such
processing.

Hybrid database systems are intrinsically related to real-time data analytics,
that is, systems that are capable of producing aggregations that merge historical
data and the result of real-time data streams holding transactional data. This
has been the key design choice toward eschewing the ETL process. A process
that introduces considerable delays in the data analysis cycle, being responsible
for acquiring, transforming and loading data from a OLTP to a OLAP database.
The demand for such process arises from two distinct data schemes with in-
compatible goals. To shorten this gap, HTAP systems often consider distinct
engines and their underlying data layouts, loading the database application with
the responsibility to transparently provide the client with a hybrid view of the
database [Özcan et al., 2017].

To gain insight about which approaches might or not render the best results in
a HTAP system, we introduced a new benchmarking system, HTAPBench, that
addresses Gartner’s recommendations [Pezzini et al., 2014]. This need emerged
from the misfit of current benchmarking approaches, but also, from the need to
comprehend both the transactional and analytical stages of a hybrid workload in a
unified metric, capable of enabling the quantitative comparison between systems.
The action in HTAPBench is centered around a client balancer that controls

107

108 6 Conclusion

the transactional activity and manages the execution of an increasing amount of
analytical workers, while providing homogeneous and comparable results across
executions. HTAPBench was validated on top of OLTP, OLAP and HTAP sys-
tems, demonstrating its expressiveness to characterize such systems. Moreover,
HTAPBench is able to exercise the underlying storage layout as expected for
each workload type. The results allow to conclude that by using the proposed
approach, we were able to introduce the required workload randomness while
keeping the results comparable, ensuring equal query execution costs across the
whole dataset.

To account for the singularities of analytical functions with a HTAP sys-
tem, we focused on a specific class of analytical functions, designated as Window
Functions. Window Functions are particularly appealing for scenarios with OLAP
or HTAP systems, allowing to conduct time series analysis or computing aggrega-
tions over configurable data frames, customizing them to reflect newly ingested
items from ETL or real-time production data. Leveraging distributed scenar-
ios, often considered in both these systems, we introduced two novel strategies
for the parallel execution of window functions, enabling several workers to split
and share query execution, while choosing the optimum execution location that
minimizes data forwarding among workers. This took shape in a mechanism that
introduces a holistic awareness regarding data execution of this class of analytical
functions. Moreover, we built on this mechanism to optimize the way parallel
workers exchange data among peers, exploring similarity between data partitions
in the WF construction.

The presented techniques leverage the distributed and highly scalable PaaS
considered. We introduced the ability to interpret WF and equipped the under-
lying data store and QE with the proposed statistical mechanisms. All parallel
opportunities were explored and together with the considered strategies, we were
able to show through our extensive evaluation presented an improvement of 17%
over the baseline system and, over 38% when compared with a state of the art
approach. Moreover, we were able to demonstrate the expressiveness of the WF
environment in the context of a hybrid database system, capable of powering
real-time data analytics.

6.1 Future Work 109

6.1 Future Work

As we build on the main problems discussed in this dissertation, and on the
solutions proposed, it is possible to derive a new set of challenges. In the following
we briefly discuss such possibilities toward future research directions.

First, the mechanisms considered for the acquisition of statistical markers
may be exported to other aspects within the distributed execution of analytical
operators. In fact, the techniques comprehended in this dissertation are much
broader than their application in the scope of Window Functions, being also ap-
plicable to other operators that are built around grouping or other types of logical
partitioning. Moreover, it is also possible to employ this statistical characteriza-
tion to guide the load balancing of data, adjusting the physical location of data
partitions according to the workload.

Second, as the underlying architectures shift to offer a solo in-memory oper-
ation, it is still possible to consider the holistic awareness to guide and improve
the parallel processing capabilities. To take this concept to fruition, we envision
to use low latency network interconnects as part of the system architecture, en-
abling to exchange data directly between the main memory registries of distinct
remote nodes of the database.

110 6 Conclusion

Bibliography

Reactive programming. http://reactivex.io, 2015. - Cited on page 72.

Reactive programming for java. https://github.com/ReactiveX/RxJava, 2015. -
Cited on page 72.

Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel Mad-
den, et al. The design and implementation of modern column-oriented database
systems. Foundations and Trends R© in Databases, 5(3):197–280, 2013. - Cited
on page 16.

