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ABSTRACT

This thesis studies hybrid systems, an emerging family of devices that combine in their
models digital computations and physical processes. They are very quickly becoming a
main concern in software engineering, which is explained by the need to develop software
products that closely interact with physical attributes of their environment e. g. velocity,
time, energy, temperature – typical examples range from micro-sensors and pacemakers,
to autonomous vehicles, transport infrastructures and district-wide electric grids. But
even if already widespread, these systems entail different combinations of programs with
physical processes, and this renders their development a challenging task, still largely
unmet by the current programming practices.

Our goal is to address this challenge at its core; we wish to isolate the basic interactions
between discrete computations and physical processes, and bring forth the programming
paradigm that naturally underlies them. In order to do so in a precise and clean way, we
resort to monad theory, a well established categorical framework for developing program
semantics systematically. We prove the existence of a monad that naturally encodes the
aforementioned interactions, and use it to develop and examine the foundations of the
paradigm alluded above, which we call hybrid programming : we show how to build, in a
methodical way, different programming languages that accommodate amplifiers, differen-
tial equations, and discrete assignments – the basic ingredients of hybrid systems – we list
all program operations available in the paradigm, introduce if-then-else constructs, abort
operations, and different types of feedback.

Hybrid systems bring several important aspects of control theory into computer science.
One of them is the notion of stability, which refers to a system’s capacity of avoiding
significant changes in its output if small variations in its state or input occur. We introduce
a notion of stability to hybrid programming, explore it, and show how to analyse hybrid
programs with respect to it in a compositional manner.

We also introduce hybrid programs with internal memory and show that they form
the basis of a component-based software development discipline in hybrid programming.
We develop their coalgebraic theory, namely languages, notions of behaviour, and bisim-
ulation. In the process, we introduce new theoretical results on Coalgebra, including
improvements of well-known results and proofs on the existence of suitable notions of
behaviour for non-deterministic transition systems with infinite state spaces.
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RESUMO

Esta tese estuda sistemas híbridos, uma família emergente de dispositivos que envolvem
diferentes interações entre computações digitais e processos físicos. Estes sistemas estão
rapidamente a tornar-se elementos-chave da engenharia de software, o que é explicado
pela necessidade de desenvolver produtos que interagem com os atributos físicos do seu
ambiente e. g. velocidade, tempo, energia, e temperatura – exemplos típicos variam de
micro-sensores e pacemakers, a veículos autónomos, infra-estruturas de transporte, e redes
eléctricas distritais. Mas ainda que amplamente usados, estes sistemas são geralmente
desenvolvidos de forma pouco sistemática nas prácticas de programação atuais.

O objetivo deste trabalho é isolar as interações básicas entre computações digitais e
processos físicos, e subsequentemente desenvolver o paradigma de programação subja-
cente. Para fazer isto de forma precisa, a nossa base de trabalho irá ser a teoria das
mónadas, uma estrutura categórica para o desenvolvimento sistemático de semânticas
na programação. A partir desta base, provamos a existência de uma mónada que capta
as interações acima mencionadas, e usamo-la para desenvolver e examinar os fundamen-
tos do paradigma de programação correspondente a que chamamos programação híbrida:
mostramos como construir, de maneira metódica, diferentes linguagens de programação
que acomodam amplificadores, equações diferenciais, e atribuições - os ingredientes bási-
cos dos sistemas híbridos - caracterizamos todas as operações sobre programas disponíveis,
introduzimos construções if-then-else, operações para lidar com excepções, e diferentes
tipos de feedback.

Os sistemas híbridos trazem vários aspectos da teoria de controlo para a ciência da
computação. Um destes é a noção de estabilidade, que se refere à capacidade de um
sistema de evitar mudanças drásticas no seu output se pequenas variações no seu estado ou
input ocorrerem. Neste trabalho, desenvolvemos uma noção composicional de estabilidade
para a programação híbrida. Introduzimos também programas híbridos com memória
interna, que formam a base de uma disciplina de desenvolvimento de software baseado em
componentes. Desenvolvemos a sua teoria coalgébrica, nomeadamente linguagens, noções
de comportamento e bisimulação. Neste processo, introduzimos também novos resultados
teóricos sobre Coalgebra, incluindo melhorias a resultados conhecidos e provas acerca da
existência de noções de comportamento para sistemas de transição não determinísiticos
com espaço de estados infinitos.
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1
PROLOGUE

1.1 hybrid systems and the challenge they set forth

Programs and physical processes are combined more and more often in programming
practice though a lot of times implicitly. This tendency follows from the need to deliver
software products that closely interact with physical processes, like velocity, movement,
energy, and time. Examples of such systems are numerous, ranging from small medical
devices, like pacemakers and infusion pumps, to surgical robots, autonomous vehicles,
and district-wide electric grids. The general belief is that many more of these systems
will be introduced to society in the coming years, and will become a crucial part of the
twenty-first century’s technology [Raj+10; KK12; Alu15; LS16].

Their rigorous development, however, is still an extremely difficult challenge. Adding
up to the intrinsic difficulties in correct program design, which are already arduous to
handle per se, the engineer now faces an intricate interaction between the digital and
physical worlds. His/her view of a system must encompass not only the behaviour of
software, but also the evolution of physical processes over time, which requires skills from
computer science, analysis, and control theory.

