
Universidade do Minho

Escola de Engenharia

Ricardo David Pereira Alves

Vehicle Routing and Tour Planning

Problem: A Cement Industry Case Study

Setembro de 2018

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Ricardo David Pereira Alves

Vehicle Routing and Tour Planning

Problem: A Cement Industry Case Study

Mestrado em Engenharia de Sistemas

Trabalho realizado sob orientação do

Professor Doutor José António Vasconcelos Oliveira

Professor Doutor Luís Miguel da Silva Dias

Setembro de 2018

DECLARAÇÃO

Nome: Ricardo David Pereira Alves

Endereço eletrónico: ralves_12_@hotmail.com

Título da dissertação: Vehicle Routing and Tour Planning Problem: A Cement Industry
Case Study

Orientadores: Professor Doutor José António Vasconcelos Oliveira e Professor Doutor
Luís Miguel Silva Dias

Ano de conclusão: 2018

Mestrado em Engenharia de Sistemas

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA
DISSERTAÇÃO APENAS PARA EFEITOS DE INVESTIGAÇÃO,
MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL
SE COMPROMETE.

Universidade do Minho, ___/___/______

Assinatura:

 ii

 iii

 To my Parents.

 iv

 v

ACKNOWLEDGMENTS

Life is like driving a car. This document represents one more road traversed by me.

It is therefore necessary to thank all those who helped me in this stage.

First, I want to offer my gratitude to my advisors, J. António Oliveira, Ph.D. and to

Luís Dias, Ph.D. for allowing me to grow both academically and personally.

To the University of Minho, for giving me 5 years of great learning.

To my parents, for my education, for the constant support, for teaching me the most

important things in the world, and for being an Example to follow everyday.

To Ângela Coutinho, for all the support, patience, friendship, and for encouraging

me to be a better person everyday.

To João Fonseca and Ana Regina, for the constant support and for traversing this

road together, with me, as colleagues, but, above all, as friends.

Not in order of priority, to my friends José Luís Silva, Afonso Rodrigues, Rui

Costa, Miguel Nogueira, Miguel Sanches, Joaquim Santos, José Bruno, Luís Miguel Costa,

Ricardo Dias, and João Pedro for the fun moments, and for the learning I had with each

one of them.

Finally, I want to show my gratitude to every person who directly, or indirectly, has

contributed for the accomplishment of this document.

 vi

 vii

ABSTRACT

The transportation, being part of the logistics field, plays a crucial role in the

business world. Its impact in the costs and service quality is an increasingly imperative

topic. In industry, transportation systems are equally important and can represent a large

improvement in the management of the plants and in the service quality of the products,

thus bringing advantages for the companies and for the clients.

The cement industry is not an exception. Cement is the second most consumed

substance in the world and with the great number of trucks arriving at cement facilities,

every day, the supply chain management of this industry must encompass this management

as well. With the lack of assistance and guidance clients have inside the cement facilities,

both companies incur in additional costs and clients experience reduced levels of service

quality. To overcome these issues, three algorithms were developed and implemented.

Each algorithm has different specifications and different goals. However, all the developed

algorithms improve the service quality, guiding the truck drivers – the clients – inside the

plants and giving the routes in shorter periods of time. One algorithm guides the trucks

through the minimum distance route and will serve as a comparison term for the other two.

The other two algorithms, named equilibrium approaches, are the main contribution of this

dissertation. These dynamic algorithms consider not only the traveled distance, but also the

workload both in the servers and in the roads. The entrance management in the facilities is

also a crucial aspect cement companies must be aware of. Several thought policies are

presented and an algorithm for the entrance management is developed and implemented.

With a simulation software, the developed algorithms were tested and simulated. The

simulation results are reported and discussed.

Keywords: Industry 4.0; Supply Chain Management; Vehicle Routing; Tour

Planning; Dynamic Routing; Simulation.

 viii

 ix

RESUMO

A indústria do transporte desempenha um papel crucial no mundo empresarial. O

seu impacto nos custos e na qualidade de serviço são um tópico cada vez mais importante.

Na indústria, os sistemas de transporte são igualmente importantes e podem representar

uma grande melhoria na gestão das fábricas e na qualidade do serviço dos produtos,

trazendo vantagens tanto para as empresas como para os clientes.

A indústria cimenteira não é uma exceção. O cimento é a segunda comodidade mais

consumida em todo o mundo, e com o grande número de camiões que chegam às fábricas

de cimento todos os dias, a gestão da cadeia de abastecimento desta indústria deve,

também, incorporar esta gestão. Com a falta de assistência na orientação que os clientes

têm dentro das fábricas, tanto as fábricas incorrem em custos acrescidos como os clientes

experienciam uma qualidade de serviço reduzida. Para abordar este problema, três

algoritmos foram desenvolvidos e implementados. Cada algoritmo tem objetivos e

especificações diferentes. No entanto, todos os algoritmos implementados melhoram a

qualidade de serviço guiando os camiões dos clientes dentro das plantas, e calculando as

rotas em curtos períodos de tempo. Um dos algoritmos guia os camiões pela rota que

permite a menor distância percorrida, e servirá como termo de comparação para os outros

dois. Os outros dois algoritmos, chamados abordagens de equilíbrio, são a grande

contribuição desta dissertação. Estes algoritmos dinâmicos consideram a ocupação dos

servidores e das estradas, além da distância percorrida. A gestão de entrada nas fábricas é

também um aspeto importante que as fábricas de cimento devem ter atenção. Diversas

políticas de entrada são apresentadas e um algoritmo para a gestão de entrada na fábrica é

também desenvolvido e implementado. Com um software de simulação, os algoritmos

desenvolvidos foram testados e simulados. Os resultados das simulações são apresentados

e discutidos.

Palavras-Chave: Indústria 4.0; Gestão da cadeia de abastecimento; Roteamento

de veículos; Planeamento de Rotas; Roteamento dinâmico; Simulação.

 x

 xi

CONTENTS

ACKNOWLEDGMENTS .. v

ABSTRACT ... vii

RESUMO ... ix

CONTENTS .. xi

LIST OF FIGURES .. xiii

LIST OF TABLES .. xv

LIST OF ACRONYMS ... xvii

1. INTRODUCTION ... 1

2. ROUTING PROBLEMS .. 5

2.1. Introduction ... 5

2.2. Tour Planning .. 6

2.3. Shortest Path Problem ... 7

2.3.1. Dijkstra’s Algorithm ... 9

2.3.2. Floyd-Warshall Algorithm ... 11

2.4. Travelling Salesman Problem .. 13

2.4.1. Outline of the Traveling Salesman Problem ... 13

2.4.2. Travelling Salesman Problem Variations ... 16

3. DYNAMIC VEHICLE ROUTING .. 21

3.1. Outline of the Dynamic Routing Problems .. 21

3.2. Dynamic Shortest Path Problem .. 23

3.3. Traffic Assignment ... 26

3.3.1. Overview .. 26

3.3.2. All-or-Nothing Assignment ... 27

 xii

3.3.3. Link Cost Functions ... 28

3.3.4. Capacity-Restraint Heuristic .. 30

3.3.5. Incremental Assignment .. 30

4. CEMENT INDUSTRY CASE STUDY .. 33

4.1. List of Publications ... 33

4.2. Cement Industry Overview ... 34

4.3. Industry 4.0 and Cement Industry Supply Chain Management 38

4.4. Problem Description .. 40

4.5. Problem Assumptions .. 41

5. APPROACH TO THE PROBLEM & APPLICATIONS ... 43

5.1. Algorithm No.1 – The Distance Approach .. 45

5.2. Algorithm No. 2 – The Equilibrium Approach (without updates) 50

5.3. Algorithm No.3 – The Equilibrium Approach (with updates) 63

6. IMPLEMENTATION: TESTS AND RESULTS ... 69

6.1. Algorithm No. 1 .. 69

6.2. Algorithm No. 2 .. 70

6.3. Simulation: Algorithms Comparison .. 76

6.4. Discussion .. 80

7. PARKING MANAGEMENT ... 83

8. CONCLUSION AND FUTURE RESEARCH ... 89

BIBLIOGRAPHY ... 93

APPENDIX ... 103

 xiii

LIST OF FIGURES

FIGURE 1 - GENERIC EXAMPLE OF A TOUR PLANNING. ... 7

FIGURE 2 - EXAMPLES OF THE SOP (RIGHT) AND THE TSPPC (LEFT). .. 20

FIGURE 3 - BEST ROUTE AT TIME T1. ... 21

FIGURE 4 - BEST ROUTE AT TIME T0. ... 21

FIGURE 5 - EXAMPLE OF A TIME DEPENDENT SHORTEST PATH. ... 25

FIGURE 6 - TWO ROUTES EXAMPLE FOR THE ALL OR NOTHING ASSIGNMENT. ... 28

FIGURE 7 - INFLUENCE OF TRAFFIC FLOW IN THE TRAVEL TIME OF A ROAD. ... 29

FIGURE 8 - CEMENT INDUSTRY SUPPLY CHAIN. ... 35

FIGURE 9 - CEMENT STORAGE SILO. ... 36

FIGURE 10 - EXAMPLE OF A CISTERN OR TANK TRUCK. .. 37

FIGURE 11 - LOADING TRUCK FOR BAGGED CEMENT. ... 37

FIGURE 12 - INDUSTRY 4.0 IN CEMENT INDUSTRY SUPPLY CHAIN. ... 39

FIGURE 13 - GRAPH EXAMPLE OF A CEMENT FACILITY. ... 43

FIGURE 14 – FLOWCHART OF THE ALGORITHM NO.1. ... 49

FIGURE 15 - MINIMUM SHORTEST ROUTES FOR THE TRUCK X2. ... 59

FIGURE 16 - THE FIRST CHOSEN ROUTE FOR THE TRUCK X2. .. 59

FIGURE 17 - THE ROUTES FOR THE TRUCK X2 - 2ND ITERATION. .. 60

FIGURE 18 - SECOND CHOSEN ROUTE FOR THE TRUCK X2. .. 60

FIGURE 19 - OVERALL ROUTE FOR THE TRUCK X2.. 61

FIGURE 20 - OVERALL ROUTE FOR THE TRUCK X2 IN THE ALGORITHM NO.3. ... 67

FIGURE 21 - COMPUTED ROUTE FOR THE TRUCK T1. ... 72

FIGURE 22 - COMPUTED ROUTE FOR THE TRUCK T2. ... 73

FIGURE 23 - COMPUTED ROUTE FOR THE TRUCK T3. ... 74

FIGURE 24 - EXAMPLE OF A TRUCK HAVING TO WAIT FOR ITS SERVICE. .. 75

FIGURE 25 - REPRESENTATION OF THE CEMENT PLANT IN SIMIO SOFTWARE. .. 77

FIGURE 26 – CEMENT FACILITY GRAPH. .. 79

FIGURE 27 - SIMIO REPRESENTATION OF THE FACILITY. .. 79

 xiv

 xv

LIST OF TABLES

TABLE 1 - TSP SOLVING METHODS. ... 15

TABLE 2 - ADJACENCY MATRIX FOR THE GRAPH OF THE FIGURE 13. ... 44

TABLE 3 - POSSIBLE ROUTES FOR A TRUCK WITH REQUIRED LOCATIONS B, C AND E - ALGORITHM NO.1. 69

TABLE 4 - SET COMPOSED BY 5 TRUCKS. ... 103

TABLE 5 - SERVICE TIMES FOR THE SET COMPOSED BY 5 TRUCKS. ... 103

TABLE 6 - ALGORITHM NO.1 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 5 TRUCKS. 103

TABLE 7 - ALGORITHM NO.2 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 5 TRUCKS. 104

TABLE 8 - SET COMPOSED BY 15 TRUCKS. ... 104

TABLE 9 - SERVICE TIMES FOR THE SET COMPOSED BY 15 TRUCKS. ... 105

TABLE 10 - ALGORITHM NO.1 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 15 TRUCKS. 105

TABLE 11 - ALGORITHM NO.2 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 15 TRUCKS. 106

TABLE 12 - SET COMPOSED BY 20 TRUCKS. ... 107

TABLE 13 - SERVICE TIMES FOR THE SET COMPOSED BY 20 TRUCKS. ... 108

TABLE 14 - ALGORITHM NO.1 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 20 TRUCKS. 108

TABLE 15 - ALGORITHM NO.2 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 20 TRUCKS. 109

TABLE 16 - SET COMPOSED BY 10 TRUCKS. ... 110

TABLE 17 - SERVICE TIMES FOR THE SET COMPOSED BY 10 TRUCKS. ... 110

TABLE 18 - ALGORITHM NO.1 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 10 TRUCKS. 110

TABLE 19 - ALGORITHM NO.2 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 10 TRUCKS. 111

TABLE 20 - SET COMPOSED BY 16 TRUCKS. ... 112

TABLE 21 - SERVICE TIMES FOR THE SET COMPOSED BY 16 TRUCKS. ... 113

TABLE 22 - ALGORITHM NO.1 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 16 TRUCKS. 113

TABLE 23 - ALGORITHM NO.2 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 16 TRUCKS. 114

TABLE 24 - SET COMPOSED BY 30 TRUCKS. ... 115

TABLE 25 - SERVICE TIMES FOR THE SET COMPOSED BY 30 TRUCKS. ... 116

TABLE 26 - ALGORITHM NO.1 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 30 TRUCKS. 116

TABLE 27 - ALGORITHM NO.2 RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 30 TRUCKS. 117

TABLE 28 - ENTRANCE MANAGEMENT ALGORITHM RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 10 TRUCKS. 118

TABLE 29 - ENTRANCE MANAGEMENT ALGORITHM RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 16 TRUCKS. 119

TABLE 30 - ENTRANCE MANAGEMENT ALGORITHM RESULTS OF THE SIMULATION FOR THE SET COMPOSED BY 30 TRUCKS. 120

 xvi

 xvii

LIST OF ACRONYMS

ECS European Committee for Standardization

ICT Information and Communication Technologies

UH4SP Unified Hub for Smart Plants

GDP Gross Domestic Product

INE Instituto Nacional de Estatística

VRP Vehicle Routing Problem

SPP Shortest Path Problem

SSSPP Single Source Shortest Path Problem

APSPP All pairs Shortest Path Problem

ACO Ant Colony Optimization

TSP Traveling Salesman Problem

ATSP Asymmetric TSP

TSPTW TSP with time Windows

TSPPD TSP with Pickup and deliveries

TSPPC TSP with Precedence Constraints

GA Genetic Algorithm

SOP Sequential Ordering Problem

GPS Global Positioning System

TDTSP Time dependent TSP

MILP Mixed Integer Linear Programming

TAP Traffic Assignment Problem

EU European Union

ut Units of Time

 xviii

 1

1. INTRODUCTION

Logistics plays a central role in the micro and macro perspective of a day to day

life of a company, organization, or to the economy of a nation. The Comité Européen

Normalisation (European Committee for Standardization - CEN) defines logistics as being

the concept of plan, execute and control. These tasks are strongly connected, and it is

possible to consider logistics as the operational component of the supply chain

management (SCM) [1].

Among several definitions of what logistic is, there is one modern definition that

applies to most industries [2], and it is presented below.

“…the efficient transfer of goods from the source of supply through the place of

manufacture to the point of consumption in a cost-effective way, whilst providing an

acceptable service to the customer...”

In most industries, one of the crucial stages of logistics is the transportation

operation, which is strongly connected to the efficiency of moving products. Usually, the

transportation links the several elements in a logistical chain. The use of efficient methods

of transportation is one of the key foundations in management techniques for promoting

the efficiency and competitiveness of enterprises [3].

The increasingly use and evolution of Information and Communication

Technologies (ICT) in industry, and specifically in the support for the logistics operations,

have promoted new challenges and introduced a transformation in how organizations are

managed [4]. With these aspects, Industry 4.0 is now a familiar term. It is referred to the

fourth industrial revolution and is also known as the ‘smart manufacturing’, or even

‘integrated technology’.

The equilibrium between optimizing the supply chain and providing a good service

level, is the key aspect when introducing technology into the business world. Thus, the

main goal of Industry 4.0 is to connect people, machines, and goods, searching for a more

organized environment to, simultaneously, bring advantages for the organizations and for

 2

the clients [5]. Industry 4.0 has also a great impact in the transportation sector as well.

Using ICT, it is possible to develop a more efficient and profitable transportation system.

The work presented in this dissertation is developed under a scientific project, that

aims to develop systems for smart plants, specifically cement plants. The UH4SP – Unified

Hub for Smart Plants – aims to develop simulation models and heuristic optimization

models to take cement plants to another level [6]. More specifically, one of the main goals

of the project is the development of architectures of software and methodologies orientated

to services, promoting the corporative and aggregate vision of the operations in each one

of the cement plants dispersed by several geographic regions [7]. The UH4SP addresses

several segments of the supply chain of a cement plant. The problem addressed in this

dissertation is the one dealing with the management of the trucks entering the plant.

A typical cement plant receives hundreds of trucks every day. Each one of them

has one or more locations to visit, in order to load or unload materials, depending on each

truck. This process is, in this sense, unpredictable, due to the fact that it is not possible to

know the locations each truck must visit before arriving at the plant. Besides this, the truck

driver usually does not know the plants’ map, due to their big dimensions. Even if the

driver already knows the facility, the choice of the route will be made only by what he

knows of it. Either way, the driver will much probably follow a disadvantageous route,

forcing him to stay more time inside the plant, causing delays to him and to other truck

drivers that already are inside, or who will still enter the plant. Additionally, the driver may

load or unload the materials in wrong locations, causing delays, additional costs to the

company, etc. One other big problem caused by the trucks is the congestion in the roads of

the plant. Each truck driver chooses its own route, and this ‘irreflective’ choice will

overload some roads in the plant.

OBJECTIVES

The main goal of this dissertation is to create an algorithm that tackles the routing

problem of the trucks. The algorithm must compute a route for each truck, whenever they

are entering the plant. This route will guide the drivers inside the plant, to the locations

they must visit, reducing its unnecessary times, thus increasing the service quality for the

clients.

 3

One other big goal of this dissertation is to test and validate the algorithm and,

consequently, the developed program, using a simulation software. This validation will

confirm if the algorithm is working as it is required, or to make some adjustments in

possible parameters, approximating the solution to what it is expected.

DISSERTATION OUTLINE

This dissertation is composed by seven chapters. The Chapter 2 and 3 are devoted

to the most studied and known routing problems in literature, being them static or dynamic.

In these chapters, some examples of algorithms for solving the routing problems, variations

of the problems and application examples are also studied and presented. The Chapter 4

presents the cement industry supply chain. It starts by giving a brief overview of the cement

industry, presenting the cement life cycle and explaining how this commodity is created,

stored and distributed. After that, it suggests how Industry 4.0 and technologies can affect

directly the management of the cement supply chain. This chapter ends with the description

and the modeling of the trucks routing management problem. With this, the real problem

and its impacts in the day to day of a cement facility are outlined. In the Chapter 5, the

developed methodologies for solving the routing problem are explained, giving examples

of how the trucks will be guided inside the facility. In the Chapter 6, some tests and

simulations are presented, testing and comparing the developed methodologies. The

Chapter 7 presents an additional problem, the parking management, that can have an impact

in the day life of a cement facility. Some entrance policies are presented, and an algorithm

and its simulation are developed to tackle this problem. The conclusion of the work and

the future research are presented in the Chapter 8.

 4

 5

2. ROUTING PROBLEMS

2.1. INTRODUCTION

In the days we live in, transportation has a big economic impact in almost all

companies, organizations, families, and people of most developed countries. Efficient

transportation reduces costs in many economic areas. Besides that, the impact that

inefficient transportation could bring to the environment is, by itself, a great impact

everyone should be aware of. These impacts have motivated companies and academic

researchers to vigorously pursue the use of operations research and management science

to improve the efficiency of transportation [8].

There are several types of transportation, such as air, rail, road, sea, etc. In this

study, the focus will be targeted in the direction of road transportation. This type of

transportation has a great impact in the economy of a nation. For example, in Portugal, in

2011, the industry of transportation reached 3.2% of the gross domestic product (GDP)

(Instituto Nacional de Estatística – INE).

Road transportation process involves all stages of the production and distribution

systems and represents a relevant component (generally from 10% to 20%) of the final cost

of the goods [9]. Saving time and/or money is the aim of all organizations. The impact of

a successful implementation of a routing software can change a lot in the daily basis of a

company.

Several successful implementations of computerized routing software’s have been

documented in literature. These successes can be attributed in part to algorithmic advances

in the field of vehicle routing and also to the development of new software and computer

technologies. Vehicle routing is truly one of the great success stories of operations research

[10]. There are many examples of routing problems and each one has one purpose, and,

because of that, there are inherent constraints and changes that make almost each problem

unique. Vehicle Routing Problem (VRP) is described by Laporte [11] as “Unlike what

happens for several well-known combinatorial optimization problems, there does not exist

a single universally accepted definition of the VRP because of the diversity of constraints

encountered in practice.” Laporte says as well that researchers may have a difficulty

 6

finding their way through the abundant and somewhat disorganized literature in these types

of problems. When choosing the best route, it may have to do with distance, with time,

with what it is better for the system in that period, etc.

Therefore, in the next sections, some of the most structured routing problems in

literature will be addressed.

2.2. TOUR PLANNING

The increasing development in technologies lead to a progress in the study and

implementation of intelligent transportation systems. Thus, Tour Planning Problems are a

vital research area. In [12], it is possible to state the increasingly number of publications in

the thematic of Routing Problems since 1954. This increasing interest has focused attention

in new and more difficult routing problems.

The tour planning can be generally viewed as a process of assigning resources to

requests, for example, vehicles that execute transportation processes, following to some

conditions, as capacity, time windows, etc. For each vehicle, the sequence of the requests

will be specifically ordered to obtain the minimum cost for that vehicle and for the fleet in

general. In the Figure 1 is possible to observe a generic example of a tour planning for a

fleet of two vehicles [13]. The objective of the tour plan is connected to a purpose, being

that, minimizing the total traveled distance, per example, and the goal is to find the optimal

solution, the one that minimizes/maximizes the objective function [11].

 7

Figure 1 - Generic Example of a Tour Planning.

2.3. SHORTEST PATH PROBLEM

Shortest Path problems lie at the heart of network flows [14]. The first case of the

shortest path is difficult to trace. It is possible to imagine that it was used in very primitive

societies, in the search for food, for example. The mathematical research of the problem

started later, when compared with other similar problems (like minimum spanning tree,

assignment problem, etc.), which could happen due to the relatively easiness of the

problem. Yet, when the problem came to the focus of interest, several researchers

independently developed methods for solving it [15].

The shortest path problems play a central role in network analysis. Network

analysis is one of the most important functions, and because of that, the shortest path

problem played an important role in lots of fields, such as electric navigation, traffic

tourism, urban planning and electricity, communications, pipe designs, and others. It is

important to state that the shortest path is not only the analysis of the shortest distance. This

problem extends to other measurements, such as time, cost, or even the capacity of the

 8

path. With all this, the ‘shortest path analysis’ can be turned to the fastest path, the lowest

cost, and so on [16]. Besides this, shortest path problems can be applied in other topics.

For example, most algorithmic approaches for finding traffic patterns solve a lot of shortest

path problems as subproblems [14].

The Shortest Path Problem (SPP) usually involves a network represented by a

directed graph G= (N, A), where N is the set of the n nodes and A is the set of m arcs that

connect the nodes. Each one of the arcs (i,j) ∈ A has an arc cost, which, per example, can

be the distance of travelling from i to j. This cost (weight) can be any measurement

[17][18].

Researchers have studied several different types of shortest path problems [14]:

1- Finding shortest paths from one to all other nodes when arc lengths are

nonnegative, or Single Source Shortest Path Problems (SSSPP).

2- Finding shortest paths from one node to all other nodes for networks with

arbitrary arc lengths.

3- Finding shortest paths from every node to every other node, or All Pairs

Shortest Path Problems (APSPP).

4- Various generalizations of the shortest path problem.

In the case of the SSSPP (or simply SPP), the graph contains a distinguished node,

named source node. Thus, the problem is to find the shortest path from that node, to all the

other nodes [18]. The length of the path is the sum of all the distances (or costs) of each

arc that make up the path.

In the case of the APSPPs, it is determined the shortest paths between each pair of

nodes presented in the network [17].

 A solution to the SPP can be described by a (shortest path) spanning tree rooted in

the source node. A spanning tree is a subgraph of G, which includes all the vertices (n) of

G, but only the necessary number of arcs (n-1) for this to happen. In a spanning tree, each

node is preceded by another, so that the position of it in the spanning tree is defined by a

 9

predecessor label. The predecessor label of a node marks another node that precedes it. The

shortest path can be found by following the predecessor labels down to the source node

[18]. Thus, not only the shortest path problem gives the minimum cost, but also the route

that makes that minimum cost.

