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Resumo

A presente tese aborda problemas de otimizacéo integrados e esta dividida em duas partes prin-
cipais. A primeira, refere-se a uma variante particular do problema de localizacdo e encaminha-
mento, enquanto a segunda se foca num caso particular de um problema de producao, inventario
e distribuicao de bens. As variantes dos problemas tiram partido da multipla utilizacao de veicu-
los que se torna importante quando existe, por exemplo, uma rede geografica pequena e densa,
de forma a nao a congestionar.

O problema de localizacdo e encaminhamento com utilizacdo multipla de veiculos combina
dois problemas de otimizacao diferentes: um problema de localizagcdo e um problema de enca-
minhamento. A integracdo destes problemas é importante para que possam ser consideradas
variaveis comuns aos dois problemas. O problema de localizacdo e encaminhamento com utili-
zacao multipla de veiculos prevé a identificacdo de um determinado conjunto de instalacbes que
devem funcionar e determina qual o conjunto de rotas que deve ser efetuado para satisfazer os
pedidos de todos os clientes. Estas rotas estdo associadas a uma frota homogénea de veiculos,
sendo esta frota atribuida a uma instalacao funcional.

Para a resolucao do problema de localizacéo e encaminhamento com utilizacao multipla de
veiculos sdo utilizados trés métodos exatos diferentes: um modelo de fluxo com trés indices, um
modelo de geracao de colunas e um modelo de fluxo nos arcos. No modelo de fluxos com trés
indices ¢ definido um grafo explicito que inclui um grande nimero de varidveis relacionadas com
a utilizacdo de um arco por um determinado veiculo e com a quantidade de fluxo associada a

esse mesmo arco. A geracao de colunas é dividida no problema mestre que inclui as restricdes
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associadas ao problema de localizacao de instalacdes e no sub-problema que agrupa restricdes
que tém uma estrutura especial, neste caso, o problema do caminho elementar mais curto. Es-
tes problemas vao trocando informacao de forma a encontrar a solucdo global 6tima. O modelo
de fluxo em arcos é uma abordagem baseada em grafos, mas menos intuitiva, uma vez que os
nodos representam instantes de tempo, em vez de clientes. Foram ainda propostos dois méto-
dos heuristicos para a resolucao do problema de localizacao e encaminhamento com utilizacao
multipla de veiculos. Foi proposta uma heuristica de arredondamento onde os valores fraciona-
rios da relaxacdo linear das variaveis sao arredondados de acordo com determinados critérios e
técnicas de arredondamento, e uma heuristica de pesquisa em vizinhanca variavel que explora
um conjunto de estruturas de vizinhanca de forma definida e sistematica.

O problema de producao, inventario e encaminhamento com janelas temporais e utilizacao
multipla dos veiculos ¢ um problema integrado que concilia o problema de gestao da producao
e encaminhamento com o problema de gestao de inventarios. Neste problema integrado um
conjunto de clientes, com pedidos que variam de acordo com o horizonte de planeamento finito,
¢ servido por uma Unica instalacao. A distribuicao é feita por uma frota homogénea de veiculos
que entregam os pedidos de acordo com a janela temporal dos clientes. A gestao da producao é
feita de acordo com os inventarios existentes quer na instalacao, quer no cliente.

Para a resolucéao do problema de producéo, inventario e encaminhamento com janelas tem-
porais e utilizacdo multipla dos veiculos foi proposto um modelo exato de fluxos em arcos que
tem como base um grafo que considera que os nodos sao instantes de tempo. Foram ainda
apresentadas duas heuristicas de pesquisa em vizinhanca variavel baseadas no modelo de fluxo
em arcos que de forma sistematica explora um conjunto de estruturas de vizinhanca.

O principal objetivo dos problemas abordados ¢ minimizar o custo associado as decisdes que
envolvem todo o sistema. As abordagens propostas foram implementadas e testadas através de
varios testes computacionais que tiveram por base um conjunto de instancias da literatura. Os

resultados finais sdo apresentados e analisados.



Abstract

The present thesis addresses integrated optimization problems and is divided into two main parts.
The first refers to a particular variant of the location routing problem, while the second focuses
on a particular case of a production, inventory, distribution and routing problem. The variants of
the problems take advantage of the multiple use of vehicles that becomes important when, for
example, there is a small and dense geographic network in an attempt to decongest the network.

The multi-trip location routing problem combines two different optimization problems: a facility
location problem and a multi-trip vehicle routing problem. The multi-trip location routing problem
consists in the selection of a set of facilities to be opened and the determination of a set of routes
used to serve a set of customers. These routes are associated to a homogeneous fleet of vehicles,
which is associated to a given facility.

To solve the multi-trip location routing problem three different exact methods are proposed:
a three-index commodity flow model, a column generation and a network flow model. In the
three-index commaodity flow model the graph is defined in an explicit way which yields a higher
number of variables. The model has variables related to the use of an arc and vehicle, and others
representing the flow through the arcs. The column generation process includes two important
problems. The restricted master problem that includes restrictions related to the facility location
problem, and the sub-problem including constraints which have a special structure related to the
elementary shortest path problem. These two problems exchange information in order to find
the optimal solution. The network flow model is a graph-based approach, but less intuitive, since

nodes represent instants of time instead of clients. Two heuristic methods to solve the multi-trip
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location routing problem are also proposed. An iterative rounding heuristic where the fractional
value of the linear relaxation of the decision variable is rounded according to some parameters
and rounding techniques, and a skewed variable neighborhood search heuristic which explores a
set of neighborhood structures in a defined and systematic way.

The multi-trip production, inventory, distribution and routing problem with time windows is
an integrated problem that combines a production and distribution problem, a multi-trip vehicle
routing problem and a inventory routing problem. In the multi-trip production, inventory, distribu-
tion and routing problem with time windows, a set of clients, which have a time varying demand
during a finite planning horizon, is served by a single production facility. The distribution is ac-
complished by a fleet of homogeneous vehicles that deliver the clients orders within their specific
time windows. Production management has to be done according to the inventories at the facility
and at the customers.

To solve the multi-trip production, inventory, distribution and routing problem with time win-
dows an exact arc flow model based on a graph is proposed, where the nodes represent instants
of time. Two model-based variable neighborhood search that systematically explores a set of
neighborhood structures exchanging information with the arc flow model are also proposed.

The main goal of the presented problems is to minimize the costs associated to the entire
system. The proposed approaches were implemented and a set of experimental tests were con-
ducted. Several computational tests were performed based on a set of benchmark instances from

the literature. The final results are presented and analyzed.
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Chapter 1

Introduction

The integrated planning of operations, coordinated throughout the different functions of the enter-
prise, is essential for industrial companies to achieve higher levels of competitiveness. Although
the significant progress in the area of discrete optimization and the important contributions re-
ported in solving applied optimization problems, current approaches have obvious limitations. In
most cases, the problems are solved independently without any concern with the strong integ-
ration that may exist between them. In practice, these approaches lead to solutions that are

sub-optimal from the global perspective of companies.

This thesis is a contribution for the efficient resolution of integrated optimization problems in
the area of operations management and supply chains. The research focus on two classes of
problems in the distribution area: facility location and vehicle routing problems; and production
scheduling and distribution problems. Integer Programming models based on original formula-
tions are explored and optimization algorithms based on dynamic management of models, exact
methods and hybridization strategies with heuristic methods are developed. The approaches are
based on innovative techniques for Integer Programming with a particular emphasis on methods

such as decomposition and hybridization with heuristics based on relaxations of the models.

The thesis is divided in 7 main chapters which include the present one (Chapter 1). In

Chapter 2, different variants and specificities of integrated optimization problems are explored,



2 Chapter 1. Introduction

namely with regard to the location routing problem and scheduling and distribution problem. This
chapter is organized in 4 sections. Section 2.1 presents different variants and approaches for solv-
ing the location routing problem, while Section 2.2 focuses on a particular variant of the location
routing problem with multiple usage of a vehicle during a planning horizon. In this last section,
there is an effort to synthesize the details of this variant addressed in the literature. Section 2.3
provides a literature review of integrated scheduling and distribution problems and Section 2.4
highlights a particular scheduling and distribution problem: the production, inventory, distribution

and routing problem. The main characteristics of this particular problem are explored.

For a clear understanding of the structure, Chapter 3 and Chapter 4 address the multi-trip loc-
ation routing problem while Chapter 5 and Chapter 6 refers to the multi-trip, production, inventory,

distribution and routing problem with time windows.

Chapter 3 starts with a detailed description of the multi-trip location routing problem. During
this chapter three exact methods are proposed: a three-index commaodity flow model, a column
generation and a network flow model. The three-index commodity flow model is described in
Section 3.2 and leads to a higher number of variables since the load associated to a vehicle
and to a facility is represented in an explicit way through the graph. Section 3.3 addresses the
column generation approach where the restricted master problem exchanges information with
the elementary shortest path problem with resource constraints as sub-problem with the aim of
finding the global optimal solution. The restricted master problem includes constraints related to
the facility location problem. The network flow model is presented in Section 3.4 and represents a
less intuitive graph-based approach, since the nodes of the graph represent time instants instead
of clients. At the end of this chapter some implementation details, computational results and

conclusions with comparative analysis are presented.

In Chapter 4, two heuristics are proposed: an iterative rounding heuristic and the general
skewed variable neighborhood search. At the beginning of the chapter the advantages of the

heuristics are discussed in a brief introduction. Section 4.2 addresses an iterative rounding heur-



istic that takes advantage of linear relaxations. Through rounding techniques the heuristic converts
the fractional value of the linear relaxation of the decision variables into integer values according to
some parameters and constraints. The skewed general variable neighborhood search is explained
in Section 4.3. This heuristic method explores a group of neighborhoods in an attempt to find the
optimal solution of the problem or a very good solution. A set of neighborhoods is exploited in a
systematic way in order to create perturbations in the final solution, allowing to escape from local
optima. Computational results are presented at the end of the chapter.

Chapter 5 addresses the multi-trip production, inventory, distribution and routing problem with
time windows. This problem is described in Section 5.1 where some details and specificities are
presented. To solve this problem an exact arc flow model based on a graph is proposed, where
the nodes represent instants of time instead of clients. Section 5.2 presents the definition of the
arc flow model. Some computational results are presented through Section 5.4.

In Chapter 6, two model-based variable neighborhood search are proposed. These approaches
explores a set of neighborhoods in an attempt to find good routing and distribution decisions. The
arc flow model optimizes the decisions of production and inventory at the facility. The local search
method and the arc flow model exchange information in order to find a good solution.

The main contributions and some conclusions are presented in Chapter 7. In addition, some

future research directions are introduced.
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6 Chapter 2. Integrated optimization

Integrated optimization

Nowadays, in contrast with a distant past, one is constantly dealing with permanent technolo-
gical evolution. Due to this fact, some problems that appeared to have no solution in acceptable
computer science terms, may be addressed with new and fresh perspectives. Technological ad-
vances are arguably an aid, however they may not constitute the basis of the research. In order to
solve a complex investigation issue, a systematic examination of the real environment, in which
the problems are embedded, is required. Thus it is possible to perceive the entire problem and
apply integrated optimization techniques. These integrated optimization techniques should lead
to better results than addressing the problem in an individual way.

Integer Programming (IP) techniques have been successfully used in the last years to solve
problems of planning and management in various application domains [1, 2, 3, 4, 5]. Progress
has been remarkable: obtained theoretical results are important and computationally efficient al-
gorithms have been proposed to relevant and complex problems. These results are translated into
substantial savings which are a consequence of a better use of resources. Economic agents have
recognized the relevance of these contributions and their practical importance. A clear example is
the strong commitment of some of the most prestigious companies in business analytics, which
combines contributions arising essentially from computer science, optimization and operations
research.

In this research work, optimization problems in the area of integrated management operations
and supply chains are addressed. Despite the practical importance of these problems, the first
scientific results in this field have emerged only in the last years [2, 6, 7, 8, 9, 10, 11]. The
contributions focus mainly on heuristic methods and do not use the advantages of the latest
advances in IP techniques. However, some preliminary experiments clearly illustrate the potential
of IP methods in solving specific problems of integrated optimization [6, 8]. In this project it is
intended to contribute to the resolution of two classes of integrated optimization problems: facility

location and vehicle routing problems; and production scheduling and distribution problems.
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2.1 Location routing

The Location Routing Problem (LRP) is a difficult optimization problem that integrates the facility
location and the routing problems. The routing problem allows the determination of a set of
optimal routes such that the demands of multiple clients are fulfilled. In the location problem,
one has to determine the location of a set of depots to be used. The integration of these two
problems has as main objective the minimization of the total cost of the system, thereby allowing
the reduction of unnecessary costs. During the last years, several authors analyzed this problem
and its specificities in an attempt to reduce the complexity of the entire system expecting good
solutions in acceptable computer science terms.

A review of methods for the location and vehicle routing problems and their variants has
been proposed by Nagy and Salhi in [12]. Most of the proposed methods are purely heuristic
approaches. Nagy and Salhi [12] classify these heuristics into three categories: clustering tech-
niques, iterative heuristics and heuristics based on hierarchies [13, 14, 15]. Prodhon et al. [16]
and Drexl et al. [17] propose complementary surveys in an effort to update the review offered by
Nagy and Salhi [12]. The exact number of approaches to variants of this problem is still very low
[13, 18, 19]. Belenguer et al. [18] describe a branch-and-cut algorithm to instances of the prob-
lem with capacity constraints in depots and a maximum of 50 clients. Akca et al. [13] propose
a branch-and-price algorithm combined with heuristics for solving the column generation sub-
problem. Another branch-and-price algorithm has been proposed by Berger et al. [19] to solve a
version of the problem without capacity constraints on depots and constraints on the distances
travelled.

Albareda-Sambola et al. [20] define a combined LRP problem solved by a Tabu Search heur-
istic that solves the facility location and distribution problem simultaneously. The authors presen-
ted a deterministic formulation for one single period. In their approach the capacity of the depots
is considered with one vehicle associated to each depot. The main goal is to determine which

depots should be opened and the distribution routes in order to minimize the cost related to
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opening a depot and the cost of the different routes. Using a Linear Programming (LP) problem
the authors are able to obtain an initial lower bound which is considered as the starting point of
the Tabu Search process. The main constraints associated to the problem ensure that a route
starts and ends at the same depot, the vehicles capacity is not excedeed and a client is served
by exactly one route, which is not associated to a closed depot. In order to obtain the initial point
for the heuristic method the authors used a linear relaxation of the initial model. This relaxation
is strengthened through the inclusion of new constraints ensuring that the total client demand is
lower than the total capacity of the open depots. After a first step for obtaining the initial point,
the authors used a Tabu Search heuristic. In this iterative process, each iteration has two phases:
an intensification phase followed by a diversification one. In the former, a local search is done in
order to find a better solution than the current one. This process consists in the re-assignment
of at least one client to another depot, which could be done in two distinct ways. One consists in
re-assigning a client from a depot to another depot, while the other consists in the exchange of a
client from one depot with a client from a different depot. The intensification phase ends when the
maximum number of iterations is reached or when it is not possible to find a valid solution in the
neighborhood after a consecutive number of iterations. In this phase, the solution is changed but
the number of open depots remains unchanged. In the diversification phase, one has to increase
the solution space by searching solutions with different open depots. For this phase, there are
three different methods. One method is to close a depot and to re-assign the associated clients.
A different approach consists in replacing an open depot by a closed one that is able to ensure
the demand of the clients. The third method is to open a depot and re-assign part of the clients
of other depots using a proximity criteria. These three phases are executed sequentially only if
in the current phase it is not possible to obtain a valid solution. The authors conclude that this

approach provides good results and is trustworthy.

Nagy and Salhi [12] perform a survey of issues, models and methods for the LRP problem.

They consider LRP a relatively new branch of research. They also propose a potential classification
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scheme according to the different variants of the initial problem. The research work conducted
by the authors uses exact and heuristics methods. The authors underlined the importance of
their research whose objective is to conduct a review that can be considered a guide to future
researchers who want to start up in this area. Being the LRP an approach to model and solve
location problems, Nagy and Salhi [12] define the problem using a hierarchy. The top-level goal
is to solve facility location problems, being necessary to address the vehicle routing problem
at a level immediately below. The facility location and vehicle routing problems have a strong
interrelationship. This relationship is sometimes neglected by researchers and professionals that
seek an optimal solution for the facility location without taking into account the distribution routes.
The LRP can become the traditional problem of facility location if one considers that all clients
are directly connected to the depot. If one consider that the depots have a fixed location, then
the LRP becomes the classic Vehicle Routing Problem (VRP). Areas such as health, military, and
communications are targets for the application of LRP, with the majority of research focused on the
distribution of goods. Nagy and Salhi [12] emphasize that the LRP is not purely academic having
practical application in the mentioned areas. Classifying LRP problems is a difficult task due to
several variants of the location problem, with the addition of the various variants of the routing
problem. The classification proposed by Nagy and Salhi [12] is divided into nine key aspects of
the LRP:

> Hierarchical base structure: customers are served through routes associated with

depots. Each route depends only on a depot;

> Data type: the demand of a customer can be stochastic or deterministic;

> Planning horizon: the planning horizon can contain a single period (static) or multi-

period (dynamic);

> Solution method: can be exact or heuristic. Exact methods are efficient for particular

cases of the LRP. Heuristic methods allow solving larger instances in acceptable compu-
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tational times;

> Objective function: the minimization of the overall costs associated with depots and

vehicles is the main objective of the LRP;

> Solution space: can be discrete, in network or continuous;

> Number of depots: there may be considered one (single) or more (multiple) depots;

> Number and type of vehicles: the fleet can be homogeneous or heterogeneous with a

varying number of vehicles;

> Structure of the route: the route starts and ends in the same depot visiting various

customers.

In the first deterministic problem solved, the route started in a depot, the load was brought
from a client, delivered to another and ended later in the same depot where the route started. This
problem is a particular case named round trip location problem. The problem definition through
exact methods using mathematical formulation frequently involves relaxation and reintroduction
of constraints such as the elimination of sub-routes, supply chain constraints and integrality.

Berger et al. [19] present the LRP problem with constraints only to limit the distance that
vehicles may travel. Through an alternative set of constraints, the authors create a formulation that
improves the value of the relaxation of the linear programming model. In conventional approaches
a depot location model is used, and the distribution routes serve one client at a time. For this
reason, the authors state that the cost of each route is independent from the others. However,
in real cases, each route usually visits more than one client, which makes the cost dependent
on the location of the various clients and the sequence in which they are satisfied. The facility
location problem and routing problem must be solved simultaneously in order to perform the most
accurate representation of reality. The authors consider a version of the LRP without capacity

associated to the depot, but consider the load carried by the vehicle, adding constraints on the
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duration or length of the routes. This version fits, for example, in the delivery of goods with
short lifetime and delivery of products at pre-established intervals. LRP formulations using exact
methods are still rare and solve relatively small instances. Berger et al. [19] use set partitioning
and branch-and-price algorithms for the LRP resolution through exact algorithms, evaluating their
efficiency. In partitioning set approaches the goal is to select a group of open facilities and to
calculate the distribution routes where the total costs are minimized. Each customer is visited
only once by a route where its length is limited. The formulation includes an exponential number
of variables and constraints, which is why the application of the formulation to real cases is not
feasible. To overcome these difficulties, Berger et al. [19] use a column generation model with
branch-and-bound. In the formulation, sets of constraints are replaced in order to strengthen the
lower bound of the linear relaxation, allowing for better results in the application of the branch-
and-bound algorithm. The formulation, which is solved by branch-and-price, is efficient for the
resolution of problems such as crew airlines scheduling and delivery of goods with defined time
interval. With the proposed formulations, the authors can obtain optimal solutions for instances

with 10 candidate facilities and 100 customers with various distance constraints.

Barreto et al. [21] consider a particular LRP problem with a set of distribution centers with
an associated capacity and a set of customer. The main objectives are to determine the set of
facilities that will work effectively and to optimize the distribution routes that will start and end at
the same depot. The vehicles are homogeneous, have a finite capacity and vehicles carry only one
type of product. Each client is visited exactly once. The minimization of total costs associated with
routes and depots location is the main purpose of the authors. The division of entities with similar
characteristics into groups are commonly referred to as cluster, which represents an approach
used by several authors in the LRP. Barreto et al. [21] integrate hierarchical and non-hierarchical
techniques for sequential heuristics to find optimal solutions in LRP. The particular cases of LRP
which deal with capacities are called Capacitated Location Routing Problem (CLRP). The use of

heuristics for these problems allows to obtain good solutions within an acceptable computational
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time. The heuristics presented by the authors are easy to understand, to implement and to modify
and allow the definition of some specificities associated to the problem. They also enables the
execution of large instances in acceptable computational times. According to Jain [22], a cluster

might be defined as:

“Cluster may be described as connected regions of a multi-dimensional
space containing a relatively high density of points, separated from other

such regions by a region containing a relatively low density of points”

This definition has revealed to be important since it demonstrates a good reason to use the
analysis of clusters in LRP. This analysis is composed by several methodologies which may be used
on heuristics for the particular CLRP problem. A significant number of authors have proposed
their approaches using integrated grouping techniques in LRP. However, the comparison of these
techniques to determine the real capabilities of their approaches is rarely addressed. In order
to determine the proximity between points on the plane, Barreto et al. [21] used some different
techniques such as determining the shortest distance, the greater distance, the average distances,
the distances from the centers of gravity and the saving method. According to Barreto et al. [21],
the lack of consensus of several authors demonstrates that there are no adequate measures to
determine the proximity between points on the plane for generalized problems. These measures
are commonly selected after testing several alternatives. Heuristic methods for LRP can be defined
using sequential or iterative strategies. The authors proposed a sequential approach since it
produces perfectly acceptable errors associated to the obtained solution and it is preferable from
a computational perspective. The sequential heuristic strategy addresses, in a first step, the
distribution problem and then the location problem. The heuristic proposed by the authors is
defined into 4 essential stages: construction of customer groups with capacity limit, determination
of the distribution route for each customer group, improvement of the routes and location of the
depots and their assigned routes. The authors used 19 instances adapted from literature in order

to evaluate the performance of the four versions of the heuristics and six proximity measures,
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concluding that the first version of the heuristic provides better results.

Lopes et al. [23] developed a decision support system which includes a LRP with limits on
the capacities of the vehicles and depots. The authors highlight the fact that the decision support
system has to consider other aspects in addition to the optimization problem. A feature considered
important, which allows an assertive decision in this type of systems, is the problem presentation
in a complete, simple and easy to understand interface. The integration of the LRP in decision
support systems is scarce and the authors try to fulfill this flaw. Lopes et al. [23] deal with a
LRP with capacitated depots and an homogeneous fleet, in which all costs are known or may
be calculated, allowing for their minimization. Due to the larger size of the practical problems
the authors resort to heuristics that provided a good solution in reasonable time. The authors
developed a sequential approach of the LRP due to the advantages at a computational level. The
problem was divided in two sub-problems (distribution routes and depots localization) which were

sequentially solved according to four steps:

> Group clients: according to the limit of the capacity and analysis of possible neighbor-

hoods;

> Determine the distribution route: to each group of clients through the Travelling Sales-
man Problem using linear and integer programming for problems with less than 40 clients

and heuristics to set the neighbor and local search, otherwise;

> Improve routes: defined in the previous item through a local search heuristic, reducing

their costs;

> Locate the depots: assign routes to the depots and corresponding costs to the group of

clients that should be served through an exact method.

Both in the determination of the distribution routes and in their assignment to the depots, the

commercial optimization solver CPLEX was used. Through the integration of several technologies,
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the authors provided a graphical interface which allows an easier and intuitive definition of the

problem as well as the interpretation of the obtained results.

According to Belenguer et al. [18], there are few studies under the LRP topic where exact
algorithms are addressed to enable the resolution of this type of problem. The LRP model de-
veloped by the authors uses integer and linear programming and has points in common with the
work carried by Laporte et al. [24]. However, new constraints that limit the depots capacity are
included through the use of binary variables. The present case consists of opening one or more
depots, for which it is necessary to associate a number of routes, where the total demand of
customers cannot exceed the depot capacity. Each route must start and end at the same depot
and the total demand must be fulfilled. In their approach, Belenguer et al. [18] analyze a generic
problem which has capacity constraints in the load of vehicles and in the quantity stored in the
depots. These constraints involve more complex decisions. The integer programming models
that the authors presented are composed by an objective function and several initial constraints.
Generally, in the objective function, the authors represent all costs associated to the transporta-
tion and location problem, in order to minimize them. These costs are reflected in fixed costs for
opening depots, fixed costs for the use of vehicles and also the cost associated with each route.
Each customer is visited exactly once and sub-routes are eliminated. The depot capacity cannot
be exceeded, a depot is only used if it is open, and a route must start and finish in the same
depot. It is noteworthy that some of these constraints grow exponentially with the number of
customers, which is why the authors use branch-and-cut that introduces specific constraints only
when necessary. In order to strengthen the LP relaxation of the formulation the authors include
additional constraints to the problem. The LRP formulation with the new improved constraints
allows to obtain a lower bound for the LRP. In the first iteration, the LP problem is initialized with
the objective function and a subset of constraints. In each iteration, the LP problem is solved and
the valid inequalities violated by the optimal solution of the LP problem are identified and added

to the LP problem. These constraints are then added to the LP problem and the iterative process
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continues, finishing when there are no more violated inequalities. In order to test the algorithm,
Belenguer et al. [18] used three sets of instances in the literature, corresponding to 34 instances
with 20 to 88 customers and 5 to 10 possible locations for the depots. The computational results
showed that the developed method solved optimally 26 instances with 5 potential locations for
depots including all instances up to 40 customers and only 3 with 50 customers.
Albareda-Sambola et al. [25] address the LRP problem with capacity constraints limiting the
distance that the vehicles may travel. This variant is named as Capacity and Distance Constrained
Plant Location Problem (CDCPLP). When a depot is open, a fixed open cost is associated to it as
well as the number of identical vehicles. Each vehicle can make several one-way routes to and
from its depot if they do not exceed the maximum limit of distance traveled. The CDCPLP has as
main objective to determine which depots will be opened and the number of associated vehicles,
minimizing the fixed costs of opening the depots, the fixed costs of vehicle usage and the allocation
costs. Several models proposed for the CDCPLP problem are compared although all the integer
programming models considered have as main objective the minimization of all costs incurred. In
the models presented by the authors the first constraint ensures that the customer orders are not
neglected. A second constraint ensures that the depots capacity is not exceeded by the number
of requests from the customers that it serves. The sum of the distances in the various round-trip
routes must be less than or equal to a maximum distance traveled by the vehicle. The authors also
ensured that a customer is not served by a closed depot. An additional constraint is introduced to
ensure that a customer is served by only one vehicle and that the vehicles are used in the order
of association with the depots. The versions of the models presented by Albareda-Sambola et al.

[25] differ due to several factors that are summarized next:

> Strengthening the initial model: when a client is served by a vehicle then the previous
customer has been served by the same vehicle or a previous one. This approach prevents

the replication of solutions since the vehicles are homogeneous;

> Removing the explicit variable associated to a vehicle: vehicles are now assigned
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to a lower index client avoiding the use of negligible variables and symmetrical solutions;

> Setting upper and lower bounds for the distance traveled: the depots will be
opened only if the total distance that their assigned vehicles perform is limited between an

established upper and lower bound.

> Improving the limits: the strengthening of the previous formulation is conducted through

the addition of new inequalities based on bin packing and knapsack problems, respectively.

The modifications applied to the initial formulation presented good results. The latest improve-
ment presents the most promising results for instances with the maximum distance associated
to the vehicles between 40 and 100 and fixed costs of vehicle usage between 50 and 300. All
instances have 10 possible depots and 20 customers. Albareda-Sambola et al. [25] concluded
that getting better upper and lower limits may have a beneficial effect on the total computing time
used.

Escobar et al. [26] proposed a two-phase hybrid heuristic algorithm to solve the Capacitated
Location Routing Problem (CLRP). The problem considers a homogeneous fleet with capacity and
fixed costs associated, a set of capacitated depots and their opening costs and a deterministic set
of clients demands. It is necessary to determine which depots should remain open and associate
to them the best distribution routes. The fixed costs of vehicles and depots and the costs of the
routes should be minimized. In the CLRP each route must start and end at the same depot and it
cannot connect to other depots. Each client is visited just once by one route and the total demand
of the clients served by a route cannot exceed the vehicle capacity. The total demand of the
clients associated to a depot cannot exceed its capacity. The heuristic has two distinct phases:
construction phase and improvement phase. In the former, an initial valid solution is selected
and used in the next phase in order to trying to avoid that a local optimum is not achieved. The
improvement phase is based on a modified granular Tabu Search heuristic which considers five

neighborhood structures. There are three diversification strategies and a perturbation procedure
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that ensures that the iterative process does not end on a local optima. For the computational tests,
the authors used the five most effective instances from the literature. The proposed algorithm
solved the various instances improving the known computational times. Escobar et al. [26] stated
that the proposed algorithm may be extended to other versions of the CLRP.

According to Doulabi et al. [27], there are three important areas of research in logistical
problems: facilities location, inventory management and vehicle routing problem. The authors
presented integer programming models and heuristics for the resolution of location routing prob-
lems with multiple depots. The determination of the routes is made through the arcs. This
approach, according to the authors, is not commonly reported in the literature for the LRP prob-
lem. This sub-problem, referred to as Arc Routing Problem (ARP) can be divided into three main

problems:

> Chinese Postman Problem: all of the vertices or arcs of the graph must be traversed.

> Rural Postman Problem: only a subset of vertices, or arcs must be traversed.

> Capacitated Arc Routing Problem: similar to ARP problem but vehicles have capacit-

ies.

Doulabi et al. [27] proposed two integer programming models. One for problems with a
single depot and another for problems with multiple depots. The upper and lower bounds are
computed using integer programming models. The objective function aims to minimize fixed costs
associated to opening the depots and the costs associated to the routes. The constraints ensure
the continuity of routes and that each arc or edge is served in one route. The flow conservation
in the graph is also ensured. The authors highlighted that the number of variables for the single
depot problem is much lower than the number of variables of the multiple depots version, which
is reflected in the computational time. Due to the complexity of the problem Doulabi et al. [27]
developed heuristics that able to obtain very good solutions, close to the optimal one. For the

Location Arc Routing Problem (LARP) the authors developed two heuristics based on simulated
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annealing: heuristics for determining routes through the arcs (arc routing) and location-allocation
heuristic. The arc routing heuristic has as main objective the insertion of small sub-routes inside
an existent route in order to reduce the costs. In an initial phase, a basic solution is created, with
a route being generated for each arc or edge. Then the solution is improved by the combination of
the various routes previously obtained, ending when the stopping criteria is reached, i.e., when the
conjugation of the routes implies an increase in the objective function or the violation of the vehicle
capacity. Location-allocation heuristic has the aim of decreasing the total costs by swapping the
routes associated for each depot. Initially, the authors define the set with the location of the
depots, then the pre-established routes are disconnected from their associated depot becoming
closed circuits (union of the edges that connected the route to the depot). These new circuits
are designated as clusters. Each cluster is joined to a random depot and the improvement in
the objective function is verified. The routes of each depot are joined or disconnected, and the
process continues in an iterative manner until no improvement in the solution is found. Doulabi
et al. [27] concluded that the proposed heuristics can find good quality solutions in reasonable

times to the LARP problem with multiple depots.

2.2 Multi-trip location routing

The multi-trip location routing problem is a variant rarely discussed in the literature nevertheless
it has been previously addressed in [28, 29, 30, 13, 31, 32]. Although one may perceive the
effort made by different authors to perform a review of methods for the location routing problems
[12, 16, 17], the variant of the multi-trip location routing problems is poorly mentioned. During this
research work, special attention is given to this variant of the problem. Since this particular variant
is rarely reported in the literature, a review of multi-trip location and vehicle routing problems
methods is performed, which includes approaches related to the multi-trip vehicle routing and the
multi-trip location routing. The multiple usage of a vehicle is analyzed in an individual manner

and with the additional location routing problem. Several authors [33, 3, 34, 35, 5, 36, 37]
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demonstrate a relevant interest in the multi-trip vehicle routing problem variant (MVRP) in recent

years.

Lin et al. [28] presents a location-routing-loading problem for bill delivery services. The
authors consider a system that allows for the distribution of printed bills for customers, since they
consider that there is still a large part of the population who prefer to receive paper bills. They
consider that this service is important for those who still do not have technology access and a large
part of elderly people. A fast delivery of bills enables a faster settlement thereof. A study carried
out by the authors has proven that having a own distribution service would be advantageous in
terms of cost in relation to the existing postal service. In this particular problem, there are potential
locations for depots to be taken into consideration. Vehicles are rented with associated costs, they
have load capacity and are limited to certain working hours. The authors consider good routing
and scheduling decisions related to capacity constraints of the vehicles, in terms of charge or in
working hours. The reuse of a vehicle, which consists in associating to a vehicle more than a
single route, is another essential decision. For this purpose, they have developed four heuristic
algorithms and a branch and bound exact algorithm. Lin et al. [28] used the SA and Threshold
Accepting (TA) meta-heuristics in an initial phase and then combined them to obtain another two
different approaches. This combination allows for the escape of local optima in order to improve
the final solution. In the presented problem, instances with four potential depots and 27 demand

nodes were tested.

Lin and Kwok [29] studied integrated logistic systems that incorporate the LRP. In their ap-
proach, the authors consider that the cost of acquiring the vehicles may be more significant than
the cost associated to each route. For this reason, they studied the case where different routes are
associated to the same vehicle through Tabu Search and Simulated Annealing meta-heuristics.
The authors developed two versions of the problem in which they assign the routes to the vehicles
in a simultaneous and sequential manner. In logistics, it is necessary to provide services that

are executed at the client place. Thus, it is necessary to send specialized vehicles and workers.
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In this problem, there are several decisions that have to be made: the selection of the depots
location, the scheduling of routes associated to the selected depot and to the clients to serve,
and the association of vehicles and workers to the routes. The authors formulated a problem
with several goals (minimization of the total cost and vehicle work load) that allow the vehicles to
perform more than one route if the total use time of the vehicle is not surpassed. Clients have to
be totally satisfied according to the several constraints of the problem. Each client may only be
visited once and its demand has to be completely satisfied. The depots are selected from a set of
possible locations. A vehicle starts and ends the route at the same depot and visits a set of clients,
if its capacity and traveling time are not exceeded. In this problem, the authors use a variant of
the LRP where the vehicles may be reused and do more than one route, which is accomplished
through two heuristics. Each of these heuristics has two versions. One version tries to solve the
multi-objective LRP assigning the resulting routes to the vehicles (sequential approach). The other
version takes into consideration the reuse of vehicles for the solution of the multi-objective LRP
(simultaneous approach). Lin and Kwok [29] used a Tabu Search meta-heuristic and a Simulated
Annealing meta-heuristic in order to solve the two versions of the problem. In the Tabu Search
meta-heuristic the minimum number of needed depots is estimated in order to fulfill the total
demand. Then, a set of depots that have the largest request density nearby is determined. The
initial routes are calculated, associated to the vehicles and the new improved solutions are gener-
ated. In the sequential algorithm, the maximum number of routes are assigned to the minimum
number of vehicles, then another set of possible initial depots is analyzed and the previously de-
scribed procedure is performed iteratively. The meta-heuristic ends when it is not possible to find
any better solution. The simulated annealing meta-heuristic is similar to this method excluding
the criterion for accepting new solutions where a temperature parameter is used. The developed
heuristics were tested in real and simulated instances. On the real instances, the heuristic be-
haviour is affected by the characteristics of the area under analysis. When the demand density

is large, the vehicles perform routes with less visited clients, while in smaller demand densities



2.2. Multitrip location routing 21

each route has more clients. The simultaneous approach revealed to be more suitable than the

sequential one when considering the multi-objective problem.

Olivera and Viera [35] propose a heuristic to solve the Vehicle Routing Problem with Multiple
Trips (VRPMT). Each vehicle is able to perform several routes during the same planning period.
They consider a homogeneous fleet where vehicles have an associated capacity. The authors
use an Adaptive Memory Procedure (AMP) to solve the problem, where components of feasible
good solutions are kept. This algorithm allows the periodic construction of new solutions using
the good solutions available in the memory and improving them through local search algorithms.
The improved solution created is then added to the memory. The authors consider a sorted multi-
set of routes as the memory. These components of the memory are improved by a tabu search
method and subsequently will become part of the memory. The authors tested their algorithm

over 104 benchmark instances from the literature.

In [30], Akca et al. present a graph-based model with three-index decision variables. The
model uses two different decision variables. One indicates if a vehicle travels on a specific arc
and the other represents the flow that travels through the arc carried by a given vehicle. The
aim of the formulation is to minimize the costs associated to the global system, which includes
operating costs related to the routes and fixed costs to open a facility or to use a vehicle. The
authors use constraints to guarantee the flow conservation of the system and use constraints
that limit the travel time of each vehicle. The capacity of the vehicles and depots is also limited
by other restrictions. Through the branch-and-price methodology, the authors propose an exact

solution to the integrated Location Routing and Scheduling Problem (LRSP).

Akca et al. [13] propose a branch-and-price algorithm for combined location and routing
problems under capacity constraints. The authors introduced a variant of the model, which they
previously proposed in [30] in order to solve a LRP problem with capacity constraints. The authors
address the problem through a column generation model. The original problem is reformulated

and the main problem is strengthened with additional constraints. In order to solve the sub-
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problem, an elementary shortest path problem with resources constraints is used. The authors
use a set of exact and heuristic methods to find a good solution to the LRP and consider the
multiple usage of a vehicle. The depots and vehicle have limited capacities and a vehicle cannot

travel more than a certain time limit.

Azi et al. [3] use an exact method to solve the Vehicle Routing Problem with Time Windows
(MVRPTW). The authors consider that a vehicle makes several routes in order to serve a set of
customers within a specified time window. In [33], the authors use only a vehicle to solve the
problem, and in [3] consider the same problem but allowing the use of more than one vehicle.
They use a branch-and-price approach where the problem is divided into several other problems.
The main problem is a set-covering problem where a set of routes are assigned to one vehicle and
for one planning horizon. Azi et al. [3] use the elementary shortest path problem with resource
constraints as sub-problem where the nodes of the graph represent vehicle routes. The aim of
the problem is to serve the maximum number of clients minimizing the distance travelled. Azi
et al. [3] simplify the problem generating routes a priori. The authors present the computational

results that show that their procedure is able to solve different instances with up to 40 clients.

In [34], Azi et al. propose an heuristic method to solve the problem described previously
in [3] (MVRPTW). The authors present an adaptive large neighborhood search (ALNS) that uses
a ruin-and-recreate principle. This method allows to search for a better solution reconstructing
the current solution through the destruction of part of them. For that reason the authors create
various destruction operators that are defined at the client, trip and planning horizon level. At
each iteration a destruction and a reconstruction operator is randomly selected in order to find
a good valid solution. The main concern of the problem is to satisfy the maximum requests of
the customers, minimizing the total distance travelled by the vehicles. The authors adapt several

instances from the literature and test the algorithm solving instances with up to 1000 clients.