Systems that require this global perspective are traditionally designated as hybrid and
constitute the raison d’être of this thesis.

1.2 our goal

Our goal is to provide a detailed and rigorous account on the combination of programs
and physical processes: we wish to know if both can be organised within a single unifying
framework, and to discern and analyse the possible types of interaction between them.

• Can both concepts be considered systematically in a single programming language ?

• And if so, which operations and programming features can(not) such a language
support ?

• Can central notions of control theory, like stability, convergence, and feedback, be
embedded in the language ?

1



2 1. prologue

Consider, for example, the following program, written in an imperative style.

int cool_or_heat() {

double target = 300;

if (temp <= target) {

(dtemp = 1 & 3); // Heating up

return 0; // Success

} else {

(dtemp = -1 & 3); // Cooling down

return 0; // Success

}

}

Its purpose is to manage the temperature of a reactor. There exists a global variable
(temp) that registers the current temperature, the expression (dtemp = 1 & 3) dictates
how the temperature is going to evolve for the next three miliseconds, and similarly for
(dtemp = -1 & 3). Can we provide a suitable semantics for programs of this kind ? And
if so, which programming features will such a semantics support ?

Imagine now that at very high temperatures the program raises exceptions or even starts
to behave non-deterministically. Can the previous semantics be extended to accomodate
those features ? Let us consider the following variation of the previous program.

void cool_or_heat() {

double target = 300;

while (true) {

if (temp <= target) {

(dtemp = 1 & 3); // Heating up

} else {

(dtemp = -1 & 3); // Cooling down

}

}

}

Instead of waiting for a call to either increase or decrease the temperature’s reactor,
this program autonomously checks the current temperature every three miliseconds, and
manages it according to the variable target. Can we interpret while loops such as one
used in this program ? And now, putting the control theorist’s hat, will the variable temp

converge to the target temperature ? If not, can we at least show that it converges to the
target temperature up to a reasonable margin of error ?
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1.3 contextualisation

A rigorous formulation of the questions above demands that we fix from the outset suit-
able notions of what a physical process and a program are. Regarding the former, we
follow the perspective advocated by H. Poincaré in the late nineteenth century [Hol90],
which is now standard in control theory and analysis: physical processes are continu-
ous dynamical systems for the additive monoid of non-negative reals, the usual examples
being the solutions of differential equations. Regarding the latter, we adopt the notion
proposed by E. Moggi around thirty years ago [Mog89]: programs are morphisms in the
Kleisli category of a monad and their sequential composition is simply Kleisli composition.

1.4 research summary

Moggi’s interpretation of a program is highly generic: different types of program are
captured by different monads which propounds the question: is there a monad that allows
to interpret both discrete assignments and physical processes as programs ? This is the
genesis of the thesis’ research, which shows that one such monad indeed exists. We call
it hybrid monad.

The programming languages field has a long history on the emergence of programming
paradigms whose development and analysis unavoidably required studying (if it exists)
their underlying monadic structure. In the same spirit, the hybrid monad is here taken
as the basic element of hybrid programming and this will allow us to answer the ques-
tions asked in Section 1.2 in a rigourous manner. The hybrid monad takes therefore an
important role in the three research lines that the thesis explores.

Research line 1. Foundations of hybrid programming (Chapter 3)

Our goal is to investigate the basic features of hybrid programming. We will examine
program operations, if-then-else constructs, programming languages, and different types
of iteration. Overall, the study of these aspects will provide very fine grained results
on what to expect of hybrid programs and corresponding composition operators. For
example, hybrid programs do not support any ‘failure operation’ whatsoever, but they do
admit non-terminating loops. The main contributions of this research line are summarised
next.

1. Kleisli representations (Definition 3.1.14). A generic, monadic framework to build
and analyse compositional semantics for programming languages. We will use it to
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generate hybrid programming languages, analyse their operations, and investigate
the possibility of adding classic programming constructs such as abort operations,
exception-handling, and non-determinism.

2. The hybrid monad (Theorem 3.2.6). The main ingredient in our analysis of hy-
brid programming. Among other things, it allows to consider discrete assignments,
differential equations, and amplifiers all in the same programming language.

3. Program operations (Theorem 3.3.1). We show how to fully describe all n-ary nat-
ural transformations (FU)n ! FU where F is a functor of a certain type and U

is a right adjoint. This will allow us to list all program operations that the hybrid
paradigm supports, and also how to build them in a simple manner.

4. Iteration (Section 3.4). We introduce and analyse two types of iteration for hybrid
programs.

5. Combination with non-determinism (Theorem 3.5.2). We prove the existence of a
distributive law between the non-deterministic and hybrid paradigms. This yields a
new monad, which, among other things, brings forth programming languages that
accomodate non-deterministic assignments, differential predicates, and new types
of iteration.

These results were achieved in collaboration with the following people: L. Barbosa, F.
Dahlqvist, D. Hofmann, and M. Martins. The hybrid monad and a brief study of its
Kleisli category were published in a journal paper [Nev+16b]:

• Renato Neves, Luis S. Barbosa, Dirk Hofmann, and Manuel A. Martins. “Conti-
nuity as a computational effect”. In: Journal of Logical and Algebraic Methods in
Programming 85.5 (2016), pp. 1057–1085.

