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ABSTRACT 

 

The transportation, being part of the logistics field, plays a crucial role in the 

business world. Its impact in the costs and service quality is an increasingly imperative 

topic. In industry, transportation systems are equally important and can represent a large 

improvement in the management of the plants and in the service quality of the products, 

thus bringing advantages for the companies and for the clients. 

The cement industry is not an exception. Cement is the second most consumed 

substance in the world and with the great number of trucks arriving at cement facilities, 

every day, the supply chain management of this industry must encompass this management 

as well. With the lack of assistance and guidance clients have inside the cement facilities, 

both companies incur in additional costs and clients experience reduced levels of service 

quality. To overcome these issues, three algorithms were developed and implemented. 

Each algorithm has different specifications and different goals. However, all the developed 

algorithms improve the service quality, guiding the truck drivers – the clients – inside the 

plants and giving the routes in shorter periods of time. One algorithm guides the trucks 

through the minimum distance route and will serve as a comparison term for the other two. 

The other two algorithms, named equilibrium approaches, are the main contribution of this 

dissertation. These dynamic algorithms consider not only the traveled distance, but also the 

workload both in the servers and in the roads. The entrance management in the facilities is 

also a crucial aspect cement companies must be aware of. Several thought policies are 

presented and an algorithm for the entrance management is developed and implemented. 

With a simulation software, the developed algorithms were tested and simulated. The 

simulation results are reported and discussed. 

  

Keywords: Industry 4.0; Supply Chain Management; Vehicle Routing; Tour 

Planning; Dynamic Routing; Simulation. 
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RESUMO  

A indústria do transporte desempenha um papel crucial no mundo empresarial. O 

seu impacto nos custos e na qualidade de serviço são um tópico cada vez mais importante. 

Na indústria, os sistemas de transporte são igualmente importantes e podem representar 

uma grande melhoria na gestão das fábricas e na qualidade do serviço dos produtos, 

trazendo vantagens tanto para as empresas como para os clientes. 

A indústria cimenteira não é uma exceção. O cimento é a segunda comodidade mais 

consumida em todo o mundo, e com o grande número de camiões que chegam às fábricas 

de cimento todos os dias, a gestão da cadeia de abastecimento desta indústria deve, 

também, incorporar esta gestão. Com a falta de assistência na orientação que os clientes 

têm dentro das fábricas, tanto as fábricas incorrem em custos acrescidos como os clientes 

experienciam uma qualidade de serviço reduzida. Para abordar este problema, três 

algoritmos foram desenvolvidos e implementados. Cada algoritmo tem objetivos e 

especificações diferentes. No entanto, todos os algoritmos implementados melhoram a 

qualidade de serviço guiando os camiões dos clientes dentro das plantas, e calculando as 

rotas em curtos períodos de tempo. Um dos algoritmos guia os camiões pela rota que 

permite a menor distância percorrida, e servirá como termo de comparação para os outros 

dois. Os outros dois algoritmos, chamados abordagens de equilíbrio, são a grande 

contribuição desta dissertação. Estes algoritmos dinâmicos consideram a ocupação dos 

servidores e das estradas, além da distância percorrida. A gestão de entrada nas fábricas é 

também um aspeto importante que as fábricas de cimento devem ter atenção. Diversas 

políticas de entrada são apresentadas e um algoritmo para a gestão de entrada na fábrica é 

também desenvolvido e implementado. Com um software de simulação, os algoritmos 

desenvolvidos foram testados e simulados. Os resultados das simulações são apresentados 

e discutidos. 

 

Palavras-Chave: Indústria 4.0; Gestão da cadeia de abastecimento; Roteamento 

de veículos; Planeamento de Rotas; Roteamento dinâmico; Simulação. 
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1. INTRODUCTION 

 

Logistics plays a central role in the micro and macro perspective of a day to day 

life of a company, organization, or to the economy of a nation. The Comité Européen 

Normalisation (European Committee for Standardization - CEN) defines logistics as being 

the concept of plan, execute and control. These tasks are strongly connected, and it is 

possible to consider logistics as the operational component of the supply chain 

management (SCM) [1].  

Among several definitions of what logistic is, there is one modern definition that 

applies to most industries [2], and it is presented below. 

“…the efficient transfer of goods from the source of supply through the place of 

manufacture to the point of consumption in a cost-effective way, whilst providing an 

acceptable service to the customer...”  

In most industries, one of the crucial stages of logistics is the transportation 

operation, which is strongly connected to the efficiency of moving products. Usually, the 

transportation links the several elements in a logistical chain. The use of efficient methods 

of transportation is one of the key foundations in management techniques for promoting 

the efficiency and competitiveness of enterprises [3]. 

The increasingly use and evolution of Information and Communication 

Technologies (ICT) in industry, and specifically in the support for the logistics operations, 

have promoted new challenges and introduced a transformation in how organizations are 

managed [4]. With these aspects, Industry 4.0 is now a familiar term. It is referred to the 

fourth industrial revolution and is also known as the ‘smart manufacturing’, or even 

‘integrated technology’.  

The equilibrium between optimizing the supply chain and providing a good service 

level, is the key aspect when introducing technology into the business world. Thus, the 

main goal of Industry 4.0 is to connect people, machines, and goods, searching for a more 

organized environment to, simultaneously, bring advantages for the organizations and for 
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the clients [5]. Industry 4.0 has also a great impact in the transportation sector as well. 

Using ICT, it is possible to develop a more efficient and profitable transportation system.  

The work presented in this dissertation is developed under a scientific project, that 

aims to develop systems for smart plants, specifically cement plants. The UH4SP – Unified 

Hub for Smart Plants – aims to develop simulation models and heuristic optimization 

models to take cement plants to another level [6]. More specifically, one of the main goals 

of the project is the development of architectures of software and methodologies orientated 

to services, promoting the corporative and aggregate vision of the operations in each one 

of the cement plants dispersed by several geographic regions [7].  The UH4SP addresses 

several segments of the supply chain of a cement plant. The problem addressed in this 

dissertation is the one dealing with the management of the trucks entering the plant.  

A typical cement plant receives hundreds of trucks every day. Each one of them 

has one or more locations to visit, in order to load or unload materials, depending on each 

truck. This process is, in this sense, unpredictable, due to the fact that it is not possible to 

know the locations each truck must visit before arriving at the plant. Besides this, the truck 

driver usually does not know the plants’ map, due to their big dimensions. Even if the 

driver already knows the facility, the choice of the route will be made only by what he 

knows of it. Either way, the driver will much probably follow a disadvantageous route, 

forcing him to stay more time inside the plant, causing delays to him and to other truck 

drivers that already are inside, or who will still enter the plant. Additionally, the driver may 

load or unload the materials in wrong locations, causing delays, additional costs to the 

company, etc. One other big problem caused by the trucks is the congestion in the roads of 

the plant. Each truck driver chooses its own route, and this ‘irreflective’ choice will 

overload some roads in the plant.    

OBJECTIVES 

The main goal of this dissertation is to create an algorithm that tackles the routing 

problem of the trucks. The algorithm must compute a route for each truck, whenever they 

are entering the plant. This route will guide the drivers inside the plant, to the locations 

they must visit, reducing its unnecessary times, thus increasing the service quality for the 

clients.  
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One other big goal of this dissertation is to test and validate the algorithm and, 

consequently, the developed program, using a simulation software. This validation will 

confirm if the algorithm is working as it is required, or to make some adjustments in 

possible parameters, approximating the solution to what it is expected.  

DISSERTATION OUTLINE 

This dissertation is composed by seven chapters. The Chapter 2 and 3 are devoted 

to the most studied and known routing problems in literature, being them static or dynamic. 

In these chapters, some examples of algorithms for solving the routing problems, variations 

of the problems and application examples are also studied and presented. The Chapter 4 

presents the cement industry supply chain. It starts by giving a brief overview of the cement 

industry, presenting the cement life cycle and explaining how this commodity is created, 

stored and distributed. After that, it suggests how Industry 4.0 and technologies can affect 

directly the management of the cement supply chain. This chapter ends with the description 

and the modeling of the trucks routing management problem. With this, the real problem 

and its impacts in the day to day of a cement facility are outlined. In the Chapter 5, the 

developed methodologies for solving the routing problem are explained, giving examples 

of how the trucks will be guided inside the facility. In the Chapter 6, some tests and 

simulations are presented, testing and comparing the developed methodologies. The 

Chapter 7 presents an additional problem, the parking management, that can have an impact 

in the day life of a cement facility. Some entrance policies are presented, and an algorithm 

and its simulation are developed to tackle this problem. The conclusion of the work and 

the future research are presented in the Chapter 8. 
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2. ROUTING PROBLEMS 

2.1. INTRODUCTION 

In the days we live in, transportation has a big economic impact in almost all 

companies, organizations, families, and people of most developed countries. Efficient 

transportation reduces costs in many economic areas. Besides that, the impact that 

inefficient transportation could bring to the environment is, by itself, a great impact 

everyone should be aware of. These impacts have motivated companies and academic 

researchers to vigorously pursue the use of operations research and management science 

to improve the efficiency of transportation [8]. 

There are several types of transportation, such as air, rail, road, sea, etc. In this 

study, the focus will be targeted in the direction of road transportation. This type of 

transportation has a great impact in the economy of a nation. For example, in Portugal, in 

2011, the industry of transportation reached 3.2% of the gross domestic product (GDP) 

(Instituto Nacional de Estatística – INE).  

Road transportation process involves all stages of the production and distribution 

systems and represents a relevant component (generally from 10% to 20%) of the final cost 

of the goods [9]. Saving time and/or money is the aim of all organizations. The impact of 

a successful implementation of a routing software can change a lot in the daily basis of a 

company. 

Several successful implementations of computerized routing software’s have been 

documented in literature. These successes can be attributed in part to algorithmic advances 

in the field of vehicle routing and also to the development of new software and computer 

technologies. Vehicle routing is truly one of the great success stories of operations research 

[10]. There are many examples of routing problems and each one has one purpose, and, 

because of that, there are inherent constraints and changes that make almost each problem 

unique. Vehicle Routing Problem (VRP) is described by Laporte [11] as “Unlike what 

happens for several well-known combinatorial optimization problems, there does not exist 

a single universally accepted definition of the VRP because of the diversity of constraints 

encountered in practice.” Laporte says as well that researchers may have a difficulty 
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finding their way through the abundant and somewhat disorganized literature in these types 

of problems. When choosing the best route, it may have to do with distance, with time, 

with what it is better for the system in that period, etc.  

Therefore, in the next sections, some of the most structured routing problems in 

literature will be addressed. 

2.2. TOUR PLANNING 

The increasing development in technologies lead to a progress in the study and 

implementation of intelligent transportation systems. Thus, Tour Planning Problems are a 

vital research area. In [12], it is possible to state the increasingly number of publications in 

the thematic of Routing Problems since 1954. This increasing interest has focused attention 

in new and more difficult routing problems. 

The tour planning can be generally viewed as a process of assigning resources to 

requests, for example, vehicles that execute transportation processes, following to some 

conditions, as capacity, time windows, etc. For each vehicle, the sequence of the requests 

will be specifically ordered to obtain the minimum cost for that vehicle and for the fleet in 

general. In the Figure 1 is possible to observe a generic example of a tour planning for a 

fleet of two vehicles [13]. The objective of the tour plan is connected to a purpose, being 

that, minimizing the total traveled distance, per example, and the goal is to find the optimal 

solution, the one that minimizes/maximizes the objective function [11]. 
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Figure 1 - Generic Example of a Tour Planning. 

 

2.3. SHORTEST PATH PROBLEM 

 

Shortest Path problems lie at the heart of network flows [14]. The first case of the 

shortest path is difficult to trace. It is possible to imagine that it was used in very primitive 

societies, in the search for food, for example. The mathematical research of the problem 

started later, when compared with other similar problems (like minimum spanning tree, 

assignment problem, etc.), which could happen due to the relatively easiness of the 

problem. Yet, when the problem came to the focus of interest, several researchers 

independently developed methods for solving it [15]. 

The shortest path problems play a central role in network analysis. Network 

analysis is one of the most important functions, and because of that, the shortest path 

problem played an important role in lots of fields, such as electric navigation, traffic 

tourism, urban planning and electricity, communications, pipe designs, and others. It is 

important to state that the shortest path is not only the analysis of the shortest distance. This 

problem extends to other measurements, such as time, cost, or even the capacity of the 
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path. With all this, the ‘shortest path analysis’ can be turned to the fastest path, the lowest 

cost, and so on [16]. Besides this, shortest path problems can be applied in other topics. 

For example, most algorithmic approaches for finding traffic patterns solve a lot of shortest 

path problems as subproblems [14].  

The Shortest Path Problem (SPP) usually involves a network represented by a 

directed graph G= (N, A), where N is the set of the n nodes and A is the set of m arcs that 

connect the nodes. Each one of the arcs (i,j) ∈ A  has an arc cost, which, per example, can 

be the distance of travelling from i to j. This cost (weight) can be any measurement 

[17][18]. 

Researchers have studied several different types of shortest path problems [14]: 

1- Finding shortest paths from one to all other nodes when arc lengths are 

nonnegative, or Single Source Shortest Path Problems (SSSPP). 

2- Finding shortest paths from one node to all other nodes for networks with 

arbitrary arc lengths. 

3- Finding shortest paths from every node to every other node, or All Pairs 

Shortest Path Problems (APSPP). 

4- Various generalizations of the shortest path problem. 

 

In the case of the SSSPP (or simply SPP), the graph contains a distinguished node, 

named source node. Thus, the problem is to find the shortest path from that node, to all the 

other nodes [18]. The length of the path is the sum of all the distances (or costs) of each 

arc that make up the path. 

In the case of the APSPPs, it is determined the shortest paths between each pair of 

nodes presented in the network [17].  

 A solution to the SPP can be described by a (shortest path) spanning tree rooted in 

the source node. A spanning tree is a subgraph of G, which includes all the vertices (n) of 

G, but only the necessary number of arcs (n-1) for this to happen. In a spanning tree, each 

node is preceded by another, so that the position of it in the spanning tree is defined by a 
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predecessor label. The predecessor label of a node marks another node that precedes it. The 

shortest path can be found by following the predecessor labels down to the source node 

[18]. Thus, not only the shortest path problem gives the minimum cost, but also the route 

that makes that minimum cost. 

As stated earlier, there are different types of shortest path problems (SSSPP, 

APSPP, etc.). Depending on the context of the problem, different types of algorithms are 

implemented. Although being a relatively ‘easy’ problem, advancement in areas of ICT 

and the increasing of high quality network data, leading to networks involving large 

amounts of data, containing hundreds of thousands or even millions of nodes [19]. Thus, 

the algorithms for solving this type of problems are different, depending on the objective 

and context of the problem.   

In the study [14]- Chapters 4 and 5, is stated that there are, in literature, roughly 

two different major classes of algorithms for solving the SPP. The label-setting and label-

correcting algorithms. These algorithms assign distance labels to each node at each step. 

The distance labels are upper bounds (estimates) of the shortest path distances. The classes 

of algorithms vary on the way they approach to the final shortest distance. The label setting 

algorithms designate at each iteration a distance as permanent, while label correcting 

algorithms do not consider any of the label a permanent label till the final iteration, when 

all the labels become permanent.  

The Dijkstra’s algorithm is one of the most known label setting algorithms. On the 

other hand, the Floyd-Warshall algorithm is one of the most famous label correcting 

algorithms. A great difference between the two stated approaches is the fact that the label 

correcting algorithms are more general because they are able to, among other things, solve 

SPP when negative arc costs are present. On the other side, the label setting algorithms 

have much better worst-case complexity bounds. 

2.3.1. DIJKSTRA’S ALGORITHM 

In 1959, Edsger Dijkstra came up with an algorithm of finding the shortest path in 

a network where at least one path between two nodes exists [20]. 
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The Dijkstra’s algorithm is one of the most famous algorithms for the SPP. It is part 

of the label setting algorithms and finds the shortest path from one node to all the other 

nodes in a nonnegative arc length network, being so part of the SSSPP algorithms stated 

previously. 

Dijkstra’s algorithm starts by creating a distance label d(i) for each node i ∈ N. The 

algorithm divides the nodes into two groups, the permanently labeled and the temporarily 

labeled. The permanently labeled nodes are the ones who give the shortest distance from 

the source node to that node. On the other hand, the temporarily labeled nodes, are the ones 

who give an upper bound on the shortest path from the source node to that node. Thus, the 

algorithm starts by initializing the source node to be permanently labelled and to have 

distance of 0. The other nodes are temporarily labeled with their directly distance to the 

source or labeled with infinity, if there is no connection between the source node and that 

nodes. In each iteration, the temporarily labeled node with minimum distance is examined. 

Examining that node means the algorithm scans the arcs A(i), to update the distance labels 

of the adjacent nodes. This chosen node is also made permanently because none of the arcs 

from a temporary node can reduce its distance label further due to the nonnegative arc 

restriction. The algorithm terminates when all the nodes are made permanent [19][22]. 

  In terms of running time, Dijkstra’s algorithm has, in his original implementation, 

a running time of O(n2), where n is the number of nodes [21]. The most consuming of this 

time is due to the selection of what node to process next, i.e., the search of the temporarily 

labeled node with least distance label [18]. The search of all the nodes, in each iteration, 

makes a great bottleneck. One way to overcome this difficulty, is to implement a priority 

queue, also named heap. A priority queue is a structure that, in a Dijkstra’s algorithm 

implementation, allows to group the arcs by distances and so to overcome the bottleneck 

of searching all the arcs at each iteration. 

There are several applications of heap structures in implementation of Dijkstra’s 

algorithms. There are also several types of heaps and each one of them can have a different 

computational effort. It is possible to reduce the computing time from O(n2) to 

O ( m + nlog2C), where m is the number of arcs, n is the number of nodes and C is the value 

of the largest arc cost, assuming to be an integer [23][28]. For different applications and 
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running times of heap implementations on Dijkstra’s algorithms, see [19] [22] [28]. 

Besides all the heap-based implementations of Dijkstra’s, in a very dense network, the 

original implementation of Dijkstra’s algorithm, without any heaps, achieves the best 

available running time.  

Dijkstra’s algorithm has a great spectrum of applications since its creation, in areas 

such as Traffic information, calculating the shortest path and the shortest distance from a 

source to a given node, but also, in other problematics such the Open Shortest Path First, 

used in internet routing [22]. 

Another well-known algorithm for the single source shortest path is the Bellman-

Ford algorithm. In this algorithm, it is possible for the network to have also negative arc 

costs. Besides this, the computational time of the Bellman-Ford is worse than Dijkstra’s 

algorithm [23]. It is possible to see a very vast study on this problematic in Chapter 4 of 

[14], Chapter 5 of [24], [17] and [18]. 

2.3.2. FLOYD-WARSHALL ALGORITHM 

The Floyd-Warshall algorithm was introduced in 1962, by Robert Floyd [25] and 

is an example of dynamic programming [26]. The Floyd-Warshall is a simple and widely 

used algorithm for the SPP. It is part of the label correcting algorithms and allows to 

compute the shortest path between all pairs of nodes in a weighted graph, being so part of 

the APSPP stated above [27].  

Before explaining how Floyd-Warshall’s algorithm works, it is important to have 

in mind that all pair shortest path problems can be solved by using the repetitive SPP. This 

means that, by running a single source SPP algorithm n times, one for each node of the 

network, the problem is solved. If the network does not have any arcs with negative cost, 

the Dijkstra’s algorithm could solve this problem. If, on other hand, there are arcs with 

negative costs, the Bellman-Ford algorithm could be addressed [17]. 

  The Floyd-Warshall algorithm also allows arc costs to be negative. Besides this, 

the algorithm will give the shortest path for each pair of nodes if there does not exist a 

negative cycle. If so, the computational effort of the algorithm will pass from polynomial 
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to NP-Hard, unless P=NP [27]. Besides this, it is possible for the algorithm to detect if it 

does exist a negative cycle. 

Let dk[i,j] represent the shortest path length from node i to the node j, using only 

the nodes 1, 2, …, k-1 as internal nodes. It is clear to state that dn+1[i,j] is the shortest path 

from i to j because any node can be an internal node. The algorithm computes d1[i,j] for 

all pairs i and j. Then, using d1[i,j], calculates d2[i,j] for all node pairs i and j. The 

algorithm repeats this procedure until the iteration dn+1[i,j], and so obtain the shortest 

distance between each pair of nodes [19] [22].  

The core of the dynamic programing in the Floyd-Warshall algorithm is given by 

the next equation [27] [32]: 

 

d𝑘[𝑖, 𝑗] = {𝑤𝑖𝑗,                                                               if   k < 0min(d𝑘[𝑖, 𝑗],  d𝑘[𝑖, 𝑘]  + d𝑘[𝑘, 𝑗])         if  k > 0        (1) 

 

In each iteration, and just like the Dijkstra’s algorithm, the Floyd-Warshall 

algorithm store a predecessor index of each node, allowing the construction of the shortest 

path route.  

The Floyd-Warshall algorithm has a complexity time of O(n3) [24]. Comparing with 

Dijkstra’s algorithm (per example), that, in the original implementation has O(n2), the 

complexity time of the Floyd-Warshall algorithm would be predictable to be greater 

because while Dijkstra’s only computes SSSPPs, Floyd-Warshall algorithm computes 

ASPPs. Thus, applying n times an algorithm with complexity O(n2) will make other 

algorithm with complexity time of O(n3). 