As stated earlier, there are different types of shortest path problems (SSSPP,

APSPP, etc.). Depending on the context of the problem, different types of algorithms are

implemented. Although being a relatively ‘easy’ problem, advancement in areas of ICT

and the increasing of high quality network data, leading to networks involving large

amounts of data, containing hundreds of thousands or even millions of nodes [19]. Thus,

the algorithms for solving this type of problems are different, depending on the objective

and context of the problem.

In the study [14]- Chapters 4 and 5, is stated that there are, in literature, roughly

two different major classes of algorithms for solving the SPP. The label-setting and label-

correcting algorithms. These algorithms assign distance labels to each node at each step.

The distance labels are upper bounds (estimates) of the shortest path distances. The classes

of algorithms vary on the way they approach to the final shortest distance. The label setting

algorithms designate at each iteration a distance as permanent, while label correcting

algorithms do not consider any of the label a permanent label till the final iteration, when

all the labels become permanent.

The Dijkstra’s algorithm is one of the most known label setting algorithms. On the

other hand, the Floyd-Warshall algorithm is one of the most famous label correcting

algorithms. A great difference between the two stated approaches is the fact that the label

correcting algorithms are more general because they are able to, among other things, solve

SPP when negative arc costs are present. On the other side, the label setting algorithms

have much better worst-case complexity bounds.

2.3.1. DIJKSTRA’S ALGORITHM

In 1959, Edsger Dijkstra came up with an algorithm of finding the shortest path in

a network where at least one path between two nodes exists [20].

 10

The Dijkstra’s algorithm is one of the most famous algorithms for the SPP. It is part

of the label setting algorithms and finds the shortest path from one node to all the other

nodes in a nonnegative arc length network, being so part of the SSSPP algorithms stated

previously.

Dijkstra’s algorithm starts by creating a distance label d(i) for each node i ∈ N. The

algorithm divides the nodes into two groups, the permanently labeled and the temporarily

labeled. The permanently labeled nodes are the ones who give the shortest distance from

the source node to that node. On the other hand, the temporarily labeled nodes, are the ones

who give an upper bound on the shortest path from the source node to that node. Thus, the

algorithm starts by initializing the source node to be permanently labelled and to have

distance of 0. The other nodes are temporarily labeled with their directly distance to the

source or labeled with infinity, if there is no connection between the source node and that

nodes. In each iteration, the temporarily labeled node with minimum distance is examined.

Examining that node means the algorithm scans the arcs A(i), to update the distance labels

of the adjacent nodes. This chosen node is also made permanently because none of the arcs

from a temporary node can reduce its distance label further due to the nonnegative arc

restriction. The algorithm terminates when all the nodes are made permanent [19][22].

 In terms of running time, Dijkstra’s algorithm has, in his original implementation,

a running time of O(n2), where n is the number of nodes [21]. The most consuming of this

time is due to the selection of what node to process next, i.e., the search of the temporarily

labeled node with least distance label [18]. The search of all the nodes, in each iteration,

makes a great bottleneck. One way to overcome this difficulty, is to implement a priority

queue, also named heap. A priority queue is a structure that, in a Dijkstra’s algorithm

implementation, allows to group the arcs by distances and so to overcome the bottleneck

of searching all the arcs at each iteration.

There are several applications of heap structures in implementation of Dijkstra’s

algorithms. There are also several types of heaps and each one of them can have a different

computational effort. It is possible to reduce the computing time from O(n2) to

O (m + nlog2C), where m is the number of arcs, n is the number of nodes and C is the value

of the largest arc cost, assuming to be an integer [23][28]. For different applications and

 11

running times of heap implementations on Dijkstra’s algorithms, see [19] [22] [28].

Besides all the heap-based implementations of Dijkstra’s, in a very dense network, the

original implementation of Dijkstra’s algorithm, without any heaps, achieves the best

available running time.

Dijkstra’s algorithm has a great spectrum of applications since its creation, in areas

such as Traffic information, calculating the shortest path and the shortest distance from a

source to a given node, but also, in other problematics such the Open Shortest Path First,

used in internet routing [22].

Another well-known algorithm for the single source shortest path is the Bellman-

Ford algorithm. In this algorithm, it is possible for the network to have also negative arc

costs. Besides this, the computational time of the Bellman-Ford is worse than Dijkstra’s

algorithm [23]. It is possible to see a very vast study on this problematic in Chapter 4 of

[14], Chapter 5 of [24], [17] and [18].

2.3.2. FLOYD-WARSHALL ALGORITHM

The Floyd-Warshall algorithm was introduced in 1962, by Robert Floyd [25] and

is an example of dynamic programming [26]. The Floyd-Warshall is a simple and widely

used algorithm for the SPP. It is part of the label correcting algorithms and allows to

compute the shortest path between all pairs of nodes in a weighted graph, being so part of

the APSPP stated above [27].

Before explaining how Floyd-Warshall’s algorithm works, it is important to have

in mind that all pair shortest path problems can be solved by using the repetitive SPP. This

means that, by running a single source SPP algorithm n times, one for each node of the

network, the problem is solved. If the network does not have any arcs with negative cost,

the Dijkstra’s algorithm could solve this problem. If, on other hand, there are arcs with

negative costs, the Bellman-Ford algorithm could be addressed [17].

 The Floyd-Warshall algorithm also allows arc costs to be negative. Besides this,

the algorithm will give the shortest path for each pair of nodes if there does not exist a

negative cycle. If so, the computational effort of the algorithm will pass from polynomial

 12

to NP-Hard, unless P=NP [27]. Besides this, it is possible for the algorithm to detect if it

does exist a negative cycle.

Let dk[i,j] represent the shortest path length from node i to the node j, using only

the nodes 1, 2, …, k-1 as internal nodes. It is clear to state that dn+1[i,j] is the shortest path

from i to j because any node can be an internal node. The algorithm computes d1[i,j] for

all pairs i and j. Then, using d1[i,j], calculates d2[i,j] for all node pairs i and j. The

algorithm repeats this procedure until the iteration dn+1[i,j], and so obtain the shortest

distance between each pair of nodes [19] [22].

The core of the dynamic programing in the Floyd-Warshall algorithm is given by

the next equation [27] [32]:

d𝑘[𝑖, 𝑗] = {𝑤𝑖𝑗, if k < 0min(d𝑘[𝑖, 𝑗], d𝑘[𝑖, 𝑘] + d𝑘[𝑘, 𝑗]) if k > 0 (1)

In each iteration, and just like the Dijkstra’s algorithm, the Floyd-Warshall

algorithm store a predecessor index of each node, allowing the construction of the shortest

path route.

The Floyd-Warshall algorithm has a complexity time of O(n3) [24]. Comparing with

Dijkstra’s algorithm (per example), that, in the original implementation has O(n2), the

complexity time of the Floyd-Warshall algorithm would be predictable to be greater

because while Dijkstra’s only computes SSSPPs, Floyd-Warshall algorithm computes

ASPPs. Thus, applying n times an algorithm with complexity O(n2) will make other

algorithm with complexity time of O(n3).

The applications spectrum of algorithms as the Floyd-Warshall is very wide, like

stated in the beginning of this chapter. In fact, as stated in [28], this type of algorithms is

very important in routing the data packets of communications networks to avoid

communication delays. In particular, finding the shortest path between each pair of nodes

can be a very heavy task, in a network with thousands of nodes.

 13

One other algorithm for solving the ASPP is the Johnson’s algorithm. The

particularity of this algorithm is the fact that it can be faster – with smaller complexity time

than Floyd-Warshall algorithm- for sparse graphs. A sparse graph is a graph in which the

number of arcs is much lesser than n2, where n represents the number of nodes. As in the

Floyd-Warshall algorithm, it gives the shortest paths from all pairs of nodes in a graph with

positive or negative arc costs, but with no negative cycles. Similarly, it is possible to report

if there exist a negative cycle in the network [24].

It is possible to see more for this problematic in the Chapter 25 of [24], Chapter 5

of [14] and [15].

In some cases, the most traditional algorithms for solving the SPP and APSPP are

not viable due to the complexity time for large number of arcs and nodes, so alternative

methods are needed and used. The Ant Colony Optimization (ACO) metaheuristic, is a

versatile algorithm and proves to be efficient to a lot of NP-Hard problems [29]. Besides

not being in focus in this chapter, for these cases, the lecture of [29], [30] and [31] is

recommended.

2.4. TRAVELLING SALESMAN PROBLEM

2.4.1. OUTLINE OF THE TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) is one of the most widely studied problems

in the combinatorial optimization area. It is defined in a graph and states as follows [32].

Given a graph G=(N, A), being N the set of n nodes to be visited, and A the set of arcs, let

Cij be the cost of traveling from node i to the node j. The objective of the TSP is to

determine the minimum cost Hamiltonian circuit, which means that it is necessary to find

the minimum cost circuit passing once, and only once, in every node of G. As happens in

the SPP, presented in the Chapter 2.3, the cost Cij, associated to each arc can be any

measurement, like distance, time, capacity, etc. The TSP is often modeled in a complete

graph, meaning that exists one arc connecting each pair of nodes. If there is no path between

two nodes, adding a fictitious arc, with an infinity cost connecting them, will complete the

graph without affecting the optimal tour.

 14

Great effort has been made in literature solving instances with increasingly number

of cities (nodes). In [33] and [34], a study of the milestones achieved for the TSP is given.

There are two major types of TSP. The symmetric TSP (STSP) and the asymmetric

TSP (ATSP). The STSP is defined in a symmetric graph, which means that travelling from

node “A” to “B”, per example, has equal cost to travelling from “B” to “A”. And this

premise happens to every pair of nodes in the graph. On the other hand, in the ATSP, the

costs are asymmetric, which means that traveling from “A” to “B” can be different of

travelling from “B” to “A” [35][36].

Thus, the total number of possible route solutions for the TSP in a graph, will

depend if the graph is asymmetric or symmetric. If the graph is asymmetric the next

equation gives the maximum total number of TSP routes [35]:

 N = (n − 1)! (2)

Where:

n is the number of nodes

On the other hand, if the graph is symmetric, the next equation gives the maximum

total number of TSP routes [35]:

 N = (𝑛−1)!2 (3)

Where:

n is the number of nodes

Therefore, the TSP is very easy to understand but very hard to solve. It is possible

to observe that the number of possible solutions increase exponentially with the number of

nodes in the graph, making so extremely difficult to compute optimal solutions, when the

 15

number of nodes is large. TSP is so part of the so-called NP-Hard problems due to the great

complexity for solving it [36].

TSP is famous due to its complexity but also due to its range of applications.

Applications on the TSP are beyond route planning. Areas such electronics, mathematics,

computer science, genetics, engineering, machine scheduling, job sequencing, wallpaper

cutting, among others, are examples of TSP applications [32][37].

There are different methods to solve the TSP, generally divided in two major

classes. Exact algorithms and heuristic methods. Exact algorithms give always the optimal

solutions, but these algorithms need very large computational times when compared with

other methods. On the other hand, heuristic approaches may give good (or even optimal

results) in some cases, or bad results in other cases. The advantage of using heuristic

approaches for the TSP relies in the computational time, which is very low when compared

with the exact algorithms. Thus, depending on the context of the application (depending

on the computational time, the number of nodes, etc.), there are several possible solutions,

being them exact or approximation heuristics.

Some examples of exact applications and heuristic approaches and its

characteristics are given below.

Table 1 - TSP Solving Methods.

Solutions
quality

Computational
time

Implementation
Difficulty

Recommended
References

Integer Linear
Programming

Optimal Exponential Relatively Simple [38] [39]

Brute Force Optimal
Exponential

O(n!))
Simple

[42] [40]

Branch and
Bound

Optimal
Lower when

compared with ILP
or BB

Relatively Simple [48] [41]

Concorde Optimal

Described as the
most performing
exact algorithm

currently available.

Hard to implement due
to the great number of
lines of code. The code

is open source for
academic purposes.

[34] [42]

Greedy
Algorithm

Approximate O(n2 log2(n)) Simple [43] [44]

Nearest
Neighbor

Approximate
Relatively lower

time
O(n2)

Simple [45] [46]

 16

K-OPT and its
variants

Very good
approximations.

1-2% below
optimum

O(nk)

Hard [47] [48] [49]

Simulated
Annealing

(SA)

Good
approximations.

4% below
optimum

Higher when
compared with K-

OPT
Relatively Simple [43] [50]

2.4.2. TRAVELLING SALESMAN PROBLEM VARIATIONS

There are several variations that make each TSP a particular problem. Usually,

these configurations add new features to the “basic” and stated above configuration,

making it even more difficult to solve (strongly NP-Hard). These variants have been

suggested from various real life or potential applications [37]. In this work, four variations

of the problem will be briefly addressed.

TSP WITH TIME WINDOWS

In most business organizations, there are fixed scheduling’s – like opening hour,

closing time, etc. - which makes important to define time windows in problems like the

TSP.

The TSP with time windows (TSPTW), as the regular TSP, involves a graph

G=(N, A), being N the set of nodes to be visited and A the set of arcs. The difference here

is that each node has a defined interval [ri,di]. The ri represents the release date, which

denotes the earliest possible starting time for visiting the node i. On the other hand, the di

denotes the latest possible time for visiting the node i. Thus, this interval is called time

window, and its width is given by di-ri. For the depot, that is, node 0, the r0=d0=0 [51].

Allied to this, the constant pi represents the processing time in the node i.

Therefore, the problem is to find the minimum cost route (time, distance, etc.),

starting and ending in a specified depot, visiting a set of customers, each one in its

predefined time window, having in consideration the arrival time and the processing time

of each node. TSPTW can be used for practical applications in bank or postal deliveries,

school-bus routing and besides this, it can be also used to model a job sequencing in a

single machine, where each job has a release time and a deadline [52] [53].

 17

It is possible to observe that the TSPTW is a special case of the Vehicle Routing

Problem with time windows [54], where only one vehicle composes the fleet.

TSP WITH PICKUP AND DELIVERY

Another extension to the TSP, is the TSP with pickup and deliveries (TSPPD). The

TSPPD also involves a graph G = (N, A), being N the set of nodes to be visited, and A the

set of arcs. In this case, the set of nodes to visit are divided in two groups. The first group

contains the locations requiring amounts of goods to be picked up (pi), and the other

contains the amounts of goods to be delivered (di). The node 0 corresponds to the depot

location, being a node of pickup the amount to be delivered in the set of delivery customers.

One aspect to have in mind is that, in this case of the TSP, the capacity of the vehicle must

be considered. If, for one side, the amount of goods being transported decreases when a

delivery node is reached, it increases when a node of picking is reached. For this, the

vehicle has a maximum capacity allowed, Q, and a current capacity, c, which represents

the capacity being transported at each location. Therefore, c may never exceed Q during

the tour. The TSPPD consists of determining the least cost tour (distance, time, etc.),

starting and ending in the depot, visiting each node once and having in consideration c and

Q, and if the node represents picking up or delivering goods [55] [56].

It is important to state that a node can be simultaneously a pickup and a delivery

node. A mathematical formulation for an Integer Programming modeling the TSPPD can

be found in [57] [58].

There are various applications for this problem, like school buses scheduling,

distribution of goods to supermarkets, cab scheduling, distribution of postal services, etc.

TSP WITH PRECEDENCE CONSTRAINTS

Sometimes, in several problems such as scheduling, routing decision, process

sequencing, among others, it is necessary to process some tasks before others [59]. In fact,

the already explained TSPPD and TSPTW deal with these problematics, that certain nodes

must be visited before others, because of the picking and delivering constrains or due to

 18

the time windows assigned to each node, respectively. Although TSPPD have this type of

constraints, the TSP with Precedence Constraints (TSPPC or PCTSP) tries to solve these

problems in a more generalized way. The TSPPC is one of the most difficult combinatorial

optimization problems. Thus, given a graph G=(N,A) where N is the set of nodes to be

visited and A the arc set, the objective is to find a minimum cost tour, starting and ending

in the depot, visiting all the nodes of N-{depot}. Besides that, every node i must be visited

before node j (but not necessarily directly), when a precedence constraint exists between

these two nodes [60]. When a node must precede other, say i must precede j, it is also

common to use the notation i≺j. Given a certain node i ∈ N\{Depot} that must precede a

set of nodes, pi, and succeed a set of nodes, si. If |pi|+|si|= N\{depot} means that i must

have a fixed position in the final tour [61]. Therefore, the precedence’s between the nodes

can exist for some of them, requiring that only certain nodes need to be visited before

others. The precedence’s can also exist between all the nodes, when there is a fixed

sequence between all the nodes that compose N.

The amount of research and applications on this problem is fewer when compared

to other routing problems [61]. A mathematical formulation for the TSPPC can be found

in [59], [62] and [63]. In [61], a Branch and Cut algorithm is developed for solving the

ATSP with precedence constraints. Different densities structures of precedence’s were

tested for different network instances, using real life data obtained from industrial

applications as well as randomly generated instances. The results for the instances with

dense structure precedence’s show that it is very difficult to construct optimal solutions,

proving so the already mentioned increased difficulty of this variation of the TSP.

In [62], Kubo and Kasugai developed a Branch and Bound algorithm incorporating

three different bounding procedures, computed from the Lagrangean Relaxation. The

algorithm was tested for different densities of precedence’s and different instances size.

The algorithm performed well for 49 nodes and with relatively lower computational time.

The TSPPC can be also modeled using a two-commodity network flow problem.

To solve a model such this, Moon et al. [59] proposed a Genetic Algorithm (GA) in which

for small and medium size problems, the algorithm reported optimal solutions. In this

 19

example, the path is considered feasible if visits all the vertices, not requiring if it does not

return to the initial node. The graph is directed, and the nodes (or vertices) represent

activities and the directed arcs (or edges) represent the precedence relation between

activities.

Sarin et al. [64] developed a new formulation for the ATSP with and without

precedence constraints. This algorithm computes tight lower bounds and it is usually

required a significantly lesser (by several orders of magnitude) computational effort to

reach the optimal solution. Different instances were tested using several densities of

precedence’s, and the results were presented.

SEQUENTIAL ORDERING PROBLEM

Although Sequential Ordering Problem may not be a “direct” extension of the TSP,

it is a problem with several similarities (like will be demonstrated below) and for that, it

will be described in this section.

The Sequential Ordering Problem (SOP) is a well-known combinatorial problem

defined on a graph. Given a graph G, with n vertices and m weighted directed edges, the

SOP is the problem of finding the minimal cost Hamiltonian path from the start vertex to

the terminal vertex, following precedence constraints on the vertex set [65]. In some

literature, the SOP is associated to the TSPPC (or the asymmetric TSPPC), presented in

the section 0, but it is different, in one characteristic. Both problems have precedence

constraints in the vertex set. But, in the case of the SOP, there is only defined a fixed start

and end node. While in the PCTSP, as already observed, it is required a closed tour where

it is necessary one return to the start node. In the Figure 2 it is possible to observe the

difference of two solutions for these problems. It is important to have in mind the

precedence constraints presented in both solutions, having so the same sequence of nodes.

Thus: (1) in the left for the SOP, with a fixed node and an end node, and (2) in the right for

the PCATSP, with a closed tour [66] [67].

 20

Figure 2 - Examples of the SOP (right) and the TSPPC (left).

Thus, SOP is a generalization of the TSP, and so must be NP-Hard [68]. The scope

of applications of this problematic is very wide, including, vehicle routing with pickup and

deliveries, single-machine scheduling problems with set-up costs and precedence between

jobs, among others [69].

A variation of SOP is the capacitated SOP. This problem adds the capacity

constraint to the problem. Thus, a vehicle with a capacity Q and a precedence relation (p,q)

is associated with a commodity that has a weight of dpq , needing so to be collected at p

and delivered at q. Following the similarity between SOP and TSPPC stated previously,

this variation of the problem is related to the Travelling Salesman Problem with Pickup

and Deliveries [69].

There are some examples of different applications in literature. In [70], a

metaheuristic Ant Colony Optimization algorithm that uses a local search to improve the

overall performance of the ACO metaheuristic is developed. It is strongly based on an Ant

Colony System and is a building heuristic in the sense that starts from node 0 and adds new

nodes until all the nodes have been visited and the last node is reached, always according

to the precedence constraints.

To see more applications and state of the art related to the SOP problematic, the

reading of [68] is recommended.

 21

3. DYNAMIC VEHICLE ROUTING

3.1. OUTLINE OF THE DYNAMIC ROUTING PROBLEMS

The development of technologies lead to a model of different routing problems,

dealing not only with static routing problems (as the examples already mentioned of the

SPP and TSP), but also with dynamic routing problems. The dynamic routing problems

arise due to the fact that static network optimization problems do not depend on the time

and so, there are some time dependent parameters that are not considered [71].

Thus, a dynamic environment means that the information of the network may be

changing during the execution of the algorithm. Moreover, following a dynamic

environment, at each time, the choice of a route is based on the information then available

[72]. In a dynamic routing problem, what may be the ‘best route’ for one to follow, may or

not be the best, for the same entity, in a different time instant, due to the network

information updates.

The Figure and Figure illustrate a possible scenario in a dynamic routing problem.

Initially (Figure), at time t0, the best route for a vehicle with characteristics x1, is starting

in the node ‘S’, following the sequence demonstrated in the Figure and turning back to

‘S’. The same vehicle (with characteristics x1), at the time t1 will have a different best route,

because the arc connecting the nodes ‘1’ and ‘2’ is unable to be traversed, due to some

certain event (Figure). Therefore, for the same vehicle and network, the assigned the route

is different depending on the time.

Figure 3 - Best route at time t0. Figure 4 - Best route at time t1.

 22

Thus, in the dynamic routing problems there are certain events which may change

the network and consequently change the transportation process [13]:

1. New Requests: If it is necessary to visit a new location closed to a planned location,
(in a fixed time windows and/or other specified attributes), an adaptation of the tour
may be necessary to include this new request.

2. Changes in request attributes: The attributes of each location may be different
(requesting a different amount of goods, changing the time window, etc.).
Therefore, it will be necessary to rearrange the previous tour, perhaps altering the
path of the route, or altering some fleet characteristics.

3. Traffic Congestion and blocked roads: The traffic jam in the roads increase their
travel times or can provoke a complete blockage of the affected roads. When this
happens, reassigning the vehicles to non-congested roads, or allocating the requests
to other vehicles may be necessary.

4. Vehicle disturbances: When a partial or complete deficiency on the vehicle exists,
due to an accident or other possible scenario, the routing plan may be rearranged,
assigning other vehicles to the requests of the incapacitated one.

A great different between the static and the dynamic routing problems is the

objective function. In the static routing problems, usually the objective function tries to

minimize the route cost. The dynamic routing problems introduce different scenarios, like

service level, throughput time, or revenue maximization [73]. In real-time dynamic routing

problems, the objective is sometimes the aggregate of several objectives, combining

different measures [74].

Alan Larsen [75], proposes a framework, dividing the dynamic routing problems,

depending on their degree of dynamism. The Weakly Dynamic Systems are problems in

which the grater part of the information is known in advance, that is, at the time of the

tours’ construction. The reacting time is considerably longer when compared with others

and the tradicional way of solving this problem is to adapting static procedures. Thus, a

static routing problem is solved every time an update on the network happens. The Strongly

Dynamic Systems are characterized by the fast change of data, and by the urgency of

requests received. As examples of this systems, are the emergency services (such as police,

 23

fire department and ambulance), and the taxi cabs, in which only a few “customers” are

known beforehand. Therefore, in such problems, the reaction time is of great importance.

With this necessity of updated information, dynamic routing problems usually

involve more elements than the static routing problems, increasing so the complexity of

their decisions and introducing new challenges while judging the merit of a given route

plan [73] [76].

If a problem is dynamic, it can also be stochastic or deterministic [77] [74]. In a

deterministic and dynamic problem, part or all the information is unknown in advance and

depend on time, being revealed during the design or execution of the routes, per example.

For this problem, typically is necessary to have technological support, for example

cellphones, or global positioning systems (GPS), for real-time communication between the

vehicle and the central depot [73]. One example of a deterministic and dynamic problem is

the one presented by Daskin [78]. In this problem, a TSP in a time dependent network is

addressed. The time dependent TSP (TDTSP) is a generalization of the regular TSP, in

which the travel time between two customers or between a customer and the depot depends

on the distance between them, but also depends on the time of the day. Here, a Mixed

Integer Linear Programing (MILP) formulation is presented, and the results are reported.