The author and F. Dahlqvist also submitted a paper on Kleisli representations and on the
combination with non-determinism to an international conference. It is currently under
review.

Research line 2. Hybrid programs with internal memory (Chapter 4)

Our next goal is to examine hybrid programs with internal memory, which, as we will
show, can be encoded by different types of coalgebra. Our interest in such programs comes
from their ability to naturally represent a digital device (seen as a black-box system) that
interacts with a physical process from time to time. In this context, the discrete behaviour
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of the digital device is hidden from the environment but the continuous behaviour of the
physical process is observable from the outside. The cruise control system is a classic
example: the computations of its digital device are not directly observable, but the vehi-
cle’s velocity and movement are. In fact, one can consider a component crs_cntrl that
is only possible to interact via two methods: one for setting the desired speed,

crs_cntrl.set_target_speed(double);

and the other for moving the car forward for a given amount of time,

crs_cntrl.move_forw_during(double);

This perspective complements that of the previous research line. Whilst in the latter
discrete and continuous behaviour is mixed by seeing hybrid programs algebraically, i. e.
emphasis is put on data and data manipulation, in the former discrete and continuous
behaviour is kept separated by seeing hybrid programs coalgebraically, the emphasis being
put on observational behaviour, evolution, and interaction with the environment. Under
this perspective, in which internal states and digital computations are not directly observ-
able, notions of bisimulation, behaviour, and behavioural description languages become
central elements in the game. We show how to lift them to the hybrid programming
context using standard results of Coalgebra. The main contributions of this research line
are summarised below.

1. Semantics (Section 4.2 and Section 4.4). Each endofunctor F : Set! Set induces a
category of hybrid programs with internal memory and whose discrete behaviour is
‘shaped’ by F . If F is the powerset functor we recover hybrid automata (the stan-
dard formalism of hybrid systems) and if it is the distribution functor we recover
probabilistic hybrid automata instead (another well-known formalism of hybrid sys-
tems).

2. Languages (Section 4.2). Using documents [BRS09; Sil10], we show how to generate
for free canonical languages for different types of hybrid program with internal
memory, including hybrid automata. This is illustrated in the deterministic setting,
where the endofunctor F is assumed to be the identity.

3. Bisimulation (Theorem 4.4.6 and Theorem 4.4.7). We introduce a coalgebraic no-
tion of bisimulation for hybrid programs with internal memory and show that it
generalises the notions of bisimulation adopted by classic and probabilistic hybrid
automata.

These results were achieved in collaboration with L. Barbosa and published in [NB16;
NB17]:
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• Renato Neves and Luis S. Barbosa. “Hybrid Automata as Coalgebras”. In: Theoret-
ical Aspects of Computing - ICTAC 2016 - 13th International Colloquium, Taipei,
Taiwan. Lecture Notes in Computer Science. Springer, 2016, pp. 385–402.

• Renato Neves and Luis S. Barbosa. “Languages and models for hybrid automata:
A coalgebraic perspective”. In: Theoretical Computer Science, 2017. (In Press)

Research line 3. When sets do not suffice (Chapter 5)

Even if perhaps not clear now, in the two previous research lines a number of difficulties
appeared that result from the adoption of Set as the working category (sometimes the
latter does not possess enough structure to handle the possible interactions between com-
putational devices and physical processes). Two cases stand out: i) the inability to reason
about hybrid programs’ stability, and ii) the absence of meaningful notions of observa-
tional behaviour for certain types of hybrid program with internal memory. The direct
implications of the latter case are obvious, but for the former a few remarks are in order
since the notion of stability is rarely a concern in Computer science.

Studied by A. Lyapunov in his doctoral thesis “The general problem of the stability of
motion” [Lya92], stability refers to a system’s capacity of avoiding significant changes in
its output in response to small variations in its intended state or input. For example,
a stable cruise controller must not drastically alter the vehicle’s velocity due to small
perturbations in the atmosphere, such as small wind changes caused by a truck passing
by. In the verification process, one might show that a hybrid program is safe for a
initial configuration, but it is unreasonable to assume that it always starts with this exact
configuration, in the same way that one does not expect a speed sensor to have infinite
precision, a thermostat to keep the exact right temperature, or a robot to land at precisely
the intended spot. For this reason it is often important to show that the hybrid program
being verified is stable.

The goal of this research line is to tackle the two aforementioned issues. Our strategy
will be to move from Set to the category Top of topological spaces and continuous maps,
and recast part of the theory previously developed in this new setting. This approach will
allow us not only to reason about stability in a compositional manner, but also to enlarge
the class of hybrid programs with internal memory that possess a notion of observational
behaviour. In the process we will also obtain several new theoretical results on Coalgebra.
The main contributions of this research line are summarised below.

1. Topological coalgebras (Theorem 5.1.22). Using the notion of topological functor,
we show that all categories of (sub)polynomial coalgebras over Top are complete
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and that their limits are computed as in the analogous category of coalgebras over
Set.

2. Coreflections (Theorem 5.1.31). We prove that for a subfunctor F ,! G the category
of F -coalgebras is a coreflective subcategory of the category of G-coalgebras. Among
other things, this shows that the former has all limits that the latter has.