The applications spectrum of algorithms as the Floyd-Warshall is very wide, like 

stated in the beginning of this chapter. In fact, as stated in [28], this type of algorithms is 

very important in routing the data packets of communications networks to avoid 

communication delays. In particular, finding the shortest path between each pair of nodes 

can be a very heavy task, in a network with thousands of nodes.  



 

 13 

One other algorithm for solving the ASPP is the Johnson’s algorithm. The 

particularity of this algorithm is the fact that it can be faster – with smaller complexity time 

than Floyd-Warshall algorithm- for sparse graphs. A sparse graph is a graph in which the 

number of arcs is much lesser than n2, where n represents the number of nodes. As in the 

Floyd-Warshall algorithm, it gives the shortest paths from all pairs of nodes in a graph with 

positive or negative arc costs, but with no negative cycles. Similarly, it is possible to report 

if there exist a negative cycle in the network [24]. 

It is possible to see more for this problematic in the Chapter 25 of [24], Chapter 5 

of [14] and [15].  

In some cases, the most traditional algorithms for solving the SPP and APSPP are 

not viable due to the complexity time for large number of arcs and nodes, so alternative 

methods are needed and used. The Ant Colony Optimization (ACO) metaheuristic, is a 

versatile algorithm and proves to be efficient to a lot of NP-Hard problems [29]. Besides 

not being in focus in this chapter, for these cases, the lecture of [29], [30] and [31] is 

recommended. 

2.4. TRAVELLING SALESMAN PROBLEM 

2.4.1. OUTLINE OF THE TRAVELING SALESMAN PROBLEM 

The Traveling Salesman Problem (TSP) is one of the most widely studied problems 

in the combinatorial optimization area. It is defined in a graph and states as follows [32]. 

Given a graph G=(N, A), being N the set of n nodes to be visited, and A the set of arcs, let 

Cij be the cost of traveling from node i to the node j. The objective of the TSP is to 

determine the minimum cost Hamiltonian circuit, which means that it is necessary to find 

the minimum cost circuit passing once, and only once, in every node of G. As happens in 

the SPP, presented in the Chapter 2.3, the cost Cij, associated to each arc can be any 

measurement, like distance, time, capacity, etc. The TSP is often modeled in a complete 

graph, meaning that exists one arc connecting each pair of nodes. If there is no path between 

two nodes, adding a fictitious arc, with an infinity cost connecting them, will complete the 

graph without affecting the optimal tour.  
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Great effort has been made in literature solving instances with increasingly number 

of cities (nodes). In [33] and [34], a study of the milestones achieved for the TSP is given.  

There are two major types of TSP. The symmetric TSP (STSP) and the asymmetric 

TSP (ATSP). The STSP is defined in a symmetric graph, which means that travelling from 

node “A” to “B”, per example, has equal cost to travelling from “B” to “A”. And this 

premise happens to every pair of nodes in the graph. On the other hand, in the ATSP, the 

costs are asymmetric, which means that traveling from “A” to “B” can be different of 

travelling from “B” to “A” [35][36]. 

Thus, the total number of possible route solutions for the TSP in a graph, will 

depend if the graph is asymmetric or symmetric. If the graph is asymmetric the next 

equation gives the maximum total number of TSP routes [35]: 

 N = (n − 1)!    (2) 

Where: 

n is the number of nodes 

On the other hand, if the graph is symmetric, the next equation gives the maximum 

total number of TSP routes [35]: 

 N = (𝑛−1)!2      (3) 

 

Where: 

n is the number of nodes 

Therefore, the TSP is very easy to understand but very hard to solve. It is possible 

to observe that the number of possible solutions increase exponentially with the number of 

nodes in the graph, making so extremely difficult to compute optimal solutions, when the 
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number of nodes is large. TSP is so part of the so-called NP-Hard problems due to the great 

complexity for solving it [36].  

TSP is famous due to its complexity but also due to its range of applications. 

Applications on the TSP are beyond route planning. Areas such electronics, mathematics, 

computer science, genetics, engineering, machine scheduling, job sequencing, wallpaper 

cutting, among others, are examples of TSP applications [32][37].  

There are different methods to solve the TSP, generally divided in two major 

classes. Exact algorithms and heuristic methods. Exact algorithms give always the optimal 

solutions, but these algorithms need very large computational times when compared with 

other methods. On the other hand, heuristic approaches may give good (or even optimal 

results) in some cases, or bad results in other cases. The advantage of using heuristic 

approaches for the TSP relies in the computational time, which is very low when compared 

with the exact algorithms. Thus, depending on the context of the application (depending 

on the computational time, the number of nodes, etc.), there are several possible solutions, 

being them exact or approximation heuristics.  

Some examples of exact applications and heuristic approaches and its 

characteristics are given below.  

Table 1 - TSP Solving Methods. 

 
Solutions 
quality 

Computational 
time 

Implementation 
Difficulty 

Recommended 
References 

Integer Linear 
Programming  

Optimal Exponential Relatively Simple [38] [39] 

Brute Force Optimal 
Exponential 

O(n!)) 
Simple 

[42] [40]  
 

Branch and 
Bound 

Optimal 
Lower when 

compared with ILP 
or BB 

Relatively Simple [48] [41] 

Concorde Optimal 

Described as the 
most performing 
exact algorithm 

currently available. 

Hard to implement due 
to the great number of 
lines of code. The code 

is open source for 
academic purposes. 

[34] [42] 

Greedy 
Algorithm 

Approximate O(n2 log2(n)) Simple [43] [44] 

Nearest 
Neighbor 

Approximate 
Relatively lower 

time 
O(n2) 

Simple [45] [46] 
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K-OPT and its 
variants 

Very good 
approximations. 

1-2% below 
optimum 

O(nk) 
 

Hard [47] [48] [49] 

Simulated 
Annealing 

(SA) 

Good 
approximations. 

4% below 
optimum 

Higher when 
compared with K-

OPT 
Relatively Simple [43]  [50] 

 

2.4.2. TRAVELLING SALESMAN PROBLEM VARIATIONS 

There are several variations that make each TSP a particular problem. Usually, 

these configurations add new features to the “basic” and stated above configuration, 

making it even more difficult to solve (strongly NP-Hard). These variants have been 

suggested from various real life or potential applications [37].  In this work, four variations 

of the problem will be briefly addressed.  

TSP WITH TIME WINDOWS 

In most business organizations, there are fixed scheduling’s – like opening hour, 

closing time, etc. - which makes important to define time windows in problems like the 

TSP.     

The TSP with time windows (TSPTW), as the regular TSP, involves a graph 

G=(N, A), being N the set of nodes to be visited and A the set of arcs. The difference here 

is that each node has a defined interval [ri,di]. The ri represents the release date, which 

denotes the earliest possible starting time for visiting the node i. On the other hand, the di 

denotes the latest possible time for visiting the node i. Thus, this interval is called time 

window, and its width is given by di-ri. For the depot, that is, node 0, the r0=d0=0 [51]. 

Allied to this, the constant pi represents the processing time in the node i.  

Therefore, the problem is to find the minimum cost route (time, distance, etc.), 

starting and ending in a specified depot, visiting a set of customers, each one in its 

predefined time window, having in consideration the arrival time and the processing time 

of each node. TSPTW can be used for practical applications in bank or postal deliveries, 

school-bus routing and besides this, it can be also used to model a job sequencing in a 

single machine, where each job has a release time and a deadline [52] [53]. 
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It is possible to observe that the TSPTW is a special case of the Vehicle Routing 

Problem with time windows [54], where only one vehicle composes the fleet. 

TSP WITH PICKUP AND DELIVERY 

Another extension to the TSP, is the TSP with pickup and deliveries (TSPPD). The 

TSPPD also involves a graph G = (N, A), being N the set of nodes to be visited, and A the 

set of arcs. In this case, the set of nodes to visit are divided in two groups. The first group 

contains the locations requiring amounts of goods to be picked up (pi), and the other 

contains the amounts of goods to be delivered (di). The node 0 corresponds to the depot 

location, being a node of pickup the amount to be delivered in the set of delivery customers. 

One aspect to have in mind is that, in this case of the TSP, the capacity of the vehicle must 

be considered. If, for one side, the amount of goods being transported decreases when a 

delivery node is reached, it increases when a node of picking is reached. For this, the 

vehicle has a maximum capacity allowed, Q, and a current capacity, c, which represents 

the capacity being transported at each location. Therefore, c may never exceed Q during 

the tour. The TSPPD consists of determining the least cost tour (distance, time, etc.), 

starting and ending in the depot, visiting each node once and having in consideration c and 

Q, and if the node represents picking up or delivering goods [55] [56]. 

It is important to state that a node can be simultaneously a pickup and a delivery 

node. A mathematical formulation for an Integer Programming modeling the TSPPD can 

be found in [57] [58]. 

There are various applications for this problem, like school buses scheduling, 

distribution of goods to supermarkets, cab scheduling, distribution of postal services, etc. 

 

TSP WITH PRECEDENCE CONSTRAINTS 

Sometimes, in several problems such as scheduling, routing decision, process 

sequencing, among others, it is necessary to process some tasks before others [59]. In fact, 

the already explained TSPPD and TSPTW deal with these problematics, that certain nodes 

must be visited before others, because of the picking and delivering constrains or due to 
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the time windows assigned to each node, respectively. Although TSPPD have this type of 

constraints, the TSP with Precedence Constraints (TSPPC or PCTSP) tries to solve these 

problems in a more generalized way. The TSPPC is one of the most difficult combinatorial 

optimization problems. Thus, given a graph G=(N,A) where N is the set of nodes to be 

visited and A the arc set, the objective is to find a minimum cost tour, starting and ending 

in the depot, visiting all the nodes of N-{depot}. Besides that, every node i must be visited 

before node j (but not necessarily directly), when a precedence constraint exists between 

these two nodes [60]. When a node must precede other, say i must precede j, it is also 

common to use the notation i≺j. Given a certain node i ∈ N\{Depot} that must precede a 

set of nodes, pi, and succeed a set of nodes, si.  If |pi|+|si|= N\{depot} means that i must 

have a fixed position in the final tour [61]. Therefore, the precedence’s between the nodes 

can exist for some of them, requiring that only certain nodes need to be visited before 

others. The precedence’s can also exist between all the nodes, when there is a fixed 

sequence between all the nodes that compose N.  

The amount of research and applications on this problem is fewer when compared 

to other routing problems [61]. A mathematical formulation for the TSPPC can be found 

in [59], [62] and [63]. In [61], a Branch and Cut algorithm is developed for solving the 

ATSP with precedence constraints. Different densities structures of precedence’s were 

tested for different network instances, using real life data obtained from industrial 

applications as well as randomly generated instances. The results for the instances with 

dense structure precedence’s show that it is very difficult to construct optimal solutions, 

proving so the already mentioned increased difficulty of this variation of the TSP.    

In [62], Kubo and Kasugai developed a Branch and Bound algorithm incorporating 

three different bounding procedures, computed from the Lagrangean Relaxation. The 

algorithm was tested for different densities of precedence’s and different instances size. 

The algorithm performed well for 49 nodes and with relatively lower computational time.   

The TSPPC can be also modeled using a two-commodity network flow problem. 

To solve a model such this, Moon et al. [59] proposed a Genetic Algorithm (GA) in which 

for small and medium size problems, the algorithm reported optimal solutions. In this 
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example, the path is considered feasible if visits all the vertices, not requiring if it does not 

return to the initial node. The graph is directed, and the nodes (or vertices) represent 

activities and the directed arcs (or edges) represent the precedence relation between 

activities.   

Sarin et al. [64] developed a new formulation for the ATSP with and without 

precedence constraints. This algorithm computes tight lower bounds and it is usually 

required a significantly lesser (by several orders of magnitude) computational effort to 

reach the optimal solution. Different instances were tested using several densities of 

precedence’s, and the results were presented.   

SEQUENTIAL ORDERING PROBLEM 

Although Sequential Ordering Problem may not be a “direct” extension of the TSP, 

it is a problem with several similarities (like will be demonstrated below) and for that, it 

will be described in this section. 

The Sequential Ordering Problem (SOP) is a well-known combinatorial problem 

defined on a graph. Given a graph G, with n vertices and m weighted directed edges, the 

SOP is the problem of finding the minimal cost Hamiltonian path from the start vertex to 

the terminal vertex, following precedence constraints on the vertex set [65]. In some 

literature, the SOP is associated to the TSPPC (or the asymmetric TSPPC), presented in 

the section 0, but it is different, in one characteristic. Both problems have precedence 

constraints in the vertex set. But, in the case of the SOP, there is only defined a fixed start 

and end node. While in the PCTSP, as already observed, it is required a closed tour where 

it is necessary one return to the start node. In the Figure 2 it is possible to observe the 

difference of two solutions for these problems. It is important to have in mind the 

precedence constraints presented in both solutions, having so the same sequence of nodes. 

Thus: (1) in the left for the SOP, with a fixed node and an end node, and (2) in the right for 

the PCATSP, with a closed tour [66] [67].   
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Figure 2 - Examples of the SOP (right) and the TSPPC (left). 

Thus, SOP is a generalization of the TSP, and so must be NP-Hard [68]. The scope 

of applications of this problematic is very wide, including, vehicle routing with pickup and 

deliveries, single-machine scheduling problems with set-up costs and precedence between 

jobs, among others [69].   

A variation of SOP is the capacitated SOP. This problem adds the capacity 

constraint to the problem. Thus, a vehicle with a capacity Q and a precedence relation (p,q) 

is associated with  a commodity that has a weight of dpq , needing so to be collected at p 

and delivered at q. Following the similarity between SOP and TSPPC stated previously, 

this variation of the problem is related to the Travelling Salesman Problem with Pickup 

and Deliveries [69]. 

There are some examples of different applications in literature. In [70], a 

metaheuristic Ant Colony Optimization algorithm that uses a local search to improve the 

overall performance of the ACO metaheuristic is developed. It is strongly based on an Ant 

Colony System and is a building heuristic in the sense that starts from node 0 and adds new 

nodes until all the nodes have been visited and the last node is reached, always according 

to the precedence constraints. 

To see more applications and state of the art related to the SOP problematic, the 

reading of [68] is recommended. 
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3. DYNAMIC VEHICLE ROUTING 

3.1. OUTLINE OF THE DYNAMIC ROUTING PROBLEMS 

The development of technologies lead to a model of different routing problems, 

dealing not only with static routing problems (as the examples already mentioned of the 

SPP and TSP), but also with dynamic routing problems. The dynamic routing problems 

arise due to the fact that static network optimization problems do not depend on the time 

and so, there are some time dependent parameters that are not considered [71].  

Thus, a dynamic environment means that the information of the network may be 

changing during the execution of the algorithm. Moreover, following a dynamic 

environment, at each time, the choice of a route is based on the information then available 

[72]. In a dynamic routing problem, what may be the ‘best route’ for one to follow, may or 

not be the best, for the same entity, in a different time instant, due to the network 

information updates. 

The Figure  and Figure  illustrate a possible scenario in a dynamic routing problem. 

Initially (Figure ), at time t0, the best route for a vehicle with characteristics x1, is starting 

in the node ‘S’, following the sequence demonstrated in the Figure  and turning back to 

‘S’. The same vehicle (with characteristics x1), at the time t1 will have a different best route, 

because the arc connecting the nodes ‘1’ and ‘2’ is unable to be traversed, due to some 

certain event (Figure ). Therefore, for the same vehicle and network, the assigned the route 

is different depending on the time. 

 

Figure 3 - Best route at time t0. Figure 4 - Best route at time t1. 
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Thus, in the dynamic routing problems there are certain events which may change 

the network and consequently change the transportation process [13]: 

1. New Requests: If it is necessary to visit a new location closed to a planned location, 
(in a fixed time windows and/or other specified attributes), an adaptation of the tour 
may be necessary to include this new request.  

 

2. Changes in request attributes: The attributes of each location may be different 
(requesting a different amount of goods, changing the time window, etc.). 
Therefore, it will be necessary to rearrange the previous tour, perhaps altering the 
path of the route, or altering some fleet characteristics.  

 

3. Traffic Congestion and blocked roads: The traffic jam in the roads increase their 
travel times or can provoke a complete blockage of the affected roads. When this 
happens, reassigning the vehicles to non-congested roads, or allocating the requests 
to other vehicles may be necessary. 

 

4. Vehicle disturbances: When a partial or complete deficiency on the vehicle exists, 
due to an accident or other possible scenario, the routing plan may be rearranged, 
assigning other vehicles to the requests of the incapacitated one.   

 

A great different between the static and the dynamic routing problems is the 

objective function. In the static routing problems, usually the objective function tries to 

minimize the route cost. The dynamic routing problems introduce different scenarios, like 

service level, throughput time, or revenue maximization [73]. In real-time dynamic routing 

problems, the objective is sometimes the aggregate of several objectives, combining  

different measures [74].  

Alan Larsen [75], proposes a framework, dividing the dynamic routing problems, 

depending on their degree of dynamism. The Weakly Dynamic Systems are problems in 

which the grater part of the information is known in advance, that is, at the time of the 

tours’ construction. The reacting time is considerably longer when compared with others 

and the tradicional way of solving this problem is to adapting static procedures. Thus, a 

static routing problem is solved every time an update on the network happens. The Strongly 

Dynamic Systems are characterized by the fast change of data, and by the urgency of 

requests received. As examples of this systems, are the emergency services (such as police, 
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fire department and ambulance), and the taxi cabs, in which only a few “customers” are 

known beforehand. Therefore, in such problems, the reaction time is of great importance. 

With this necessity of updated information, dynamic routing problems usually 

involve more elements than the static routing problems, increasing so the complexity of 

their decisions and introducing new challenges while judging the merit of a given route 

plan [73] [76].  

If a problem is dynamic, it can also be stochastic or deterministic [77] [74]. In a 

deterministic and dynamic problem, part or all the information is unknown in advance and 

depend on time, being revealed during the design or execution of the routes, per example. 

For this problem, typically is necessary to have technological support, for example 

cellphones, or global positioning systems (GPS), for real-time communication between the 

vehicle and the central depot [73]. One example of a deterministic and dynamic problem is 

the one presented by Daskin [78]. In this problem, a TSP in a time dependent network is 

addressed. The time dependent TSP (TDTSP) is a generalization of the regular TSP, in 

which the travel time between two customers or between a customer and the depot depends 

on the distance between them, but also depends on the time of the day. Here, a Mixed 

Integer Linear Programing (MILP) formulation is presented, and the results are reported.  

In a stochastic and dynamic problem, the uncertain data is represented by a 

stochastic process. Therefore, the unknown data is a collection of random variables, being 

so travel times, unknown demands and/or the existence of customers. The data are so 

gradually revealed during the operational interval, making so that they are not constructed 

beforehand [75]. One example of this type of problems is the case of the Dynamic 

Traveling Repairman Problem [79].  

In addition to the examples previously presented, one of the most known routing 

problems in a dynamic network is the dynamic shortest path problem. 

3.2. DYNAMIC SHORTEST PATH PROBLEM 

The dynamic shortest path problem is the generalization of the static SPP, already 

explained, where the characteristics of the network may change overtime.  
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Dynamic shortest path problems are computed in a time-dependent network, 

instead of a static network as in the static version of the SPP. Thus, a time-dependent Graph 

is defined as G=(V,E,T), where V is the set of nodes and E is the set of arcs representing 

the network segments, each one connecting two nodes. For every arc e=(vi,vj) ∈ E, and 

vi ≠ vj, there is a cost function cvi,vj(t), where t is the time variable in time domain T. This 

cost function represents the travel time from vi to vj starting that arc in the time t [80]. 

Considering that a cost of one (or more) arcs may change during the calculations, 

the dynamic shortest path problem is to compute the shortest path between one to all the 

other nodes, or between all the pairs of nodes present in the network. Thus, the dynamic 

SPP deals with non-fixed arc costs [81].  

Dynamic SPP can be further divided into two types, depending on how the time is 

treated [82]: discrete and continuous. In the discrete type, the time variable is modeled as 

a set of integers, while in the continuous, the time variable is treated as real numbers. 

Depending on the type of how the time is treated, the cost function can also be continuous 

in time, or discrete, whose domain and range are integers [83]. Therefore, dynamic SPP is 

more about fastest path than shortest path per se. Typically, the objective is to find the 

fastest path from one node to another, which may not be the shortest one in terms of 

distance. However, the time of traversing an arc is generally directly proportional to the 

distance of that arc.  

The network can be also FIFO (first in, first out) or non-FIFO. If the condition FIFO 

holds, no one can depart later at the beginning of one or more arcs and arrive earlier. On 

the other hand, when the network is non-FIFO, it is possible for an entity to depart later 

and arrive earlier at the destination. The difference between the former networks lies on 

the travel functions of the arcs. If the functions are constant or increasing with time, means 

that the network is FIFO. If there is travel functions that are decreasing with time, the 

network is non-FIFO [80]. 

One practical example of such networks can be given by considering a link 

composed of two physical channels, one being faster than the other. If the policy is to send 

a message over the first available channel, then a message sent over the slower one may 
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arrive later than another message sent later in the fast channel, meaning that messages 

arrive in non-FIFO order [83]. 