Apache. The apache derby project. Technical report, Apache Foundation,
2016. URL https://db.apache.org/derby/derby_charter.html. - Cited
on page 82.

Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
Spark sql: Relational data processing in spark. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pages 1383–1394.
ACM, 2015. - Cited on page 21.

C Bange, T Grosser, and N Janoschek. Big data survey europe: Usage, technology
and budgets in european best-practice companies. White Paper, BARC, 2013.
- Cited on page 3.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A critique of ANSI SQL isolation levels. SIGMOD Rec., 24(2),
May 1995. ISSN 0163-5808. - Cited on pages 12, 21 and 83.

Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency

111

https://db.apache.org/derby/derby_charter.html

112 Bibliography

control and recovery in database systems. 1986. ISBN 0-201-10715-5. - Cited
on page 12.

Anja Bog, Jens Krüger, and Jan Schaffner. A composite benchmark for online
transaction processing and operational reporting. In Advanced Management of
Information for Globalized Enterprises, 2008. AMIGE 2008. IEEE Symposium
on, pages 1–5. IEEE, 2008. - Cited on page 50.

Anja Bog, Hasso Plattner, and Alexander Zeier. A mixed transaction processing
and operational reporting benchmark. Information Systems Frontiers, 13(3):
321–335, July 2011a. ISSN 1387-3326. doi: 10.1007/s10796-010-9283-8. URL
http://dx.doi.org/10.1007/s10796-010-9283-8. - Cited on page 50.

Anja Bog, Kai Sachs, and Alexander Zeier. Benchmarking database design for
mixed oltp and olap workloads. In Proceedings of the 2Nd ACM/SPEC Inter-
national Conference on Performance Engineering, ICPE ’11, pages 417–418,
New York, NY, USA, 2011b. ACM. ISBN 978-1-4503-0519-8. doi: 10.1145/
1958746.1958806. URL http://doi.acm.org/10.1145/1958746.1958806. -
Cited on page 50.

Anja Bog, Kai Sachs, and Hasso Plattner. Interactive performance monitoring of
a composite oltp and olap workload. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, pages 645–
648, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1247-9. doi: 10.1145/
2213836.2213921. URL http://doi.acm.org/10.1145/2213836.2213921. -
Cited on page 50.

Dhruba Borthakur et al. Hdfs architecture guide. Hadoop Apache Project, 53,
2008. - Cited on page 21.

Paul G Brown and Peter J Hass. BHUNT: Automatic discovery of fuzzy algebraic
constraints in relational data. In Proceedings of the 29th international confer-
ence on Very large data bases-Volume 29, pages 668–679. VLDB Endowment,
2003. - Cited on page 70.

Michael J Cahill, Uwe Röhm, and Alan D Fekete. Serializable isolation for snap-
shot databases. ACM Transactions on Database Systems (TODS), 34(4):20,
2009. - Cited on page 13.

http://dx.doi.org/10.1007/s10796-010-9283-8
http://doi.acm.org/10.1145/1958746.1958806
http://doi.acm.org/10.1145/2213836.2213921

Bibliography 113

Yu Cao, Chee-Yong Chan, Jie Li, and Kian-Lee Tan. Optimization of analytic
window functions. Proceedings of the VLDB Endowment, 5(11):1244–1255,
2012. - Cited on pages 54, 55 and 79.

Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal, Prathyusha
Aragonda, Vera Lychagina, Younghee Kwon, and Michael Wong. Tenzing a sql
implementation on the mapreduce framework. In Proceedings of VLDB, pages
1318–1327, 2011. - Cited on page 15.

Clearspring. Clearspring analytics library. Technical report, Clearspring, 2017.
URL https://github.com/addthis/stream-lib. - Cited on page 90.

Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Ste-
fan Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel
Poess, et al. The mixed workload ch-benchmark. In Proceedings of the Fourth
International Workshop on Testing Database Systems, page 8. ACM, 2011. -
Cited on pages 27 and 50.

Microsoft Coporation. Transact-SQL. Technical report, Microsoft Corpora-
tion, 2013. URL https://msdn.microsoft.com/library/ms189461(SQL.

130).aspx. - Cited on pages 53 and 79.

Oracle Corporation. SQL analysis and reporting. Technical report, Oracle
Corporation, 2015. URL http://docs.oracle.com/database/121/DWHSG/

analysis.htm#DWHSG8659. - Cited on pages 53, 79, 81 and 105.