3. Limits in categories of Vietoris coalgebras (Section 5.2). We introduce several new
results about limits in categories of coalgebras whose underlying functor is a Vietoris
polynomial one. These will be used to enlarge the class of hybrid programs with
internal memory that possess a meaningful notion of observational behaviour.

4. Hybrid monad on Top (Theorem 5.3.5). The basis of stability in hybrid program-
ming. It will allow us not only to reason about hybrid programs’ stability in a
compositional manner, but also to generate different hybrid languages in which all
programs are ensured to be stable.

These results were achieved in collaboration with L. Barbosa, D. Hofmann, and P. Nora.
An article on the stability of hybrid programs is currently in preparation, and the other
results are published in an arXiv report [HNN16] which is submitted to a journal:

• Dirk Hofmann, Renato Neves, and Pedro Nora. “Limits in Categories of Vietoris
Coalgebras”. In: CoRR abs/1612.03318 (2016).

1.5 reading information and notation

We already mentioned that the research lines described above are covered in Chapters
3, 4, and 5. In Chapter 2, we will review the current formalisms for hybrid systems,
particularly program semantics and automata, due to their close connection with the
thesis. In order to make the text as clear as possible, a few conventions on notation will
be followed. In particular,

• Categories will be denoted in serif font, for example C, D, Set . . .

• Natural transformations will be denoted by greek letters, for example ↵, �, � . . .

• Diagram functors will be denoted in calligraphic font, for example D , K , L . . .

• Monads will be denoted in roman font, for example T, S, U . . .
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• Monomorphisms will often be denoted by a tailed arrow A ⇢ B and epimorphisms
by a two-headed one A ⇣ B. Inclusions also receive special notation by being
denoted as an hooked arrow A ,! B, often labelled by ◆A so that ambiguities can
be avoided.

• Consider a locally small category C and a C-object X. Hom functors will be denoted
by C(X, � ) : C ! Set and C(� , X) : Cop ! Set. In some cases, we will also use
the alternative notation hom(X, � ) : C! Set and hom(� , X) : Cop ! Set for the
sake of clarity.

• The right transpose of a function f : A⇥B ! C will be denoted by f : A! CB.

• The category of functors from A to B will be denoted by [A,B].

Finally, we will assume that the reader has basic knowledge of category theory and topol-
ogy. The reader is referred to [Kel55; Gou13; ML98; AHS09] for detailed textbooks and
materials on the aforementioned topics.



2
CURRENT FORMALISMS FOR HYBRID SYSTEMS

2.1 a bird’s eye view

The original notion of a hybrid system was introduced by H. Witsenhausen in the sixties
[Wit66]. He proposed a formalism based on the idea of differential equations indexed by
operation modes – which is essentially the key ingredient of hybrid automata, currently the
standard formalism of hybrid systems. Briefly, Witsenhausen regarded a hybrid system as
a transition device whose operation modes are labelled by systems of differential equations,
which specifies the device’s behaviour at each particular mode; a jump between two modes
occurs as soon as the device satisfies a predefined condition. Witsenhausen’s idea is
often illustrated with the diagram below, which depicts a switch that commutes between
systems of differential equations when certain conditions are satisfied – the reader familiar
with automata theory might also find helpful to see it as a deterministic automaton
whose states are labelled by differential equations and whose edges are labelled by guards.
Systems with this pattern are nowadays qualified as switched.

switch

differential eq. 1

differential eq. n

. . . �

With the exception of [Tav87], hybrid systems were readdressed only in the nineties,
a decade that became vintage for the topic due to the introduction of several models,
languages, and tools [MMP91; CRH93; Hen96; Dav97]. A possible reason for this is that
most results were built on the field of timed systems, which advanced significantly in
the eighties (cf. [MMP91; Mal10]). For example, extended duration calculus [CRH93]
and hybrid automata [Hen96], two well-known formalisms of hybrid systems, are simple
extensions of the duration calculus [CHR91] and timed automata [AD94].

In the following decade, hybrid systems were put under a broader context, qualified
as cyber-physical and advocated as a crucial ingredient of the twenty-first century’s tech-

9



10 2. current formalisms for hybrid systems

nology [Lee06; Lee08; Raj+10; KK12; Gun+14; LS16]. A cyber-physical system is often
characterised as a network of computational devices that closely interact with physical
processes so that a specific goal can be reached. Thus, in contrast to hybrid systems,
cyber-physical ones put emphasis not only on the interaction between computational de-
vices and physical processes, but also on concurrency, coordination, and communication.

The ensuing section surveys some of the aforementioned formalisms for hybrid systems in
more detail; a particular focus is given to automata and program semantics due to their
close connection with the thesis. The interested reader will find in [DN00; Pla10; Höf09;
Bro+12; Kha08; Ban+15] clear and detailed surveys on other topics, such as process
algebras – e. g. �-calculus [RS03] and hybrid-� [Bee+06] – specification languages – e. g.
the language of linear hybrid action systems [RL01], the infinitesimal hybrid language
[SH11], and Hybrid Event-B [Ban+15] – and industrial tools – e. g. Simulink [Kle07] and
Modellica [Fri14].

2.2 automata and program semantics

2.2.1 Automata

The formal specification and analysis of hybrid systems typically resorts to the theory of
hybrid automata [Alu+93; Hen96]. Their distinguishing feature is the ability of variables
to evolve continuously while in a state, and to instantaneously change values in a transition
between states.