These different types of networks bring many implications, such as, if waiting at 

nodes is possible or not, or if the time of the departure is restricted or unrestricted, etc. For 

example, if the network is non-FIFO, sometimes it may be preferable to wait a certain 

amount of time in the node, before entering in one arc. One other example can be the system 

entering time. This time is the time that the entity starts its route. If this time is restricted 

means that the entity must enter the system in a fixed time. On the other hand, the entity 

can have an allowed interval of time before entering the system. Such conditions will have 

impact on the solution of the shortest path. 

An illustration of the dynamic shortest path problem is given in [84] and can be 

observed in the Figure 3. In this case, it is possible to state that, the edge ‘e’, has a time 

dependent cost. Therefore, when computing the shortest path from the source, ‘s’, to the 

destination, ‘d’, the shortest path and cost will depend on the time of the departure. The 

graph presented in the Figure 3 shows an example of a non-FIFO network.  

 

Figure 3 - Example of a time dependent shortest path. 

 

In the dynamic version of the SPP, the algorithms can also compute not only the 

shortest path from one-to-all given a departure time, but also from all-to-all for all departure 

times. As happens in the static version, this problem can be turned into the fastest path 

problem, least cost path problem, planning, etc. [82]. 

Compared to the static SPP, the literature in this problem is surprisingly much more 

limited. In the study of Cook and Halsey [85], a dynamic Programming algorithm is 

developed to address the dynamic SPP.  In 1969, Dreyfus [86], is the first to address the 

time dependent shortest path with a generalization of the well-known Dijkstra’s algorithm. 
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In this generalization, waiting times at nodes were not allowed. It was proved [87], later, 

that this generalization is only valid if the network satisfies the FIFO conditions. On the 

other hand, the time-dependent cost functions of the arcs are usually difficult to be 

forecasted, thus the link travel times are typically described by random variables. 

In [88], a study of the complexity of shortest paths in time-dependent graphs is 

outlined.  

Besides routing, there are an enormous variety of problems were a dynamic 

modeling may be addressed. Among them are Design of a service network, Repositioning 

of empty vehicles to anticipate future demands, Production and Inventory Management, 

Facility planning and design, etc. [77]. 

Previously, four types of events with most impact in the dynamic routing problems 

were addressed and explained. The traffic jam was one of them and is mentioned as being 

one of the principal events in dynamic routing problems and is widely studied in literature.  

3.3. TRAFFIC ASSIGNMENT 

3.3.1. OVERVIEW 

Since the early 1990’s, road traffic has been increasing and causing congestion, 

delays, accidents, and environmental problems, almost in all large cities [89] [90]. 

Besides this, congestion also results in a massive delay for the vehicles due to the 

fact that the time of traversing a road is unpredictably higher whenever congestion is 

present [91]. Therefore, traffic congestion is a noteworthy problem, and the reduction of 

the congestion a major challenge [92]. All the costs caused by the traffic can be reduced or 

even eliminated, by using the transportation systems efficiently. In literature, there are 

several strategies to avoid traffic congestion, depending on the problem, such as selecting 

alternative routes, changing the customer-vehicle assignment, among others [93].   

To achieve an efficient way to organize the transportation system, the traffic (or 

transportation) planning problematic can be addressed [18]. The Traffic Planning can be 

divided into several processes [94], having in consideration goal definition, collection of 
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data, travel forecasting, among others, which are analyzed separately, and often in a 

predefined sequence.  

In what this study concerns, one of the most important processes in Traffic Planning 

is the so-called Traffic Assignment. The Traffic Assignment is the part of traffic planning 

that determines traffic loadings on arcs and paths of the road network of interest in a static 

or dynamic environment [95]. The difference between static and dynamic is, as stated 

above, that a static approach, by definition, cannot reflect any variation in the traffic flows 

and any change in the transportation conditions, over time [96].  

Therefore, succinctly, the Traffic Assignment Problem (TAP) is stated as follows 

[97]: Given a directed graph G, and a matrix of tours, containing the number of travelers 

from an origin location to a given destination in G, the TAP consists in determining a flow 

assignment on the links of G which satisfies the demand for each pair origin-destination 

(O-D) and minimizes each traveler’s time.  

The major aims of TAP are the outlined above [98]: 

1. Estimate the volume of traffic on the links. 
 

2. Estimate inter zonal travel cost. 
 

3. Analyze the travel pattern of each origin destination pair. 
 

4. To identify congested links and to collect traffic data useful for the design of the 
transportation transport system.  

The output of the TAP depends on the complexity of the application, but always 

give an estimate of the traffic volumes and the corresponding travel times or costs on each 

link of the transportation network. In a more sophisticated technique, the directional 

turning movements at intersections and route flows may be included to the assignment of 

traffic [94]. 

3.3.2. ALL-OR-NOTHING ASSIGNMENT 

One of the first heuristics to address the TAP was the all-or-nothing technique. This 

technique consists in the basic procedure of assigning all the traffic to the route with 
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minimum traversing time [99]. In the Figure 4, there are two different routes, R1 and R2, 

for reaching ‘B’ from ‘A’. Therefore, suppose that an amount of flow (vehicles), x, must 

be assigned to the origin-destination pair A-B, that is, starting in ‘A’ and traveling to ‘B’.   

 

Figure 4 - Two routes example for the All or Nothing Assignment. 

It is possible to observe in the Figure 4 that the cost (time) of traversing each route 

does not depend on the flow in the route, having then a constant cost. In the all-or-nothing 

procedure, all the amount of flow is assigned to R2, being that route the one of minimum 

cost, regardless of x.  

It is notable that this technique considers a highly unnatural assumption, that the 

travel cost is independent of the amount of flow present in the links. If, p. e., there are two 

alternative routes with a nearly cost, the assignment is always made to the minimum cost 

route [94].  

Moreover, the assigning is made whether or not there is adequate capacity or heavy 

congestion on the links of the network. Despite this, this procedure may be efficient if the 

amount of flow to be assigned is low and/or if there are many alternative routes with an 

accentuated difference in the costs. It may also act as a building block for other models of 

traffic assignment [98]. 

This assignment can be made using only a TSP or a SPP instance (depending if 

there are more than a location to visit or not). Therefore, all the traffic is assigned to that 

route.   

3.3.3. LINK COST FUNCTIONS 

The results of the all-or-nothing technique are very unrealistic, as stated above. To 

introduce the concept of congestion, it is necessary to have algorithms considering that 



 

 29 

travel times on each road of the network are different, depending on the flow in that road. 

Thus, link cost functions (or link performing functions) need to be developed [100]. As the 

flows increases in a road, the average stream speed reduces from the free flow speed to the 

speed corresponding to the maximum flow. The graph presented in the Figure 5 states the 

typical influence of traffic flow in the average travel time [101] [102]. 

 

Figure 5 - Influence of traffic flow in the travel time of a road. 

 

Different studies developed different link cost functions [97]. The Bureau of Public 

Roads [103], in 1964, developed the best-known function, taking into consideration that 

each present vehicle in a road creates an impedance in the road. This equation is presented 

below. t =  𝑡0 ∙ [1 + 𝛼 ∙ (𝑥𝑘)𝛽]    (4) 

where: 

t0 is the free flow time 

x is the flow on the link 

k is the capacity of the link per unit time 

t is the average cost time for a vehicle to traverse the road 

The α and β are model parameters to be calibrated, but α =0.15 and β=4 are the 

typically used. The quotient of x by k is also known as the ‘degree of saturation’ [104]. 
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3.3.4. CAPACITY-RESTRAINT HEURISTIC 

With the link cost functions, heuristics for TAP including the congestion factor 

were developed. The Capacity-Restraint heuristic was first developed in the Chicago Area 

Transportation [105]. In this procedure, a specific origin is randomly selected. Then, the 

shortest routes are calculated between each O-D pair, being ‘O’ the selected location. After 

that, all the traffic containing the latter selected origin is assigned using the all-or-nothing 

heuristic. At that point, the time of traversing each road is recalculated, having in 

consideration all the flow assigned so far. This procedure is repeated but now with another 

specific origin, different from the one chosen in the previous iteration(s), and with different 

link costs. The algorithm stops after all the origins have been selected, and all the traffic 

been assigned.  

This heuristic differs from the all-or-nothing assignment only in the fact that the 

travel times are updated after assigning the vehicles from each O-D pair. Thus, the 

computational times for this method are essentially the same when compared with the all-

or-nothing procedure [94].  

3.3.5. INCREMENTAL ASSIGNMENT 

In the incremental assignment procedure, fixed fractions of traffic are assigned to 

the network in steps, or iterations. Thus, in each step, a fraction of the total flow is assigned 

to the shortest route, using all-or-nothing assignment. After this, the travel times of each 

link are recalculated based on the link volumes assigned so far [98]. Usually, the updates 

in the traffic costs are made by the Equation (4), showed above, or for other link cost 

functions. The number of iterations is determined in advance, dividing the total amount of 

tours by the portions of traffic to be assigned in each iteration.  

The difference between this method and the capacity-restraint is that, in this 

method, the portion of the traffic to be assigned is chosen, and so, the travel costs are 

recalculated at each iteration. In the capacity-restraint method, at each iteration, all the 

traffic starting at a specific origin is assigned, and only then the travel costs are updated.    
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The result for this method may resemble an equilibrium of the system, when many 

iterations are used, that is, when lower portions of traffic are assigned in each iteration. On 

the other hand, such small increments can increase the computational effort when the 

number of trips to be assigned is large. The most serious drawback of this approach is that, 

after an assignment being made, an increment of the flow cannot be reassigned to another 

path, in the subsequent iterations [106]. 

Martin and Manheim [107], developed an extension of this method. In their study, 

the portion of traffic to be assigned is not previously fixed, but determined by a travel-time 

function, called generation rate characteristic. Consequently, the number of iterations is 

unknown in advance. With the generation rate characteristic function, when the volume of 

traffic increases the cost of several paths, in the next iterations, the traffic to be assigned is 

likely to be reduced, trying to reach an equilibrium in the system. 
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4. CEMENT INDUSTRY CASE STUDY 

4.1. LIST OF PUBLICATIONS 

 

Before entering in the case study, there are several scientific research studies which 

compose the basis of the study presented in this dissertation. These research studies are 

already published, accepted but not published yet, or submitted to publication. 

 

1. Fonseca, J., Alves, R., Macedo, A. R., Oliveira, J. A., Pereira, G. and Carvalho, M. S. 

(2019), Integer programming model for ship loading management, in J. Machado, F. 

Soares and G. Veiga, eds, Innovation, Engineering and Entrepreneurship, Springer 

International Publishing, Cham, pp. 743-749. 

2. Macedo, A. R., Fonseca, J., Alves, R., Oliveira, J. A. , Carvalho, M. S., Pereira, G. (2018). 

The impact of Industry 4.0 to the environment in the cement industry supply chain. 

Proceedings of ECOS 2018 - The 31st International Conference on Efficiency, Cost, 

Optimization, Simulation and Environmental Impact of Energy Systems (ECOS). 

Presented at the ECOS 2018 Conference.  

3. Alves, R., Fonseca, J., Macedo, R., Veloso, H., Dias, L., Pereira, G., Carvalho, M. S., 

Figueiredo, M., Oliveira, J. A., Martins, C. and Abreu, R. (2018), Cement Industry - A 

Routing Problem, Cement Update by Daily Cement (5), 10-15.  

4. Fonseca, J., Macedo, R., Alves, R., Veloso, H., Dias, L., Carvalho, M. S., Pereira, G., 

Figueiredo, M., Oliveira, J. A., Abreu, R. and Martins, C. (2018), Rules for Dispatch, 

BMHR 2018 supplement in World Cement (September). 

5. Macedo, A. R., Alves, R., Fonseca, J., Veloso, H., Dias, L., Figueiredo, M., Pereira, G., 

Carvalho, M. S., Abreu, R. and Martins, C. (n.d.), What can we learn from Industry 4.0: 

Opportunities in the logistics field on Cement Industry. 

6. Veloso, H., Vieira, A., Alves, R., Fonseca, J., Macedo, A., Pereira, G., Dias, L., 

Carvalho, S., Figueiredo, M. (2018), Simulation in cement industry, CemWeek (July). 
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4.2. CEMENT INDUSTRY OVERVIEW 

Cement is an inorganic, nonmetallic substance with hydraulic binding properties 

that is mixed with water to form a paste. After hardening, the cement retains his strength. 

There are several types of cement products and because of its importance as a construction 

material, cement is produced in essentially all countries. It is one of the most important 

materials worldwide and its consumption and production is closely related to construction 

activity, and, consequently to the general economic activity [108]. 

All over the world, global cement production grew from 594Mton (Million tons) in 

1970 to 2284Mton in 2005, with the vast majority occurring in developing countries, 

especially China, where the production of cement reached 47% of the overall world 

production. Besides China, countries like India, Thailand, Brazil, Turkey, Indonesia, Iran, 

Egypt, Vietnam, and Saudi Arabia accounted for 17% of the 2005 world cement 

production. Taylor et al. [109] shows the production of cement, by country, in 2005. In that 

same study it is possible to observe the continuous increasing production of cement and 

the projections till 2050 all over the world. 

With this great amount of production, cement is the second most consumed 

substance in the world, only after water [110].  To produce 1.0 ton of cement, it is necessary 

to collect about 1.6 tons of main raw materials. This large amount of production makes it 

so that, usually, plants are located near quarries, which are the source of their main raw 

materials [111]. Between all raw materials used for cement production, there are limestone, 

chalk and clay as the most common ones.  

The cement industry has also a great impact in the environmental field. This type 

of industry will come under increasing regulatory pressures to reduce its emissions and to 

contribute to the reduction of the global warming [112]. The number of articles and the 

amount of literature review concerning cement industry shows that the impact this industry 

has in the environment is the immense concern to the scientific world. 

In 1995 there were 252 installations producing cement only in the European Union 

(EU)[113]. The large number of plants all over the world, allied with the almost steady 
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increase in the cement production among the years suggests the importance in the 

management and the study of the cement industry supply chain.  

Moreover, although SCM is a subject with a lot of  research and with the technology 

advances it is also an increasingly investigation topic [110]. Succinctly, in the Figure 6, it 

is possible to observe the supply chain of cement, from the production till the clients, 

discriminating the processes involved [114]. 

 

Figure 6 - Cement Industry supply chain. 

 

There are two main phases in the production of cement. The first one is relative to 

the transformation of raw materials in clinker. The second is the production of cement from 

the clinker [111]. If all the processes composing these steps are geographically apart, there 

are additional transportation and time costs associated with the supply chain. However, as 

stated above, usually all the processes are near each other to overcome that disadvantages.  

The cement supply chain is complex and somewhat large, as suggested in the Figure 

6. However, in this study, the focus is not the processes of extraction and creation of the 

raw materials and the cement, but the logistic processes inside the plant, when the cement 

is stored and ready to be shipped - Figure 8 (6). 

 In the step (6) of the Figure 6, there are two locations where the cement can be 

stored. The bulk cement, when cement is avulsed, is stored at what is called the cement 
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storage silos. A storage silo is a huge cylindrical structure, like the one presented in the 

Figure 7, and is used for storing bulk materials, in this case, cement.  

 

Figure 7 - Cement Storage Silo. 

Pneumatic and mechanical systems can be used to transport cement for the silos. 

Usually, in a cement plant, there are several storage silos, near each other and/or in different 

locations. Each silo has one type of cement to be loaded at each instant, and that depends 

on the current silo configuration [113]. It is also possible for a cement plant to have silos 

in more than one location and having the same materials, among others.  

When the cement is stored in these conditions, a specific type of transportation is 

also required. At this moment the cement can be transferred by pipelines or tubes to a train, 

or to a ship, if it is near the plant. If the cement is required to be transported by road, a 

specific truck is also needed to transport the cement. A cistern or tank truck is used to load 

the cement stored in the silos. These types of trucks can also be viewed in the Figure 8.  
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Figure 8 - Example of a cistern or tank truck. 

The transportation of bulk cement brings some advantages and disadvantages. On 

one hand, this type of transportation requires a fleet of specific trucks that needs to be 

owned or outsourced by the clients. Besides this, it is also necessary to have other 

equipment’s to unload the cement. On the other hand, this type of transportation requires 

less human effort, because the cargo is maneuvered through machinery, thus allowing a 

relatively easiness in that processes.   

The cement can also be bagged and stored in a warehouse. There are several types 

of bags, with different dimensions and weights, trying to meet the clients’ demand. The 

cement can be stored in several warehouses due to its type and specifications of the product. 

In a typical cement plant, it is possible that more than one warehouse is present, and it is 

also possible for different warehouses to have the same products. In that situation, it is not 

necessary to have a specific type of truck to transport it. Depending on the number of bags 

to be transported, a “regular” loading truck is necessary. In the Figure 9 it is possible to 

observe a typical loading truck. 

 

Figure 9 - Loading truck for bagged cement. 
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The transportation of bagged cement can bring some advantages and disadvantages. 

Bags are more difficult to load and unload. Usually, in a cement plant warehouse, the load 

is made using palletizers and forklifts. In the client's location to unload, typically the 

cement in these conditions is unloaded manually. On the other hand, bags are more flexible 

and can be moved in almost all types of trucks and cars, depending on the quantity of 

cement to be transported. Bagged cement can also overcome the demand of small and 

irregular orders.   

4.3. INDUSTRY 4.0 AND CEMENT INDUSTRY SUPPLY CHAIN 

MANAGEMENT 

 

With globalization, the market is getting more global and less local. Each time more 

and more products are available, and their life time is decreasing, by its obsolescence. Also, 

the quality standards are increasing, and the markets are getting more demanding, imposing 

short delivery times and at the same time, wanting lower costs. Competitivity is getting 

increasingly more difficult, and therefore, the companies that use efficiently their SCM are 

the ones that will survive to this era.   

In the cement industry, the lack of SCM is highly present. Cement plants are 

involved in an unpredictable environment. It is not possible to know, in advance, what 

materials each client will need, if the required materials are bagged or bulked, what is the 

day and time each client will arrive at the plant to be served, what are the locations each 

client must reach, etc. It is important to introduce the concepts of what industry 4.0 

represents. Terms like Internet of Things, Cloud Computing, Big Data, integrated systems, 

Business Intelligence, and so on, are strongly connected to this fourth industrial revolution 

[115].  

Industry 4.0 is an increasing term in the present days. It introduces new 

technologies, specially information technologies and information techniques. Organization 

and logistics are implemented in modern business as an aggregated system, which has led 

to new ways of production, new ways of doing business and better service activities in the 

sphere of industrial production [116] [117]. The Industry 4.0 allows a ‘digital supply chain’ 
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and a ‘Smart Production’, introducing the concept of real-time. This linkage between every 

stage of the supply chain, between every machine, every sensor, allows to capture and share 

real-time production data, which could be used for rapid and accurate decision-making 

[118]. Therefore, and succinctly, Industry 4.0 is about information and how to use 

technology to efficiently manage that information. 

The Figure 10 suggests a general framework of the supply chain for the cement 

industry, focusing the packing and shipping of the cement. The introduction of the industry 

4.0 is represented by the ‘information flow’ linkage.  

 

Figure 10 - Industry 4.0 in cement industry supply chain. 

It is extremely important to have the information flow and material flow connected. 

With this, it is possible to plan, adapt and execute, making decisions in a much more precise 

and rapid manner. Industry 4.0 makes SCM easier, increasing also the precision and the 

efficiency of the available resources, bringing advantages not only for the companies and 

organizations, but also for the clients, in the service and product quality.  

There are several potential applications where technology can have a big impact in 

the cement industry, among others. In this study, one of them will be focused and is 

explained below.  
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4.4. PROBLEM DESCRIPTION 

The management of the trucks when they are inside the plant is one of the biggest 

tasks cement plants face nowadays. Whenever a truck enters a cement plant, there are 

several problems that may come along with it. 

Trucks go to cement plants to load or unload materials. If it is necessary to unload 

various materials, there are locations in the plant designated for each material. A truck can 

also enter a cement plant to load one or several materials. In that case, the materials can be 

bulked or bagged, and for that, the type of transportation is different, as mentioned above, 

and a client can only require bulked or bagged each time. 

In addition to this, a typical cement plant receives hundreds of trucks every day. 

Whenever each truck enters the plant, it must visit one or more locations to be served. The 

trucks will follow a route, which will lead them to its required services. Due to the great 

complexity of the cement plants map, usually there are several possible routes for each 

truck to follow, leading them to the desired locations. Although it is a less significant case, 

it is also possible for a truck to have some places to visit inside the plant, with a specific 

and predefined sequence. In this case, the truck must be serviced in all the required 

locations, following the predefined order. 

On the other hand, truck drivers may not be familiar with the plant, and even if they 

are familiar, they have no assistance or guidance when choosing the routes. This problem 

leads the drivers to have unnecessary times finding the required locations, and/or making 

the drivers to loading/unloading wrong materials in incorrect locations, thus resulting in an 

increased time inside the plant. The congestion inside the plant is also a very important 

problem cement plants face due to the great number of trucks arriving each day. 

Overloading some roads of the plant may lead to traffic jams, increasing even more the 

time each truck spends inside the plant. 