Macedo et al. [32] analyze a location routing problem variant. A vehicle can now make more

than a single route during the workday. Two difficult problems are combined by the authors: a
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vehicle routing problem and a location problem. The authors point out that the conciliation of these
two problems can lead to significant savings. The former has as main objective obtaining a set of
optimal routes to fulfill the clients needs and the latter selects the depot from which the vehicle will
perform the route chosen from a set of available locations. The authors use a pseudo-polynomial
network flow model where the nodes of the problem represent time instants. The arcs associated
to the network represent vehicle routes that are feasible. In this approach the global minimization
of the costs associated to the system is considered. The costs may be fixed such as the usage of
a vehicle or opening a depot or variable such as the routes performing. The authors consider a
capacitated problem. The depots have capacity and vehicles can only transport a given load. A
vehicle also has a travel time limit. In the pseudo-polynomial model proposed, the variables are
explicitly generated producing valid vehicle routes. In order to increase the performance of the
presented model Macedo et al. [32] only consider routes with potential interest to the optimal
solution. They implement the arc reduction that allows to consider less arcs in the global system.
The authors conducted a set of tests with instances with five available depots and with up to 25

clients. Other parameters were varied.

Macedo et al. [5] solve a vehicle routing problem through a pseudo-polynomial model. They
address a vehicle routing problem with time windows and multiple routes (MVRPTW). The authors
describe an exact pseudo-polynomial network flow model. All feasible routes are generated in
an initial phase according to the additional duration of the routes. The nodes associated to the
problem represent instant times and a workday is composed by a set of paths. They consider
that a vehicle can perform more than a single route in the same period. The problem considers
only one available depot to fulfill the demands of the clients. All the vehicle routes start and end
at the unique depot available. The authors consider a homogeneous fleet and each vehicle has
a capacity associated. It may not be possible to visit all clients since the number of vehicles is
limited. For that reason, the main objective is to satisfy the maximum number of clients. The

authors compare the obtained results with the one proposed by Azi and Gendreau [3] and prove
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that their algorithm is more efficient.

Mingozzi et al. [36] propose an exact method to solve the multi-trip vehicle routing problem.
The authors formulated two set-partitioning-like models. In the former formulation, it is necessary
to generate feasible routes and, in the latter, to generate all feasible schedules. They consider that
a schedule is associated to a vehicle and is composed by a subset of trips, allowing the concept
of multiple routes during its working period. The total duration of a schedule may be less than
a workday, and the sum of the single trips costs associated to a schedule determines its total
cost. They assume that a vehicle has a capacity and use a fleet of homogeneous vehicles to
serve a set of clients. Each customer requires products from the depot where the fleet is located.
Mingozzi et al. [36] analyzed the valid lower bounds obtained through the linear relaxation of the
presented models that are strengthened with valid inequalities. For that, the authors present four
column-and-cut generation procedures. The lower bound values are inserted posteriorly into the
exact solution method that helps to create a reduced set of trips to the former formulation and a
smaller set of schedules to the latter formulation. With this method, the authors guarantee that
any optimal solution of the problem is not discarded. The main objective is to minimize the total
cost associated to the selected schedules ensuring that a client is visited exactly once by the routes
that compose the schedules. The algorithms are successfully tested in instances available in the
literature, and can optimally solve instances involving up to 120 clients. The authors highlight

that the resulting reduced problem is directly solved through an integer programing solver.

Cataruzza et al. [37] address the multi trip vehicle routing problem through a hybrid genetic
algorithm. The main objective is to serve a set of clients through a fleet of vehicles minimizing
the total travel times. The authors take into account temporal and capacity restrictions and each
vehicle is able to perform more than a single trip per period horizon. They highlight that this
variant of the problem is particularly relevant in the city logistics context. Lower capacity vehicles
are generally favored by road and laws restrictions in deliveries. This limitation of capacity leads

to trips that do not occupy all the workday. Each vehicle may return to the depot to reload the
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demand of another service trip. Authors combine moves and swaps between trips to create a

new local search operator for this specific problem. The obtained results are compared with other

described in the literature.

The special features of the models described by several authors aforementioned are sum-

marized in Table 2.1 enabling an easier identification of the differences between the various ap-

proaches.

Table 2.1: Synthesis of the state of the art to the multiple routes variant
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2.3 Integrated scheduling and distribution

During the last years, several authors have defended the integrated planning and management
of operations in the industry. It is important that companies ask how to drive the operations
strategy and how to structure the process of planning and controlling these operations. With the
advent of strategies such as just-in-time, companies seek to reduce inventories in order to gain
competitiveness. They use integrated models, which make the connection between jobs schedul-
ing, during the production phase, and delivery of products. Companies make a continuous effort
to integrate the resolution of problems in order to minimize the costs associated to the global
and main problem. However, despite this effort many of the problems continue to be solved
sequentially. The integrated scheduling and distribution problem represents a very comprehens-
ive area of problems as described by Chen in [38]. The classification of integrated scheduling
and distribution problems is a difficult task since these problems include several variants in the
production, inventory, distribution and routing problems, among other specificities. Chen in [38]
proposes a model representation that is divided into five key aspects of the integrated scheduling

and distribution problem:

1. Machine Configuration: most authors address problems involving a single production
plant that deals with different machine configurations. Few authors consider multiple plants
where each plant processes a set of orders. The configuration of machines has many

peculiarities:

> Single-machine configuration: a single machine processes all the orders of the

production plant;

> Parallel-machine configuration: a set of identical machines where each ma-

chine processes a specific order;

> Flowshop configuration: a set of heterogeneous machines processes sequentially

each order;
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> Bundling configuration: a set of dedicated machines processes a set of inde-

pendent tasks in each the tasks must be bundled up to be delivered;

> Two-stage flexible flowshop configuration: the orders are processed in two
stages, where each stage has a set of parallel machines and each order is processed

sequentially over the two stages.

2. Restrictions and constraints on order parameters: a set of orders have many par-
ticularities that have to be considered in the integrated problem:
> Different release dates;
> Common due dates;
> Delivery deadlines;
> Time window or a delivery fixed time;
> Setup times between orders;
> Precedence constraints;
> Preemption constraints;
> Pick-up, process and deliver of finish orders by the same vehicle;
> No-wait between machines in a flowshop configuration;
> Machine maintenance constraints;
> Delivery threshold times.
3. Delivery characteristics: delivery characteristics include specification of delivery meth-
ods and characteristics associated with the fleet.
> Type of vehicles: Most of the authors consider a homogeneous fleet of vehicles.

- Single delivery vehicle;
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- Multiple vehicles available;

- Unlimited fleet of vehicles.

> Capacity of vehicles: the vehicles can be limited in terms of the number of orders

or units of product that they can deliver:

only one order;

a limited number of orders;

infinite number of orders;

a finite number of units.

> Delivery methods: variants of the problem may justify different methods of deliv-

ery:

Individual and immediate delivery;

Batch delivery by direct shipping;

Batch delivery with routing;

Shipping with fixed delivery departure dates;

- Splittable delivery.
4. Number of clients: there is one or more clients located at distinct coordinates:

> Single client;
> Multiple clients, identical orders;
> Multiple clients, different orders.
5. Objective function: the objective function may consider different performance measures

which determine the final goal. These performance measures may be used in an individual

way or combined. The most frequently used are:

> Client service level;
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> Total cost;

> Total revenue;

The contributions described in the literature for variants of the integrated production and dis-
tribution scheduling problems are recent. Most of them assume particular constraints, which
simplify the problems. In some cases, the authors assume that the processing is carried out
on a single machine and all batches have the same dimension [2, 39]. In many cases, these
constraints helped in solving the problems in polynomial time [39]. Most of the methods de-
veloped for integrated production scheduling and distribution problems are heuristic approaches
[7,9, 10, 11]. Wang et al. [10] describe a set of rules and heuristics for the combined processing
and distribution mail problem. Geismar et al. [9] describe a two-phase heuristic based on genetic
and memetic algorithms for the production and delivery of products with a short lifetime. Chang
and Lee [7] propose three different heuristics for production scenarios with one or two machines
in parallel, but consider only one or two clients. The contributions in the field of exact resolution
of these problems are rare [2], and once again, most of the algorithms are based on assumptions
which simplify its resolution, such as fixed sequences of customers and immediate individual
deliveries. Many of the contribution referred to in the literature with respect to planning and integ-
rated production optimization would refer to the last decade. Although there is a wide variety of
problems to be addressed, they have particular constraints, simplifying their resolutions. Certain
authors describe exact algorithms with constraints that make possible to solve these problems in
polynomial time [40, 39].

According to Armstrong et al. [2], in make-to-order business processes, production is only
initiated after customers orders are received. When the production and transportation facilities
have limited capacities, the coordination of these operations becomes a challenge, especially
when the product has a short lifetime. One of the products reported by these authors is an
adhesive used in plywood panels, which has a seven-day lifetime. When this period ends the

adhesive strength decreases abruptly, which makes it non-viable for delivery to the client. The
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cost of production is increased and there is an additional cost for the destruction of the material
so it will not pollute the environment. The company is doubly penalized. Due to this nature of
the product, it is not possible to keep any stock in either consumer or producer. According to the
production facilities, there has to be a high level of coordination in the integration of schedules and
the customers opportunity window. Mismanagement of this integration may lead to the products
expiration before arriving to the customer or they may not be delivered in accordance with the
customers needs. Armstrong et al. [2] consider in their study a production facility with just one
truck and a fixed sequence of customers. They also assume that the product has a limited lifetime
and production rate. The transportation time between customers is not neglected. When a truck
arrives at a customer before the opportunity windows, idle time occurs and if it arrives late, the

product is rejected.

In daily life, clients fixed sequences exist, for example, when the first customer to perform
the request is the first to be served (FIFO - first in first out) or when a truck is associated with a
particular route and satisfies the needs of customers in accordance with the following requests.
The production must be delivered to the respective customer within the lifetime of the product.
Given limited manufacturing resources such as transport, there may be a subset of the initial
sequence of customers that will not receive the orders within the specified time window. This
results in a new problem: choose a subset of customers to receive orders in time so that the total
amount of load is maximized. Constraints related to the customer opportunity window, production
capacity, transportation time and product validity should be taken into consideration. Production
and Distribution Problems require simultaneous optimization of the sequence of production and

transportation route. The zero inventory problems are not frequently discussed.

According to Chen and Vairaktarakis[40], nowadays there are many companies that produce
and deliver the items directly to the consumer without maintaining any level of intermediate stock.
These authors discuss the particular case of computer and catering companies. In the particular

case of computer business systems, there are, for example, numerous possible configurations for
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a computer. The existence of stock becomes unsustainable even when using forecasts of possible
configurations because the stock can easily become obsolete. Thus, the assembly and packaging
operations may be performed only after the customers effective request. Such features can also
be observed in catering services. In these cases, to maintain the food fresh, the preparation may
only be made after customers orders are completely known. There cannot be any intermediate
stock and the orders are fulfilled and delivered in a few hours. According to Chen and Vairaktarakis

[40], both manufacturing and distribution operations are directly connected to each other.

In make-to-order requests, cost and quality service to customer are the main concerns of the
decision maker. Due to lack of intermediate stock or finished products at any instant of time, the
cost of ownership is considered negligible. The quality of service to the customer is measured in
terms of lead time. The authors consider that for shorter lead times, the level of service quality
is higher. However, small lead times require the use of more shipping resources which make the
distribution cost higher. Thus, the main objective of the decision maker is to optimize the trade-off
between the cost of distribution and the level of customer service. The close connection between

production operations and distribution requires a very detailed coordination of schedules.

When a set of orders starts in processing facilities, it is necessary to deliver them directly to
the customer. The problem is to find a schedule for the production and distribution such that the
objective function takes into consideration both the level of customer service and the distribution

costs.

The model studied by Chen and Vairaktarakis [40] integrates the production scheduling with
distribution of completed requests. Although these problems have been extensively discussed in
the literature, they are rarely analysed simultaneously. Other authors consider similar problems,
but define their goal in customer satisfaction. They do not take into account the transportation
costs and do not assume that the orders can be delivered instantly to the customer with no

shipping delay.

The approach of Chen and Vairaktarakis[40] is innovative because they consider the decisions
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of distribution routes. The authors have considered multiple orders from different customers who
are in different locations of a subjacent transportation network. As stated above, this model is
composed by a part of processing and production, and another part of distribution. Different
configurations were considered in the papers that refer to production: a single machine or similar
machines in parallel. In the first case the machine processes all orders, while in the second a
machine processes each order. In distribution problems, there are multiple homogeneous vehicles
available, such that each vehicle will only be used at most once. Each vehicle has a limited capacity

and is in a depot in an initial time, returning after completing the deliveries.

The authors consider several changes on the model presented which include machine settings
on the facilities, number of clients involved and objective function in order to minimize the total
cost of distribution and service. It was proved that for every kind of variation performed, an exact
solution in polynomial time might be admissible. For intractable problems, heuristics have been

proposed and their worst case performance has been analyzed.

Li et al. [39], unlike Armstrong et al. [2] and Chen and Vairaktarakis [40], studied the case
where the number of vehicles was fixed (one vehicle), varying only the number of customers and
orders. This vehicle may have limited or infinite capacity. The aim of the study was to determine
the best sequence for processing orders in production facilities with scheduling deliveries. The goal
is to minimize the total time between customers requests and the product delivery. The authors
studied various types of models such as the single client and multiple clients. They developed a
dynamic programming application to solve the general case of this problem, which is NP-complete.
For a higher number of customers, it is required a higher computational complexity, although
complexity is polynomial in the number of requests for a fixed number of customers. Research in
supply chains intends to assist in developing strategies, but most of the literature focuses on stock
control or lot sizing issues. In this context, Wang and Cheng [11] study scheduling problems that
consider both the production and delivery of products. Also taking into account the availability of

the machines that are part of the manufacturing centre. Only one vehicle is available for delivery
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in a fixed transportation time for a distribution centre. The main purpose of this study was to
minimize the arrival time of the last batch to the distribution centre. The machines availability

constraints are incorporated in the model.

Wang and Cheng [11] defined, like other authors, two different production configurations:
production on a single machine and production on identical parallel machines. With two identical
parallel machines, the authors assume that one machine is always available for production and the
other has a similar behaviour to the case of a single machine. The authors consider reasonable

to assume that the maintenance is done in a rotative way.

For this case study, the authors consider not only the jobs scheduling on the machine, but also
the delivery schedule for transporting finished jobs to the distribution centre. The coordination
between these two production stages is essential to achieve a global optimal solution. The authors
state that the work should be processed as soon as possible. If there are batches for delivery,
the vehicle should start shipping soon. The jobs in a batch are processed consecutively in the
machine and the batch that becomes available sooner is the first to be delivered. The authors
studied various scenarios and instances of the problem, and proposed an optimal algorithm and

two heuristics.

The studies conducted by Chang and Lee [7] focus on problems that include two stages of
scheduling, the production phase and then the delivery phase, in an integrated way. The products
are delivered in batches and the transportation method is a busy and concurrently resource during
delivery. These problems have a capacity constraint which is the total physical space occupied
by the products that may be delivered in a single trip and each trip has an associated time.
The objective is to minimize the time of delivery to the respective customer. Customers areas
are considered when travel times between these clients are not significant compared to the time

spent in the production system, or when the products are delivered to a distribution centre.

Three scenarios were discussed. The first features a product processed in a single machine

and delivered by a single vehicle to a customer area. The second considers a product that can
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be processed in one of two machines and delivered by a single vehicle to an area for customers.
The third considers a product processed in a single machine and delivered by a single vehicle for
two areas of different customers.

Wang et al. in [10] addressed a more complex scenario based on the real case of postal
services in the United States. The scenario presented is the processing of incoming mail in a
processing and distribution centre to match with a schedule delivery. Mail arrives at the centre
locally or remotely and then follows the schedule entry. For each destination, there are scheduled
transports with limited capacities. The objective of the problem is to determine the sequence
in which the incoming mail should be processed so that the total unused delivery capacity is
minimal.

In their study, Wang et al. [10] started by considering the processing and distribution centre
as a single machine. The authors formulated the case as an Integer Programming problem,
whose solution could not be obtained due to the large number of integer variables. The number
of origins and destinations was normally 60 and the number of mailboxes typically 70. Since a
direct solution was unpractical, the authors made progress in developing of shipping rules and
heuristics for solving the problem. The first shipping rule considers processing mail whose origin
has higher proportion and lower processing time for the faster delivery destination. The second
rule considers the first mailbox with the highest capacity that remains. These rules focus on the
short term. In order to provide a better solution, Wang et al. [10] planned sequencing over the
entire time horizon and develop two heuristics, being one an approximation of Linear Programming

and the other a modification of the greedy algorithm.
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2.4 Production, inventory, distribution and routing

The integrated scheduling and distribution problem includes problems related to production, in-
ventory, distribution and routing, which have had special attention over the last few years. They
are known in the literature as Production, Inventory, Distribution and Routing Problem (PIDRP)
and integrate the main characteristics of three difficult problems mentioned in the literature, the
Production and Distribution Problem (PDP), the Inventory Routing Problem (IRP) and Vehicle Rout-
ing Problem (VRP). The PIDRP has several variants that are explored by different authors. Some
authors give more importance to production decisions, while others emphasize distribution and
routing decisions. On the other hand, there are authors that give particular attention to invent-
ory management decisions. All these authors try to integrate these problems and to see them
from a global perspective, and they selected different approaches to solve them according to the
complexity of the variant.

Lei et al. [41] consider the existence of several production facilities which manufacture a single
product which is distributed to several customers. Each customer has a deterministic demand
that must be fulfilled over the planning horizon and a maximum ending inventory capacity and
safety stock. A facility also has a maximum ending inventory capacity and safety stock and has
a limited production capacity. A fleet of heterogeneous vehicles that has a particular capacity,
speed and availability is associated to each facility. The aim of the authors is to minimize the
costs of the integrated operations.

To solve the PIDRP with a single product, they propose an exact integer programming model
which deals with a large number of variables related to distribution and routing decisions, inventory
and production schedules. They highlight that the computational time to exactly solve this problem
to optimality can often become excessive. For that reason, the authors presented a two-phase
decomposition heuristic to solve the problem. During phase |, the original MIP model is solved
without the routing constraints that are limited to direct shipments. This phase determines the

quantity to be manufactured, inventoried and carried out by each vehicle within each period. Phase
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[l uses a Load Consolidation (LC) algorithm to determine the routing decision. The LC algorithm
removes from the Phase | the Less-than Transporter Load (LTL) assignments and consolidates
these assignments considering the routing constraints. The authors compare the original MIP
model with the proposed heuristic. Lastly, they add some constraints to the problem in order to

solve real instances with 12 periods, 2 facilities, 13 customers and 3 heterogeneous vehicles.

In [42, 43, 44], Boudia et al. and Boudia and Prins emphasize the importance of integrating
production and distribution decisions. Boudia et al. [42] use a weighted and undirected graph to
define the problem. They consider that node zero represents a single plant that produces a single
product over a planning horizon. The plant possesses a limited fleet of homogeneous vehicles
and each vehicle has a load limit. The plant has a periodic production capacity and inventory
limit. The remaining nodes represent the clients who have a varying demand per period and a
limited storage capacity. A client can be served at most once per period and each vehicle can
only make one route per period. The main objective is to minimize the cost of the integrated
system determining, for each period, the quantity to be manufactured and the quantity delivered
to each client, taking into account the routing and inventory decisions. They propose an integer
linear model which is not solved to optimality for large instances due to its inherent complexity
and present a Greedy Randomized Adaptive Search Procedure (GRASP) instead of the classical
two-phase method. This heuristic is divided into two phases. First, a constructive phase is used
to determine the quantity delivered to clients at a specific period, and then the local search phase
aims to improve the solution exploiting the defined neighborhoods regarding constraints related
to production, routing and inventory management. To test the approach, the authors use 90

instances generated randomly with 50, 100 and 200 clients and 20 periods.

The problem addressed by Boudia et al. [43], in 2008, presents the same details as the
problem previously described in 2007 [42]. Boudia et al. [43] address greedy heuristics with the

goal to minimize the cost associated to the described PIDRP problem.

The authors propose two greedy heuristics followed by two local search methods. The first
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heuristic is divided into two sequential phases (uncoupled heuristic), where production decisions
such as inventories and quantity produced at the facility are prioritized. The distribution planning
is subsequently done according to the production plan. The demand for the period is assuredly
fulfilled, and local search is applied in an attempt to improve trips, trying to anticipate requests
according to vehicle and customers inventory capacity. The second heuristic determines the
production and distribution planning simultaneously. This coupled heuristic is performed in three
phases before the application of local search method. In the first phase, the amount delivered for
each period is determined through a preliminary production plan. The second phase creates a
distribution plan, and the last one determines the definitive production dates. The authors propose
two different local search methods after completing the 3 phases, creating two different coupled

heuristics.

During this newest research work, the authors highlight that the heuristics proposed can be
applied to multiple products since different products can be mixed in the distribution vehicles.
The authors test the heuristics with instances generated in a random way with up to 20 periods

and 200 clients. The results present substantial savings according to the authors.

In [44], Boudia and Prins address a problem that is similar to the one described in [42, 43],
regarding its main characteristics such as facility, vehicle and clients features. They assume that
inventory cost at the clients is supported by them, being ignored along the problem. The authors
propose an innovative form of meta-heuristic which simultaneously takes into account production
and distribution decisions. The aim of this method is to minimize the cost associated to the

Integrated Production and Distribution Problem (IPDP).

The authors propose a memetic algorithm with population management, where an initial
population is generated. In each iteration, two parents are selected and a crossover operation
is applied. Some elements of the population are replaced by the new offspring. Mutations are

replaced by diversity control based on a distance measure in a solution space.

Boudia and Prins [44] compare the obtained results with other approaches previously de-
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scribed in their work such as two-phase heuristic and GRASP, and emphasize the substantial
savings observed. The authors use 90 randomly generated instances with 50, 100 and 200

clients and 20 periods.

Solyali and Siiral [45] study a common problem in industry, the vendor managed systems.
In this type of problems, there is a supplier that has to distribute the goods over multiple retailers
and control the retailers inventory. Indeed, in these managed systems the supplier is responsible
for not allowing the retailer inventory to decrease from an established value. This distribution may
occur in different periods and the inventory at a supplier may not go beyond a pre-established
minimum. Indeed, the goal of the entire system is to minimize the inventory and routing costs. In
their approach, the authors considered a single supplier that must deliver a single product to mul-
tiple retailers, considering the intended demand of each. Indeed, the distribution is accomplished
by using a homogeneous fleet of vehicles over a finite planning horizon. The level of inventory is
taken into account in the distribution decisions, since inventory level has a maximum limit and a
pre-set lower bound. Thus, upon delivery, the inventory of the retailer is fully reestablished. This

type of inventory policy is commonly denoted as order-up-to level policy.

In their study, the authors developed a mathematical programming based approach in order
to solve an inventory routing problem with order-up-to level policy were the goal is to determine
the retailers to visit and the corresponding demand, and the distribution routes for each period
in order to minimize the routing and inventory costs. To solve this problem, Solyali and Sdiral
[45] proposed a Lagrangian relaxation in which the replenishment and the distribution planning

problems are separated from each other.

To test their formulation, the authors used instances from the literature and their computa-
tional results shown that their algorithm produced good feasible solutions, considering that in the
large instances Mixed Integer Programming (MIP) solvers could not find feasible solutions to the

larger instances.

Bard and Nananukul [46] studied a PIDRP that integrates production and distribution de-
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cisions. The authors consider a single facility with limited capacity and a finite inventory capacity.
The main goal is to serve a set of clients with time varying demand through a finite and discrete
planning horizon with a fleet of homogeneous vehicles that also have limitations in terms of ca-
pacity. A client demand must be fulfilled from the corresponding period of production or from
inventory held at the client. An order can be anticipated, however split deliveries are not allowed.

The minimization of the total cost associated to the integrated system is the aim.

The authors present a hybrid methodology which combines exact and heuristic approaches
throughout a branch-and-price algorithm in order to solve the MIP model presented in their study.
They propose an exact allocation model and highlight that the initial attempts to solve the model
exactly were not encouraging due to the high computational complexity of the model. They also
propose a branch-and-price algorithm, which also had a high computational complexity. In or-
der to overcome this computational difficulty, Bard and Nananukul [46] propose a methodology
based on Tabu Search. They developed a column generation heuristic and a rounding heuristic
to update the upper limit of the branch and bound. They emphasize the significant reduction of
processing times obtained with the branch-and-price heuristic that starts with tabu search. To
evaluate the performance of the proposed models, the authors use a set of instances from the
literature adapted from Boudia et al. [42] with 10, 20, 30, 40 and 50 clients and 2, 4, 6, and 8

periods.

Bard and Nananukul [47] explored an IRP in an attempt to analyze and integrate a PIDRP. The
authors studied the same problem presented in [46] and proposed a column generation approach
for the PIDRP and three two-step heuristics in order to solve the IRP. For the PIDRP, first they
determine an estimated distribution plan and then the routing plan through a VRP tabu search
heuristic. The main objective is to minimize the cost associated to the inventory, production,
distribution and routing problems. The computational results show that it was possible to solve
instances up to 50 clients and 8 periods in an hour. The authors note that this level of performance

could not be reached through an exact branch-and-price algorithm on CPLEX.
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A similar problem proposed by the same authors is addressed in [48]. Bard and Nananukul
solve a PIDRP using a two-phase method with a reactive tabu search algorithm. Firstly, the initial
solution is obtained through the allocation model where they assume these values for the demand
of independent routing problems. In order to find solutions, a subroutine based on tabu search
is used. Secondly, a neighborhood search is performed in order to improve the decisions made
in the previous phase. To validate the performance of the developed approach the authors use a

set of 90 benchmark instances with up to 20 periods and 200 clients.

Ruokokoski et al. [49] addressed the Production-Routing Problem (PDP) in which the produc-
tion and distribution decisions are considered in a simultaneous way. The coordination of these

two sub-problems may lead to better results in terms of cost savings.

The authors considered an uncapacitated depot from which a set of routes for a single unca-
pacitated vehicle were obtained in order to accomplish the replenishment schedules for multiple
customers. The goal was to minimize the total cost of distribution, setups, and inventories by
fulfilling the demand of the multiple customers in a finite horizon. The inventories may be kept
at the supplier and/or at customers. However, there is a cost associated to it. Ruokokoski et al.

[49] also considered the delivery of a single product.

To solve the PDP, the authors present strong formulations, which include a basic mixed in-
teger linear programming formulation and several strong reformulations, and a branch-and-cut
algorithm to solve them. The reformulations that strengthen the basic MILP are two families of
valid inequalities that were adapted from the literature, 2-matching and generalized comb inequal-
ities. Despite the exact approach, the authors also present a new heuristic separation algorithm
for the generalized comb inequalities, and adapted a heuristic algorithm to find high quality integer
feasible solutions. To show the performance and the quality of the developed formulations the au-
thors solved several instances to optimality with, for example, 8 time periods and 80 customers;

15 time periods and 40 customers.

Armentano et al. [50] proposed two tabu search variants to solve the IPDP. The authors
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consider a single facility with capacity constraints that produces multiple items during a finite
planning horizon. The items are distributed by a fleet of homogeneous vehicles with capacity
limitations. The main objective is to minimize the fixed and variable costs related to production,

inventory and distribution.

The authors use a tabu search methodology with a memory-based local search strategy that
could overcome local optima by prohibiting certain moves in the solution space. Armentano et
al. [50] take advantage of short and long-term memories in the two approaches. In the short-term
memory, an attribute list of recently explored solutions is created to prevent these solutions from
being revisited. The long-term memory contains a selective history and attributes of solutions.
During their study, the authors emphasize the importance of introducing some infeasible solutions
in the tabu search and path relinking methods. Armentano et al. [50] generated some instances
with up to 10 different items to evaluate the heuristics performance, and used instances from the

literature with single item proposed by Boudia et al. [42].

Some authors emphasize the importance of inventory management policies, relaxing the con-
straints related to the production and distribution, such as production capacity, the use of a single
vehicle, among others. Archetti et al. [51] studied two types of replenishment policies. The Order-
Up (OU) to level and the Maximum Level (ML) policies. The OU policy occurs when the amount
delivered to each client or retailer is such that the level of its inventory reaches the maximum level.
On the other hand, the maximum level (ML) policy occurs when the amount shipped to each re-
tailer is such that the inventory is not higher than the maximum level. The authors developed
a hybrid heuristic and an exact model that considers only one vehicle and a single retailer, and
compare the obtained results to the ML policy. The main goal is to determine the number of
items that should be produced in each period, and to create a routing and distribution plan which

minimizes the total cost and guarantees that there are no stock outs.

Nananukul [52] uses clustering in his approach to solve a PIDRP. The main objective is to

minimize the operating cost associated to the production, inventory and delivery decisions using
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clusters of clients. The author highlights that the PIDRP computational complexity limits the
number of clients considered for different approaches. Using clustering techniques it is possible to
group sets of clients that have similar features. The approach carried out by Nananukul considers
a single facility that produces a single product. Variable customer demand has to be met through
periodic production or inventory at the factory. A fleet of homogeneous vehicles performs the
routes defined in the routing and distribution plan. Each cluster of clients is served by a single

vehicle.

The author proposes a clustering model using a two-phase reactive tabu search-based al-
gorithm. The first phase determines an initial solution and the second phase tries to improve the
current solution throughout a neighborhood search. He also uses different techniques to group
the clients instead of processing the original data points. Nananukul tests the performance of the

algorithm in instances with up to 200 clients and 20 periods.

Absi et al. [53] address an integrated optimization of production, distribution and inventory
problem. They consider that a single facility produces a single item and fulfills the time varying
demand associated to the different retailers during a planning horizon. The inventory manage-
ment is performed through a ML policy and the distribution is made by a homogeneous fleet of

capacitated vehicles.

The authors propose a heuristic for the PRP with a ML policy. This iterative approach con-
siders that production planning and routing sub-problems are sequentially solved. During the first
phase, the lot-sizing phase, the retailers who need to be served on each period are determined.
The second phase, the routing phase, considers routing and distribution decisions where a Trav-
eling Salesman Problem (TSP) is solved for each vehicle. At the end of the iterative process, a
diversification mechanism is performed in order to present local optima convergence. The authors

emphasized that their best heuristic outperforms existing approaches.

Adulyasak et al. [54] considered a stochastic production routing problem in which the demand

of the customers is uncertain. The authors studied a major issue in supply chain management
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which is getting crucial information for the decision making only in an approximation mode through
forecasts. The resolution of deterministic models in these situation may lead to wrong decisions
which may increase significantly the overall costs.

In their approach, the authors considered the production and distribution of a single product
in a discrete and finite time horizon where the distribution network includes a limited production
capacity plan and multiple customers. The routes are performed using capacitated vehicles.
Backlogging is not allowed, however there is the possibility of not meeting the clients demand in
each period. In this case, there is a unit penalty cost. The goal of the problem was to minimize
the production costs, which includes fixed setup and unit costs, holding costs associated to the
inventory both at the plant and at the customers, the cost of unmet demand, and the routing costs
for the distribution of the products.

To solve the problem, Adulyasak et al. [54] proposed a two-stage and a multistage decision
process. In the two-stage process the authors initially define the production setups and the cus-
tomer visit schedules. Then, in the second stage, the production and delivery quantities are
calculated. A branch-and-cut algorithm is used to solve the formulation of the problem. For larger
instances, due to the size of the problem, the authors proposed a Benders decomposition ap-
proach which is composed by a single branch-and-bound tree and enhanced using lower-bound
lifting inequalities, scenario group cuts, and Pareto-optimal cuts. In the multistage decision pro-
cess, the decisions defined for a given stage did not consider the demand of future periods, which
was not known. For this multistage process, the authors developed a rollout heuristic and they
obtained good feasible solutions for the problem.

The main characteristics of the presented models by the different authors aforementioned are
summarized in Table 2.2, in order to provide an easier identification of the differences between

the various approaches.
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Table 2.2: Synthesis of the state of the art to the production, inventory, distribution and routing
variant
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3.1 Problem description

The Multi-trip Location Routing Problem (MLRP) is a management science problem that occurs
typically in the logistics and transportation field. The MLRP is characterized as an integrated
problem which combines two important and difficult optimization problems: the Facility Location
Problem (FLP) and the Multi-trip Vehicle Routing Problem (MVRP). In the FLP, one has to determine
the set of facilities that can be used to serve the clients. In order to fulfill the clients needs, a set
of routes is generated by solving the MVRP. This problem has a specificity since it can associate
more than one single-trip to a vehicle during the planning horizon. The integration of these two
problems aims to minimize the costs of the entire system. In this integrated solution both the
FLP and the MVRP are solved simultaneously. This leads to better solutions than solving them
in the independent way. However, this method has a drawback, i.e., it increases the problem
complexity since now variables related to the global system are considered.

The MLRP consists in the selection of the depots that should be opened and the single-trips
and multi-trips that should be performed to serve the set of clients at minimum cost. The multi-
trip variant considers the possibility of a vehicle performing more than one single-trip during the
planning period. Hence, it is typically applied to cases in which the routes are performed within
a small geographic area, and involve, for example, the transportation of perishable goods, which
must be delivered in a short period of time. As a consequence, the inherent complexity of the
problem increases since now it is necessary to determine the route that should be assigned to a

vehicle.

Definition

A route r is composed by an ordered set of clients to be served. A route is a broader term that
may be a single-trip (r in Figure 3.1) or a multi-trip (r; in Figure 3.1). Each route is associated to
a vehicle that serves a depot. For the sake of clarity, a set of single-trips is denoted as multi-trip.

Figure 3.1 presents an example of possible routes that serve seven different clients. The first
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Figure 3.1: Example of possible routes

single-trip (¢1) visits only the client ¢, the second (¢5) satisfies clients ¢s, ¢3 and ¢4 and the last
(t3) serves the other three clients (c5, cg, and ¢;). As presented in Figure 3.1, the route r; satisfies
the client ¢y, returns to the depot d; and then serves the clients contained in the single-trip t5.
The route r; uses a multi-trip to serve its assigned clients, while the route 5 is composed by a
single trip.

The problem has some details that are important to describe. For that reason, some peculi-

arities associated to the system are presented below:

> Each customer can only be visited once;
> Each client is associated with a particular depot that will fulfill his demand;

> Each route must start and end at the same depot regardless of the number and order of

visited clients;
> The load of each single-trip must be less than or equal to the capacity of the vehicle;

> A vehicle can perform several single-trips during a planning horizon but the total load of

the multi-trip associated to one vehicle cannot exceed the capacity of the depot;
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> A vehicle cannot work more than a workday (the length of the planning horizon); and

> The demands of the customers associated to one facility cannot exceed its capacity.

The length of the route associated to a vehicle must be less than or equal to the workday
W, which represents the maximum length that the vehicle may travel. It must start and end at
the same depot regardless of the number and the order of the visited clients. Each vehicle v,
from a fleet of homogeneous vehicles V', may perform several single-trips as long as the load of
each single-trip does not surpass the capacity () of the vehicle. However, the total load of the
routes associated to all vehicles of a depot d cannot exceed the capacity L, of that depot. Each
customeri € N, N = 1,...,n, may only be visited once, being associated to one route that
must fulfill his total demand b;. All client orders must be satisfied.

The cost of the solution considers the fixed costs C}’, d € D if the depot d is open, and the
cost of the routes C,., r € Ry, where R is the set of routes associated to the depot d. The cost
C, of each route includes the cost C,, of using a vehicle, and depends on the traveled distance.
It is assumed that a distance unit (e.g., one mile) has an associated cost of one monetary unit
(e.g., one euro). The goal of the MLRP is to minimize the total costs associated to the entire
system.

The MLRP has been previously addressed in [28, 29, 30, 31, 32]. In [28], Lin et al. ex-
plored the problem using heuristics and branch-and-bound. In [29], Lin and Kwok addressed a
multi-objective case combining cost minimization with the minimization of the imbalance among
vehicles. In [30], Akca et al. proposed a compact three-index commodity flow formulation, and a

branch-and-price algorithm for a column generation reformulation of the problem.
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3.2 A three-index commodity flow model

The three-index commodity flow model is a graph-based model addressed by Akca et al. in [30]
and Macedo et a. in [55], which considers the variables of the problem explicitly. For that reason,
the model can handle a large number of variables. On the other hand, the model presents a simple
and well defined structure that allows its decomposition into different less complex problems.

This model is represented by a graph G with a set of nodes associated to the depots and
to the clients, and a set of arcs between each pair depot-client and client-client, such that G =
(NUD,A),with A = (D x N)U(N x N)U (N x D). The complete set of vehicles
is denoted by H, with H,; being the subset of vehicles assigned to a depot d. The travel time
between nodes ¢ and j, with (7, j) € A is denoted by ¢;;, and the cost associated to a unit of
time is denoted by C°.

The three-index commodity flow model has variables related to the opening of the depots and
to the vehicles usage and operation. The binary variables \;, d € D, state if a depot is selected.
The usage of a vehicle h is represented by the binary variables v, h € H. If a vehicle h goes
through an arc (i, k) € A, then the corresponding variable x;;;, will take the value 1, and 0
otherwise. The load the vehicle h carries through (i, k) is denoted by ;.

Figure 3.2 presents an example of a solution for the three-index commaodity flow model through
a graph that includes a set of six clients (denoted by ¢, ..., ¢g) and a set of three depots (d1,
dy and ds3). All arcs between the nodes (which may be depots or clients) are represented by a
dotted line. The arcs which have an associated flow are depicted by oriented lines connecting a
depot with a client, a client to another client, or a client to the same depot from which the route
has started.

The presented solution uses three homogeneous vehicles (v, v9 and wvs) in order to fulfill
the demand of the six different clients. As depicted in Figure 3.2, only two of the three available
depots are open (A; and \y). The first depot d; serves a set of three clients (c4, ¢; and ¢3)

through the vehicle v; and a second vehicle v, serves just the customer cg. Clients ¢y and c¢s
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have their demand fulfilled by vehicle vs being their needs satisfied by the depot ds. The flow on
the arcs is identified by variables y;.x, and it only occurs when an arc is selected, i.e., x;x, = 1.
For instance, one may identify a flow of eight units between the client ¢; and the client c3 for the
vehicle vy (Ye, ¢5.0,), Which confirms that the variable ., ., ., is activated.

For an easier identification of the parameters and decision variables used in the model under

analysis, they are summarized next.

Parameters

C’}l = fixed cost associated to opening a depot d, Vd € D
C° = cost per travel time unit associated to operating a vehicle
C, = cost associated to the use of a vehicle v, Vv € H
b; = demand associated to a client 2, Vi € N
L, = capacity associated to the depot d, Vd € D
() = capacity associated to the vehicle
W = length of the plan horizon

tix = the travel time between i and k,V(i, k) € A

Decision Variables

yirn, = load that the vehicle & carries through the arc (i, k), Vd € D and ¥(i, k) € A,

;

1 if vehicle h goes through the arc (i, k), Vh € H and ¥(i, k) € A,
Tikh =
\ 0 otherwise
)
1 if the depot d is selected, Vd € D,
Ay =
0 otherwise

\
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1 if the vehicle h is used ,Vh € H,
Vp =

0 otherwise

The three-index commodity flow model has the main goal of minimizing the cost associated
to the entire system (FLP and MVRP), which includes the fixed cost of opening a depot, the fixed
cost associated to the vehicle usage and a variable cost associated to the routes performed by

the vehicles. The model is defined from Equation (3.1) to (3.12).