Example 2.2.1. Consider a leaking tank with a valve. The latter allows water to flow in
at the rate of 2cm/s during intervals of c seconds; between these periods it is shut (also)
for c seconds, and the water level drops at 2cm/s. We can describe this behaviour via
the hybrid automaton below.

l̇ = 2

ṫ = 1

t  c

t�c

t

0=0

**
l̇ = �2
ṫ = 1

t  c

t�c

t

0=0

jj

The variable l denotes the water level, which rises when the valve is open (differential
equation l̇ = 2) and lowers when the valve is closed (differential equation l̇ = �2). The
differential equation ṫ = 1 defines the passage of time, which, along with invariant t  c,
forces the current mode to be active for at most c seconds. On the other hand, the guard
t � c and assignment t0 = 0 force the current mode to be active at least c seconds before
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a switch occurs. Finally, note that the guard t � c does not force a transition to happen,
but only makes it possible. This means that, if not for invariant t  c, the valve could
be open (or shut) indefinitely.

Being the standard model for hybrid systems, hybrid automata form an active research
area that encompasses diverse topics, from decidability issues [Hen96] to extensions that
cater for input mechanisms [AH97; Liu+99] and uncertainty [Spr00a; Spr00b]. To create
a new extension, however, frequently entails a return to the drawing board in order to
redesign or adapt whatever definitions, notions or techniques are deemed relevant. The
notion of bisimulation, which we will address later in the thesis, is a prime example of
this, as it usually takes an apparently different form in each extension of the theory.

2.2.2 Program semantics

There are two well-known program semantics for hybrid systems. We start with one that
emerged in the context of dynamic logic, where it serves as the interpretation domain
of a famous logic’s actions. In order to understand how it came to be, we make a small
detour to the topic of logics for hybrid systems.

At around the same time that hybrid automata were introduced, C. Zhou et al. devel-
oped the so-called extended duration calculus [CRH93]. As hinted by its name, it is an
extension of the duration calculus [CHR91; HC97], a logic that features time-dependent
predicates and syntax for reasoning about durations; it allows to specify, for example,
“predicate p holds for no longer than ten seconds”. The extension adds derivative expres-
sions and operators to handle continuous behaviour. However, the notion of derivative
falls out of the logic’s semantics, which entails external mathematical machinery to handle
some aspects of trajectories. Actually, this was also noted by the authors; in [CRH93]
they wrote: “. . . even though differential equation was introduced in the model, we had no
means in the logic to reason about such equations”.

Some years later, J. Davoren and A. Nerode proposed µ-calculus to specify and reason
about trajectories [Dav97; DN00]: their main argument was that fixpoint operators can
be used to handle properties of trajectories (such as invariance, reachability, and Zeno be-
haviour) quite naturally. They also illustrated approximate specification and verification
within the framework by assuming that the states of hybrid systems were endowed with
a metric.

More recently, A. Platzer introduced differential dynamic logic [Pla08; Pla10; Pla12] –
the one that we alluded to in this subsection’s beginning. Technically speaking, differential
dynamic logic, in short dL, is a dynamic first-order logic with real arithmetic support.
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The corresponding actions form a Kleene algebra with tests [Koz97] whose basic elements
are discrete assignments and systems of differential equations – this puts in the same
framework the notion of derivative, used to specify the behaviour of physical processes,
and fixpoint operators, advocated in [Dav97; DN00] as an important tool for reasoning
about trajectories.

Platzer’s algebra of actions is an instance of Kleene algebra with tests for the powerset
construction: the operators +, ; , and (� )⇤ are the union, relational composition, and
reflexive-transitive closure operators, respectively. And its elements are interpreted as non-
deterministic programs. In particular, a system of differential equations s is interpreted
as a program JsK : Rn ! P(Rn) that for a given input, regarded as the initial value, it
outputs all points of the evolution that occurs under s.

Remark 2.2.2. Platzer’s interpretation JsK : Rn ! P(Rn) of a system of differential
equations is, therefore, an abstraction of the standard interpretation in analysis and con-
trol theory: among other things, it abstracts from slopes, notions of convergence, and
certain aspects of periodic orbits, concentrating mainly on the notions of safety – a safe
region is never left – and liveness – a certain region is eventually reached.

The logic dL is seen as a landmark: among other things, it has a rich calculus that
provides symbolic rules for decomposing complex hybrid programs into simpler ones, as
opposed to hybrid automata which are typically harder (and sometimes impossible) to
decompose in a suitable manner [Pla10]. Moreover, it has a (semi) automatic verification
tool that establishes a powerful verification environment for specifications written in dL

[PQ08]. Cases of success include the discovery of potentially disastrous errors in the
design of aircraft collision avoidance manoeuvres [PC09], and the proof that a specific
control algorithm of a surgical robot was, in general, unsafe [Kou+13].

The other program semantics that we want to mention is the weak Kleene algebra for
hybrid systems, introduced by P. Höfner and B. Möller [Höf09; HM09] and clearly another
landmark. It has a rich palette of operators, and, notably, it serves as a semantics for both
hybrid automata and Platzer’s algebra of actions. In its foundations, however, the alge-
bra differs significantly from Platzer’s approach: its elements are not non-deterministic
programs but sets of trajectories, and what is regarded as sequential composition is not
relational composition but a form of concatenation of trajectories. Notwithstanding, the
algebra [Höf09] is also fundamentally non-deterministic.