It is important to create a routing system, assisting and guiding the truck drivers 

inside the plants and possibly tackling the traffic jam on the roads. This can only be 

addressed by introducing technology in the decision-making task, thus allowing each truck 

to have its own computed route. With this, both service quality and the equilibrium of the 

facility are improved. The equilibrium of the facility represents the workload level on the 
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servers, and the number of trucks in the roads. When the number of trucks waiting for their 

services and the number of trucks traversing the same roads at the same time are lower, the 

facility is in a higher level of equilibrium.   

4.5. PROBLEM ASSUMPTIONS 

Whenever a problem is modeled, it is always necessary to assume some 

characteristics. These characteristics encompass all the specifications of the real problem, 

but also, some inevitable assumptions. The assumptions aim to create robustness in the 

modeling.  

Each cement plant is composed by locations to load, locations to unload, and other 

possible locations, like for example, areas for the administration. These areas will be, from 

now on, designated in general as “service locations”. Inside of the plant, connecting these 

areas, there are roads. The roads’ surface (i.e. the pavement) is composed by asphalt or 

only by dirt. Each road can have one or two directions and it is possible to exist more than 

one road connecting two service locations.  

Thus, it is possible to describe a plant through graph theory. Thereby, each one of 

the service locations will be represented by a node. In the same way, the set of roads will 

be represented by the arc set of the graph.  

The roads, represented by the arc set, will follow a FIFO rule. This means that, 

when a truck enters a specific road, it will only end its traverse, after all the trucks that 

already are in that road, in the same direction, have also traversed. Thus, overtaking is not 

allowed in the roads inside of the plant. Each arc will also have a distance cost of traversing 

it, and a proportional time cost. It will be assumed that the greater the distance, the longer 

the time of traversing a road, in terms of simplification. 

The average velocity of the trucks will be assumed to be constant and equal when 

traversing each road inside of the plant, independently on the type of the truck, in terms of 

simplification.  

The cost of traversing the roads will have a lower order of magnitude when 

compared with the processing time in the service locations. This happens because, 
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typically, the trucks spend more time loading and unloading materials than on the roads 

inside the plant.   

Each one of the service locations has a processing time, depending on the type of 

service (load, unload, etc.) and depending on the truck (per example, the type of the truck). 

Therefore, each node will have an associated processing time, depending on that same 

aspects. The intersections and crossing points will also be treated as nodes, however, in 

this case, with processing time equals to zero, because there is no service to do in that node. 

The type of truck will be independent for the routing system. It is important to know 

which are the locals that each truck must visit, and the specifications of each service. These 

specifications are the time each service will require for that truck (depending on the size of 

the cargo to load or unload) and if the truck has a specific predefined sequence for its 

services or not.  

It is also assumed that after a truck has started being processed in a server, it will 

be completely served, thus not being considered intermediate stops.  

In each service location, only one truck at a time is served. At the same time, if 

more than one truck reaches the same service location, the trucks will be served one at a 

time, in the order of arrival at the service location. Thus, the service locations will work 

following a FIFO order. In a real scenario this may not happen, meaning that, there are 

service locations that it is possible for more than one truck to be served at the same time. 

However, in a future possible real implementation, this and all the previous assumptions 

can be easily altered, thus meeting the real services’ characteristics.  

In the next sections, three algorithms will be developed to overcome the already 

mentioned problems, and its implementations addressed. These algorithms will have 

different considerations as how the routes will be given to the drivers, and when they will 

be given.  

 

 

  



 

 43 

5. APPROACH TO THE PROBLEM & APPLICATIONS  

 

Before entering in the algorithms’ description, it is necessary to establish and 

determine how the plants will be organized. Each plant will be organized using graph 

theory, being the service locations and road intersections represented by the node set, and 

the arc set representing the roads of the plant. There are several ways to describe the 

information contained in a graph (see [119]). The data structure that will be used to contain 

the information presented in the graphs of the plants, will be the “Adjacency Matrix (With 

Costs)”. The Adjacency Matrix is a matrix which indicates, in an organized way, the nodes 

that are directly connected in the graph. If two nodes are directly connected by some arc 

(adjacent nodes), the element of the adjacency matrix is 1, and 0 otherwise, thus making 

this matrix binary.  

On the other hand, the Adjacency matrix (with costs) specifies also the cost of the 

arcs for the adjacent nodes. In this case, the costs of the matrix are distances being the roads 

of the plants represented by the arc set of the graph. These distances can be represented in 

meters, kilometers, etc.  

It is important to state that the distance between each pair of nodes in that matrix is 

the distance of the arc that connects that pair of nodes. That distance may or may not be 

the minimum distance between that pair of nodes. Next, to give a better contextualization, 

the Figure 11 is an example of a graph. This graph could be an example of a cement facility.  

 

Figure 11 - Graph example of a cement facility. 
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The graph presented in the Figure 11 contains five nodes, representing five service 

locations, and nine roads. It is important to observe the connections between the nodes “B” 

and “C”. There are two different connections between these two nodes, with different costs 

and opposite directions, thus making the graph asymmetric. 

The respective adjacency matrix is presented in the Table 2. The next algorithms 

will be relied on this type of matrix. 

Table 2 - Adjacency Matrix for the graph of the Figure 13. 

 A B C D E 

A 0 4 ∞ ∞ ∞ 

B 4 0 3 2 3 

C 2 1 0 4 5 

D ∞ 2 4 0 1 

E ∞ 3 5 1 0 

 

In the Table 2 it is possible to observe the distance between each pair of nodes. It 

is important to refer that whenever a distance matrix cell has the symbol “∞”, means that 

there is no connection directly between these two nodes. In a future computational 

implementation, there is no possible way to include the “infinity”. Therefore, a number that 

is very large when compared with the others is typically chosen. 

Next, three algorithms will be presented to approach the already stated problems. 

When a truck driver arrives at a cement plant, it proceeds to its check-in. When this stage 

is finished, there will be a system, with an implemented algorithm, that, considering all the 

information, will compute a specific route for that driver to follow.  

There are two general approaches in the next algorithms regarding the possibility 

of updating the routes. The first one considers that after the driver receives his route, thus 

entering in the facility, there is no more connection between him and the routing system. 

Therefore, there is no updates in the given routes, and the only interaction between the 

driver and the system is in the entrance (check-in) and the exit (check-out).   
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The second approach considers that after the driver enters the plant, the connection 

between him and the route system continues. With this, it is possible for the routes to be 

updated during the trip.  

These two general approaches have advantages and disadvantages. For one hand, 

the update of the routes will encompass a more real time system, considering eventual 

situations that may change the current state of the facility, thus updating the drivers that 

are already inside of the plant. On the other hand, for this to happen it is necessary that 

each driver has an informatic gadget, thus being connected to the route system, in real time, 

(per example, an app on a smartphone).  

One the other hand, if there are no updates after the entrance, the system may not 

consider some eventual change in the system and update the trucks that already are inside 

the plant. However, in this scenario, it is not necessary for the driver to be connected to the 

system, therefore the informatic gadget and the ICT for that to happen are not required.   

Each algorithm will consider different scenarios and will have different goals. 

5.1. ALGORITHM NO.1 – THE DISTANCE APPROACH 

 

The first approach to the problem considers the distance traveled by each truck, and 

in minimizing it. With this, it is guaranteed that each truck will travel the minimum 

distance. This approach is, perhaps, the first idea that comes to mind when addressing this 

problem. By guiding the drivers through this approach, both drivers who do not know the 

plant and those who already know are guided to the required locations by the route that 

minimizes their travelled distance. Besides this, this algorithm will serve as a comparison 

term for the next algorithms. 

Therefore, if only one place is required to be visited by some truck, the overall route 

can be calculated by computing the shortest path between the entrance and the required 

place, and then calculating the shortest path between that required location and the exit of 

the facility. Note that the entrance and the exit of the facility can also be in the same 

location. Hence, this problem can be solved by using a SPP algorithm. 
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In the Chapter 2.3 of this dissertation, it is possible to observe the most known and 

used algorithms to address the SPP. The Dijkstra’s algorithm is one of the most famous 

and fast algorithms for solving the SPP, while having a relatively easy implementation. 

Besides this, it gives always the optimal solution. With all this, a Dijkstra’s algorithm is 

chosen to address this problem.  

However, if more than one service location is required to be visited, and for the 

minimum distance to be achieved, the problem can no longer be solved using only the SPP. 

In this case, it is necessary to use the traveling salesman problem algorithms. In the Chapter 

2.4 of this dissertation, several algorithms addressing the most typical cases of TSP were 

outlined. In the case of the precedence constrained TSP and the SOP, it is possible to ensure 

some of the positions of the nodes in the solution sequence. Thus, it is possible to impose 

some precedence’s in the possible route solutions, while in a regular TSP that is not 

possible (see Chapter 0).  

It is necessary to ensure the node representing the entrance of the facility to be the 

first node, and to ensure the node representing the exit of the facility to be the last node of 

the possible route solutions. In the case the entrance and the exit of the plant are in the same 

location, the ensured node to start and end is the same.  

To solve this problem, a Brute Force algorithm was designed. This Brute Force 

algorithm will test all the possible route solutions and give the one with the minimum 

distance. Besides this, each possible route solution must respect the fact that the node of 

the entrance and the exit of the facility must be the first and the last in each route, 

respectively. 

As stated earlier, brute force algorithms are not very advised when the problem is 

complex due to its higher computation times. Still, even if the number of nodes of a plant 

is high, it is not assumable that a truck requires more than four services in the same visit. 

Therefore, a brute force algorithm will not compute a higher number of different routes, 

thus giving always the optimal solution in shorter periods of time.   

Before entering in the Brute force algorithm, it is necessary to compute all the 

minimum distances between all pairs of nodes in the graph. As stated in the Chapter 2.3.2, 

one of the most famous algorithms for computing the APSPP is the Floyd-Warshall 
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algorithm. However, and as stated earlier, in the case there is only one service location to 

be visited, a Dijkstra’s algorithm will compute the minimum distances. In this case, and to 

use the same algorithm, that Dijkstra’s will be applied to all the nodes, thus computing the 

all pairs shortest path problem. The running time of computing the Dijkstra’s n times, is 

similar to what would it be if the Floyd-Warshall was used (see Chapter 2.3.1). 

With this, a matrix with the same dimensions of the adjacency matrix is created. 

Hence, in this matrix, each element has the minimum distance between each pair of nodes. 

It is possible that the minimum distance between two nodes not corresponds to the distance 

of travelling directly from one to the other, thus passing in intermediate nodes. The overall 

route must also convey that. 

Thus, whenever a truck must visit more than one service location in the facility, it 

is necessary to compute all the different possible routes it can go and choose the one that 

offers the minimum distance. When the driver informs the system about the required 

places, the algorithm will calculate all the combinations of the possible routes for that truck, 

leading him to its required places. The algorithm will calculate the minimum distance route, 

passing in all the required locations, starting at the entrance node of the facility, and 

terminating in the exit node of the facility.  

This algorithm must also consider the fact that, as already stated, the service 

locations may have a fixed sequence to process the trucks. In this case, this approach will 

compute a route, following the order of the service locations defined by the truck driver. 

However, the algorithm of this approach will also compute the minimum routes connecting 

all the required servers, not changing the required sequence by the driver. This will 

probably not result in the overall minimum distance route but will decrease the travelled 

distance for the trucks in that conditions.  

Therefore, generally, whenever a truck arrives at the facility, it proceeds to its 

check-in. During the check-in, the service locations are transmitted to the system, and the 

minimum distance route is calculated, and communicated to the driver again. As the 

distances of each road are fixed and do not update during the visit, the route it is only 

transmitted to the driver at the entrance and the driver follows that route. It is also possible 
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for a plant to have the entrance and exit in different locations and the algorithm will 

consider that as well. This approach can be observed in the next flowchart. 
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Figure 12 – Flowchart of the Algorithm No.1. 
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5.2. ALGORITHM NO. 2 – THE EQUILIBRIUM APPROACH (WITHOUT 

UPDATES)  

 

The algorithm presented in this approach is the greatest contribute of this 

dissertation, as well as the Algorithm No.3 -being the algorithm No.3 a variation of this 

one- and, to the best of my knowledge, there is no procedure gathering the characteristics 

of this approach. 

In the algorithm No.1, the distance travelled by each one of the trucks is minimized. 

Besides this, if each driver follows its associated route, every truck will reach its required 

places. With this, it is possible to overcome problems like the one where the drivers do not 

know where the service locations are and how to reach them.  

However, the problem of the congestion inside the plant is not addressed by that 

approach. If, on one hand, the congestion may decrease because the trucks are not getting 

lost inside the plant, on the other hand, due to this static choice of the routes (always 

choosing the minimum distance one) the congestion will increase in some roads of the 

facility.  

The algorithm of this approach is concerned with two principal and connected 

objectives. The servers’ (service locations) workload and the congestion and traffic jam in 

the roads. This approach will not consider any updates in the routes after being given at the 

entrance. Thus, the control of the trucks is made in the entrance and in the exit of the plant, 

being the route given to the driver during its check-in.  

There is a question that arises from the approach of the algorithm No.1. If, for 

example, two trucks arrive at the plant, requiring visiting the same service locations, the 

first approach will give the two trucks the exact same route, minimizing each truck 

traveling distance. Thus, the trucks will enter the facility, in FIFO sequence, following the 

same route. This, following the assumption that, in each service location, only one truck is 

served at a time, the first one will be served and the second one must wait for the service. 

Therefore, one good principle would be to divide them between the required service 
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locations. Thus, the first truck will travel to a service location, and the second to other 

service location with minimum workload, therefore avoiding congestion and unnecessary 

waiting times. This illustrative example shows the problem for only two trucks. But, with 

hundreds of trucks arriving at the facilities every day, this problem becomes even more 

relevant.   

A dynamic approach is necessary to overcome the unnecessary waiting times. 

When a truck enters a facility, besides the minimization of the traveling distance, it is also 

necessary to consider the workload of the required service locations. 

As stated earlier, this approach will not consider the updates of the routes after 

being given to the drivers. Therefore, for the workload of the servers being properly 

considered in the calculation of the routes, it is necessary to store information relative to 

the given routes, since the beginning of the calculations (for example, using the algorithm 

since the beginning of the day, in a possible application).  

Thus, it is necessary to consider the times of traversing each road of the facility. 

Hence, besides the distance of each road, the time of traversing a road will also be 

considered. It is important to remind that the service time of each truck in the servers is 

grossly higher than the time of crossing the roads. 

Therefore, when associating a truck to a route, each time of reaching and leaving a 

destination will be stored. Consider the situation when a truck enters a cement plant, at 

time 0 (with no more trucks inside the plant), with required service locations “A” and “B”. 

Assume that the route given to the driver is E-A-B-O (going from the entrance, E, to A, 

from A to B, and from B to the exit, O, consequently). Thus, if the road connecting E and 

A takes 10ut (units of time), and if the server A is empty at the time of its arrival, the truck 

will be served at the time of 10 in the server A. If its service time in A is 20ut, the truck 

will leave the server A at the time 30 (10+20). Thus, following the route, assume that the 

road connecting A and B takes 5ut. The truck will now reach the server B at time 35. If the 

server B is empty at that time, and if the service time of the truck in server B is 20ut the 

truck will leave the server B at the time 55 (35+20). Following the route, assume that the 

road connecting B and O is 5ut, so, the truck will leave the facility at time 60.  
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Therefore, it is necessary to store the times this truck reaches and leaves its required 

locations, for the servers’ workload level to be properly considered. Thus, this truck will 

be in the server A within [10,30] and will be in the server B within [35,55].  

Thus, in this approach, every time a route is given to a truck driver, the interval of 

times that each truck reaches and leaves each server will be stored. With this, as the routes 

are given at the entrance, for the next trucks to arrive, the algorithm will be able to consider 

the future workload of the servers. 

In what concerns the servers’ workload, this approach will, whenever a truck enters 

a plant, choosing the servers’ sequence by following the next premise. The first (or next) 

server to be served will be the one with least workload within a range. That is, the server 

with the minimum number of units of time occupied in the interval:  

[arrival time in the server, arrival time + service time] 

In order to clarify this situation, consider the following example. Assume that a 

truck X1, entering the facility at the time 25, has a service time of 20ut in the server A and 

a service time of 20ut in the server B. The servers A and B are the required service locations 

for the truck X1. The algorithm must choose what will be the first server and the second 

server for this truck, thus creating the servers’ sequence. 

Following any route, X1 would reach the server A at the time of 30. However, it is 

necessary to remember that every time a route is given, all the intervals of reaching and 

leaving the servers are stored. Thus, each server may or not have already scheduled trucks. 

The server A is occupied by some other truck in [12,32], and after that time is empty for 

the whole time. If the truck X1 goes to the server A first, it will be served at the time of 32 

and will end its service on that server at 52.  

On the other hand, if the truck X1 follows some other route, it would reach the 

server B at the time of 31, and that server is unoccupied at that time, thus ready to serve 

the truck X1. However, the server B has also a scheduled truck. The server B will be 

occupied in [33,53] by some other truck, that is already following its own route, and serving 

the truck X1 at 31 will delay the service of the other truck, that is expecting to be served 

on that server at 33. 
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It will be assumed that, if the server with minimum workload level is not occupied 

at the arrival time, the truck will occupy it during its service time, what may delay the 

service of other trucks. This happens so that the servers are working constantly, in the 

maximum occupancy level possible, without breaks. Yet, despite this, if this assumption 

can not be made in a future real implementation, it is relatively easy to modify it by 

changing the way the algorithm will works.  

In the previous example case, the workload of the server A is one truck during 2ut 

in the above-mentioned interval. While the server B is occupied 18ut within the same 

range. Thus, the algorithm will choose the server A to be the first server for the truck X1 

due to its lower workload in the interval. Therefore, X1 will reach the server A and wait 

for its service, that will occur in [32,52]. 

Therefore, the unnecessary waiting times are decreased for the truck X1, and the 

congestion in the servers is also decreased, thus increasing the equilibrium state of the 

facility.  

The choice of this interval is to overcome problems like the one described above. 

By choosing the least occupied server in that interval and not only at the arrival time, it is 

possible for the algorithm to consider a more concise workload of the servers. As stated in 

that example, a server can be unoccupied at the arrival time but heavily occupied in the 

next units of time.   

The goal is to consider the trucks that have entered the facility already. Choosing 

the sequence of servers by its workload, will allow the facility to be in a high level of 

equilibrium, tackling situations where some servers are overloaded, and others empty.  

Therefore, the sequence of the servers will be computed following that premise. 

The algorithm will always choose the least occupied server in that interval. After defining 

the first server to go, the algorithm will compute the same proceeding but for the remaining 

required services. In that case, having always in consideration the update of the times, that 

is, the time of ending the previous service.  

In the case there are two servers with the same minimum workload, the choice will 

fall in the nearest server, considering the travel time. The routes are given at the entrance, 
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and as the trucks are following its given routes, other trucks may enter the plant and change 

the servers’ workload. When two servers have the same minimum workload, by choosing 

the nearest one, the probability of their workload to be altered is lower because the truck 

will reach that server in a shorter period of time. Consequently, the sequence of the servers 

is computed by choosing always the nearest minimum occupied server in the above-

mentioned interval.  The algorithm will choose the servers, one by one, until all are chosen. 

This can be viewed as creating a precedence constraint between them (as in the TSPPC – 

see section 0), but, in this case, all the nodes will have a fixed position, defined by its 

workload.   

It is now necessary to define how the algorithm will deal with the choice of the 

roads to reach the required servers. The choice of the roads will also affect the sequence of 

the nodes. When calculating the workload level of the servers in the range stated above, 

the servers’ workload depends on the arrival time, and the route chosen to reach the servers 

will affect the arrival time.   

Each road has an associated time cost. The time of traversing each road is 

proportional to the distance of that road. Using the Traffic Assignment Problem, and to 

address the problem of the congestion inside the plant, the time of traversing each road will 

also be dependent on the number of trucks that are already in that road. That is, when a 

truck enters a road in a specific time, the cost of traversing that road is increased if there 

are some trucks crossing the road. As the flows increase in a road, the average velocity 

tends to decrease, causing increased traversing times (see Chapter 3).  

There are several methods to address the Traffic Assignment Problem. The 

incremental assignment procedure (see Chapter 3.3.5) is to assign fixed portions of traffic 

to the network, in steps. After assigning each portion of flow to the shortest route, the cost 

of that route is recalculated, following a link cost function. This link cost function will 

consider the volume assigned to that route so far. 

Due to great unpredictability regarding the number of trucks that will arrive and the 

locations they require to visit, the incremental assignment allows to overcome these 

characteristics by assigning only one truck in each step. That is, considering that only one 
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truck enters at a time in the plant and its route is calculated at that time, the portion to be 

assigned will only consider that truck.  

When assigning a route to a truck, it is necessary to, as made in the servers, store 

all the times the truck will traverse each road that composes its route. Per example, assume 

a truck that must travel from a specific node A to B, following the route A-E-B. The road 

A-E has a time cost of 5ut and the E-A has a time cost of 3ut. Thus, assuming that the truck 

starts the route at the time of 10, the road A-E will have one more truck in [10,15] and the 

road E-B will have one more truck within [15,18].  

Following the incremental assignment procedure, each portion of traffic (in this 

case, one truck) is assigned to the minimum time route. In this case, the time costs of each 

arc will be updated, for each time, considering all the trucks already inside the plant 

following its own routes. Thus, what may be the minimum time cost route connecting two 

nodes at a specified time, may or not be the minimum time cost at a different time, due to 

the trucks that are already inside the plant. The equation (4), developed by the Bureau of 

Public Roads, in 1964, will be used to calculate the updates in the travelling times, for each 

road. Therefore, every time a truck is associated to a route, the times each road is traversed 

are stored, for the costs to be properly updated when computing new minimum cost routes.  