Standard Performance Evaluation Council. Standard Performance Evaluation
Council. 2015a. URL https://www.spec.org/. - Cited on page 48.

Storage Performance Council. Storage Performance Council. 2015b. URL http:

//www.storageperformance.org/home/. - Cited on page 48.

Transaction Processing Performance Council. TPC Benchmark C. 2010a. URL
http://www.tpc.org/tpcc/spec/tpcc_current.pdf. - Cited on pages 23,
28 and 48.

Transaction Processing Performance Council. TPC Benchmark H. 2010b.
URL http://www.tpc.org/tpc_documents_current_versions/pdf/tpch2.

17.1.pdf. - Cited on pages 23 and 49.

https://github.com/addthis/stream-lib
https://msdn.microsoft.com/library/ms189461(SQL.130).aspx
https://msdn.microsoft.com/library/ms189461(SQL.130).aspx
http://docs.oracle.com/database/121/DWHSG/analysis.htm#DWHSG8659
http://docs.oracle.com/database/121/DWHSG/analysis.htm#DWHSG8659
https://www.spec.org/
http://www.storageperformance.org/home/
http://www.storageperformance.org/home/
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpch2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpch2.17.1.pdf

114 Bibliography

Transaction Processing Performance Council. TPC Benchmark DS. 2012. URL
ttp://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf. - Cited on pages 27
and 49.

Transaction Processing Performance Council. The Transaction Processing Per-
formance Council. 2015c. URL http://www.tpc.org/. - Cited on page 48.

Transaction Processing Performance Council. TPC Benchmark E. 2015d. URL
http://www.tpc.org/tpc_documents_current_versions/pdf/tpce-v1.

14.0.pdf. - Cited on pages 23 and 49.

Frederica Darema. The SPMD model: Past, present and future. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface, volume
2131. Springer Berlin Heidelberg, 2001. doi: 10.1007/3-540-45417-9_1. -Cited
on page 85.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008. - Cited on
pages 3 and 15.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. Oltp-bench: An extensible testbed for benchmarking relational
databases. PVLDB, 7(4):277–288, 2013. - Cited on page 36.

Byron Ellis. Real-time analytics: Techniques to analyze and visualize streaming
data. John Wiley & Sons, 2014. - Cited on page 3.

Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional
functional dependencies for capturing data inconsistencies. ACM Transactions
on Database Systems (TODS), 33(2):6, 2008. - Cited on page 70.

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis
Shasha. Making snapshot isolation serializable. ACM Transactions on Database
Systems (TODS), 30(2):492–528, 2005. - Cited on page 13.

Clark D. French. "one size fits all" database architectures do not work for dss. In
Proceedings of the 1995 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’95, pages 449–450, New York, NY, USA, 1995. ACM.
ISBN 0-89791-731-6. doi: 10.1145/223784.223871. - Cited on page 24.

ttp://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf
http://www.tpc.org/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpce-v1.14.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpce-v1.14.0.pdf

Bibliography 115

Florian Funke, Alfons Kemper, and Thomas Neumann. Benchmarking hybrid
oltp&olap database systems. In BTW, pages 390–409, 2011. - Cited on
page 50.

Hector Garcia-Molina. Database systems: the complete book. Pearson Education
India, 2008. - Cited on pages 25 and 66.

Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. Sketch-based geometric
monitoring of distributed stream queries. Proc. VLDB Endow., 6(10):937–
948, August 2013. ISSN 2150-8097. doi: 10.14778/2536206.2536220. URL
http://dx.doi.org/10.14778/2536206.2536220. - Cited on page 80.

Lars George. HBase: The Definitive Guide: Random Access to Your Planet-Size
Data. O’Reilly Media, Inc., 2011. - Cited on pages 21, 63, 81, 82 and 88.

Rui C Gonçalves, José Pereira, and Ricardo Jiménez-Peris. An RDMA middle-
ware for asynchronous multi-stage shuffling in analytical processing. In Dis-
tributed Applications and Interoperable Systems, pages 61–74. Springer, 2016.
- Cited on pages 69 and 90.

Goetz Graefe. Encapsulation of parallelism in the Volcano query processing sys-
tem, volume 19. ACM, 1990. - Cited on page 92.