In a stochastic and dynamic problem, the uncertain data is represented by a

stochastic process. Therefore, the unknown data is a collection of random variables, being

so travel times, unknown demands and/or the existence of customers. The data are so

gradually revealed during the operational interval, making so that they are not constructed

beforehand [75]. One example of this type of problems is the case of the Dynamic

Traveling Repairman Problem [79].

In addition to the examples previously presented, one of the most known routing

problems in a dynamic network is the dynamic shortest path problem.

3.2. DYNAMIC SHORTEST PATH PROBLEM

The dynamic shortest path problem is the generalization of the static SPP, already

explained, where the characteristics of the network may change overtime.

 24

Dynamic shortest path problems are computed in a time-dependent network,

instead of a static network as in the static version of the SPP. Thus, a time-dependent Graph

is defined as G=(V,E,T), where V is the set of nodes and E is the set of arcs representing

the network segments, each one connecting two nodes. For every arc e=(vi,vj) ∈ E, and

vi ≠ vj, there is a cost function cvi,vj(t), where t is the time variable in time domain T. This

cost function represents the travel time from vi to vj starting that arc in the time t [80].

Considering that a cost of one (or more) arcs may change during the calculations,

the dynamic shortest path problem is to compute the shortest path between one to all the

other nodes, or between all the pairs of nodes present in the network. Thus, the dynamic

SPP deals with non-fixed arc costs [81].

Dynamic SPP can be further divided into two types, depending on how the time is

treated [82]: discrete and continuous. In the discrete type, the time variable is modeled as

a set of integers, while in the continuous, the time variable is treated as real numbers.

Depending on the type of how the time is treated, the cost function can also be continuous

in time, or discrete, whose domain and range are integers [83]. Therefore, dynamic SPP is

more about fastest path than shortest path per se. Typically, the objective is to find the

fastest path from one node to another, which may not be the shortest one in terms of

distance. However, the time of traversing an arc is generally directly proportional to the

distance of that arc.

The network can be also FIFO (first in, first out) or non-FIFO. If the condition FIFO

holds, no one can depart later at the beginning of one or more arcs and arrive earlier. On

the other hand, when the network is non-FIFO, it is possible for an entity to depart later

and arrive earlier at the destination. The difference between the former networks lies on

the travel functions of the arcs. If the functions are constant or increasing with time, means

that the network is FIFO. If there is travel functions that are decreasing with time, the

network is non-FIFO [80].

One practical example of such networks can be given by considering a link

composed of two physical channels, one being faster than the other. If the policy is to send

a message over the first available channel, then a message sent over the slower one may

 25

arrive later than another message sent later in the fast channel, meaning that messages

arrive in non-FIFO order [83].

These different types of networks bring many implications, such as, if waiting at

nodes is possible or not, or if the time of the departure is restricted or unrestricted, etc. For

example, if the network is non-FIFO, sometimes it may be preferable to wait a certain

amount of time in the node, before entering in one arc. One other example can be the system

entering time. This time is the time that the entity starts its route. If this time is restricted

means that the entity must enter the system in a fixed time. On the other hand, the entity

can have an allowed interval of time before entering the system. Such conditions will have

impact on the solution of the shortest path.

An illustration of the dynamic shortest path problem is given in [84] and can be

observed in the Figure 3. In this case, it is possible to state that, the edge ‘e’, has a time

dependent cost. Therefore, when computing the shortest path from the source, ‘s’, to the

destination, ‘d’, the shortest path and cost will depend on the time of the departure. The

graph presented in the Figure 3 shows an example of a non-FIFO network.

Figure 3 - Example of a time dependent shortest path.

In the dynamic version of the SPP, the algorithms can also compute not only the

shortest path from one-to-all given a departure time, but also from all-to-all for all departure

times. As happens in the static version, this problem can be turned into the fastest path

problem, least cost path problem, planning, etc. [82].

Compared to the static SPP, the literature in this problem is surprisingly much more

limited. In the study of Cook and Halsey [85], a dynamic Programming algorithm is

developed to address the dynamic SPP. In 1969, Dreyfus [86], is the first to address the

time dependent shortest path with a generalization of the well-known Dijkstra’s algorithm.

 26

In this generalization, waiting times at nodes were not allowed. It was proved [87], later,

that this generalization is only valid if the network satisfies the FIFO conditions. On the

other hand, the time-dependent cost functions of the arcs are usually difficult to be

forecasted, thus the link travel times are typically described by random variables.

In [88], a study of the complexity of shortest paths in time-dependent graphs is

outlined.

Besides routing, there are an enormous variety of problems were a dynamic

modeling may be addressed. Among them are Design of a service network, Repositioning

of empty vehicles to anticipate future demands, Production and Inventory Management,

Facility planning and design, etc. [77].

Previously, four types of events with most impact in the dynamic routing problems

were addressed and explained. The traffic jam was one of them and is mentioned as being

one of the principal events in dynamic routing problems and is widely studied in literature.

3.3. TRAFFIC ASSIGNMENT

3.3.1. OVERVIEW

Since the early 1990’s, road traffic has been increasing and causing congestion,

delays, accidents, and environmental problems, almost in all large cities [89] [90].

Besides this, congestion also results in a massive delay for the vehicles due to the

fact that the time of traversing a road is unpredictably higher whenever congestion is

present [91]. Therefore, traffic congestion is a noteworthy problem, and the reduction of

the congestion a major challenge [92]. All the costs caused by the traffic can be reduced or

even eliminated, by using the transportation systems efficiently. In literature, there are

several strategies to avoid traffic congestion, depending on the problem, such as selecting

alternative routes, changing the customer-vehicle assignment, among others [93].

To achieve an efficient way to organize the transportation system, the traffic (or

transportation) planning problematic can be addressed [18]. The Traffic Planning can be

divided into several processes [94], having in consideration goal definition, collection of

 27

data, travel forecasting, among others, which are analyzed separately, and often in a

predefined sequence.

In what this study concerns, one of the most important processes in Traffic Planning

is the so-called Traffic Assignment. The Traffic Assignment is the part of traffic planning

that determines traffic loadings on arcs and paths of the road network of interest in a static

or dynamic environment [95]. The difference between static and dynamic is, as stated

above, that a static approach, by definition, cannot reflect any variation in the traffic flows

and any change in the transportation conditions, over time [96].

Therefore, succinctly, the Traffic Assignment Problem (TAP) is stated as follows

[97]: Given a directed graph G, and a matrix of tours, containing the number of travelers

from an origin location to a given destination in G, the TAP consists in determining a flow

assignment on the links of G which satisfies the demand for each pair origin-destination

(O-D) and minimizes each traveler’s time.

The major aims of TAP are the outlined above [98]:

1. Estimate the volume of traffic on the links.

2. Estimate inter zonal travel cost.

3. Analyze the travel pattern of each origin destination pair.

4. To identify congested links and to collect traffic data useful for the design of the
transportation transport system.

The output of the TAP depends on the complexity of the application, but always

give an estimate of the traffic volumes and the corresponding travel times or costs on each

link of the transportation network. In a more sophisticated technique, the directional

turning movements at intersections and route flows may be included to the assignment of

traffic [94].

3.3.2. ALL-OR-NOTHING ASSIGNMENT

One of the first heuristics to address the TAP was the all-or-nothing technique. This

technique consists in the basic procedure of assigning all the traffic to the route with

 28

minimum traversing time [99]. In the Figure 4, there are two different routes, R1 and R2,

for reaching ‘B’ from ‘A’. Therefore, suppose that an amount of flow (vehicles), x, must

be assigned to the origin-destination pair A-B, that is, starting in ‘A’ and traveling to ‘B’.

Figure 4 - Two routes example for the All or Nothing Assignment.

It is possible to observe in the Figure 4 that the cost (time) of traversing each route

does not depend on the flow in the route, having then a constant cost. In the all-or-nothing

procedure, all the amount of flow is assigned to R2, being that route the one of minimum

cost, regardless of x.

It is notable that this technique considers a highly unnatural assumption, that the

travel cost is independent of the amount of flow present in the links. If, p. e., there are two

alternative routes with a nearly cost, the assignment is always made to the minimum cost

route [94].

Moreover, the assigning is made whether or not there is adequate capacity or heavy

congestion on the links of the network. Despite this, this procedure may be efficient if the

amount of flow to be assigned is low and/or if there are many alternative routes with an

accentuated difference in the costs. It may also act as a building block for other models of

traffic assignment [98].

This assignment can be made using only a TSP or a SPP instance (depending if

there are more than a location to visit or not). Therefore, all the traffic is assigned to that

route.

3.3.3. LINK COST FUNCTIONS

The results of the all-or-nothing technique are very unrealistic, as stated above. To

introduce the concept of congestion, it is necessary to have algorithms considering that

 29

travel times on each road of the network are different, depending on the flow in that road.

Thus, link cost functions (or link performing functions) need to be developed [100]. As the

flows increases in a road, the average stream speed reduces from the free flow speed to the

speed corresponding to the maximum flow. The graph presented in the Figure 5 states the

typical influence of traffic flow in the average travel time [101] [102].

Figure 5 - Influence of traffic flow in the travel time of a road.

Different studies developed different link cost functions [97]. The Bureau of Public

Roads [103], in 1964, developed the best-known function, taking into consideration that

each present vehicle in a road creates an impedance in the road. This equation is presented

below. t = 𝑡0 ∙ [1 + 𝛼 ∙ (𝑥𝑘)𝛽] (4)

where:

t0 is the free flow time

x is the flow on the link

k is the capacity of the link per unit time

t is the average cost time for a vehicle to traverse the road

The α and β are model parameters to be calibrated, but α =0.15 and β=4 are the

typically used. The quotient of x by k is also known as the ‘degree of saturation’ [104].

 30

3.3.4. CAPACITY-RESTRAINT HEURISTIC

With the link cost functions, heuristics for TAP including the congestion factor

were developed. The Capacity-Restraint heuristic was first developed in the Chicago Area

Transportation [105]. In this procedure, a specific origin is randomly selected. Then, the

shortest routes are calculated between each O-D pair, being ‘O’ the selected location. After

that, all the traffic containing the latter selected origin is assigned using the all-or-nothing

heuristic. At that point, the time of traversing each road is recalculated, having in

consideration all the flow assigned so far. This procedure is repeated but now with another

specific origin, different from the one chosen in the previous iteration(s), and with different

link costs. The algorithm stops after all the origins have been selected, and all the traffic

been assigned.

This heuristic differs from the all-or-nothing assignment only in the fact that the

travel times are updated after assigning the vehicles from each O-D pair. Thus, the

computational times for this method are essentially the same when compared with the all-

or-nothing procedure [94].

3.3.5. INCREMENTAL ASSIGNMENT

In the incremental assignment procedure, fixed fractions of traffic are assigned to

the network in steps, or iterations. Thus, in each step, a fraction of the total flow is assigned

to the shortest route, using all-or-nothing assignment. After this, the travel times of each

link are recalculated based on the link volumes assigned so far [98]. Usually, the updates

in the traffic costs are made by the Equation (4), showed above, or for other link cost

functions. The number of iterations is determined in advance, dividing the total amount of

tours by the portions of traffic to be assigned in each iteration.

The difference between this method and the capacity-restraint is that, in this

method, the portion of the traffic to be assigned is chosen, and so, the travel costs are

recalculated at each iteration. In the capacity-restraint method, at each iteration, all the

traffic starting at a specific origin is assigned, and only then the travel costs are updated.

 31

The result for this method may resemble an equilibrium of the system, when many

iterations are used, that is, when lower portions of traffic are assigned in each iteration. On

the other hand, such small increments can increase the computational effort when the

number of trips to be assigned is large. The most serious drawback of this approach is that,

after an assignment being made, an increment of the flow cannot be reassigned to another

path, in the subsequent iterations [106].

Martin and Manheim [107], developed an extension of this method. In their study,

the portion of traffic to be assigned is not previously fixed, but determined by a travel-time

function, called generation rate characteristic. Consequently, the number of iterations is

unknown in advance. With the generation rate characteristic function, when the volume of

traffic increases the cost of several paths, in the next iterations, the traffic to be assigned is

likely to be reduced, trying to reach an equilibrium in the system.

 32

 33

4. CEMENT INDUSTRY CASE STUDY

4.1. LIST OF PUBLICATIONS

Before entering in the case study, there are several scientific research studies which

compose the basis of the study presented in this dissertation. These research studies are

already published, accepted but not published yet, or submitted to publication.

1. Fonseca, J., Alves, R., Macedo, A. R., Oliveira, J. A., Pereira, G. and Carvalho, M. S.

(2019), Integer programming model for ship loading management, in J. Machado, F.

Soares and G. Veiga, eds, Innovation, Engineering and Entrepreneurship, Springer

International Publishing, Cham, pp. 743-749.

2. Macedo, A. R., Fonseca, J., Alves, R., Oliveira, J. A. , Carvalho, M. S., Pereira, G. (2018).

The impact of Industry 4.0 to the environment in the cement industry supply chain.

Proceedings of ECOS 2018 - The 31st International Conference on Efficiency, Cost,

Optimization, Simulation and Environmental Impact of Energy Systems (ECOS).

Presented at the ECOS 2018 Conference.

3. Alves, R., Fonseca, J., Macedo, R., Veloso, H., Dias, L., Pereira, G., Carvalho, M. S.,

Figueiredo, M., Oliveira, J. A., Martins, C. and Abreu, R. (2018), Cement Industry - A

Routing Problem, Cement Update by Daily Cement (5), 10-15.

4. Fonseca, J., Macedo, R., Alves, R., Veloso, H., Dias, L., Carvalho, M. S., Pereira, G.,

Figueiredo, M., Oliveira, J. A., Abreu, R. and Martins, C. (2018), Rules for Dispatch,

BMHR 2018 supplement in World Cement (September).

5. Macedo, A. R., Alves, R., Fonseca, J., Veloso, H., Dias, L., Figueiredo, M., Pereira, G.,

Carvalho, M. S., Abreu, R. and Martins, C. (n.d.), What can we learn from Industry 4.0:

Opportunities in the logistics field on Cement Industry.

6. Veloso, H., Vieira, A., Alves, R., Fonseca, J., Macedo, A., Pereira, G., Dias, L.,

Carvalho, S., Figueiredo, M. (2018), Simulation in cement industry, CemWeek (July).

 34

4.2. CEMENT INDUSTRY OVERVIEW

Cement is an inorganic, nonmetallic substance with hydraulic binding properties

that is mixed with water to form a paste. After hardening, the cement retains his strength.

There are several types of cement products and because of its importance as a construction

material, cement is produced in essentially all countries. It is one of the most important

materials worldwide and its consumption and production is closely related to construction

activity, and, consequently to the general economic activity [108].

All over the world, global cement production grew from 594Mton (Million tons) in

1970 to 2284Mton in 2005, with the vast majority occurring in developing countries,

especially China, where the production of cement reached 47% of the overall world

production. Besides China, countries like India, Thailand, Brazil, Turkey, Indonesia, Iran,

Egypt, Vietnam, and Saudi Arabia accounted for 17% of the 2005 world cement

production. Taylor et al. [109] shows the production of cement, by country, in 2005. In that

same study it is possible to observe the continuous increasing production of cement and

the projections till 2050 all over the world.

With this great amount of production, cement is the second most consumed

substance in the world, only after water [110]. To produce 1.0 ton of cement, it is necessary

to collect about 1.6 tons of main raw materials. This large amount of production makes it

so that, usually, plants are located near quarries, which are the source of their main raw

materials [111]. Between all raw materials used for cement production, there are limestone,

chalk and clay as the most common ones.

The cement industry has also a great impact in the environmental field. This type

of industry will come under increasing regulatory pressures to reduce its emissions and to

contribute to the reduction of the global warming [112]. The number of articles and the

amount of literature review concerning cement industry shows that the impact this industry

has in the environment is the immense concern to the scientific world.

In 1995 there were 252 installations producing cement only in the European Union

(EU)[113]. The large number of plants all over the world, allied with the almost steady

 35

increase in the cement production among the years suggests the importance in the

management and the study of the cement industry supply chain.

Moreover, although SCM is a subject with a lot of research and with the technology

advances it is also an increasingly investigation topic [110]. Succinctly, in the Figure 6, it

is possible to observe the supply chain of cement, from the production till the clients,

discriminating the processes involved [114].

Figure 6 - Cement Industry supply chain.

There are two main phases in the production of cement. The first one is relative to

the transformation of raw materials in clinker. The second is the production of cement from

the clinker [111]. If all the processes composing these steps are geographically apart, there

are additional transportation and time costs associated with the supply chain. However, as

stated above, usually all the processes are near each other to overcome that disadvantages.

The cement supply chain is complex and somewhat large, as suggested in the Figure

6. However, in this study, the focus is not the processes of extraction and creation of the

raw materials and the cement, but the logistic processes inside the plant, when the cement

is stored and ready to be shipped - Figure 8 (6).

 In the step (6) of the Figure 6, there are two locations where the cement can be

stored. The bulk cement, when cement is avulsed, is stored at what is called the cement

 36

storage silos. A storage silo is a huge cylindrical structure, like the one presented in the

Figure 7, and is used for storing bulk materials, in this case, cement.

Figure 7 - Cement Storage Silo.

Pneumatic and mechanical systems can be used to transport cement for the silos.

Usually, in a cement plant, there are several storage silos, near each other and/or in different

locations. Each silo has one type of cement to be loaded at each instant, and that depends

on the current silo configuration [113]. It is also possible for a cement plant to have silos

in more than one location and having the same materials, among others.

When the cement is stored in these conditions, a specific type of transportation is

also required. At this moment the cement can be transferred by pipelines or tubes to a train,

or to a ship, if it is near the plant. If the cement is required to be transported by road, a

specific truck is also needed to transport the cement. A cistern or tank truck is used to load

the cement stored in the silos. These types of trucks can also be viewed in the Figure 8.

 37

Figure 8 - Example of a cistern or tank truck.

The transportation of bulk cement brings some advantages and disadvantages. On

one hand, this type of transportation requires a fleet of specific trucks that needs to be

owned or outsourced by the clients. Besides this, it is also necessary to have other

equipment’s to unload the cement. On the other hand, this type of transportation requires

less human effort, because the cargo is maneuvered through machinery, thus allowing a

relatively easiness in that processes.

The cement can also be bagged and stored in a warehouse. There are several types

of bags, with different dimensions and weights, trying to meet the clients’ demand. The

cement can be stored in several warehouses due to its type and specifications of the product.

In a typical cement plant, it is possible that more than one warehouse is present, and it is

also possible for different warehouses to have the same products. In that situation, it is not

necessary to have a specific type of truck to transport it. Depending on the number of bags

to be transported, a “regular” loading truck is necessary. In the Figure 9 it is possible to

observe a typical loading truck.

Figure 9 - Loading truck for bagged cement.

 38

The transportation of bagged cement can bring some advantages and disadvantages.

Bags are more difficult to load and unload. Usually, in a cement plant warehouse, the load

is made using palletizers and forklifts. In the client's location to unload, typically the

cement in these conditions is unloaded manually. On the other hand, bags are more flexible

and can be moved in almost all types of trucks and cars, depending on the quantity of

cement to be transported. Bagged cement can also overcome the demand of small and

irregular orders.

4.3. INDUSTRY 4.0 AND CEMENT INDUSTRY SUPPLY CHAIN

MANAGEMENT

With globalization, the market is getting more global and less local. Each time more

and more products are available, and their life time is decreasing, by its obsolescence. Also,

the quality standards are increasing, and the markets are getting more demanding, imposing

short delivery times and at the same time, wanting lower costs. Competitivity is getting

increasingly more difficult, and therefore, the companies that use efficiently their SCM are

the ones that will survive to this era.

In the cement industry, the lack of SCM is highly present. Cement plants are

involved in an unpredictable environment. It is not possible to know, in advance, what

materials each client will need, if the required materials are bagged or bulked, what is the

day and time each client will arrive at the plant to be served, what are the locations each

client must reach, etc. It is important to introduce the concepts of what industry 4.0

represents. Terms like Internet of Things, Cloud Computing, Big Data, integrated systems,

Business Intelligence, and so on, are strongly connected to this fourth industrial revolution

[115].

Industry 4.0 is an increasing term in the present days. It introduces new

technologies, specially information technologies and information techniques. Organization

and logistics are implemented in modern business as an aggregated system, which has led

to new ways of production, new ways of doing business and better service activities in the

sphere of industrial production [116] [117]. The Industry 4.0 allows a ‘digital supply chain’

 39

and a ‘Smart Production’, introducing the concept of real-time. This linkage between every

stage of the supply chain, between every machine, every sensor, allows to capture and share

real-time production data, which could be used for rapid and accurate decision-making

[118]. Therefore, and succinctly, Industry 4.0 is about information and how to use

technology to efficiently manage that information.

The Figure 10 suggests a general framework of the supply chain for the cement

industry, focusing the packing and shipping of the cement. The introduction of the industry

4.0 is represented by the ‘information flow’ linkage.

Figure 10 - Industry 4.0 in cement industry supply chain.

It is extremely important to have the information flow and material flow connected.

With this, it is possible to plan, adapt and execute, making decisions in a much more precise

and rapid manner. Industry 4.0 makes SCM easier, increasing also the precision and the

efficiency of the available resources, bringing advantages not only for the companies and

organizations, but also for the clients, in the service and product quality.

There are several potential applications where technology can have a big impact in

the cement industry, among others. In this study, one of them will be focused and is

explained below.

 40

4.4. PROBLEM DESCRIPTION

The management of the trucks when they are inside the plant is one of the biggest

tasks cement plants face nowadays. Whenever a truck enters a cement plant, there are

several problems that may come along with it.

Trucks go to cement plants to load or unload materials. If it is necessary to unload

various materials, there are locations in the plant designated for each material. A truck can

also enter a cement plant to load one or several materials. In that case, the materials can be

bulked or bagged, and for that, the type of transportation is different, as mentioned above,

and a client can only require bulked or bagged each time.

In addition to this, a typical cement plant receives hundreds of trucks every day.

Whenever each truck enters the plant, it must visit one or more locations to be served. The

trucks will follow a route, which will lead them to its required services. Due to the great

complexity of the cement plants map, usually there are several possible routes for each

truck to follow, leading them to the desired locations. Although it is a less significant case,

it is also possible for a truck to have some places to visit inside the plant, with a specific

and predefined sequence. In this case, the truck must be serviced in all the required

locations, following the predefined order.

On the other hand, truck drivers may not be familiar with the plant, and even if they

are familiar, they have no assistance or guidance when choosing the routes. This problem

leads the drivers to have unnecessary times finding the required locations, and/or making

the drivers to loading/unloading wrong materials in incorrect locations, thus resulting in an

increased time inside the plant. The congestion inside the plant is also a very important

problem cement plants face due to the great number of trucks arriving each day.

Overloading some roads of the plant may lead to traffic jams, increasing even more the

time each truck spends inside the plant.

It is important to create a routing system, assisting and guiding the truck drivers

inside the plants and possibly tackling the traffic jam on the roads. This can only be

addressed by introducing technology in the decision-making task, thus allowing each truck

to have its own computed route. With this, both service quality and the equilibrium of the

facility are improved. The equilibrium of the facility represents the workload level on the

 41

servers, and the number of trucks in the roads. When the number of trucks waiting for their

services and the number of trucks traversing the same roads at the same time are lower, the

facility is in a higher level of equilibrium.

4.5. PROBLEM ASSUMPTIONS

Whenever a problem is modeled, it is always necessary to assume some

characteristics. These characteristics encompass all the specifications of the real problem,

but also, some inevitable assumptions. The assumptions aim to create robustness in the

modeling.

Each cement plant is composed by locations to load, locations to unload, and other

possible locations, like for example, areas for the administration. These areas will be, from

now on, designated in general as “service locations”. Inside of the plant, connecting these

areas, there are roads. The roads’ surface (i.e. the pavement) is composed by asphalt or

only by dirt. Each road can have one or two directions and it is possible to exist more than

one road connecting two service locations.

Thus, it is possible to describe a plant through graph theory. Thereby, each one of

the service locations will be represented by a node. In the same way, the set of roads will

be represented by the arc set of the graph.

The roads, represented by the arc set, will follow a FIFO rule. This means that,

when a truck enters a specific road, it will only end its traverse, after all the trucks that

already are in that road, in the same direction, have also traversed. Thus, overtaking is not

allowed in the roads inside of the plant. Each arc will also have a distance cost of traversing

it, and a proportional time cost. It will be assumed that the greater the distance, the longer

the time of traversing a road, in terms of simplification.