When computing the minimum cost routes, a modified dynamic Dijkstra’s will be 

addressed. In this case, the difference is that, when comparing the time costs of the roads, 

the comparison can not be made directly. Whenever comparing the time costs of two roads, 

it is necessary to use the number of trucks that are in that roads, at the time of entering the 

roads. With this, the time costs are properly updated, using the link cost function stated 

above.  

Consider, as stated earlier, the times of traversing each route are stored in intervals. 

When counting the number of trucks traversing each road, the count must contemplate the 

time the truck will enter in that road. With this, it is necessary to compare the time of 

entering the road, and all the previous stored intervals, thus updating the costs of the roads. 

Therefore, assume that the algorithm is calculating the number of trucks traversing a road 

in a specific time. If that time is not within any of the previous stored intervals for that 

road, means that there is no truck traversing that road, at that time. In that case, the time of 
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traversing that road will be the free flow time. Thus, it is not necessary to decrement the 

number of trucks in the roads, because the number of trucks traversing a road will depend 

on all the previous intervals stored for each road.  

It is important to clarify that waiting times at the servers will not be allowed. 

Sometimes, when comparing two different routes for one location, the algorithm will 

calculate the number of trucks that are in the roads at the times of traversing the roads, and, 

depending on that, the algorithm will choose the route according with the time cost in that 

instant. If it was allowed to wait some units of time before entering the roads, the resultant 

route could be other with a possible shorter time cost. However, if it was allowed for the 

vehicles to wait in the nodes, the congestion in the nodes would increase. This problem is 

even more highlighted because in some servers the space is limited for the trucks to be 

there waiting. Therefore, even if waiting in the nodes would represent a shorter time cost 

route, that is not allowed.   

The algorithm that will compute the routes, considering the number of trucks in 

each road, is described in the next steps. 

1. Create two sets of nodes. The temporary ones, and the permanent.  
C is the current node.   

Assign temporarily T(x)=infinity, for all x.  

T(x) is the current time of going to the node x.  
T(C) is the time cost of reaching C. 
 

2. The current time is t0. Calculate the number of trucks in each road, at the                       
current time, connecting the current node and the neighbor nodes. Update the time 
costs of that roads, for the current time, using the link travel function (4). 
Find the node x, connecting the current node, with the smallest temporarily value of 
T(x). 
If there are no temporary nodes, then stops.  
Node x is labeled as permanent. Node x is now the current node. And the current time 

is updated for t0=t0+T(x).   
          

3. For each neighbor y of x, make the comparison:  
if T(x)+t(x,y)<T(y), then T(y) is changed to T(x)+t(x,y). 
To calculate t(x,y), the time of going from x to every neighbor y, it is necessary to 
update the time costs, but for the current fictious time. It is so necessary to calculate 
the number of trucks in each one of that roads, at the time of entering the roads, and 
to calculate the updated costs, using the function (4). 
  

4. Return to Step 2.  
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Using this algorithm, the congestion in the roads is highly decreased due to the fact 

that, when the number of trucks traversing one road, for a specific time, becomes higher, 

the algorithm will choose other roads, with less trucks, thus diminishing both the 

congestion and the travel time for the entities (each client of the cement plant). Therefore, 

from this point on, when calculating a “minimum (or shortest) time route”, the route will 

follow the previous steps. 

It is now possible to explain the overall procedure of the algorithm No.2, 

considering the sequence of the nodes and the choice of the roads. As stated earlier, 

whenever a truck arrives at a plant, it will proceed to its check-in. During this part, the 

truck driver will give the information regarding the required service locations and the 

service time in each service.  

After this, the algorithm will calculate, considering all the trucks already in the 

facility following their own routes, the shortest time routes to reach every required location. 

At this point, the algorithm will calculate the workload of each one of the required service 

locations. It is important to remember that the workload level of each server depends on 

the arrival time at each server, and that depends on the route to reach the server. The 

minimum occupied server will be chosen to be the first server to visit. In the case there are 

two servers with the same minimum workload, the nearest server will be the first one to be 

visited.  

The algorithm will update the time value, for the time the truck will exit the first 

chosen server. This is possible because the algorithm considers the time of traversing each 

road composing the computed route, and the service time of the truck in that server.  

After that, it will calculate the minimum time routes, considering the updated times, 

of going from the current server to the remaining required servers. At the time of reaching 

that servers, the least occupied server will be chosen to be the next server to go. The 

algorithm will, always updating the times, making this calculations and choices until there 

are no required locations left. At this point, the algorithm will now calculate the minimum 

time route connecting the current server and the exit of the plant. When this happens, the 

overall route is given to the driver and the times of traversing each road and 
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reaching/leaving each service location are stored. With this, it is possible for the system to 

have control of all the trucks already inside the plant, because all the already given routes 

are stored.  

It is possible to understand that, as the overall route is given at the entrance, all the 

time updates made during the algorithm calculations, are made assuming fictitious future 

times. With all the times traversing each road and reaching/leaving in each server stored, 

it is possible to calculate the number of trucks that will be occupying each road, and each 

server, for a specified instant of time. Thus, the routes given now, are given considering 

that future events.  

The overall procedure can also be observed in the next steps. 

1. Create two sets of nodes, containing the visited and unvisited nodes, representing the 
required locations. 
Place all the nodes in the unvisited set. 
 

2. Calculate the minimum time routes, for the current time, between the current node 
and all the unvisited locations. 
 

3. Calculate the workload of each server in the interval [arrival time in the server, arrival 
time + service time in the server] for each one of the required places. 
 

4. Choose to least occupied server to be the next server to visit. If there are more than 
one server with minimum workload, choose the nearest one, choosing the route with 
shortest time cost. 
Add that server to the visited set. Update the time value for the time of leaving that 
server (considering the time of the route to reach the server, the waiting time in the 
server, and service time in that server). 
 

5. If the unvisited set is empty, then stops. Present the overall route to the truck and 
store all the times the truck will traverse each road of the route, and the interval of 
time it will be in each one of the required locations, considering the waiting time and 
the processing time in the server. 
Else, go to step 2. 

 

To give a practical example of the overall algorithm, assume a truck X2, entering a 

facility at the time 5, and with three required locations, being them represented by the nodes 

C, D and E. The truck X2 requires a service time of 20ut in C, 15ut in D and 20ut in E. The 

algorithm will start computing its calculations. First, considering the current time (5), the 
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algorithm will compute three shortest time routes (one for each required location), 

considering all the trucks inside the plant so far. Assume that a route r1 will lead X2 to C 

and takes 3ut, r2 leads X2 to D having a time cost of 4ut and r3 leads X2 to E and takes 

3ut. The Figure 13 presents the schema for this example. 

 

Figure 13 - Minimum shortest routes for the truck X2. 

The algorithm will now calculate the workload of C, D and E, in 8ut (5+3), 9ut 

(5+4) and 8ut (5+3), respectively. Assume now that the least occupied server at that times 

is D, and the truck can be served when arrives at that server, which may not hold in other 

cases. Thus, the first server for X2 to follow is D, following the route r2. Now, the 

algorithm must update the time, fictitiously, for 24 (9+15), because X2 reaches D at 9, and 

has a service time of 15ut. In the Figure 14, it is possible to observe, marked in red, the 

choice of the first service location. 

 

Figure 14 - The first chosen route for the truck X2. 



 

 60 

This previous process will be repeated, but in this case the current fictitiously time 

is 24, and the routes to be computed are now between D and C and between D and E. The 

algorithm will repeat these processes till all the required places are “visited”, with shortest 

time routes connecting them. At this point, the algorithm gives X2 the route for it to follow. 

In the Figure 15-Figure 17 it is possible to observe the sequence of the remaining steps by 

the algorithm to find the overall route containing all the service locations. 

 

Figure 15 - The routes for the truck X2 - 2nd iteration. 

 

 

 

Figure 16 - Second chosen route for the truck X2. 
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Figure 17 - Overall route for the truck X2. 

 

At the time of giving the route to the driver, the algorithm will also store all the 

times the truck will pass in each road, and the intervals of time it will be in each one of the 

required locations. Thus, the system will have all the information considering all the trucks 

inside the plant for the next trucks to arrive.  

In this case, if the routes connecting the servers were only composed by one road, 

which probably will not hold in other examples, the road connecting the entrance and D 

will have one more truck in [5,9]. The server D will have a truck within [9,24]. The road 

connecting the servers D and E, will have one more truck in [24,26]. The server E will have 

one more truck in [26,46]. The road connecting E and C will have one more truck in 

[46,47]. The server C have one more truck [47,67]. The road connecting C and the exit will 

have one more truck within [67,69]. Assuming there was only one road composing each 

route, the algorithm will, at the time of transmitting the route for the driver, store all the 

previously stated information. 

This approach will also tackle the case when a truck has a fixed sequence for the 

service locations. In this case, the algorithm will work in a similar way, but it will not 

calculate the servers’ sequence, because that choice is already predefined. Every time a 

truck arrives at a facility with a fixed sequence for the service locations, the algorithm will 

calculate the minimum time routes, but the next server to visit is the server in the sequence 
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predefined by the driver. Besides this, the algorithm will also store all the times traversing 

the roads and servicing in each one of the servers. 

It is important to remind that, as there are no updates in the routes, being all the 

calculations made at the time of each trucks’ check-in, the servers’ workload could change 

and the servers with less occupation now may or may not be in the same servers in the next 

units of time, due to the changing of the workload configuration. In a little example, assume 

that a truck X3 enters a plant in a specific time, and must be served on the servers A, B and 

C. Assume now that, considering all the trucks already inside the plant, the sequence of 

servers for X3 is B-C-A, being the routes connecting the servers the minimum time ones.  

Consider now that, after X3 enters, several trucks arrive at the plant. These trucks 

have only one required place, and it is the server C. The algorithm will give the minimum 

time routes for that trucks to reach C, because there are no other required places for them 

to be guided. Therefore, when X3 reaches C, after being served in B, the server C will be 

more occupied than what have been previously calculated. This may result in a delayed 

service for the truck X3. In this particular situation, it would be preferable, both for the 

system and for the truck X3, for X3 to go first to the server A, if the workload in A is less 

than C at the time of reaching C. 

The algorithm No.2 does not consider the updates on the routes, and so, after a truck 

entering the plant, there is no possible way to change the course of the truck, not addressing 

these particular problems. However, since the algorithm stores all the times of all the trucks 

since the beginning of the work, the workload equilibrium of the facility is expected to be 

largely increased. Even when the servers’ workload changes drastically, the overall state 

of the factory is to be in a higher state of equilibrium, with less congestion, both in the 

service locations and in the roads, because each decision is made considering all the trucks 

that have entered the facility so far.  

Therefore, this approach leads each truck to its required locations. Above that, it 

chooses the servers by its workload, thus tackling the problem of the congestion of the 

servers.  Besides this, it also decreases the congestion in the roads of the plant, avoiding 

the ones with great number of trucks.   
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5.3. ALGORITHM NO.3 – THE EQUILIBRIUM APPROACH (WITH 

UPDATES) 

 

The third approach is, in a matter of fact, a variation of the algorithm No.2. The 

approach of the algorithm No.2 considers that all the routes are given to the drivers at the 

time of the trucks’ entrance. Therefore, it is not necessary for the trucks to be connected to 

the routing system when they are inside the plant. That approach, besides addressing the 

servers’ workload and the roads’ congestion, it does not consider the fact that it is possible 

for the workload of the servers to change after the trucks enter the plant, as in the example 

of the truck X3. Thus, what may be the best sequence of services and route (considering 

the workload configuration) now, may or not be the best over time. With this, it would be 

profitable for the trucks, and to the overall system, if it is possible to change the routes of 

the trucks already inside the plant. 

The third approach will consider that each truck driver has an interface (possibly a 

mobile application or other related gadget) connecting it to the system. Consequently, each 

route can be updated in every moment and the driver is always connected to the route 

system. Besides all of this, and to minimize the number of updates, not requiring for the 

driver to be always “looking” if there are updates, this approach will consider that the 

updates will be given at specific times, as will be explained below.  

When a truck arrives at a cement plant, and proceeds to its check-in, the algorithm 

will, as in the algorithm No.2, calculate the minimum time routes for each required 

location, considering all the trucks already inside the plant. That minimum time routes are 

calculated in the same way as in the algorithm No.2. After that, the algorithm will find the 

least occupied server at the time of reaching the servers, following the premise of the 

algorithm No.2, which means, the least occupied server in the above-mentioned interval 

(see algorithm No.2).  

The route leading the truck to the least occupied server is chosen, and that server is 

the first service location for the truck to be served. After that, and contrary to what happens 

in the algorithm No.2, the algorithm No.3 will not continue calculating the sequence of the 
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occupied servers, and the routes connecting all the servers. Instead, the algorithm No.3 will 

present the route for the first server to the truck driver, and it will store the sime of 

traversing each road and reaching/leaving the first service location. That same truck will 

follow the route for that server, and it will be serviced there. After that, the truck driver 

will require the new route (through its connection to the system). Thus, the algorithm will 

repeat the previous step but, in this case, considering all the remaining required locations, 

and the server on which the truck is currently located. The algorithm is going to calculate 

the new least occupied server and respective route for there, for the truck to follow. This 

procedure will continue until all the required services are reached, and so the algorithm 

will find the route for the truck to the exit of the plant.  

Thus, while some trucks are traversing each road to reach its destinations, the trucks 

at the entrance or in the servers are requiring for the system to calculate what will be the 

next server for they to go. Therefore, the control of the facility is much more precise. With 

this, the facility will be in a higher level of equilibrium. 

Thus, whenever a truck is on the entrance or finishes being served in some server, 

it requires to the system the next route to reach the next service location. The system must 

know which vehicle is requiring to know -by and identifier, per example- thus knowing the 

remaining required locations for that vehicle and its current location, to properly compute 

the minimum time route for the next server. As the requirements to the system will only be 

made at the entrance and in each server, instead of a mobile application or a gadget, other 

possibility is a fixed communication system placed in each service location. Thus, the truck 

driver will go, after loading or unloading its goods, to that machine, requiring the route to 

the next server (or to the exit).  

When a truck driver requires to the system the route for him to follow next, the 

algorithm will follow the next steps. 

1. Calculate the minimum time routes following the premise of the algorithm No.2, 

considering all the trucks inside the plant, between the current location of the truck, 

and all the required unvisited locations. 
If there are no more unvisited locations, calculate the minimum time route between 

the current location and the exit of the plant. Present that route for the truck driver 

and stops. 
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2. Calculate the workload of each server in the interval [arrival time in the server, arrival 

time + service time in the server] for each one of the required places. 

 

3. Choose to least occupied server to be the next server to visit. If there are more than 

one server with the minimum workload, choose the nearest one, choosing the route 

with shortest time cost. 
Add that server to the visited set, removing it from the unvisited set. 
 

4. Store the times of traversing each road and reching/leaving the service location. 

Present the route for the next service to the truck driver and stops. 

 

This algorithm tackles the problems of the congestion of the roads and the servers, 

but not only with the trucks that have entered the factory until the entrance of a truck. This 

approach will consider all the trucks inside the plant each time there is a requirement by a 

truck driver, which happens at the entrance of a vehicle or in the end of each service.  

Using the example given in the algorithm No.2, assume again the truck X2 arriving 

in the facility at the time 5. Its required locations are C, D and E. The truck X2 requires a 

service time of 20ut in C, 15ut in D and 20ut in E. The algorithm will start its calculations 

by compute all the minimum time routes, considering all the trucks already inside the plant, 

and the results of that routes are given in the Figure 13. 

At this point, the algorithm will calculate the workload of C, D and E, at the times 

of 8ut (5+3), 9ut (5+4) and 8ut (5+3), respectively. The calculation of the servers’ workload 

is made in the interval stated in the Step 2. Assume, as in the example of the algorithm 

No.2, that the least occupied server is D. The algorithm will, contrary to what happens in 

the previous approach, give the route for that server to the truck X2. 

Besides this, the algorithm will store the times for the truck X2, since the entrance 

until its service in D. In this example, and again assuming the route connecting the entrance 

to the server D it is only composed by one road, that road will have one more truck in [5,9]. 

The server D will have one more truck within the range [9,24]. 

Therefore, the truck X2 will follow that route and arrives in D at the time of 9. As 

its processing time in D is 20ut, the truck X2 will end its service in D at the time of 24.  
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While this happens, it is possible for other trucks to arrive at the plant, and the 

algorithm will give them routes for the least occupied servers, following minimum time 

routes. 

After being served in D, at the real time of 24, the truck driver will require its new 

route. The algorithm will now compute all the minimum time routes for the servers C and 

E. After that, the algorithm will calculate which one of them is the least occupied server.  

In this case, assume that new trucks have entered the plant while X2 traversed the route r2, 

and now, at the time of 24, the least occupied server is C and not E, contrary to the same 

example of the algorithm No.2. Now the algorithm will present other route, r4, for the truck 

X2 to follow and reach C. The algorithm will also store all the times of traversing the road 

r4, and the interval of reaching/leaving C. In this case, the road connecting D and E will 

have one more truck in [24,27] and C will have one more truck within the range [27,47].  

The truck driver will now follow its route for C, and after being serviced there, at 

the time of 47, it will require its new route. The algorithm will do the same as before, 

calculating the least occupied server and presenting the minimum time route for that server 

to the truck driver. Always storing the times of traversing each road, and reaching/leaving 

each service location, for other trucks entering now the plant or finishing its services to 

consider all the trucks and all the roads that are being traversed at each moment. When all 

the locations are visited, the algorithm will give the minimum time route for the truck to 

exit the plant, as observed in the Figure 18.  

It is important to state, as already mentioned, that in this little example, the truck 

X2 was serviced at the time of reaching the server, which could not happen if the server 

was occupied already. If a server is the least occupied server, but it is occupied at the arrival 

time, the truck must wait for its turn for being served. 
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Figure 18 - Overall Route for the truck X2 in the Algorithm No.3. 

 

This approach will, as in the other approaches, overcome the case when a truck has 

a predefined sequence for the service locations. In that case, this approach will calculate 

the minimum time route for the next server (following the predefined sequence), and 

present that route to the truck driver. After the truck being served in that location, the 

algorithm will compute the new route for the next server, always following the sequence 

until all the required locations are visited.  

Therefore, the greatest difference between this algorithm and the algorithm No.2 is 

the fact that the algorithm No.2 makes all the calculations assuming future fictitious times, 

considering all the trucks that have entered the facility until the time of each trucks’ arrival. 

This approach only considers future fictitious times to calculate what will be the next server 

to visit, and the minimum time route to reach that server.  
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6. IMPLEMENTATION: TESTS AND RESULTS 

6.1. ALGORITHM NO. 1  

The Dijkstra’s algorithm was implemented using Java programming language. This 

algorithm can be applied to compute the minimum distance between a pair of nodes, or to 

all the pairs on the graph, depending if the truck has one or more services to visit, 

respectively. 

If the truck has more than one required location to visit, a spread sheet was 

developed, containing the brute force algorithm. The algorithm in the spread sheet will 

compute, for a given number of locations, the minimum distance route, testing all the 

possible sequences of the required service locations. Thus, the shortest distance route is 

always found and given to the driver. 

Consider again the facility given by the graph presented in the Figure 11. Assume 

that the server represented by the node A is the entrance and exit of the facility, and the 

remaining nodes represent the service locations. The algorithm must assign the entrance 

and exit nodes to be the beginning and end of each one of the computed routes. In this case, 

the node A is assigned to be the beginning and the end of each one of the possible routes. 

Assume a given truck arriving at this facility, being B, C and E its required service 

locations. The answer given by the brute force algorithm is presented in the Table 3. 

Table 3 - Possible routes for a truck with required locations B, C and E - Algorithm No.1. 

 

 

 

 It is possible to observe all the feasible route solutions computed by the algorithm, 

as the minimum distance one, marked in a different color. In this case, there are more than 

one route with the same minimum cost.  

N=3 B,C,E  
B C E 17 
B E C 13 
C B E 13 
C E B 13 
E C B 16 
E B C 14 
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Considering all the minimum routes between each pair of the nodes, the overall 

route, calculated by the algorithm No.1 is: A-C-B-E-C-A with the cost of 13. 

Consider now a truck that needs to be served in the servers C and D, but in a 

predefined sequence. The truck must be served in C and only then, in D. For that case, the 

algorithm will compute the minimum distance route from A to C, from C to D, and then 

from D to A. Thus, the overall computed route is: A-C-B-D-B-A. 

With the computed tests, it is possible to state that this approach is calculating 

everything as expected and as defined in the algorithm explanation, for each truck arriving 

at each cement facility. Besides this, the computation time of this algorithm is low, 

computing the routes in few seconds, as expected. 

6.2. ALGORITHM NO. 2  

 

The Algorithm No.2 was implemented using Java programming language. Due to 

the great extension of the resultant code, it will not be presented in the Appendix section.  

As stated in the previous sections, each road has a distance, and an associated time. 

In this approach, the time of traversing a road it is not only proportional to the distance. 

The time of traversing a road is dependent on the number of trucks traversing it, at the 

moment of entering the road, thus being time dependent. Using the equation (4) there are 

some values that must be measured and determined. 