Goetz Graefe. Query evaluation techniques for large databases. ACM Computing
Surveys (CSUR), 25(2):73–169, 1993. - Cited on pages 92 and 105.

Jim Gray. Benchmark handbook: for database and transaction processing systems.
Morgan Kaufmann Publishers Inc., 1992. - Cited on page 23.

Hadoop. ORC reference, 2017a. URL https://orc.apache.org. - Cited on
page 21.

Hadoop. Parquet reference, 2017b. URL https://parquet.apache.org. -Cited
on page 21.

Theo Haerder and Andreas Reuter. Principles of transaction-oriented database
recovery. ACM Comput. Surv., 15(4):287–317, 1983. ISSN 0360-0300. doi:
10.1145/289.291. URL http://doi.acm.org/10.1145/289.291. - Cited on
pages 11 and 48.

http://dx.doi.org/10.14778/2536206.2536220
https://orc.apache.org
https://parquet.apache.org
http://doi.acm.org/10.1145/289.291

116 Bibliography

Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In USENIX an-
nual technical conference, volume 8, page 9. Boston, MA, USA, 2010. - Cited
on page 82.

IBM. OLAP specification. Technical report, IBM, 2013. URL
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.

ibm.db2.luw.sql.ref.doc/doc/r0023461.html. - Cited on pages 20, 53,
79 and 81.

IDC. Worldwide semiannual big data and analytics spending guide, 2015. URL
https://www.idc.com/getdoc.jsp?containerId=prUS41826116. -Cited on
page 1.

Ihab F Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga.
CORDS: automatic discovery of correlations and soft functional dependencies.
In Proceedings of the 2004 ACM SIGMOD international conference on Man-
agement of data, pages 647–658. ACM, 2004. - Cited on page 79.

Ricardo Jimenez-Peris, Marta Patiño-Martinez, Kostas Magoutis, Angelos Bilas,
and Ivan Brondino. Cumulonimbo: A highly-scalable transaction processing
platform as a service. ERCIM News, 89(null):34–35, 2012. - Cited on page 83.

Ricardo Jimenez-Peris, Marta Patino-Martinez, Bettina Kemme, Ivan Brondino,
José Pereira, Ricardo Vilaça, Francisco Cruz, Rui Oliveira, and Yousuf Ahmad.
Cumulonimbo: A cloud scalable multi-tier sql database. Data Engineering,
page 73, 2015. - Cited on page 81.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 654–663.
ACM, 1997. - Cited on page 64.

Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots. In Data Engineering
(ICDE), 2011 IEEE 27th International Conference on, pages 195–206. IEEE,
2011. - Cited on pages 20 and 105.

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0023461.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0023461.html
https://www.idc.com/getdoc.jsp?containerId=prUS41826116

Bibliography 117

Rusty Klophaus. Riak core: Building distributed applications without shared
state. In ACM SIGPLAN Commercial Users of Functional Programming,
page 14. ACM, 2010. - Cited on page 81.

Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey
Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew
Jacobs, et al. Impala: A modern, open-source SQL engine for hadoop. In
CIDR, volume 1, page 9, 2015. - Cited on pages 21, 53, 79, 100 and 105.

Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee,
et al. Oracle database in-memory: A dual format in-memory database. In
Data Engineering (ICDE), 2015 IEEE 31st International Conference on, pages
1253–1258. IEEE, 2015. - Cited on page 105.

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.
- Cited on pages 21, 64 and 81.

Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. The vertica analytic database: C-store 7 years
later. Proceedings of the VLDB Endowment, 5(12):1790–1801, 2012. - Cited
on page 15.

Per-Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. Real-time analytical processing with
sql server. Proceedings of the VLDB Endowment, 8(12):1740–1751, 2015. -
Cited on page 105.

Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and Bongki
Moon. Parallel data processing with mapreduce: a survey. AcM sIGMoD
Record, 40(4):11–20, 2012. - Cited on page 3.