Minimize

D TCINACD o +COY Y b, (3.1)

deD heH heH (i,k)€EA

Subject to:

> > aan=1, VieN, (3.2)

heH ke(NUD)

> wan— > mw=0, Yie NUD,VheH, (3.3)
ke(NUD) ke(NUD)
Z Z Yarh < LgAa, Vd € D, (3.4)
heHy keN
Yieh < QTirn, V(i,k) € A, Vhe H, (3.5)
Zyzkh_zykzh+b Z Tign =0, Vie N,Vh € H, (3.6)
keN keN ke(NUD)

Z tixzikn < Wuoy, Vh e H, (3.7)
(i,k)eA
zgen =0, Vd e D,Vk € (NUD),Vh € H,Vt € D\{d}, (3.8)
rien € {0,1}, V(i,k) € A,Vh € H, (3.9)
yaen > 0, V(i k) € A,Vh € H, (3.10)

X €{0,1}, VdeD, (3.11)
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o € {0,1}, Vhe H. (3.12)

The mandatory visit to every client is represented by constraints (3.2) and (3.3). Constraints
(3.2) ensures that a vehicle reaches and leaves a node exactly the same number of times, while
constraints (3.3) guarantees that a client cannot be visited by more than one vehicle. The capacity
constraints of the depot and vehicles are expressed through constraints (3.4) and (3.5)-(3.6),
respectively. Constraints (3.6) also allow for the conservation flow at each node. Constraints
(3.7) forbid a vehicle to travel more than 1 units of time, while constraints (3.8) force a vehicle
to travel only through the arcs associated to its depot. As mentioned above, the objective function
(3.1) denotes the objective of minimizing the total cost.

To clarify the three-index commaodity flow model, an example of the Mixed Integer Program-
ming (MIP) table for this model is depicted in Table 3.1. In the table, all constraints and a few
example columns are presented. For the sake of clarity, the constraints are grouped according to

the order of appearance in the model (Constraints (3.1)-(3.7)).



3.2. Athree-index commodity flow model

55

Table 3.1: MIP structure for three-index commodity flow model
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Table 3.1: MIP structure for three-index commodity flow model (continued)
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MIP structure for three-index commodity flow model (continued)
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3.3 A column generation model

The Column Generation (CG) process is typically used to solve large-scale problems or to improve
their efficiency for the smallest instances. Many linear problems have a huge number of variables,
and considering them all in an explicit way may be computationally infeasible. In the optimal
solution, a large number of variables are equal to zero since most of them are non-basic variables.
Therefore, in theory, one does not need to consider all the variables, but simply a subset of them
when solving the problems. The main idea of the column generation method is to start with a
reduced set of variables and columns to generate only new columns that have the potential to
improve the value of the objective function. This is possible by finding variables with negative

reduced cost when dealing with minimization problems.

The CG approach, presented by Ramos et al. in [56], is based on two different problems
(Figure 3.3): the Restricted Master Problem (RMP) and the set of sub-problems. The former
includes the general constraints where only a subset of variables is considered. The latter is a set
of sub-problems which group the constraints that have a special structure. These sub-problems
are created in order to identify new variables that could be included into the RMP according to the

defined criteria.

In this particular case (Figure 3.4), the RMP is a Facility Location Problem where the goal is

to determine which depots should be opened. The sub-problem is the Elementary Shortest Path

Column Generation

Restricted Exchange Sub-problems
Master Problem information

Figure 3.3: Column Generation workflow
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as®
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Figure 3.4: Location Routing Problem workflow

Problem with Resource Constraints (ESPPRC) in which its solution outputs the routes that will
be assigned to the vehicles. The restricted master problem and the sub-problems will exchange
information in order to find the optimal solution of the original problem. While solving the ESPPRC,
it is possible to find all valid single-trips and then re-arrange them to create the multi-trips.

The CG is an iterative process as depicted in Figure 3.5. In a first phase, an initial valid
solution is generated through a rounding single-trip initialization heuristic in order to have a set
of valid columns for the initial RMP. This heuristic creates a valid initial solution by generating
several single-trips in which the vehicle leaves a depot, visits just one client and returns to the
same depot. Then, this procedure is applied to each depot for each client, which generates
D x N valid columns.

The initial RMP is solved in order to obtain the value of the dual variables for each constraint
considered in the RMP. These values are then used for the resolution of the sub-problems, which,
in this case, are used to recalculate the traveling costs of a single-trip. The resolution of the
sub-problem is a two-step process. In the first step, the Elementary Shortest Path Problem with
Resources Constraints (ESPPRC) algorithm proposed in [57] is adapted. In this version, an exact
recursive method to calculate the set of valid single-trips is developed, being a single-trip attractive

when its reduced cost is negative. This version of the execution of the ESPPRC algorithm applies
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Figure 3.5: Column Generation Process for the Location Routing Problem

the concept of recursion with dynamic programming, in which the problem solution is dependent of
solving smaller dimensional problems (opposing to the use of iterations), being applied as many

times as needed until the stopping case is reached. Then, in the second phase, all attractive
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single-trips are recombined with each other in order to obtain multi-trips. These multi-trips are
also recombined with other single-trips and multi-trips. For this process, a sequential algorithm
which selects a single-trip or multi-trip and attempts to join with a different single-trip or multi-trip
is implemented. The execution of this phase ends when no more recombinations are possible.
Then, the cost of the vehicle is added to all final valid single-trips or to all final multi-trips. The ones
with negative reduced cost are inserted as columns in the RMP. These two phases are explained

in more detail throughout Sections 3.3.1 and 3.3.2, respectively.

The iterative process of the CG ends when, after solving the RMP and the corresponding sub-
problems, it is not possible to find any more routes with negative reduced cost, being assumed

that the solution of the RMP is optimal, since it is not possible to find any more attractive routes.

3.3.1 Restricted master problem

Before defining the column generation process, a model for the multi-trip LRP is introduced. This

model has an exponential number of columns, each representing a route or a depot.

The parameters and decision variables for the model are defined as follows:
Parameters

N; = setofclients i, Vi € N

L4 = capacity L of depot d,Vd € D

ij = fixed cost to open a depot d,Vd € D
b; = client demand i, Vi € N

C,. = cost of the route r associated to the depot d,Vr € Ry, d € D

1 if client 7 is associated to the route r of depot d,
i = Vie N,r € Rg,d e D

0 otherwise
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Decision variables

A =

(
1 if depot d is selected
Vd e D,

KO otherwise

(
1 if the route 7 is selected for depot d

K0 otherwise

Vr € Ry,Vd € D,

The integer programming model is formulated through constraints (3.13)-(3.20), and it is

composed by two sets of binary variables \; and 6,.. When A4 takes the value 1 it means that the

depot d is open, being closed when the binary variable takes the value 0. If a route performed by

a vehicle associated to a depot d is selected then 6, takes the value 1, Vr € R;. R, represents

the set of routes performed by all vehicles associated to depot d. The RMP takes care of the

opening or the closure of the depots, since it is the sub-problem which determines the attractive

routes that should be included in the problem. The binary parameter a;, indicates if a client ¢ is

served by the route r.

Minimize

subject to:

DI+ DG, (3.13)
deD deD reRy
Y awb=1VieN, (3.14)
deDreRp
> anbiby — Lada <0Vd € D, (3.15)
reERg iEN
> ayb, < \gVd € D,Vie N, (3.16)
reERy

M\ < 1Vde D, (3.17)
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d MU, (3.18)
deD
A € {0,1}Vd € D, (3.19)
0, € {0,1} Vr € Ry. (3.20)
where:
U= [ZE—NW (3.21)
Lg,

The goal of the model is to minimize the total distribution cost, /.e., minimize the cost asso-
ciated to opening a depot and the cost of the routes that are necessary to do such distribution.
Constraints (3.14) ensure that clients are served and constraints (3.15) guarantee that the total de-
mand of the served clients does not surpass the depot capacity. The use of a depot corresponds,
at most, to its total capacity (Constraints (3.16) and (3.17)) and the total number of open depots
is limited through constraint (3.18). The value of U (constraint (3.21)) indicates the maximum
number of depots that may be opened in order to satisfy the total demand of the clients. This
value also considers the depots capacity. Finally, constraints (3.19) and (3.20) define the binary

variables of the problem.

The RMP is formulated as the linear relaxation of the integer programming model that con-
siders the MLRP with constraints ensuring that each client is visited once and his demand is
satisfied without exceeding the depots capacity. In the RMP, it is possible to obtain the dual vari-
ables values, which are fundamental to start the column generation process. With these values,
the reduced cost is determined and used to find routes that have the potential of improving the

value of the objective function.

In order to clarify the structure of the model, Table 3.2 illustrates an example of the RMP from
the MLRP in which all the constraints are presented with some examples of columns. A column

of the type 6, represents a route that visits a set of clients. The total demand of that route is
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Table 3.2: RMP structure of column generation

YR I 0, |

1 0 0 0 1 o ... 0 =11
Co 0 0 0 0 1 ... 0 =11
Ci 0 0 0 1 0 =11
A —Ly, 0 ... 0 Dy, 0 ... 0] <Jo0
) Ao 0 —Lyn ... 0 0 Dy ... 0| <|O0O
Ad 0 0 Ly; || 0 0 Dg, | <|0
c1 -1 0 0 1 o ... 0 <1|0

Co -1 0 0 0 o ... 0 <1|0
Ao : .
Ci -1 0 0 1 o ... 0 <1|0

1 0 -1 ... 0 0 o ... 0 <1|0

Co 0 -1 ... 0 0 1 ... 0 <1|0

Ao | - |
o ci 0 ~1 0 0 0 0| <|0
C1

Co

1 0 0 oo =1 1 o ... 0 <1|0

Co 0 0 oo =1 0 o ... 0 <1|0

Ad | - : :
Ci 0 0 oo =1 0 o ... 1 <1|0

1 1 0 0 0 o ... 0 <1
Co 0 1 0 0 o ... 0 < |1
Ci 0 0 1 0 0o ... 0 <1
1 1 1 [[ 0 0 | <[U]

|
Objective | C}*  C}* ... Cy || Co Co ... Gy
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denoted by Dy, which is associated to a given depot. The coefficient Cy, is used to represent

the total cost of a route 6,.

The A4 columns stand for the opening of a depot d, which has an associated capacity L, and
an opening cost denoted by C’?. For each constraint of the primal problem there is an associated
dual variable. Thus, for each line of the table, there is a correspondent value from the dual
variable. Dual variables for the clients are denoted by 7;, while 114 are the ones associated to the
depots. There are other types of dual variables which include both the depots d and the clients 7

which are designated by ;.

After solving the initial RMP and using the value of the dual variables, it is possible to initiate
the iterative process of the column generation by calculating the cost of the path in order to solve

the ESPPRC. These reduced costs are calculated through Equation (3.22), as follows.

3.3.2 Sub-problem

The goal of the sub-problem is to obtain valid routes considering all constraints. The sub-problem
is solved by two different algorithms which are used in a sequential manner (Figure 3.6). The
first algorithm is an adapted version of the algorithm proposed by Feillet et al. [57] to solve the

ESPPRC, in which the goal is to obtain valid single-trips.

All generated single-trips with negative reduced cost are used as input for the second al-
gorithm. This combines all single-trips in order to obtain valid multi-trips through a route re-
combination algorithm. Generated multi-trips may also be recombined with other multi-trips or
single-trips. The sub-problem ends when it is not possible to generate any more multi-trips. Then,
the cost of the vehicle is added to all final valid routes, and those with negative reduced cost are

considered valid and used for the next iteration of the RMP.

In order to determine if a column (route) generated by the sub-problem has the potential to

improve the value of the objective function, it is necessary to calculate its reduced cost:
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Figure 3.6: Sub-problem workflow example for depot d;

Reduced Cost = C — > _aymi — > apbifta — Y _ ain0a; (3.22)

iEN iEN iEN

The 7; represents the dual variable associated with constraints (3.14) for client 2, 114 denotes
the dual variable associated to the constraints (3.15) for depot d, and oy is the dual variable
associated to constraints (3.16) for depot d and client <.

After determining the cost of all arcs, a graph is built where, through an adaptation of the
algorithm proposed by Feillet et al. [57], the elementary shortest paths are determined. These
paths are single-trips and those with negative reduced cost are used in the second phase of
the sub-problem resolution. Here, the algorithm tries, in a sequential manner, to combine the
previously generated single-trips in order to create new valid multi-trips. All recently created multi-
trips are then combined with different single-trips or multi-trips. The second phase of the resolution
of the sub-problem ends when no more multi-trips are generated. In order to reduce the number
of valid routes available during this process, whenever a new single-trip or multi-trip is generated
the dominance rules are verified.

The adapted version of the algorithm proposed by Feillet et al. [57] to solve the ESPPRC is
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presented, in more detail, in Algorithm 3.1. The notation used in the algorithm is the following:

> F is the set of untreated nodes;

> v; € V represents the current node (under treatment) from which the algorithm is trying

to extend to a different node;

> v; € V is the node to which one is trying to extend. A node v; may only be selected if it is
possible to extend the trip from the current node v;, i.e., if the vehicle capacity or distance

constraints are not violated,;
> \; denotes the trip in node v; that is being extended to a new node;

> A; is the set of non-dominated trips in node v,.

To start the execution of the algorithm, one needs to use four arguments: the initial starting
node v;, a initialized trip for that node \;, the node v; to which the current trip will be extended,
and the set of untreated nodes E.

In each iteration, the model verifies three conditions before extending the selected single-trip
to the next selected node. First (representing the stopping case), the model checks if the untreated
nodes are not empty (otherwise there is nothing to do and the execution stops). Then, the next
node has to exist, i.e., it has to be a valid node, otherwise it means that the selected single-trip
has been extended to all successor nodes. In this case, the next single-trip of the current node
is selected and the list of successor for that single-trip is erased. If the selected single-trip does
not exist, then the execution is in the case where the selected single-trip is the last one from the
current node and has been extended to all its successors. Thus, in this case, the current node is
considered treated (and removed from the untreated set £), a new current node is selected and
the list of its successors is computed.

Passing the above mentioned verifications, the execution checks whether the current single-

trip may be extended, i.e., checks the constraint related to the distance travelled by the vehicle and
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Algorithm 3.1: ESPPRC.,..
Input: Vi, AZ‘, vy, E
if £ = () then

Lend;

N =

3 if v; = null then

4 i < choose_next(\;) € A; ;

5 vj  restart_succ(v;) € succ(v;) ;
6 ESPPRCTBC(’UZ‘,)\Z‘,UJ‘,E) ;

7 end ;

8 if \; = null then

9 E +— E\{v;};

10 v;  choose_next(v;) € E ;

11 i < choose_trip(v;) ;

12 vj < choose_next_succ(v;) € succ(v;) ;
13 ESPPRC,c.(vi, i, vj, E) ;

14 end ;

15 if possible_to_extend(\;, v;) then

16 F,;j « F;; U {Extended(\;,v))} ;
17 A, «— EFF(F; UA,),

18 if A, has changed then

19 L E + E U {v;};

20 v; < choose_next_succ(v;) € succ(v;) ;
21 ESPPRC,c.(vi, Ni,vj, E) ;
22 end;

the capacity constraint. If it is possible to extend, a new single-trip is created and the dominance
rules are tested between the new single-trip and the current single-trips under the v; node. If the
new single-trip is non-dominated, the next node v; is added to the untreated set of nodes £’ and

a new iteration is started.

Ending the search for single-trips, the execution of the sub-problem starts a new phase in
which it tries to merge the generated single-trips with negative reduced cost in order to find multi-
trips. The algorithm for this phase is depicted in Algorithm 3.2. Instead of applying a recursive

implementation, in the generation of multi-trips, a cycle is used to iterate over all single-trips and
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Algorithm 3.2: Multi-trip
Input: set of single-trips £
1 repeat
2 choose \; € E;
3 forall \; € A do
a if possible_to_extend()\;, \;) then
5 F < F U {Extended(\;, \;)} ;
6
7
8

A« EFF(F UA);
if A has changed then
| E<~ FE U {v.};

o | E« E\{vn);
10 until £ = ();

all recently generated multi-trip. This last process enables the creation of multi-trips from two or
more single-trips.

In a first phase, two different routes are selected, and it is verified if they can be part of the
same route. If the routes A\; and A; can be aggregated, then the routes are merged into one new
route. It is important to note that \; and \; can represent a single-trip or a multi-trip. However
the new route becomes necessarily a multi-trip route. Before this attempt to create a newer route,
there are some conditions that must be verified according to the constraints of the model. For
instance, two routes cannot be merged if a client c,, is visited by both routes A; and A;, or the
total distance available for the vehicle is exceeded.

After merging two trips, the dominance rules are verified to check if the newest route is not
dominated. When this occurs, the merged multi-trip is considered untreated and is added to the
set E. After extending the selected route A; with all other routes, it is considered treated and
removed from E. Then, the next untreated route is selected and the execution of the algorithm
continues until there are no more routes to extend, i.e., £ = ().

In order to check whether a route is dominated or not, it is important to define the structure of
the route. Formally it is defined as R; = {(T},T7,...,TN), (D}, D?,...,DN), C;, RC;}

and composed by:
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> an ordered set of clients (1), where 1 represents a visited client and O otherwise;
> an ordered set of consumed resources (DY) that is O when the client is not visited;
> the total cost of the trip (C;);

> the reduced cost associated to the trip (RC;).

A route R; dominates other route R; (i # j) if and only if 77" < T]” forn =1,...,N,
Dzn < D;?forn: 1,...,N, andRCi < RC]

3.4 A network flow formulation

A network flow model has a graph-based structure that is used to solve problems, in which the
arcs have an associated flow. The flow associated to an arc must be less than or equal to its
capacity being, in this case, the capacity associated with a vehicle. The network nodes represent

discrete instants of time, in which the flow conservation must be ensured.

3.4.1 The model

The network flow model, presented by Macedo et al. in [55], is defined on acyclic directed graphs
(one per depot) that will be denoted by IT; = (A, ¥,), d € D. A path on these graphs
corresponds to the workday W of a given vehicle. The vehicle is associated to a depot d. The
vertices in A represent discrete time instants starting from 0 up to the time limit 3. The arcs
are associated to the vehicle routes, and additionally to waiting periods at the depot. An arc
(u,v)" € Wgqis related to a route r that starts at time instant « and ends at time instant v.

The set W, is defined as follows:

Uy={(u,v)":0<u<v<WreR;}U{(u,v)’:0<u<v<Wov=u+ 1},
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Figure 3.7: Solution example of network flow model

with R, being the set of all the routes from depot d. The load, duration and cost of a route r will
be denoted by [, ¢, and C,., respectively. The set of clients visited by a route 7 will be represented

by N,., with N, C N. Clearly, a route is feasible only if /., < @) and t, < W,

The model is composed by two sets of variables. The binary variable \;, d € D, states

d
uor

whether a depot is selected or not, while the binary variable x¢  states whether the route r
associated to depot d is selected or not. The route r starts and finishes at time instants « and v,

respectively.

In Figure 3.7 an example of a network flow for the MLRP that serves a set of ten different
clients (cq, . . ., c10) from three possible depots (A1, A2 and \s3) is depicted. The example solution
presents the graph II; and the graph II5 associated to opening depots d; and ds, respectively
(denoted by Ay = 1 and A3 = 1). Depot ds is not represented in the figure since it is not opened
(A2 = 0). For the sake of simplicity, only the arcs that have an associated flow are represented

in the figure.

For the sake of simplicity the decision variable x,,,. denotes an arc. The arc xg 35, serves

three different clients (c5, c19 and ¢;) during the planning horizon that begins at time « = 0 and
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ends at time v = 35. This flow is associated to the first route denoted by r;. Associated to this
route 1, there is also another flow that satisfies a single client (cg) and goes from time v = 50
to instant v = 85. This arc is denominated s g5,,. ArCs zg 35, and xsggs,, May not be
merged into a single arc since the demand of this joined arc would surpass the capacity of the

vehicle.

Similarly to the arcs x 35, and Tso 85, arcs 10,75, and 7s 100,-, May not be merged
due to vehicle capacity constraints. Furthermore, and according to the vehicle workday (W)
constraint, it is not possible to use just one vehicle to fulfill the clients demand since adding arcs

of route 4 to route r3 exceeds the vehicle workday.

The parameters and some important definitions, and decision variables used in the network

flow model are listed below.

Parameters and definitions

I1; = acyclic directed graph associated to the depot d, Vd € D
W, = set of arcs associated to the depot d,Vd € D
A = set of vertices,
(u,v)" = arc that represents a route r that starts at instant of time « and ends at
time instant v, Vr € Ry
R, = set of all routes associated to the depot d,Vd € D
C, = cost associated to perform a route r, Vr € ¥,
C, = cost associated to the use of a vehicle v, Vv € H
C}l = fixed cost associated to opening a depot d, Vd € D
K" = limits the maximum number of vehicles per depot d, Vd € D
W = length of the plan horizon

l,, = load associated to a route r, Vi € Ry
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t, = duration associated to a router, Vr € Ry

b; = demand associated to a client 7, Vi € N
L4 = capacity associated to the depot d,Vd € D
() = capacity associated to the vehicle v, Vv € H

N, = set of clients visited by route r, Vi € Ry

Decision variables

(
1 if the depot d is selected ,
A = Vd e D,

| 0 otherwise

(
1 if route  goes through the arc (u, v) for the depot d, Vr € Ry,

Lowr = OSUSWE\I/andVdGD,

\ 0 otherwise

The main goal of the network flow model is the minimization of the cost associated to all the
routes performed by the vehicles, the cost related to the vehicle usage and the cost for opening a

depot. The network flow formulation is defined through constraints (3.23) to (3.29).
Minimize

o> Cat,+C> Z Ty + > CfAg (3.23)

deD (u U)TE\Ifd deD O 7) Tewy deD

subject to:

o> al,=1 VieN, (3.24)

deD (u U)TG\IfdliGNr

> af, <KpUN, VdeD, (3.25)

(0 1)) evy
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0,ifv=1,..,W—1,

- Yt Y al, = L vd € D, (3.26)
(uw)"€¥y (v,y)tePy - Z(O,v)re\lld Lours ifv = I/V7
> Lal, <L, VdeD, (3.27)
(u,0)TeVy
x>0, andinteger,V(u,v)" € Uy, Vd € D, (3.28)
A\ €{0,1}, VdeD. (3.29)

Every upper bound on the number of workdays can be used for KJ*** (Constraint (3.30)).
In the experiments presented in Tables 3.5 and 3.6, the following value is used, assuming the

clients are sorted in decreasing order of their demands:

J
K™ — max {j Y b < Ld} : (3.30)
=1

for a given depot d € D. Flow conservation is enforced through constraints (3.26).

Constraints (3.24) force the visit to every client. Constraints (3.25) limit the number of vehicles
per depot to a maximum of K ;***. Note that :cgw is directly related to an independent workday
starting at time instant 0 from depot d and finishing at time instant v. If the corresponding depot
is not selected, the maximum number of vehicles becomes naturally 0. Constraints (3.27) ensure
the capacities of the depots are not exceeded. The objective function is represented through the

expression (3.23).

3.4.2 Valid inequalities

To improve the quality of the continuous lower bounds obtained with the network flow model
(3.23)-(3.29), the following valid inequalities can be used. The first consists in forcing a minimum

number D™ of depots to be opened through the constraint (3.31).

> A= Dmm (3.31)

deD
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The depot capacity L, is equal for all depots. Thus, the problem of determining D™ is an
one-dimensional bin-packing problem. In order to compute its value, it is resorted to dual-feasible
functions [58] which provide a means to obtain high quality lower bounds frequently close to those
achieved with column generation models.

The second inequality is similar to the previous one, but applies now to the vehicles. The

principle is to enforce a minimum number H ™™ of vehicles to use through the constraint (3.32).

Y al,=H™ (3.32)

deD (uw)Te¥y

Again, H™" is a lower bound for the bin-packing problem defined by using the clients de-
mands and the vehicles capacities, and it can be computed using the aforementioned dual-feasible
functions.

The last set of inequalities consists in relating the selection of workdays to opening depots.
These inequalities state that if a depot is open, there should be at least one workday to be per-

formed from this depot:

Z 2% >\, Vd € D. (3.33)

Ovr =
(O,U)TG\I/d

In Table 3.3 an example of the MIP for the network flow model is presented. All constraints
(described from Equation 3.24 to 3.29) and the above mentioned inequalities are depicted in the
table. Due to the number of columns, only a subset of them was considered. Each set of rows

represents constraints of the model in the same order as they appear above.
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3.4.3 Arcs generation

The network flow model requires the pre-existence of a set of single-trips and selects those that
best serve the clients with the aim of minimizing the total costs associated to the global system
concerning the distribution decisions. The model simultaneously considers location decisions,
and decides which single-trips should be used to serve a set of clients at the minimum cost. A
single-trip is represented through an arc that must start and end at the same depot and fulfill
a set of clients. A vehicle is able to perform a set of single-trips that are limited by a workday.
The model defines the arcs traversed by a certain vehicle associated to a specific depot. The
single-trips performed by a vehicle are named multi-trip.

Algorithm 3.3 allows for the generation of the single-trips used by the network flow model that
creates all the possible combinations according to the constraints defined in the model. In order

to generate the set of single-trips, it is necessary to note some details such as:

> A single-trip must start and end at the same depot;
> The capacity of a vehicle cannot be exceeded;
> A single-trip cannot travel a distance greater than the workday of the vehicle;

> A customer can only be visited exactly once in each arc.

The arcs of the network flow model are generated for each depot according to the method
defined in Algorithm 3.3. Indeed, the execution of the algorithm for a given depot is independent
from the execution for a different depot.

During the execution of the algorithm, there are two different types of arcs: partial arcs and
final arcs. The former considers arcs which start in the depot and visit one or more clients, but
do not return to the depot. Thus, it is possible to add more clients or close a partial arc back to

the depot. The latter are arcs that start and end at the depot and serve one or multiple clients.
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Algorithm 3.3: MLRP Arc Generation
Input: depot

1 partial_arcs < empty_arc ;

2 while partial_arcs! = () do

3 current < first_element(partial_arcs);

4 partial_arcs < partial_arcs\{current};

5 if possible_to_reach_depot(current) then

6 new_closed_arc < close_arc(current);

7 final_arcs < final_arcs U {new_closed_arc};

8 foreach c/ient c € N do

9 if client_not_present(current, c) then

10 if check_distance_client(current, c) then

11 if check_demand_client(current, c) then

12 new_partial_arc < extend_arc(current, c);
13 L partial_arcs < partial_arcs U {new_partial_arc};

As depicted in Algorithm 3.3, the execution of the arcs generation starts with an empty arc,
i.e., an arc that does not serve any client. After this step, the generation of arcs may start. In
order to evaluate if a partial arc can be transformed into a final arc it is necessary to perform two
verifications. The first is to test if the partial arc may be closed, i.e., it is possible to return to the
depot from the last visited client. When the answer is affirmative, the new closed arc, considered
as a final arc, is added to the set of final arcs. The other verification is to check whether it is
possible to add more clients considering the distance and capacity constraints. Indeed, to add a

new client to the selected partial arc, there are three conditions that must be met:
> the new client being served is not already in the partial arc;
> the distance to reach the new client does not surpass the available vehicle workday;
> the demand of the new client does not exceed the available vehicle capacity.

If and only if these constraints are not violated, a new partial arc is generated and added to

the corresponding set. After trying to extend the selected partial arc to all clients, a new iteration
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starts if there are more partial arcs. Thus, the execution of the algorithm will attempt to close the
new selected arc and to add more clients to it. The process ends when it is not possible to extend

partial arcs, i.e., there are no more partial arcs in the corresponding set.

3.5 Implementation details

Nowadays, with the constant technological advances or improvements, it becomes important to
use available resources in the best possible way. During the implementation of the optimization
algorithms, resource management has been taken into account and the most relevant implement-
ation details are discussed throughout this section.

A very important detail with respect to the execution of the MLRP algorithm is the use of par-
allelization techniques. This parallelization is done by applying the thread concept which is used
in the MLRP sub-problems by the column generation. This approach is possible since determ-
ining the elementary paths is independent from depot to depot. Thus, sub-problems are solved
in parallel for each possible depot. During the execution of the column generation algorithm, all
the sub-problems are initiated at the same time, so the algorithm waits for the ESPPRC of the
slowest depot instead of waiting for a sequential processing of the ESPPRC for each depot. This
parallelization is either used in the generation of single-trips or in the creation of multi-trips.

Table 3.4 presents the results obtained in the series and parallel mode for 64 different in-
stances of 20 and 25 clients. The relevant parameters of the instances are shown in the table.
The tests were executed on a PC with an i7 CPU with 3.5 GHz and 32GB of RAM. The total time
of each test was limited to 7200 seconds, considering that 900 seconds (from the 7200) were
used in the search of the integer solution through the CPLEX 12.6 subroutine. In each iteration for
each depot, 400 seconds were used to determine the single routes and 400 seconds to calculate
the multi-routes. As depicted in the Table 3.4, in most instances the use of the parallelization is
justified since there is an evident computational time reduction. The cases in which the parallel

mode presents higher computational times than the series one happens because there is a larger



80 Chapter 3. The multitrip LRP: integer programming models

number of iterations leading to smaller value of the objective function. When the algorithm starts
an iteration (since there is available time), it has to end it. However, this iteration end may occur
after the time limit.

Considering the above mentioned detail and results, it is observed that parallelization mode

allows for an improvement of the algorithms execution.

Table 3.4: Comparative analysis for the series and parallel mode for the Column Generation

Series mode Parallel mode Red.

L Inst n W Q LP MIP Gap(%) Time It LP MIP Gap(%) Time It | Time(%)
C20,1 1.1 20 140 50 338193 4431 0,00 628 2 3381,93 4431 0,00 340 2 45,86
C20,1 1.2 20 160 50 | 332550 4430 0,00 1916 2 | 332550 4430 0,00 868 3 54,70
C20,1 1.3 20 140 70 327798 4384 0,00 2443 2 327798 4384 1,08 1832 3 25,01
C20,1 1.4 20 160 70 | 330669 4384 0,00 329 2 3251,05 4374 184 3374 5 2,37
C20,2 2.1 20 140 50 311442 4681 0,00 135 2 311442 4681 0,00 114 2 15,56
C20,2 2.2 20 160 50 303103 4472 0,00 736 2 3031,03 4472 0,00 415 2 43,61
C20,2 2.3 20 140 70 | 299265 4424 0,00 767 2 | 2992,65 4424 0,00 425 2 44,59
Ca0,2 2.4 20 160 70 2921,72 4424 0,00 2449 2 292172 4424 0,00 1635 3 33,24
C20,3 3.1 20 140 60 375196 4431 0,00 606 2 375196 4431 0,00 473 2 21,95
C20,3 3.2 20 160 60 | 370533 @ 4426 0,00 1405 2 367423 4426 0,00 1472 3 4,77
C20,3 3.3 20 140 &0 3610,87 4385 0,00 1610 2 3610,87 4385 0,00 1217 2 24,41
C20,3 3.4 20 160 80 | 3620,68 4385 0,00 2531 2 | 3620,68 4385 0,00 1733 3 31,53
C20,4 4.1 20 140 60 3750,33 4537 0,00 212 2 3750,33 4537 0,00 136 2 35,85
C20,4 42 20 160 60 | 366642 4471 0,00 1075 2 | 3666,42 4471 0,00 714 2 33,58
C20,4 43 20 140 80 | 357967 4409 0,00 950 2 3579,67 4409 0,00 674 2 29,05
C20,4 44 20 160 80 | 358922 4409 0,00 2645 2 | 3556,34 4405 0,00 2364 4 10,62
C20,5 5.1 20 140 60 | 325544 4674 0,00 266 2 | 325544 4674 0,00 147 2 44,74
Ca0,5 52 20 160 60 317516 4475 0,00 1294 2 3174,13 4475 0,00 795 4 38,56
C20,5 53 20 140 80 3122,17 4449 0,00 1614 2 3122,17 4449 0,00 686 2 57,50
C20,5 54 20 160 80 3044,16 4411 0,00 3404 2 3036,41 4401 0,00 3174 5 6,76
C20,6 6.1 20 140 50 273417 4420 0,00 975 2 273417 4420 0,00 533 2 45,33
C20,6 6.2 20 160 50 272612 4420 0,00 2420 2 | 268396 4415 31,24 2668 4 -10,25
C20,6 6.3 20 140 70 | 2659,63 4382 0,00 3832 2 | 2652,23 4383 0,00 4238 5 -10,59
C20,6 6.4 20 160 70 2630,13 4401 34,74 4759 2 | 258695 4386 26,92 4918 5 -3,34
C2o,7 7.1 20 140 50 3306,31 4835 0,00 197 2 3306,31 4835 0,00 134 2 31,98
Cao,7 7.2 20 160 50 | 322685 4795 0,00 982 2 | 322685 4795 0,00 676 2 31,16
Ca0,7 7.3 20 140 70 3192,57 4748 0,00 1002 2 3192,57 4748 0,00 510 2 49,10
Ca0,7 7.4 20 160 70 312856 4540 0,00 2767 2 312856 4548 0,00 1733 2 37,37
C20,8 8.1 20 140 50 | 335559 4744 0,00 36 2 | 335559 4744 0,00 25 2 30,56
C20,8 8.2 20 160 50 3248,33 4656 0,00 112 2 3248,33 4656 0,00 47 2 58,04
Ca0,8 83 20 160 50 3169,33 4587 0,00 159 2 3169,33 4587 0,00 69 2 56,60

(continues on next page)
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Table 3.4: Comparative analysis (continued)
Series mode Parallel mode Red.
L Inst n w Q LP MIP Gap(%) Time It. LP MIP Gap(%) Time It. Time(%)
L C20,8 [ 84 20 140 70 [ 3101,05 4451 0,00 743 2 [ 3101,05 4451 0,00 351 2 52,76 J

Cas,1 11 25 140 50 4071,70 4751 0,00 2564 2 3992,74 4751 0,00 1638 4 36,12
Cas5.1 1.2 25 160 50 | 430967 4992 2,59 3107 2 | 3959,84 4760 13,93 3432 6 -10,46
Cas,1 1.3 25 140 70 3952,11 4679 3,10 4947 2 3951,54 4687 2,99 4117 4 16,78
Cas,1 1.4 25 160 70 4001,77 4722 3,01 4953 2 3936,78 4690 335 4122 4 16,78
C2s.2 2.1 25 140 50 | 3660,07 4764 0,00 1425 2 3660,07 4764 0,00 923 3 35,23
Cas,2 2.2 25 160 50 | 362658 4764 2,53 2890 2 3601,23 4765 2,77 3064 5 6,02
Cas2 23 25 140 70 355413 4703 1,06 4398 2 353476 4706 099 4015 4 8,71
Cas,2 2.4 25 160 70 355782 4759 3,82 4776 2 | 348988 4501 0,00 4499 5 5,80
Cas3 | 3.1 25 140 60 | 463333 4943 119 1992 2 4611,06 4844 0,00 1457 3 26,86
Cas3 3.2 25 160 60 | 464426 5025 392 2869 2 4617,36 5037 434 2125 3 25,93
Cas3 3_3 25 140 80 4460,20 4721 0,00 3279 2 444404 4721 0,00 2966 4 9,55
Cas5.3 3.4 25 160 80 4475,90 4769 0,00 4745 2 4444,27 4733 0,00 2934 4 38,17
Cas5.4 4.1 25 140 60 4541,91 4785 0,00 1772 2 4467,40 4767 0,00 1563 3 11,79
Cas4 | 42 25 160 60 | 459536 4843 345 3021 2 4512,25 4785 087 2527 4 16,35
Cas4 | 43 25 140 80 | 435244 4710 122 3863 2 | 435098 4703 0,72 3171 4 17,91
Cas4 | 44 25 160 80 | 435869 4732 113 4892 2 | 434226 4690 0,00 2843 4 41,88
Cas.s 51 25 140 60 3975,09 4779 0,00 1798 2 3970,99 4779 0,00 2025 4 -12,63
Cas.s 52 25 160 60 | 393367 4780 0,00 4631 2 387890 4779 0,00 3734 6 19,37
Cas.s 53 25 140 80 391318 4760 0,00 3319 2 3863,17 4731 0,00 6604 8 98,98
Cas,5 54 25 160 80 | 4062,75 4788 0,00 4788 2 392754 4775 2,50 4922 5 2,80
Cas.6 6.1 25 140 50 347293 4755 0,00 2882 2 341354 4755 0,00 2511 4 12,87
Cas.6 6_2 25 160 50 3501,76 4808 25,70 4951 2 3436,72 4766 21,22 3635 5 26,58
Cas.6 6_3 25 140 70 3370,14 4729 1,87 4586 2 3326,59 4716 0,52 4914 5 -7,15
C2s.6 6.4 25 160 70 | 336436 4766 23,92 4940 2 | 3330,36 4580 0,00 3576 4 27,61
Cos7 | 7.1 25 140 50 410492 5083 0,00 478 2 4104,92 5083 0,00 303 2 36,61
Cos7 | 7.2 25 160 50 399705 4864 0,00 1958 2 399705 4864 0,00 911 3 53,47
Cas,7 7.3 25 140 70 | 392324 4772 0,00 2894 2 392324 4772 0,00 1845 4 36,25
Cas,7 7.4 25 160 70 | 3850,01 @ 4792 2,84 4934 2 3797,32 4776 2,34 4437 5 10,07
Casg | 8.1 25 140 50 | 3779,30 4889 0,00 2675 2 373395 4889 0,00 1997 4 25,35
Casg | 82 25 160 50 385724 4928 16,10 4733 2 3694,81 4882 19,50 3383 5 28,52
Casg | 83 25 160 50 | 367302 4798 0,00 4230 2 3619,056 4782 0,00 5281 6 24,85
Casg | 84 25 140 70 362541 4803 3,99 4948 2 358876 4732 1,04 6531 7 -31,99
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3.6 Computational results

In this section, the computational experiments performed on benchmark instances adapted from
Akca et al. [30] to evaluate the performance of the models discussed in this chapter both in
terms of the quality of their lower bounds (with respect to the model (3.1)-(3.12) and (3.23)-
(3.29), Section 3.6.1) and in their ability to drive efficiently the search for good quality integer
solutions are reported. Each benchmark instance has five possible depots. The tests were run
on a PC with an i7 CPU with 3.5 GHz and 32 GB of RAM. The optimization subroutines rely on
CPLEX 12.5.

The different tests are based on various benchmark instances from the literature and relevant
parameters are presented in the results tables. In the tables, the /nst column represents the
name associated to the instance and the n column provides the number of clients. The TV and

() columns represent the length of the workday and the vehicle capacity, respectively.

3.6.1 Solving the compact models exactly

For the experiments related to the model (3.1)-(3.12) and (3.23)-(3.29), a set of 40 benchmark
instances from the literature was used whose relevant parameters are given in Table 3.5 and 3.6.