Our work in Chapter 3 has some points in common to these projects on program
semantics, so let us clarify in which ways the former differs from the latter. Three crucial
points should be highlighted:
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• we restrict ourselves to a deterministic context whereas they assume non-determi-
nism by default. The latter makes difficult to achieve one of the thesis’ goals, namely
to isolate the interaction between programs and physical processes, or in other words
to isolate purely hybrid behaviour. As mentioned in the introduction, our restriction
will allow a precise and rigorous analysis of the features supported by the hybrid
paradigm and will provide firm answers on how to extend it systematically when
new features are in need.

• Our goal is not to introduce a new semantics for hybrid programs, but rather to
develop and investigate an interpretation domain on which to build new semantics
for them. This is illustrated in Chapter 3, where using Kleisli representations and
the hybrid monad, we generate different hybrid programming languages. In partic-
ular, we show that sequential composition of one of these languages captures the
deterministic version of sequential composition in [Höf09].

• Our research is performed in a monadic context, which is key for the ensuing chap-
ters’ contributions and allows to capitalise on existing literature on monads (e. g.
[Mog91; BO03; MB06; PP03; Sea13]). The monadic context brings up a number of
canonical constructions and smooths the integration with other behavioural effects,
such as faulty, non-deterministic, weighted, or probabilistic behaviour – in fact, it
promotes a modular view in which the engineer selects the relevant computational
effects and composes the corresponding monads (if possible), obtaining as a result
a programming paradigm whose properties are completely determined by those of
the constituent monads (see [HPP06; DPS17]). Such an integration, however, re-
quires first of all a detailed study of the hybrid monad, which further justifies our
restriction to the deterministic setting.





3
FOUNDATIONS OF HYBRID PROGRAMMING

Overview. We introduce the hybrid monad and investigate its basic properties. We
show that it is the basis of a programming paradigm in which discrete assignments and
physical processes are objects of the same type, allowing the engineer to combine both
in a single programming language and thus establishing a connection between the digital
and physical worlds.

As mentioned in the introduction we want to analyse this paradigm in detail. Therefore,
we develop a generic, monadic framework that allows us to systematically investigate not
only which programming features a given paradigm supports, but also how it can be
extended with new constructs. By applying this method to the hybrid case, we will
generate different hybrid programming languages, list all program operations available,
and show precisely when and if important axioms such as commutativity and idempotency
hold. We also analyse if-then-else constructs, different types of iteration, and possible
combinations with other monads.

Roadmap. We start by reviewing the basic theory of monads and then introduce the
monadic framework mentioned above (Section 3.1). After this, we develop the hybrid
monad, some of its programming languages, and show how to extend the latter with if-
then-else constructs and tests in a systematic manner (Section 3.2). In order to endow
these programming languages with additional features, we list all binary program opera-
tions supported by the hybrid paradigm (Section 3.3), introduce two types of iteration for
hybrid programs and investigate their properties (Section 3.4). Finally, we conclude by
highlighting some challenges that emerged from this research and that we think deserve
further study, including monad combination and the incorporation of notions of stability
in programming languages (Section 3.5).

3.1 preliminaries: monads and kleisli representations

The notion of monad, which serves as a concise generalisation of an algebraic theory,
has been extensively studied in universal algebra since the sixties [Lin66]. In the late
eighties, when Moggi proposed to use it as a uniform semantics for programming languages
[Mog89; Mog91], it began to be understood also as an important concept of computer

15
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science – the idea was later introduced into the programming practice by P. Wadler,
which lead to a rigorous style of combining purely functional programs that can mimic
side-effects [Wad95]. The core observation in [Mog89; Mog91] is that monads encode in
abstract terms several kinds of computational effect, including exceptions, state updates,
non-determinism, and probabilistic behaviour. Under this view, a computational effect
is given by a type constructor T (technically, an endofunctor) and computations are
elements of TY for some type Y . The denotation of a program p is then a morphism
JpK : X ! TY and sequential composition of programs, as mentioned before, boils down
to Kleisli composition.

In documents [PP01b; PP01a; PP03] G. Plotkin and J. Power extended this basic
semantics with program operations using the notion of algebraic operation – i. e. a natural
transformation Tn ! T that respects the multiplication of T . However, as already noted
in [PP01b; PP01a; PP03], the condition concerning the multiplication of T is frequently
too strict. It forbids, for example, exception-handling operations, and the dual operator of
game logic [HKL14]. Actually, this is the reason why more recently the authors of [HKL14;
HK15] do not require that natural transformations Tn ! T respect the multiplication of
T . In order to further detail these aspects let us, first of all, recall the basic theory of
monads.

3.1.1 The basic theory of monads

Definition 3.1.1. A monad is a triple T = (T, ⌘, µ) such that T : C ! C is a functor,
and ⌘ : Id ! T , µ : TT ! T are natural transformations that make the diagrams below
commute.

T
⌘
T

//

Id
!!

TT

µ

✏✏

T
T⌘
oo

Id
}}

T

TTT
µ
T

//

Tµ
✏✏

TT

µ

✏✏

TT µ
// T

Examples 3.1.2. Consider a category C. In the following examples of a monad let X

and Y be C-objects and f : X ! Y be a C-morphism.