The average velocity of the trucks will be assumed to be constant and equal when

traversing each road inside of the plant, independently on the type of the truck, in terms of

simplification.

The cost of traversing the roads will have a lower order of magnitude when

compared with the processing time in the service locations. This happens because,

 42

typically, the trucks spend more time loading and unloading materials than on the roads

inside the plant.

Each one of the service locations has a processing time, depending on the type of

service (load, unload, etc.) and depending on the truck (per example, the type of the truck).

Therefore, each node will have an associated processing time, depending on that same

aspects. The intersections and crossing points will also be treated as nodes, however, in

this case, with processing time equals to zero, because there is no service to do in that node.

The type of truck will be independent for the routing system. It is important to know

which are the locals that each truck must visit, and the specifications of each service. These

specifications are the time each service will require for that truck (depending on the size of

the cargo to load or unload) and if the truck has a specific predefined sequence for its

services or not.

It is also assumed that after a truck has started being processed in a server, it will

be completely served, thus not being considered intermediate stops.

In each service location, only one truck at a time is served. At the same time, if

more than one truck reaches the same service location, the trucks will be served one at a

time, in the order of arrival at the service location. Thus, the service locations will work

following a FIFO order. In a real scenario this may not happen, meaning that, there are

service locations that it is possible for more than one truck to be served at the same time.

However, in a future possible real implementation, this and all the previous assumptions

can be easily altered, thus meeting the real services’ characteristics.

In the next sections, three algorithms will be developed to overcome the already

mentioned problems, and its implementations addressed. These algorithms will have

different considerations as how the routes will be given to the drivers, and when they will

be given.

 43

5. APPROACH TO THE PROBLEM & APPLICATIONS

Before entering in the algorithms’ description, it is necessary to establish and

determine how the plants will be organized. Each plant will be organized using graph

theory, being the service locations and road intersections represented by the node set, and

the arc set representing the roads of the plant. There are several ways to describe the

information contained in a graph (see [119]). The data structure that will be used to contain

the information presented in the graphs of the plants, will be the “Adjacency Matrix (With

Costs)”. The Adjacency Matrix is a matrix which indicates, in an organized way, the nodes

that are directly connected in the graph. If two nodes are directly connected by some arc

(adjacent nodes), the element of the adjacency matrix is 1, and 0 otherwise, thus making

this matrix binary.

On the other hand, the Adjacency matrix (with costs) specifies also the cost of the

arcs for the adjacent nodes. In this case, the costs of the matrix are distances being the roads

of the plants represented by the arc set of the graph. These distances can be represented in

meters, kilometers, etc.

It is important to state that the distance between each pair of nodes in that matrix is

the distance of the arc that connects that pair of nodes. That distance may or may not be

the minimum distance between that pair of nodes. Next, to give a better contextualization,

the Figure 11 is an example of a graph. This graph could be an example of a cement facility.

Figure 11 - Graph example of a cement facility.

 44

The graph presented in the Figure 11 contains five nodes, representing five service

locations, and nine roads. It is important to observe the connections between the nodes “B”

and “C”. There are two different connections between these two nodes, with different costs

and opposite directions, thus making the graph asymmetric.

The respective adjacency matrix is presented in the Table 2. The next algorithms

will be relied on this type of matrix.

Table 2 - Adjacency Matrix for the graph of the Figure 13.

 A B C D E

A 0 4 ∞ ∞ ∞

B 4 0 3 2 3

C 2 1 0 4 5

D ∞ 2 4 0 1

E ∞ 3 5 1 0

In the Table 2 it is possible to observe the distance between each pair of nodes. It

is important to refer that whenever a distance matrix cell has the symbol “∞”, means that

there is no connection directly between these two nodes. In a future computational

implementation, there is no possible way to include the “infinity”. Therefore, a number that

is very large when compared with the others is typically chosen.

Next, three algorithms will be presented to approach the already stated problems.

When a truck driver arrives at a cement plant, it proceeds to its check-in. When this stage

is finished, there will be a system, with an implemented algorithm, that, considering all the

information, will compute a specific route for that driver to follow.

There are two general approaches in the next algorithms regarding the possibility

of updating the routes. The first one considers that after the driver receives his route, thus

entering in the facility, there is no more connection between him and the routing system.

Therefore, there is no updates in the given routes, and the only interaction between the

driver and the system is in the entrance (check-in) and the exit (check-out).

 45

The second approach considers that after the driver enters the plant, the connection

between him and the route system continues. With this, it is possible for the routes to be

updated during the trip.

These two general approaches have advantages and disadvantages. For one hand,

the update of the routes will encompass a more real time system, considering eventual

situations that may change the current state of the facility, thus updating the drivers that

are already inside of the plant. On the other hand, for this to happen it is necessary that

each driver has an informatic gadget, thus being connected to the route system, in real time,

(per example, an app on a smartphone).

One the other hand, if there are no updates after the entrance, the system may not

consider some eventual change in the system and update the trucks that already are inside

the plant. However, in this scenario, it is not necessary for the driver to be connected to the

system, therefore the informatic gadget and the ICT for that to happen are not required.

Each algorithm will consider different scenarios and will have different goals.

5.1. ALGORITHM NO.1 – THE DISTANCE APPROACH

The first approach to the problem considers the distance traveled by each truck, and

in minimizing it. With this, it is guaranteed that each truck will travel the minimum

distance. This approach is, perhaps, the first idea that comes to mind when addressing this

problem. By guiding the drivers through this approach, both drivers who do not know the

plant and those who already know are guided to the required locations by the route that

minimizes their travelled distance. Besides this, this algorithm will serve as a comparison

term for the next algorithms.

Therefore, if only one place is required to be visited by some truck, the overall route

can be calculated by computing the shortest path between the entrance and the required

place, and then calculating the shortest path between that required location and the exit of

the facility. Note that the entrance and the exit of the facility can also be in the same

location. Hence, this problem can be solved by using a SPP algorithm.

 46

In the Chapter 2.3 of this dissertation, it is possible to observe the most known and

used algorithms to address the SPP. The Dijkstra’s algorithm is one of the most famous

and fast algorithms for solving the SPP, while having a relatively easy implementation.

Besides this, it gives always the optimal solution. With all this, a Dijkstra’s algorithm is

chosen to address this problem.

However, if more than one service location is required to be visited, and for the

minimum distance to be achieved, the problem can no longer be solved using only the SPP.

In this case, it is necessary to use the traveling salesman problem algorithms. In the Chapter

2.4 of this dissertation, several algorithms addressing the most typical cases of TSP were

outlined. In the case of the precedence constrained TSP and the SOP, it is possible to ensure

some of the positions of the nodes in the solution sequence. Thus, it is possible to impose

some precedence’s in the possible route solutions, while in a regular TSP that is not

possible (see Chapter 0).

It is necessary to ensure the node representing the entrance of the facility to be the

first node, and to ensure the node representing the exit of the facility to be the last node of

the possible route solutions. In the case the entrance and the exit of the plant are in the same

location, the ensured node to start and end is the same.

To solve this problem, a Brute Force algorithm was designed. This Brute Force

algorithm will test all the possible route solutions and give the one with the minimum

distance. Besides this, each possible route solution must respect the fact that the node of

the entrance and the exit of the facility must be the first and the last in each route,

respectively.

As stated earlier, brute force algorithms are not very advised when the problem is

complex due to its higher computation times. Still, even if the number of nodes of a plant

is high, it is not assumable that a truck requires more than four services in the same visit.

Therefore, a brute force algorithm will not compute a higher number of different routes,

thus giving always the optimal solution in shorter periods of time.

Before entering in the Brute force algorithm, it is necessary to compute all the

minimum distances between all pairs of nodes in the graph. As stated in the Chapter 2.3.2,

one of the most famous algorithms for computing the APSPP is the Floyd-Warshall

 47

algorithm. However, and as stated earlier, in the case there is only one service location to

be visited, a Dijkstra’s algorithm will compute the minimum distances. In this case, and to

use the same algorithm, that Dijkstra’s will be applied to all the nodes, thus computing the

all pairs shortest path problem. The running time of computing the Dijkstra’s n times, is

similar to what would it be if the Floyd-Warshall was used (see Chapter 2.3.1).

With this, a matrix with the same dimensions of the adjacency matrix is created.

Hence, in this matrix, each element has the minimum distance between each pair of nodes.

It is possible that the minimum distance between two nodes not corresponds to the distance

of travelling directly from one to the other, thus passing in intermediate nodes. The overall

route must also convey that.

Thus, whenever a truck must visit more than one service location in the facility, it

is necessary to compute all the different possible routes it can go and choose the one that

offers the minimum distance. When the driver informs the system about the required

places, the algorithm will calculate all the combinations of the possible routes for that truck,

leading him to its required places. The algorithm will calculate the minimum distance route,

passing in all the required locations, starting at the entrance node of the facility, and

terminating in the exit node of the facility.

This algorithm must also consider the fact that, as already stated, the service

locations may have a fixed sequence to process the trucks. In this case, this approach will

compute a route, following the order of the service locations defined by the truck driver.

However, the algorithm of this approach will also compute the minimum routes connecting

all the required servers, not changing the required sequence by the driver. This will

probably not result in the overall minimum distance route but will decrease the travelled

distance for the trucks in that conditions.

Therefore, generally, whenever a truck arrives at the facility, it proceeds to its

check-in. During the check-in, the service locations are transmitted to the system, and the

minimum distance route is calculated, and communicated to the driver again. As the

distances of each road are fixed and do not update during the visit, the route it is only

transmitted to the driver at the entrance and the driver follows that route. It is also possible

 48

for a plant to have the entrance and exit in different locations and the algorithm will

consider that as well. This approach can be observed in the next flowchart.

 49

Arrival of a truck

No. of

service

locations

Calculate the Shortest paths from

the entrance node to the required

location and from the required

location to the exit node.

Present the minimum distance

route to the truck driver.

END

Calculate the route using brute

force algorithm, thus testing all

the possible solutions, starting

in the entrance node, and

ending in the exit node.

Present the minimum distance

route to the truck driver.

END

There is a

fixed

Sequence

Calculate the route, following

the sequence of the service

locations.

Present the minimum distance

route to the truck driver.

END

=1

>1

YES

NO

Figure 12 – Flowchart of the Algorithm No.1.

 50

5.2. ALGORITHM NO. 2 – THE EQUILIBRIUM APPROACH (WITHOUT

UPDATES)

The algorithm presented in this approach is the greatest contribute of this

dissertation, as well as the Algorithm No.3 -being the algorithm No.3 a variation of this

one- and, to the best of my knowledge, there is no procedure gathering the characteristics

of this approach.

In the algorithm No.1, the distance travelled by each one of the trucks is minimized.

Besides this, if each driver follows its associated route, every truck will reach its required

places. With this, it is possible to overcome problems like the one where the drivers do not

know where the service locations are and how to reach them.

However, the problem of the congestion inside the plant is not addressed by that

approach. If, on one hand, the congestion may decrease because the trucks are not getting

lost inside the plant, on the other hand, due to this static choice of the routes (always

choosing the minimum distance one) the congestion will increase in some roads of the

facility.

The algorithm of this approach is concerned with two principal and connected

objectives. The servers’ (service locations) workload and the congestion and traffic jam in

the roads. This approach will not consider any updates in the routes after being given at the

entrance. Thus, the control of the trucks is made in the entrance and in the exit of the plant,

being the route given to the driver during its check-in.

There is a question that arises from the approach of the algorithm No.1. If, for

example, two trucks arrive at the plant, requiring visiting the same service locations, the

first approach will give the two trucks the exact same route, minimizing each truck

traveling distance. Thus, the trucks will enter the facility, in FIFO sequence, following the

same route. This, following the assumption that, in each service location, only one truck is

served at a time, the first one will be served and the second one must wait for the service.

Therefore, one good principle would be to divide them between the required service

 51

locations. Thus, the first truck will travel to a service location, and the second to other

service location with minimum workload, therefore avoiding congestion and unnecessary

waiting times. This illustrative example shows the problem for only two trucks. But, with

hundreds of trucks arriving at the facilities every day, this problem becomes even more

relevant.

A dynamic approach is necessary to overcome the unnecessary waiting times.

When a truck enters a facility, besides the minimization of the traveling distance, it is also

necessary to consider the workload of the required service locations.

As stated earlier, this approach will not consider the updates of the routes after

being given to the drivers. Therefore, for the workload of the servers being properly

considered in the calculation of the routes, it is necessary to store information relative to

the given routes, since the beginning of the calculations (for example, using the algorithm

since the beginning of the day, in a possible application).

Thus, it is necessary to consider the times of traversing each road of the facility.

Hence, besides the distance of each road, the time of traversing a road will also be

considered. It is important to remind that the service time of each truck in the servers is

grossly higher than the time of crossing the roads.

Therefore, when associating a truck to a route, each time of reaching and leaving a

destination will be stored. Consider the situation when a truck enters a cement plant, at

time 0 (with no more trucks inside the plant), with required service locations “A” and “B”.

Assume that the route given to the driver is E-A-B-O (going from the entrance, E, to A,

from A to B, and from B to the exit, O, consequently). Thus, if the road connecting E and

A takes 10ut (units of time), and if the server A is empty at the time of its arrival, the truck

will be served at the time of 10 in the server A. If its service time in A is 20ut, the truck

will leave the server A at the time 30 (10+20). Thus, following the route, assume that the

road connecting A and B takes 5ut. The truck will now reach the server B at time 35. If the

server B is empty at that time, and if the service time of the truck in server B is 20ut the

truck will leave the server B at the time 55 (35+20). Following the route, assume that the

road connecting B and O is 5ut, so, the truck will leave the facility at time 60.

 52

Therefore, it is necessary to store the times this truck reaches and leaves its required

locations, for the servers’ workload level to be properly considered. Thus, this truck will

be in the server A within [10,30] and will be in the server B within [35,55].

Thus, in this approach, every time a route is given to a truck driver, the interval of

times that each truck reaches and leaves each server will be stored. With this, as the routes

are given at the entrance, for the next trucks to arrive, the algorithm will be able to consider

the future workload of the servers.

In what concerns the servers’ workload, this approach will, whenever a truck enters

a plant, choosing the servers’ sequence by following the next premise. The first (or next)

server to be served will be the one with least workload within a range. That is, the server

with the minimum number of units of time occupied in the interval:

[arrival time in the server, arrival time + service time]

In order to clarify this situation, consider the following example. Assume that a

truck X1, entering the facility at the time 25, has a service time of 20ut in the server A and

a service time of 20ut in the server B. The servers A and B are the required service locations

for the truck X1. The algorithm must choose what will be the first server and the second

server for this truck, thus creating the servers’ sequence.

Following any route, X1 would reach the server A at the time of 30. However, it is

necessary to remember that every time a route is given, all the intervals of reaching and

leaving the servers are stored. Thus, each server may or not have already scheduled trucks.

The server A is occupied by some other truck in [12,32], and after that time is empty for

the whole time. If the truck X1 goes to the server A first, it will be served at the time of 32

and will end its service on that server at 52.

On the other hand, if the truck X1 follows some other route, it would reach the

server B at the time of 31, and that server is unoccupied at that time, thus ready to serve

the truck X1. However, the server B has also a scheduled truck. The server B will be

occupied in [33,53] by some other truck, that is already following its own route, and serving

the truck X1 at 31 will delay the service of the other truck, that is expecting to be served

on that server at 33.

 53

It will be assumed that, if the server with minimum workload level is not occupied

at the arrival time, the truck will occupy it during its service time, what may delay the

service of other trucks. This happens so that the servers are working constantly, in the

maximum occupancy level possible, without breaks. Yet, despite this, if this assumption

can not be made in a future real implementation, it is relatively easy to modify it by

changing the way the algorithm will works.

In the previous example case, the workload of the server A is one truck during 2ut

in the above-mentioned interval. While the server B is occupied 18ut within the same

range. Thus, the algorithm will choose the server A to be the first server for the truck X1

due to its lower workload in the interval. Therefore, X1 will reach the server A and wait

for its service, that will occur in [32,52].

Therefore, the unnecessary waiting times are decreased for the truck X1, and the

congestion in the servers is also decreased, thus increasing the equilibrium state of the

facility.

The choice of this interval is to overcome problems like the one described above.

By choosing the least occupied server in that interval and not only at the arrival time, it is

possible for the algorithm to consider a more concise workload of the servers. As stated in

that example, a server can be unoccupied at the arrival time but heavily occupied in the

next units of time.

The goal is to consider the trucks that have entered the facility already. Choosing

the sequence of servers by its workload, will allow the facility to be in a high level of

equilibrium, tackling situations where some servers are overloaded, and others empty.

Therefore, the sequence of the servers will be computed following that premise.

The algorithm will always choose the least occupied server in that interval. After defining

the first server to go, the algorithm will compute the same proceeding but for the remaining

required services. In that case, having always in consideration the update of the times, that

is, the time of ending the previous service.

In the case there are two servers with the same minimum workload, the choice will

fall in the nearest server, considering the travel time. The routes are given at the entrance,

 54

and as the trucks are following its given routes, other trucks may enter the plant and change

the servers’ workload. When two servers have the same minimum workload, by choosing

the nearest one, the probability of their workload to be altered is lower because the truck

will reach that server in a shorter period of time. Consequently, the sequence of the servers

is computed by choosing always the nearest minimum occupied server in the above-

mentioned interval. The algorithm will choose the servers, one by one, until all are chosen.

This can be viewed as creating a precedence constraint between them (as in the TSPPC –

see section 0), but, in this case, all the nodes will have a fixed position, defined by its

workload.

It is now necessary to define how the algorithm will deal with the choice of the

roads to reach the required servers. The choice of the roads will also affect the sequence of

the nodes. When calculating the workload level of the servers in the range stated above,

the servers’ workload depends on the arrival time, and the route chosen to reach the servers

will affect the arrival time.

Each road has an associated time cost. The time of traversing each road is

proportional to the distance of that road. Using the Traffic Assignment Problem, and to

address the problem of the congestion inside the plant, the time of traversing each road will

also be dependent on the number of trucks that are already in that road. That is, when a

truck enters a road in a specific time, the cost of traversing that road is increased if there

are some trucks crossing the road. As the flows increase in a road, the average velocity

tends to decrease, causing increased traversing times (see Chapter 3).

There are several methods to address the Traffic Assignment Problem. The

incremental assignment procedure (see Chapter 3.3.5) is to assign fixed portions of traffic

to the network, in steps. After assigning each portion of flow to the shortest route, the cost

of that route is recalculated, following a link cost function. This link cost function will

consider the volume assigned to that route so far.

Due to great unpredictability regarding the number of trucks that will arrive and the

locations they require to visit, the incremental assignment allows to overcome these

characteristics by assigning only one truck in each step. That is, considering that only one

 55

truck enters at a time in the plant and its route is calculated at that time, the portion to be

assigned will only consider that truck.

When assigning a route to a truck, it is necessary to, as made in the servers, store

all the times the truck will traverse each road that composes its route. Per example, assume

a truck that must travel from a specific node A to B, following the route A-E-B. The road

A-E has a time cost of 5ut and the E-A has a time cost of 3ut. Thus, assuming that the truck

starts the route at the time of 10, the road A-E will have one more truck in [10,15] and the

road E-B will have one more truck within [15,18].

Following the incremental assignment procedure, each portion of traffic (in this

case, one truck) is assigned to the minimum time route. In this case, the time costs of each

arc will be updated, for each time, considering all the trucks already inside the plant

following its own routes. Thus, what may be the minimum time cost route connecting two

nodes at a specified time, may or not be the minimum time cost at a different time, due to

the trucks that are already inside the plant. The equation (4), developed by the Bureau of

Public Roads, in 1964, will be used to calculate the updates in the travelling times, for each

road. Therefore, every time a truck is associated to a route, the times each road is traversed

are stored, for the costs to be properly updated when computing new minimum cost routes.

When computing the minimum cost routes, a modified dynamic Dijkstra’s will be

addressed. In this case, the difference is that, when comparing the time costs of the roads,

the comparison can not be made directly. Whenever comparing the time costs of two roads,

it is necessary to use the number of trucks that are in that roads, at the time of entering the

roads. With this, the time costs are properly updated, using the link cost function stated

above.

Consider, as stated earlier, the times of traversing each route are stored in intervals.

When counting the number of trucks traversing each road, the count must contemplate the

time the truck will enter in that road. With this, it is necessary to compare the time of

entering the road, and all the previous stored intervals, thus updating the costs of the roads.

Therefore, assume that the algorithm is calculating the number of trucks traversing a road

in a specific time. If that time is not within any of the previous stored intervals for that

road, means that there is no truck traversing that road, at that time. In that case, the time of

 56

traversing that road will be the free flow time. Thus, it is not necessary to decrement the

number of trucks in the roads, because the number of trucks traversing a road will depend

on all the previous intervals stored for each road.

It is important to clarify that waiting times at the servers will not be allowed.

Sometimes, when comparing two different routes for one location, the algorithm will

calculate the number of trucks that are in the roads at the times of traversing the roads, and,

depending on that, the algorithm will choose the route according with the time cost in that

instant. If it was allowed to wait some units of time before entering the roads, the resultant

route could be other with a possible shorter time cost. However, if it was allowed for the

vehicles to wait in the nodes, the congestion in the nodes would increase. This problem is

even more highlighted because in some servers the space is limited for the trucks to be

there waiting. Therefore, even if waiting in the nodes would represent a shorter time cost

route, that is not allowed.

The algorithm that will compute the routes, considering the number of trucks in

each road, is described in the next steps.

1. Create two sets of nodes. The temporary ones, and the permanent.
C is the current node.

Assign temporarily T(x)=infinity, for all x.

T(x) is the current time of going to the node x.
T(C) is the time cost of reaching C.

2. The current time is t0. Calculate the number of trucks in each road, at the
current time, connecting the current node and the neighbor nodes. Update the time
costs of that roads, for the current time, using the link travel function (4).
Find the node x, connecting the current node, with the smallest temporarily value of
T(x).
If there are no temporary nodes, then stops.
Node x is labeled as permanent. Node x is now the current node. And the current time

is updated for t0=t0+T(x).

3. For each neighbor y of x, make the comparison:
if T(x)+t(x,y)<T(y), then T(y) is changed to T(x)+t(x,y).
To calculate t(x,y), the time of going from x to every neighbor y, it is necessary to
update the time costs, but for the current fictious time. It is so necessary to calculate
the number of trucks in each one of that roads, at the time of entering the roads, and
to calculate the updated costs, using the function (4).

4. Return to Step 2.

 57

Using this algorithm, the congestion in the roads is highly decreased due to the fact

that, when the number of trucks traversing one road, for a specific time, becomes higher,

the algorithm will choose other roads, with less trucks, thus diminishing both the

congestion and the travel time for the entities (each client of the cement plant). Therefore,

from this point on, when calculating a “minimum (or shortest) time route”, the route will

follow the previous steps.

It is now possible to explain the overall procedure of the algorithm No.2,

considering the sequence of the nodes and the choice of the roads. As stated earlier,

whenever a truck arrives at a plant, it will proceed to its check-in. During this part, the

truck driver will give the information regarding the required service locations and the

service time in each service.

After this, the algorithm will calculate, considering all the trucks already in the

facility following their own routes, the shortest time routes to reach every required location.

At this point, the algorithm will calculate the workload of each one of the required service

locations. It is important to remember that the workload level of each server depends on

the arrival time at each server, and that depends on the route to reach the server. The

minimum occupied server will be chosen to be the first server to visit. In the case there are

two servers with the same minimum workload, the nearest server will be the first one to be

visited.

The algorithm will update the time value, for the time the truck will exit the first

chosen server. This is possible because the algorithm considers the time of traversing each

road composing the computed route, and the service time of the truck in that server.

After that, it will calculate the minimum time routes, considering the updated times,

of going from the current server to the remaining required servers. At the time of reaching

that servers, the least occupied server will be chosen to be the next server to go. The

algorithm will, always updating the times, making this calculations and choices until there

are no required locations left. At this point, the algorithm will now calculate the minimum

time route connecting the current server and the exit of the plant. When this happens, the

overall route is given to the driver and the times of traversing each road and

 58

reaching/leaving each service location are stored. With this, it is possible for the system to

have control of all the trucks already inside the plant, because all the already given routes

are stored.

It is possible to understand that, as the overall route is given at the entrance, all the

time updates made during the algorithm calculations, are made assuming fictitious future

times. With all the times traversing each road and reaching/leaving in each server stored,

it is possible to calculate the number of trucks that will be occupying each road, and each

server, for a specified instant of time. Thus, the routes given now, are given considering

that future events.