The tests are divided in two parts. First, the quality of the continuous lower bounds of the
models (3.1)-(3.12) and (3.23)-(3.29) was compared without enforcing any other valid inequality.
The results of these tests are listed in the Table 3.5. The columns zg;, and £ g, denote respectively
the value of the lower bound and the computing time (in seconds) required for the solution of the
linear programming relaxation of the corresponding model by CPLEX. Column (b represents the
best lower bound obtained when the corresponding model is solved by CPLEX up to integrality
using a maximum of 900 seconds of computation. The columns ub and t;; g denote respectively
the value of the best incumbent found within this time limit, and the total execution time in seconds
(which is smaller than 900 seconds only if a proven optimal solution has been found within the

time limit). The column gap provides the value in percentage of the optimality gap reached at
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the end of the solution procedure. A “—" entry denotes the fact that no feasible integer solution
was found. Finally, column ¢, gives the total computing time required to generate the routes for
the model (3.23)-(3.29). The second set of experiments is reported in Table 3.6. The same tests
as above were repeated enforcing now the valid inequalities described in Section 3.4.2. For a fair
evaluation, and since the first and second cut described in this section can also be enforced in

model (3.1)-(3.12), this model was solved again using these two cuts.

Table 3.5: Results of 3-index model vs network flow model

Model (3.1)-(3.12) Model (3.23)-(3.29)

Inst. n W Q Zrr  tRL b ub tug  gap ZRL ty tri b ub tyg  gap
Coq1 | 1.1 20 140 50 | 3151,24 0,62 335931 4671 900,15 28,08 | 3254,44 1,04 011 443100 4431 29,73 0,00
Ca1 1.2 20 160 50 | 309501 0,59 321896 4656 900,20 30,86 | 3192,87 119 0,21 433258 4430 900,87 2,20
Cypq1 | 1.3 20 140 70| 3071,06 0,64 317438 4618 90017 31,26 | 3181,82 51,04 0,24 433569 4384 901,11 110
Ca1 1.4 20 160 70| 301767 0,64 3069,76 4399 902,73 30,22 | 3122,97 5896 0,56 418746 4378 901,96 4,35
Ca02 2.1 20 140 50| 2856,71 0,61 2903,55 4764 900,20 39,05 | 3059,33 2,22 0,07 468100 4681 701,16 0,00
Ca2 2.2 20 160 50 | 2790,07 0,64 2882,60 4780 902,99 39,69 | 2949,29 2,58 0,13 4472,00 4472 64,06 0,00
Ca2 2.3 20 140 70| 2760,71 0,64 2800,63 4674 902,24 40,08 | 2956,06 156,70 0,18 442400 4424 188,28 0,00
Ca 2.4 20 160 70 |2698,69 0,62 273622 4697 900,18 41,75 | 2873,88 181,02 0,35 4406,04 4424 900,68 0,41
Ca3 3.1 20 140 60| 347153 0,66 3654,39 4684 900,17 21,98 | 359847 0,10 0,10 443100 4431 33,00 0,00
Ca3 3.2 20 160 60 | 341793 0,59 3479,33 4909 900,22 29,12 | 3526,57 0,11 0,17 4354551 4426 900,88 1,62
Ca3 3.3 20 140 80| 341159 0,66 3540,66 4633 900,20 23,58 | 3516,09 586 0,17 430553 4385 900,89 1,81
Cy3 3.4 20 160 80| 335759 0,66 3521,45 4445 900,17 20,78 | 3442,63 6,78 0,42 419845 4389 901,72 4,34
Cao 4.1 20 140 60| 343168 0,59 356730 4740 906,10 24,74 | 3566,01 0,08 0,07 450757 4668 900,38 3,44
Coa | 4.2 20 160 60 | 337911 061 349741 4894 900,22 28,54 | 3500,70 0,09 011 4431,08 4471 900,48 0,89
Caou 4.3 20 140 80| 3350,75 0,62 341721 4638 902,77 26,32 | 345759 4,73 0,26 4409,00 4409 629,40 0,00
Coa | 4.4 20 160 80| 329921 0,64 347506 4437 90015 21,68 | 3406,97 546 0,29 4229,27 4402 901,28 3,92
Cas 5.1 20 140 60| 2929,15 0,64 3049,45 4951 900,15 38,41 | 3096,93 68,87 0,13 467400 4674 160,79 0,00
Ca5 5.2 20 160 60| 286778 0,61 294152 4727 900,17 3777 | 3038,31 80,98 0,24 447500 4475 22771 0,00
Cag 6_1 20 140 50 |2508,09 0,61 262981 4590 902,04 42,71 |2652,43 21,02 0,16 4420,00 4420 103,99 0,00
Ca6 6_2 20 160 50 | 245501 0,61 257496 4797 901,00 46,32 | 2578,59 24,46 0,28 4312,04 4414 900,29 231
Caoz 7_1 20 140 50| 3020,74 0,66 324580 5137 900,18 36,82 | 324131 6,43 0,07 483500 4835 3894 0,00
Cao7 7_2 20 160 50 | 294996 0,62 313484 4969 901,71 36,91 | 3161,96 763 013 467555 4795 900,31 2,49
Cag 8_1 20 140 50| 305884 0,58 3130,66 5146 901,45 39,16 | 3265,44 26,26 0,04 474400 4744 4326 0,00
Cas 8.2 20 160 50 |2984,49 0,59 307507 4882 900,18 3701 | 318608 31,27 0,07 4656,00 4656 6714 0,00
Cas 1.1 25 140 50| 377816 1,05 379285 - 909,58 -13903,70 10,87 0,24 4682111 4751 901,15 1,45
Cas1 1.2 25 160 50| 371046 100 372281 6712 900,26 44,54 | 3833,08 12,49 0,38 4554,87 4646 900,81 1,96
Cas 2.1 25 140 50| 3378,47 1,03 3389,69 5506 909,45 3844 | 361580 16,32 0,17 476400 4764 116,82 0,00
Cas0 2.2 25 160 50 | 330520 0,97 333435 - 913,82 - | 350723 19,12 0,57 4598,88 4764 901,47 3,47
Cas3 3.1 25 140 60 | 428393 1,01 4322,40 7384 900,43 41,46 | 4456,56 1,35 0,15 481700 4817 46,43 0,00
Cas3 3.2 25 160 60 | 4213,33 1,01 427619 6876 90718 37,81 | 4376,88 1,56 0,45 468361 4803 901,29 2,49
Cosa | 4.1 25 140 60 | 4150,87 1,03 4178,40 5409 900,26 22,75 | 4297,64 0,79 019 4669,18 4767 901,04 2,05
Cosa 4.2 25 160 60 | 408555 1,03 4092,00 7110 900,19 42,45 | 421416 091 0,33 452701 4767 901,20 5,03
Coss | 5.1 25 140 60 | 365499 101 3691,40 7585 90524 51,33 | 387760 384,26 0,25 4779,00 4779 560,22 0,00
Cass 5.2 25 160 60| 357731 1,00 361525 7420 905,71 51,28 | 3773,96 441,71 0,64 464314 4774 900,23 2,74
Cas6 6_1 25 140 50| 3159,18 1,01 3166,00 6910 900,24 54,18 | 3354,05 344,90 0,33 4670,22 4755 900,15 1,78
Cas6 6_2 25 160 50309286 0,99 313167 6633 913,87 52,79 | 3253,57 396,97 0,76 3503,94 4777 901,90 26,65
Cos 7 7_1 25 140 50| 3766,16 0,98 3780,75 - 900,20 -| 403695 70,72 0,17 5083,00 5083 269,30 0,00
Cas 7 7_2 25 160 50 | 368222 0,97 3709,32 - 904,97 - 1392926 82,49 0,20 4864,00 4864 139,04 0,00
Cas s 8_1 25 140 50 | 342225 1,01 352878 7501 900,25 52,96 | 3623,33 244,34 0,29 4889,00 4889 439,84 0,00
Cass 8.2 25 160 50 | 335586 1,03 352748 6688 901,62 4726 | 351624 282,99 0,59 389886 4970 901,52 21,55
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Table 3.6: Results of 3-index model vs network flow model with additional valid inequalities de-
scribed in Section 3.4.2

Model (3.1)-(3.12) Model (3.23)-(3.29)

‘ Inst. n W @ ‘ Zrr,  tro b ub tup gap ZRL ty tro b ub tug  gap
Coo,1 1.1 20 140 50 | 410290 0,75 4243,68 4821 900,19 11,98 | 4220,60 1,10 0,14 4431,00 4431 21,48 0,00
Coo,1 1.2 20 160 50 | 4048,67 0,72 4180,86 4684 900,17 10,74 | 417721 117 0,25 4320,23 4430 900,50 2,48
Ca 1.3 20 140 70| 404116 0,64 413401 4676 900,17 11,59 | 416158 50,60 0,35 432769 4384 90091 1,28
Caa 1.4 20 160 70| 3990,65 0,59 406783 4621 900,15 11,97 | 412690 58,23 0,63 418773 4374 901,76 4,26
Coo,2 2_1 20 140 50 | 425464 0,62 431068 4788 902,31 9,97 | 4452,00 2,20 0,07 4681,00 4681 400,36 0,00
Coo,2 2.2 20 160 50 | 4189,73 0,59 4246,68 4479 900,25 5,19 | 434702 2,56 0,16 4472,00 4472 22,15 0,00
Coo,2 2.3 20 140 70| 417713 0,61 4210,62 4753 900,18 11,41 | 4346,06 155,02 0,24 442400 4424 159,18 0,00
Coo,2 2.4 20 160 70| 411592 0,66 4150,27 4714 900,18 11,96 | 4269,82 180,26 0,38 4372,46 4424 89455 117
Ca3 3.1 20 140 60 | 4091,69 0,58 419351 4716 900,22 11,08 | 4236,77 0,10 0,11 4431,00 4431 8,28 0,00
Ca3 3.2 20 160 60 | 403811 0,61 412563 4718 900,22 12,56 | 4178,71 0,11 0,19 4364,48 4426 900,57 1,39
Ca 3 3.3 20 140 80 | 404285 0,64 413737 4418 900,14 6,35 | 4163,41 582 0,22 4276,15 4385 900,15 2,48
Coo3 3.4 20 160 80| 399255 0,69 4072,23 4405 900,25 755 | 4134,48 6,76 0,33 4196,36 4387 900,09 4,35
Coo 4.1 20 140 60 | 4080,59 0,59 4228,23 5054 90502 16,34 | 423115 0,08 0,09 453700 4537 55,04 0,00
Cao4 4.2 20 160 60 | 4029,93 0,59 4176,39 4711 903,01 11,35 | 4188,32 0,09 0,16 4440,73 4471 900,47 0,68
Ca 4.3 20 140 80 | 401469 0,69 410545 4633 903,46 11,39 | 4152,15 4,63 0,20 4330,24 4409 900,12 1,79
Cao 4.4 20 160 80 | 396737 0,64 4056,60 4503 90508 991 | 413881 540 0,36 4234,47 4402 900,89 3,81
Ca 5 5.1 20 140 60| 4160,48 0,64 425533 5062 900,18 1594 | 4333,73 68,61 0,10 4674,00 4674 13592 0,00
Coo5 5.2 20 160 60 | 4103,24 0,80 4183,77 5091 900,18 1782 | 4284,75 80,26 0,24 4475,00 4475 8788 0,00
Cae 6_1 20 140 50 | 4080,34 0,72 4203,90 4719 908,30 10,92 | 4226,93 21,07 0,18 4420,00 4420 32,62 0,00
Coo6 6_2 20 160 50 | 402786 0,66 412587 5028 900,22 1794 | 417764 24,48 0,37 434747 4414 901,06 1,51
Cao,7 7_1 20 140 50 | 432832 0,62 442490 5050 907,35 12,38 | 4568,72 6,47 0,08 483500 4835 32,54 0,00
Caor 7_2 20 160 50 | 425748 0,64 443256 4897 900,17 9,48 | 448541 763 0,17 4670,36 4795 900,65 2,60
Cas 8_1 20 140 50 | 432732 0,62 4389,74 5073 900,20 13,47 | 4514,76 2594 0,05 474400 4744 2760 0,00
Coos 8.2 20 160 50 | 4254,49 0,64 437342 4656 901,26 6,07 | 4439,88 30,69 0,09 4656,00 4656 48,13 0,00
Cas 1.1 25 140 50| 4269,12 111 427527 - 902,31 -| 439897 10,73 0,27 467525 4751 900,65 1,59
Cos1 1.2 25 160 50 | 4201,42 1,09 420327 - 900,20 - | 4329,62 12,35 0,49 4552,01 4646 900,12 2,02
Cas 2.1 25 140 50| 435711 0,98 444717 5516 901,73 19,38 | 4580,81 16,27 0,20 4764,00 4764 89,45 0,00
Cas.a 2.2 25 160 50 | 428583 1,03 436981 - 903,68 -| 447898 1892 0,80 4599,30 4759 901,32 3,36
Cas 3 3_1 25 140 60 | 434752 1,00 440750 7265 900,28 39,33 | 4514,70 1,35 0,17 481700 4817 458,31 0,00
Cos3 3.2 25 160 60 | 4276,64 0,97 4360,26 - 900,22 - | 4435,38 1,56 0,32 4671,01 4800 901,01 2,69
Cos4 4.1 25 140 60 | 4271,49 1,03 4328,35 - 901,35 - | 4420,88 0,79 0,21 465418 4767 900,61 2,37
Cos4 4.2 25 160 60 | 4206,29 1,01 423027 - 912,18 - | 4351,79 0,90 0,39 4526,00 4767 901,09 5,06
Cass 5.1 25 140 60| 4374,35 1,06 440343 5767 900,28 23,64 | 4581,74 38216 0,29 4779,00 4779 38752 0,00
Cas5 5.2 25 160 60| 4300,78 112 437700 7535 900,25 4191 | 449335 443,39 116 470391 4774 901,54 1,47
Cas 6 6_1 25 140 50 | 426353 1,01 427866 9817 900,20 56,42 | 4458,98 355,09 0,36 465575 4755 900,06 2,09
Cos6 6_2 25 160 50 | 419813 1,05 4229,79 - 900,22 - | 4373,88 403,45 0,81 455776 4606 900,11 1,05
Cos,7 7_1 25 140 50 | 4492,47 101 466772 - 900,23 -| 4754,01 7159 0,12 5083,00 5083 338,08 0,00
Cos7 7_2 25 160 50 | 440897 1,05 4463,85 - 909,89 - | 4646,35 83,54 0,26 4864,00 4864 149,90 0,00
Coss 8_1 25 140 50 | 4346,90 1,01 458728 - 900,22 - | 4562,43 24752 0,36 4889,00 4889 302,53 0,00
Cass 8.2 25 160 50 | 4280,69 1,00 438518 5451 902,48 19,55 | 4476,18 28520 0,66 471141 4880 900,25 3,45

3.6.2 Solving the column generation model

The results presented in Tables 3.7 and 3.8 were obtained through 64 benchmarks instances
from the literature for the column generation model presented in Section 3.3. The results in Table
3.7 refer to instances with 20 clients and the Table 3.8 presents the results for the instances with
25 clients.

In order to evaluate the model, three different tests were performed (run #1, run #2 and

run #3). The total time of run #1 was limited to 900 seconds, considering that 300 seconds
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Table 3.7: Column generation results for instances with 20 clients

run #1 run #2 run #3
‘ Inst. n W Q@ ‘ zr, MIP  gap  tipa it ‘ zr, MIP  gap tipa it. ‘ zrr, MIP  gap  tim it ‘
C1 1.1 20 140 50| 3381,93 4431 0,00 239 3] 338193 4431 0,00 341 2| 338193 4431 0,00 340 2
Cao1 1.2 20 160 50 | 332550 4430 0,00 463 4332550 4430 0,21 910 6332550 4430 0,00 868 3
Cho, 1.3 20 140 70| 3281,94 4384 0,09 818 4| 327798 4384 0,00 1018 3| 327798 4384 0,01 1832 3
Cho1 1.4 20 160 70| 323730 4374 0,02 929 5| 323444 4374 0,24 1122 2| 3251,05 4374 0,02 3374 5
Cypo| 2.1 20 140 50| 311442 4681 0,00 120 2| 311442 4681 0,00 114 2| 311442 4681 0,00 114 2
Cypo | 2.2 20 160 50| 3031,03 4472 0,00 272 4| 3031,03 4472 0,00 399 2| 3031,03 4472 0,00 415 2
Cypo | 2.3 20 140 70| 2992,65 4424 0,00 388 2299265 4424 0,00 491 2 |2992,65 4424 0,00 425 2
Cyz2 | 2.4 20 160 70| 2921,72 4428 0,00 902 4| 2921,72 4431 030 956 1| 2921,72 4424 0,00 1635 3
Cyps| 3.1 20 140 60| 3789,91 4651 0,03 424 2| 375196 4431 0,00 475 2| 375196 4431 0,00 473 2
Cys | 3.2 20 160 60| 376775 4426 0,00 531 6| 367460 4426 0,00 1037 3| 367423 4426 0,00 1472 3
Cys | 3.3 20 140 80| 3629,78 4385 0,00 431 3| 361087 4385 0,01 913 2| 361087 4385 0,00 1217 2
Cys | 3.4 20 160 80| 362068 4391 0,00 583 4362068 4401 014 926 2 |3620,68 4385 0,00 1733 3
Cypa | 4.1 20 140 60| 3750,33 4537 0,00 139 2| 3750,33 4537 0,00 135 2| 3750,33 4537 0,00 136 2
Cy,4 | 4.2 20 160 60| 376594 4493 0,00 289 3| 366642 4471 0,00 709 3| 366642 4471 0,00 714 2
Cya | 4.3 20 140 80| 360064 4409 0,00 479 5| 357967 4409 0,00 852 4 |3579,67 4409 0,00 674 2
Cyq4 | 4.4 20 160 80| 360577 4409 0,00 495 4| 3556,41 4405 0,16 903 2 |3556,34 4405 0,00 2364 4
Ca 5 5.1 20 140 60| 325544 4674 0,00 151 2| 325544 4674 0,00 145 2| 325544 4674 0,00 147 2
Coo5 52 20 160 60| 317413 4475 0,00 433 4| 317413 4475 0,00 815 3| 317413 4475 0,00 795 4
Cho5 5.3 20 140 80| 3122,17 4454 0,00 601 4| 312259 4452 0,00 698 2| 312217 4449 0,00 686 2
Ca 5 5.4 20 160 80 | 3043,76 4413 0,00 850 4| 3091,88 4438 0,00 892 1| 303641 4401 0,00 3174 5
Cye | 6.1 20 140 50| 273417 4420 0,00 468 4| 273417 4420 0,00 534 2| 273417 4420 0,00 533 2
Cye | 6.2 20 160 50| 2696,97 4424 027 778 5| 272612 4421 0,30 946 2 |2683,96 4415 0,31 2668 4
Cyg | 6.3 20 140 70| 268220 4402 0,00 848 4266829 4383 0,00 887 1265223 4383 0,00 4238 5
Cype | 6.4 20 160 70 |2623,34 4398 0,03 1029 4| 2651,02 4439 0,39 956 1 |258695 4386 0,27 4918 5
Cyr| 7.1 20 140 50| 3306,31 4835 0,00 133 2330631 4835 0,00 130 2330631 4835 0,00 134 2
Cyy| 7_2 20 160 50| 322685 4795 0,00 301 4322685 4795 0,00 548 2322685 4795 0,00 676 2
Cyz7| 7.3 20 140 70| 319257 4751 0,00 501 3| 319257 4748 0,00 509 2| 319257 4748 0,00 510 2
Cypr7| 74 20 160 70| 3128,78 4589 0,00 962 4| 312856 4577 0,24 958 1| 312856 4548 0,00 1733 2
Cys | 8.1 20 140 50| 3355,59 4744 0,00 24 2| 335559 4744 0,00 18 2| 335559 4744 0,00 25 2
Cys | 8.2 20 160 50 | 324833 4656 0,00 50 2| 3248,33 4656 0,00 47 2| 3248,33 4656 0,00 47 2
Cys | 8.3 20 160 50| 3169,33 4587 0,00 73 2| 3169,33 4587 0,00 68 2| 3169,33 4587 0,00 69 2
Cyps | 8.4 20 140 70| 3101,05 4451 0,00 268 3| 3101,05 4451 0,00 354 2| 310,05 4451 0,00 351 2

(from the 900) were reserved for the search of the integer solution. In each iteration and for each
depot, 120 seconds were used to determine the single-trips and 60 to the multi-trips. Regarding
the run #2 the total time was also 900 seconds being 350 for the integer solution. In each
iteration, for each depot, the single-trips and multi-trips routines were limited to 350 seconds.
Finally, run #3 had a total execution time of 7200 seconds with 900 designated for the search

of the integer solution and the search of single-trips and multi-trips was limited to 400 seconds.

The column zg;, denotes the value of the linear relaxation of the column generation model
and the M I P column includes the values of the best integer solution obtained during the allowed
maximum time for each run. The column gap provides the value in percentage of the optimality
gap reached when the solution is found. Column t;.:; is related to the total time of the algorithm

and it represents the total number of iterations.
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Table 3.8: Column generation results for instances with 25 clients

run #1 run #2 run #3
‘ Inst. n W Q ‘ zr, MIP  gap  tipa it. ‘ zr, MIP  gap tippa it ‘ zr, MIP  gap  tim it ‘
Cas1 1.1 25 140 50| 404763 4751 0,00 927 8| 3992,74 4751 0,02 902 2| 3992,74 4751 0,00 1638 4
Cos.1 1.2 25 160 50 | 4062,54 4769 0,01 643 4| 402448 4758 0,13 1095 3| 3959,84 4760 0,14 3432 6
Cas 1.3 25 140 70| 396577 4694 0,03 1030 4 |3993,49 4703 0,14 958 1| 395154 4687 0,03 4117 4
Cas1 1.4 25 160 70| 3971,46 4709 0,03 1030 4| 401717 4734 0,14 960 1| 3936,78 4690 0,03 4122 4
Cyo | 2.1 25 140 50 | 3660,07 4764 0,00 447 3| 3660,07 4764 0,00 653 2| 366007 4764 0,00 923 3
Coso | 2.2 25 160 50| 3626552 4764 0,02 865 6| 361953 4765 0,19 973 2| 3601,23 4765 0,03 3064 5
Cyso| 2.3 25 140 70 | 3602,74 4749 0,00 934 4 |358585 4718 0,02 957 1| 3534,76 4706 0,01 4015 4
Cyo| 2.4 25 160 70 | 3573,38 4770 0,03 1029 4 | 359706 4772 0,23 958 1| 3489,88 4501 0,00 4499 5
Cos3 | 3.1 25 140 60| 4649,71 5038 0,04 564 4463333 4944 0,02 1123 3| 4611,06 4844 0,00 1457 3
Coys| 3.2 25 160 60 | 4771,34 5275 0,06 568 4| 461736 5036 0,05 1126 3| 461736 5037 0,04 2125 3
Cyss | 3.3 25 140 80 | 446120 4729 0,00 856 4 |4460,29 4726 0,00 880 1 |4444,04 4721 0,00 2966 4
Cos3 | 3.4 25 160 80| 444441 4745 0,00 1000 4 | 448339 4770 0,00 962 1| 444427 4733 0,00 2934 4
Cosq | 4.1 25 140 60| 463166 5015 0,03 495 3 |450858 4790 0,03 1118 3| 446740 4767 0,00 1563 3
Cya| 4.2 25 160 60 | 467382 5023 0,05 624 5459535 4842 0,03 1121 3| 451225 4785 0,01 2527 4
Cya| 4.3 25 140 80 | 435166 4694 0,00 879 4| 435681 4731 0,04 961 1435098 4703 0,01 3171 4
Cosq | 4.4 25 160 80| 434226 4701 0,00 911 4| 437261 4745 0,03 960 1| 434226 4690 0,00 2843 4
Cys| 5.1 25 140 60| 397509 4779 0,00 721 5| 397118 4779 0,00 1076 2| 397099 4779 0,00 2025 4
Cys | 5.2 25 160 60 | 391468 4795 0,00 854 4| 3981,08 4826 0,12 971 1| 387890 4779 0,00 3734 6
Cos5 | 5.3 25 140 80| 3919,15 4786 0,00 846 4 |3940,38 4772 0,00 723 1| 386317 4731 0,00 6604 8
Cos5 | 5.4 25 160 80| 3970,38 4792 0,02 1030 4| 409789 4835 0,02 958 1| 392754 4775 0,03 4922 5
Cyse | 6.1 25 140 50 | 347293 4755 0,00 756 4 | 347293 4755 0,01 935 1| 341354 4755 0,00 2511 4
Cye | 6.2 25 160 50 | 3450,01 4771 0,02 934 4353620 4828 0,24 958 1| 3436,72 4766 021 3635 5
Cose | 6.3 25 140 70| 3392,74 4753 0,00 935 4| 340758 4746 0,02 955 1| 332659 4716 0,01 4914 5
Coye | 6.4 25 160 70 | 336724 4585 0,00 1015 4| 341304 4780 0,04 957 1| 3330,36 4580 0,00 3576 4
Cys7 | 7.1 25 140 50 | 410492 5083 0,00 253 2| 410492 5083 0,00 303 2| 410492 5083 0,00 303 2
Cos7 | 7.2 25 160 50| 399705 4864 0,00 523 4| 399705 4864 0,00 883 4| 399705 4864 0,00 911 3
Coysr | 7.3 25 140 70| 392387 4780 0,00 815 4| 393165 4774 0,00 749 1| 392324 4772 0,00 1845 4
Cys7 | 74 25 160 70 | 3851,48 4811 0,02 1029 4 |389252 4822 0,18 957 1| 379732 4776 0,02 4437 5
Cyps| 8.1 25 140 50 | 373395 4913 0,00 918 6| 375866 4839 0,18 1026 2| 373395 4889 0,00 1997 4
Coss | 8.2 25 160 50| 373851 4897 0,17 1037 5395445 5139 0,21 959 1| 369481 4832 0,19 3383 5
Cys | 8.3 25 160 50 | 363773 4786 0,00 919 4| 369440 4808 0,00 921 1| 3619,05 4782 0,00 5281 6
Cys | 84 25 140 70 | 360541 4788 0,04 1031 4| 366067 4798 0,02 960 1| 358876 4732 0,01 6531 7

3.6.3 Comparative analysis

From the results obtained for the two compact models, it is clear that the continuous lower bound
of (3.23)~(3.29) is better than the bound of (3.1)-(3.12), both with and without enforcing additional
inequalities. Furthermore, the network flow formulation (3.23)-(3.29) proved to be much more
effective than (3.1)-(3.12) in finding good quality integer solutions. In some cases, the model of
Akca et al. [30] fails even in finding a feasible solution (represented by symbol '—' in Table 3.9),
when (3.23)-(3.29) provides an optimal integer solution.

The comparisons are performed between the different executions of the column generation
model and the network flow model, since the network flow model (3.23)-(3.29) proved to be more
efficient than the three-index commodity flow model (3.1)-(3.12) in finding good integer solutions.

Nevertheless, the results regarding the model (3.1)-(3.12) will remain on Table 3.9 in order to
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demonstrate that the integer solutions presented by this model are of lesser quality than those

presented by the other models under analysis.

In order to perform this comparison, three different symbols are used. The symbol * means

the solution is an optimal integer solution. When a value has the symbol + associated, it means

Table 3.9: Comparative analysis of the presented models

CG: run #1 CG: run #2 CG: run #3 Model (3.1)-(3.12) Model (3.23)-(3.29)

‘ Inst. n W @ ‘ MIP  gap ‘ MIP  gap ‘ MIP  gap ‘ MIP gap ‘ MIP ga,p‘
Ca1 1.1 20 140 50 | 4431* 0,00 | 4431* 0,00 | 4431 0,00 | 4671 28,08 | 4431* 0,00
Ca,1 1.2 20 160 50 | 4430 0,00 | 4430 0,21 | 4430 0,00 | 4656 30,86 | 4430 2,20
Cao,1 1.3 20 140 704384 0,09 | 4384 0,00 | 4384 0,01 | 4618 31,26 | 4384 1,10
Ca1 1.4 20 160 70 | 4374+ 0,02 | 4374+ 0,24 | 4374+ 0,02 | 4399 30,22 | 4378 4,35
Cao.2 2.1 20 140 50 | 4681* 0,00 | 4681* 0,00 | 4681* 0,00 | 4764 39,05 | 4681* 0,00
Chao.2 2.2 20 160 50 | 4472* 0,00 | 4472* 0,00 | 4472* 0,00 | 4780 39,69 | 4472* 0,00
Ca2 2.3 20 140 70| 4424* 0,00 | 4424* 0,00 | 4424 0,00 | 4674 40,08 | 4424 0,00
Ca2 2.4 20 160 70| 4428" 0,00 | 4431"T 0,30 | 4424 0,00 | 4697 41,75 | 4424 0,41
Cos | 3.1 20 140 60 | 46517 0,03 | 4431 0,00 | 4431* 0,00 | 4684 21,98 | 4431* 0,00
Cyps | 3.2 20 160 60 | 4426 0,00 | 4426 0,00 | 4426 0,00 | 4909 29,12 | 4426 1,62
Cos| 3.3 20 140 80 | 4385 0,00 | 4385 0,01 | 4385 0,00 | 4633 23,58 | 4385 1,81
Cys | 3.4 20 160 80 | 43917 0,00 | 44017 0,14 | 4385+ 0,00 | 4445 20,78 | 4389 4,34
Co4 | 4.1 20 140 60 | 4537+ 0,00 | 4537+ 0,00 | 4537+ 0,00 | 4740 24,74 | 4668 3,44
Coa | 4.2 20 160 60 | 4493" 0,00 | 4471 0,00 | 4471 0,00 | 4894 28,54 | 4471 0,89
Cyp4 | 4.3 20 140 80 | 4409* 0,00 | 4409 0,00 | 4409* 0,00 | 4638 26,32 | 4409* 0,00
Cooq | 4.4 20 160 80 | 4409" 0,00 | 4405" 0,16 | 44057 0,00 | 4437 21,68 | 4402 3,92
Cao5 5.1 20 140 60 | 4674 0,00 | 4674* 0,00 | 4674 0,00 | 4951 38,41 | 4674* 0,00
Cao5 5.2 20 160 60 | 4475 0,00 | 4475* 0,00 | 4475* 0,00 | 4727 37,77 | 4475* 0,00
Cype | 6.1 20 140 50 | 4420 0,00 | 4420 0,00 | 4420 0,00 | 4590 42,71 | 4420* 0,00
Cops | 6.2 20 160 50 | 44247 0,27 | 44217 0,30 | 44157 0,31 | 4797 46,32 | 4414 2,31
Cyy| 7.1 20 140 50 | 4835* 0,00 | 4835 0,00 | 4835 0,00 | 5137 36,82 | 4835* 0,00
Cyp7| 7.2 20 160 50| 4795 0,00 | 4795 0,00 | 4795 0,00 | 4969 36,91 | 4795 2,49
Cypgs | 8.1 20 140 50 | 4744 0,00 | 4744 0,00 | 4744* 0,00 | 5146 39,16 | 4744* 0,00
Cys | 8.2 20 160 50 | 4656 0,00 | 4656* 0,00 | 4656* 0,00 | 4882 37,01 | 4656* 0,00
Cas1 1.1 25 140 50 | 4751 0,00 | 4751 0,02 | 4751 0,00 - - | 4751 1,45
Cas1 1.2 25 160 50 | 4769" 0,01 | 4758" 0,13 | 4760" 0,14 | 6712 44,54 | 4646 1,96
Cas0 2.1 25 140 50 | 4764* 0,00 | 4764* 0,00 | 4764* 0,00 | 5506 38,44 | 4764* 0,00
Cas0 2.2 25 160 50 | 4764T 0,02 | 4765T 0,19 | 4765T 0,03 - - | 4764 3,47
Coss | 3.1 25 140 60 | 5038" 0,04 | 49447 0,02 | 48447 0,00 | 7384 41,46 | 4817* 0,00
Coss | 3.2 25 160 60 |5275" 0,06 | 5036T 0,05 | 5037" 0,04 | 6876 37,81 | 4803 2,49
Cosg | 4.1 25 140 60| 5015" 0,03 | 47907 0,03 | 4767 0,00 | 5409 22,75 | 4767 2,05
Cosq | 4.2 25 160 60 | 5023" 0,05 | 48427 0,03 | 47857 0,01 | 7110 42,45 | 4767 5,03
Cass 5.1 25 140 60 | 4779* 0,00 | 4779* 0,00 | 4779* 0,00 | 7585 51,33 | 4779* 0,00
Cass 5.2 25 160 60 |4795" 0,00 | 48267 0,12 | 4779" 0,00 | 7420 51,28 | 4774 2,74
Cye | 6.1 25 140 50 | 4755 0,00 | 4755 0,01 | 4755 0,00 | 6910 54,18 | 4755 1,78
Cose | 6.2 25 160 50| 47717 0,02 | 4828" 0,24 | 4766" 0,21 | 6633 52,79 | 4777 26,65
Cys7 | 7.1 25 140 50| 5083* 0,00 | 5083* 0,00 | 5083* 0,00 - - | 5083* 0,00
Cos7 | 72 25 160 50 | 4864* 0,00 | 4864* 0,00 | 4864* 0,00 - - | 4864* 0,00
Coss | 8.1 25 140 50 | 4913" 0,00 | 4889* 0,18 | 4889* 0,00 | 7501 52,96 | 4889* 0,00
Coss | 8.2 25 160 50 | 4897T 0,17 | 5139T 0,21 | 4882" 0,19 | 6688 47,26 | 4970 21,55
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this value is lower than the one presented by the model (3.23)-(3.29). Since this problem is a
minimization one, the symbol + is used when a better integer solution is found. On the other
hand, when the symbol T is displayed it means that the integer solution found is worse than the
one presented by the model (3.23)-(3.29).

For 18 instances, model (3.23)-(3.29) provides the optimal solution within the time limit, while
for the other cases solutions with very small optimality gaps are given. The column generation
model is able to find always a valid solution, even during executions with smaller time limits than
those presented in Section 3.6.2. For the first execution (run #1), the column generation model
was able to find the optimal solution for 15 instances. There are also 2 better and 16 worse
integer solutions during the 900 seconds allowed. If one considers the execution named run
#2, the column generation model provides the optimal solution for 17 instances within the 900
seconds also used in the compact models. As presented in Table 3.9, in the execution run #2
there are also 2 other better solutions comparing to the compact models and 4 worse ones for
the instances with 20 clients when compared with the more effective model, the network flow
model. For the 25 clients instances, only 9 results are worse than those presented by the same
model. For the last execution (run #3), which allowed higher execution times (7200 seconds),
there are 3 better solutions found, although 10 are worse. This execution was able to find 17
optimal integer solutions.

The column generation model is competitive with the network flow model for instances with
20 clients. However, for larger instances it is no longer a good approach due to the complexity

inherent to the sub-problem.

3.7 Conclusions

The MLRP is a management science problem which can be solved using different approaches.
This type of problem commonly occurs in the logistics and transportation fields and combines two

different optimization problems. In the first problem, the FLP, the set of facilities that can be used
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to serve the clients is determined. In the second problem, the MVRP, a set of valid routes to fulfill
the clients demands is obtained. The integration of these two difficult problems is important and
leads to better solutions than solving them independently, since it considers the global system.
This problem presents a particular issue since a vehicle can now perform more than a single route

in the planning horizon.

MLRP consists in the selection of a set of depots to be opened and the determination of a set
of routes used to serve all clients. These routes should be assigned to a vehicle and an opened
depot. The main goal is to minimize the costs associated to the entire system. In this chapter,

three integer programming models to solve the MLRP were presented.

The three-index commodity flow model is a graph-based model which includes a higher num-
ber of variables, since it allows for the model to take into account the variables related to the
vehicles usage explicitly. The graph is defined in an explicitly way and there are variables associ-
ated to the usage of an arc and vehicle, and others that represents the flow through the arc for a
specific vehicle. The column generation approach is divided in the RMP that includes the general
constraints associated to the FLP and the sub-problem that groups the constraints which have a
special structure concerning the ESPPRC. In the RMP, only a subset of variables is considered,
being determined by the sub-problem. These two different type of problems exchange informa-
tion in order to find the global optimal solution. The ESPPRC finds valid single-trips and then new
multi-trips are obtained through the recombination of the valid single-trips and the new multi-trips.
Network flow model is also a graph-based structure but instead of having nodes associated to
clients or depots, the vertices represent time instants. This technique is less intuitive but proved

to be efficient when compared with other approaches.

Several computational experiments were conducted based on a set of benchmark instances
from the literature. The column generation model and the network flow model proved to be more
efficient than the three-index commodity flow model, leading to better integer solutions in shorter

computational times. The three-index commodity flow model sometimes fails when attempting
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to obtain integer solutions, even in finding a feasible one. The column generation model is com-
petitive with the network flow model for instances with less than 20 clients. However, instances
with more customers significantly increase the complexity of the sub-problem. This complexity
is highlighted due to the higher number of sub-problem nodes. The search for elementary paths

becomes more exhaustive.
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4.1 Introduction

The LRP is a complex problem which has deserved special attention during the last years. Sev-
eral authors defined different approaches according to the peculiarities of the variant they con-
sidered. These characteristics have great influence on the solution method that should be used.
Approaches using exact methods, such as those presented in the previous chapter (Chapter 3),
ensure the optimal solution of the problem is found. However, when solving large scale instances,
the computational time may be too long for real supply chain applications. In practice, it becomes
unpractical to wait for a long time for the result of some exact method, since there is a frequent
need to recalculate new distribution and collection routes. Such variations often occur weekly or
even daily, according to the type of the product. For instance, hard planning methods may not
be adequate for the management of perishable goods. In order to suppress this requirement,
heuristics methods are used.

Thus, researchers have been studying heuristic methods which can usually get solutions very
close to the optimal, since these can find a valid solution in an acceptable computational time. Itis
important to consider the trade-off between obtaining the optimal solution in higher computational
times or getting a good valid solution in lower computational times. It is also possible to consider
a hybridization of these two approaches where only a part of the problem is solved to optimality,
and heuristic methods are used to solve the other part of the problem. Indeed, some heuristic
methods are based on exact methods. Several authors limit the computational time and change
some parameters to accelerate the problem convergence. The LRP includes the calculation of
routes. However, this process is frequently simplified.

Many authors use clustering approaches, while others apply methods that simplify the gener-
ation of routes such as combining the routes in ascending order of customer indices such as Akca
et al. [30]. For instance, Barreto et al. [21] present a cluster analysis based on a sequential heur-
istic for the LRP. The authors group the clients and then determine the most adequate route in the

defined cluster. Then, they improve the route through a local search method and finally associate
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it to a depot. Like the rounding heuristic presented in this chapter, some authors define heuristics
where the values of the linear relaxation variables are refined. Local search heuristics are also
frequently used. These exploit a given neighborhood with the aim of finding better solutions than
the current one. In [60], Macedo et al. proposed a meta-heuristic, the Variable Neighborhood
Search for the LRP, where different neighborhoods are exploited until a good solution is found.
The neighborhood is defined according to the peculiarities of the problem.

Other authors use heuristic methods that are based on behaviors of the nature. Derbel et al.
[61] select a Genetic Algorithm with a local search method to solve the LRP. Their algorithm is
based on analogies with the human genetic process. The authors defined genetic operators for
their specific problem so the new population may inherit characteristics of their progenitors and
still have its own singularity.