1. Take a set E. The exception monad (M : Set! Set, ⌘, µ) is defined by,

MX = X + E, Mf = f + id

The unit ⌘ is defined at each X as the injection of X into X +E, and the multipli-
cation µ is defined at each X as,

id + O : X + (E + E)! X + E
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where O : E + E ! E is the codiagonal map. When E is the singleton set the
exception monad is more commonly called maybe monad.

2. The list monad (L : Set! Set, ⌘, µ) is defined by,

LX =
a

n2N
Xn, Lf =

a

n2N
fn : LX ! LY

The unit ⌘ is defined at each X as ⌘X(x) = [x], and the multiplication µ at each X

is the concatenation of lists.

3. The powerset monad (P : Set! Set, ⌘, µ) is defined by,

PX = {U | U ✓ X}, Pf = f [� ]

The unit ⌘ is defined at each X by ⌘X(x) = {x}, and the multiplication µ at each
X is given by µX(U) =

S

U .

The non-empty powerset functor Q : Set ! Set together with the unit and multi-
plication of P also forms a monad. The compact Vietoris functor V : Top ! Top

defined by,

VX = ({U | U compact on X}, hit-and-miss topology on X), Vf = f [� ]

equipped with these two operations is also a monad [Mic51].

4. The rectangular bands monad ((� ⇥ � ) : Set ! Set, ⌘, µ). The unit ⌘ is defined
at each X as the diagonal map, and the multiplication at each X as,

µX(a, b, c, d) = (a, d)

5. A semiring (S,+, ·, 1, 0) induces a weight functor WS : Set! Set defined by,

WSX =
�

� 2 SX | supp(�) finite
 

, WSf(�)(y) =
X

x2f�1(y)

�(x)

This functor forms a monad whose unit is defined at each X by, ⌘X(x)(y) = 1 if
x = y and 0 otherwise; multiplication is defined at each X by,

µX(�)(x) =
X

�2supp(�)

�(�) · �(x)

where · is the semiring multiplication.
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Consider the unit ([0, 1],+, ·, 1, 0) semiring. The subfunctor D : Set ! Set of
W[0,1] : Set ! Set that only considers probability distributions equipped with the
unit and multiplication of W[0,1] is also a monad [Sok05]. The same applies to the
subfunctor of W[0,1] : Set ! Set that only considers subprobability distributions
[HJS07].

Monads are closely related to adjunctions, as shown by the following theorem [ML98;
AHS09].

Theorem 3.1.3. Every adjunction,

A ?

F
((

G

hh B

induces a monad (GF, ⌘, G✏F ) where ⌘ : Id! GF , ✏ : FG! Id are, respectively, the unit
and counit of the adjunction.

A natural question to ask is whether the converse also holds. The answer is positive and
extremely interesting: every monad induces a Kleisli adjunction and an Eilenberg-Moore
adjunction. The former is closely related to Moggi’s denotations, and the latter establishes
the aforementioned connection with algebraic theories.

Definition 3.1.4. The Kleisli category CT of a monad T has as objects those of C and
as hom-sets those defined by the equation,

CT(X,Y ) = C(X,TY )

For each CT-object X the identity is ⌘X : X ! TX, and the composition g • f of two
morphisms f : X ! TY and g : Y ! TZ is µZ · Tg · f .

There exists a functor C! CT that acts as the identity on objects and that post-composes
C-morphisms with the monad’s unit. There also exists a functor CT ! C that acts like T

on objects and that maps CT-morphisms f : X ! TY to C-morphisms µY · Tf : TX !
TY . Both functors form the aforementioned Kleisli adjunction,

C ?
((

hh CT

Definition 3.1.5. The Eilenberg-Moore category CT of a monad T has as objects T -
algebras (X, a) that make the diagrams below commute, and as morphisms T -algebra
morphisms.

X
⌘
X

//

id
!!

TX

a
✏✏

X

TTX
Ta
//

µ
X

✏✏

TX

a
✏✏

TX a
// X
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The Eilenberg-Moore adjunction is the free-forgetful adjunction,

C ?
((

hh CT

whose free algebras are the pairs (TX, µX).
These two adjunctions are the two ‘extreme solutions’ for the problem of finding an

adjunction that yields a given monad T [AHS09; ML98]. To be concrete,

Theorem 3.1.6. Consider an adjunction,

A ?
((

hh B

that yields a monad T. There exist unique functors AT ! B and B ! AT that make the
diagram below commute.

AT //

⇢⇢

>

B //

��

>

AT

tt

>

A

ZZ
HH 44

Eilenberg-Moore categories AT have many well-known properties. For example, their
forgetful functor AT ! A is always faithful and always creates limits. Therefore, if
the ‘comparison’ functor B ! AT is either an isomorphism or an equivalence, then it
is generally a good idea to examine the category B by looking at AT. This is in fact
particularly relevant for varieties: the Eilenberg-Moore category of the monad induced
by the free-forgetful adjunction of a variety is equivalent to the variety itself [ML98].

Examples 3.1.7. The following table provides some correspondences between monads
T and categories that are equivalent to CT.