The free flow time, t0, represents the time of traversing each road, directly 

proportional to the distance of the road, and with no trucks traversing it.   

The x represents the flow for that road in that specific moment of time, which 

means, the number of trucks that are traversing the road at that moment. This constant may 

be different for the same road in different times, depending on the number of trucks that 

are, at that moment, traversing the road.  

It is also important to define what will be the capacity of the link per unit time, k. 

This constant is fixed for a road. As the roads may not be so large inside the facility, and 

the trucks have big dimensions, a capacity per unit time of 9 is chosen.  This choice can be 
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easily modified and can be different for each road. However, in this implementation it is 

assumed to be equal for every road composing the plant.  

The Bureau of Public Roads has also defined two model parameters, α and β. 

Typically, these values are 0.15 and 4, respectively. As it is possible to observe in the 

equation (4), these parameters are proportional to the sensibility of the equation. This 

means that, for the same x (the number of trucks in the road), the higher these values, the 

higher the time cost that road will have in that moment. Thus, and to consider again that 

the roads inside the factory are dealing with vehicles with big dimensions, the value of α 

is set to be 0.15, and the value of β is 5. With this, since β is in the exponent, the function 

will become more “sensible” to the number of trucks, originating routes with different 

roads, for a smaller number of trucks traversing it. It is important to mention again that 

these parameters can be easily modified if it is required to.  

Thus, the average time cost, t, for a truck to traverse a road at a specific time is 

presented in the equation (5). 𝑡 =  𝑡0 ∙ [1 + 0.15 ∙ (𝑥9)5]   (5) 

The inputs of the developed program are, as explained in the algorithm explanation, 

the entrance time, the required service locations and the time the truck must spend in each 

service.  

With the implementation addressed, it is possible to compute some tests. Assume 

the example where a cement facility is represented by the graph presented in the Figure 11. 

Consider a truck T1, entering in that facility at the time 0, and having the servers B 

and C as its required locations. Assume that the required service time for this truck in B is 

16ut, and in C is 12ut. In the Figure 19 it is possible to observe the response by the 

developed program. 



 

 72 

 

Figure 19 - Computed route for the truck T1. 

The truck T1 will first follow the route A-C. At the time of 2 and until the time of 

12, the truck will be served in C. The server C is chosen to be the first server. This happens 

because the workload of B and C is equal and so the nearest server is the chosen to be the 

next. After this, that truck will follow the route C-B, being served in B in 15 and exiting 

that server at 31. The truck will exit the facility at 35.  

In this example, the truck T1 will be served at the arrival time in each one of the 

required servers. This happens because T1 is the first truck entering the facility (at time 0), 

and each server is empty at the arrival times. 

In the same example, after 1ut, consider another truck, T2, arriving at the same 

facility with the same required places, B and C. The truck T2 has the same service times 
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of 16ut in B, and 12ut in C. Thus, the program will compute the route presented in the 

Figure 20.  

 

Figure 20 - Computed route for the truck T2. 

In the computed route, it is possible to observe that, as this truck is entering at the 

time 1, at the times of reaching the required locations, the server C is occupied for one 

truck and B is empty for the whole time. Thus, this truck will be served first in B, and then 

in C.  

One important aspect about this route is the traveling time for the server B. Instead 

of being exactly 3ut of time, it is slightly higher than that. This happens because T2 is 

entering the facility at the time 1, traversing the road A-C at the time [1,3], and T1 have 

entered the facility at 0 and is traversing the same road in [0,2]. Thus, due to the updates in 

the roads’ costs, the cost of traversing that road is increased. It is also possible to observe 
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that it is only slightly increased because there is only one truck traversing the road at that 

time. However, due to the exponential type of the function, with a higher number of trucks, 

the cost will reach greater values. 

Assume now that, in the same facility, the server B is occupied in [3,15], and the 

server C is occupied in [11,20] by some trucks that already are inside the plant.  

Consider that other truck T3, at the time 7, is entering the facility with the required 

servers B, C, D and E and with a required service time of 15ut in each one of the servers. 

The computed route for that truck is presented in the Figure 21. 

 

Figure 21 - Computed route for the truck T3. 
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The first chosen server was the server D. This happens because the time for 

reaching B is 3ut and for reaching C is 2ut. At the time 10 (7+3), the server B is occupied. 

At the time of 9 (7+2) the server C is unoccupied but will be occupied at the time 11. 

Choosing this server will provoke a delay in the truck that is already scheduled for that 

time. As the servers D and E have no trucks scheduled and are empty, the algorithm has 

chosen the server D to be the first and E to be the second. Thus, when the truck arrives in 

each one of the servers (including B and C), it will not delay any already scheduled truck 

and will not have to wait any time to be served.  

In the previous examples the trucks were always served at the time of reaching the 

servers, not having to wait for its services. However, as illustrated in the Figure 22, there 

are cases when this may not happen. The Figure 22 shows part of the route for a truck T4, 

entering the facility at the time of 10, and having the server B as its required location. In 

this case, the truck must wait for its service, due to the already scheduled trucks. 

 

Figure 22 - Example of a truck having to wait for its service.  

The developed program has also the functionality which allows the driver to have 

already a predefined sequence for the service locations, working as described in the 

algorithm explanation.  

Besides all the printed information in each route, it is possible to know some 

additional informative data, such as the time of reaching the servers and the time of 

traversing each one of the roads for each truck, if it is required to.  
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Therefore, the algorithm No.2 is working as explained in the Chapter 5.2. Besides 

that, the algorithm computes the routes in few seconds (1-2 seconds), thus having a short 

computation time for a real application.  

The implementation of the algorithm No.3 is not presented due to its similarity with 

the algorithm No.2. With this, the algorithm No.3 has a short computation time, as happens 

with the algorithm No.2.   

6.3. SIMULATION: ALGORITHMS COMPARISON 

So far, the algorithms were developed and implemented. Thus, it is now necessary 

to test these algorithms with several trucks as in a real-life scenario would happen.    

Through simulation, it is possible to test and analyze different settings and potential 

impacts in the productive systems. This technique is done virtually, thus allowing to test 

different scenarios and overcome difficulties that a first real implementation could bring 

[120].  A simulation software (the Simio Simulation Software) will simulate a real work 

day for different specified sets of trucks, entering the same facility.  

In one case, each truck entering the facility will follow a route computed by the 

algorithm No.1 and some results will be measured. In the other case, the algorithm No.2 

will calculate the routes for the same set of trucks and the same results will be measured. 

With this, some of the results will be presented and discussed, and the remaining ones will 

be presented in the Appendix section. 

Using the facility represented by the graph in the Figure 11, consider the entrance 

and the exit of the facility to be again represented by the node A, while the remaining nodes 

represent the service locations.  

In the Figure 23, the facility is represented in the Simio environment. The node A 

is represented by two servers, being one for the entrance and the other for the exit of the 

plant.  
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Figure 23 - Representation of the cement plant in Simio software. 

Other important aspect about the modeling is the one considering the paths (roads) 

between each pair of servers. In Simio software, it is necessary to create paths connecting 

the entrance/exit of the servers and the entrance/exit of the other servers. Thus, it is possible 

for a truck to pass through the servers without being serviced there. In a little example, 

assume that a truck needs to reach the server E, following the route: A-C-B-E. In this case, 

this truck will only be served in E, but it will pass through the servers B and C. 

Consequently, the truck needs to pass through those servers without being serviced there, 

and it is so necessary to create those paths for the simulation to be properly executed. 

Moreover, each path in the simulation is a time path. This means that each truck will spend 

a time cost to traversing the paths. In this case, and to simplify, the time of traversing each 

road will be equal, in number, to the distance of the path. 

The first set to be simulated, composed by 5 trucks, is presented in the Table 4– 

Appendix section. Each truck has four required locations, which, in this case, means that 

each truck requires to visit all the servers in the plant. In the same table, it is also possible 

to observe the entrance time of each one of the trucks. The service time for each one of the 

required places is presented in the Table 5 – Appendix section. In this example, each one 

of the trucks will have the same required service time in each location. 

In the algorithm No.1 scenario, the simulation occurred in a total time of 141ut.  

The simulation time represents the time the last truck exited the plant after 141 units of 



 

 78 

time, meaning that the facility was able to serve that trucks in that amount of time. Usually, 

in literature concerning scheduling and job sequencing, this time is also named 

“Makespan”. The maximum time that a truck stayed inside the facility was 137ut. In this 

simulation, the entities (trucks) had an average time in the system of 101ut.  

In the simulation of the algorithm No.2 for the same set, the results were different. 

The simulation occurred in the total time of 118ut. The average time in the system was 

94ut and the maximum time that a truck stayed inside the facility was 114ut. It is possible 

to observe all the collected results of these two simulations in the Appendix section –Table 

6 and Table 7. 

The next sets of trucks will be fully randomized, both in the number of required 

services as in which services each truck must be served. The service times in each server 

will also be random and will be fixed for all trucks in the same set, as in the previous 

simulation. Trucks with the predefined sequences will not be allowed, being all the routes 

entirely calculated by the two algorithms. The first one is composed by 15 trucks. In the 

Table 8 and Table 9 – Appendix section, it is presented the arriving time, the required 

service(s) locations and the service time in each server, for each truck. 

In the case of the algorithm No.1, the simulation occurred in 242ut. The average 

time that a truck stayed inside the facility was 145ut, approximately, and the maximum 

time that a truck spent in the system was 225ut. In the algorithm No.2, the simulation took 

221ut, the maximum time that a truck stayed inside the plant is 213ut and the average time 

that a truck stayed inside the facility was 144ut, approximately. The remaining collected 

data of these simulations is also presented in the Appendix section (Table 10 and Table 

11).  

The next set is composed by 20 trucks and is presented in the Table 12 – Appendix 

section. In the Table 13- Appendix section, it is also presented the service times of each 

truck in the service locations. As in the previous examples, the service time in each server 

will be the same, independently of the truck. 

The simulation using the algorithm No.1 occurred in 298ut. The maximum time 

that a truck stayed inside the facility was 291ut and the average time inside the facility was 

169ut.  The simulation of the same set, but now using the algorithm No.2, took 292ut. The 
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maximum time that a truck stayed inside the plant was 282ut and the average time was 

162ut. As in the previous simulations, the remaining collected data of these simulations is 

presented in the Appendix section (Table 14 and Table 15).  

Consider now other facility represented by the graph in the Figure 24. Assume that 

the entrance of the facility is represented by the node ‘A’ and the exit is represented by the 

node marked as ‘G’, being the service locations represented by the remaining nodes. 

 

Figure 24 – Cement facility graph. 

The representation of this facility in the Simio environment can be observed in the 

Figure 25. It is possible to observe the node A and G representing the entrance and the exit 

of the facility. 

 

Figure 25 - Simio representation of the facility. 
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The first set to be simulated in this facility is presented in the Table 16– Appendix 

section and it is composed by 10 trucks. As in the previous examples, the service time of 

each truck in the servers will be independent on the truck, as it is possible to observe in the 

Table 17- Appendix section. Using the algorithm No.1, the simulation took 612ut and the 

maximum time that a truck stayed inside the plant was 603ut. On the other hand, the 

simulation of the algorithm No.2 occurred in 491ut and the maximum time a truck stayed 

inside the plant was 483ut. The results of these simulations are present in the Appendix 

section- Table 18 and Table 19. 

Consider now the set of trucks presented in the Table 20- Appendix section. This 

set is composed by 16 trucks and the service time each truck will take in each server is 

presented in the Table 21– Appendix section. The simulation of the algorithm No.1 

occurred in 839ut, and the maximum time a truck stayed inside the plant was 821ut. The 

simulation of the algorithm No.2 took 768ut and the maximum time a truck stayed inside 

the plant was 763ut. As in the previous simulations, the remaining collected data is present 

in the Table 22 and Table 23– Appendix section. 

The next set to be simulated, composed by 30 trucks, is presented in the Table 24- 

Appendix section. The service times of each one of the service locations are presented in 

the Table 25- Appendix section. The simulation of the algorithm No.1 occurred in 1731ut, 

corresponding to the time the facility was able to serve the 30 trucks. The maximum time 

a truck stayed inside the facility was 1699ut. In the simulation of the algorithm No.2, the 

facility was able to serve the same set of trucks in 1687ut. In this simulation, the maximum 

time a truck stayed inside of the facility, was 1682ut. The remaining results of these two 

simulations are presented in the Table 26 and Table 27- Appendix section. 

6.4. DISCUSSION 

The results of the presented simulations show that, in general, the algorithm No.2 

had better results than the algorithm No.1. The simulated sets took always more time in the 

case of the algorithm No.1 when compared with the algorithm No.2. This means that, for 

the same simulated facilities in the same conditions, the sets of trucks were served in shorter 

periods of time, when the routes have been computed by the algorithm No.2. 
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In the computed simulations, it was possible to notice that, although some trucks 

may have shorter times inside the facility using the algorithm No.1, some other trucks have 

very higher times using this algorithm. This happens due to the fact that the algorithm No.1 

does not choose the routes considering the servers’ workload, while the algorithm No.2 

does. Besides that, the algorithm No.2 chooses the roads to reach the servers by considering 

the number of trucks traversing each road, at each time. Therefore, using the algorithm 

No.2, not only the facilities are able to serve the trucks in shorter periods of time, as it is 

possible for the congestion in the roads and in the servers to be decreased.  

These results are somehow expected due to the fact that the algorithm No.2 does 

not give always the same route for trucks requiring the same locations. By choosing always 

the least occupied server at the time of reaching the servers and by computing different 

routes, avoiding the congested ones, the facility reaches a higher level of equilibrium. 

Usually, when computing a system that is static (always giving the same route, in the case 

of the algorithm No.1, the minimum distance one), there will be one (or several) road(s) 

and server(s) that will represent the so-called bottleneck(s). The algorithm No.2 tries to 

equilibrate the occupation both in the servers and in the roads, not overloading any of them, 

thus eliminating these bottlenecks or, at least, mitigating its effects. Besides the results of 

the simulations, it was possible to observe that, in the simulations using the algorithm No.2, 

the trucks were much more dispersed inside the facilities, decreasing the queues in the 

servers, per example. Also, it was possible to observe that, in some cases, the algorithm 

No.2 has chosen some roads that in the simulations of the Algorithm No.1 had not been 

used at all. In the roads case, as the sets have a limited and relatively lower number of 

trucks, the division may not be so present. However, in a day to day of a factory, with 

hundreds of trucks, the roads would become much more congested. In that case, the 

algorithm No.2 will provoke a much more highlighted division of the trucks in the roads. 

With all stated so far, it is possible to conclude that these two approaches have 

better results when compared with the lack of assistance drivers have in cement plants. In 

both approaches the trucks are guided to the required locations. However, the algorithm 

No.2 seems to be a most robust solution, because, although in some cases the trucks are 

not following the minimum distance routes, they are following a route leading them to 

servers with least workload levels, minimizing its unnecessary waiting times. Besides this, 
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the roads for that servers are chosen, always considering the number of trucks traversing 

them, at each time, thus decreasing the congestion levels inside the plant, both in the roads 

as in the service locations. With this, a better journey for the truck is provided, also 

improving the organization levels and equilibrium of the facility. 

Although not being simulated in this work, the results of the Algorithm No.3 are 

expected to be even better, or in the worst case, equal, when compared with the algorithm 

No.2. This prediction relies on the fact that the algorithm No.3 computes the routes the 

same way the algorithm No.2 does. However, as this algorithm gives always the route for 

the next server, it encompasses possible modifications in the occupation of the servers and 

in the roads after entering the facility. If the servers’ workload does not change during the 

tours, the computed routes of the two algorithms will be the same. 
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7. PARKING MANAGEMENT 

The algorithms No.2 and No.3 tackle the congestion in the facilities, both in the 

roads and in the service locations. However, as hundreds of trucks arrive at cement 

facilities every day, the trucks may not enter the facilities at the arrival time, waiting for 

their turn in the parking lot. In the simulations presented in the Chapter 6.3, the trucks have 

entered the facility in FIFO order, that is, the first trucks reaching the parking lot of the 

facility and proceeding to the check-in, are the first ones to enter. This may not be the best 

solution, both for the truck itself and for the facility. With this, a parking management is 

also necessary to study. 

 Next, there are several thought policies for the entrance management in the facility: 

1. FIFO: The first trucks arriving at the facility, are the first ones to enter, and thus 

consequently. 

2. Shortest Processing Time (SPT): The trucks with the least service times in the 

required servers are the first entering the facility, and thus consequently. 

3. Minimum number of required locations: The first trucks entering the facility are 

the ones with the minimum number of required locations, and thus 

consequently. 

4. Minimum exiting time: Considering all the times inside the facility (waiting 

times + service times + roads’ traversing times), the truck with the least required 

time inside the plant, will be the first truck to enter. That rule is applied to the 

remaining trucks, in the same way. The exiting time for a truck it also depends 

on the chosen route for it to follow. Thus, to apply this policy, it is necessary to 

implement another algorithm to compute the route for the truck inside the plant. 

5. Least workload levels: The first truck entering the facility is the truck that 

requires the servers with least workload levels, at that moment, and thus 

consequently. 

6. Other related policies. 

When implementing one of these policies, an aspect that it is necessary to have in 

mind is that, as the trucks are always arriving at the facility, the choice of the next trucks 

to enter can not consider all the trucks in the park every time. If all the trucks in the park 
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are always considered when the choice is made, some trucks may greatly delay its entrance, 

or worse, may never be chosen to be the next to enter. To overcome this issue, regardless 

the chosen entrance rule, the entrance system must include also a FIFO order. This means 

that the entrance policy must be applied to batches of trucks in the park. The batches will 

be serviced in FIFO rule (the first group of trucks arriving at the facility, is the first group 

to be processed), and the order of the batches will not be changed. The order of the trucks 

composing the batches will be changed respecting the chosen entrance rule. With this, a 

truck can be delayed at the entrance if it is not advantageous for it and for the system, but 

it will not be delayed more than a fixed number of trucks.  

With all stated so far, an algorithm for the entrance management was designed. This 

algorithm will consider batches of 5 trucks and will sort the trucks composing the batches, 

following the policy number 4. If the next truck entering the facility is the truck requiring 

the least time inside the plant, the congestion both in the servers and roads is expected to 

be decreased. Besides this, it is expected that the trucks will wait shorter times for their 

services. This because the time inside the plant includes all the waiting times, service times 

and routing times. Thus, if the next truck to enter is the one with least required time inside 

the plant, it is assumable that or its service time is quicker and/or the required service 

locations for that truck are with lower workload levels. Thus, by using this entrance rule it 

is expected that the trucks with the required service locations having higher workload levels 

are delayed at the parking lot instead of entering the facility, not contributing for the 

congestion inside the plant.  

Therefore, the algorithm starts by creating a batch of 5 trucks, composed by the 

trucks that have arrived earlier at the facility. After that, a variation of the Algorithm No.2 

will calculate the routes for each truck composing the batch. This variation will proceed 

exactly as the algorithm No.2. However, these calculations are made in an auxiliary way, 

aiming to know the time each one of the trucks would leave the plant, if they followed the 

computed routes. By calculating the routes with the Algorithm No.2, the problem of the 

congestion inside the plant is also tackled, as observed in the previous sections. Thus, the 

truck with the minimum required time inside the facility is chosen to be the first truck to 

enter. For the one with the minimum exiting time, the Algorithm No.2 will compute its 

route, but this time for that truck to follow. Besides this, the algorithm will store the times 
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traversing each road and reaching/leaving the required service locations. After that, the 

algorithm will proceed in the same way, but now, for the remaining trucks composing the 

batch. The algorithm only ends when all the trucks composing the batch are inside the 

facility. When this happens, the algorithm will compute the new routes but now for a new 

batch, containing the next 5 trucks that have arrived in FIFO order. 

The algorithm can also be observed in the next steps. 

1. Create a batch composed by 5 trucks. These trucks are the 5 that arrived earlier at 

the facility. 

2. There are more trucks in the batch? If there are not, Stops. 

Calculate, in an auxiliary way and for each one of the trucks in the batch, the routes 

for each truck using the Algorithm No.2 and measure the time each truck will exit 

the facility if they follow that route. 

3. Choose the truck with the minimum required time inside the facility (the minimum 

exiting time) and present the route for that truck driver, storing all the times the 

truck will reach/leave the servers, and will traverse each road. 

4. Remove that truck for the batch.  

Go to Step 2. 

This algorithm was developed, aiming to be an extension of the Algorithm No.2, 

considering also an entrance management. With this, it is expected for the facility to reach 

a higher equilibrium level when compared with the algorithm No.2, and, besides that, for 

the truck driver to have a better journey, with shortest waiting times in the servers, while 

inside the facility. 

Using the implementation of the Algorithm No.2, and by computing some 

modifications, the designed algorithm englobing the parking management was also 

implemented using Java programing language. This implemented algorithm has the 

information of the trucks that are currently in the parking lot as input, thus creating the 

batch and computing the routes for each truck composing the batch, as already explained.  

Consider a batch of trucks, numbered from one to five, following the arrival order. 

Thus, the truck number one was the first truck arriving at the facility, and the fifth the last 

truck of that batch. The algorithm will present the entrance order in the facility for that 
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batch. In this example, the computed entrance order for that batch is: 3-2-4-1-5. It is 

possible to observe that the trucks are sorted and will not enter the facility in FIFO order. 