All of these approaches and others are valid, but some lead to better results concerning the
execution times and the value obtained in the objective function. The main objective is to have a
good trade-off between the objective function value and the computational time needed to solve the

problem. Thus, it is necessary to analyze various solution methods and optimization techniques.

4.2 An iterative rounding heuristic

Rounding heuristics, such the one proposed by Macedo et al. in [55], are often used since they
are simple and efficient methods in finding integer solutions given a linear relaxation solution.
These heuristics use the fractional value of the variables and transform them into integer variables
through simple rounding techniques. These heuristics seem to be very simple but there are some
peculiarities that deserve special attention. One must define simple and valid criteria to select
the variables that are going to be submitted to these rounding techniques. The techniques and
rounding parameters should also be carefully selected. Inefficient management of these details
may lead to unfeasible solutions. When the heuristic leads to unfeasible solutions, the parameters

should be readjusted or complementary techniques should be used to ensure feasibility.
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The computational results presented in Section 3.6.1 proved that the network flow model is
very effective for deriving good incumbents for the problem. Consequently, the linear relaxation
solution will be used as a starting point for the iterative rounding heuristic. A fast procedure for
obtaining good quality solutions consists in the following rounding heuristic which relies on the
iterative solution of the linear relaxation of (3.23)-(3.29). In order to set the rounding heuristic, it

is important to clearly define:

> A model with good incumbents to determine the variables values of the linear relaxation to

initiate the heuristic;

> The parameters and rounding techniques;

> The method used to determine if the heuristic conducts to a valid solution;

> An alternative method to find an integer solution when the heuristic fails.

The Algorithm 4.1 presents the implemented iterative rounding heuristic in detail. For a better
technical understanding, some important parameters are presented below and the meaning of

the decision variables is also remembered.

Parameters and definitions

A = set of \; sorted in decreasing order of decision variable, Vd € D,
Q = setof 2% sorted in decreasing order of decision variable, ¥ € Ry,
0<u<WeWVandVd e D,

« = paremeter that determine if \; should be rounded,

/3 = parameter that determine if ¢, should be rounded.

uvr
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Decision Variables

(
1, if the depot d is selected to be open ,
A = Vd € D,

\ 0, otherwise

(
1, if route r goes through the arc (u, v) for the depot d, Vr € Ry,

Lopor = O§u§W€\IfandVd€D,

0, otherwise

Algorithm 4.1: lterative rounding heuristic

1 Solve the linear relaxation;

2 repeat

3 A < list A4 in decreasing order ;

4 forall \;, € A do

5 if \; > a then

6 )\d — [)\d-l ;

7 Q) « listxd  in decreasing order ;

8 forall 2¢ < Q2 do

9 if 24, > /3 then

10 xgm' A ""Egvr-‘ ;

11 repeat

12 if 2, , > [ then

13 pair (u,v')" € Wy, u > v in increasing order of u with
previous one ;

14 until there are routes given W;

15 until no morevariables are fixed,
16 if unavailable solution for the original problem then
17 L Solve the model up to integrality for the remaining instance;

As previously mentioned, the heuristic starts with the solution of the linear relaxation of (3.23)-
(3.29). It follows with an attempt to fix the different variables of the model. Primarily, one attempt

to fix the variables related to the opening of depots, the A, variables, and then the fixed variables
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d
uor

concerning to the flows associated to the workday instants, in other words the x¢,. and the z
with w > 0 in that order and repeatedly.

The principle is to sequentially force the opening of the depots whose corresponding A4 is
above a given parameter «v. The iterative rounding heuristic starts by the depot with the largest
Mg and continues to select the variables associated to the depots in their decreasing order. Then,

it builds workdays for the selected depot d first by rounding up a xgw variable whose value is

d

uvr

above a given parameter 3. The x¢ variables are once again selected in decreasing order of

their value, then by selecting further routes (u,v')"” € ¥, (with u > v, and in increasing order

d

uv'r

of u) to pair with the previous one such that =% , , > 3 and until there remain routes given the
time limit V.

When there are no more variables to set, the linear relaxation of (3.23)-(3.29) is solved again
for the remaining instance, and the process is repeated until it cannot fix any more variables. At
this stage, if a solution for the original problem is not already available, the model (3.23)-(3.29)

is solved up to integrality for the remaining instance. In that case, a limit on the computing time

can be enforced and the best incumbent found until this time limit can be used as a solution.

4.3 A variable neighborhood search approach

The Variable Neighborhood Search (VNS) is a higher-level heuristic proposed by Mladenovi¢ and
Hansen [62]. This metaheuristic allows one to create a heuristic which explores, in a systematic
way, several neighborhood structures providing a good solution with less computational effort.
This attribute is important when dealing with optimization problems with hard instances such
as location routing problem. VNS is a strategy which conducts the search process by changing
the neighborhood structures, allowing to explore distant neighborhoods of the current incumbent
solution. The local search ends when it finds a local optimum. Then, it restarts with a different
neighborhood structure until all the defined neighborhood space has been exploited.

This metaheuristic has been used to find approximate solutions of various combinatorial op-
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timization problems. Some of these applications are described in different surveys [63, 64]. Ac-
cording to Hansen and Mladenovi¢ [65], there are some details that must be taken into account.
It is important to be careful when choosing the set of neighborhood structures that will be used
in the local search. The stopping criterium is also an important condition in the VNS algorithm.
In [65], Hansen and Mladenovi¢ present seven properties that help to evaluate the VNS: simplicity,
coherence, efficiency, effectiveness, robustness, user-friendliness and innovation. These proper-
ties are essential when dealing with integrated optimization problems such as MLRP (Multi-trip
Location Routing Problem).

In [59], Macedo et al. propose a VNS metaheuristic for the LRP where vehicles and depots
have limited capacities and the vehicles can perform several routes in the same planning period.

During the search conducted by the VNS a set of possible solutions is explored according to
the defined neighborhood. This set of possible solutions is called the search space. To evaluate
the VNS it is important to define the search space and the evaluation function. A four-dimensional
matrix Sg,rc 1S Used to represent the solution in a simpler and unique way. Other important

parameters are presented below.

Parameters

S = Solution
ng = number of depots d,Vd € D
m(.S) = Number of open depots d
v(d) = Number of workdays associated to the depot d, Vd € m(S)
r(d,v) = Number of routes allocated to vehicle v associated to depot d,
Vv € v(d) and d € m(S)
¢(d, v, ) = Number of clients on route r allocated to vehicle v of depot d,

Vr € r(d,v),v € v(d) and d € m(S)
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Savre = Solution from the search space where customer ¢ (¢ = 1, ..c(d, v, 7)) is served
by route r (r = 1, ..., r(d,v)) of vehicle v (v = 1, ..., v(d)) from depot d
(d=1,...m(9)),Vc € c(d,v,r),r €r(dv),ve€v(d)andd € m(S)

C}l = Fixed cost associated to the opening of a depot d, Vd € m/(S)
C., = Fixed cost that represents the use of a vehicle v, Vv € v(d)
L, = Capacity of depot d, Vd € m/(S)

bs = The load of the solution S

() = Capacity of a vehicle

tr;,n; = Cost of traveling from m; to 7;.

There are two different types of unfeasible solutions that may be reached through the explor-
ation of the search space. One set of unfeasible solutions allows to exceed the depots capacity,
while the other set allows to exceed the vehicles capacity. Thus, the evaluation function should
take into account the violations aforementioned through the introduction of penalizations. A solu-
tion S is evaluated for its fixed and variable cost through the evaluation function which takes into
account the penalties associated to the violation of the constraints. The penalty of surpassing
the vehicle capacity is represented by 3 while «@ denotes the penalty for exceeding the depots

capacity.

Evaluate

f(S) = Costy + Cost, + Cost,, (4.1)
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where

r(d,w) c¢(d,v,r)

m(S)
Costy = Z C'f + amaz < 0, Z Z Z T (4.2)
d=1

v=1 r=1 c=1

(S)
Cost, = C, v(d) (4.3)
d=1
m(S) v(d) r(dw) [c(dw,r) c(dv,r)
Cost, =Y > 3 [ Y trmps +Bmaz0, Y by, —Q (4.4)
d=1 v=1 r=1 c=0 c=1

—Ly$=0¥del,...,m(S),

max< 0, Y by, —Qp=0Vde{l,....m(S)}ve{l,... vd)}

Parameters v and 3 are dynamically updated being increased or decreased in order to allow
the intensification or diversification of the search, respectively. Thus, when the current solution
violates a constraint, the parameter is increased so the current search is intensified, guiding the
search to a feasible solution space. Whenever the current solution is feasible, i.e. respects the
constraints, the corresponding parameter is decreased allowing for the violation of the capacity
constraint in order to enable a broader search. The process to update the o and 3 parameters

is described in Algorithm 4.2 using an iteration with the current solution S.
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Algorithm 4.2: Dynamic update for o and 3

Input: S, o, ,e4,25, (o, B > 0;24,25 €]0,1])

it 50 S S by, < Loy V€ {1, m(S)} then
| a=a(l—c,);

else
| a=a(l+e,);

if Sy, <Q, Vde{l,...,m(S)},Yue{l,... v(d)},Vie

A W N =

5
{1,...,r(d,v)} then
6 | B=p01-¢cp);
7 else
8 | B=p(14ep)

9 return o, 3

4.3.1 Neighborhood structures

The selection of the neighborhood structures must be performed according to the problem par-
ticularities and within the defined solution space A/. For this problem, six distinct neighborhood
structures (N € {N1, ..., Ns}) were defined. These different structures are used for distinct
purposes such as the improvement of the costs and the diversification of the search. Neigh-
borhoods A/ and A5 are used in order to improve the cost associated to the routes whereas
neighborhoods A5 and N, have as main objective the improvement of the costs related to the
workdays. For the location problem, two neighborhoods N5 and N are used, allowing for the
search diversification since they permit the opening of new depots. Neighborhoods N7, N5 and
N are combined in order to reduce the perturbations caused by the last two neighborhoods (N5
and Ng), since the diversification carried out by these two neighborhoods strongly disturbs the

good local optima found during the search.

The first two neighborhoods, V; and N5, are routing neighborhoods. A new element of the
first neighborhood A7, named “move client”, is achieved by changing a client of its position. This
modification can be made between two different routes, which may or may not be associated

with the same depot, or in the same route. The customer removed is inserted into a certain
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New route a’

B\

Route a
C3

dy /Ca\

VAR N
| LN / :
: Cq — €4 |
E Route b E E New route &/ E
i _— 05\ : i T G :
L d : v d / l
E \ Co i E \ Co i

Figure 4.1: Example of a move in neighborhood N;

position of another selected route. Once again, this modification can be performed with identical
routes which may or may not be associated to the same depot. Accordingly, neighboring routes
are derived from those that have been selected to perform the shift move of a customer. In the
example depicted in Figure 4.1 two routes associated with the same depot (d;) are selected. The
client ¢g is removed from the route a which visits clients c¢s, ¢1, ¢ and ¢4 yielding a new route
a’ which no longer visits the customer cg. In the route b (which satisfies clients c5 and cs), the
client removed from the route a is inserted resulting in a new route b’ that now visits the client cg

between clients c5 and cs.

The “swap two clients” is the designation for the neighborhood Ns. Through this neighbor-
hood, a customer may be exchanged between different routes or within the same route. This shift
can be made in routes associated with the same depot or linked to a different depot. Figure 4.2
presents the swap of clients cg and ¢, between routes a and b. Despite this exchange, the routes
are not modified in relation to the number of visited clients, although the cost of the route may
be completely different. Route a visits four clients (c3, ¢1, ¢ and ¢4) and the new route @ also
satisfies four customers (cs, ¢1, ¢ and ¢4). Similarly, routes b and b’ satisfy the same number of

clients, but the former visits client ¢y and the latter route includes client ¢g instead of ¢y. It should
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New route a’
C3

e

Route a
C3

dq / 06\

S

E | C €2 |
: J ~—@ : ) ~—@
: \ LN \ :
: Cq y—>, Ca |
E Route b E E New route &’ E
| A | | e |
! — ! —

Figure 4.2: Example of a move in neighborhood N5

be noted that the selected routes in the example are associated with different depots which does
not invalidate the use of the neighborhood involved. The customer position in Figure 4.2 is not

changed in order to clarify the process of the neighborhood generation.

Neighborhoods N3 and N are workday neighborhoods. The workday of a vehicle can be
composed by more than one route. In order to generate neighbors in the neighborhood type
N5 a route of a vehicle is removed from its workday. The removed route is then associated to
a different workday of a vehicle. This change can be performed in workdays associated to the
same or different depots. Neighborhood N5 is termed “shift move of a route”. As presented in
Figure 4.3, route a is composed by two different routes (r; and ry) that visit clients ¢; and ¢,
cs and ¢4, respectively. These routes are performed by vehicle v;. The new route @’ ceases to
conduct the route 7, no longer visiting the customer ¢;. The route b that just fulfilled clients ¢s, cg
and c7, now visits the client ¢; through the route 7] yielding new route &' It becomes necessary
to highlight that the route -} is now the rearrangement of route 7. The customers visit order of

route r; can be handled in order to build a most efficient route for the new associated depot.

The neighborhood “swap two routes” (V) works similarly to the neighborhood N3, however

the removed route is replaced by a route of another workday. As previously mentioned a neighbor
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Route a (v = {r1,m2}) New route @’ (v; = {rs})
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Figure 4.3: Example of a move in neighborhood N3

of neighborhood A/ is obtained by swapping two routes from the workday (Figure 4.4). The two
vehicles used in these workdays may be associated to the same or different depots. Once more,
a rearrangement of the routes is made in order to make them more efficient for the new depot
that is associated. Route a uses the vehicle vy to satisfy clients ¢y, through route 1, and cs, c3
and ¢y, using route 7. On the other hand, route b uses vehicle v9 to perform the route r3 that
fulfills clients ¢5, cg and c7. New route a’ performs route 71 and r%. Note that the order of visited
clients of the route 73 is rearranged, since the depot associated to the route is different from the
original one. The route 73 is now associated to the depot d; instead of ds resulting in route r%.

The same situation occurs with the route 7, that is optimized to route 7.

Location neighborhoods is how the neighborhoods A5 and Ny are denoted. In order to
generate neighbors in the neighborhood N5 (“move workday”), a slightly different concept is
used. A new neighbor is created by opening a closed depot. A workday of a vehicle is removed
from an open depot and then inserted in a closed depot. The main feature of this neighborhood
N5 is to enforce the opening of closed depots. Figure 4.5 presents a set of three routes 1, r5 and
r3 associated to the depot d; and a closed depot ds. Route a and b represent different workdays

associated to the vehicle v, and vs, respectively. Neighborhood A/ forces opening the depot ds
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Route a (v = {ri,m2}) New route @’ (v; = {r1,73})
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Figure 4.4: Example of a move in neighborhood N}

by associating to it route 7% which serves client ¢; through the new route &’. The depot d; still
has two routes, r; and r9, associated that serve clients ¢, ¢, c3 and ¢4 throughout the workday
related to the vehicle v;. The routes associated to the new opened depot are also optimized.
The neighborhood NVg named “move depot” generates new neighbor routes by opening a new
depot and closing an used one. All workdays of the different vehicles are inserted in the closed
depot. The depot previously open is closed. In Figure 4.6 clients c5 and ¢y, ¢o, ¢c3 and ¢4 are

Route a (v1 = {r1,72})
Route b (v = {r3})

New route a’ (v; = {ry,r2})

CQ——\

d / /03

02——\)

d / /CS

'_ﬁﬁ'_ﬁ'f_'f_'f_'f_ﬁﬁlﬁﬁf_'f_'f_'f_'f_f_ﬁ

N5
05
Closed depot New route b’ (vg = {rs})
3
ds C5 &T/S/ ds

____________________________________________

Figure 4.5: Example of a move in neighborhood N5
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Figure 4.6: Example of a move in neighborhood N

served by two different vehicles v; and vy (which represent two different workdays), respectively.
All workdays associated to the vehicle v, and v, are removed from the depot d; and inserted in

depot ds. Again, the routes concerning the new open depot are rearranged.

4.3.2 A skewed variable neighborhood search algorithm

As previously mentioned the Variable Neighborhood Search is a high-level heuristic whose goal is
to find integer solutions by exploring, in a systematic way, a set of neighborhood structures, being
in this case applied to the location routing problem.

The skewed variable neighborhood search (SVNS) heuristic, presented by Macedo et al. in
[59], is similar to the VNS method. However it is a broader strategy since it allows for a more
comprehensive exploration. Thus, distant neighbors of the current incumbent solution may be
considered in order to find better local optima. However, this algorithm deals with higher perturb-
ations that are bounded by a specific distance function, which defines the solution space of the
neighborhood.

This method, summarized in Algorithm 4.3, starts with an initial solution generated through a

simple greedy heuristic. Through a Variable Neighborhood Descendent (VND) the current solution
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is improved by using neighborhoods N7, Ns, N3 and Ny in a sequential way. This process is a
General VNS (GVNS) algorithm.

After the initialization step the SVNS algorithm goes through a shaking phase (denoted by
Shaking) using neighborhoods /\/z-e{l,g)ﬁ}. Neighborhoods A5 and Ny may strongly perturb the
value obtained in the search phase since the opening of a new depot allows for a diversification of
the search. Thus, neighborhood N/ is combined in order to diminish the generated perturbation.
The number of consecutive moves (using the previously selected neighborhoods) to perturb the
current solution is defined by k. On each iteration, one of the three neighborhoods may be selected

according to the probability PMe{l,S,G}'

Algorithm 4.3: SGVNS algorithm
Input: Set of neighborhood structures N = {Nieq1.. 61}, PNic1 56> Fmaz, P31

1 Initialization: find an initial solution S with a greedy randomized heuristic;
2 S*« S,

3 repeat

4 k<« 1;

5 while £ < k,,,,., do

6 S’ < Shaking(S, Nicq1,5,6} Priciises k) ;
7 S" < WND(S", Nieqr,..a}) ;

8 if f(S”) < f(S*)and S” is feasible then
9 | S5,

10 if f(S”) < (1+np(S,S"))f(S)then

11 S« S

12 k <+ 1,

13 else

14 L k< k+1,;

15 Dynamic update for o and j3;

16 until atermination condition is met;
17 return S*

In order to explore solutions which are at higher distances from the incumbent, the SGVNS
is applied, allowing for the visit of a worse solution (comparing to the current incumbent). This

step may only occur if the solution that is going to be visited and the incumbent are considered
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different if the distance function p, defined below, takes a value above a given threshold.
The distance function p (Equation 4.5) calculates the structural difference between solution
S and S”, taking into account their open depots. Let the variable 7 (7 for S”) be 1 if the depot

1 is opened in S (or in S”), being 0 otherwise.

o5, 5" = 2 =T (4.5)

nq

4.4 Computational results

This section demonstrates the computational results for the two presented heuristics. Various
benchmark instances from the literature are used and the relevant parameters are presented in
the tables that include the computational results. As in the previous chapter, and for the sake of
clarity, in the tables, the /nst column represents the name associated to the instance and the n
column provides the number of clients. Columns W and () represent the length of the workday
and the vehicle capacity, respectively. In order to evaluate the performance of the two heuristics,
their ability to efficiently drive the search for good quality integer solutions is analyzed. The tests
concerning the iterative rounding heuristic were run on a PC with an i7 CPU with 3.5 GHz and 32
GB of RAM. The tests related to the skewed general variable neighborhood search heuristic were
run on a Pentium 4 with 3.6 GHz and 2GB of RAM. In both heuristics the optimization subroutines

rely on CPLEX 12.5.

4.4.1 Iterative rounding heuristic

In order to prove the ability of the iterative rounding heuristic to efficiently drive good integer
solutions, a set of 24 instances with 20 clients and another set of 16 instances with 25 clients
from the literature were used. The experiments were performed in order to evaluate the iterative

rounding heuristic described in Section 4.2 considering the model (3.23)-(3.29) both with and
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without cuts.

The results are given in Table 4.1. Column best ub gives the value of the best known upper
bound for the corresponding instance, column ub;, represents the value of the solution found
by the heuristic and ¢,;5, the total computing time in seconds. In these experiments, the total
time spent in solving the remaining instance up to integrality was limited to 30 seconds. The
parameters v and 5 were both set initially to 0, 9. If the process fails in fixing variables, then it is
repeated with smaller values of o (0, 75 and 0, 5) and 5 (0, 5 and 0, 25). If it still fails, after using
these values, the exact solution procedure for the remaining instances as described in Section
3.4 is used. The results given in Table 4.1 further illustrate the fact that model (3.23)-(3.29) can

be used to efficiently generate good incumbents for the initialization of the problem.
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Table 4.1: lterative rounding heuristic results

Model (3.23)-(3.29)

without cuts with cuts
‘ Inst. n W Q ‘ best ub ‘ uby, tup, | ubp tub), ‘
Ca01 1.1 20 140 50 4431 | 4679 8,85 | 4435 5,62
Ca0,1 1.2 20 160 50 4430 | 4750 10,90 | 4436 11,13
Cao1 1.3 20 140 70 4384 | 4437 60,85 | 4599 52,90
Ca0,1 1.4 20 160 70 4374 | 4430 72,75 | 4492 61,59
Ca,2 2.1 20 140 50 4681 | 4753 4,08 | 4745 7,19
Ca,2 2.2 20 160 50 4472 | 4785 10,32 | 4722 411
Ca,2 2.3 20 140 70 4424 | 4732 162,40 | 4437 159,39
Ca,2 2.4 20 160 70 4424 | 4766 195,47 | 4652 201,34
Ca3 3.1 20 140 60 4431 | 4694 8,59 | 4692 0,63
Ca3 3.2 20 160 60 4426 | 4692 30,60 | 4439 13,86
Ca3 3.3 20 140 80 4385 | 4431 6,58 | 4644 19,74
Cao,3 3.4 20 160 80 4387 | 4407 37,57 | 4445 14,38
Ca0.4 41 20 140 60 4537 | 4726 2,98 | 4714 31,49
Cao.a 42 20 160 60 4471 | 4741 4,93 | 4483 6,84
Ca0.4 4.3 20 140 80 4409 | 4457 10,16 | 4719 5,46
Cao.a 4 4 20 160 80 4402 | 4412 35,88 | 4419 6,36
Ca5 5.1 20 140 60 4674 | 4684 72,67 | 4684 70,88
Ca5 5.2 20 160 60 4475 | 4475 111,28 | 4787 83,98
Ca6 6_1 20 140 50 4420 | 4434 51,58 | 4421 22,34
Cao6 6.2 20 160 50 4414 | 4448 55,13 | 4663 25,95
Cao7 7_1 20 140 50 4835 | 4835 17,94 | 5020 8,04
Cao7 7_2 20 160 50 4795 | 4823 38,42 | 4807 8,58
Cas 8.1 20 140 50 4744 | 5048 27,87 | 5044 26,69
Caos 82 20 160 50 4656 | 4809 34,21 | 4744 31,63
Cas1 1.1 25 140 50 4751 | 4807 12,73 | 5022 12,65
Cas1 1.2 25 160 50 4646 | 4796 20,77 | 4791 14,68
Cas.2 2.1 25 140 50 4764 | 5023 4717 | 4797 17,32
Cas.0 2.2 25 160 50 4759 | 4815 50,53 | 4783 21,39
Cas3 3.1 25 140 60 4817 | 5131 6,09 | 5131 711
Cas3 3.2 25 160 60 4800 | 5115 32,25 | 5091 32,20
Cas.4 41 25 140 60 4767 | 5063 31,88 | 5069 31,47
Cas.4 4 2 25 160 60 4767 | 4922 11,37 | 5032 31,82
Cas5 5.1 25 140 60 4779 | 5382 388,27 | 5028 418,68
Cas5 5.2 25 160 60 4774 | 4966 474,46 | 4842 452,50
Cas6 6_1 25 140 50 4755 | 4792 381,08 | 4796 351,51
Cas6 6.2 25 160 50 4606 | 4796 43796 | 4782 438,14
Cos 7 7_1 25 140 50 5083 | 5409 81,02 | 5329 80,45
Cas7 7_2 25 160 50 4864 | 5067 114,17 | 4952 106,13
Cass 81 25 140 50 4889 | 5157 279,87 | 5085 248,76
Cas s 8.2 25 160 50 4880 | 5172 318,70 | 4904 292,49
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4.4.2 Skewed general variable neighborhood search heuristic

To validate the skewed general variable neighborhood search heuristic, two sets of 32 instances
for 25 and 40 clients and three sets of 16 instances for 50, 75 and 100 clients were used. The
results associated to the referred instances are presented in Table 4.2 and Table 4.3. All instances
consider the availability of five different depots. The distance between the various depots available
and the clients to serve was rounded to the nearest smaller integer. The performance of this
heuristic is measured through a comparative analysis with the solution values obtain with the
best lower bound of the network flow model (3.23)-(3.29), with the additional inequalities defined
in 3.4.2, and the three-index commodity flow model (3.1)-(3.12).

In order to evaluate the SGVNS algorithm, 5 different runs of the heuristic are performed.
The best and the average results are presented in Table 4.2 and Table 4.3. The algorithm is
limited through a CPU time (n x ng4) for the 5 runs which correspond to 125, 200, 250, 375 and
500 seconds, respectively. The parameter k,,,.. is set to 10 and the probability of a move in a
particular neighborhood is defined by Py, = 0.7, Py, = 0.05, Py, = 0.25. The parameters
related to the penalization of the evaluation function are setto a = 0.1, ¢, = 0.001, 5 = 0.1,
eg = 0.001 and = 0.1. The values of the lower bounds that have the symbol * are obtained
with the model defined by Acka [30] (3.1)-(3.12). In Table 4.2, columns [b and ub represent the
best lower bound and the best upper bound acquired with the network flow model. The column

gap gives the value of the gap (Equation 4.6):

ub — Ib
b

gap = (4.6)

Table 4.3 also has a column [b that represents the best lower bound found with the model
(3.1)-(3.12) proposed by Acka [30]. The SGVNS model and the three-index commaodity flow model
were run over 3600 seconds. The best and the average solution obtained in the five runs are

presented by columns z® and 2%, respectively.
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The tables also include columns for the CPU time needed to find the z° (denoted by ¢°) and
the average time for finding the finals solutions (¢**). Columns gap® and gap® represent the gap

between 2% and 2* and the best corresponding lower bound. The gap is computed according to

Equation 4.7:
z—1b
gap = I (4.7)
Table 4.2: SGVNS results for 25 and 40 customers
Model (3.23)-(3.29) SGVNS

L Inst. n W Q L b ub  gap L 2b t*  gap® zav t*  gap®
Cas 1 1.1 25 140 50 | 4698 4751 110 | 4751 720 110 4751 8,10 110
Cas 1 1.2 25 160 50 | 4562 4646 180 | 4646 3580 180 4646 30,80 1,80
Cas 1 1.3 25 140 70 | 4439 4500 3,40 | 4580 450 320 4580 14,60 3,20
Cas1 1.4 25 160 70 | 4372 4460 2,00 | 4460 21,70 2,00 4460 33,50 2,00
C2s.2 2.1 25 140 50 | 4764 4764 0,00 | 4764 41,50 0,00 4764 32,40 0,00
Cas.2 2.2 25 160 50 | 4608 4759 330 | 4759 2570 330 47592 38,50 3,30
Cas.2 2.3 25 140 70 | 4553 4699 320 | 4699 22,00 320 47006 33,20 3,20
Cas.2 2.4 25 160 70 | 4474 4474 0,00 | 4474 5370 0,00 4477 40,40 010
Cas.3 31 25 140 60 | 4806 4806 0,00 | 4817 32,80 020 4817 18,90 0,20
Cas.3 32 25 160 60 | 4699 4800 210 | 4800 1830 2,10 4800 26,40 2,10
Cas.3 33 25 140 80 | 4607 4721 250 | 4721 13,70 2,50 4721 23,20 2,50
Cas.3 3.4 25 160 80 | 4467 4722 570 | 4721 12,90 570 4721 53,30 5,70
Cas.4 41 25 140 60 | 4677 4767 190 | 4767 040 190 4767 6,00 1,90
C25,4 42 25 160 60 | 4539 4767 500 | 4767 030 500 4767 6,10 5,00
Casa 43 25 140 80 | 4446 4687 540 | 4684 020 540 4684 11,40 5,40
Cas.4 44 25 160 80 | 4319 4684 850 | 4511 32,40 440 45166 53,60 4,60
Cas 5 5.1 25 140 60 | 4779 4779 0,00 | 4779 670 000 4779 22,20 0,00
Cas.5 52 25 160 60 | 4709 4774 1,40 | 4774 10,80 1,40 4774 13,20 1,40
Cas 5 5.3 25 140 80 | 4645 4715 150 | 4715 44,40 150 47164 19,50 1,50
Cas.5 54 25 160 80 | 4509 4509 0,00 | 4509 080 0,00 46332 1820 2,80
Cas.6 6.1 25 140 50 | 4687 4755 150 | 4755 940 150 4755 7,20 1,50
Cas.6 6.2 25 160 50 | 4540 4540 0,00 | 4606 330 1,50 46474 42,80 2,40
Cas.6 6.3 25 140 70 | 4480 4480 0,00 | 4480 6840 000 44804 6810 0,00
Cas.6 6.4 25 160 70 | 4403 4474 160 | 4477 880 170 4477 20,80 170
Cas7 7.1 25 140 50 | 5083 5083 0,00 | 5083 4720 0,00 5083 2470 0,00
Casr 7.2 25 160 50 | 4864 4864 0,00 | 4864 350 0,00 4864 15,30 0,00
Cas7 7.3 25 140 70 | 4772 4772 000 | 4772 4330 000 4772 2310 0,00
Cas 7 7.4 25 160 70 | 4648 4771 2,60 | 4771 4650 2,60 4771 30,50 2,60
Cas.8 81 25 140 50 | 4889 4889 0,00 | 4889 160 000 4889 22,60 0,00
Cas.s 82 25 160 50 | 4723 4860 2,90 | 4860 5850 290 4860 27,10 2,90
Cas,8 83 25 140 70 | 4604 4742 3,00 | 4742 12230 3,00 47432 73,70 3,00

(continues on next page)
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Table 4.2: Results for 25 and 40 customers (continued)
Model (3.23)-(3.29) SGVNS
L Inst. n W  Q l b ub  gap L 2b tb gap® 2av t*  gap® J
Cas.8 84 25 160 70 | 4540 4540 0,00 | 4540 80,50 0,00 4540 2580 0,00
Cao1 91 40 140 50 | 6848 6918 100 | 6920 17370 110 69808 87,70 1,90
Cao1 92 40 160 50 | 6682 6910 340 | 6920 151,00 3,60 69278 112,10 3,70
Cao1 93 40 140 70 | 6530 6815 440 | 6813 14640 430 6813 109,20 4,30
Ci0.1 94 40 160 70 | 6426 6815 610 | 6615 15480 290 66208 93,10 3,00
Capp2 | 101 40 140 50 | 6880 6930 070 | 6956 2810 110 71138 89,00 3,40
Cap2 | 102 40 160 50 | 6708 6924 320 | 6924 12680 3,20 69316 108,60 3,30
Cia2 | 103 40 140 70 | 6525 6818 450 | 6813 17810 4,40 68146 127,80 4,40
Cia2 | 104 40 160 70 | 6433 6832 620 | 6614 18200 2,80 66396 6890 3,20
Cas | 111 40 140 60 | 8546 8711 190 | 8715 3310 200 8855 91380 3,60
Cas | 112 40 160 60 | 8490 8490 000 | 8713 17900 2,60 87306 149,60 2,80
Cas | 113 40 140 80 | 8397 8397 000 | 8411 1170 0,20 85476 43,00 1,80
Cas | 114 40 160 80 | 8392 8392 000 | 8403 18750 0,10 84136 67,50 0,30
Caoa | 121 40 140 60 | 6993 7250 370 | 7239 19630 3,50 72448 147,70 3,60
Caa | 12,2 40 160 60 | 6831 7289 670 | 7092 6400 380 71782 129,30 5,10
Caoa | 123 40 140 80 | 6727 6969 3,60 | 6959 5650 340 69708 107,60 3,60
Cas | 124 40 160 80 | 6621 7011 590 | 6912 10370 440 69418 12870 4,80
Caos | 131 40 140 60 | 6908 7243 480 | 7207 5000 430 7210 109,90 4,40
Caps | 132 40 160 60 | 6786 7065 410 | 6976 41,70 2,80 69956 94,00 310
Capps | 133 40 140 80 | 6616 6973 540 | 6877 12420 390 68882 72,50 4,10
Capps | 134 40 160 80 | 6552 6865 480 | 6730 13630 2,70 68322 9520 4,30
Cio6 | 141 40 140 50 | 7022 7218 2,80 | 7246 11430 320 72616 92,60 3,40
Cip6 | 142 40 160 50 | 6831 7039 300 | 7042 4610 310 70642 7510 3,40
Ciaoe | 143 40 140 70 | 6404* - - | 6908 3270 790 69196 74,40 8,10
Cae | 144 40 160 70 | 6310* - - | 6762 7560 720 6858 91,30 8,70
Caor | 151 40 140 50 | 7237 7316 110 | 7333 10430 1,30 73514 139,40 1,60
Caor | 152 40 160 50 | 7076 7104 040 | 7244 7700 240 72936 100,60 310
Cao | 153 40 140 70 | 6454 - - | 6982 30,70 820 70046 121,30 8,50
Cao | 154 40 160 70 | 6355* - - | 6957 10210 9,50 69622 72,10 9,60
Cas | 161 40 140 50 | 6844 7025 260 | 7223 8040 550 7236 137,50 5,70
Cag | 162 40 160 50 | 6768 7005 350 | 7015 19650 3,60 7022,6 109,30 3,80
Cag | 163 40 140 70 | 6335* - - | 6857 3420 820 68678 109,60 8,40
Cag | 164 40 160 70 | 6226* - - | 6645 18300 670 69622 72,10 11,80
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Table 4.3: Results for 50, 75 and 100 customers

Model
(3.1)43.12) SGVNS
L Inst. n w Q L b l 2b tb  gapb zav t*w  gap® J
Cs0,1 17_1 50 140 50 4715 | 5172 34,40 9,70  5276,60 108,90 11,90
Cs0,1 17_2 50 160 50 4613 | 4890 118,60 6,00  4981,20 97,60 8,00
Cs0,1 17_3 50 140 70 4581 | 5041 132,40 10,00 5045,60 70,10 10,10
Cs0,1 17_4 50 160 70 4488 | 4818 40,80 740  4818,30 82,90 7,40
Cs0,2 18_1 50 140 50 6546 | 7016 27,20 720 709760 121,60 8,40
Cs0,2 18_2 50 160 50 6444 | 6991 70,30 8,50  7003,00 112,00 8,70
Cs0,2 18_3 50 140 70 6303 | 6759 137,00 720 6796,20 148,90 7,80
Cs0,2 18_4 50 160 70 6217 | 6593 33,30 6,00 6618,00 104,60 6,50
Cs0,3 191 50 140 60 4914 | 5151 185,50 480 515,80 132,60 4,80
Cs0,3 19_2 50 160 60 4801 | 5138 47,30 700  5142,80 80,70 7,10
Cs0,3 19_3 50 140 80 4713 | 5023 84,60 6,60  5024,60 111,20 6,60
Cs0,3 19_4 50 160 80 4621 | 4798 201,00 3,80 4802,80 134,70 3,90
Cs0,4 20_1 50 140 60 4751 | 5479 14450 15,30  5483,00 117,00 15,40
C50,4 20_2 50 160 60 4650 | 5237 232,10 12,60 5336,40 140,60 14,80
C50,4 20_3 50 140 80 4511 5114 208,70 13,40 511400 164,60 13,40
C50,4 20_4 50 160 80 4433 | 4877 188,10 10,00  5012,20 140,10 13,10
Cr5.1 21_1 75 140 50 5358 | 6141 272,70 1460 614540 214,90 14,70
Cr5.1 212 75 160 50 5215 | 5912 242,00 13,40 5921,40 217,90 13,50
Crs5.1 21_3 75 140 70 5000 | 5438 101,80 8,80 5443,00 208,50 8,90
C75,1 21_4 75 160 70 4876 | 5236 181,90 740 5286,60 155,40 8,40
C7s5,2 22_1 75 140 50 5298 | 6181 122,30 16,70 619500 171,00 16,90
C7s5,2 222 75 160 50 5158 | 5946 8,00 1530 595640 190,10 15,50
Cr5,2 22_3 75 140 70 4936 | 5463 274,00 10,70  5470,60 230,10 10,80
C75,2 22_4 75 160 70 4816 | 5244 251,80 8,90 5339,40 198,70 10,90
C7s5,3 23_1 75 140 60 5270 | 5788 325,00 9,80 5792,80 249,20 9,90
C7s5,3 23.2 75 160 60 5128 | 5568 207,00 8,60 5622,80 230,80 9,60
C7s5,3 23_3 75 140 80 5002 | 5183 179,10 3,60 535580 116,00 7,10
C7s5,3 23_4 75 160 80 4878 | 5171 58,40 6,00  5178,00 227,90 6,20
Crs,4 24_1 75 140 60 5135 | 5888 273,40 14,70 6022,00 263,10 17,30
Crs,4 24_2 75 160 60 5001 | 5874 276,20 1750 5879,60 250,10 17,60
Crs.4 24 3 75 140 80 4857 | 5486 277,00 13,00 549380 13770 13,10
C75.,4 24_4 75 160 80 4743 | 5256 19510 10,80 542720 165,40 14,40
C100,1 251 100 140 50 5433 | 6178 91,30 13,70 6268,60 225,10 15,40
C100,1 25.2 100 160 50 5276 | 5925 240,40 12,30 6042,00 396,90 14,50
C100,1 25.3 100 140 70 5147 | 5524 146,50 7,30  5709,00 331,50 10,90
C100,1 25_4 100 160 70 5009 | 5526 110,60 10,30  5543,20 246,30 10,70
C100,2 26_1 100 140 50 5466 | 6121 118,20 12,00  6139,80 322,80 12,30
C100,2 26_2 100 160 50 5306 | 5867 14550 10,60  5918,20 260,70 11,50
C100,2 26_.3 100 140 70 5152 | 5468 138,90 6,10 548360 318,30 6,50
C100,2 26_4 100 160 70 5013 | 5453 197,10 8,80 5480,20 280,30 9,30
C100,3 27_1 100 140 60 5325 | 6154 364,50 1560 6176,80 229,70 16,00
C100,3 27_2 100 160 60 5179 | 5916 108,80 14,20 5980,60 308,70 15,50
C100,3 27_3 100 140 80 4955 | 5462 464,40 10,20 5532,00 316,90 11,60

(continues on next page)
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Table 4.3: Results for 50, 75 and 100 customers (continued)

Model
(3.1)-(3.12) SGVNS
L Inst. n W  Q L b l b b gap® Lav 9 gap®® J
C100,3 27_4 100 160 80 4832 | 5461 467,30 13,00 5490,00 382,00 13,60
C100,4 28_1 100 140 60 5339 | 6165 455,70 1550 6184,80 314,80 15,80
C100,4 282 100 160 60 5195 | 5923 144,00 14,00 5982,00 168,90 15,10
C100,4 28_.3 100 140 80 4964 | 5537 487,40 11,50 5668,00 359,40 14,20
C100,4 28_4 100 160 80 4840 | 5517 386,70 14,00 5529,40 354,50 14,20

4.4.3 Comparative discussion

As depicted in Table 4.4, it is clear that the average values of the integer solutions obtained
by the SGVNS over the 5 different runs is better than those presented by the iterative rounding
heuristic. This statement is valid whether the incumbent solution used as a starting point for
the iterative rounding heuristic is determined with or without cuts. If one does not consider the
different performances of the used computers for the different heuristics, it may be stated that for
all presented instances only two and four computational times concerning the iterative rounding
heuristic with and without cuts, respectively, are better when compared with the SGVNS heuristic.
For that reason, and considering that the computer used in the SGVNS execution tests has an
older processor (Pentium 4 with 3,5GHz), after comparing it to the iterative rounding heuristic (i7
with 3,6GHz) it is clearly noted that the results obtained by the SGVNS are much more promising.
In order to carry out an equitable comparative evaluation, the column t?f’ represents the average

time with a factor, demonstrated by Equation 4.8:

PassM arkpens
?U — tav X Pentium 4 660 (48)
PassMarkcoe i7 3770k

From the data available on the CPUBOSS database?, the PassMark score of the Intel Pentium
4 660 with 3,5GHz clock speed released in 2005 is 820, 9. On the other hand, the Intel i7 3770K
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with 3,6GHz clock speed released in 2013 has a PassMark score of 6731, 8. Comparing both

values one must notice that the newer processor is about 8,2 times faster. Applying this factor

to the computational time of the SGVNS heuristic it becomes clear that better integer solutions in

much shorter execution times are found.