Viktor Leis, Kan Kundhikanjana, Alfons Kemper, and Thomas Neumann. Effi-
cient processing of window functions in analytical SQL queries. Proc. VLDB
Endow., 8(10):1058–1069, June 2015. ISSN 2150-8097. doi: 10.14778/2794367.
2794375. URL http://dx.doi.org/10.14778/2794367.2794375. - Cited on
page 79.

http://dx.doi.org/10.14778/2794367.2794375

118 Bibliography

Hai Liu, Dongqing Xiao, Pankaj Didwania, and Mohamed Y. Eltabakh. Exploit-
ing soft and hard correlations in big data query optimization. Proc. VLDB En-
dow., 9(12):1005–1016, August 2016. ISSN 2150-8097. doi: 10.14778/2994509.
2994519. URL http://dx.doi.org/10.14778/2994509.2994519. - Cited on
page 70.

Xiufeng Liu, Nadeem Iftikhar, and Xike Xie. Survey of real-time processing
systems for big data. In Proceedings of the 18th International Database Engi-
neering & Applications Symposium, pages 356–361. ACM, 2014. - Cited on
page 3.

Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso.
Batchdb: Efficient isolated execution of hybrid oltp+ olap workloads for inter-
active applications. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 37–50. ACM, 2017. - Cited on page 106.

Raghunath Othayoth Nambiar and Meikel Poess. The making of tpc-ds. In
Proceedings of the 32Nd International Conference on Very Large Data Bases,
VLDB ’06, pages 1049–1058. VLDB Endowment, 2006. URL http://dl.acm.

org/citation.cfm?id=1182635.1164217. - Cited on page 23.

Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. Hybrid transactional/analytical
processing: A survey. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 1771–1775. ACM, 2017. - Cited on pages 20
and 107.

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. Self-
driving database management systems. In CIDR, 2017. - Cited on page 20.

M Pezzini, D Feinberg, N Rayner, and R Edjlali. Hybrid trans-
action/analytical processing will foster opportunities for dramatic
business innovation. Gartner (2014, January 28) Available at
https://www.gartner.com/doc/2657815/hybrid-transactionanalytical-
processing-foster-opportunities, 2014. - Cited on pages 4, 20, 24, 25, 27
and 107.

http://dx.doi.org/10.14778/2994509.2994519
http://dl.acm.org/citation.cfm?id=1182635.1164217
http://dl.acm.org/citation.cfm?id=1182635.1164217

Bibliography 119

Hasso Plattner. A common database approach for oltp and olap using an in-
memory column database. In Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of data, pages 1–2. ACM, 2009. - Cited
on page 105.

Meikel Poess and Chris Floyd. New tpc benchmarks for decision support and
web commerce. SIGMOD Rec., 29(4):64–71, December 2000. ISSN 0163-5808.
doi: 10.1145/369275.369291. URL http://doi.acm.org/10.1145/369275.

369291. - Cited on page 49.

Viswanath Poosala, Peter J Haas, Yannis E Ioannidis, and Eugene J Shekita.
Improved histograms for selectivity estimation of range predicates. In ACM
SIGMOD Record, volume 25, pages 294–305. ACM, 1996. - Cited on page 66.

Viswanath Poosala, Venkatesh Ganti, and Yannis E. Ioannidis. Approximate
query answering using histograms. IEEE Data Eng. Bull., 22(4):5–14, 1999. -
Cited on page 66.

Dan RK Ports and Kevin Grittner. Serializable snapshot isolation in postgresql.
Proceedings of the VLDB Endowment, 5(12):1850–1861, 2012. - Cited on
page 12.

Postgresql. Advanced features - window functions. Technical report,
Postgresql, 2015. URL https://www.postgresql.org/docs/9.4/static/

tutorial-window.html. - Cited on pages 53 and 79.

Stephen Revilak, Patrick O’Neil, and Elizabeth O’Neil. Precisely serializable
snapshot isolation (pssi). In Data Engineering (ICDE), 2011 IEEE 27th Inter-
national Conference on, pages 482–493. IEEE, 2011. - Cited on page 12.

SAP. SAP HANA SQL reference, 2014. URL https://help.sap.com/hana/

SAP_HANA_SQL_and_System_Views_Reference_en.pdf?original_fqdn=

help.sap.de. - Cited on pages 20, 21, 53, 79, 81 and 105.

SAP. SAP Vora reference, 2017. URL https://www.sap.com/products/

hana-vora-hadoop.html. - Cited on page 21.