Besides the entrance order, the routes for each truck are also presented, in the same format 

as observed in the tests of the Chapter 6.2.  

 This algorithm was also simulated using the Simio simulation software, as 

presented in the Chapter 6.3. The results of the entrance management algorithm will be 

compared with the already presented results of the algorithm No.2, for the same sets of 

trucks. Therefore, the entrance time will be the same, but the entrance order and the routes 

will be different, depending on the algorithm. 

All the simulations were made using the facility presented in the Figure 24. The 

first set to be simulated is the one presented in the Table 16- Appendix section. The 

simulation time using the entrance management algorithm occurred in 461ut while the 

simulation of the same set using the algorithm No.2 took 491ut. As already stated, the 

entrance management algorithm aims to decrease the waiting times in the servers. Thus, 

the average waiting time in the servers using the algorithm No.2 was 42ut, while using the 

entrance management algorithm was 41ut. The simulation results for this set, using the 

entrance management algorithm can be observed in the Table 28-Appendix Section. 

 Using the set presented in the Table 20- Appendix section, the simulation using 

the entrance management algorithm took 742ut, while the simulation of the algorithm No.2 

occurred in 768ut, as already observed. The average waiting time in the servers was also 

decreased by using the entrance management algorithm, being 73ut, while in the algorithm 

No.2 simulation was 82ut. The simulation data of the entrance management algorithm for 

this set is presented in the Table 29- Appendix section. 

The simulation of the set presented in the Table 24- Appendix section, occurred in 

1697ut using the entrance management algorithm, while using the algorithm No.2 took 

1687ut. The average waiting time in the servers was 226ut using the entrance management 

algorithm, while using the algorithm No.2 was 247ut. The collected simulation data of the 

entrance management algorithm for this set is presented in the Table 30- Appendix section.  

The simulation results of the developed entrance management algorithm are 

promising for a real implementation. Although in one of the simulated sets the time the 
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facility has served all the trucks was higher using this algorithm, the simulation time has 

decreased for the remaining simulated sets. The average waiting times in the servers has 

decreased in all the simulations, as previously expected, thus proving the lower servers’ 

workload levels and the better journey provided for the clients.  

Besides this, by using the developed algorithm for the entrance management, the 

congestion inside the plant is decreased even further when compared with situations where 

“only” a route system is used. This situation is even more emphasized because the 

developed algorithm for the entrance management uses the algorithm No.2 as one of its 

steps, which tackles the congestion by itself, as already illustrated. 
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8. CONCLUSION AND FUTURE RESEARCH 

One of the goals of this dissertation was to understand the supply chain of the 

cement industry and to perceive how the plants are dealing with the trucks management 

inside the plants. Hereupon, with the lack of assistance drivers have when they enter the 

facilities, it was imperative to create a routing system, to improve the SCM of the cement 

industry. A literature review about the most famous static and dynamic routing problems 

was made aiming to tackle the management of the trucks inside the plants. It was possible 

to notice the differences between the static and dynamic routing problems, regarding their 

purposes, implementations, features, and others.  

With this literature research, it was possible to develop and implement three 

different algorithms to tackle the problem of the trucks’ management. The computation 

time was low in all the implementations. This is an important achievement, since in the 

current digitalization era decisions must be made quickly. The algorithm No.1 guides the 

trucks to the required locations through the minimum distance route and serves as a 

comparison term for the other two. The algorithms No.2 and No.3, named equilibrium 

approaches, are the main contribution of this dissertation. These two dynamic algorithms, 

being one a variation of the other, consider not only the travelled distance, but also the 

servers’ workload and the roads’ congestion to compute the routes.  

Using a simulation software, it was possible to test the algorithms, with sets of 

trucks, as in a real-life scenario would happen. The simulation compared, for the same sets 

of trucks and for two different facilities, the algorithm No.1 and No.2. The algorithm No.3 

is a variation of the second one, and it was not simulated. The results of the algorithm No.2 

were better than the algorithm No.1, in all the simulated tests and facilities, reducing the 

unnecessary waiting times, thus making the facility serve the trucks in shorter periods of 

time. The results of the algorithms No.2 shown the equilibrium of the facilities and the 

service quality for the clients was highly increased, as it is suggested and evidenced by the 

computed tests and simulations. Besides this, it was possible to notice that the trucks were 

much more dispersed inside the facilities in the simulation of the algorithm No.2, when 

compared with the algorithm No.1.  
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With this, the algorithm No.2 is very promising for a real implementation. The 

algorithm No.3, although not simulated, due to its characteristics, is expected to be even 

better or, at least equal, than the results of the algorithm No.2.  

Concerning now the parking management, several policies for the entrance were 

also studied and an algorithm addressing this problem was developed and implemented. 

This algorithm allows an entrance management, different from using a FIFO rule, as it is 

currently used. This management aims to decrease even further the wasted times inside the 

facility, already reduced by the developed routing algorithms. Using the same simulation 

software, the developed entrance management algorithm was compared with the algorithm 

No.2. The simulation results of the entrance management algorithm are also promising, 

reducing the average waiting times in the servers in all the simulated sets.  

As future work, there are several important topics whose investigation must 

continue. The results of the algorithm No.2 are promising, but it is necessary to test and 

simulate the algorithm using larger instances, different facilities, and different service times 

for each truck, for the results to be even more reliable. Yet, as the sets were randomized, 

even with instances containing hundreds of trucks and different facilities, it is expected that 

the results would be even better when compared with the algorithm No.1. This because 

with a greater number of trucks, the effects of the bottlenecks will be even more 

accentuated. The algorithm No.3 must also be simulated, in the same sets and facilities as 

the others, aiming to prove that its results would be better, or in the worst case, the same, 

as the algorithm No.2. If the results continue to be reliable and promising, a real application 

of the algorithm No.2 or No.3 should be considered and addressed. 

The study of further applications for the algorithm No.2 and No.3 must also be 

considered. Applications in supermarkets (or related) that have hundreds of entities 

arriving each day, each one with required locations, having queues in that locations, and 

routes connecting each one of the locations, are examples of the similarity of these 

processes. One other example of other possible application is also in industry, but in the 

job sequencing machines problem. In these facilities, each entity must be served in one or 

several machines before being ready to be dispatched. Each entity, depending on its 
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characteristics, must follow a route inside the facility, traveling through the required 

machines. Besides this, each entity can require a different service time in each machine.  

The developed algorithm for the entrance management of the trucks must also be 

tested and simulated, with larger and different instances, thus proving its reliability for a 

further real application. Besides that, this algorithm uses one of the several suggested 

entrance rules. Other algorithms using different entrance rules should also be implemented 

and simulated as a comparison term. With this, it would be possible to confirm if the chosen 

policy is the one that gives the best results. 
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APPENDIX 

 

Table 4 - Set composed by 5 trucks. 

Truck     
Id 

Entrance 
Time 

No. Of 
Required 
Locations 

Required 
Service 

Locations 
1 0 4 B,C,D,E 

2 1 4 B,C,D,E 

3 2 4 B,C,D,E 

4 3 4 B,C,D,E 

5 4 4 B,C,D,E 
 

Table 5 - Service times for the Set composed by 5 trucks. 

Server 
Service 
Time 

B 16 
C 12 
D 19 
E 17 

 

Table 6 - Algorithm No.1 results of the simulation for the set composed by 5 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 65 

Truck2 [Population] FlowTime TimeInSystem Average 83 

Truck3 [Population] FlowTime TimeInSystem Average 101 

Trcuk4 [Population] FlowTime TimeInSystem Average 119 

Trcuk5 [Population] FlowTime TimeInSystem Average 137 

ServerB [Resource] Capacity UnitsAllocated Total 5 

ServerB InputBuffer Content NumberInStation Average 1.06383 

ServerB InputBuffer HoldingTime TimeInStation Average 30 

ServerC [Resource] Capacity UnitsAllocated Total 5 

ServerD [Resource] Capacity UnitsAllocated Total 5 

ServerD InputBuffer Content NumberInStation Average 0.141844 

ServerD InputBuffer HoldingTime TimeInStation Average 4 

ServerE [Resource] Capacity UnitsAllocated Total 5 

ServerE InputBuffer Content NumberInStation Average 0.070922 
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ServerE InputBuffer HoldingTime TimeInStation Average 2 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 101 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 137 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 65 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 5 

 

Table 7 - Algorithm No.2 results of the simulation for the set composed by 5 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 103.05 

Truck2 [Population] FlowTime TimeInSystem Average 86 

Truck3 [Population] FlowTime TimeInSystem Average 88 

Trcuk4 [Population] FlowTime TimeInSystem Average 80.05 

Trcuk5 [Population] FlowTime TimeInSystem Average 114.0333 

ServerB [Resource] Capacity UnitsAllocated Total 5 

ServerB InputBuffer Content NumberInStation Average 0.448743 

ServerB InputBuffer HoldingTime TimeInStation Average 10.59333 

ServerC [Resource] Capacity UnitsAllocated Total 5 

ServerD [Resource] Capacity UnitsAllocated Total 5 

ServerD InputBuffer Content NumberInStation Average 0.254448 

ServerD InputBuffer HoldingTime TimeInStation Average 6.006667 

ServerE [Resource] Capacity UnitsAllocated Total 5 

ServerE InputBuffer Content NumberInStation Average 0.016662 

ServerE InputBuffer HoldingTime TimeInStation Average 0.393333 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 94.22667 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 114.0333 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 80.05 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 5 

 

Table 8 - Set composed by 15 trucks. 

Truck    
Id 

Entrance 
Time 

No. Of 
Required 
Locations 

Required 
Service 

Locations 

1 0 3 B,D,E 

2 1 2 B,C 

3 2 3 C,D,E 

4 3 4 B,C,D,E 
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5 5 4 B,C,D,E 

6 6 2 D,E 

7 7 1 B 

8 8 4 B,C,D,E 

9 10 4 B,C,D,E 

10 11 2 B,E 

11 12 3 B,D,E 

12 13 3 B,C,D 

13 15 2 B,C 

14 16 3 C,D,E 

15 17 4 B,C,D,E 

 

Table 9 - Service times for the Set composed by 15 trucks. 

Server 
Service 
Time 

B 16 

C 12 

D 19 

E 17 

 

Table 10 - Algorithm No.1 results of the simulation for the set composed by 15 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 89.01667 

Truck2 [Population] FlowTime TimeInSystem Average 134 

Truck3 [Population] FlowTime TimeInSystem Average 121.0167 

Truck4 [Population] FlowTime TimeInSystem Average 119.0333 

Truck5 [Population] FlowTime TimeInSystem Average 136.0333 

Truck6 [Population] FlowTime TimeInSystem Average 49.01667 

Truck7 [Population] FlowTime TimeInSystem Average 64 

Truck8 [Population] FlowTime TimeInSystem Average 171.0333 

Truck9 [Population] FlowTime TimeInSystem Average 207.0333 

Truck10 [Population] FlowTime TimeInSystem Average 172 

Truck11 [Population] FlowTime TimeInSystem Average 179.0167 

Truck12 [Population] FlowTime TimeInSystem Average 185.0333 

Truck13 [Population] FlowTime TimeInSystem Average 184 
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Truck14 [Population] FlowTime TimeInSystem Average 141.0167 

Truck15 [Population] FlowTime TimeInSystem Average 225 

ServerB [Resource] Capacity UnitsAllocated Total 12 

ServerB InputBuffer Content NumberInStation Average 3.706612 

ServerB InputBuffer HoldingTime TimeInStation Average 74.75 

ServerC [Resource] Capacity UnitsAllocated Total 10 

ServerC InputBuffer Content NumberInStation Average 0.173554 

ServerC InputBuffer HoldingTime TimeInStation Average 4.2 

ServerD [Resource] Capacity UnitsAllocated Total 11 

ServerD InputBuffer Content NumberInStation Average 0.393113 

ServerD InputBuffer HoldingTime TimeInStation Average 8.648485 

ServerE [Resource] Capacity UnitsAllocated Total 11 

ServerE InputBuffer Content NumberInStation Average 1.181129 

ServerE InputBuffer HoldingTime TimeInStation Average 25.98485 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 145.0833 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 225 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 49.01667 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 15 

 

Table 11 - Algorithm No.2 results of the simulation for the set composed by 15 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 114.0167 

Truck2 [Population] FlowTime TimeInSystem Average 70 

Truck3 [Population] FlowTime TimeInSystem Average 124.0333 

Truck4 [Population] FlowTime TimeInSystem Average 193 

Truck5 [Population] FlowTime TimeInSystem Average 197.0333 

Truck6 [Population] FlowTime TimeInSystem Average 82.03333 

Truck7 [Population] FlowTime TimeInSystem Average 32 

Truck8 [Population] FlowTime TimeInSystem Average 213.0333 

Truck9 [Population] FlowTime TimeInSystem Average 170 

Truck10 [Population] FlowTime TimeInSystem Average 140 

Truck11 [Population] FlowTime TimeInSystem Average 187 

Truck12 [Population] FlowTime TimeInSystem Average 170.0333 

Truck13 [Population] FlowTime TimeInSystem Average 152 

Truck14 [Population] FlowTime TimeInSystem Average 148.0333 

Truck15 [Population] FlowTime TimeInSystem Average 182.0167 

ServerB [Resource] Capacity UnitsAllocated Total 12 

ServerB InputBuffer Content NumberInStation Average 2.755241 

ServerB InputBuffer HoldingTime TimeInStation Average 50.75 
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ServerC [Resource] Capacity UnitsAllocated Total 10 

ServerC InputBuffer Content NumberInStation Average 0.787212 

ServerC InputBuffer HoldingTime TimeInStation Average 17.4 

ServerD [Resource] Capacity UnitsAllocated Total 11 

ServerD InputBuffer Content NumberInStation Average 0.932589 

ServerD InputBuffer HoldingTime TimeInStation Average 18.73939 

ServerE [Resource] Capacity UnitsAllocated Total 11 

ServerE InputBuffer Content NumberInStation Average 1.401749 

ServerE InputBuffer HoldingTime TimeInStation Average 28.16667 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 144.9489 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 213.0333 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 32 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 15 

 

Table 12 - Set composed by 20 trucks. 

Truck    
Id 

Entrance 
Time 

No. Of 
Required 
Locations 

Required 
Service 

Locations 
1 0 1 B 

2 0 2 D,E 

3 1 2 B,E 

4 1 1 C 

5 2 3 B,D,E 

6 3 4 B,C,D,E 

7 4 4 B,C,D,E 

8 4 4 B,C,D,E 

9 4 2 D,E 

10 5 3 B,D,E 

11 5 1 E 

12 6 2 B,C 

13 7 4 B,C,D,E 

14 8 4 B,C,D,E 

15 8 3 B,D,E 

16 8 3 C,D,E 

17 9 4 B,C,D,E 

18 10 1 B 

19 10 4 B,C,D,E 

20 10 3 B,D,E 
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Table 13 - Service times for the Set composed by 20 trucks. 

Server 
Service 
Time 

B 19 

C 10 

D 12 

E 17 

 

Table 14 - Algorithm No.1 results of the simulation for the set composed by 20 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 26 

Truck2 [Population] FlowTime TimeInSystem Average 62.01667 

Truck3 [Population] FlowTime TimeInSystem Average 291 

Truck4 [Population] FlowTime TimeInSystem Average 14 

Truck5 [Population] FlowTime TimeInSystem Average 111.0167 

Truck6 [Population] FlowTime TimeInSystem Average 154.0333 

Truck7 [Population] FlowTime TimeInSystem Average 168 

Truck8 [Population] FlowTime TimeInSystem Average 185 

Truck9 [Population] FlowTime TimeInSystem Average 75.01667 

Truck10 [Population] FlowTime TimeInSystem Average 176.0167 

Truck11 [Population] FlowTime TimeInSystem Average 40.01667 

Truck12 [Population] FlowTime TimeInSystem Average 267 

Truck13 [Population] FlowTime TimeInSystem Average 216 

Truck14 [Population] FlowTime TimeInSystem Average 232 

Truck15 [Population] FlowTime TimeInSystem Average 224.0167 

Truck16 [Population] FlowTime TimeInSystem Average 88.01667 

Truck17 [Population] FlowTime TimeInSystem Average 265 

Truck18 [Population] FlowTime TimeInSystem Average 206 

Truck19 [Population] FlowTime TimeInSystem Average 288 

Truck20 [Population] FlowTime TimeInSystem Average 282.0167 

ServerB [Resource] Capacity UnitsAllocated Total 15 

ServerB InputBuffer Content NumberInStation Average 6.275168 

ServerB InputBuffer HoldingTime TimeInStation Average 124.6667 

ServerC [Resource] Capacity UnitsAllocated Total 10 

ServerC InputBuffer Content NumberInStation Average 0.060403 

ServerC InputBuffer HoldingTime TimeInStation Average 1.8 

ServerD [Resource] Capacity UnitsAllocated Total 14 

ServerD InputBuffer Content NumberInStation Average 0.100671 

ServerD InputBuffer HoldingTime TimeInStation Average 2.142857 
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ServerE [Resource] Capacity UnitsAllocated Total 16 

ServerE InputBuffer Content NumberInStation Average 1.448993 

ServerE InputBuffer HoldingTime TimeInStation Average 26.9875 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 168.5083 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 291 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 14 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 20 

 

Table 15 - Algorithm No.2 results of the simulation for the set composed by 20 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 26 

Truck2 [Population] FlowTime TimeInSystem Average 79.01667 

Truck3 [Population] FlowTime TimeInSystem Average 82 

Truck4 [Population] FlowTime TimeInSystem Average 14 

Truck5 [Population] FlowTime TimeInSystem Average 157 

Truck6 [Population] FlowTime TimeInSystem Average 195.0167 

Truck7 [Population] FlowTime TimeInSystem Average 269 

Truck8 [Population] FlowTime TimeInSystem Average 250 

Truck9 [Population] FlowTime TimeInSystem Average 125.0333 

Truck10 [Population] FlowTime TimeInSystem Average 176.0167 

Truck11 [Population] FlowTime TimeInSystem Average 57.01667 

Truck12 [Population] FlowTime TimeInSystem Average 96 

Truck13 [Population] FlowTime TimeInSystem Average 259.0167 

Truck14 [Population] FlowTime TimeInSystem Average 275.0167 

Truck15 [Population] FlowTime TimeInSystem Average 189 

Truck16 [Population] FlowTime TimeInSystem Average 207.0167 

Truck17 [Population] FlowTime TimeInSystem Average 240.0167 

Truck18 [Population] FlowTime TimeInSystem Average 54 

Truck19 [Population] FlowTime TimeInSystem Average 282 

Truck20 [Population] FlowTime TimeInSystem Average 206 

ServerB [Resource] Capacity UnitsAllocated Total 15 

ServerB InputBuffer Content NumberInStation Average 2.277169 

ServerB InputBuffer HoldingTime TimeInStation Average 44.32889 

ServerC [Resource] Capacity UnitsAllocated Total 10 

ServerC InputBuffer Content NumberInStation Average 1.085388 

ServerC InputBuffer HoldingTime TimeInStation Average 31.69333 

ServerD [Resource] Capacity UnitsAllocated Total 14 

ServerD InputBuffer Content NumberInStation Average 2.140525 

ServerD InputBuffer HoldingTime TimeInStation Average 44.64524 
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ServerE [Resource] Capacity UnitsAllocated Total 16 

ServerE InputBuffer Content NumberInStation Average 2.057192 

ServerE InputBuffer HoldingTime TimeInStation Average 37.54375 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 161.9083 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 282 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 14 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 20 

 

Table 16 - Set composed by 10 trucks. 

Truck 
Id 

Entrance 
Time 

No. Of 
Required 
Locations 

Required 
Service 

Locations 

1 0 2 B,E 

2 1 3 B,C,E 

3 2 3 C,E,F 

4 3 3 B,E,F 

5 4 4 B,C,E,F 

6 5 1 D 

7 6 4 B,C,E 

8 7 2 C,F 

9 8 3 B,C,E,F 

10 9 4 B,C,E,F 
 

Table 17 - Service times for the Set composed by 10 trucks. 