Table 4.4: Comparative analysis of the heuristic models

Model (3.23)-(3.29)

without cuts with cuts SGVNS

’ Inst. n W @ \ uby, tub, uby, Luby, \ A A I
Cas1 1.1 25 140 50 | 4807 12,73 | 5022 12,65 | 4751,00 81 0,99
Cas1 1.2 25 160 50| 479 20,77 | 4791 14,68 | 4646,00 30,8 3,76
Cas,2 2_1 25 140 50 | 5023 4717 | 4797 17,32 | 4764,00 32,4 3,95
Cas,2 2.2 25 160 50| 4815 50,53 | 4783 21,39 | 4759,20 38,5 4,70
Cos3 3.1 25 140 60 | 5131 6,09 | 5131 711 | 481700 18,9 2,30
Cas3 3.2 25 160 60| 5115 32,25 | 5091 32,20 | 4800,00 26,4 3,22
Cas.4 4.1 25 140 60 |5063 31,88 | 5069 31,47 | 4767,00 6,0 0,73
Cas.4 4.2 25 160 60 | 4922 11,37 | 5032 31,82 | 476700 6,1 0,74
Cas5 5.1 25 140 60 | 5382 388,27 | 5028 418,68 | 4779,00 22,2 2,71
Cas5 5.2 25 160 60 | 4966 474,46 | 4842 452,50 | 4774,00 13,2 1,61
Cas6 6_1 25 140 50 | 4792 381,08 | 4796 351,51 | 4755,00 72 0,88
Cas6 6_2 25 160 50 | 4796 43796 | 4782 438,14 | 464740 42,8 5,22
Cas7 7_1 25 140 50| 5409 81,02 | 5329 80,45 | 5083,00 24,7 3,01
Cas7 7_2 25 160 50 | 5067 114,17 | 4952 106,13 | 4864,00 15,3 1,87
Cos g 8_1 25 140 50 | 5157 279,87 | 5085 248,76 | 4889,00 22,6 2,76
Cass 8.2 25 160 50| 5172 318,70 | 4904 292,49 | 4860,00 271 3,30

4.5 Conclusions

The LRP is a complex problem that has received much attention in the literature. Different authors

use various approaches in accordance with the particularities of the system and the resolution

methods used by them are strongly influenced by these characteristics. Thus, exact methods

usually require longer computational times, so other approaches have been studied. Heuristic

'http://cpuboss.com/cpus/Intel-Pentium-4-660-vs-Intel-Core-i7-3770K#
performance, available on June 10th, 2016
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methods have proven their efficiency since they usually get solutions very close to the optimal
one without compromising the different business activities. These heuristics can find a valid
solution in an acceptable computational time. The trade-off between longer computational times
and good valid solutions in shorter computational times is another significant decision. In order
to accelerate the problem convergence, some researchers limit the computational time of their
algorithms. In the LRP, it is frequent to simplify the process for generating the trips in order to
reduce the calculation time. Although all these approaches have proved to be valid, some lead to
better results than others. Thus, it is necessary to select the best approach to the problem under

analysis. The choice of good resolution methods and optimization techniques is essential.

This chapter covers two distinct heuristics applied to the LRP: an iterative rounding heuristic
and a skewed variable neighborhood search heuristic. The iterative rounding heuristic is initial-
ized with the value of the decision variables obtained from the good incumbents generated by
the model (3.23)-(3.29) presented in Section 3.6.1. The fractional value of the decision variable
is rounded obeying to certain parameters and simple rounding techniques. However, inefficient
management of rounding techniques and parameters may lead to unfeasible solutions. For this
reason, it is important to define an alternative method to find a valid integer solution. This type of
heuristics is simple and efficient in the search for integer solutions given a linear relaxation solu-
tion. The skewed variable neighborhood search heuristic is a high-level heuristic which explores,
in a systematic way, a set of neighborhood structures considering the problem under analysis.
The aim is to find good integer solutions to the location routing problem in acceptable compu-
tational times. This heuristic is similar to the VNS heuristic. Nevertheless, it permits a more
comprehensive neighborhood exploration in order to find better local optima. In order to conduct
a better management of the higher perturbations created by the algorithm, a distance function

that bounds the solution space of the neighborhoods is used.

The two different heuristics are evaluated based on a set of benchmark instances from the

literature. In order to perform a comparative discussion it was necessary to calculate a factor to
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compare the different CPU processors.The Intel i7 processor used to run the iterative rounding
heuristic was 8,2 times faster than the Intel Pentium 4 used to execute the SGVNS heuristic,
according to the CPUBOSS database. According to this factor, it is clear that the SGVNS heuristic

is more promising since it may find better integer solutions in much shorter execution times.



Chapter 5

The multi-trip production, inventory,
distribution and routing problem with

time windows: exact solution

approaches
Outline
5.1 Problemdescription. . . . . . . .. ... 120
5.2 Anarc flow formulation . . . . .. ... L 124
521 Themodel . . . . . . . .. 124
522 Arcsgeneration . . . . . . ... ... ... 130
5.3 Implementationdetails . . . . . ... ... ... ... 132
5.4 Computationalresults . . . . . . . . . . ... 136
541 Solvingthe modelexactly . . . . . . . .. ... ... ... .... 138
5.4.2  Solving the model exactly with arcs limitations . . . . . . . . .. .. 144
5.4.3 Comparative discussion . . . . . . . . . ... ... 152
55 Conclusions . . . . . . . 154

119



120 Chapter 5. The multitrip PIDRPTW: exact solution approaches

5.1 Problem description

The Multitrip Production, Inventory, Distribution and Routing Problem (MPIDRP) is considered
an integrated problem as it combines important management science problems such as the Pro-
duction and Distribution Problem (PDP), the Multi-trip Vehicle Routing Problem (MVRP) and the
Inventory Routing Problem (IRP). The mentioned problems typically occur in the logistics and
transportation fields, being related to the inventory, distribution and production management. In
the PDP, the clients are served according to their periodic needs and decisions related to the
distribution and the production for each period are taken into account. In this type of problem,
the customers may receive the needs for future periods. However, constraints concerning the
inventory are not considered. The IRP addresses the lack of inventory management of the PDP
disregarding production management. This inventory management may occur in the clients, in
the warehouse or in both. During the last years, the integration of these two important problems
has been particularly studied through the Production, Inventory, Distribution and Routing Problem
(PIDRP). The PIDRP considers simultaneously restrictions related to the management of produc-
tion and the management of inventory. The PDP, IRP and PIDRP also may consider constraints
concerning routing and distribution of goods. The MVRP determines a set of routes to fulfill the
clients needs having the particularity that a vehicle can perform more than a single-trip during the
planning horizon. The main objective of the integration of these problems is the cost minimiza-
tion considering the entire system. Solving these management problems in an integrated manner
leads to better solutions from the global perspective. However, the size of the problems increases
significantly. When clients have time windows for the distribution of their orders, the problem
is called Multi-trip Production, Inventory, Distribution and Routing Problem with Time Windows
(MPIDRPTW).

The MPIDRPTW includes a single production facility that may fulfill a set of clients that have a
time varying demand during a finite planning horizon and each client has a specific time window

to deliver their orders. This problem considers that a fleet of homogeneous vehicles performs a



5.1. Problem description 121

set of routes in order to distribute all goods. The multi-trip variant allows for each homogeneous
vehicle to make more than a single-trip during the planning horizon. The demand of a client may
be satisfied through inventory held at the facility or from periodic production. Customers may
receive the demand associated to future periods considering the global minimization of the costs
associated to the distribution, the production and the inventory process, however split delivery is
not allowed. The inventory holding costs occur at the facility when there is overproduction and at
the client when the demand associated to future periods is stored. The facility incurs in a setup
cost when a production period is scheduled and the capacity of the facility is limited.

The multi-trip variant is commonly used in the transportation of perishable goods, which must

be delivered in a short planning horizon, and when the routes are bounded to a small geographic

area.

Definition

A route r serves an ordered set of clients and may be considered a single-trip (5 in Figure 5.1)
or a multi-trip (r; in Figure 5.1). A single-trip visits a set of clients and then returns to the facility,
whereas a multi-trip returns and leaves a facility at least twice. A set of single-trips executed by the
same vehicle is called a multi-trip and is associated only to one vehicle. Each vehicle performs
a single-trip or a multi-trip according to its time availability, which is determined by a workday. In
Figure 5.1, an example of two different routes that serve a set of seven clients for the first planning
period (¢1) is provided. Although the customers may receive the needs for future periods, one
assumes that the demand of the current period must be necessarily fulfilled. The route r is
composed by two single-trips (st and sts). The first single-trip (st;) only visits the client ¢, but
the vehicle (v7) that performs the route is loaded with the entire demand associated to the first
and second periods (t; and t,, respectively). The second single-trip sto, which is associated to
the same vehicle vy, satisfies three different clients (c9,c3 and ¢4) and it only delivers the demand

associated to the period ¢1. In route r; the single-trip st; serves client ¢; and then returns to
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Figure 5.1: Example of possible routes for MPIDRPTW

the facility to reload the vehicle and perform the single-trip sts. The second route 75 is a single-
trip st that serves client ¢5, cg and c;. It is important to highlight that the vehicle (vs), which
performs route ry, loads the future demand associated to period ¢5 and ¢5 for client ¢; in addition
to the demands related to period ¢; for all the subset of clients present in route r,. Note that the
distribution plan must take into account the time windows of each client.

The MPIDRPTW incorporates some particularities which are important to be clearly described.

These peculiarities are presented below:

> Each customer may at most be visited once per period;
> Each client is associated to a single facility;

> Each route must start and end at the facility regardless of the number and order of visited

clients;
> The load of each single-trip must not exceed the capacity of the vehicle;

> A vehicle can perform several single-trips during a planning horizon but the total load of the

multi-trip associated to one vehicle cannot exceed the production capacity of the facility;
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> A vehicle cannot work more than the length of the planning horizon;
> Each client has a time-varying demand and may receive the needs for future periods;

> Split deliveries are not allowed, which means that a demand for a future period is entirely

delivered; and

> The inventory at the facility and at the clients is allowed and limited.

The length of a route r cannot be greater than the maximum length a vehicle may travel.
Thus, the length of a route is limited by a workday W. A route must start and end at the facility
regardless of the order and the number of visited clients. The MPIDRPTW has an available fleet
F' of homogeneous vehicles v where each vehicle may perform more than one single-trip. A
single-trip cannot exceed the vehicle capacity (), and the total load of a route cannot exceed the
facility production capacity C; for period ¢. The demand d} of a client i € N must be fulfilled
through a production plan that is distributed over a set of periods ¢ € T'. All clients must be
served for all periods. This problem allows for the management of limited inventories at the

facility (0 < I¥ < IP

maxr

) and at the clients (0 < I < If,, ).

The solution of the problem includes both the fixed cost C,, when a new vehicle of a fleet is
used and the fixed setup production cost f; for each period in which the facility is active. The
additional costs incorporate the distribution cost C,. associated to the usage of a route, the facility
holding cost A* and the clients inventory cost Ch;. The main objective of the problem is to

minimize the global costs associated to the entire system.
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5.2 An arc flow formulation

A network flow model for the MPIDRPTW is presented in this section. In this model the nodes do
not represent clients or demand periods, but discrete instants of time. For the MPIDRPTW, this
approach defines a set of graphs II, that have a set of A vertices that represent discrete time
instants for each period of production ¢t. The arcs associated to the manufacturing period ¢ are

grouped in a set of arcs represented by W,.

5.2.1 The model

The network flow model allows for the definition of an acyclic directed graph per distribution period
II; = (A, ¥,),Vt € T. The A vertices represent instants of time that vary from 0 up to the time
limit 1/, that represents a workday of a given vehicle. The facility uses a fleet of homogeneous
vehicles that perform the routes associated to the arcs. An arc (u,v)" € W, represents a route
r that starts and end at instant time « and v, respectively.

The set of arcs W, has a particular definition presented below:
U, ={(uw,v)":0<u<v<WreR}U{(uv):0<u<v<Wuv=u+l1},

where R, represents the set of all the routes associated to the period ¢. A route r has an associated
load DY, duration ¢, and cost C,. and visits a set of clients IV,., with N, C N. The route is valid

only if the conditions D! < @ and ,, < W occur.

The model is composed by two sets of binary variables x!

uvr

and z; related to distribution
and production decision, respectively. The variables xfwr state whether the route r that starts
at instant u, ends at instant v, and is associated to period ¢ is selected or not. For the sake of
simplicity the decision variable x,,,,, denotes an arc. Variables z; determine the periods ¢ in which
there is production. The integer variables are identified by three different sets: the p, variables

which represent the quantity produced in period ¢, and variables ItP and ]g, which represent the
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Figure 5.2: Solution example of network flow model for the MPIDRP

inventory quantity for period ¢ at the facility or the client, respectively.

Figure 5.2 presents a solution example of a network flow model for the MPIDRP that fulfills
seven clients (cq, . . . , c7) for three periods (¢4, . . ., t3). As depicted in Figure 5.2, the distribution
of goods is performed over two different periods (£; and t3) represented by 1I; and II5. It is
important to note that the load carried by a route can be obtained from the quantity stored in the
facility or from production. Distribution during a period does not mean that there is production in
the same period. For the sake of simplicity, in Figure 5.2, only arcs that have a flow associated
are represented, and production and inventory decisions are not presented.

The clients cs, c3, ¢1 and ¢4 are fulfilled through the arc xg 45, that starts at the instant of
time 0 and ends at instant 45. This flow is associated to the route ;. The clients c¢5, ¢; and
c4 are served for the period ¢ = 1 and ¢ = 2. Client c3 receives the demand related to period
t ={1,...,3}. This occurs since there is capacity to carry this amount in the vehicle for future

periods. For the route 7 there is another arc s g5, that serves clients cg, cp and ¢, which
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begins at time 50 and terminates at time 85. The two mentioned arcs (z¢ 35 ,, and x5 g5 »,) Mmay
not be combined into a single arc due to vehicle capacity constraints. In the graph 115, the routes
r9 and r3 are performed through two different vehicles, since just one vehicle may not visit two
different clients at the same time. Capacity constraints do not allow to merge arcs x¢, 75, and
T78,100,r5- FOr that reason, the vehicle that performs route 3 serves clients C and ¢z (x19,75,r5),
returns to the facility to load the vehicle and then fulfills the other client ¢, in the route r3 through

the arc x7g 100,r,. Route 7y serves clients c5, ¢; and ¢4 for the third period (¢ = 3).

All parameters, definitions, and decision variables used in the arc flow model are listed bellow.

Parameters and definitions

D = single facility
N ={1,...,n} setofclientsi,Vi € N
T ={1,...,7} setof periods ¢ associated to the distribution, vVt € T
To ={0, ..., 7} setof periods ¢ associated to the production and inventory, Vt € T
" = fleet of homogeneous vehicles v, Vv € F'
W = length of the planning horizon
() = capacity associated to the vehicle
II; = acyclic directed graph associated to the period ¢,Vt € T
W, = set of arcs associated to the period ¢, Vt € T'
A = set of vertices,
(u,v)" = arc that represents a route r that starts at time « and ends at
time v, Vr € R,
R; = set of all routes associated to the period ¢,Vt € T'

(. = cost associated to perform a route r, Vr € R;
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C, = cost associated to the use of a vehicle v, Vv € F'
hY = unitary holding cost at the facility
C', = unitary holding cost at the client 7 during a period of the planning horizon, Vi € N
C'ge = holding cost associated to the route ~ and period ¢ ,Vr € Ry and Vi € T'
f+ = setup cost associated to production period ¢,Vt € T’
N, = set of clients visited by route r, Vrr € R;
Dﬁ = load associated to a route r, Vi € R,
D! = load associated to a route r for the client i, Vr € R;,Vt € T'and Vi € N
t, = duration associated to a route r, Vr € R;
ti = total waiting time at client ¢ for route r, Vi € R;
d: = demand associated to a client i associated to the period ¢,Vi € N and Vt € T
C' = capacity associated to the unique facility

IP = maximum inventory allowed at the facility

I¢ i = maximum inventory allowed at the client ¢, Vi € N

(
1 if the route 7 serves client ¢ for period t ,Vi € N,.,Vr € R, andVt € T,

Ay = where t < t/,

0  otherwise

\

Decision variables

1 if there is production in period ¢,Vt € T
Zt =

0 otherwise
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)
1 if route 7 uses arc (u,v) for the period ¢, Vr € Ry,

Loor = OSuSWG\PtanthET,

0 otherwise
\

p; = amount produced for the period ¢,Vt € T
]tP = inventory at the facility at the end of the period t,Vt € T’

Ig = inventory at client ¢ at the end of the period t,Vi € N andt € T

The integer programming arc flow model for the MPIDRPTW is defined through (5.1) to (5.19).

The main objective of the network flow model is to minimize the total costs associated to the entire

problem that includes the cost of performing the distribution routes and the vehicles usage. When

there is production during a period, there is a setup cost associated to the facility. The problem

considers inventory costs at the facility and at the clients. The latter occurs when clients orders

for future periods are anticipated.

Minimize
Z Z C”'I’Z’UT + C'U Z Z xf)vr+
teT (u,v)" eV, teT (0,v)TeW;
Z Z Crat,, + Z frz + Z hP1r
teT (u,w)r €Wy teTy teTy
subject to:

> > alyal, =1, VieNteT,

teTt<t" (u,v)"€W[iEN,

> ah,<F WVteT,

(O,U)Te‘l/t

Z ‘Tuvr + Z xvys -

t i —
(u,0)r €Wy (v,y)s€T, - Z(Oﬂ;)TE\I/t Lovr> if v = W7

0,ifv=1,.,W—1,

vteT,

(5.1)

(5.2)

(5.3)

(5.4)
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pr < C2, WVt € To\{7} (5.5)
po> ) (dn—1I) —1If, (5.6)

iEN
P =0, (57)
IF =0 (5.8)
If =1 +p— Y, D, VieT\{r} (5.9)

(u,v)revy

Y Dlal, <1y, VteT (5.10)

(uv)revy
IS=0 VieN (5.11)
=1+ ) D, —dy VieNteT\{r} (5.12)

(u,0)TeW,
0< I <IE VteT, (5.13)
0< IS < IS, Vi€ N, teT (5.14)
ot €{0,1},V(u,v)" € Uy, Vt €T (5.15)
z €{0,1},Vt € Ty. (5.16)
where
D! = Z dat,, V(u,v)" € ¥, (5.17)
t<t' ieN
Dl =Y dlal,, Y(u,v)" € Uy,i e N (5.18)
t<t/

Cug =Y _ Cith (5.19)

1€ENy

The objective function is represented by (5.1), and it consists in the minimization of all cost
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associated to the MPIDRPTW problem. Constraints (5.2) guarantee that every client is visited.
Constraints (5.3) limit the number of vehicles used in the distribution phase and (5.4) ensure
the flow conservation in the model. The capacity of the production is limited per period through
(5.5). Production in the first period is enforced through (5.6), and production in the last period is
avoided through (5.7). In the last period, the inventories at the facilities and at the clients are set
to zero, to avoid excessive production (Constraints (5.8) and (5.11)). Constraints (5.9) and (5.12)
guarantee the management of inventory at the facility and at the clients, respectively. Constraints

(5.10) ensure that the distribution phase is done according to the production and inventory phase.

5.2.2 Arcs generation

The arc flow model uses a set of predefined arcs and selects those that best serve customers
in an attempt to minimize costs of the overall system related to the distribution of goods. The
model also considers production and inventory decisions, as well as it decides which arcs should
be used to serve a set of customers at the lowest possible cost. The demand for a client varies by
period and can be anticipated. An arc represents a single-trip that, after leaving the facility, visits
a set of clients and then returns to the same facility. The model also determines that a vehicle
can make a set of single-trips that is limited by the respective workday. This set of arcs is called
multi-trip and is performed by a specific vehicle.

For the arc flow model, a set of arcs are created through Algorithm 5.1 that allows for the
generation of all possible combinations of arcs according to the constraints defined in the model.

The algorithm for creating arcs pays a particular attention to details such as:
> An arc must start and end at the facility;
> The capacity of a vehicle cannot be exceeded;
> Clients time windows must be met;

> The distance of an arc cannot exceed the workday of the vehicle;
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> An arc can only visit a client exactly once, either for serving the current demand or the

demand of future periods.

The algorithm to generate the arcs is defined in Algorithm 5.1. The period ¢ is an input to the
algorithm. Thus, the execution for a given period is independent from a different period. There
are two types of arcs which differ in the last visited location. If it is a client, then the arc is not
closed, i.e., it does not return to the depot. In this case, the arc is considered partial. When the
arc starts and ends at the depot it is considered a final arc. From a final arc, it is not possible to
add new clients to serve, however this does not apply to a partial arc where one may add a new

client to serve or close the arc back to the depot.

Algorithm 5.1: MPIDRPTW Arc Generation
Input: period
1 partial_arcs <— empty_arc;
2 while partial_arcs! = () do
3 current < first_element(partial_arcs);
4 partial_arcs < partial_arcs\{current}
5
6
7

if possible_to_reach_depot(current) then

new_closed_arc < close_arc(current);
final_ares « final_arcs U {new_closed_arc}
8 foreach period p € T', where p > period do
9 foreach c/ient c € N do
10 if client_not_present(current, c) then
11 if client_valid_time_window(current, c) then
12 if check_distance_client(current, c) then
13 if check_demand_client(current, c) then
14 new_partial_arc < emtend_arc(current, c);
15 L partial_arcs < partial_arcs U {new_partial_arc};

As shown in Algorithm 5.1, the generation of arcs for the MPIDRPTW starts with an empty
partial arc. This arc starts at the depot but does not serve any client. This arc represents the

starting point to serve clients, i.e., new clients will be added. After generating a temporarily empty
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partial arc, the generation of more partial and final routes may start. For each partial arc in the
set of partial arcs, the first partial arc is removed for analysis. Then, the arc is tested in order to
evaluate if the partial arc may return back to the depot considering the distance constraints. In
the case of a positive answer, a new final arc is generated and added to the set of final arcs. Then,
the selected partial arc is tested over different constraints to check whether it is possible to add
new clients to serve. This process is done for each client and for the current and future periods,
allowing for the anticipation of demands for a client. Indeed, the arc may only be extended if
the new client is not already being served by the arc, the distance necessary to reach the client
does not exceed the available workday length, and the new demand does not violate the available
vehicle capacity. When all these constraints are met, it is possible to add a new client to the
current partial arc. Indeed, a new partial arc is created and added to the corresponding set of
partial arcs. After trying to extend the current arc to each client of the current and future periods,
the current iteration ends and a new one is started if the set of partial arcs is not empty. The
algorithm tries to close and extend all existing arcs in the set of partial arcs. The arc generation

process ends when it is not possible to add new clients to the last partial arc.

5.3 Implementation details

Despite the constant technological evolution, it is important to make an adequate management of
resources. Only in this way, the search for new strategies, models and approaches is justified for
solving difficult problems. When dealing with hard problems each minor implementation detail
can represent large savings in computational time. When these details are used in scenarios
of real complexity they become even more valued, since they can enable companies to achieve
higher levels of competitiveness.

The complexity of a problem is higher with the increasing number of variables. The MPIDRPTW
integrates different hard problems and has many details which make it even harder to solve, such

as the multiple usage of a vehicle and the orders anticipation. The generation of arcs has a high
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computational complexity since, for the creation and validation of the arcs, several computational
calculations are necessary. This phase is very important since the arc flow model uses the pre-
generated routes to determine the best production, inventory and distribution planning. With the
increasing number of clients and periods in the benchmark instances the creation of arcs becomes
increasingly difficult, thus it becomes imperative to get answers in real time, being necessary to

use faster and more efficient methods.

The arc generation algorithm takes advantage of parallelization techniques. The thread concept
is applied, since the generation of arcs per period is independent. Pre-orders are taken into ac-
count, but are not dependent on arcs generated for future periods. This approach allows for a
better use of computational processing, without influencing the obtained results. In this way, the

generation of arcs is done in parallel for each period of the planning horizon.

For all instances, the arc generation of each period is executed at the same time. Thus, in
the parallel mode, the model waits for the arc generation of the slowest period instead of waiting
for a sequential processing of each period. In the sequential mode, the arc generation of a new
period is started only after all arcs of the current period are generated. The relevant parameters
of the instances are shown in the table. The tests were executed on a PC with an Intel Xeon CPU

ES-1620 v3 with 3.5GHz and 64GB of RAM.

The columns of the table are defined as follows:

Inst : instance name Disti_t where ¢ represent the number of clients and ¢ the number
of periods
ub : value of the best known upper bound
[b : value of the lower bound
#Arcs : total number of arcs generated for all the periods
Toeries - total time to generate arcs in series mode

Tharater - total time to generate arcs in parallel mode
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Timp(%) = percentage time improvement with parallelization techniques for the arc generation

Table 5.1 shows that the parallelization techniques become important when the arc genera-
tion process has higher computational times, i.e., the number of generated arcs is very high -
5000000, for example. Indeed, the use of the parallelization is considered an asset to the gener-
ation of arcs. To show the time improvement when applying the parallelization technique, several

instances from all sets were selected.

Table 5.1: Comparative analysis for the series and parallel mode for the Arc Generation

Inst L ub L Ib L #Arcs L Tseries J Tparallel J ,Timp (%)

Dist10_2 131101 131101 35676 0 0 0,00
Distl0_4 | 238963 | 238963 78601 0 1 0,00
Set1 || Distl0_6 | 323088 | 323056 265417 0 1 0,00
Dist10_8 | 442963 | 442963 386959 0 0 0,00
Dist20_2 | 134640 | 129026 | 6237937 668 546 18,26
Dist10_2 172161 172161 9102 0 0 0,00
Dist10_4 | 272563 | 272563 25067 0 0 0,00
Distl0_6 | 377051 | 377051 35031 0 0 0,00
Dist10_8 | 469139 | 469093 51075 0 0 0,00
Dist20_2 | 278830 | 278830 31893 0 0 0,00
Dist20_4 | 457218 | 455611 86698 0 0 0,00
Set2 Dist20_6 | 651148 | 651083 104547 0 0 0,00
Dist20_8 | 794620 | 773394 773555 2 1 50,00
Dist30_2 | 325000 | 325000 335511 0 1 0,00
Dist30_4 | 565230 | 560255 995404 2 1 50,00
Dist30_6 | 940558 | 939903 884508 2 1 50,00
Dist30_8 | 1347960 | 1327370 | 1620705 8 6 25,00
Dist10_2 | 159265 | 159265 6272 0 0 0,00
Dist10_4 | 295403 | 295403 18293 0 0 0,00
Distl0_6 | 383228 | 383228 29558 0 0 0,00
Dist10_8 | 495255 | 495255 58349 1 0 100,00
Dist20_2 | 231778 | 231633 126387 0 0 0,00

Continues on next page
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Table 5.1 - continued from previous page
Inst L ub L b L #Arcs L Tseries L Tparallel J ﬂmp (%)

Dist20_4 | 414401 | 409884 161351 0 0 0,00
Set 3 || Dist20_6 | 809436 | 809356 68213 0 0 0,00
Dist20_8 | 958297 | 935540 630682 5 5 0,00
Dist30_2 | 346908 | 345819 236719 1 0 100,00
Dist30_4 | 623887 614118 494888 1 0 100,00
Dist30_6 | 935402 | 904505 | 1272022 2 1 50,00
Dist30_8 | 1191260 | 1064930 | 2039617 5 3 40,00
Dist40_2 | 358135 | 349558 | 8882464 1281 1099 14,21
Dist10_2 189192 189192 18590 0 0 0,00
Dist10_4 | 229833 | 229810 432276 0 1 0,00
Dist10_6 | 314347 | 314335 220160 0 0 0,00
Set 4 || Distl0_8 | 368200 | 357270 284669 0 0 0,00
Dist20_2 | 237142 | 236745 400087 1 1 0,00
Dist20_4 | 323946 | 316339 | 5519716 453 434 4,19
Dist20_6 | 503080 | 485100 | 2835399 16 11 31,25
Distl0_2 | 205395 | 205395 39532 0 0 0,00
Distl0_4 | 293166 | 293166 67063 0 0 0,00
Distl0_6 | 290025 | 289999 185198 0 0 0,00
Distl0_8 | 347438 | 334572 726288 0 1 0,00
Dist20_2 | 226903 | 225346 503444 1 1 0,00
Set 5 || Dist20_4 341116 | 340621 | 1078899 5 4 20,00
Dist20_6 | 514038 491315 | 4947212 73 45 38,36
Dist20_8 | 638242 | 589456 | 8057169 150 118 21,33
Dist30_2 | 279766 | 279094 | 1375993 7 4 42,86
Dist30_4 | 459172 | 425261 | 5014887 56 42 25,00
Dist30_6 - | 633267 | 17349130 6551 6290 3,98
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5.4 Computational results

In this section, the computational results performed on benchmark instances adapted from Bard
and Nananukul in [46] are presented. The benchmark instances presented by Bard and Nana-
nukul are divided into 5 different sets. Each set contains 20 instances that vary in the number of
clients (10, 20, 30, 40 and 50) and in the number of planning periods (2, 4, 6 and 8). The dif-
ferent instances also present parameters related to the distribution problem, such as the number
and capacity of the vehicles and also inventory and production parameters, such as capacity of

the facility, storage cost, inventory capacity, among others.

The mentioned instances were adapted to fit the characteristics of the PIDRP variant. For
the multi-trip variant, the capacity of the vehicles must be small and there is a cost associated
with the use of a vehicle to emphasize the importance of the multiple usage of a vehicle. The
cost associated with the acquisition or rental of a vehicle should not be neglected in integrated
problems and for this reason this parameter was added to the mentioned instances. The cost
associated to the usage of a vehicle was set to 10000 (C, = 10000). Vehicle capacity was
set to 500 ((Q = 500) in all instances. The variant presented foresees that the clients have
temporary windows for the delivery of the requests. In this way, it was necessary to introduce
these parameters in the definition of the instances. Time windows were randomly generated with
values between 10% and 70% of the workday value for each client. The workday value was set
to 500 (W = 500). The only facility is located at coordinates (0, 0). The distance between the
single facility available and the clients to serve was rounded to the nearest smaller integer. These
were the only adaptations made to the instances presented by the authors in [46]. For all the
benchmark instances the facility unit holding cost is set to 1 (b = 1) and the clients holding
cost is set to O for all periods (C},, = 0). The production capacity of the single facility (C') and
the production setup cost ( f;) vary with the different sets according to Table 5.2, and is the same

for all periods t.
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Table 5.2: Parameters according the different Sets

Set C ft
1| 50000 | 50000
2 | 120000 | 70000
3| 120000 | 70000
4 | 240000 | 120000
5 | 240000 | 120000

For the sake of clarity, the notation of the computational results columns is presented below:

Inst:

ub
b

Eotal

TCLT‘CS

#Arcs
Ol
#C4 fx

Arc
#LAVG

TWave(%)

#A:

#F .

gap(%)

instance name Disti_t where ¢ represent the number of clients and ¢ the number

of periods

- value of the best known upper bound
: value of the lower bound

: total time used to solve the instance that includes the time to generate arcs and

the time to solve the problem using cplex

: total time to generate arcs

: total cplex time to solve the problem

: total number of arcs generated for all the periods

: average number of clients per arc of all generated arcs

: maximum number of clients per arc of all generated arcs

: average number of loads per arc of all generated arcs, considering client demand

anticipation

: average of time windows at clients for a set of clients

number of used arcs

number of used vehicles

: provides the value in percentage of the optimality gap reached at the end of the



138 Chapter 5. The multitrip PIDRPTW: exact solution approaches

solution procedure

The computational tests were performed on a computer with a Intel Xeon CPU ES-1620 v3

with 3.5GHz and 64GB of RAM. The optimization subroutines were executed on CPLEX 12.6.

5.4.1 Solving the model exactly

For the exact resolution of the problem instances with 10, 20, 30 and 40 clients and 2 to 8 periods
(2, 4, 6 and 8) were used. For instances of different sets with higher computational times, the
results are not presented. The results are shown in Tables 5.3, 5.4 and 5.5.

The results are only shown for instances that take less than 7200 seconds to generate routes.
The CPLEX routines were also limited to 7200 seconds. The '—' symbol is used whenever CPLEX
could not find a valid solution within the established time limit.

Indeed, for Set 1 the highest instance has 20 clients and 2 periods; for Set 2 it has 30 clients
and 8 periods; in Set 3 the biggest instance has 40 clients and 2 periods; Set 4 was executed to
the one with 20 clients and 6 periods; and in Set 5 the biggest instance is of 30 clients and 6

periods.



139

5.4. Computational results

es'T | v9 | 8s1 | L0'0p 1891 | g er'e | sozozot | 8oz | 9 ¥Iz/ | ozeLzeT | 096LpET | 8T0EIa

£0'0 |Gy | 61T | 12'6E 667 |G 10 | 80s¥88 | 602 | 1 012, | €066€6 | 8550%6 | 970€ISI

88'0 |9z | oL |1€LE 029 |G (6T | ¥OvSe6 | 002, | T 102/ | GG2Z09G | 0£259G | ¥ 0€Isa

000 |¥1|6€ |8I'9r av |7 667 | T16GEE | £G99 | T 8699 | 000GZ€ | 000GZE | 2 o€

(9T |€c |86 | 1'% (€22 | g o't | GGGeLL | 902L | T 02, | ¥6EELL | 029v6L | 80T

100 |6z|/8 |6ese 696 | ¥ GI'z | ySKOT | GETIE | 0 GEIE | €80159 | 8Y1IS9 | 970210 | o
Ge'o |0z |vS | 69'TH me | v vI'z | 86998 | €02L | 0 €02L | 119567 | 812/Sy | ¥ 0zisa

000 |21 |8z |08¥E vI'e  |e 'z | eeste | ¢ 0 € 0€88/Z | 0£88/2 | 2 0TIs!a

100 |61 |ss | 890y vt | v 181 | G015 | 0g6y | O €6V | 60697 | 6ET69Y | 870TISI

000 |91 |€v |s¥'sh [0S | € 29T |1e0se |12 |0 12 | 150LL8 | 150LL8 | 97omISI

000 |11 |2 |erew 67 | € 69T | /9052 |2z |0 g¢ | €95e/e | €962Le | vomsI

000 |9 |1 |90se ssz | ¢ (51 | zote ! 0 ! 1912/1 | 191241 | 2 0msid

v s v |10 WL | L 'y | L€6/€29 | 8zeL | 9vS | vLLL | 9z062l | OVOVEL | 2 0zIsa

000 |€z|8e |weer €91 |G 9Lz | 656988 | z€T |0 2€C | €962y | €962k | 8TOTISI

100 |91 |6z |8sse 611 | G 28T | LS9z | 96t | 1 L6V1 | 950€2€ | 880€ze | 9TomsIa | 11eS
000 |21 |60 |950¢e 16'9 | ¥ 06z | 1098L |2 |1 Gz | €968ez | €968¢z | ¥ omISI

000 |S |or | b6 66 | ¥ 1€z |oose e 0 £ I0TIEL | TOIIET | 2 0msid

(%) deS | 4# | w# | (0 PWVanr | OhvTa | Xio# | 2o | soawx | p [ p ] q an Jsul

¢ Pue T 138G - [9POI MO|{ D1y JO SYNSaY -€°G 9|qeL



Chapter 5. The multitrip PIDRPTW: exact solution approaches

140

Table 5.4: Results of Arc Flow Model - Set 3 and 4

Inst ub b | Tyotat | Tares | Tun | #Arcs | #C4% | #Ca75x | #L4Ve | TWave (%) | #A | #F | gap (%)
Dist10_2 [ 159265 | 159265 0 0 0 6272 1,36 2 2,02 3874 16] 5] 0,00
Dist10_4 | 295403 | 295403 2 0 2 18293 1,53 3 3,76 42838 | 31| 12| 0,00
Dist10_6 | 383228 | 383228 23 0o 23 29558 1,62 3 5,96 38,88 | 42| 17| 0,00
Dist10_8 | 495255 | 495255 36 0| 36 58349 2,57 5| 1798 30,74 | 53| 22| 0,00
Dist20_2 | 231778 | 231633 | 7265 0| 7265 | 126387 2,68 4 3,79 4522 | 25| 9| 0,06
Dist20_4 | 414401 | 409884 | 7204 0| 7204 | 161351 2,47 4 4,80 39,94 | 50| 18 1,09

Set 3 || Dist20_6 | 809436 | 809356 | 1044 0 | 1044 68213 1,87 4 7,01 3541 | 92(38| 0,01
Dist20_8 | 958297 | 935540 | 7210 5| 7205 | 630682 3,32 5| 2535 3816 | 112 | 43 | 2,37
Dist30_2 | 346908 | 345819 | 7201 0| 7201 | 236719 2,75 4 4,58 4391 | 41| 15| 0,31
Dist30_4 | 623887 | 614118 | 7204 0 | 7204 | 494888 2,81 5 7,63 40,39 | 77| 29 1,57
Dist30_6 | 935402 | 904505 | 7202 1| 7201 | 1272022 3,04 5 8,74 42,17 | 115 | 43 | 3,30
Dist30_8 | 1191260 | 1064930 | 7205 3 | 7202 | 2039617 3,14 5| 15,08 41,95 | 149 | 55 | 10,60
Dist40_2 | 358135 | 349558 | 8301 | 1099 | 7202 | 8882464 4,30 7 712 4093 | 43| 16| 239
Distl0_2 | 189192 | 189192 7 0 7 18590 1,77 3 2,61 4094 | 11| 4| 0,00
Dist10_4 | 229833 | 229810 | 1009 1| 1008 | 432276 3,40 5| 10,59 5280 | 16| 6| 0,01
Distl0_6 | 314347 | 314335 | 546 0| 546 | 220160 2,73 5 9,34 3786 | 26| 10| 0,00

Set 4 || Distl0_8 | 368200 | 357270 | 7204 0 | 7204 | 284669 2,82 5| 1559 30,10 | 29| 13| 297
Dist20_2 | 237142 | 236745 | 7370 1| 7369 | 400087 3,10 5 3,96 3775 | 17| 7 0,17
Dist20_4 | 323946 | 316339 | 7636 | 434 | 7202 | 5519716 3,84 7 7,87 39,44 | 31| 11 2,35
Dist20_6 | 503080 | 485100 | 7213 11 | 7202 | 2835399 3,49 6| 10,44 39,34 | 49|20 | 357
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In order to evaluate the quality of the model, the convergence of the GAP values, obtained
during the execution of the CPLEX routines, was analyzed. This analysis was only performed for
instances in which the CPLEX time limit was reached. Figures 5.3 to 5.7 show the evolution of
the GAP values for the presented instances of the different sets.