Nikita Shamgunov. The memsql in-memory database system. In IMDM@ VLDB,
2014. - Cited on page 106.

http://doi.acm.org/10.1145/369275.369291
http://doi.acm.org/10.1145/369275.369291
https://www.postgresql.org/docs/9.4/static/tutorial-window.html
https://www.postgresql.org/docs/9.4/static/tutorial-window.html
https://help.sap.com/hana/SAP_HANA_SQL_and_System_Views_Reference_en.pdf?original_fqdn=help.sap.de
https://help.sap.com/hana/SAP_HANA_SQL_and_System_Views_Reference_en.pdf?original_fqdn=help.sap.de
https://help.sap.com/hana/SAP_HANA_SQL_and_System_Views_Reference_en.pdf?original_fqdn=help.sap.de
https://www.sap.com/products/hana-vora-hadoop.html
https://www.sap.com/products/hana-vora-hadoop.html

120 Bibliography

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010. - Cited on
pages 2, 3, 15 and 83.

Michael Stonebraker. Technical perspective one size fits all: an idea whose time
has come and gone. Communications of the ACM, 51(12):76–76, 2008. - Cited
on page 2.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A
warehousing solution over a map-reduce framework. Proc. VLDB Endow., 2
(2):1626–1629, August 2009. ISSN 2150-8097. doi: 10.14778/1687553.1687609.
URL https://doi.org/10.14778/1687553.1687609. - Cited on page 105.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Antony, Hao Liu, and RaghothamMurthy. Hive-a petabyte
scale data warehouse using hadoop. In Data Engineering (ICDE), 2010 IEEE
26th International Conference on, pages 996–1005. IEEE, 2010. - Cited on
pages 15 and 100.

Jordan Tigani and Siddartha Naidu. Google BigQuery Analytics. John Wiley &
Sons, 2014. - Cited on page 15.

Transaction Processing Performance Council. TPC Benchmark DS. 2012. URL
http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf. - Cited on pages 53
and 74.

Ricardo Vilaça, Francisco Cruz, José Pereira, and Rui Oliveira. An effective
scalable sql engine for nosql databases. In IFIP International Conference on
Distributed Applications and Interoperable Systems, pages 155–168. Springer,
2013. - Cited on page 83.

Florian MWaas. Beyond conventional data warehousing—massively parallel data
processing with greenplum database. In International Workshop on Business
Intelligence for the Real-Time Enterprise, pages 89–96. Springer, 2008. - Cited
on page 15.

https://doi.org/10.14778/1687553.1687609
http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf

Bibliography 121

Calisto Zuzarte, Hamid Pirahesh, Wenbin Ma, Qi Cheng, Linqi Liu, and Kwai
Wong. Winmagic: Subquery elimination using window aggregation. In Pro-
ceedings of the 2003 ACM SIGMOD international conference on Management
of data, pages 652–656. ACM, 2003. - Cited on pages 53, 55 and 79.

	Página 1
	Página 2
	Página 3
	Página 4
	main.pdf
	Introduction
	Problem Statement and Objectives
	Contributions
	Software Prototypes
	Publications
	Outline

	Background
	Online Transactional Processing
	Online Analytical Processing
	Discussion
	Hybrid Transactional, Analytical Processing

	Benchmarking Hybrid Data Management Systems
	HTAPBench Design
	Workload

	Result Set Homogeneity
	HTAPBench Metric and Components
	Implementation
	Benchmark Configuration

	Benchmarking Campaign and Validation
	OLTP System
	OLAP System
	Hybrid System
	Discussion of Results

	Validation
	Unified Metric
	Throughput Threshold Variability
	Workload Representativeness
	Homogeneity and Reproducibility

	Related Work
	Remarks

	Distributed SQL Window Functions
	Window Functions
	Window Function Query Construction
	Partitioning
	Ordering
	Framing

	Cumulative and Ranking Analytical Functions
	Distributed Execution
	Data Splitting
	Data Forwarding

	Holistic Shuffling
	Histogram Construction
	Shuffler Action

	Similarity Awareness
	Evaluation
	Related Work
	Remarks

	Hybrid Query Engine Integration
	Architecture
	Data Partitioning
	Parallel Query Planing and Execution
	Query Planing
	Shuffle Histogram
	Shuffling Middleware
	Implementation

	Evaluation
	Experimental Setup
	Performance and Scalability
	Partition Sizes
	Shuffled Data
	Comparison with Cloudera Impala
	Hybrid Performance

	Related Work
	Remarks

	Conclusion
	Future Work

	Bibliography