The overall procedure can also be observed in the next steps.

1. Create two sets of nodes, containing the visited and unvisited nodes, representing the
required locations.
Place all the nodes in the unvisited set.

2. Calculate the minimum time routes, for the current time, between the current node
and all the unvisited locations.

3. Calculate the workload of each server in the interval [arrival time in the server, arrival
time + service time in the server] for each one of the required places.

4. Choose to least occupied server to be the next server to visit. If there are more than
one server with minimum workload, choose the nearest one, choosing the route with
shortest time cost.
Add that server to the visited set. Update the time value for the time of leaving that
server (considering the time of the route to reach the server, the waiting time in the
server, and service time in that server).

5. If the unvisited set is empty, then stops. Present the overall route to the truck and
store all the times the truck will traverse each road of the route, and the interval of
time it will be in each one of the required locations, considering the waiting time and
the processing time in the server.
Else, go to step 2.

To give a practical example of the overall algorithm, assume a truck X2, entering a

facility at the time 5, and with three required locations, being them represented by the nodes

C, D and E. The truck X2 requires a service time of 20ut in C, 15ut in D and 20ut in E. The

algorithm will start computing its calculations. First, considering the current time (5), the

 59

algorithm will compute three shortest time routes (one for each required location),

considering all the trucks inside the plant so far. Assume that a route r1 will lead X2 to C

and takes 3ut, r2 leads X2 to D having a time cost of 4ut and r3 leads X2 to E and takes

3ut. The Figure 13 presents the schema for this example.

Figure 13 - Minimum shortest routes for the truck X2.

The algorithm will now calculate the workload of C, D and E, in 8ut (5+3), 9ut

(5+4) and 8ut (5+3), respectively. Assume now that the least occupied server at that times

is D, and the truck can be served when arrives at that server, which may not hold in other

cases. Thus, the first server for X2 to follow is D, following the route r2. Now, the

algorithm must update the time, fictitiously, for 24 (9+15), because X2 reaches D at 9, and

has a service time of 15ut. In the Figure 14, it is possible to observe, marked in red, the

choice of the first service location.

Figure 14 - The first chosen route for the truck X2.

 60

This previous process will be repeated, but in this case the current fictitiously time

is 24, and the routes to be computed are now between D and C and between D and E. The

algorithm will repeat these processes till all the required places are “visited”, with shortest

time routes connecting them. At this point, the algorithm gives X2 the route for it to follow.

In the Figure 15-Figure 17 it is possible to observe the sequence of the remaining steps by

the algorithm to find the overall route containing all the service locations.

Figure 15 - The routes for the truck X2 - 2nd iteration.

Figure 16 - Second chosen route for the truck X2.

 61

Figure 17 - Overall route for the truck X2.

At the time of giving the route to the driver, the algorithm will also store all the

times the truck will pass in each road, and the intervals of time it will be in each one of the

required locations. Thus, the system will have all the information considering all the trucks

inside the plant for the next trucks to arrive.

In this case, if the routes connecting the servers were only composed by one road,

which probably will not hold in other examples, the road connecting the entrance and D

will have one more truck in [5,9]. The server D will have a truck within [9,24]. The road

connecting the servers D and E, will have one more truck in [24,26]. The server E will have

one more truck in [26,46]. The road connecting E and C will have one more truck in

[46,47]. The server C have one more truck [47,67]. The road connecting C and the exit will

have one more truck within [67,69]. Assuming there was only one road composing each

route, the algorithm will, at the time of transmitting the route for the driver, store all the

previously stated information.

This approach will also tackle the case when a truck has a fixed sequence for the

service locations. In this case, the algorithm will work in a similar way, but it will not

calculate the servers’ sequence, because that choice is already predefined. Every time a

truck arrives at a facility with a fixed sequence for the service locations, the algorithm will

calculate the minimum time routes, but the next server to visit is the server in the sequence

 62

predefined by the driver. Besides this, the algorithm will also store all the times traversing

the roads and servicing in each one of the servers.

It is important to remind that, as there are no updates in the routes, being all the

calculations made at the time of each trucks’ check-in, the servers’ workload could change

and the servers with less occupation now may or may not be in the same servers in the next

units of time, due to the changing of the workload configuration. In a little example, assume

that a truck X3 enters a plant in a specific time, and must be served on the servers A, B and

C. Assume now that, considering all the trucks already inside the plant, the sequence of

servers for X3 is B-C-A, being the routes connecting the servers the minimum time ones.

Consider now that, after X3 enters, several trucks arrive at the plant. These trucks

have only one required place, and it is the server C. The algorithm will give the minimum

time routes for that trucks to reach C, because there are no other required places for them

to be guided. Therefore, when X3 reaches C, after being served in B, the server C will be

more occupied than what have been previously calculated. This may result in a delayed

service for the truck X3. In this particular situation, it would be preferable, both for the

system and for the truck X3, for X3 to go first to the server A, if the workload in A is less

than C at the time of reaching C.

The algorithm No.2 does not consider the updates on the routes, and so, after a truck

entering the plant, there is no possible way to change the course of the truck, not addressing

these particular problems. However, since the algorithm stores all the times of all the trucks

since the beginning of the work, the workload equilibrium of the facility is expected to be

largely increased. Even when the servers’ workload changes drastically, the overall state

of the factory is to be in a higher state of equilibrium, with less congestion, both in the

service locations and in the roads, because each decision is made considering all the trucks

that have entered the facility so far.

Therefore, this approach leads each truck to its required locations. Above that, it

chooses the servers by its workload, thus tackling the problem of the congestion of the

servers. Besides this, it also decreases the congestion in the roads of the plant, avoiding

the ones with great number of trucks.

 63

5.3. ALGORITHM NO.3 – THE EQUILIBRIUM APPROACH (WITH

UPDATES)

The third approach is, in a matter of fact, a variation of the algorithm No.2. The

approach of the algorithm No.2 considers that all the routes are given to the drivers at the

time of the trucks’ entrance. Therefore, it is not necessary for the trucks to be connected to

the routing system when they are inside the plant. That approach, besides addressing the

servers’ workload and the roads’ congestion, it does not consider the fact that it is possible

for the workload of the servers to change after the trucks enter the plant, as in the example

of the truck X3. Thus, what may be the best sequence of services and route (considering

the workload configuration) now, may or not be the best over time. With this, it would be

profitable for the trucks, and to the overall system, if it is possible to change the routes of

the trucks already inside the plant.

The third approach will consider that each truck driver has an interface (possibly a

mobile application or other related gadget) connecting it to the system. Consequently, each

route can be updated in every moment and the driver is always connected to the route

system. Besides all of this, and to minimize the number of updates, not requiring for the

driver to be always “looking” if there are updates, this approach will consider that the

updates will be given at specific times, as will be explained below.

When a truck arrives at a cement plant, and proceeds to its check-in, the algorithm

will, as in the algorithm No.2, calculate the minimum time routes for each required

location, considering all the trucks already inside the plant. That minimum time routes are

calculated in the same way as in the algorithm No.2. After that, the algorithm will find the

least occupied server at the time of reaching the servers, following the premise of the

algorithm No.2, which means, the least occupied server in the above-mentioned interval

(see algorithm No.2).

The route leading the truck to the least occupied server is chosen, and that server is

the first service location for the truck to be served. After that, and contrary to what happens

in the algorithm No.2, the algorithm No.3 will not continue calculating the sequence of the

 64

occupied servers, and the routes connecting all the servers. Instead, the algorithm No.3 will

present the route for the first server to the truck driver, and it will store the sime of

traversing each road and reaching/leaving the first service location. That same truck will

follow the route for that server, and it will be serviced there. After that, the truck driver

will require the new route (through its connection to the system). Thus, the algorithm will

repeat the previous step but, in this case, considering all the remaining required locations,

and the server on which the truck is currently located. The algorithm is going to calculate

the new least occupied server and respective route for there, for the truck to follow. This

procedure will continue until all the required services are reached, and so the algorithm

will find the route for the truck to the exit of the plant.

Thus, while some trucks are traversing each road to reach its destinations, the trucks

at the entrance or in the servers are requiring for the system to calculate what will be the

next server for they to go. Therefore, the control of the facility is much more precise. With

this, the facility will be in a higher level of equilibrium.

Thus, whenever a truck is on the entrance or finishes being served in some server,

it requires to the system the next route to reach the next service location. The system must

know which vehicle is requiring to know -by and identifier, per example- thus knowing the

remaining required locations for that vehicle and its current location, to properly compute

the minimum time route for the next server. As the requirements to the system will only be

made at the entrance and in each server, instead of a mobile application or a gadget, other

possibility is a fixed communication system placed in each service location. Thus, the truck

driver will go, after loading or unloading its goods, to that machine, requiring the route to

the next server (or to the exit).

When a truck driver requires to the system the route for him to follow next, the

algorithm will follow the next steps.

1. Calculate the minimum time routes following the premise of the algorithm No.2,

considering all the trucks inside the plant, between the current location of the truck,

and all the required unvisited locations.
If there are no more unvisited locations, calculate the minimum time route between

the current location and the exit of the plant. Present that route for the truck driver

and stops.

 65

2. Calculate the workload of each server in the interval [arrival time in the server, arrival

time + service time in the server] for each one of the required places.

3. Choose to least occupied server to be the next server to visit. If there are more than

one server with the minimum workload, choose the nearest one, choosing the route

with shortest time cost.
Add that server to the visited set, removing it from the unvisited set.

4. Store the times of traversing each road and reching/leaving the service location.

Present the route for the next service to the truck driver and stops.

This algorithm tackles the problems of the congestion of the roads and the servers,

but not only with the trucks that have entered the factory until the entrance of a truck. This

approach will consider all the trucks inside the plant each time there is a requirement by a

truck driver, which happens at the entrance of a vehicle or in the end of each service.

Using the example given in the algorithm No.2, assume again the truck X2 arriving

in the facility at the time 5. Its required locations are C, D and E. The truck X2 requires a

service time of 20ut in C, 15ut in D and 20ut in E. The algorithm will start its calculations

by compute all the minimum time routes, considering all the trucks already inside the plant,

and the results of that routes are given in the Figure 13.

At this point, the algorithm will calculate the workload of C, D and E, at the times

of 8ut (5+3), 9ut (5+4) and 8ut (5+3), respectively. The calculation of the servers’ workload

is made in the interval stated in the Step 2. Assume, as in the example of the algorithm

No.2, that the least occupied server is D. The algorithm will, contrary to what happens in

the previous approach, give the route for that server to the truck X2.

Besides this, the algorithm will store the times for the truck X2, since the entrance

until its service in D. In this example, and again assuming the route connecting the entrance

to the server D it is only composed by one road, that road will have one more truck in [5,9].

The server D will have one more truck within the range [9,24].

Therefore, the truck X2 will follow that route and arrives in D at the time of 9. As

its processing time in D is 20ut, the truck X2 will end its service in D at the time of 24.

 66

While this happens, it is possible for other trucks to arrive at the plant, and the

algorithm will give them routes for the least occupied servers, following minimum time

routes.

After being served in D, at the real time of 24, the truck driver will require its new

route. The algorithm will now compute all the minimum time routes for the servers C and

E. After that, the algorithm will calculate which one of them is the least occupied server.

In this case, assume that new trucks have entered the plant while X2 traversed the route r2,

and now, at the time of 24, the least occupied server is C and not E, contrary to the same

example of the algorithm No.2. Now the algorithm will present other route, r4, for the truck

X2 to follow and reach C. The algorithm will also store all the times of traversing the road

r4, and the interval of reaching/leaving C. In this case, the road connecting D and E will

have one more truck in [24,27] and C will have one more truck within the range [27,47].

The truck driver will now follow its route for C, and after being serviced there, at

the time of 47, it will require its new route. The algorithm will do the same as before,

calculating the least occupied server and presenting the minimum time route for that server

to the truck driver. Always storing the times of traversing each road, and reaching/leaving

each service location, for other trucks entering now the plant or finishing its services to

consider all the trucks and all the roads that are being traversed at each moment. When all

the locations are visited, the algorithm will give the minimum time route for the truck to

exit the plant, as observed in the Figure 18.

It is important to state, as already mentioned, that in this little example, the truck

X2 was serviced at the time of reaching the server, which could not happen if the server

was occupied already. If a server is the least occupied server, but it is occupied at the arrival

time, the truck must wait for its turn for being served.

 67

Figure 18 - Overall Route for the truck X2 in the Algorithm No.3.

This approach will, as in the other approaches, overcome the case when a truck has

a predefined sequence for the service locations. In that case, this approach will calculate

the minimum time route for the next server (following the predefined sequence), and

present that route to the truck driver. After the truck being served in that location, the

algorithm will compute the new route for the next server, always following the sequence

until all the required locations are visited.

Therefore, the greatest difference between this algorithm and the algorithm No.2 is

the fact that the algorithm No.2 makes all the calculations assuming future fictitious times,

considering all the trucks that have entered the facility until the time of each trucks’ arrival.

This approach only considers future fictitious times to calculate what will be the next server

to visit, and the minimum time route to reach that server.

 68

 69

6. IMPLEMENTATION: TESTS AND RESULTS

6.1. ALGORITHM NO. 1

The Dijkstra’s algorithm was implemented using Java programming language. This

algorithm can be applied to compute the minimum distance between a pair of nodes, or to

all the pairs on the graph, depending if the truck has one or more services to visit,

respectively.

If the truck has more than one required location to visit, a spread sheet was

developed, containing the brute force algorithm. The algorithm in the spread sheet will

compute, for a given number of locations, the minimum distance route, testing all the

possible sequences of the required service locations. Thus, the shortest distance route is

always found and given to the driver.

Consider again the facility given by the graph presented in the Figure 11. Assume

that the server represented by the node A is the entrance and exit of the facility, and the

remaining nodes represent the service locations. The algorithm must assign the entrance

and exit nodes to be the beginning and end of each one of the computed routes. In this case,

the node A is assigned to be the beginning and the end of each one of the possible routes.

Assume a given truck arriving at this facility, being B, C and E its required service

locations. The answer given by the brute force algorithm is presented in the Table 3.

Table 3 - Possible routes for a truck with required locations B, C and E - Algorithm No.1.

 It is possible to observe all the feasible route solutions computed by the algorithm,

as the minimum distance one, marked in a different color. In this case, there are more than

one route with the same minimum cost.

N=3 B,C,E
B C E 17
B E C 13
C B E 13
C E B 13
E C B 16
E B C 14

 70

Considering all the minimum routes between each pair of the nodes, the overall

route, calculated by the algorithm No.1 is: A-C-B-E-C-A with the cost of 13.

Consider now a truck that needs to be served in the servers C and D, but in a

predefined sequence. The truck must be served in C and only then, in D. For that case, the

algorithm will compute the minimum distance route from A to C, from C to D, and then

from D to A. Thus, the overall computed route is: A-C-B-D-B-A.

With the computed tests, it is possible to state that this approach is calculating

everything as expected and as defined in the algorithm explanation, for each truck arriving

at each cement facility. Besides this, the computation time of this algorithm is low,

computing the routes in few seconds, as expected.

6.2. ALGORITHM NO. 2

The Algorithm No.2 was implemented using Java programming language. Due to

the great extension of the resultant code, it will not be presented in the Appendix section.

As stated in the previous sections, each road has a distance, and an associated time.

In this approach, the time of traversing a road it is not only proportional to the distance.

The time of traversing a road is dependent on the number of trucks traversing it, at the

moment of entering the road, thus being time dependent. Using the equation (4) there are

some values that must be measured and determined.

The free flow time, t0, represents the time of traversing each road, directly

proportional to the distance of the road, and with no trucks traversing it.

The x represents the flow for that road in that specific moment of time, which

means, the number of trucks that are traversing the road at that moment. This constant may

be different for the same road in different times, depending on the number of trucks that

are, at that moment, traversing the road.

It is also important to define what will be the capacity of the link per unit time, k.

This constant is fixed for a road. As the roads may not be so large inside the facility, and

the trucks have big dimensions, a capacity per unit time of 9 is chosen. This choice can be

 71

easily modified and can be different for each road. However, in this implementation it is

assumed to be equal for every road composing the plant.

The Bureau of Public Roads has also defined two model parameters, α and β.

Typically, these values are 0.15 and 4, respectively. As it is possible to observe in the

equation (4), these parameters are proportional to the sensibility of the equation. This

means that, for the same x (the number of trucks in the road), the higher these values, the

higher the time cost that road will have in that moment. Thus, and to consider again that

the roads inside the factory are dealing with vehicles with big dimensions, the value of α

is set to be 0.15, and the value of β is 5. With this, since β is in the exponent, the function

will become more “sensible” to the number of trucks, originating routes with different

roads, for a smaller number of trucks traversing it. It is important to mention again that

these parameters can be easily modified if it is required to.

Thus, the average time cost, t, for a truck to traverse a road at a specific time is

presented in the equation (5). 𝑡 = 𝑡0 ∙ [1 + 0.15 ∙ (𝑥9)5] (5)

The inputs of the developed program are, as explained in the algorithm explanation,

the entrance time, the required service locations and the time the truck must spend in each

service.

With the implementation addressed, it is possible to compute some tests. Assume

the example where a cement facility is represented by the graph presented in the Figure 11.

Consider a truck T1, entering in that facility at the time 0, and having the servers B

and C as its required locations. Assume that the required service time for this truck in B is

16ut, and in C is 12ut. In the Figure 19 it is possible to observe the response by the

developed program.

 72

Figure 19 - Computed route for the truck T1.

The truck T1 will first follow the route A-C. At the time of 2 and until the time of

12, the truck will be served in C. The server C is chosen to be the first server. This happens

because the workload of B and C is equal and so the nearest server is the chosen to be the

next. After this, that truck will follow the route C-B, being served in B in 15 and exiting

that server at 31. The truck will exit the facility at 35.

In this example, the truck T1 will be served at the arrival time in each one of the

required servers. This happens because T1 is the first truck entering the facility (at time 0),

and each server is empty at the arrival times.

In the same example, after 1ut, consider another truck, T2, arriving at the same

facility with the same required places, B and C. The truck T2 has the same service times

 73

of 16ut in B, and 12ut in C. Thus, the program will compute the route presented in the

Figure 20.

Figure 20 - Computed route for the truck T2.

In the computed route, it is possible to observe that, as this truck is entering at the

time 1, at the times of reaching the required locations, the server C is occupied for one

truck and B is empty for the whole time. Thus, this truck will be served first in B, and then

in C.

One important aspect about this route is the traveling time for the server B. Instead

of being exactly 3ut of time, it is slightly higher than that. This happens because T2 is

entering the facility at the time 1, traversing the road A-C at the time [1,3], and T1 have

entered the facility at 0 and is traversing the same road in [0,2]. Thus, due to the updates in

the roads’ costs, the cost of traversing that road is increased. It is also possible to observe

 74

that it is only slightly increased because there is only one truck traversing the road at that

time. However, due to the exponential type of the function, with a higher number of trucks,

the cost will reach greater values.

Assume now that, in the same facility, the server B is occupied in [3,15], and the

server C is occupied in [11,20] by some trucks that already are inside the plant.

Consider that other truck T3, at the time 7, is entering the facility with the required

servers B, C, D and E and with a required service time of 15ut in each one of the servers.

The computed route for that truck is presented in the Figure 21.

Figure 21 - Computed route for the truck T3.

 75

The first chosen server was the server D. This happens because the time for

reaching B is 3ut and for reaching C is 2ut. At the time 10 (7+3), the server B is occupied.

At the time of 9 (7+2) the server C is unoccupied but will be occupied at the time 11.

Choosing this server will provoke a delay in the truck that is already scheduled for that

time. As the servers D and E have no trucks scheduled and are empty, the algorithm has

chosen the server D to be the first and E to be the second. Thus, when the truck arrives in

each one of the servers (including B and C), it will not delay any already scheduled truck

and will not have to wait any time to be served.

In the previous examples the trucks were always served at the time of reaching the

servers, not having to wait for its services. However, as illustrated in the Figure 22, there

are cases when this may not happen. The Figure 22 shows part of the route for a truck T4,

entering the facility at the time of 10, and having the server B as its required location. In

this case, the truck must wait for its service, due to the already scheduled trucks.

Figure 22 - Example of a truck having to wait for its service.

The developed program has also the functionality which allows the driver to have

already a predefined sequence for the service locations, working as described in the

algorithm explanation.

Besides all the printed information in each route, it is possible to know some

additional informative data, such as the time of reaching the servers and the time of

traversing each one of the roads for each truck, if it is required to.

 76

Therefore, the algorithm No.2 is working as explained in the Chapter 5.2. Besides

that, the algorithm computes the routes in few seconds (1-2 seconds), thus having a short

computation time for a real application.

The implementation of the algorithm No.3 is not presented due to its similarity with

the algorithm No.2. With this, the algorithm No.3 has a short computation time, as happens

with the algorithm No.2.

6.3. SIMULATION: ALGORITHMS COMPARISON

So far, the algorithms were developed and implemented. Thus, it is now necessary

to test these algorithms with several trucks as in a real-life scenario would happen.

Through simulation, it is possible to test and analyze different settings and potential

impacts in the productive systems. This technique is done virtually, thus allowing to test

different scenarios and overcome difficulties that a first real implementation could bring

[120]. A simulation software (the Simio Simulation Software) will simulate a real work

day for different specified sets of trucks, entering the same facility.

In one case, each truck entering the facility will follow a route computed by the

algorithm No.1 and some results will be measured. In the other case, the algorithm No.2

will calculate the routes for the same set of trucks and the same results will be measured.

With this, some of the results will be presented and discussed, and the remaining ones will

be presented in the Appendix section.

Using the facility represented by the graph in the Figure 11, consider the entrance

and the exit of the facility to be again represented by the node A, while the remaining nodes

represent the service locations.

In the Figure 23, the facility is represented in the Simio environment. The node A

is represented by two servers, being one for the entrance and the other for the exit of the

plant.

 77

Figure 23 - Representation of the cement plant in Simio software.

Other important aspect about the modeling is the one considering the paths (roads)

between each pair of servers. In Simio software, it is necessary to create paths connecting

the entrance/exit of the servers and the entrance/exit of the other servers. Thus, it is possible

for a truck to pass through the servers without being serviced there. In a little example,

assume that a truck needs to reach the server E, following the route: A-C-B-E. In this case,

this truck will only be served in E, but it will pass through the servers B and C.

Consequently, the truck needs to pass through those servers without being serviced there,

and it is so necessary to create those paths for the simulation to be properly executed.

Moreover, each path in the simulation is a time path. This means that each truck will spend

a time cost to traversing the paths. In this case, and to simplify, the time of traversing each

road will be equal, in number, to the distance of the path.

The first set to be simulated, composed by 5 trucks, is presented in the Table 4–

Appendix section. Each truck has four required locations, which, in this case, means that

each truck requires to visit all the servers in the plant. In the same table, it is also possible

to observe the entrance time of each one of the trucks. The service time for each one of the

required places is presented in the Table 5 – Appendix section. In this example, each one

of the trucks will have the same required service time in each location.

In the algorithm No.1 scenario, the simulation occurred in a total time of 141ut.

The simulation time represents the time the last truck exited the plant after 141 units of

 78

time, meaning that the facility was able to serve that trucks in that amount of time. Usually,

in literature concerning scheduling and job sequencing, this time is also named

“Makespan”. The maximum time that a truck stayed inside the facility was 137ut. In this

simulation, the entities (trucks) had an average time in the system of 101ut.

In the simulation of the algorithm No.2 for the same set, the results were different.

The simulation occurred in the total time of 118ut. The average time in the system was

94ut and the maximum time that a truck stayed inside the facility was 114ut. It is possible

to observe all the collected results of these two simulations in the Appendix section –Table

6 and Table 7.

The next sets of trucks will be fully randomized, both in the number of required

services as in which services each truck must be served. The service times in each server

will also be random and will be fixed for all trucks in the same set, as in the previous

simulation. Trucks with the predefined sequences will not be allowed, being all the routes

entirely calculated by the two algorithms. The first one is composed by 15 trucks. In the

Table 8 and Table 9 – Appendix section, it is presented the arriving time, the required

service(s) locations and the service time in each server, for each truck.

In the case of the algorithm No.1, the simulation occurred in 242ut. The average

time that a truck stayed inside the facility was 145ut, approximately, and the maximum

time that a truck spent in the system was 225ut. In the algorithm No.2, the simulation took

221ut, the maximum time that a truck stayed inside the plant is 213ut and the average time

that a truck stayed inside the facility was 144ut, approximately. The remaining collected

data of these simulations is also presented in the Appendix section (Table 10 and Table

11).