Figure 5.3 shows the evolution of the gap given by CPLEX for instance 20_2 of set 1, which
reached the established time limit. Indeed, after 1300 seconds of execution the gap was less
than 5%. As presented in Figure 5.4, in 60% of the instances of set 2 the gap value is less than
5% after 1000 seconds. For the instances of Set 3, Figure 5.5, 75% had a gap less than 5% in
700 seconds. For instance 30_8 the CPLEX routine found the largest gap, of 10.6%, within 7200
seconds. In Set 4, two of the instances (Figure 5.6) had the gap less than 5% in 1500 seconds.
For the remaining instances, CPLEX found a solution with a gap smaller than 5% in 2500 seconds.
Finally, Figure 5.7 presents the gap evolution for Set 5. Here, 57% of the instances had a gap
less than 5% after 2000 seconds, and 28% of the instances had a first valid solution after 4000
seconds. In the instances analyzed in the Figures 5.3 to 5.7, 84% achieve a gap value smaller

than 5% in 3600 seconds.
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Figure 5.3: Gap evolution (%) - Set 1



5.4. Computational results 143

16
14
12
—20_4
10
—20_8
8 ——30_4
6 306
. —30_8
T D
2
\x
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
Figure 5.4: Gap evolution (%) - Set 2
14
12
——~— —20_2
10 —20_4
——20_8
8
302
6 —30.4
—30_6
4
k —30_8
SN
—
2 \ —— —— —102
—
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
Figure 5.5: Gap evolution (%) - Set 3
10

‘\ — 206

9
8
7
6 —10_8
5 —20_2
4 \H —20_4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Figure 5.6: Gap evolution (%) - Set 4



144 Chapter 5. The multitrip PIDRPTW: exact solution approaches

40

35

30 —10_8
202
25
204
20 20_6
15 —20_8
—30_2
—30_4
5 b — R S —
e _
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Figure 5.7: Gap evolution (%) - Set 5

5.4.2 Solving the model exactly with arcs limitations

Computational tests were performed for all instances adapted from Bard and Nananukul [46] with
a limit on the number of arcs generated per period.

Since the computational times to solve the instances to the optimality are large, an analysis
was made in order to understand where most of the computing time was used. Through the
observation of the computational times presented in the previous section (Section 5.4.1), the
model proved to be efficient. However the generation of single-trips took a lot of processing time.
Although arc processing seem a simple client recombination algorithm, it requires a larger number
of verifications and replications.

The generation of arcs is a complex process, since the problem allows for the demand of a
customer to be anticipated. In this way, arc generation must take into account customer satis-
faction for the current period and for future periods, which allows for many more combinations.
Another factor which justifies the long computational time is the replications and validations of
arcs. When an arc is created, restrictions regarding the capacity of vehicles, time windows and
workday limit must be taken into account. For each arc, a start time and an end time are cre-
ated, which allows for the single-trip to initialize and terminate at different times considering time

windows and workday constraints. The time is discrete and unitary, therefore more arcs may be
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generated.

Although the previously described factors already justify long computational times, there is
also the post-processing of the generated arcs in order to eliminate single-trips that are dominated
by others, allowing for the model to process much less arcs. One arc dominates another when it
visits exactly the same customers for the same periods at a lower cost, respecting all the problem
constraints.

In order to run all instances in acceptable computational times, the number of arcs generated
was limited per period. Since the generation of arcs occurs sequentially, no limit was imposed to
the total number of arcs, to avoid reaching the limit with the first clients and to not generate any
valid single-trip for the latest clients, invalidating any solution.

After the validation of an arc, it is replicated according to the possible time interval throughout
the workday, along its possible minimum and maximum begin times. Since each arc has a distinct
time interval, the number of replications is variable. In order to limit the number of replications an
upper bound of replications was defined. When the upper limit is not reached, then all replications
are considered. If the replication limit is reached, then the replication interval is readjusted so
that the number of replications is distributed evenly over the time interval.

A formula has been created to calculate the number of routes by period and customer. This
formula is presented in (5.20) and provides a balanced distribution of arcs per periods. This
considers that in the last period it is not possible to anticipate any requests, but in the first one

there is the possibility of all being anticipated.

#
#arcsit/ = ﬁ, VteT and  Vep € Nx (T —t) and t'>t

(N x (T —1t))
(5.20)
The #arcsf:t, represents the maximum number of arcs that may be generated for period ¢
and client ¢;,. The #arcs represents the maximum number of total arcs that may be created.

Parameter T' represents the planning horizon periods and each individual period is denoted by ¢.
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The arc limit is applied per customer and period and takes into account if the demand is or is not
anticipated for future periods. Thus, there are generated as many arcs as #arcsf:t, for the client
¢y, in period ¢ that satisfy the demand for ¢/, where ¢’ is equal or greater than ¢.

It should be noted that the limit of arcs is defined by period and that not all periods reach this
limit. Since these situations occur frequently, it is expected that the final number of generated arcs
for all periods is smaller than the established limit #arcsit, x T'. However, when this situation
occurs, the number of arcs that are not used is distributed over the remaining periods.

For the resolution of the limited-arc problem, instances with 10, 20, 30, 40 and 50 clients
with 2 to 8 periods (2, 4, 6 and 8) were used. The performed computational tests to evaluate the
proposed limits are presented through Table 5.6 to Table 5.10. The CPLEX routines were limited
to 3600 seconds and the arc generation process was limited to 5000 arcs per period, and 25

replications by arc.
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Table 5.7: Results of Arc Flow Model with arc limitation - Set 2

Inst ub b | Thotar | Tures | Ty | #Arcs | #C05 | #Ciax | #L4Va | TWave (%) | #A | #F | gap (%)
Dist10_2 | 172326 | 172326 0 0 0] 1830 173 3] 289 3506 | 14| 6 0,00
Distl0_4 | 282161 | 282161 7 0 7| 4777 190 3| 514 4312 | 26| 12| 0,00
Distl0_6 | 379122 | 379098 | 82 0| 82| 5879| 185 3| 575 4548 | 45|16 | 0,01
Dist10_8 | 469303 | 469303 | 20 0| 20| 11804 | 212 41 13,23 40,68 | 56 | 19| 0,00
Dist20_2 | 288969 | 288948 2 0 2| 9274 | 2,32 3] 34 3480 | 28| 13| 0,01
Dist20_4 | 468541 | 468513 | 13 0| 13| 24499 | 243 41 724 41,69 | 54|21 | 001
Dist20_6 | 662933 | 662867 | 193 0| 193] 28489 | 241 41 1098 3539 | 87|29 0,01
Dist20_8 | 800132 | 799183 | 3604 0| 3604 | 164885 | 3,25 5| 22,72 4451 | 99 | 34| 012
Dist30_2 | 325420 | 325389 | 17 0| 17| 85071 | 313 41 419 46,18 | 39| 14| 0,01
Dist30_4 | 576052 | 575995 | 484 1| 483 | 269462 | 3,02 5| 6,67 3731 71|27 | 0,01
Dist30_6 | 946532 | 946437 | 1144 0| 1144 | 262435 | 3,07 5| 786 3571 | 121 | 45| 0,01
Dist30_8 | 1360550 | 1350900 | 3608 1| 3607 | 319037 | 3,07 5| 13,60 40,07 | 158 | 65 | 0,71
Dist40_2 | 322876 | 322848 | 98| 13| 85193603 | 3,30 6| 548 4534 | 39| 14| 0,01
Dist40_4 | 723183 | 722180 | 3640 | 33 | 3607 | 428683 | 3,26 6| 898 3804 | 8435| 0,4
Dist40_6 | 1110870 | 1092760 | 3646 | 45 | 3601 | 416856 | 2,99 6| 877 42,31 | 135 | 53 | 163
Dist40_8 | 1447650 | 1432550 | 3616 | 14 | 3602 | 595827 | 3,02 7| 1233 36,26 | 178 | 69 | 1,04
Dist50_2 | 434180 | 434137 | 911 6| 905195433 | 3,06 6| 505 42,06 | 51|20 0,01
Dist50_4 | 689275 | 682918 | 4320 | 720 | 3600 | 434424 | 3,20 8| 912 3892 | 93 /33| 092
Dist50_6 | 1314040 | 1281930 | 3989 | 388 | 3601 | 507427 | 2,94 6| 939 40,28 | 163 | 63 | 2,44
Dist50_8 | 1860500 | 1745510 | 3811 | 211 | 3600 | 599142 | 2,88 6| 11,57 36,73 225| 94| 6,18
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5.4.3 Comparative discussion

This section presents comparative results for the arc flow model with and without limits in terms
of generated arcs. This comparison is made in terms of the total arcs processed by the model,
and the total processing time. The quality of the solution is evaluated through the value of the
upper bound. Note that in the exact method all possible routes are generated and processed. The
arc flow model is solved through CPLEX to optimality. The limited arc flow model has a higher
bound, and the number of generated routes was set to 5000 for each period and a maximum of
25 replications per arc. The CPLEX routines ended after 3600 seconds, considering the current
incumbent solution.

Table 5.11 shows the comparative results between the model with limits and the exact ap-
proach. The last three columns represent the improvements of the limited model relative to the

exact model in terms of percentage.

Table 5.11: Comparative analysis of the arc flow model with and without limit on arc generation

ub #Arcs Tiotal Comparison (%)
Inst - - .

Exact L Limited Exact L Limited | Exact l Limited ub L #Arcs L Tiotal

Dist10_2 131101 131101 35676 9666 3 4 | 0,00 | 72,91 -33,33
Dist10_4 238963 240733 78601 29774 25 2| 0,74 | 62,12 92,00
Dist10_6 323088 324957 265417 96144 | 1497 17 | 0,58 | 63,78 98,86
Set 1 Dist10_8 442963 442963 386959 117243 232 15 | 0,00 | 69,70 93,53
Dist20_2 134640 134735 | 6237937 151613 | 7774 49 | 0,07 | 97,57 99,37
Dist10_2 172161 172326 9102 1830 1 0| -0,10 | 79,89 100,00
Dist10_4 272563 282161 25067 4777 22 7 | -3,52 | 80,94 68,18
Dist10_6 377051 379122 35031 5879 21 82 | -0,55 | 83,22 | 290,48
Dist10_8 469139 469303 51075 11804 | 4930 20 | -0,03 | 76,89 99,59
Dist20_2 278830 288969 31893 9274 3 2 | -3,64 | 70,92 33,33
Dist20_4 457218 468541 86698 24499 | 7203 13 | 2,48 | 71,74 99,82
Set2 Dist20_6 651148 662933 104547 28489 | 3135 193 | -1,81 | 72,75 93,84
Dist20_8 794620 800132 773555 | 164885 | 7207 3604 | 0,69 | 78,68 49,99
Dist30_2 325000 325420 335511 85071 | 6658 17 | 0,13 | 74,64 99,74
Dist30_4 565230 576052 995404 | 269462 | 7201 484 | -191 | 72,93 93,28
Dist30_6 940558 946532 884508 | 262435 | 7210 1144 | -0,64 | 70,33 84,13
Dist30_8 | 1347960 | 1360550 | 1620705 | 319037 | 7214 3608 | 0,93 | 80,31 49,99
Dist10_2 159265 169265 6272 1128 0 0| 6,28 | 82,02 0,00

Continues on next page
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Table 5.11 - continued from previous page

ub #Arcs Tiotal Comparison (%)
Inst . o .

Exact L Limited Exact L Limited | Exact l Limited ub L #Arcs l Tiotal

Dist10_4 295403 304641 18293 3140 2 5| -3,13 | 82,83 | -150,00
Dist10_6 383228 384846 29558 6781 23 6 | -0,42 | 77,06 73,91
Dist10_8 495255 496056 58349 24261 36 20 | 0,16 | 58,42 44,44
Dist20_2 231778 231883 126387 29326 | 7265 13 | 0,05 | 76,80 99,82
Dist20_4 414401 422390 161351 42163 | 7204 272 | -193 | 73,87 96,22
Set 3 || Dist20_6 809436 835711 68213 18972 | 1044 22 | -3,25 | 72,19 97,89
Dist20_8 958297 971500 630682 | 101836 | 7210 168 | -1,38 | 83,85 97,67
Dist30_2 346908 356019 236719 55615 | 7201 29 | -2,63 | 76,51 99,60

Dist30_4 623887 627953 494888 | 162331 | 7204 264 | 0,65 | 67,20 96,34
Dist30_6 935402 933302 | 1272022 | 342497 | 7202 3609 | 0,22 | 73,07 49,89
Dist30_8 | 1191260 | 1187290 | 2039617 | 443925 | 7205 3601 | 0,33 | 78,23 50,02

Dist40_2 358135 364662 | 8882464 | 207264 | 8301 126 | -1,82 | 97,67 98,48
Dist10_2 189192 189192 18590 3652 7 11 000 | 80,36 85,71
Dist10_4 229833 230255 432276 | 111598 | 1009 142 | -0,18 | 74,18 85,93
Dist10_6 314347 315073 220160 68274 546 70 | -0,23 | 68,99 87,18
Set4 || Distl0_8 368200 376568 284669 | 119594 | 7204 985 | -2,27 | 57,99 86,33
Dist20_2 237142 237172 400087 | 122241 | 7370 84 | 0,01 | 69,45 98,86

Dist20_4 | 323946 333044 | 5519716 | 367283 | 7636 3602 | -2,81 | 93,35 52,83
Dist20_6 | 503080 500727 | 2835399 | 465238 | 7213 3602 | 0,47 | 83,59 50,06

Dist10_2 | 205395 206698 39532 7051 1 0| 063 | 8216 | 100,00
Dist10_4 293166 293166 67063 18680 21 51 000 | 72,15 76,19
Distl10_6 | 290025 299376 185198 79667 248 48 | -3,22 | 56,98 80,65
Dist10_8 347438 347700 726288 | 203665 | 7207 3605 | -0,08 | 71,96 49,98
Dist20_2 | 226903 226903 503444 | 133736 | 7201 63 | 0,00 | 73,44 99,13

Set 5
¢ Dist20_4 341116 350880 | 1078899 | 232176 | 7205 3607 | 2,86 | 78,48 49,94

Dist20_6 514038 514067 | 4947212 | 527098 | 7247 3629 | 0,01 | 89,35 49,92
Dist20_8 638242 629659 | 8057169 | 739668 | 7321 3636 | 1,34 | 90,82 50,33
Dist30_2 279766 288760 | 1375993 | 205438 | 7209 3609 | -3,21 | 85,07 49,94
Dist30_4 459172 446089 | 5014887 | 389652 | 7251 3616 | 2,85 | 92,23 50,13

As depicted in Table 5.11 the number of generated arcs was substantially reduced. However,
in some instances the value of the upper bound in the limited approach was better or equal to
the value obtained in the exact approach; this occurs when the gap of the exact model is greater
than or equal to zero, respectively.

Table 5.12 presents an overall analysis for the different sets. For Set 1, for example, although

the total time has improved by 70.09% and that 73.21% of the arcs have been generated, these
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values are reflected in the cost of the solution which had a penalty of 0.28%.

Table 5.12: Comparative percentage analysis with the average improvement of the arc flow model

ub | #Arcs | Tiotal
Set1 |-0,28 | 73,21 | 70,09
Set2 | -1,37 | 76,11 | 48,45
Set3 | -1,63 | 76,90 | 58,02
Set4 | -0,72 | 75,41 | 78,13
Setb5 | -0,58 | 79,26 | 65,62
Total | -0,91 | 76,18 | 64,06

For all the analyzed instances, on average, less 76,18% of arcs were generated and the total
time was decreased by 64,06%. The total cost suffered an average penalty of 0,91%. These values
are promising since there is no relevant penalty at the upper limit of the arc flow model and there

is a clear reduction in the number of routes and processing times.

5.5 Conclusions

The MPIDRPTW is a management science problem that integrates important problems such as
PDP, MVRP and IRP. This type of problems consider production, inventory, distribution and routing
decisions simultaneously and frequently occurs in the logistics and transportation fields.

The PDP is primarily concerned with production and distribution decisions. Orders vary by
period and can be anticipated. However, there is no concern with inventory management. IRP,
despite not dealing with production decisions, is concerned with routing and inventory manage-
ment, either at the facility or at the customer. The PIDRP is a problem which has received special
attention in recent years and explores the integration of these important problems. The PIDRP
also takes into account routing decisions commonly present in MVRP problems. This problem
determines a set of routes to satisfy customers taking into account the possibility of multiple use
of a vehicle during the planning period. The MPIDRPTW variant also includes decisions of multiple

usage of the vehicles as well as the compliance of time windows in the distribution of goods to dif-



5.5. Conclusions 155

ferent customers. The multiple usage of a vehicle is frequently used when clients are distributed
within small geographic areas.

The aim of this integration is the cost minimization according to all the decisions associated
with the entire system. Although the resolution of integrated problem leads to better solutions
from the global perspective, the problem grows in size, which increases its complexity.

The main objective of the MPIDRPTW is to serve a set of clients at minimum cost during the
planning horizon. The clients have a time varying demand that must be fulfilled within a specific
time window. This problem deals with production and inventory decisions at a single facility and
uses a fleet of homogeneous vehicles to perform the distribution of goods. Each vehicle can
make more than a single-trip during the planning horizon. A client may receive a future period
demand, and split deliveries are not allowed. An order of a client may be completed from periodic
production or through inventory held at the facility. The facility has a capacity and incurs in a
setup cost each time a production period is scheduled.

An innovative method of arc flow formulation was proposed to solve the MPIDRPTW which
have a distinct graph-based structure from the commaodity flow models. In this method the nodes
represent times instead of clients and an arc denotes a single-trip. This optimization technique
is less intuitive and requires a set of pre-existing single-trips or arcs. However, this technique is
more efficient than other methods.

The model was tested through exhaustive computational tests performed on a set of bench-
mark instances from the literature. The model proved to be efficient, however, the arc generation
is computationally expensive. The complexity inherent to the arcs generation grows exponentially
with the increase of the number of clients and time periods, due to the many possible combina-

tions between clients allowing for the anticipation of the demand fulfillment.
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6.1 Introduction

The PIDRP is an integrated problem that has had particular attention during the last few years.
Several authors analyze specificities of the problems by focusing on different variants of PIDRP.
Some authors make the problems less restrictive, assuming various unlimited capacities such as
the load carried by the vehicles. Despite the variants, the authors have a common goal. This
main objective is the integration of production planning, inventory management and routing and
distribution planning of goods. The peculiarities of the different variants may have a significant

influence on the resolution method that should be used.

When exact methods are explored, as presented in the previous chapter (Chapter 5), the
optimal solution of the problem is ensured. However, high computational times may be impractical
in the supply chain. Sometimes, in supply chains, it may not be acceptable to wait too long, since

the plans may have to be recalculated according to management or even clients impositions.

Heuristic methods are frequently used to overcome such difficulties. Although these do not
guarantee the optimal solution, they may present good solutions in acceptable computational
times. Several authors [46, 50, 49, 53, 54] have studied several heuristic approaches. Most of
them choose two-phase algorithms and the exploration of solution space neighborhoods, getting

good quality solutions.

It is possible to take advantage of the two approaches, exact methods and heuristics, and
create heuristics based on exact models. The heuristic method can be used to solve more complex
problems, and the exact models can provide optimal solutions for the sub-problems, providing a

final solution of better quality.

There are several valid approaches for solving hard problems, but some lead to better results
regarding objective function values and concerning computational times. The main objective of
the various authors is to define a positive trade-off between the expected execution times and the

objective function value.
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6.2 Matheuristic approaches

The effort of cooperation between exact and heuristic methods in solving integrated problems
is denominated by matheuristics. A matheuristic is an optimization algorithm which conciliates
mathematical programming techniques with heuristic methods in the search of good quality solu-
tions. This type of algorithm has motivated the interest of several authors who try to apply this
approach to the most varied type of problems.

The use of matheuristics can occur in two different ways. Using mathematical programming
techniques to improve the results obtained by the heuristics or, on the contrary, improving the
results obtained through model relaxation with the use of heuristics. The first approach is the most
frequent in the literature. Often, mathematical models are combined with local search techniques
exploring the solution space defined by neighbor solutions. A heuristic that can be integrated with
a mathematical programming model is, for example, the VNS, which is an elaborate heuristic, and
so often denoted as meta-heuristic. This meta-heuristic explores, in a systematic way, a set of
neighborhoods in order to find good solutions in acceptable computational times. This approach
was proposed by Mladenovi¢ and Hansen [62]. In this chapter, two different matheuristics will
be presented for the MPIDRPTW problem described in the previous chapter (Chapter 5). The
matheuristics exchange information between the exact arc flow model proposed in Section 5.2

and the procedure of local search, in this case, the VNS.

6.2.1 Neighborhood structures

Neighborhoods Ny, N7 and N, allow a modification in the set of visited clients that is performed
through a given arc. Therefore, they are called routing neighborhoods, since they only change the
structure of a single-trip.

The first two neighborhoods N, and N; are denominated “move client”, since a client
changes his position. This change can be made within the same period, through A/ or for

different periods, through A;. An aperiodic change occurs when this change occurs in the same
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period (NVp). This modification can occur within the same arc, changing only the client position
in the single-trip or can occur between different arcs, changing the constitution of two different
single-trips. In the aperiodic change, no demand is anticipated for any customer. If the change
occurs between different periods (A7), then the anticipation of customer requests is allowed, but
backlogging never occurs. An anticipation may be made in the current period or may be delayed
for a future period, provided that the customers request is not delivered later than the period when
the demand is needed. Periodic modification occurs when there are changes between different
arcs that do not belong to the same distribution period. Note that the order in which a customer
is visited can be changed, since an arc is rearranged in order to represent a more attractive
single-trip.

A simple example of a move in the N is presented through Figure 6.1. When client cg is
removed from route a the new route a’ only visits the client c3, ¢; and ¢4. On the other hand, the
route b’ fulfills three client (c5, cg and ¢») instead of the two served by route b (c5 and ¢,). This
example of move is performed in the same period ¢;. Note that the client position in the figure is

not modified in order to clarify the neighborhood “move client”.

Figure 6.2 represents a move in the A/}, which is performed between routes serving clients

Route a (t1)

A

Facility  Ce

¢/ @

New route a’ (¢1)

A

Facility

i C1
Ao \04/

New route b’ (¢1)

Route b (¢1)
sl C5 s C5 T Cs
Facility \ Facility /
— ‘o — (o

_

1
1
|
I
1
I
1
I
I
1
I
1
|
|
|
I
1
I
1
I
I
1
I
1
|
|
|
I
1
I
1

-

~
-

~

Figure 6.1: Example of a move in neighborhood N
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Figure 6.2: Example of a move in neighborhood \/;

in different periods of the planning horizon. Client c¢; is removed from route a that serves client
¢s and ¢ during period 4. Since route b distributes during period ¢; and also fulfills client ¢y, it
is possible to anticipate the demand associated to this client. This anticipation can be observed

through route &’. Route o’ visits only one client.

Neighborhood N5, the “swap two clients”, allows for the permutation of two different clients.
This neighborhood allows the exchange of two clients in the same route or in different routes.
When the exchange occurs between two clients in the same route, then only one arc is modified.
When the permutation occurs between two different single-trips, these two arcs change. This
exchange is only permitted for the same distribution period, not allowing the anticipation of future

periods if they are not already considered in the customers being exchanged.

Figure 6.3, shows an example of a swap between two clients representing a move in neigh-
borhood N5. The permutation represented in the figure occurs for period ¢;. Client cg in route a
is replaced by client ¢4 in route b, creating a neighbor solution with routes @’ and ¢’. Since the
permutation occurs between two different arcs of the same period, two single-trips are modified.
Despite this modification the number of clients associated with each arc remains the same. Route

a’ serves now clients cs, ¢, co and ¢4, and route b fulfills the demand associated to clients cs
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Figure 6.3: Example of a move in neighborhood N,

and cg. In the figure the position of the clients exchanged is the same to clarify the swap.

Each vehicle has an associated workday for distributing orders to clients. During each workday,
a vehicle can perform more than one single-trip. The neighborhoods N5 and A/, are considered
workday neighborhoods since they consider changes related to a complete arc. Neighborhood N5
is namely “move arc” and considers the modification of the position associated to a single-trip.
This shift of an arc is only allowed within the same distribution period. It is expected that the
exchange occurs between routes associated with different vehicles, however the neighbors for an

arc within the same workday and the same vehicle are also considered valid.

As shown in Figure 6.4, routes a and b are performed by vehicles v; and v, respectively.
Vehicles v; and vy work during the first distribution period (¢1). The single-trip 71 performed by
vehicle vy is removed from route a and then inserted in route b made by vehicle vy, originating
route b’. Route a’ performs now only a single trip r4, while route &’ visits clients associated to two
different single trips (r} and r3).

To create a neighbor of neighborhood N, known as “swap arcs”, it is necessary to make the
exchange between two single-trips. Neighborhood A/} creates new valid solutions exchanging an

arc from two different workdays. A valid arcs swap can only be made for the same distribution
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Figure 6.4: Example of a move in neighborhood N3

period. Although it is allowed to exchange two arcs associated with different vehicles, this exchange
can occur for the same vehicle, being considered as valid neighbor.

Figure 6.5 presents an arc exchange between routes a and b for vehicles v; and v, respect-
ively. Route a satisfies client ¢; through the arc r; and clients ¢y, ¢35 and ¢4 using the single-trip
ro. Route a is performed by vehicle vy, while route b is done by vehicle vq that performs a single-

trip. Clients ¢s, ¢ and ¢ are fulfilled over the route b. Route a’ performs now the single-trip 7;
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Figure 6.5: Example of a move in neighborhood N}
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and the single-trip 74 instead of arc r through vehicle v;. Route b’ is performed by vehicle v
and visits only the set of clients presented in the single-trip 5. This arc exchange is only possible

since these vehicles operate at the same distribution period ;.

Neighborhoods N5 and N are called vehicle neighborhoods, since they force the use of new
vehicles. The neighborhood N is called “use new vehicles”. This neighborhood considers that
an arc of a route is removed from the used vehicle and then assigned to a new one. The single-trip

attributed to the new vehicle has to be performed in the same period as the original route.

Figure 6.6 shows that in route a the vehicle v, performed three single trips (1, 7o and r3).
By exploration of neighborhood N5 these single-trips were split over three different vehicles, and
two new vehicles were used. Route o’ satisfies customer ¢; through vehicle vy, route a” meets

n

the needs of clients ¢y, ¢3 and ¢4 through vehicle vy, and finally route a’ delivers customer cs

needs using vehicle vs.

The neighborhood N is called “client round trip”, since the number of new vehicles used
is equal to the number of round single trips generated. Each new vehicle is assigned to a single
client. An arc is selected and each client in the single-trip is visited by a different vehicle. A new
vehicle leaves the facility, fulfills the single client and then returns to the facility. The new vehicles
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Figure 6.6: Example of a move in neighborhood N3
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guarantee the distribution in the same period of the vehicle associated with the reassigned arc.

As shown in Figure 6.7 the arc 7 is divided into two different round trip arcs %, and 7 that
are performed by vehicle v, and vs, respectively. Vehicles v, and wvs fulfill the demand associated

"

to only one client per arc dividing the demand in route a” for client ¢; and @’ for client 5. The

arc r1 is not modified.

Neighborhood - adjusts the start time of an arc during a period of time, being called “arc
time adjust”. An arc is selected and adjusted according to its minimum and maximum starting
times. The time u of the selected arc is adjusted in order to maximize the available time between
other existing arcs in the same route, when the arc is valid. When the arc has an associated
penalty, this adjustment is made taking into account the decrease of that penalty. The time v of

the arc is updated according to the duration of the arc.

Figure 6.8 shows two different arcs: x19 45, and s 100,-,. For the sake of simplicity the
decision variable x,,,,» denotes an arc. Arc x1¢ 45, is valid and instant u can be adjusted between
the time interval [0, 20]. In order to maximize the interval, time w is set to 0, creating a new arc
20,35,r1 -

The neighborhood N is named “anticipate client”, since it anticipates the demand of a partic-

""""""""""" R o o = ()

Route a” (vg = {rh})
Route a”’ (v = {rs})

Route a (v = {r1,m2})

—_—
C1 (6)

K

C1 (&)

1

1

1

1

1

1

1

1

1

1

1

;

12 1

7 /

<\2 T3 i
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

—_—
Facility Facility
™~ N ™~ N
T1 / T1 /
C3 C3

e e e e e ——— o ——

Figure 6.7: Example of a move in neighborhood N
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Figure 6.8: Example of a move in neighborhood N>

ular customer, ensuring the vehicle capacity is not exceeded. This load availability is guaranteed
by forcing a particular customer to be removed from the arc and then inserted into another arc
which satisfies the same period. This situation occurs only when the vehicle capacity is exceeded.

Otherwise, the customer demand is only anticipated.

Figure 6.9 shows the particular case where the demand of customer ¢; is anticipated and the
demand of customer ¢y must be removed from the arc in order to ensure that the vehicle capacity
is not exceeded. Route a fulfills clients ¢5 and ¢q only for period ¢5. Route b satisfies the demand
of clients c¢3, ¢1, ¢g and ¢4 associated to period ¢; and route ¢ distributes only the demand for the
client ¢y for period ¢1. In order to anticipate customer ¢; demand and not to exceed the capacity
of the vehicle, it is necessary to remove client ¢g from route b and insert it into route ¢, originating
route . Route @’ serves only one client (c5) and route o’ fulfills the client ¢; for period ¢, and t;

and the clients c3 and ¢4 for period ¢;.
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Figure 6.9: Example of a move in neighborhood Ns

6.2.2 Evaluation function

At each iteration of the VNS process a set of solutions is determined, which depends on the
explored neighborhood. When a mathematical model assists in the decision making of the VNS
process, the set of solutions is changed, and a different solution space is defined. The search
space includes a set of solutions that has different costs associated, thus it becomes important
to assess the quality of the solution. To evaluate a solution, it is essential to clearly define an
evaluation function. The relevant parameters and costs associated to the evaluation function are

presented below:

Parameters

S = solution

v(S) = number of vehicles of the solution S



168 Chapter 6. The multi-trip PIDRPTW: heuristic and hybrid approaches

inv® () = quantity of inventory at the facility at period ¢, V¢ € t7(S)
tP(S) = set of distribution periods of the solution S
t”(S) = set of production periods of the solution S

r(t) = set of single-trips of period ¢, V¢ € t7(S)
hY = unitary holding cost at the facility
f; = setup cost of manufacturing period ¢, V¢ € t7(5)
C, = fixed cost that represents the use of a vehicle v
Cr(r,t) = holding cost associated to the route r and period ¢ , Vr € r(t) and ¥t € tP(S)
R(r,t) = cost of a route r, Vr € 7(t) and V¢ € t7(S)
W = length of the planning horizon

() = capacity associated to the vehicle

(

1 if route r exceeds the workday length TV in period ¢, Vr € and t € tP(9),
penw (r, 1) =
\O otherwise
1 if route r exceeds the capacity of vehicle ) in period ¢, Vr € and t € tP(.9),
peng(r,t) =
\O otherwise

pengyy (r,t) =number of time window violations Vr € and t € t”(9),

Cpen =penalty cost

Evaluation function

f(S) = Cost? + Cost]) + Costl + Cost},, + Costr, (6.1)

nv pen

where
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Cost! = > 3" R(r.t)+ Cp(r,t) 6.2)
teTP (S) rer(t)
(S)

Cost? = ZC” (6.3)
v=1

Costf = Z fi (6.4)
petP(S)

Costl = h" Z inv® () (6.5)

tetf (S)

C’ostfm = Z Z Cpenpeny (r,t) + Cpenpeng(r,t) + Cpenpenrw (r,t)  (6.6)
teTP(S)rer(t)

There are three different types of unfeasible solutions during the exploration of the search
space. One permits to exceed the vehicle capacity. Another allows for the violation of the cus-
tomer time window. The last allows to exceed the workday length. The aforementioned violations
are considered in the evaluation function through the introduction of penalties. The solution S
is evaluated for its fixed and variable cost, considering the penalties associated to violated con-

straints.

6.2.3 A two-phase model-based variable neighborhood search algo-

rithm

When problems present a high computational complexity, it is often necessary to decompose
them and use different methodologies to manage the exchange of information between the sub-
problems.

During this section, a local search algorithm based on a mathematical model is described,
called a two-phase model-based variable neighborhood search algorithm (2MVNS). This method
is a meta-heuristic which explores, in a systematic way, a set of neighborhood structures in order

to find integer solutions of good quality.
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The 2MVNS algorithm, presented in Figure 6.10, starts with a valid initial solution, and a vari-
able local search process is applied, through the successive exploration of a set of neighborhoods.
This phase is called Model-Based Variable Neighborhood Descent (MVND) and is referred to as
Phase I. During this phase, the 2MVNS algorithm finds several distribution and routing decisions
that are evaluated through the mathematical model. Through this approach, it is possible to find
good quality solutions, considering all the constraints associated to the MPIDRPTW, not neglect-
ing the inventory and production decisions at the client and at the facility. When a better valid
solution is found, the incumbent solution is updated. In order to avoid local optima, the solution
is submitted to a disturbance phase, creating significant changes in the current solution. This

second phase (Phase Il) is called Shaking Phase and aims to strengthen the robustness of the

Initial Solution

‘ While available time )
1 L
L 1
: ' . i
i {  PHASEI ‘; :
E —>i Model-Based Variable Neighborhood Descent i i
! -. ,: i
! S s ;
i |

1
| v i
3 ]
E { Best Incumbent Solution | i
i 1

1
: ) v . i
: / \ !
: | PHASE Il 5 !
i i Shaking Phase | :
: i
1 .
: | !
a E

[ Best Solution

Figure 6.10: The two-phase model-based variable neighborhood search approach
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search process. The 2MVNS algorithm provides an iterative search during the available time. At

the end of the approach, the current best incumbent solution is considered the final best solution.

The mathematical model that exchanges information with the VND algorithm is described
in detail in Section 5.2. Each step of the MVND algorithm considers routing and distribution
decisions, creating new possible routes to satisfy the clients demand. That information, in each
step, is used by the mathematical model to improve production and inventory decisions at the

facility and at the clients.

The 2MVNS algorithm is presented in Algorithm 6.1. The algorithm explores a set of neigh-
borhoods, considered as input, and starts with an initial solution. This solution is created through
a greedy randomized heuristic, which randomly serves clients, assigning customers to routes

according to the capacity constraints of the workday and the vehicles.

The algorithm tries to improve the current solution through a model-based variable neighbor-
hood descent. The MVND uses neighborhoods N5, Na, N5, N, N1, Ny and Ny in a sequential
way. After MVND, when a better solution is found, the solution is saved, replacing the best current
solution S*. The MVND explores a set of neighborhoods in a sequential way. For all neighbor-
hood, there is a defined number of neighbors (1 ncighbors) PEr client to explore, meaning that
the complete exploration of a neighborhood is not made. A permutation in the neighborhood is
randomly defined for each client. When a first improvement is identified in a given neighborhood,
this sequence of neighborhoods is explored from the beginning until a further improvement is

found. When no improvement is found, the iterative exploration process of Phase | is terminated.

The shaking phase is performed after the MVND process, allowing for the diversification of
the search, since this phase may strongly perturb the objective value obtained in the search
space. This perturbation occurs due to the exploration of neighborhoods N5, N5, N, N;.
Neighborhoods N5 and A force the use of new vehicles while, on the other hand, ; forces an
anticipated order to be served in a later period. Neighborhood N5 is used in order to reduce the

perturbation generated. A neighborhood is selected according to the probability Py, nd

i€{3,5,6,0} a
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Algorithm 6.1: The two-phase model-based variable neighborhood search algorithm
Input: Set of neighborhood structures
N = {MG{O,...,S}}; PM6{1,3,5,6}’ kmaxa N Neighbors

Initialization: find an initial solution S’ with a greedy randomized heuristic;
S*«+ S;
S+ S
repeat
k<« 1;
while k£ < k,,,,, do

S" <= MVND(S", Nie(3,2,56,1,4,0} " Neighbors) ;

S" < Shaking(S, Nie(3 56,1} PNicpi a6y ) i
if f(S") < f(S*) and S” is feasible then

| ST« 5",

© O N O g »~» WO N =

=
o

[
[

until a termination condition is met;
return S*

-
N

k represents the number of consecutive moves used to perturb the current solution. When the
termination condition is reached, the best current solution is returned.

It is important to highlight that the 2MVNS approach is concerned with the quality and validity
of the solution in each iteration, since this search must find a good and valid solution for the

MPIDRPTW during the search process.

6.2.4 A three-phase model-based variable neighborhood search al-

gorithm

The three-phase model-based variable neighborhood search (3MVNS) heuristic decomposes the
MPIDRPTW in three distinct phases. Once again, the VNS is the local search method selected
to determine arcs that have the potential to improve the global solution of the problem, exploring
a set of neighborhoods in a systematic approach. The VNS finds routes, taking into account
distribution and routing decisions, relaxing factory-related decisions. The production decisions
are then made through the exact solution of the integer programming model specified in detail in

Section 5.2, which uses the arcs generated by the VNS to decide the production periods, managing
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the inventory stored at the factory.

In Figure 6.11 a global scheme demonstrating how the 3MVNS algorithm works is depicted.
The 3MVNS model-based starts with an initial solution and tries to find better quality arcs over
a finite number of iterations. Each iteration is performed in two distinct phases: Model-based
Variable Neighborhood Descent and Shaking Phase. Phase | explores the neighborhoods, looking
for good local optima. During this phase, the generated arcs with potential to improve the global
solution are memorized in a global list of arcs. Phase |l creates higher perturbations in the
solution, trying to escape from local optima. Lastly, during Phase llI, the list of all generated arcs
is evaluated to find the best possible solution within a pre-established time limit.