Server 
Service 
Time 

B 48 

C 53 

D 45 

E 55 

F 50 

 

Table 18 - Algorithm No.1 results of the simulation for the set composed by 10 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 
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Truck1 [Population] FlowTime TimeInSystem Average 114.0061 

Truck2 [Population] FlowTime TimeInSystem Average 283 

Truck3 [Population] FlowTime TimeInSystem Average 226 

Truck4 [Population] FlowTime TimeInSystem Average 335 

Truck5 [Population] FlowTime TimeInSystem Average 443 

Truck6 [Population] FlowTime TimeInSystem Average 52 

Truck7 [Population] FlowTime TimeInSystem Average 494 

Truck8 [Population] FlowTime TimeInSystem Average 169 

Truck9 [Population] FlowTime TimeInSystem Average 549 

Truck10 [Population] FlowTime TimeInSystem Average 603 

ServerB [Resource] Capacity UnitsAllocated Total 7 

ServerB InputBuffer Content NumberInStation Average 1.596405 

ServerB InputBuffer HoldingTime TimeInStation Average 139.5714 

ServerC [Resource] Capacity UnitsAllocated Total 7 

ServerC InputBuffer Content NumberInStation Average 0.161765 

ServerC InputBuffer HoldingTime TimeInStation Average 14.14286 

ServerD [Resource] Capacity UnitsAllocated Total 1 

ServerE [Resource] Capacity UnitsAllocated Total 8 

ServerE InputBuffer Content NumberInStation Average 0.852941 

ServerE InputBuffer HoldingTime TimeInStation Average 65.25 

ServerF [Resource] Capacity UnitsAllocated Total 6 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 326.8006 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 603 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 52 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 10 

 

Table 19 - Algorithm No.2 results of the simulation for the set composed by 10 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 131 

Truck2 [Population] FlowTime TimeInSystem Average 295 

Truck3 [Population] FlowTime TimeInSystem Average 239 

Truck4 [Population] FlowTime TimeInSystem Average 296 

Truck5 [Population] FlowTime TimeInSystem Average 432 

Truck6 [Population] FlowTime TimeInSystem Average 52 

Truck7 [Population] FlowTime TimeInSystem Average 320 

Truck8 [Population] FlowTime TimeInSystem Average 266 

Truck9 [Population] FlowTime TimeInSystem Average 483 

Truck10 [Population] FlowTime TimeInSystem Average 372 

ServerB [Resource] Capacity UnitsAllocated Total 7 
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ServerB InputBuffer Content NumberInStation Average 0.782077 

ServerB InputBuffer HoldingTime TimeInStation Average 54.85714 

ServerC [Resource] Capacity UnitsAllocated Total 7 

ServerC InputBuffer Content NumberInStation Average 0.661914 

ServerC InputBuffer HoldingTime TimeInStation Average 46.42857 

ServerD [Resource] Capacity UnitsAllocated Total 1 

ServerE [Resource] Capacity UnitsAllocated Total 8 

ServerE InputBuffer Content NumberInStation Average 0.270876 

ServerE InputBuffer HoldingTime TimeInStation Average 16.625 

ServerF [Resource] Capacity UnitsAllocated Total 6 

ServerF InputBuffer Content NumberInStation Average 0.613035 

ServerF InputBuffer HoldingTime TimeInStation Average 50.16667 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 288.6 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 483 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 52 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 10 

 

Table 20 - Set composed by 16 trucks. 

Truck Id 
Entrance 

Time 

No. Of 
Required 
Locations 

Required 
Service 

Locations 
1 0 1 D 

2 1 3 C,E,F 

3 2 2 E,C 

4 3 3 B,E,F 

5 4 4 B,C,E,F 

6 5 4 B,E,F,C 

7 6 2 C,F 

8 7 1 D 

9 8 3 B,E,F 

10 9 2 E,C 

11 11 1 D 

12 12 3 B,E,C 

13 13 4 B,C,E,F 

14 15 3 C,E,F 

15 17 4 B,C,E,F 

16 18 4 B,C,E,F 
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Table 21 - Service times for the Set composed by 16 trucks. 

Server 
Service 
Time 

B 42 

C 56 

D 48 

E 60 

F 40 

 

Table 22 - Algorithm No.1 results of the simulation for the set composed by 16 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 55 

Truck2 [Population] FlowTime TimeInSystem Average 301 

Truck3 [Population] FlowTime TimeInSystem Average 230 

Truck4 [Population] FlowTime TimeInSystem Average 239 

Truck5 [Population] FlowTime TimeInSystem Average 415 

Truck6 [Population] FlowTime TimeInSystem Average 474 

Truck7 [Population] FlowTime TimeInSystem Average 165 

Truck8 [Population] FlowTime TimeInSystem Average 96 

Truck9 [Population] FlowTime TimeInSystem Average 474 

Truck10 [Population] FlowTime TimeInSystem Average 279 

Truck11 [Population] FlowTime TimeInSystem Average 140 

Truck12 [Population] FlowTime TimeInSystem Average 604 

Truck13 [Population] FlowTime TimeInSystem Average 706 

Truck14 [Population] FlowTime TimeInSystem Average 527 

Truck15 [Population] FlowTime TimeInSystem Average 762 

Truck16 [Population] FlowTime TimeInSystem Average 821 

ServerB [Resource] Capacity UnitsAllocated Total 8 

ServerB InputBuffer Content NumberInStation Average 1.334923 

ServerB InputBuffer HoldingTime TimeInStation Average 140 

ServerC [Resource] Capacity UnitsAllocated Total 11 

ServerC InputBuffer Content NumberInStation Average 0.401669 

ServerC InputBuffer HoldingTime TimeInStation Average 30.63636 

ServerD [Resource] Capacity UnitsAllocated Total 3 

ServerD InputBuffer Content NumberInStation Average 0.150179 

ServerD InputBuffer HoldingTime TimeInStation Average 42 

ServerE [Resource] Capacity UnitsAllocated Total 12 

ServerE InputBuffer Content NumberInStation Average 2.628129 

ServerE InputBuffer HoldingTime TimeInStation Average 183.75 



 

 114 

ServerF [Resource] Capacity UnitsAllocated Total 10 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 393 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 821 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 55 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 16 

 

Table 23 - Algorithm No.2 results of the simulation for the set composed by 16 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 55 

Truck2 [Population] FlowTime TimeInSystem Average 287 

Truck3 [Population] FlowTime TimeInSystem Average 230 

Truck4 [Population] FlowTime TimeInSystem Average 379 

Truck5 [Population] FlowTime TimeInSystem Average 704 

Truck6 [Population] FlowTime TimeInSystem Average 763 

Truck7 [Population] FlowTime TimeInSystem Average 296 

Truck8 [Population] FlowTime TimeInSystem Average 96 

Truck9 [Population] FlowTime TimeInSystem Average 340 

Truck10 [Population] FlowTime TimeInSystem Average 279 

Truck11 [Population] FlowTime TimeInSystem Average 140 

Truck12 [Population] FlowTime TimeInSystem Average 576 

Truck13 [Population] FlowTime TimeInSystem Average 555 

Truck14 [Population] FlowTime TimeInSystem Average 633 

Truck15 [Population] FlowTime TimeInSystem Average 607 

Truck16 [Population] FlowTime TimeInSystem Average 552 

ServerB [Resource] Capacity UnitsAllocated Total 8 

ServerB InputBuffer Content NumberInStation Average 0.891927 

ServerB InputBuffer HoldingTime TimeInStation Average 85.625 

ServerC [Resource] Capacity UnitsAllocated Total 11 

ServerC InputBuffer Content NumberInStation Average 1.579427 

ServerC InputBuffer HoldingTime TimeInStation Average 110.2727 

ServerD [Resource] Capacity UnitsAllocated Total 3 

ServerD InputBuffer Content NumberInStation Average 0.164063 

ServerD InputBuffer HoldingTime TimeInStation Average 42 

ServerE [Resource] Capacity UnitsAllocated Total 12 

ServerE InputBuffer Content NumberInStation Average 1.377604 

ServerE InputBuffer HoldingTime TimeInStation Average 88.16667 

ServerF [Resource] Capacity UnitsAllocated Total 10 

ServerF InputBuffer Content NumberInStation Average 1.071615 

ServerF InputBuffer HoldingTime TimeInStation Average 82.3 
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Exit [DestroyedEntities] FlowTime TimeInSystem Average 405.75 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 763 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 55 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 16 

  

Table 24 - Set composed by 30 trucks. 

Truck Id 

Entrance 
Time 

No. Of 
Required 
Locations 

Required 
Service 

Locations 

1 0 2 C,E 

2 1 1 D 

3 2 3 B,E,F 

4 3 3 C,E,F 

5 4 4 B,C,E,F 

6 5 4 B,C,E,F 

7 6 4 B,C,E,F 

8 8 3 B,C,E 

9 10 2 C,F 

10 11 4 B,C,E,F 

11 12 2 C,E 

12 13 4 B,C,E,F 

13 14 2 C,F 

14 15 3 C,E,F 

15 17 1 D 

16 18 4 B,C,E,F 

17 19 3 C,E,F 

18 20 2 C,E 

19 21 4 B,C,E,F 

20 22 4 B,C,E,F 

21 23 2 C,E 

22 24 3 B,E,F 

23 25 4 B,C,E,F 

24 26 4 B,C,E,F 

25 27 1 D 

26 29 2 C,E 

27 30 4 B,C,E,F 

28 31 4 B,C,E,F 

29 32 3 B,C,E 

30 33 1 D 
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Table 25 - Service times for the Set composed by 30 trucks. 

Server 
Service 
Time 

B 58 

C 70 

D 50 

E 65 

F 60 

 

Table 26 - Algorithm No.1 results of the simulation for the set composed by 30 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 430 

Truck2 [Population] FlowTime TimeInSystem Average 57 

Truck3 [Population] FlowTime TimeInSystem Average 468 

Truck4 [Population] FlowTime TimeInSystem Average 532 

Truck5 [Population] FlowTime TimeInSystem Average 776 

Truck6 [Population] FlowTime TimeInSystem Average 845 

Truck7 [Population] FlowTime TimeInSystem Average 914 

Truck8 [Population] FlowTime TimeInSystem Average 982 

Truck9 [Population] FlowTime TimeInSystem Average 211 

Truck10 [Population] FlowTime TimeInSystem Average 1049 

Truck11 [Population] FlowTime TimeInSystem Average 488 

Truck12 [Population] FlowTime TimeInSystem Average 1117 

Truck13 [Population] FlowTime TimeInSystem Average 277 

Truck14 [Population] FlowTime TimeInSystem Average 845 

Truck15 [Population] FlowTime TimeInSystem Average 91 

Truck16 [Population] FlowTime TimeInSystem Average 1182 

Truck17 [Population] FlowTime TimeInSystem Average 971 

Truck18 [Population] FlowTime TimeInSystem Average 550 

Truck19 [Population] FlowTime TimeInSystem Average 1249 

Truck20 [Population] FlowTime TimeInSystem Average 1318 

Truck21 [Population] FlowTime TimeInSystem Average 617 

Truck22 [Population] FlowTime TimeInSystem Average 1291 

Truck23 [Population] FlowTime TimeInSystem Average 1426 

Truck24 [Population] FlowTime TimeInSystem Average 1495 

Truck25 [Population] FlowTime TimeInSystem Average 131 

Truck26 [Population] FlowTime TimeInSystem Average 681 

Truck27 [Population] FlowTime TimeInSystem Average 1561 

Truck28 [Population] FlowTime TimeInSystem Average 1630 
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Truck29 [Population] FlowTime TimeInSystem Average 1699 

Truck30 [Population] FlowTime TimeInSystem Average 175 

ServerB [Resource] Capacity UnitsAllocated Total 16 

ServerB InputBuffer Content NumberInStation Average 3.878683 

ServerB InputBuffer HoldingTime TimeInStation Average 419.625 

ServerC [Resource] Capacity UnitsAllocated Total 24 

ServerC InputBuffer Content NumberInStation Average 1.641248 

ServerC InputBuffer HoldingTime TimeInStation Average 118.375 

ServerD [Resource] Capacity UnitsAllocated Total 4 

ServerD InputBuffer Content NumberInStation Average 0.13056 

ServerD InputBuffer HoldingTime TimeInStation Average 56.5 

ServerE [Resource] Capacity UnitsAllocated Total 24 

ServerE InputBuffer Content NumberInStation Average 5.290583 

ServerE InputBuffer HoldingTime TimeInStation Average 381.5833 

ServerF [Resource] Capacity UnitsAllocated Total 19 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 835.2667 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 1699 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 57 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 30 

 

Table 27 - Algorithm No.2 results of the simulation for the set composed by 30 trucks. 

Object 

Name Data Source Category Data Item Statistic Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 541 

Truck2 [Population] FlowTime TimeInSystem Average 57 

Truck3 [Population] FlowTime TimeInSystem Average 1189 

Truck4 [Population] FlowTime TimeInSystem Average 739 

Truck5 [Population] FlowTime TimeInSystem Average 1512 

Truck6 [Population] FlowTime TimeInSystem Average 1682 

Truck7 [Population] FlowTime TimeInSystem Average 1575 

Truck8 [Population] FlowTime TimeInSystem Average 979 

Truck9 [Population] FlowTime TimeInSystem Average 612 

Truck10 [Population] FlowTime TimeInSystem Average 1396 

Truck11 [Population] FlowTime TimeInSystem Average 555 

Truck12 [Population] FlowTime TimeInSystem Average 1305 

Truck13 [Population] FlowTime TimeInSystem Average 623 

Truck14 [Population] FlowTime TimeInSystem Average 1436 

Truck15 [Population] FlowTime TimeInSystem Average 91 

Truck16 [Population] FlowTime TimeInSystem Average 1319 

Truck17 [Population] FlowTime TimeInSystem Average 1248 
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Truck18 [Population] FlowTime TimeInSystem Average 687 

Truck19 [Population] FlowTime TimeInSystem Average 1222 

Truck20 [Population] FlowTime TimeInSystem Average 1426 

Truck21 [Population] FlowTime TimeInSystem Average 754 

Truck22 [Population] FlowTime TimeInSystem Average 1033 

Truck23 [Population] FlowTime TimeInSystem Average 1158 

Truck24 [Population] FlowTime TimeInSystem Average 1522 

Truck25 [Population] FlowTime TimeInSystem Average 131 

Truck26 [Population] FlowTime TimeInSystem Average 902 

Truck27 [Population] FlowTime TimeInSystem Average 1587 

Truck28 [Population] FlowTime TimeInSystem Average 1516 

Truck29 [Population] FlowTime TimeInSystem Average 1165 

Truck30 [Population] FlowTime TimeInSystem Average 175 

ServerB [Resource] Capacity UnitsAllocated Total 16 

ServerB InputBuffer Content NumberInStation Average 1.820984 

ServerB InputBuffer HoldingTime TimeInStation Average 192 

ServerC [Resource] Capacity UnitsAllocated Total 24 

ServerC InputBuffer Content NumberInStation Average 4.299941 

ServerC InputBuffer HoldingTime TimeInStation Average 302.25 

ServerD [Resource] Capacity UnitsAllocated Total 4 

ServerD InputBuffer Content NumberInStation Average 0.133966 

ServerD InputBuffer HoldingTime TimeInStation Average 56.5 

ServerE [Resource] Capacity UnitsAllocated Total 24 

ServerE InputBuffer Content NumberInStation Average 6.093657 

ServerE InputBuffer HoldingTime TimeInStation Average 428.3333 

ServerF [Resource] Capacity UnitsAllocated Total 19 

ServerF InputBuffer Content NumberInStation Average 1.847659 

ServerF InputBuffer HoldingTime TimeInStation Average 164.0526 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 1004.567 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 1682 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 57 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 30 

 

Table 28 - Entrance management algorithm results of the simulation for the set composed by 

10 trucks. 

Object Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 186 

Truck2 [Population] FlowTime TimeInSystem Average 350 

Truck3 [Population] FlowTime TimeInSystem Average 294 
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Truck4 [Population] FlowTime TimeInSystem Average 248 

Truck5 [Population] FlowTime TimeInSystem Average 402 

Truck6 [Population] FlowTime TimeInSystem Average 52 

Truck7 [Population] FlowTime TimeInSystem Average 214 

Truck8 [Population] FlowTime TimeInSystem Average 292 

Truck9 [Population] FlowTime TimeInSystem Average 429 

Truck10 [Population] FlowTime TimeInSystem Average 452 

B [Resource] Capacity UnitsAllocated Total 7 

B InputBuffer Content NumberInStation Average 0.533623 

B InputBuffer HoldingTime TimeInStation Average 35.14286 

C [Resource] Capacity UnitsAllocated Total 7 

C InputBuffer Content NumberInStation Average 0.668113 

C InputBuffer HoldingTime TimeInStation Average 44 

D [Resource] Capacity UnitsAllocated Total 1 

E [Resource] Capacity UnitsAllocated Total 8 

E InputBuffer Content NumberInStation Average 0.859002 

E InputBuffer HoldingTime TimeInStation Average 49.5 

F [Resource] Capacity UnitsAllocated Total 6 

F InputBuffer Content NumberInStation Average 0.496746 

F InputBuffer HoldingTime TimeInStation Average 38.16667 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 291.9 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 452 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 52 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 10 

 

Table 29 - Entrance management algorithm results of the simulation for the set composed by 

16 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 55 

Truck2 [Population] FlowTime TimeInSystem Average 201 

Truck3 [Population] FlowTime TimeInSystem Average 440 

Truck4 [Population] FlowTime TimeInSystem Average 319 

Truck5 [Population] FlowTime TimeInSystem Average 417 

Truck6 [Population] FlowTime TimeInSystem Average 98 

Truck7 [Population] FlowTime TimeInSystem Average 226 

Truck8 [Population] FlowTime TimeInSystem Average 255 

Truck9 [Population] FlowTime TimeInSystem Average 494 

Truck10 [Population] FlowTime TimeInSystem Average 553 

Truck11 [Population] FlowTime TimeInSystem Average 140 
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Truck12 [Population] FlowTime TimeInSystem Average 612 

Truck13 [Population] FlowTime TimeInSystem Average 369 

Truck14 [Population] FlowTime TimeInSystem Average 607 

Truck15 [Population] FlowTime TimeInSystem Average 665 

Truck16 [Population] FlowTime TimeInSystem Average 724 

B [Resource] Capacity UnitsAllocated Total 8 

B InputBuffer Content NumberInStation Average 0.402965 

B InputBuffer HoldingTime TimeInStation Average 37.375 

C [Resource] Capacity UnitsAllocated Total 11 

C InputBuffer Content NumberInStation Average 1.530997 

C InputBuffer HoldingTime TimeInStation Average 103.2727 

D [Resource] Capacity UnitsAllocated Total 3 

D InputBuffer Content NumberInStation Average 0.172507 

D InputBuffer HoldingTime TimeInStation Average 42.66667 

E [Resource] Capacity UnitsAllocated Total 12 

E InputBuffer Content NumberInStation Average 1.107817 

E InputBuffer HoldingTime TimeInStation Average 68.5 

F [Resource] Capacity UnitsAllocated Total 10 

F InputBuffer Content NumberInStation Average 1.570081 

F InputBuffer HoldingTime TimeInStation Average 116.5 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 385.9375 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 724 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 55 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 16 

 

Table 30 - Entrance management algorithm results of the simulation for the set composed by 

30 trucks. 

Object 

Name Data Source Category Data Item 

Statistic 

Type Value 

Truck1 [Population] FlowTime TimeInSystem Average 57 

Truck2 [Population] FlowTime TimeInSystem Average 411 

Truck3 [Population] FlowTime TimeInSystem Average 735 

Truck4 [Population] FlowTime TimeInSystem Average 669 

Truck5 [Population] FlowTime TimeInSystem Average 1157 

Truck6 [Population] FlowTime TimeInSystem Average 423 

Truck7 [Population] FlowTime TimeInSystem Average 772 

Truck8 [Population] FlowTime TimeInSystem Average 1119 

Truck9 [Population] FlowTime TimeInSystem Average 1188 

Truck10 [Population] FlowTime TimeInSystem Average 1181 

Truck11 [Population] FlowTime TimeInSystem Average 95 
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Truck12 [Population] FlowTime TimeInSystem Average 625 

Truck13 [Population] FlowTime TimeInSystem Average 484 

Truck14 [Population] FlowTime TimeInSystem Average 903 

Truck15 [Population] FlowTime TimeInSystem Average 1461 

Truck16 [Population] FlowTime TimeInSystem Average 1329 

Truck17 [Population] FlowTime TimeInSystem Average 848 

Truck18 [Population] FlowTime TimeInSystem Average 548 

Truck19 [Population] FlowTime TimeInSystem Average 1236 

Truck20 [Population] FlowTime TimeInSystem Average 1465 

Truck21 [Population] FlowTime TimeInSystem Average 134 

Truck22 [Population] FlowTime TimeInSystem Average 518 

Truck23 [Population] FlowTime TimeInSystem Average 972 

Truck24 [Population] FlowTime TimeInSystem Average 1662 

Truck25 [Population] FlowTime TimeInSystem Average 1390 

Truck26 [Population] FlowTime TimeInSystem Average 178 

Truck27 [Population] FlowTime TimeInSystem Average 678 

Truck28 [Population] FlowTime TimeInSystem Average 1027 

Truck29 [Population] FlowTime TimeInSystem Average 1665 

Truck30 [Population] FlowTime TimeInSystem Average 1594 

B [Resource] Capacity UnitsAllocated Total 16 

B InputBuffer Content NumberInStation Average 2.486152 

B InputBuffer HoldingTime TimeInStation Average 263.6875 

C [Resource] Capacity UnitsAllocated Total 24 

C InputBuffer Content NumberInStation Average 4.183854 

C InputBuffer HoldingTime TimeInStation Average 295.8333 

D [Resource] Capacity UnitsAllocated Total 4 

D InputBuffer Content NumberInStation Average 0.139069 

D InputBuffer HoldingTime TimeInStation Average 59 

E [Resource] Capacity UnitsAllocated Total 24 

E InputBuffer Content NumberInStation Average 1.282852 

E InputBuffer HoldingTime TimeInStation Average 90.70833 

F [Resource] Capacity UnitsAllocated Total 19 

F InputBuffer Content NumberInStation Average 3.848556 

F InputBuffer HoldingTime TimeInStation Average 343.7368 

Exit [DestroyedEntities] FlowTime TimeInSystem Average 884.1333 

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 1665 

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 57 

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 30 

 

 