The next set is composed by 20 trucks and is presented in the Table 12 – Appendix

section. In the Table 13- Appendix section, it is also presented the service times of each

truck in the service locations. As in the previous examples, the service time in each server

will be the same, independently of the truck.

The simulation using the algorithm No.1 occurred in 298ut. The maximum time

that a truck stayed inside the facility was 291ut and the average time inside the facility was

169ut. The simulation of the same set, but now using the algorithm No.2, took 292ut. The

 79

maximum time that a truck stayed inside the plant was 282ut and the average time was

162ut. As in the previous simulations, the remaining collected data of these simulations is

presented in the Appendix section (Table 14 and Table 15).

Consider now other facility represented by the graph in the Figure 24. Assume that

the entrance of the facility is represented by the node ‘A’ and the exit is represented by the

node marked as ‘G’, being the service locations represented by the remaining nodes.

Figure 24 – Cement facility graph.

The representation of this facility in the Simio environment can be observed in the

Figure 25. It is possible to observe the node A and G representing the entrance and the exit

of the facility.

Figure 25 - Simio representation of the facility.

 80

The first set to be simulated in this facility is presented in the Table 16– Appendix

section and it is composed by 10 trucks. As in the previous examples, the service time of

each truck in the servers will be independent on the truck, as it is possible to observe in the

Table 17- Appendix section. Using the algorithm No.1, the simulation took 612ut and the

maximum time that a truck stayed inside the plant was 603ut. On the other hand, the

simulation of the algorithm No.2 occurred in 491ut and the maximum time a truck stayed

inside the plant was 483ut. The results of these simulations are present in the Appendix

section- Table 18 and Table 19.

Consider now the set of trucks presented in the Table 20- Appendix section. This

set is composed by 16 trucks and the service time each truck will take in each server is

presented in the Table 21– Appendix section. The simulation of the algorithm No.1

occurred in 839ut, and the maximum time a truck stayed inside the plant was 821ut. The

simulation of the algorithm No.2 took 768ut and the maximum time a truck stayed inside

the plant was 763ut. As in the previous simulations, the remaining collected data is present

in the Table 22 and Table 23– Appendix section.

The next set to be simulated, composed by 30 trucks, is presented in the Table 24-

Appendix section. The service times of each one of the service locations are presented in

the Table 25- Appendix section. The simulation of the algorithm No.1 occurred in 1731ut,

corresponding to the time the facility was able to serve the 30 trucks. The maximum time

a truck stayed inside the facility was 1699ut. In the simulation of the algorithm No.2, the

facility was able to serve the same set of trucks in 1687ut. In this simulation, the maximum

time a truck stayed inside of the facility, was 1682ut. The remaining results of these two

simulations are presented in the Table 26 and Table 27- Appendix section.

6.4. DISCUSSION

The results of the presented simulations show that, in general, the algorithm No.2

had better results than the algorithm No.1. The simulated sets took always more time in the

case of the algorithm No.1 when compared with the algorithm No.2. This means that, for

the same simulated facilities in the same conditions, the sets of trucks were served in shorter

periods of time, when the routes have been computed by the algorithm No.2.

 81

In the computed simulations, it was possible to notice that, although some trucks

may have shorter times inside the facility using the algorithm No.1, some other trucks have

very higher times using this algorithm. This happens due to the fact that the algorithm No.1

does not choose the routes considering the servers’ workload, while the algorithm No.2

does. Besides that, the algorithm No.2 chooses the roads to reach the servers by considering

the number of trucks traversing each road, at each time. Therefore, using the algorithm

No.2, not only the facilities are able to serve the trucks in shorter periods of time, as it is

possible for the congestion in the roads and in the servers to be decreased.

These results are somehow expected due to the fact that the algorithm No.2 does

not give always the same route for trucks requiring the same locations. By choosing always

the least occupied server at the time of reaching the servers and by computing different

routes, avoiding the congested ones, the facility reaches a higher level of equilibrium.

Usually, when computing a system that is static (always giving the same route, in the case

of the algorithm No.1, the minimum distance one), there will be one (or several) road(s)

and server(s) that will represent the so-called bottleneck(s). The algorithm No.2 tries to

equilibrate the occupation both in the servers and in the roads, not overloading any of them,

thus eliminating these bottlenecks or, at least, mitigating its effects. Besides the results of

the simulations, it was possible to observe that, in the simulations using the algorithm No.2,

the trucks were much more dispersed inside the facilities, decreasing the queues in the

servers, per example. Also, it was possible to observe that, in some cases, the algorithm

No.2 has chosen some roads that in the simulations of the Algorithm No.1 had not been

used at all. In the roads case, as the sets have a limited and relatively lower number of

trucks, the division may not be so present. However, in a day to day of a factory, with

hundreds of trucks, the roads would become much more congested. In that case, the

algorithm No.2 will provoke a much more highlighted division of the trucks in the roads.

With all stated so far, it is possible to conclude that these two approaches have

better results when compared with the lack of assistance drivers have in cement plants. In

both approaches the trucks are guided to the required locations. However, the algorithm

No.2 seems to be a most robust solution, because, although in some cases the trucks are

not following the minimum distance routes, they are following a route leading them to

servers with least workload levels, minimizing its unnecessary waiting times. Besides this,

 82

the roads for that servers are chosen, always considering the number of trucks traversing

them, at each time, thus decreasing the congestion levels inside the plant, both in the roads

as in the service locations. With this, a better journey for the truck is provided, also

improving the organization levels and equilibrium of the facility.

Although not being simulated in this work, the results of the Algorithm No.3 are

expected to be even better, or in the worst case, equal, when compared with the algorithm

No.2. This prediction relies on the fact that the algorithm No.3 computes the routes the

same way the algorithm No.2 does. However, as this algorithm gives always the route for

the next server, it encompasses possible modifications in the occupation of the servers and

in the roads after entering the facility. If the servers’ workload does not change during the

tours, the computed routes of the two algorithms will be the same.

 83

7. PARKING MANAGEMENT

The algorithms No.2 and No.3 tackle the congestion in the facilities, both in the

roads and in the service locations. However, as hundreds of trucks arrive at cement

facilities every day, the trucks may not enter the facilities at the arrival time, waiting for

their turn in the parking lot. In the simulations presented in the Chapter 6.3, the trucks have

entered the facility in FIFO order, that is, the first trucks reaching the parking lot of the

facility and proceeding to the check-in, are the first ones to enter. This may not be the best

solution, both for the truck itself and for the facility. With this, a parking management is

also necessary to study.

 Next, there are several thought policies for the entrance management in the facility:

1. FIFO: The first trucks arriving at the facility, are the first ones to enter, and thus

consequently.

2. Shortest Processing Time (SPT): The trucks with the least service times in the

required servers are the first entering the facility, and thus consequently.

3. Minimum number of required locations: The first trucks entering the facility are

the ones with the minimum number of required locations, and thus

consequently.

4. Minimum exiting time: Considering all the times inside the facility (waiting

times + service times + roads’ traversing times), the truck with the least required

time inside the plant, will be the first truck to enter. That rule is applied to the

remaining trucks, in the same way. The exiting time for a truck it also depends

on the chosen route for it to follow. Thus, to apply this policy, it is necessary to

implement another algorithm to compute the route for the truck inside the plant.

5. Least workload levels: The first truck entering the facility is the truck that

requires the servers with least workload levels, at that moment, and thus

consequently.

6. Other related policies.

When implementing one of these policies, an aspect that it is necessary to have in

mind is that, as the trucks are always arriving at the facility, the choice of the next trucks

to enter can not consider all the trucks in the park every time. If all the trucks in the park

 84

are always considered when the choice is made, some trucks may greatly delay its entrance,

or worse, may never be chosen to be the next to enter. To overcome this issue, regardless

the chosen entrance rule, the entrance system must include also a FIFO order. This means

that the entrance policy must be applied to batches of trucks in the park. The batches will

be serviced in FIFO rule (the first group of trucks arriving at the facility, is the first group

to be processed), and the order of the batches will not be changed. The order of the trucks

composing the batches will be changed respecting the chosen entrance rule. With this, a

truck can be delayed at the entrance if it is not advantageous for it and for the system, but

it will not be delayed more than a fixed number of trucks.

With all stated so far, an algorithm for the entrance management was designed. This

algorithm will consider batches of 5 trucks and will sort the trucks composing the batches,

following the policy number 4. If the next truck entering the facility is the truck requiring

the least time inside the plant, the congestion both in the servers and roads is expected to

be decreased. Besides this, it is expected that the trucks will wait shorter times for their

services. This because the time inside the plant includes all the waiting times, service times

and routing times. Thus, if the next truck to enter is the one with least required time inside

the plant, it is assumable that or its service time is quicker and/or the required service

locations for that truck are with lower workload levels. Thus, by using this entrance rule it

is expected that the trucks with the required service locations having higher workload levels

are delayed at the parking lot instead of entering the facility, not contributing for the

congestion inside the plant.

Therefore, the algorithm starts by creating a batch of 5 trucks, composed by the

trucks that have arrived earlier at the facility. After that, a variation of the Algorithm No.2

will calculate the routes for each truck composing the batch. This variation will proceed

exactly as the algorithm No.2. However, these calculations are made in an auxiliary way,

aiming to know the time each one of the trucks would leave the plant, if they followed the

computed routes. By calculating the routes with the Algorithm No.2, the problem of the

congestion inside the plant is also tackled, as observed in the previous sections. Thus, the

truck with the minimum required time inside the facility is chosen to be the first truck to

enter. For the one with the minimum exiting time, the Algorithm No.2 will compute its

route, but this time for that truck to follow. Besides this, the algorithm will store the times

 85

traversing each road and reaching/leaving the required service locations. After that, the

algorithm will proceed in the same way, but now, for the remaining trucks composing the

batch. The algorithm only ends when all the trucks composing the batch are inside the

facility. When this happens, the algorithm will compute the new routes but now for a new

batch, containing the next 5 trucks that have arrived in FIFO order.

The algorithm can also be observed in the next steps.

1. Create a batch composed by 5 trucks. These trucks are the 5 that arrived earlier at

the facility.

2. There are more trucks in the batch? If there are not, Stops.

Calculate, in an auxiliary way and for each one of the trucks in the batch, the routes

for each truck using the Algorithm No.2 and measure the time each truck will exit

the facility if they follow that route.

3. Choose the truck with the minimum required time inside the facility (the minimum

exiting time) and present the route for that truck driver, storing all the times the

truck will reach/leave the servers, and will traverse each road.

4. Remove that truck for the batch.

Go to Step 2.

This algorithm was developed, aiming to be an extension of the Algorithm No.2,

considering also an entrance management. With this, it is expected for the facility to reach

a higher equilibrium level when compared with the algorithm No.2, and, besides that, for

the truck driver to have a better journey, with shortest waiting times in the servers, while

inside the facility.

Using the implementation of the Algorithm No.2, and by computing some

modifications, the designed algorithm englobing the parking management was also

implemented using Java programing language. This implemented algorithm has the

information of the trucks that are currently in the parking lot as input, thus creating the

batch and computing the routes for each truck composing the batch, as already explained.

Consider a batch of trucks, numbered from one to five, following the arrival order.

Thus, the truck number one was the first truck arriving at the facility, and the fifth the last

truck of that batch. The algorithm will present the entrance order in the facility for that

 86

batch. In this example, the computed entrance order for that batch is: 3-2-4-1-5. It is

possible to observe that the trucks are sorted and will not enter the facility in FIFO order.

Besides the entrance order, the routes for each truck are also presented, in the same format

as observed in the tests of the Chapter 6.2.

 This algorithm was also simulated using the Simio simulation software, as

presented in the Chapter 6.3. The results of the entrance management algorithm will be

compared with the already presented results of the algorithm No.2, for the same sets of

trucks. Therefore, the entrance time will be the same, but the entrance order and the routes

will be different, depending on the algorithm.

All the simulations were made using the facility presented in the Figure 24. The

first set to be simulated is the one presented in the Table 16- Appendix section. The

simulation time using the entrance management algorithm occurred in 461ut while the

simulation of the same set using the algorithm No.2 took 491ut. As already stated, the

entrance management algorithm aims to decrease the waiting times in the servers. Thus,

the average waiting time in the servers using the algorithm No.2 was 42ut, while using the

entrance management algorithm was 41ut. The simulation results for this set, using the

entrance management algorithm can be observed in the Table 28-Appendix Section.

 Using the set presented in the Table 20- Appendix section, the simulation using

the entrance management algorithm took 742ut, while the simulation of the algorithm No.2

occurred in 768ut, as already observed. The average waiting time in the servers was also

decreased by using the entrance management algorithm, being 73ut, while in the algorithm

No.2 simulation was 82ut. The simulation data of the entrance management algorithm for

this set is presented in the Table 29- Appendix section.

The simulation of the set presented in the Table 24- Appendix section, occurred in

1697ut using the entrance management algorithm, while using the algorithm No.2 took

1687ut. The average waiting time in the servers was 226ut using the entrance management

algorithm, while using the algorithm No.2 was 247ut. The collected simulation data of the

entrance management algorithm for this set is presented in the Table 30- Appendix section.

The simulation results of the developed entrance management algorithm are

promising for a real implementation. Although in one of the simulated sets the time the

 87

facility has served all the trucks was higher using this algorithm, the simulation time has

decreased for the remaining simulated sets. The average waiting times in the servers has

decreased in all the simulations, as previously expected, thus proving the lower servers’

workload levels and the better journey provided for the clients.

Besides this, by using the developed algorithm for the entrance management, the

congestion inside the plant is decreased even further when compared with situations where

“only” a route system is used. This situation is even more emphasized because the

developed algorithm for the entrance management uses the algorithm No.2 as one of its

steps, which tackles the congestion by itself, as already illustrated.

 88

 89

8. CONCLUSION AND FUTURE RESEARCH

One of the goals of this dissertation was to understand the supply chain of the

cement industry and to perceive how the plants are dealing with the trucks management

inside the plants. Hereupon, with the lack of assistance drivers have when they enter the

facilities, it was imperative to create a routing system, to improve the SCM of the cement

industry. A literature review about the most famous static and dynamic routing problems

was made aiming to tackle the management of the trucks inside the plants. It was possible

to notice the differences between the static and dynamic routing problems, regarding their

purposes, implementations, features, and others.

With this literature research, it was possible to develop and implement three

different algorithms to tackle the problem of the trucks’ management. The computation

time was low in all the implementations. This is an important achievement, since in the

current digitalization era decisions must be made quickly. The algorithm No.1 guides the

trucks to the required locations through the minimum distance route and serves as a

comparison term for the other two. The algorithms No.2 and No.3, named equilibrium

approaches, are the main contribution of this dissertation. These two dynamic algorithms,

being one a variation of the other, consider not only the travelled distance, but also the

servers’ workload and the roads’ congestion to compute the routes.

Using a simulation software, it was possible to test the algorithms, with sets of

trucks, as in a real-life scenario would happen. The simulation compared, for the same sets

of trucks and for two different facilities, the algorithm No.1 and No.2. The algorithm No.3

is a variation of the second one, and it was not simulated. The results of the algorithm No.2

were better than the algorithm No.1, in all the simulated tests and facilities, reducing the

unnecessary waiting times, thus making the facility serve the trucks in shorter periods of

time. The results of the algorithms No.2 shown the equilibrium of the facilities and the

service quality for the clients was highly increased, as it is suggested and evidenced by the

computed tests and simulations. Besides this, it was possible to notice that the trucks were

much more dispersed inside the facilities in the simulation of the algorithm No.2, when

compared with the algorithm No.1.

 90

With this, the algorithm No.2 is very promising for a real implementation. The

algorithm No.3, although not simulated, due to its characteristics, is expected to be even

better or, at least equal, than the results of the algorithm No.2.

Concerning now the parking management, several policies for the entrance were

also studied and an algorithm addressing this problem was developed and implemented.

This algorithm allows an entrance management, different from using a FIFO rule, as it is

currently used. This management aims to decrease even further the wasted times inside the

facility, already reduced by the developed routing algorithms. Using the same simulation

software, the developed entrance management algorithm was compared with the algorithm

No.2. The simulation results of the entrance management algorithm are also promising,

reducing the average waiting times in the servers in all the simulated sets.

As future work, there are several important topics whose investigation must

continue. The results of the algorithm No.2 are promising, but it is necessary to test and

simulate the algorithm using larger instances, different facilities, and different service times

for each truck, for the results to be even more reliable. Yet, as the sets were randomized,

even with instances containing hundreds of trucks and different facilities, it is expected that

the results would be even better when compared with the algorithm No.1. This because

with a greater number of trucks, the effects of the bottlenecks will be even more

accentuated. The algorithm No.3 must also be simulated, in the same sets and facilities as

the others, aiming to prove that its results would be better, or in the worst case, the same,

as the algorithm No.2. If the results continue to be reliable and promising, a real application

of the algorithm No.2 or No.3 should be considered and addressed.

The study of further applications for the algorithm No.2 and No.3 must also be

considered. Applications in supermarkets (or related) that have hundreds of entities

arriving each day, each one with required locations, having queues in that locations, and

routes connecting each one of the locations, are examples of the similarity of these

processes. One other example of other possible application is also in industry, but in the

job sequencing machines problem. In these facilities, each entity must be served in one or

several machines before being ready to be dispatched. Each entity, depending on its

 91

characteristics, must follow a route inside the facility, traveling through the required

machines. Besides this, each entity can require a different service time in each machine.

The developed algorithm for the entrance management of the trucks must also be

tested and simulated, with larger and different instances, thus proving its reliability for a

further real application. Besides that, this algorithm uses one of the several suggested

entrance rules. Other algorithms using different entrance rules should also be implemented

and simulated as a comparison term. With this, it would be possible to confirm if the chosen

policy is the one that gives the best results.

 92

 93

BIBLIOGRAPHY

[1] U. D. Project, “The Logistics Handbook A Practical Guide for the Supply Chain

Management of Health Commodities,” 2011.

[2] A. Rushton, P. Croucher, and P. Baker, “The handbook of logistics and distribution

management,” Proj. Manag. J., 2006.

[3] Y. Tseng, W. L. Yue, and M. A. P. Taylor, “The role of transportation in logistics

chain,” East. Asia Soc. Transp. Stud., 2005.

[4] L. Barreto, A. Amaral, and T. Pereira, “Industry 4.0 implications in logistics: an

overview,” Procedia Manuf., 2017.

[5] PwC, “Industry 4.0 – Opportunities and Challenges of the Industrial Internet,” no.

Industry 4.0, p. 52, 2014.

[6] “UH4SP - Unified Hub for Smart Plants.” [Online]. Available: http://uh4sp.com/.

[Accessed: 08-Jul-2018].

[7] Cachapuz, “Parte B (Anexo Técnico) Sistema De Incentivos À Investigação E

Desenvolvimento Tecnológico (Si I & Dt),” pp. 1–75, 2015.

[8] M. Fisher, “Vehicle routing,” Handbooks Oper. Res. Manag. Sci., vol. 8, no. C, pp. 1–33,

1995.

[9] P. Toth and D. Vigo, The vehicle routing problem, vol. 9. 2002.

[10] G. Laporte, “Routing problems : A bibliography Routing problems : A bibliography,”

vol. 61, no. JANUARY 1995, pp. 227–262, 2016.

[11] G. Laporte, “What you should know about the vehicle routing problem,” Nav. Res.

Logist., vol. 54, no. 8, pp. 811–819, 2007.

[12] B. Eksioglu, A. Volkan, and A. Reisman, “The vehicle routing problem : A taxonomic

review,” Comput. Ind. Eng., 2009.

[13] F. Ferrucci, Pro-active Dynamic Vehicle Routing. 2013.

[14] R. Ahuja, T. Magnanti, and J. Orlin, “Network Flows: Theory, Algorithms, and

Applications,” p. 846, 1993.

 94

[15] A. Schrijver, “On the History of the Shortest Path Problem,” Doc. Math. · Extra Vol.

ISMP, vol. I, pp. 155–167, 2012.

[16] Z. Fuhao and L. Jiping, “An algorithm of shortest path based on Dijkstra for huge

data,” 6th Int. Conf. Fuzzy Syst. Knowl. Discov. FSKD 2009, vol. 4, pp. 244–247, 2009.

[17] A. K. Nemani and R. K. Ahuja, “Shortest Path Problem Algorithms,” Wiley Encycl. Oper.

Res. Manag. Sci., pp. 1–13, 2010.

[18] J. Holmgren, “Efficient Updating Shortest Path Calculations for Traffic Assignment,”

2004.

[19] F. B. Zhan and C. E. Noon, “A Comparison Between Label-Setting and Label-

Correcting Algorithms for Computing One-to-One Shortest Paths,” Inf. Syst., vol. 4,

no. 2, pp. 1–11, 2000.

[20] E. W. Dijkstra, “A Note on T w o Problems in Connexion with Graphs,” vol. 271, no.

1, pp. 269–271, 1959.

[21] R. K. Ahuja, K. Mehlhorn, J. Orlin, and R. E. Tarjan, “Faster algorithms for the shortest

path problem,” J. ACM, vol. 37, no. 2, pp. 213–223, 1990.

[22] H. Reddy, “PATH FINDING - Dijkstra ’ s and A * Algorithm ’ s,” pp. 1–15, 2013.

[23] A. V. Goldberg and T. Radzik, “A heuristic improvement of the Bellman-Ford

algorithm,” Appl. Math. Lett., vol. 6, no. 3, pp. 3–6, 1993.

[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms , Second Edition.

2001.

[25] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, 1962.

[26] G. Algorithms, “All Pairs Shortest Paths •,” no. m, pp. 1–4, 2015.

[27] S. Hougardy, “The Floyd-Warshall algorithm on graphs with negative cycles,” Inf.

Process. Lett., vol. 110, no. 8–9, pp. 279–281, 2010.

[28] A. Pradhan and G. Mahinthakumar, “Finding all-pairs shortest path for a large-scale

transportation network using parallel floyd-warshall and parallel Dijkstra algorithms,”

J. Comput. Civ. Eng., vol. 27, no. June, pp. 263–273, 2012.

[29] M. Gła ̢bowski and B. Musznicki, “Shortest Path Problem Solving Based on Ant Colony

 95

Optimization Metaheuristic,” Image Process. Commun., vol. 17, no. 1, pp. 7–18, 2012.

[30] S. R. Kolavali and S. Bhatnagar, “Ant Colony Optimization Algorithms for,” pp. 37–

44, 2009.

[31] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning

approach to the traveling salesman problem,” IEEE Trans. Evol. Comput., vol. 1, no. 1,

pp. 53–66, 1997.

[32] G. Laporte, “The traveling salesman problem: An overview of exact and approximate

algorithms,” Eur. J. Oper. Res., vol. 59, no. 2, pp. 231–247, 1992.

[33] A. R. Saiyed, “The Traveling Salesman problem History of The TSP,” pp. 1–15, 2012.

[34] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, “The Traveling Salesman

Problem: A Computational Study,” Princet. Univ. Press, p. 593, 2006.

[35] T. S. Problem, Travelling salesman problem: a foot-in-the-door?, vol. 1, no. 4. 1997.

[36] M. M. Abid and I. Muhammad, “Heuristic Approaches to Solve Traveling Salesman

Problem,” TELKOMNIKA Indones. J. Electr. Eng., vol. 15, no. 2, 2015.

[37] G. Gutin and A. Punnen, The Traveling Salesman Problem and Its Variations. 2004.

[38] M. a. S. Casquilho, “Travelling Salesman Problem,” Tech. Univ. Lisbon, Ave. Rovisco Pais,

1049-001 Lisboa, Port., vol. 43, no. 2, pp. 431–449, 2012.

[39] “A Comparative Study of Tabu Search and Simulated Annealing for Traveling Salesman

Problem Project Report Applied Optimization MSCI 703 Sachin Jayaswal Student ID :

20186226 Department of Management Sciences University of Waterloo,” Constraints.

[40] R. Stanec and O. Trenz, “Solving of Travelling Salesman Problem for large number of

cities in environment with constraints,” 2011.

[41] E. Balas, “Branch and Bound Method for Traveling Salesman Problem,” Carnegie Mellon

Univ., 1983.

[42] J. Cirasella, D. S. Johnson, L. a Mcgeoch, and W. Zhang, “The Asymmetric Traveling

Salesman Problem : Algorithms , Instance Generators , and Tests,” Lect. Notes Comput.

Sci., vol. 2153, pp. 32–59, 2001.

[43] D. S. Johnson and L. A. McGeoch, “The traveling Salesman Problem: A Case Study in

 96

Local Optimization,” Local Search Comb. Optim., pp. 215–310, 1997.