Algorithm 6.2 presents the 3MVNS heuristic, where a pre-established set of neighborhoods
is sequentially explored. The algorithm starts with a valid solution obtained through a greedy

randomized heuristic. The model-based variable neighborhood descent tries to find good quality

Initial Solution

" While available time :

{ PHASEI i
—>§ Variable Neighborhood Descent with model decisionsi

4

’ N\,

PHASE II §
Shaking Phase |

List of
arcs

- ~

. | PHASEIN E
Best Solution i Model Phase

Figure 6.11: The three-phase model-based variable neighborhood search approach
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neighbor solutions, exploring the solution space defined through neighborhoods N3, N5, N,
Ns, N1, Ny and Ny. During this phase, the 3MVNS tries to adjust routing and distribution
decisions and the arc flow model evaluates the global solution, taking into account production
and inventory decisions. The MVND does not make the exhaustive exploration of the solution
space for each neighborhood. The exploration of a neighborhood is controlled by the parameter
N Neighbors Which defines the maximum number of random permutations allowed per client for
each different neighborhood. The exploration of the solution space of a neighborhood stops when
a first improvement is identified. The set of neighborhoods initially defined is explored from the

beginning until a new improvement is reached. The iterative exploration process ends when no

Algorithm 6.2: A three-phase model-based variable neighborhood search algorithm
Input: Set of neighborhood structures
N = {-/\/;6{07...78}}7 P./\/,L'E{ljg_’g)’g}? kmaxu Llimits N Neighbors

1 Initialization: find an initial solution S’ with a greedy randomized heuristic;
2 S*« S

3 9« S,

4 A<+ get_arcs(S);

5 repeat

6 k+1;

7 while £ < k,,,,, do

8 S" <= MVND(S", Nie(3,2,56,1,4,0} " Neighbors) ;
9 S" < Shaking(.S, Nic(3.56.0) PNic1 560 K) ;
10 new_A < get_ares(S") U get_arcs(S') ;
11 a<+0;

12 while new_A # () do

13 if new_A(a) isvalid then

14 A+ AUnew_A(a);

15 new_A <« new_A\{new_A(a)};

16 if f(5") < f(S*) and S” is feasible then
17 L S* « S,

18 until a termination condition is met;
19 S* < model(A, timit);
20 return S*
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more improvements are found.

The diversification of the search is allowed through the shaking phase, creating significant per-
turbation in the current solution. The application of neighborhoods N5, N, N strongly perturbs
the solution, since neighborhoods N5 and Ny force the use of new vehicles, and neighborhood
N forces an anticipated order to be fulfilled in a posterior period. Neighborhood A5 reduces the
perturbation generated. The probability PME{S’MO} selects a neighborhood and the parameter
k identifies the consecutive moves used to perturb the current solution during the shaking phase.

In each iteration, all the valid arcs, obtained through the exploration of the different neigh-
borhoods, are stored in a list of arcs pre-initialized with the arcs belonging to the initial solution.
When the termination condition is reached, the list of arcs generated during the MVND phase is
evaluated by the mathematical model, returning a valid solution within the time limit ¢;;,,,.

It is important to note that 3MVNS is not so concerned with the quality of the solution found
in each iteration, but with the validity and diversity of the arcs generated in Phase |. Phase Il finds
a solution through the mathematical model described in Section 5.2. The existence of a valid
solution is guaranteed, since the initial solution represents a valid solution and all the arcs that
are part of the solution are added to the list of arcs processed by the model. The arc flow model
can also make some adjustments to the routing and distribution decisions, since it has access to

all the arcs, being able to evaluate them from a global perspective.
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6.3 Computational results

In order to evaluate the proposed heuristic, benchmark instances of literature, adapted from Bard
and Nananukul in [46], are used. These instances are divided into 5 sets. The sets differ in terms
of the location of the clients and the value of the parameters concerning production, inventory
and distribution decisions. Each set has 20 instances, where each instance varies the number of

clients (10, 20, 30, 40 and 50) and the number of periods (2, 4, 6 and 8) in the planning horizon.

As in the previous chapter, the Bard and Nananukul [46] instances were adapted to fit the
specificities of the MPIDRPTW. The multi-trip variant must consider a fixed vehicle costs and a
smaller vehicle capacity. These parameters were introduced in the definition of the instances,
being set to 10000 (C,, = 10000) and 500 () = 500), respectively, for all instances. Client
time windows interval were also introduced with randomly generated with values between 10% and
70% of the workday value. The workday value was set to 500 (I = 500). The coordinates of the
facility are in the geographical point (0, 0) and the euclidian distance between the facility and the
clients was rounded to the nearest smaller integer. These were the only adaptations performed
in the Bard and Nananukul [46] instances. The facility unit holding cost is 1 (h* = 1) and the
clients holding cost is O for all periods (Cj,, = 0). The facility production capacity (C) and the
production setup cost (f;) vary with the different sets according to Table 5.2 presented in the
previous chapter. In the following subsections, tables with computational results are presented

for the different algorithms. The common column notation is presented below:

Inst : instance name Dist:_¢ where ¢ is the number of clients and ¢ the number
of periods
Rep; : repetition ¢ of the heuristic

ub : value of the best known upper bound
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Save
g+

o
#CiVe
#C3fix

Arc
#LAVG

TWava(%)
Tomvis
T3nmvns

T3mvNsp, P

T3MVNPI .

Ttotal

#Arcs

#A :
#F .

#it :

E

L

: average value of the solution repetition

: value of the best known solution

: value of the worst known solution

: average number of clients per arc of all generated arcs

: maximum number of clients per arc of all generated arcs

: average number of loads per arc of all generated arcs, considering client demand
anticipation

: average length of client time windows for all clients

: time to execute the 2MVNS algorithm

: time to execute the 3MVNS algorithm

: time to execute phases | and Il with 3MVNS algorithm

: time to execute phase Il with 3MVNS algorithm

: total time

: total number of arcs generated for all the periods

number of used arcs

number of used vehicles

number of iterations

: exact model (Section 5.4.1)

: exact model with arc limitation (Section 5.4.2)

The computational tests were performed on a computer with a processor Intel Xeon CPU ES-

1620 v3 with 3.5GHz and 64GB of RAM; the optimization subroutines were executed on CPLEX

12.6.
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6.3.1 A two-phase model-based variable neighborhood search algo-

rithm

All adapted instances from Bard and Nananukul [46] were used to evaluate the 2MVNS algorithm
and 5 different repetitions of the heuristic were performed for each instance of all sets. The
2MVNS algorithm is limited to a CPU time of 300 seconds for each of the 5 runs. The k42
parameter was set to 40% of the number of arcs initially generated by the greedy heuristic. The
maximum number of random permutations allowed for each client in each neighborhood was set
to nnveighbors = . To adapt the penalty values to each instance, their values were set to 20% of
the initial objective value. The probability of a move in a given neighbor, in the shaking phase, is
defined by Py, = 0.1, Ppy, = 0.3, Pyy; = 0.3, and Py, = 0.3.

Tables 6.1 to 6.5 show the best solution value, the worst solution value and the average
solution value of the different runs. The results show information regarding the best solution from
the 5 repetitions (from column Inst to column #it), whereas the last 7 columns present the

worst, average and the objective value for each repetition.
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Table 6.2: Results of two-phase model-based variable neighborhood search - Set 2

Inst S* Njw.e:\zw #Arcs %QMM\NQ *Q%\MX %N\wﬁwﬂ Néa\\:\ﬂ ﬁo\ov #A #F #it S— ,m‘kfxmm 1 2 _NMU 4 5

Distl0_2 | 181044 300 14| 136 3] 2,07 3506 | 14| 75667 | 181044 | 18104400 | 181044 | 181044 | 181044 | 181044 | 181044
Distlo_4 | 282318 300 27| 130 3| 333 4312 | 27| 12| 1788 | 292421 | 286522,60 | 283059 | 282318 | 282437 | 292421 | 292378
Distl0_6 | 388306 300 44| 123 4] 441 4548 | 44| 17| 609 | 398038 | 393817,00 | 388408 | 397174 | 398038 | 388306 | 397159
Distl0_8 | 498989 01| 55| 122 5| 544 40,68 | 55| 22| 341 | 511412 | 50793560 | 511412 | 508526 | 498989 | 509988 | 510763
Dist20_2 | 287691 300 28| 121 3| 193 34,80 | 28| 13| 1263 | 298890 | 292279,40 | 288010 | 298890 | 297691 | 289115 | 287691
Dist20_4 | 502445 300| 55| 125 3] 306 4169 | 55| 24| 262 | 512235 | 50715580 | 503021 | 510019 | 502445 | 507159 | 512235
Dist20_6 | 738076 303| 89| 127 4| 446 3539 | 89| 37| 100 | 757349 | 75136380 | 756483 | 748754 | 757349 | 738076 | 756157
Dist20_8 | 910038 310 103 1,37 5| 618 4451 | 103 | 44| 56| 933537 | 926604,80 | 927241 | 910038 | 930640 | 931568 | 933537
Dist30_2 | 346212 300 38| 147 3] 226 4618 | 38| 16| 471 | 359677 | 351702,40 | 356387 | 346212 | 348155 | 348081 | 359677
Dist30_4 | 653887 03| 73| 147 3| 373 3731 | 73| 34| 98| 678646 | 66415120 | 678646 | 653887 | 654326 | 665290 | 668607
Dist30_6 | 1104700 306 | 122| 134 3| 47 3571|122 | 60| 33| 1126530 | 1110050,00 | 1106740 | 1107300 | 1104980 | 1126530 | 1104700
Dist30_8 | 1570000 304| 164| 135 3] 615 40,07 | 164 | 84| 22| 1615800 | 1583504,00 | 1570000 | 1578220 | 1576080 | 1577420 | 1615800
Distd0_2 | 345262 01| 39| 177 4l 279 4534 | 39| 16| 216 | 357151 | 35424220 | 355950 | 355929 | 345262 | 356919 | 357151
Dist40_4 | 831681 300| 85| 178 3| 446 3804 | 85| 45| 47 | 853172 | 84111800 | 832531 | 845841 | 831681 | 853172 | 842365
Dist40_6 | 1296290 32| 142| 156 3| 553 4231 | 142 | 70| 15| 1328840 | 1310642,00 | 1299720 | 1311420 | 1316940 | 1296290 | 1328840
Dist40_8 | 1754100 326| 187 | 159 3| 718 36,26 | 187 | 97 | 12 | 1780400 | 1763928,00 | 1769110 | 1780400 | 1755800 | 1754100 | 1760230
Dist50_2 | 473357 302| 50| 182 3] 282 42,06 | 50| 24| 122 | 487221 | 48154320 | 485340 | 487221 | 484524 | 473357 | 477274
Dist50_4 | 806941 306 | 93| 188 4| 478 3892 | 93| 43| 24| 863510 | 84654320 | 806941 | 861013 | 861694 | 863510 | 839558
Dist50_6 | 1529250 303| 163| 176 3] 622 40,28 | 163 | 82| 12 | 1577870 | 1563524,00 | 1577870 | 1558320 | 1529250 | 1575060 | 1577120
Dist50_8 | 2234920 314 224 1,69 3] 775 36,73 | 224 | 129 | 2| 2278110 | 2256114,00 | 2234920 | 2278110 | 2270960 | 2235760 | 2260820
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Table 6.4: Results of two-phase model-based variable neighborhood search - Set 4
Arc Arc ; o ; - Rep

Inst S* ijke:a?nw .%Q\\Eﬂ—k %N\LQQ \NJS\\:\Q A\& #A | #F #it S ,W><Q 1 2 3 4 5

Distlo_2 | 189192 300 3] 218 4094 | 11| 47592 199015 | 191156,60 | 199015 | 189192 | 189192 | 189192 | 189192
Distlo_4 | 230868 300 4| 400 52,80 | 17 | 6| 1980 | 242152 | 235606,60 | 241542 | 230868 | 231532 | 242152 | 231939
Distl0_6 | 325270 300 3| 550 3786 | 26| 11| 955 | 356146 | 338413,80 | 343722 | 325270 | 356146 | 333717 | 333214
Distl0_8 | 394179 300 3] 732 3010 | 31| 15| 486 | 419643 | 40786820 | 419643 | 394179 | 415686 | 414498 | 395335
Dist20_2 | 237278 300 3] 313 3775 | 16| 7| 1724 | 248875 | 243750,00 | 237539 | 247657 | 247401 | 248875 | 237278
Dist20_4 | 368600 300 3| 490 39,44 | 31| 15| 404 | 375273 | 37256940 | 368600 | 372356 | 374469 | 372149 | 375273
Dist20_6 | 577066 300 3| 573 39,34 | 51|26| 152 | 588668 | 58072140 | 579774 | 577066 | 579027 | 588668 | 579072
Dist20_8 | 712334 301 3| 742 3921 | 67|32 | 63| 750273 | 739807,80 | 737645 | 749285 | 712334 | 749502 | 750273
Dist30_2 | 314966 300 3] 312 4356 | 25| 12| 482 | 317483 | 316171,00 | 316210 | 316893 | 317483 | 314966 | 315303
Dist30_4 | 495029 301 4| 543 40,40 | 47 | 22| 91| 512243 | 504636,20 | 503240 | 505592 | 495029 | 512243 | 507077
Dist30_6 | 840055 301 3| 74 3359 | 75|42 | 36| 855141 | 84846460 | 853239 | 855141 | 849060 | 844828 | 840055
Dist30_8 | 1021850 312 3] 92 41,96 | 96 | 48| 22 | 1079190 | 1051838,00 | 1021850 | 1079190 | 1074790 | 1046700 | 1036660
Distd0_2 | 372504 300 3| 358 4194 | 31| 15| 223 | 385167 | 37942100 | 383629 | 372890 | 372504 | 385167 | 382915
Dist40_4 | 650844 302 3| 528 41,33 | 65|31 | 43| 676335 | 665030,40 | 650844 | 662112 | 676335 | 662719 | 673142
Dist40_6 | 975549 321 3| 748 39,98 | 97 | 48| 15| 1022200 | 99942840 | 1000930 | 1022200 | 995163 | 975549 | 1003300
Dist40_8 | 1312530 337| 126| 208 3| 946 41,40 | 126 | 65 | 10 | 1375990 | 1348572,00 | 1345510 | 1370770 | 1375990 | 1338060 | 1312530
Dist50_2 | 407137 304| 38| 234 4| 366 42556 | 38|17 | 109 | 428248 | 421121,20 | 407137 | 425050 | 418255 | 426916 | 428248
Dist50_4 | 825556 3| 85| 212 3| 536 3747 | 85| 41| 21| 859663 | 84247440 | 845528 | 829096 | 859663 | 852529 | 825556
Dist50_6 | 1229370 34| 18| 225 3| 806 36,81 | 118 | 65 | 11 | 1300420 | 1260054,00 | 1259030 | 1229370 | 1277060 | 1300420 | 1234390
Dist50_8 | 1613570 301 | 144| 253 3] 11,52 41,80 | 144 | 85| 5| 1646750 | 1626408,00 | 1625420 | 1646750 | 1620180 | 1626120 | 1613570
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184 Chapter 6. The multi-trip PIDRPTW: heuristic and hybrid approaches

6.3.2 A three-phase model-based variable neighborhood search al-

gorithm

To evaluate the 3MVNS algorithm all adapted instances from Bard and Nananukul [46] were
used. For each instance of all sets, 5 different repetitions of the heuristic were performed. The
3MVNS algorithm is limited by a CPU time of 300 seconds for each of the 5 runs and the CPLEX
execution time was limited to 300 seconds. Parameter k,,,,, Was set to 40% of the number of arcs
initially generated by the greedy heuristic. For each client in each neighborhood, the maximum
number of random permutations allowed was set t0 . eighbors = 5. To set a penalty value that
is better adapted for each instance, their values were set to 20% of the initial objective value. For
the shaking phase the probability of a move in a given neighbor was defined by Py, = 0.1,
Py, = 0.3, Py, = 0.3, and Py, = 0.3.

Tables 6.6 to 6.10 show the best solution value, the worst solution value and the average
solution value of the different runs. The tables consider the results obtained regarding the best
solution from the 5 repetitions (from column Inst to column #it), whereas the last 7 columns

present the worst, average and the objective value for each repetition.
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Table 6.7: Results of three-phase model-based variable neighborhood search - Set 2

Inst 5* VNS #hies | #ONS, | #O{s, | #LATe, | TWaye Ai #A | #F | #it | 5™ e . ) mmu . 5
Distl0_2 | 172161 300 242 | 143 3] 222 3506 | 14| 65667 | 172161 | 17216100 | 172161 | 172161 | 172161 | 172161 | 172161
Distl0_4 | 272563 307 4506 | 1,41 3| 343 4312 | 27| 11| 1788 | 272563 | 27256300 | 272563 | 272563 | 272563 | 272563 | 272563
Distl0_6 | 377051 308 6282 | 131 3| 4w 4548 | 43| 16| 609 | 377613 | 37716340 | 377051 | 377051 | 377051 | 377613 | 377051
Distl0_8 | 469139 369 5241 | 1,34 4| 713 4068 | 56|19 | 341 | 469518 | 46932340 | 469518 | 469518 | 469303 | 469139 | 469139
Dist20_2 | 278830 300 4343 | 147 3| 235 3480 | 28| 12 | 1263 | 278830 | 278830,00 | 278830 | 278830 | 278830 | 278830 | 278830
Dist20_4 | 457218 437 7623 | 1,30 4| 333 4169 | 54|20 | 262 | 458200 | 457810,80 | 458229 | 457218 | 458160 | 458229 | 457218
Dist20_6 | 651148 399 9964 | 1,35 4| 509 3539 | 87|29 | 100 | 652803 | 65185500 | 651148 | 651857 | 652803 | 651664 | 651803
Dist20_8 | 793800 611 310 301 | 15198 | 152 4| 172 44,51 | 100 | 34 | 56| 802883 | 799674,40 | 793800 | 802883 | 801635 | 800417 | 799637
Dist30_2 | 325000 601 300 301 | 19957 | 1,69 al| 257 4618 | 39| 14| 471 | 325000 | 32500000 | 325000 | 325000 | 325000 | 325000 | 325000
Dist30_4 | 568533 603 303 300 | 17552 | 173 4| 413 3731 | 69 |27| 98| 576544 | 57410860 | 576544 | 574179 | 576091 | 568533 | 575196
Dist30_6 | 947228 342 306 36| 12845 | 148 4| ap4 3571 | 121 | 45| 33| 956513 | 95226020 | 951702 | 956513 | 951045 | 954858 | 947228
Dist30_8 | 1360270 541 304 237| 9935 | 1,58 4| 812 40,07 | 158 | 66 | 22 | 1371730 | 1365598,00 | 1368650 | 1360270 | 1371730 | 1365250 | 1362090
Dist40_2 | 310261 603 301 302 | 55778 | 221 5| 329 4534 | 37|13 | 216 | 311405 | 31087640 | 310845 | 310784 | 310261 | 311405 | 311087
Dist40_4 | 712232 400 300 100 | 25026 | 1,90 5| 464 3804 | 81|34| 47| 721672 | 715634,40 | 716709 | 714972 | 712232 | 712587 | 721672
Distd0_6 | 1112510 612 312 300 | 21044 | 190 5| 590 4231 | 136 | 54 | 15| 1134290 | 1121412,00 | 1112510 | 1134290 | 1114870 | 1124690 | 1120700
Dist40_8 | 1480430 628 326 302 | 15398 | 178 4| 825 3626 | 180 | 71| 12 | 1503180 | 1493036,00 | 1490730 | 1503180 | 1490910 | 1480430 | 1499930
Dist50_2 | 420434 603 302 301 | 42085 | 2,07 5| 323 4206 | 50|19 | 122 | 423024 | 421769,60 | 421995 | 420434 | 422062 | 421333 | 423024
Dist50_4 | 696954 607 306 301 | 36478 | 2,05 6| 550 3892 | 91|33 | 24| 712199 | 708239,40 | 696954 | 712199 | 711261 | 710271 | 710512
Dist50_6 | 1320260 604 303 301 | 22227 | 2,08 5| 647 4028 | 159 | 64 | 12 | 1334140 | 1327894,00 | 1334140 | 1320260 | 1332300 | 1329630 | 1323140
Dist50_8 | 1892590 616 314 302 | 18327 | 2,07 6| 793 3673|223 | 95| 2| 1914670 | 1909438,00 | 1892590 | 1913260 | 1913400 | 1913270 | 1914670
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Table 6.9: Results of three-phase model-based variable neighborhood search - Set 4

Inst 5| Touvws Tistvise,, | #Acs | #C45, | #O8s, | #L4%, | TWave (9) | #A | #F | #it | S~ Save . 2 | xmn . 5
Distl0_2 | 189192 | 303 3] 4923| 158 3] 24 4094 | 11| 47592 | 189192 | 18919200 | 189192 | 189192 | 189192 | 189192 | 189192
Distl0_4 | 229833 317 17| 16383 | 177 4 476 52,80 | 16| 6| 1980 | 230255 | 22991740 | 230255 | 229833 | 229833 | 229833 | 229833
Distl0_6 | 314548 315 15| 6929| 172 4] 68l 3786 | 25| 11| 955 | 321225 | 31969100 | 314548 | 321048 | 321225 | 320964 | 320670
Distl0_8 | 371640 317 7| 49| 187 5| 997 30,10 | 30| 14| 486 | 381136 | 375869,80 | 381136 | 380393 | 371640 | 373919 | 372261
Dist20_2 | 237142 376 300 76 | 21554 | 2,01 4] 314 3775 | 17| 7| 1724 | 237142 | 23714200 | 237142 | 237142 | 237142 | 237142 | 237142
Dist20_4 | 327620 601 300 301 | 20077 | 218 5| 602 39,44 | 31| 12| 404 | 337167 | 33405700 | 334883 | 334564 | 337167 | 327620 | 336051
Dist20_6 | 503110 | 600 300 300 | 17736 | 175 5/ 610 39,34 | 49|20 | 152 | 507933 | 50551060 | 505971 | 505079 | 507933 | 503110 | 505460
Dist20_8 | 623769 601 301 300 | 21998 | 2,02 6| 1054 39,01 | 64| 24| 63| 632840 | 62740260 | 623769 | 630650 | 625129 | 632840 | 624625
Dist30_2 | 284080 | 389 300 89 | 57024 | 215 5 322 4356 | 25| 9| 482 | 293210 | 28632820 | 285067 | 284642 | 293210 | 284080 | 284642
Dist30_4 | 425358 | 602 301 301 | 48520 | 2,21 5| 551 40,40 | 47| 17| 91| 435487 | 43213420 | 431679 | 435487 | 434445 | 425358 | 433702
Dist30_6 | 71478 | 602 301 301 | 23887 | 2,09 5 792 3359 | 72|32| 36| 724568 | 716702,40 | 713225 | 711478 | 721721 | 712520 | 724568
Dist30_8 | 900469 613 312 301 | 29183 | 2,14 5| 1099 4196 | 98|38 | 22| o557 | 91218720 | 914515 | 913561 | 917557 | 900469 | 914834
Dist40_2 | 337258 | 423 300 123 | 59409 | 2,47 6| 407 4,94 | 31| 12| 223 | 340082 | 33803240 | 337263 | 337258 | 337963 | 340082 | 337596
Dist40_4 | 550043 | 603 302 301 | 49542 | 2,09 5| 53 433 | 64| 24| 43| 571488 | 56713580 | 568344 | 568546 | 571488 | 559043 | 568258
Distd0_6 | 836691 622 321 301 | 38002 | 2,24 6| 852 39,08 | 93|37 | 15| 854138 | 84802620 | 853971 | 836691 | 854138 | 847274 | 848057
Dist40_8 | 1142670 | 638 337 301 | 30328 | 2,28 5| 1161 4140 | 123 | 52 | 10| 1198430 | 1173652,00 | 1190950 | 1142670 | 1198430 | 1161720 | 1174490
Dist50_2 | 370891 607 304 303 | 94556 | 2,38 5 39 42,56 | 38| 14| 109 | 371783 | 37130000 | 371076 | 370891 | 371451 | 371749 | 371783
Dist50_4 | 708868 615 313 302 | 44820 | 2,20 5| 523 3747 | 83|31 21| 722867 | 71528440 | 721832 | 710157 | 712698 | 722867 | 708868
Dist50_6 | 1062730 | 645 344 301 | 34702 | 2,36 6| 85 36,81 [ 120 | 51| 11 | 1099800 | 1078870,00 | 1066510 | 1080070 | 1085240 | 1099800 | 1062730
Dist50_8 | 1412190 | 603 301 302 | 31605 | 2,66 7] 1B 4180 | 148 | 66 | 5| 1443190 | 1425912,00 | 1416960 | 1443190 | 1430060 | 1412190 | 1427160
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6.3.3 Comparative discussion

In order to validate the two proposed matheuristics, a comparative analysis is performed, con-
sidering the solution values with the best lower bound of the network flow model ((5.1)-(5.19)),
presented in Section 5.2.

For an exhaustive analysis, Tables 6.11 to 6.15 present values of the best value obtained in
the exact model with and without any limitation in the arc generation as well as the best values
obtained by the matheuristics. The number of generated arcs and the gap values are also com-
pared according to the approaches that are under comparison. As an example, the column £
-2MV NS presents the gap values that the 2AM V' N S retrieves when comparing to the exact

execution of the model. Whenever there is no solution for a given set, the entry '-" is used.
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Table 6.12: Comparative analysis of the proposed methods - Set 2

ub #A gap (%)

fnst E L  |2MVNS|3MVNS E L |2MVNS |3MVNS |E-2MVNS | E-3MVNS | L-2MVNS | L-3MVNS | 2MVNS-3MVNS
Distl0_2 | 172161 | 172326 | 181044 | 172161 9102 | 1830 1 2142 491 0,00 4,82 -0,10 -5,16
Distl0_4 | 272563 | 282161 | 282318 | 272563 | 25067 | 4777 27 4506 3,46 0,00 0,06 -3,52 -3,58
Distl0_6 | 377051 | 379122 | 388306 | 377051 | 35031 | 5879 44 6282 2,90 0,00 2,37 -0,55 -2,99
Distl0_8 | 469139 | 469303 | 498989 | 469139 | 51075 | 11804 55 5241 5,98 0,00 5,95 -0,03 -6,36
Dist20_2 | 278830 | 288969 | 287691 | 278830 | 31893 | 9274 28 4343 3,08 0,00 0,44 -3,64 -3,18
Dist20_4 | 457218 | 468541 | 502445 | 457218 | 86698 | 24499 55 7623 9,00 0,00 6,75 -2,48 9,89
Dist20_6 | 651148 | 662933 | 738076 | 651148 | 104547 | 28489 89 9964 11,78 0,00 10,18 -1,81 -13,35
Dist20_8 | 794620 | 800132 | 910038 | 793800 | 773555 | 164885 103 15198 12,68 0,10 12,08 -0,80 -14,64
Dist30_2 | 325000 | 325420 | 346212 | 325000 | 335511 | 85071 38 19957 6,13 0,00 6,01 0,13 -6,53
Dist30_4 | 565230 | 576052 | 653887 | 568533 | 995404 | 269462 73 17552 13,56 0,58 11,90 -1,32 -15,01
Dist30_6 | 940558 | 946532 | 1104700 | 947228 | 884508 | 262435 122 12845 14,86 0,70 14,32 0,07 -16,62
Dist30_8 | 1347960 | 1360550 | 1570000 | 1360270 | 1620705 | 319037 164 9935 14,14 0,90 13,34 -0,02 -15,42
Dist40_2 -| 322876 | 345262 | 310261 - | 193603 39 55778 - - 6,48 -4,07 -11,28
Dist40_4 -| 723183 | 831681 | 712232 - | 428683 85 25026 - - 13,05 -1,54 -16,77
Dist40_6 -| 1110870 | 1296290 | 1112510 - | 416856 142 21044 - - 14,30 0,15 -16,52
Dist40_8 - | 1447650 | 1754100 | 1480430 - | 595827 187 15398 - - 17,47 2,21 -18,49
Dist50_2 -| 434180 | 473357 | 420434 - | 195433 50 42085 - - 8,28 -3,27 -12,59
Dist50_4 -| 689275 | 806941 | 696954 - | 434424 93 36478 - - 14,58 1,10 -15,78
Dist50_6 -| 1314040 | 1529250 | 1320260 - | 507427 163 22227 - - 14,07 0,47 -15,83
Dist50_8 - | 1860500 | 2234920 | 1892590 - | 599142 224 18327 - - 16,75 1,70 -18,09
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Table 6.14: Comparative analysis of the proposed methods - Set 4

ub #A gap (%)
inst E L |2MVNS | 3MVNS E L |2MVNS |3MVNS | E-2MVNS | E-3MVNS | L-2MVNS | L-3MVNS | 2MVNS-3MVNS
Distl0_2 | 189192 | 189192 [ 189192 | 189192 | 18590 | 3652 1 4923 0,00 0,00 0,00 0,00 0,00
Distl0_4 | 229833 | 230255 | 230868 | 229833 | 432276 | 111598 17 16353 0,45 0,00 027 -0,18 -0,45
Distl0_6 | 314347 | 315073 | 325270 | 314548 | 220160 | 68274 26 6929 3,36 0,06 313 0,17 -3,41
Distl0_8 | 368200 | 376568 | 394179 | 371640 | 284669 | 119594 31 4419 6,59 0,93 4,47 -1,33 -6,06
Dist20_2 | 237142 | 237172 | 237278 | 237142 | 400087 | 122241 16 21554 0,06 0,00 0,04 0,01 -0,06
Dist20_4 | 323946 | 333044 | 368600 | 327620 | 5519716 | 367283 31 29077 12,11 112 9,65 -1,66 -12,51
Dist20_6 | 503080 | 500727 | 577066 | 503110 | 2835399 | 465238 51 17736 12,82 0,01 13,23 0,47 -14,70
Dist20_8 -| 617448 | 712334 | 623769 - | 562460 67 21998 - - 13,32 1,01 -14,20
Dist30_2 -| 292829 | 314966 | 284080 - | 186762 25 57024 - - 7,03 -3,08 -10,87
Dist30_4 -| 429931 | 495029 | 425358 - | 413262 47 48520 - - 13,15 -1,08 -16,38
Dist30_6 -| 703681 | 840055 | 711478 - | 564949 75 23887 - - 16,23 110 -18,07
Dist30_8 -| 891709 | 1021850 | 900469 - | 797419 96 29153 - - 12,74 097 -13,48
Dist40_2 -| 347007 | 372504 | 337258 - | 194299 31 59409 - - 6,84 2,89 -10,45
Dist40_4 -| 551809 | 650844 | 559043 - | 448547 65 49542 - - 15,22 1,29 -16,42
Dist40_6 -| 795240 | 975549 | 836691 - | 620872 97 38002 - - 18,48 4,95 -16,60
Dist40_8 - | 1111500 | 1312530 | 1142670 - | 777197 126 30328 - - 15,32 2,73 -14,87
Dist50_2 -| 372586 | 407137 | 370891 - | 225540 38 94556 - - 8,49 -0,46 9,77
Dist50_4 -| 696879 | 825556 | 708868 - | 426704 85| 44820 - - 15,59 1,69 -16,46
Dist50_6 - | 1014860 | 1229370 | 1062730 - | 607357 118 34702 - - 17,45 4,50 -15,68
Dist50_8 - | 1273270 | 1613570 | 1412190 - | 908095 144 31605 - - 21,09 9,84 -14,26
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Tables 6.16 to 6.18 synthesize the comparative analysis of these approaches regarding three
main elements: the value of the objective function, the number of generated arcs, and the total
execution time. For each table and each column, a negative value represents an improvement
whereas a positive one shows a worse value. As an example, in Table 6.16 in the column E -
2MV N S the positive values indicate that the matheuristc presented an average result 5.56%
worse than the exact model. For the same comparison, in Table 6.17, the number of generated
arcs has an average reduction of 99, 97%. The total time, for the same comparison, was also
reduced by 1294, 94%, in average (see Table 6.18).

The improvement is computed according to Equation 6.7, where A, and A, refer to the
compared values of the approaches. Thus, in Table 6.16 the improvement for the first column
considers the objective values of the exact model (A;) and the 2MVNS (As) approach. This
process is similar in Tables 6.17 and 6.18 taking in consideration the number of arcs and the total

time, respectively.

A — Ay

n (6.7)

IMpa, -4, =

Table 6.16: Comparative analysis between the model and matheuristcs - objective value (%)

Inst | E-2MVNS | E-3MVNS | L-2MVNS | L-3MVNS | 2MVNS-3MVNS

Set 1 3,16 0,16 11,50 0,83 12,51
Set 2 8,54 0,17 9,62 0,88 11,90
Set 3 7,51 0,03 8,51 1,30 11,08
Set 4 5,06 0,30 10,59 0,89 11,23
Set 5 3,51 0,03 9,11 1,07 10,00
Total | 5,56 | 011 | 9,86 | 0,12 11,35

Through the analysis of the data presented in Tables 6.16 to 6.18 the limited and matheuristics
approaches are able to retrieve good quality solutions in acceptable computational times, since
these approaches deal with a lower number of arcs. Disregarding the exact model, the remaining

approaches were able to reduce both the computational time and the number of generated arcs.



6.4. Conclusions

197

Table 6.17: Comparative analysis between the model and matheuristcs - #Arcs (%)

Inst | E-2MVNS | E-3MVNS | L-2MVNS | L-3MVNS | 2MVNS-3MVNS

Set 1 99,99 96,28 99,98 87,20 99,70
Set 2 99,93 90,55 99,81 69,88 99,31
Set 3 99,93 91,32 99,78 70,39 99,23
Set 4 99,99 -94,07 99,97 -82,00 99,76
Set 5 99,99 96,33 99,97 84,37 99,76
Total | 99,97 | 93,71 | -99,90 | -78,77 | 99,55

Table 6.18: Comparative analysis between the model and matheuristcs - T}otq1 (%)

Inst |E-2MVNS | E-3MVNS | L-2MVNS | L-3MVNS | 2MVNS-3MVNS

Set 1 -535,40 -273,82 -728,97 -326,18 39,30
Set 2 -1294,93 -792,38 -438,05 -200,02 32,64
Set 3 -1421,40 -766,92 -439,46 -175,72 35,36
Set 4 -1375,48 -928,47 -795,47 -382,31 36,45
Set 5 -1847,48 94713 -861,13 -402,12 41,01
Total | -1294,94 | 741,74 | -652,62 | -297,27 | 36,95

However, the 3MV N .S approach presents the best performance considering the obtained gap

values, the reduced number of generated arcs and the time needed for its execution.

6.4 Conclusions

In this section, an integrated management science problem that occurs in the logistics and trans-
portation fields is addressed. The MPIDRPTW considers production, inventory, distribution and
routing decision at the same time. The PDP deals with production and distribution decisions, but
disregards inventory restrictions. The IRP considers inventory and routing decisions, but it does
not take into account production constraints. The PIDRP integrates these two problems and also
considers routing decisions, such as the MVRP. Thus, this integrated problem has received special
attention in the last years. The MVRP allows the multiple usage of a vehicle during the planning
horizon, taking into account this specificity when the routes to serve the clients are determined.

The variant MPIDRPTW includes the PIDRP concerns, allowing for the multiple usage of a vehicle



198 Chapter 6. The multi-trip PIDRPTW: heuristic and hybrid approaches

during the planning horizon. The MPIDRPTW also takes into account the allowed client delivery
time intervals, known as time window.

The aim of the MPIDRPTW problem is to minimize the cost of distribution, routing, production
and inventory decisions during the planning horizon. The time varying demand client orders must
be completely delivered within the time windows. There is a fleet of homogeneous vehicles to fulfill
the clients needs and each vehicle can make more than a single-trip during the planning horizon.
The problem has a single facility, where production and inventory decisions occur. This facility
has a capacity production and setup cost. Split deliveries are not allowed, but future deliveries
can be anticipated. A demand may be fulfilled from production or inventory held at the facility.

Two different metaheuristics were proposed to solve the MPIDRPTW. Through these approaches,
the VNS explores a set of neighborhoods in order to find good routing and distribution decisions;
on the other hand, the arc flow model uses the arcs generated to optimize the production and
inventory decision at the facility.

A set of computational tests was performed, on a set of benchmark instances, to prove that
the two matheuristics can provide good valid solutions within a short computational time, reducing
the difficulty associated with the complete enumeration of all valid arcs. A comparative analysis
between the exact arc flow model, limited arc flow model and the two matheuristics was presented

to prove the quality of the solutions.
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7.1 Contributions

Nowadays, companies are becoming more and more competitive. For this reason, integrated
planning of operations has become an important support for companies, since in addition to
costs it can help to improve the times in the execution of better planning in the different areas
of the industrial companies. This integration is essential for companies to achieve higher levels
of competitiveness. Despite significant progress in this area, current approaches have significant
limitations. In most cases, there is no concern about the strong integration between the various
functions of the enterprise and the problems are solved in an independent way. This lack of
integration leads to solutions that are sub-optimal from the global perspective of companies.

In this thesis, efficient integrated optimization models for two classes of important problems
were proposed and implemented: the facility location and vehicle routing problem; and produc-
tion scheduling and distribution problems. The research focused on innovative techniques of
Integer Programming based on original reformulations and on heuristic methods which explore
the neighborhoods or the relaxation value of the original decision variables. Different variants of
the problems were analyzed and explored in order to develop a set of models and algorithms to in-
crease the efficiency of the facility location and vehicle routing problem; and production scheduling
and distribution problems in transportation and supply chain management.

Applying research to real cases is a prime practical goal. However, it is necessary to develop a
theoretical and practical work before using it in complex real scenarios. This thesis aims to have a
relevant scientific and practical contribution, although it focuses on the analysis and development
of methods and algorithms of integrated optimization in theoretical contexts.

The problems addressed in this thesis explore a particular variant of integrated problems con-
sisting in the multiple uses of a vehicle from a fleet of homogeneous vehicles. This variant is
called multi-trip as it allows for a vehicle to make more than one simple route during its working
horizon, returning to the facility whenever necessary. This variant is rarely discussed in the liter-

ature, although it has significant relevance when the geographical configuration of the network is



7.2. Futurework 201

small and dense, since the use of multiple vehicles in the same temporal window may congest
the network. The multi-trip variant is still important for the perishable goods transportation and
when resources are limited, both in terms of vehicles and drivers.

According to the exhaustive literature review, this research work appears to be the first to
conciliate the variant of multi-trip with both the location routing problem and the production,
inventory, distribution and routing problem with time windows.

In Chapter 3 and Chapter 4, innovative exact methods and heuristic methods were presented
to solve the multi-trip location routing problem, while in Chapter 5 and Chapter 6 an innovative
exact method and two heuristic methods to solve the multi-trip production, inventory, distribution
an routing problem with time windows were proposed, respectively. A comparative analysis of
results is performed in order to perceive the quality of the solutions obtained and the performance
of the proposed models and algorithms. This analysis revealed good results and confirmed the

development of efficient algorithms and models.

7.2 Future work

There are several integrated optimization issues that need to be addressed, so opting for one in
particular is not an easy decision. Thus there is always future work to be done.

Some fresh ideas emerged concerning the analysis of new variants of the problems addressed
or even new approaches, such as the development and comparison of new heuristics methods
for the sake of scientific curiosity.

One important idea will be to develop heuristics that will aid in the generation of multi-trips
in acceptable computational times. The biggest challenge is to build several routes of very good
quality.

It also would be interesting to address the location routing problem introducing time windows
constraints; or even to introduce the concept of multi-product in the two main problems explored

in this thesis. Another interesting idea would be to manage the load of vehicles through algorithms
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of 3D bin packing.

The most attractive future work is perhaps the application of the proposed models in a real
industrial case and the development of an appropriate interface to manage the entire production
process. In this way, it would be possible to rigorously test the algorithms in an industrial context

and to enrich them with new emerging challenges.
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