[44] C. Nilsson, “Heuristics for the traveling salesman problem,” Linkoping Univ., pp. 3–8,

2003.

[45] B. Golden, L. Bodin, T. Doyle, and W. S. Jr., “Approximate Traveling Salesman

Algorithms,” Oper. Res., 1980.

[46] K. Arora, S. Agarwal, and R. Tanwar, “Solving TSP using Genetic Algorithm and

Nearest Neighbour Algorithm and their Comparison,” Int. J. Sci. Eng. Res., vol. 7, no.

1, pp. 1014–1018, 2016.

[47] Á. N. Prestes, “Uma Análise Experimental de Abordagens Heurísticas Aplicadas ao

Problema do Caixeiro Viajante,” p. 84, 2006.

[48] K. Helsgaun, “Effective implementation of the Lin-Kernighan traveling salesman

heuristic,” Eur. J. Oper. Res., 2000.

[49] S. Lin and B. W. Kernighan, “An Effective Heuristic Algorithm for the Traveling-

Salesman Problem,” Oper. Res., 1973.

[50] M. Malek, M. Guruswamy, M. Pandya, and H. Owens, “Serial and Parallel Simulated

Annealing and Tabu Search Algorithms for the Traveling Salesman Problem,” Ann.

Oper. Res., 1989.

[51] N. Ascheuer, M. Fischetti, and M. Grötschel, “Solving the Asymmetric Travelling

Salesman Problem with time windows by branch-and-cut,” Math. Program., 2001.

[52] M. López-Ibáñez, C. Blum, J. W. Ohlmann, and B. W. Thomas, “The travelling

salesman problem with time windows: Adapting algorithms from travel-time to

makespan optimization,” Appl. Soft Comput. J., 2013.

[53] Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon, “An Optimal Algorithm for

the Traveling Salesman Problem with Time Windows,” Oper. Res., 1995.

[54] B.-I. Kim, S. Kim, and S. Sahoo, “Waste collection vehicle routing problem with time

windows,” Comput. Oper. Res., 2006.

[55] M. Gendreau, G. Laporte, and D. Vigo, “Heuristics for the traveling salesman problem

with pickup and delivery,” Comput. Oper. Res., 1999.

 97

[56] B. Kalantari, A. V. Hill, and S. R. Arora, “An algorithm for the traveling salesman

problem with pickup and delivery customers,” Eur. J. Oper. Res., 1985.

[57] G. Mosheiov, “Theory and Methodology Tlhe Travelling Salesman Problem with pick-

up and delivery,” vol. 79, pp. 299–310, 1994.

[58] I. Dumitrescu, S. Ropke, J. F. Cordeau, and G. Laporte, “The traveling salesman

problem with pickup and delivery: Polyhedral results and a branch-and-cut algorithm,”

Math. Program., 2010.

[59] C. Moon, J. Kim, G. Choi, and Y. Seo, “An efficient genetic algorithm for the traveling

salesman problem with precedence constraints,” Eur. J. Oper. Res., vol. 140, no. 3, pp.

606–617, 2002.

[60] M. Fischetti and P. Toth, “An Additive Bounding Procedure for Combinatorial

Optimization Problems,” Oper. Res., 1989.

[61] N. Ascheuer, M. Jünger, and G. Reinelt, “Branch & cut algorithm for the asymmetric

traveling salesman problem with precedence constraints,” Comput. Optim. Appl., 2000.

[62] M. Kubo and H. Kasugai, “The precedence constrained traveling salesman problem,”

no. 2, pp. 152–172, 1991.

[63] A. Chentsov, M. Khachay, and D. Khachay, “Linear time algorithm for Precedence

Constrained Asymmetric Generalized Traveling Salesman Problem,” IFAC-

PapersOnLine, vol. 49, no. 12, pp. 651–655, 2016.

[64] S. C. Sarin, H. D. Sherali, and A. Bhootra, “New tighter polynomial length formulations

for the asymmetric traveling salesman problem with and without precedence

constraints,” Oper. Res. Lett., vol. 33, no. 1, pp. 62–70, 2005.

[65] I. T. Hernádvölgyi, “Solving the sequential ordering problem with automatically

generated lower bounds,” Oper. Res. Proc., no. July 2003, pp. 355–362, 2004.

[66] R. Salman, “Algorithms for the Precedence Constrained Generalized Travelling

Salesperson Problem.”

[67] L. F. Escudero, “An inexact algorithm for the sequential ordering problem,” Eur. J.

Oper. Res., vol. 37, no. 2, pp. 236–249, 1988.

 98

[68] V. Papapanagiotou, J. Jamal, R. Montemanni, G. Shobaki, and L. M. Gambardella, “A

comparison of two exact algorithms for the sequential ordering problem A comparison

of two exact algorithms for the sequential ordering problem,” 2015.

[69] A. N. Letchford and J.-J. Salazar-González, “Stronger multi-commodity flow

formulations of the Capacitated Vehicle Routing Problem,” Eur. J. Oper. Res., vol. 244,

no. 3, pp. 730–738, 2015.

[70] L. M. Gambardella and M. Dorigo, “An Ant Colony System Hybridized with a New

Local Search for the Sequential Ordering Problem,” INFORMS J. Comput., 2000.

[71] T. Hasuike, H. Katagiri, H. Tsubaki, and H. Tsuda, “Tour Planning for Sightseeing with

Time-Dependent Satisfactions of Activities and Traveling Times,” vol. 2013, no. May,

pp. 369–379, 2013.

[72] A. Ephremides, P. Varaiya, and J. Walrand, “A Simple Dynamic Routing Problem,”

IEEE Trans. Automat. Contr., 1980.

[73] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of dynamic vehicle

routing problems,” European Journal of Operational Research. 2013.

[74] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno, “Real-time vehicle routing:

Solution concepts, algorithms and parallel computing strategies,” European Journal of

Operational Research. 2003.

[75] L. Allan, “The dynamic Vehicle Routing Problem,” 2000.

[76] H. N. Psaraftis, “Dynamic vehicle routing: Status and prospects,” Ann. Oper. Res., 1995.

[77] W. B. Powell, P. Jaillet, and A. Odoni, “Stochastic and dynamic networks and routing,”

Handbooks in Operations Research and Management Science. 1995.

[78] C. Malandraki and M. S. Daskin, “Time Dependent Vehicle Routing Problems:

Formulations, Properties and Heuristic Algorithms,” Transp. Sci., 1992.

[79] D. Bertsimas and G. Van Ryzin, “The Dynamic Traveling Repairman Problem,” MIT

Sloan Sch. Work. Pap., 1989.

[80] U. Demiryurek, F. Banaei-Kashani, and C. Shahabi, “A case for time-dependent

shortest path computation in spatial networks,” in Proceedings of the 18th SIGSPATIAL

 99

International Conference on Advances in Geographic Information Systems - GIS ’10, 2010.

[81] L. S. Buriol, M. G. C. Resende, and M. Thorup, “Speeding up dynamic shortest-path

algorithms,” INFORMS J. Comput., 2008.

[82] I. Chabini, “Discrete dynamic shortest path problems in transportation applications:

Complexity and algorithms with optimal run time,” Transp. Res. Rec., 1997.

[83] A. Orda and R. Rom, “Shortest-path and minimum-delay algorithms in networks with

time-dependent edge-length,” J. ACM, 1990.

[84] H. N. L. Zhao, T. Ohshima, “A* algorithm for the time-dependent shortest path

problem,” 11th Japan-Korea Jt. Work. Algorithms Comput., 2008.

[85] K. L. Cooke and E. Halsey, “The shortest route through a network with time-

dependent internodal transit times,” J. Math. Anal. Appl., 1966.

[86] S. E. Dreyfus, “An Appraisal of Some Shortest-Path Algorithms,” Oper. Res., 1969.

[87] D. E. Kaufman and R. L. Smith, “FASTEST PATHS IN TIME-DEPENDENT

NETWORKS FOR INTELLIGENT VEHICLE-HIGHWAY SYSTEMS

APPLICATION∗,” I V H S J., 1993.

[88] L. Foschini, J. Hershberger, and S. Suri, “On the complexity of time-dependent shortest

paths,” Algorithmica, 2014.

[89] A. Mohan Rao and K. Ramachandra Rao, “MEASURING URBAN TRAFFIC

CONGESTION – A REVIEW,” Int. J. Traffic Transp. Eng., 2012.

[90] CEPAL, Traffic Congestion: The Problem and how to deal with it. 2015.

[91] K. Olagunju, “Evaluating Traffic Congestion in Developing Countries – a Case Study

of Nigeria,” 2015 Chart. Inst. Logist. Transp. Africa forum held Mt. Meru Hotel. Arusha,

Tanzania, 2015.

[92] Thomas A. Rubin and Fatma Mansour, “Transit Utilization and Traffic Congestion : Is

There a Connection ?,” no. December, 2014.

[93] A. L. Kok, E. W. Hans, and J. M. J. Schutten, “Vehicle routing under time-dependent

travel times: The impact of congestion avoidance,” Comput. Oper. Res., vol. 39, no. 5,

pp. 910–918, 2012.

 100

[94] M. Patriksson, “The Traffic Assignment Problem: Models and Methods,” Ann. Phys.

(N. Y)., vol. 54, no. 2, p. xii, 223 p., 1994.

[95] T. Friesz and D. Bernstein, “Analytical dynamic traffic assignment models,” Handb.

Transp. Model., pp. 1–15, 2000.

[96] a Primer, “Dynamic Traffic Assignment,” Transp. Netw. Model. Comm., no. June, pp. 1–

39, 2011.

[97] O. Di, “School of Industrial and Information Engineering The Asymmetric Traffic

Assignment Problem on Large-Scale Networks,” 2015.

[98] T. V Mathew and K. V. K. Rao, “Traffic Assignment,” Introd. to Transp. Eng., pp. 1–8,

2007.

[99] D. S. Leftwich and C. L. Heimbach, “Traffic assignment by trip type using volume

restraint and link restraint for application in small urban areas,” J. Adv. Transp., vol. 18,

no. 1, pp. 55–75, 1984.

[100] S. Gonzalez, “Estudio Integral de Transporte (III): Multimodal Transportation Study,”

1999.

[101] M. L. Hazelton and J. Pueschel, “Estimation of link performance functions from

incomplete flow data,” J. Adv. Transp., vol. 33, no. 3, pp. 323–334, 1999.

[102] N. A. Irwin, N. Dodd, and G. H. Von Cube, “Capacity Restraint in Assignment

Programs,” in Highway Research Board Bulletin, 40th Annual Meeting of the Highway Research

Board, 1961.

[103] United States Bureau of Public Roads, “Traffic assignment manual for application with

a large, high speed computer.,” U.S. Dept. Commer. Bur. Public Roads, Off. Planning, Urban

Plan. Div., 1964.

[104] E. T. Mtoi and R. Moses, “Calibration and Evaluation of Link Congestion Functions:

Applying Intrinsic Sensitivity of Link Speed as a Practical Consideration to

Heterogeneous Facility Types within Urban Network,” J. Transp. Technol., 2014.

[105] A. V Plummer, “The Chicago area Transportation Study: Creating the First Plan (1955-

1962),” Andrew V. Plummer, 1962.

 101

[106] J. A. Ferland, M. Florian, and C. Achim, “On incremental methods for traffic

assignment,” Transp. Res., 1975.

[107] B. V Martin and M. L. Manheim, “A research program for comparison of traffic

assignment techniques,” 1965.

[108] E. Worrell, L. Price, N. Martin, C. Hendriks, and L. O. Meida, “CARBON DIOXIDE

EMISSIONS FROM THE GLOBAL CEMENT INDUSTRY,” Annu. Rev. Energy

Environ., 2001.

[109] M. Taylor, C. Tam, and D. Gielen, “Energy Efficiency and CO 2 Emissions from the

Global Cement Industry,” IEA-WBCSD Cem. Energy Effic. Ind. Work., no. September,

2006.

[110] B. Noche and T. Elhasia, “Approach to Innovative Supply Chain Strategies in Cement

Industry; Analysis and Model Simulation,” Procedia - Soc. Behav. Sci., vol. 75, pp. 359–

369, 2013.

[111] I. Agudelo, “Supply Chain Management in the Cement Industry,” 2008.

[112] R. Rehan and M. Nehdi, “Carbon dioxide emissions and climate change: Policy

implications for the cement industry,” Environ. Sci. Policy, 2005.

[113] European Commission, “Integrated Pollution Prevention and Control (IPPC) Best

Available Techniques Reference Document on the Production of Iron and Steel

December 2001,” Production, 2001.

[114] “Cement - High Performance Cementitious Solutions | CEMEX UK.” [Online].

Available: https://www.cemex.co.uk/cement.aspx. [Accessed: 16-Jul-2018].

[115] H.-C. Pfohl, B. Yahsi, and T. Kuznaz, “The impact of Industry 4.0 on the Supply

Chain,” Proc. Hambg. Int. Conf. Logist. (HICL)-20, 2015.

[116] E. Hozdić, “Smart factory for industry 4.0: A review,” Int. J. Mod. Manuf. Technol., 2015.

[117] B. Tjahjono, C. Esplugues, E. Ares, and G. Pelaez, “What does Industry 4.0 mean to

Supply Chain?,” Procedia Manuf., 2017.

[118] P. Zheng et al., “Smart manufacturing systems for Industry 4.0: Conceptual framework,

scenarios, and future perspectives,” Frontiers of Mechanical Engineering. 2018.

 102

[119] E. J. Henley and R. A. Williams, “Chapter 10: Matrix Representation of Graphs,” in

Graph Theory in Modern Engineering: Computer Aided Design, Control, Optimization, Reliability

Analysis, 1973.

[120] D. C. De Sena, E. F. Soares, I. V. L. De Paiva, and B. B. T. Do Carmo, “Queue

balancing of load and expedition service in a cement industry in Brazil,” Indep. J. Manag.

Prod., vol. 4, no. 2, pp. 452–462, 2013.

 103

APPENDIX

Table 4 - Set composed by 5 trucks.

Truck
Id

Entrance
Time

No. Of
Required
Locations

Required
Service

Locations
1 0 4 B,C,D,E

2 1 4 B,C,D,E

3 2 4 B,C,D,E

4 3 4 B,C,D,E

5 4 4 B,C,D,E

Table 5 - Service times for the Set composed by 5 trucks.

Server
Service
Time

B 16
C 12
D 19
E 17

Table 6 - Algorithm No.1 results of the simulation for the set composed by 5 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 65

Truck2 [Population] FlowTime TimeInSystem Average 83

Truck3 [Population] FlowTime TimeInSystem Average 101

Trcuk4 [Population] FlowTime TimeInSystem Average 119

Trcuk5 [Population] FlowTime TimeInSystem Average 137

ServerB [Resource] Capacity UnitsAllocated Total 5

ServerB InputBuffer Content NumberInStation Average 1.06383

ServerB InputBuffer HoldingTime TimeInStation Average 30

ServerC [Resource] Capacity UnitsAllocated Total 5

ServerD [Resource] Capacity UnitsAllocated Total 5

ServerD InputBuffer Content NumberInStation Average 0.141844

ServerD InputBuffer HoldingTime TimeInStation Average 4

ServerE [Resource] Capacity UnitsAllocated Total 5

ServerE InputBuffer Content NumberInStation Average 0.070922

 104

ServerE InputBuffer HoldingTime TimeInStation Average 2

Exit [DestroyedEntities] FlowTime TimeInSystem Average 101

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 137

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 65

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 5

Table 7 - Algorithm No.2 results of the simulation for the set composed by 5 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 103.05

Truck2 [Population] FlowTime TimeInSystem Average 86

Truck3 [Population] FlowTime TimeInSystem Average 88

Trcuk4 [Population] FlowTime TimeInSystem Average 80.05

Trcuk5 [Population] FlowTime TimeInSystem Average 114.0333

ServerB [Resource] Capacity UnitsAllocated Total 5

ServerB InputBuffer Content NumberInStation Average 0.448743

ServerB InputBuffer HoldingTime TimeInStation Average 10.59333

ServerC [Resource] Capacity UnitsAllocated Total 5

ServerD [Resource] Capacity UnitsAllocated Total 5

ServerD InputBuffer Content NumberInStation Average 0.254448

ServerD InputBuffer HoldingTime TimeInStation Average 6.006667

ServerE [Resource] Capacity UnitsAllocated Total 5

ServerE InputBuffer Content NumberInStation Average 0.016662

ServerE InputBuffer HoldingTime TimeInStation Average 0.393333

Exit [DestroyedEntities] FlowTime TimeInSystem Average 94.22667

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 114.0333

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 80.05

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 5

Table 8 - Set composed by 15 trucks.

Truck
Id

Entrance
Time

No. Of
Required
Locations

Required
Service

Locations

1 0 3 B,D,E

2 1 2 B,C

3 2 3 C,D,E

4 3 4 B,C,D,E

 105

5 5 4 B,C,D,E

6 6 2 D,E

7 7 1 B

8 8 4 B,C,D,E

9 10 4 B,C,D,E

10 11 2 B,E

11 12 3 B,D,E

12 13 3 B,C,D

13 15 2 B,C

14 16 3 C,D,E

15 17 4 B,C,D,E

Table 9 - Service times for the Set composed by 15 trucks.

Server
Service
Time

B 16

C 12

D 19

E 17

Table 10 - Algorithm No.1 results of the simulation for the set composed by 15 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 89.01667

Truck2 [Population] FlowTime TimeInSystem Average 134

Truck3 [Population] FlowTime TimeInSystem Average 121.0167

Truck4 [Population] FlowTime TimeInSystem Average 119.0333

Truck5 [Population] FlowTime TimeInSystem Average 136.0333

Truck6 [Population] FlowTime TimeInSystem Average 49.01667

Truck7 [Population] FlowTime TimeInSystem Average 64

Truck8 [Population] FlowTime TimeInSystem Average 171.0333

Truck9 [Population] FlowTime TimeInSystem Average 207.0333

Truck10 [Population] FlowTime TimeInSystem Average 172

Truck11 [Population] FlowTime TimeInSystem Average 179.0167

Truck12 [Population] FlowTime TimeInSystem Average 185.0333

Truck13 [Population] FlowTime TimeInSystem Average 184

 106

Truck14 [Population] FlowTime TimeInSystem Average 141.0167

Truck15 [Population] FlowTime TimeInSystem Average 225

ServerB [Resource] Capacity UnitsAllocated Total 12

ServerB InputBuffer Content NumberInStation Average 3.706612

ServerB InputBuffer HoldingTime TimeInStation Average 74.75

ServerC [Resource] Capacity UnitsAllocated Total 10

ServerC InputBuffer Content NumberInStation Average 0.173554

ServerC InputBuffer HoldingTime TimeInStation Average 4.2

ServerD [Resource] Capacity UnitsAllocated Total 11

ServerD InputBuffer Content NumberInStation Average 0.393113

ServerD InputBuffer HoldingTime TimeInStation Average 8.648485

ServerE [Resource] Capacity UnitsAllocated Total 11

ServerE InputBuffer Content NumberInStation Average 1.181129

ServerE InputBuffer HoldingTime TimeInStation Average 25.98485

Exit [DestroyedEntities] FlowTime TimeInSystem Average 145.0833

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 225

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 49.01667

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 15

Table 11 - Algorithm No.2 results of the simulation for the set composed by 15 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 114.0167

Truck2 [Population] FlowTime TimeInSystem Average 70

Truck3 [Population] FlowTime TimeInSystem Average 124.0333

Truck4 [Population] FlowTime TimeInSystem Average 193

Truck5 [Population] FlowTime TimeInSystem Average 197.0333

Truck6 [Population] FlowTime TimeInSystem Average 82.03333

Truck7 [Population] FlowTime TimeInSystem Average 32

Truck8 [Population] FlowTime TimeInSystem Average 213.0333

Truck9 [Population] FlowTime TimeInSystem Average 170

Truck10 [Population] FlowTime TimeInSystem Average 140

Truck11 [Population] FlowTime TimeInSystem Average 187

Truck12 [Population] FlowTime TimeInSystem Average 170.0333

Truck13 [Population] FlowTime TimeInSystem Average 152

Truck14 [Population] FlowTime TimeInSystem Average 148.0333

Truck15 [Population] FlowTime TimeInSystem Average 182.0167

ServerB [Resource] Capacity UnitsAllocated Total 12

ServerB InputBuffer Content NumberInStation Average 2.755241

ServerB InputBuffer HoldingTime TimeInStation Average 50.75

 107

ServerC [Resource] Capacity UnitsAllocated Total 10

ServerC InputBuffer Content NumberInStation Average 0.787212

ServerC InputBuffer HoldingTime TimeInStation Average 17.4

ServerD [Resource] Capacity UnitsAllocated Total 11

ServerD InputBuffer Content NumberInStation Average 0.932589

ServerD InputBuffer HoldingTime TimeInStation Average 18.73939

ServerE [Resource] Capacity UnitsAllocated Total 11

ServerE InputBuffer Content NumberInStation Average 1.401749

ServerE InputBuffer HoldingTime TimeInStation Average 28.16667

Exit [DestroyedEntities] FlowTime TimeInSystem Average 144.9489

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 213.0333

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 32

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 15

Table 12 - Set composed by 20 trucks.

Truck
Id

Entrance
Time

No. Of
Required
Locations

Required
Service

Locations
1 0 1 B

2 0 2 D,E

3 1 2 B,E

4 1 1 C

5 2 3 B,D,E

6 3 4 B,C,D,E

7 4 4 B,C,D,E

8 4 4 B,C,D,E

9 4 2 D,E

10 5 3 B,D,E

11 5 1 E

12 6 2 B,C

13 7 4 B,C,D,E

14 8 4 B,C,D,E

15 8 3 B,D,E

16 8 3 C,D,E

17 9 4 B,C,D,E

18 10 1 B

19 10 4 B,C,D,E

20 10 3 B,D,E

 108

Table 13 - Service times for the Set composed by 20 trucks.

Server
Service
Time

B 19

C 10

D 12

E 17

Table 14 - Algorithm No.1 results of the simulation for the set composed by 20 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 26

Truck2 [Population] FlowTime TimeInSystem Average 62.01667

Truck3 [Population] FlowTime TimeInSystem Average 291

Truck4 [Population] FlowTime TimeInSystem Average 14

Truck5 [Population] FlowTime TimeInSystem Average 111.0167

Truck6 [Population] FlowTime TimeInSystem Average 154.0333

Truck7 [Population] FlowTime TimeInSystem Average 168

Truck8 [Population] FlowTime TimeInSystem Average 185

Truck9 [Population] FlowTime TimeInSystem Average 75.01667

Truck10 [Population] FlowTime TimeInSystem Average 176.0167

Truck11 [Population] FlowTime TimeInSystem Average 40.01667

Truck12 [Population] FlowTime TimeInSystem Average 267

Truck13 [Population] FlowTime TimeInSystem Average 216

Truck14 [Population] FlowTime TimeInSystem Average 232

Truck15 [Population] FlowTime TimeInSystem Average 224.0167

Truck16 [Population] FlowTime TimeInSystem Average 88.01667

Truck17 [Population] FlowTime TimeInSystem Average 265

Truck18 [Population] FlowTime TimeInSystem Average 206

Truck19 [Population] FlowTime TimeInSystem Average 288

Truck20 [Population] FlowTime TimeInSystem Average 282.0167

ServerB [Resource] Capacity UnitsAllocated Total 15

ServerB InputBuffer Content NumberInStation Average 6.275168

ServerB InputBuffer HoldingTime TimeInStation Average 124.6667

ServerC [Resource] Capacity UnitsAllocated Total 10

ServerC InputBuffer Content NumberInStation Average 0.060403

ServerC InputBuffer HoldingTime TimeInStation Average 1.8

ServerD [Resource] Capacity UnitsAllocated Total 14

ServerD InputBuffer Content NumberInStation Average 0.100671

ServerD InputBuffer HoldingTime TimeInStation Average 2.142857

 109

ServerE [Resource] Capacity UnitsAllocated Total 16

ServerE InputBuffer Content NumberInStation Average 1.448993

ServerE InputBuffer HoldingTime TimeInStation Average 26.9875

Exit [DestroyedEntities] FlowTime TimeInSystem Average 168.5083

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 291

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 14

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 20

Table 15 - Algorithm No.2 results of the simulation for the set composed by 20 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 26

Truck2 [Population] FlowTime TimeInSystem Average 79.01667

Truck3 [Population] FlowTime TimeInSystem Average 82

Truck4 [Population] FlowTime TimeInSystem Average 14

Truck5 [Population] FlowTime TimeInSystem Average 157

Truck6 [Population] FlowTime TimeInSystem Average 195.0167

Truck7 [Population] FlowTime TimeInSystem Average 269

Truck8 [Population] FlowTime TimeInSystem Average 250

Truck9 [Population] FlowTime TimeInSystem Average 125.0333

Truck10 [Population] FlowTime TimeInSystem Average 176.0167

Truck11 [Population] FlowTime TimeInSystem Average 57.01667

Truck12 [Population] FlowTime TimeInSystem Average 96

Truck13 [Population] FlowTime TimeInSystem Average 259.0167

Truck14 [Population] FlowTime TimeInSystem Average 275.0167

Truck15 [Population] FlowTime TimeInSystem Average 189

Truck16 [Population] FlowTime TimeInSystem Average 207.0167

Truck17 [Population] FlowTime TimeInSystem Average 240.0167

Truck18 [Population] FlowTime TimeInSystem Average 54

Truck19 [Population] FlowTime TimeInSystem Average 282

Truck20 [Population] FlowTime TimeInSystem Average 206

ServerB [Resource] Capacity UnitsAllocated Total 15

ServerB InputBuffer Content NumberInStation Average 2.277169

ServerB InputBuffer HoldingTime TimeInStation Average 44.32889

ServerC [Resource] Capacity UnitsAllocated Total 10

ServerC InputBuffer Content NumberInStation Average 1.085388

ServerC InputBuffer HoldingTime TimeInStation Average 31.69333

ServerD [Resource] Capacity UnitsAllocated Total 14

ServerD InputBuffer Content NumberInStation Average 2.140525

ServerD InputBuffer HoldingTime TimeInStation Average 44.64524

 110

ServerE [Resource] Capacity UnitsAllocated Total 16

ServerE InputBuffer Content NumberInStation Average 2.057192

ServerE InputBuffer HoldingTime TimeInStation Average 37.54375

Exit [DestroyedEntities] FlowTime TimeInSystem Average 161.9083

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 282

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 14

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 20

Table 16 - Set composed by 10 trucks.

Truck
Id

Entrance
Time

No. Of
Required
Locations

Required
Service

Locations

1 0 2 B,E

2 1 3 B,C,E

3 2 3 C,E,F

4 3 3 B,E,F

5 4 4 B,C,E,F

6 5 1 D

7 6 4 B,C,E

8 7 2 C,F

9 8 3 B,C,E,F

10 9 4 B,C,E,F

Table 17 - Service times for the Set composed by 10 trucks.

Server
Service
Time

B 48

C 53

D 45

E 55

F 50

Table 18 - Algorithm No.1 results of the simulation for the set composed by 10 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

 111

Truck1 [Population] FlowTime TimeInSystem Average 114.0061

Truck2 [Population] FlowTime TimeInSystem Average 283

Truck3 [Population] FlowTime TimeInSystem Average 226

Truck4 [Population] FlowTime TimeInSystem Average 335

Truck5 [Population] FlowTime TimeInSystem Average 443

Truck6 [Population] FlowTime TimeInSystem Average 52

Truck7 [Population] FlowTime TimeInSystem Average 494

Truck8 [Population] FlowTime TimeInSystem Average 169

Truck9 [Population] FlowTime TimeInSystem Average 549

Truck10 [Population] FlowTime TimeInSystem Average 603

ServerB [Resource] Capacity UnitsAllocated Total 7

ServerB InputBuffer Content NumberInStation Average 1.596405

ServerB InputBuffer HoldingTime TimeInStation Average 139.5714

ServerC [Resource] Capacity UnitsAllocated Total 7

ServerC InputBuffer Content NumberInStation Average 0.161765

ServerC InputBuffer HoldingTime TimeInStation Average 14.14286

ServerD [Resource] Capacity UnitsAllocated Total 1

ServerE [Resource] Capacity UnitsAllocated Total 8

ServerE InputBuffer Content NumberInStation Average 0.852941

ServerE InputBuffer HoldingTime TimeInStation Average 65.25

ServerF [Resource] Capacity UnitsAllocated Total 6

Exit [DestroyedEntities] FlowTime TimeInSystem Average 326.8006

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 603

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 52

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 10

Table 19 - Algorithm No.2 results of the simulation for the set composed by 10 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 131

Truck2 [Population] FlowTime TimeInSystem Average 295

Truck3 [Population] FlowTime TimeInSystem Average 239

Truck4 [Population] FlowTime TimeInSystem Average 296

Truck5 [Population] FlowTime TimeInSystem Average 432

Truck6 [Population] FlowTime TimeInSystem Average 52

Truck7 [Population] FlowTime TimeInSystem Average 320

Truck8 [Population] FlowTime TimeInSystem Average 266

Truck9 [Population] FlowTime TimeInSystem Average 483

Truck10 [Population] FlowTime TimeInSystem Average 372

ServerB [Resource] Capacity UnitsAllocated Total 7

 112

ServerB InputBuffer Content NumberInStation Average 0.782077

ServerB InputBuffer HoldingTime TimeInStation Average 54.85714

ServerC [Resource] Capacity UnitsAllocated Total 7

ServerC InputBuffer Content NumberInStation Average 0.661914

ServerC InputBuffer HoldingTime TimeInStation Average 46.42857

ServerD [Resource] Capacity UnitsAllocated Total 1

ServerE [Resource] Capacity UnitsAllocated Total 8

ServerE InputBuffer Content NumberInStation Average 0.270876

ServerE InputBuffer HoldingTime TimeInStation Average 16.625

ServerF [Resource] Capacity UnitsAllocated Total 6

ServerF InputBuffer Content NumberInStation Average 0.613035

ServerF InputBuffer HoldingTime TimeInStation Average 50.16667

Exit [DestroyedEntities] FlowTime TimeInSystem Average 288.6

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 483

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 52

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 10

Table 20 - Set composed by 16 trucks.

Truck Id
Entrance

Time

No. Of
Required
Locations

Required
Service

Locations
1 0 1 D

2 1 3 C,E,F

3 2 2 E,C

4 3 3 B,E,F

5 4 4 B,C,E,F

6 5 4 B,E,F,C

7 6 2 C,F

8 7 1 D

9 8 3 B,E,F

10 9 2 E,C

11 11 1 D

12 12 3 B,E,C

13 13 4 B,C,E,F

14 15 3 C,E,F

15 17 4 B,C,E,F

16 18 4 B,C,E,F

 113

Table 21 - Service times for the Set composed by 16 trucks.

Server
Service
Time

B 42

C 56

D 48

E 60

F 40

Table 22 - Algorithm No.1 results of the simulation for the set composed by 16 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 55

Truck2 [Population] FlowTime TimeInSystem Average 301

Truck3 [Population] FlowTime TimeInSystem Average 230

Truck4 [Population] FlowTime TimeInSystem Average 239

Truck5 [Population] FlowTime TimeInSystem Average 415

Truck6 [Population] FlowTime TimeInSystem Average 474

Truck7 [Population] FlowTime TimeInSystem Average 165

Truck8 [Population] FlowTime TimeInSystem Average 96

Truck9 [Population] FlowTime TimeInSystem Average 474

Truck10 [Population] FlowTime TimeInSystem Average 279

Truck11 [Population] FlowTime TimeInSystem Average 140

Truck12 [Population] FlowTime TimeInSystem Average 604

Truck13 [Population] FlowTime TimeInSystem Average 706

Truck14 [Population] FlowTime TimeInSystem Average 527

Truck15 [Population] FlowTime TimeInSystem Average 762

Truck16 [Population] FlowTime TimeInSystem Average 821

ServerB [Resource] Capacity UnitsAllocated Total 8

ServerB InputBuffer Content NumberInStation Average 1.334923

ServerB InputBuffer HoldingTime TimeInStation Average 140

ServerC [Resource] Capacity UnitsAllocated Total 11

ServerC InputBuffer Content NumberInStation Average 0.401669

ServerC InputBuffer HoldingTime TimeInStation Average 30.63636

ServerD [Resource] Capacity UnitsAllocated Total 3

ServerD InputBuffer Content NumberInStation Average 0.150179

ServerD InputBuffer HoldingTime TimeInStation Average 42

ServerE [Resource] Capacity UnitsAllocated Total 12

ServerE InputBuffer Content NumberInStation Average 2.628129

ServerE InputBuffer HoldingTime TimeInStation Average 183.75

 114

ServerF [Resource] Capacity UnitsAllocated Total 10

Exit [DestroyedEntities] FlowTime TimeInSystem Average 393

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 821

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 55

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 16

Table 23 - Algorithm No.2 results of the simulation for the set composed by 16 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 55

Truck2 [Population] FlowTime TimeInSystem Average 287

Truck3 [Population] FlowTime TimeInSystem Average 230

Truck4 [Population] FlowTime TimeInSystem Average 379

Truck5 [Population] FlowTime TimeInSystem Average 704

Truck6 [Population] FlowTime TimeInSystem Average 763

Truck7 [Population] FlowTime TimeInSystem Average 296

Truck8 [Population] FlowTime TimeInSystem Average 96

Truck9 [Population] FlowTime TimeInSystem Average 340

Truck10 [Population] FlowTime TimeInSystem Average 279

Truck11 [Population] FlowTime TimeInSystem Average 140

Truck12 [Population] FlowTime TimeInSystem Average 576

Truck13 [Population] FlowTime TimeInSystem Average 555

Truck14 [Population] FlowTime TimeInSystem Average 633

Truck15 [Population] FlowTime TimeInSystem Average 607

Truck16 [Population] FlowTime TimeInSystem Average 552

ServerB [Resource] Capacity UnitsAllocated Total 8

ServerB InputBuffer Content NumberInStation Average 0.891927

ServerB InputBuffer HoldingTime TimeInStation Average 85.625

ServerC [Resource] Capacity UnitsAllocated Total 11

ServerC InputBuffer Content NumberInStation Average 1.579427

ServerC InputBuffer HoldingTime TimeInStation Average 110.2727

ServerD [Resource] Capacity UnitsAllocated Total 3

ServerD InputBuffer Content NumberInStation Average 0.164063

ServerD InputBuffer HoldingTime TimeInStation Average 42

ServerE [Resource] Capacity UnitsAllocated Total 12

ServerE InputBuffer Content NumberInStation Average 1.377604

ServerE InputBuffer HoldingTime TimeInStation Average 88.16667

ServerF [Resource] Capacity UnitsAllocated Total 10

ServerF InputBuffer Content NumberInStation Average 1.071615

ServerF InputBuffer HoldingTime TimeInStation Average 82.3

 115

Exit [DestroyedEntities] FlowTime TimeInSystem Average 405.75

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 763

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 55

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 16

Table 24 - Set composed by 30 trucks.

Truck Id

Entrance
Time

No. Of
Required
Locations

Required
Service

Locations

1 0 2 C,E

2 1 1 D

3 2 3 B,E,F

4 3 3 C,E,F

5 4 4 B,C,E,F

6 5 4 B,C,E,F

7 6 4 B,C,E,F

8 8 3 B,C,E

9 10 2 C,F

10 11 4 B,C,E,F

11 12 2 C,E

12 13 4 B,C,E,F

13 14 2 C,F

14 15 3 C,E,F

15 17 1 D

16 18 4 B,C,E,F

17 19 3 C,E,F

18 20 2 C,E

19 21 4 B,C,E,F

20 22 4 B,C,E,F

21 23 2 C,E

22 24 3 B,E,F

23 25 4 B,C,E,F

24 26 4 B,C,E,F

25 27 1 D

26 29 2 C,E

27 30 4 B,C,E,F

28 31 4 B,C,E,F

29 32 3 B,C,E

30 33 1 D

 116

Table 25 - Service times for the Set composed by 30 trucks.

Server
Service
Time

B 58

C 70

D 50

E 65

F 60

Table 26 - Algorithm No.1 results of the simulation for the set composed by 30 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 430

Truck2 [Population] FlowTime TimeInSystem Average 57

Truck3 [Population] FlowTime TimeInSystem Average 468

Truck4 [Population] FlowTime TimeInSystem Average 532

Truck5 [Population] FlowTime TimeInSystem Average 776

Truck6 [Population] FlowTime TimeInSystem Average 845

Truck7 [Population] FlowTime TimeInSystem Average 914

Truck8 [Population] FlowTime TimeInSystem Average 982

Truck9 [Population] FlowTime TimeInSystem Average 211

Truck10 [Population] FlowTime TimeInSystem Average 1049

Truck11 [Population] FlowTime TimeInSystem Average 488

Truck12 [Population] FlowTime TimeInSystem Average 1117

Truck13 [Population] FlowTime TimeInSystem Average 277

Truck14 [Population] FlowTime TimeInSystem Average 845

Truck15 [Population] FlowTime TimeInSystem Average 91

Truck16 [Population] FlowTime TimeInSystem Average 1182

Truck17 [Population] FlowTime TimeInSystem Average 971

Truck18 [Population] FlowTime TimeInSystem Average 550

Truck19 [Population] FlowTime TimeInSystem Average 1249

Truck20 [Population] FlowTime TimeInSystem Average 1318

Truck21 [Population] FlowTime TimeInSystem Average 617

Truck22 [Population] FlowTime TimeInSystem Average 1291

Truck23 [Population] FlowTime TimeInSystem Average 1426

Truck24 [Population] FlowTime TimeInSystem Average 1495

Truck25 [Population] FlowTime TimeInSystem Average 131

Truck26 [Population] FlowTime TimeInSystem Average 681

Truck27 [Population] FlowTime TimeInSystem Average 1561

Truck28 [Population] FlowTime TimeInSystem Average 1630

 117

Truck29 [Population] FlowTime TimeInSystem Average 1699

Truck30 [Population] FlowTime TimeInSystem Average 175

ServerB [Resource] Capacity UnitsAllocated Total 16

ServerB InputBuffer Content NumberInStation Average 3.878683

ServerB InputBuffer HoldingTime TimeInStation Average 419.625

ServerC [Resource] Capacity UnitsAllocated Total 24

ServerC InputBuffer Content NumberInStation Average 1.641248

ServerC InputBuffer HoldingTime TimeInStation Average 118.375

ServerD [Resource] Capacity UnitsAllocated Total 4

ServerD InputBuffer Content NumberInStation Average 0.13056

ServerD InputBuffer HoldingTime TimeInStation Average 56.5

ServerE [Resource] Capacity UnitsAllocated Total 24

ServerE InputBuffer Content NumberInStation Average 5.290583

ServerE InputBuffer HoldingTime TimeInStation Average 381.5833

ServerF [Resource] Capacity UnitsAllocated Total 19

Exit [DestroyedEntities] FlowTime TimeInSystem Average 835.2667

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 1699

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 57

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 30

Table 27 - Algorithm No.2 results of the simulation for the set composed by 30 trucks.

Object

Name Data Source Category Data Item Statistic Type Value

Truck1 [Population] FlowTime TimeInSystem Average 541

Truck2 [Population] FlowTime TimeInSystem Average 57

Truck3 [Population] FlowTime TimeInSystem Average 1189

Truck4 [Population] FlowTime TimeInSystem Average 739

Truck5 [Population] FlowTime TimeInSystem Average 1512

Truck6 [Population] FlowTime TimeInSystem Average 1682

Truck7 [Population] FlowTime TimeInSystem Average 1575

Truck8 [Population] FlowTime TimeInSystem Average 979

Truck9 [Population] FlowTime TimeInSystem Average 612

Truck10 [Population] FlowTime TimeInSystem Average 1396

Truck11 [Population] FlowTime TimeInSystem Average 555

Truck12 [Population] FlowTime TimeInSystem Average 1305

Truck13 [Population] FlowTime TimeInSystem Average 623

Truck14 [Population] FlowTime TimeInSystem Average 1436

Truck15 [Population] FlowTime TimeInSystem Average 91

Truck16 [Population] FlowTime TimeInSystem Average 1319

Truck17 [Population] FlowTime TimeInSystem Average 1248

 118

Truck18 [Population] FlowTime TimeInSystem Average 687

Truck19 [Population] FlowTime TimeInSystem Average 1222

Truck20 [Population] FlowTime TimeInSystem Average 1426

Truck21 [Population] FlowTime TimeInSystem Average 754

Truck22 [Population] FlowTime TimeInSystem Average 1033

Truck23 [Population] FlowTime TimeInSystem Average 1158

Truck24 [Population] FlowTime TimeInSystem Average 1522

Truck25 [Population] FlowTime TimeInSystem Average 131

Truck26 [Population] FlowTime TimeInSystem Average 902

Truck27 [Population] FlowTime TimeInSystem Average 1587

Truck28 [Population] FlowTime TimeInSystem Average 1516

Truck29 [Population] FlowTime TimeInSystem Average 1165

Truck30 [Population] FlowTime TimeInSystem Average 175

ServerB [Resource] Capacity UnitsAllocated Total 16

ServerB InputBuffer Content NumberInStation Average 1.820984

ServerB InputBuffer HoldingTime TimeInStation Average 192

ServerC [Resource] Capacity UnitsAllocated Total 24

ServerC InputBuffer Content NumberInStation Average 4.299941

ServerC InputBuffer HoldingTime TimeInStation Average 302.25

ServerD [Resource] Capacity UnitsAllocated Total 4

ServerD InputBuffer Content NumberInStation Average 0.133966

ServerD InputBuffer HoldingTime TimeInStation Average 56.5

ServerE [Resource] Capacity UnitsAllocated Total 24

ServerE InputBuffer Content NumberInStation Average 6.093657

ServerE InputBuffer HoldingTime TimeInStation Average 428.3333

ServerF [Resource] Capacity UnitsAllocated Total 19

ServerF InputBuffer Content NumberInStation Average 1.847659

ServerF InputBuffer HoldingTime TimeInStation Average 164.0526

Exit [DestroyedEntities] FlowTime TimeInSystem Average 1004.567

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 1682

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 57

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 30

Table 28 - Entrance management algorithm results of the simulation for the set composed by

10 trucks.

Object Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 186

Truck2 [Population] FlowTime TimeInSystem Average 350

Truck3 [Population] FlowTime TimeInSystem Average 294

 119

Truck4 [Population] FlowTime TimeInSystem Average 248

Truck5 [Population] FlowTime TimeInSystem Average 402

Truck6 [Population] FlowTime TimeInSystem Average 52

Truck7 [Population] FlowTime TimeInSystem Average 214

Truck8 [Population] FlowTime TimeInSystem Average 292

Truck9 [Population] FlowTime TimeInSystem Average 429

Truck10 [Population] FlowTime TimeInSystem Average 452

B [Resource] Capacity UnitsAllocated Total 7

B InputBuffer Content NumberInStation Average 0.533623

B InputBuffer HoldingTime TimeInStation Average 35.14286

C [Resource] Capacity UnitsAllocated Total 7

C InputBuffer Content NumberInStation Average 0.668113

C InputBuffer HoldingTime TimeInStation Average 44

D [Resource] Capacity UnitsAllocated Total 1

E [Resource] Capacity UnitsAllocated Total 8

E InputBuffer Content NumberInStation Average 0.859002

E InputBuffer HoldingTime TimeInStation Average 49.5

F [Resource] Capacity UnitsAllocated Total 6

F InputBuffer Content NumberInStation Average 0.496746

F InputBuffer HoldingTime TimeInStation Average 38.16667

Exit [DestroyedEntities] FlowTime TimeInSystem Average 291.9

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 452

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 52

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 10

Table 29 - Entrance management algorithm results of the simulation for the set composed by

16 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 55

Truck2 [Population] FlowTime TimeInSystem Average 201

Truck3 [Population] FlowTime TimeInSystem Average 440

Truck4 [Population] FlowTime TimeInSystem Average 319

Truck5 [Population] FlowTime TimeInSystem Average 417

Truck6 [Population] FlowTime TimeInSystem Average 98

Truck7 [Population] FlowTime TimeInSystem Average 226

Truck8 [Population] FlowTime TimeInSystem Average 255

Truck9 [Population] FlowTime TimeInSystem Average 494

Truck10 [Population] FlowTime TimeInSystem Average 553

Truck11 [Population] FlowTime TimeInSystem Average 140

 120

Truck12 [Population] FlowTime TimeInSystem Average 612

Truck13 [Population] FlowTime TimeInSystem Average 369

Truck14 [Population] FlowTime TimeInSystem Average 607

Truck15 [Population] FlowTime TimeInSystem Average 665

Truck16 [Population] FlowTime TimeInSystem Average 724

B [Resource] Capacity UnitsAllocated Total 8

B InputBuffer Content NumberInStation Average 0.402965

B InputBuffer HoldingTime TimeInStation Average 37.375

C [Resource] Capacity UnitsAllocated Total 11

C InputBuffer Content NumberInStation Average 1.530997

C InputBuffer HoldingTime TimeInStation Average 103.2727

D [Resource] Capacity UnitsAllocated Total 3

D InputBuffer Content NumberInStation Average 0.172507

D InputBuffer HoldingTime TimeInStation Average 42.66667

E [Resource] Capacity UnitsAllocated Total 12

E InputBuffer Content NumberInStation Average 1.107817

E InputBuffer HoldingTime TimeInStation Average 68.5

F [Resource] Capacity UnitsAllocated Total 10

F InputBuffer Content NumberInStation Average 1.570081

F InputBuffer HoldingTime TimeInStation Average 116.5

Exit [DestroyedEntities] FlowTime TimeInSystem Average 385.9375

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 724

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 55

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 16

Table 30 - Entrance management algorithm results of the simulation for the set composed by

30 trucks.

Object

Name Data Source Category Data Item

Statistic

Type Value

Truck1 [Population] FlowTime TimeInSystem Average 57

Truck2 [Population] FlowTime TimeInSystem Average 411

Truck3 [Population] FlowTime TimeInSystem Average 735

Truck4 [Population] FlowTime TimeInSystem Average 669

Truck5 [Population] FlowTime TimeInSystem Average 1157

Truck6 [Population] FlowTime TimeInSystem Average 423

Truck7 [Population] FlowTime TimeInSystem Average 772

Truck8 [Population] FlowTime TimeInSystem Average 1119

Truck9 [Population] FlowTime TimeInSystem Average 1188

Truck10 [Population] FlowTime TimeInSystem Average 1181

Truck11 [Population] FlowTime TimeInSystem Average 95

 121

Truck12 [Population] FlowTime TimeInSystem Average 625

Truck13 [Population] FlowTime TimeInSystem Average 484

Truck14 [Population] FlowTime TimeInSystem Average 903

Truck15 [Population] FlowTime TimeInSystem Average 1461

Truck16 [Population] FlowTime TimeInSystem Average 1329

Truck17 [Population] FlowTime TimeInSystem Average 848

Truck18 [Population] FlowTime TimeInSystem Average 548

Truck19 [Population] FlowTime TimeInSystem Average 1236

Truck20 [Population] FlowTime TimeInSystem Average 1465

Truck21 [Population] FlowTime TimeInSystem Average 134

Truck22 [Population] FlowTime TimeInSystem Average 518

Truck23 [Population] FlowTime TimeInSystem Average 972

Truck24 [Population] FlowTime TimeInSystem Average 1662

Truck25 [Population] FlowTime TimeInSystem Average 1390

Truck26 [Population] FlowTime TimeInSystem Average 178

Truck27 [Population] FlowTime TimeInSystem Average 678

Truck28 [Population] FlowTime TimeInSystem Average 1027

Truck29 [Population] FlowTime TimeInSystem Average 1665

Truck30 [Population] FlowTime TimeInSystem Average 1594

B [Resource] Capacity UnitsAllocated Total 16

B InputBuffer Content NumberInStation Average 2.486152

B InputBuffer HoldingTime TimeInStation Average 263.6875

C [Resource] Capacity UnitsAllocated Total 24

C InputBuffer Content NumberInStation Average 4.183854

C InputBuffer HoldingTime TimeInStation Average 295.8333

D [Resource] Capacity UnitsAllocated Total 4

D InputBuffer Content NumberInStation Average 0.139069

D InputBuffer HoldingTime TimeInStation Average 59

E [Resource] Capacity UnitsAllocated Total 24

E InputBuffer Content NumberInStation Average 1.282852

E InputBuffer HoldingTime TimeInStation Average 90.70833

F [Resource] Capacity UnitsAllocated Total 19

F InputBuffer Content NumberInStation Average 3.848556

F InputBuffer HoldingTime TimeInStation Average 343.7368

Exit [DestroyedEntities] FlowTime TimeInSystem Average 884.1333

Exit [DestroyedEntities] FlowTime TimeInSystem Maximum 1665

Exit [DestroyedEntities] FlowTime TimeInSystem Minimum 57

Exit [DestroyedEntities] FlowTime TimeInSystem Observations 30