Monad Categories Reference

Maybe (M) Pointed sets and point-preserving maps [HPP06]

List (L) Monoids and monoid maps [AHS09]

Weight (WN) Commutative monoids and monoid maps [Jac10]

Powerset (P) Complete lattices and join-preserving maps [AHS09]

Rectangular bands ((� )2) Rectangular bands and semigroup maps [MM07]

Distribution (D) Convex algebras and convex algebra maps [Jac10]
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Definition 3.1.8. A morphism ↵ : T ! S between two monads T = (T, ⌘, µ) and
S = (S,, ⌫) is a natural transformation ↵ : T ! S that makes the diagrams below
commute.

Id
⌘
//


  

T

↵
✏✏

S

TT

T↵
✏✏

µ
// T

↵
✏✏

TS ↵
S

// SS ⌫
// S

We say that T is a submonad of S if there exists a monad morphism ↵ : T ⇢ S that
witnesses T as a subfunctor of S. In this case, there exists an inclusion functor,

CT ! CS

that acts as the identity on objects and that post-composes a CT-morphism X ! TY

with the map ↵Y : TY ⇢ SY . Intuitively, this tells that T captures a fragment of the
program semantics induced by S.

The following notion provides a natural way of combining monads.

Definition 3.1.9. Consider two monads T = (T, ⌘, µ) and S = (S,, ⌫). A distributive
law of S over T is a natural transformation � : ST ! TS that makes the following
diagrams commute.

T

T

}}

T

!!

ST
�

// TS

S
S⌘

aa

⌘
S

==

STT
�
T

//

Sµ
✏✏

TST
T �

// TTS

µ
S

✏✏

ST
�

// TS

SST

⌫
T

OO

S�
// STS

�
S

// TSS

T⌫

OO

Theorem 3.1.10. A distributive law � : ST ! TS for two monads T = (T, ⌘, µ) and
S = (S,, ⌫), induces another monad (ST,T · ⌘, ⌫ · SSµ · S�T ).

The maybe monad M has an interesting property about distributive laws [LG02].

Theorem 3.1.11. Consider a monad T = (T, ⌘, µ) on Set. There exists a distributive
law � : MT ! TM defined at each set X by,

�X = [T i1, ⌘MX · i2]

Hence, for a monad T on Set there is always a monad structure on TM. In the following
section, we show that this allows to extend a programming paradigm (given by T) with
notions of failure. In the hybrid case, it gives rise to partial hybrid computations HM

which includes abort operations, tests, and exception-handling constructs.



3.1. Preliminaries: monads and Kleisli representations 21

3.1.2 Kleisli representations

We saw in Section 2.2 that both differential dynamic logic [Pla10] and the weak Kleene
algebra of hybrid systems [HM09] assume a single-sorted setting. In the monadic perspec-
tive, this leads to the interpretation of a program p as a morphism JpK : X ! TX for a
monad T – as exemplified in [HKL14; HK15], where the goal is the systematic generation
of dynamic logics from a monad T with actions interpreted as morphisms X ! TX.

Our illustrations and results on hybrid programming also adopt the single-sorted setting:
not only this clarifies their connection with the works on hybrid systems [Pla10; HM09]
and dynamic logic [HKL14; HK15] previously mentioned, but it also helps us to focus
on the essential ingredients of hybrid programming and provide rich examples whilst
keeping simplicity. In order for our investigation to proceed smoothly, we will also need
a framework for the systematic development and analysis of program semantics. This is
what the current subsection aims to achieve.

Program denotations à la Moggi assume the existence of an interpretation map ⇧ !
EndT(X) from programs ⇧ to endomorphisms over X in the Kleisli category of T. Going
a bit further, we require that the interpretation map is also a monoid homomorphism,

(⇧, ; , skip)! (EndT(X), • , ⌘X)

where ; denotes sequential composition, and skip is the ‘do nothing’ program. A monoid
homomorphism with the monoid (EndT(X), • , ⌘X) as codomain is called here a Kleisli
T-representation or simply Kleisli representation if it is clear which monad is involved.

Remark 3.1.12. The name ‘Kleisli representation’ is inspired by Representation theory,
a vast field of research where the elements of certain algebraic structures, such as groups,
are represented by endomorphisms of vector spaces [Ste11].

Kleisli representations unify the syntactic and semantic parts of a programming language
into a single, well-known concept – that of monoid homomorphism. Among other things,
this feature allows us to build programming languages systematically. The following
case is the simplest example of this aspect, since we always assume that a programming
language is (at least) a monoid.

Example 3.1.13. Let F : Set ! Mon be the free monoid functor, let At be a set of
atomic programs, and consider an interpretation map f : At! EndT(X) for a monad T.
The free extension of f is a Kleisli representation,

F(At)! (EndT(X), • , ⌘X)

More concretely,
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1. An interpretation map f : 1! EndT(X) generates a basic ‘iteration’ programming
language, given by the free extension of f ,

(N,+, 0) ' (1⇤, ; , skip)! EndT(X)

The program ‘10’, for instance, reads “execute f(⇤) ten times”.

2. Consider a deterministic automaton t : A ⇥ X ! X, and an interpretation map
f : A! EndId(X) defined by a 7! t(a, � ) : X ! X. The free extension of f ,

(A⇤, ; , skip)! (EndId(X), • , ⌘X)

is a very simple programming language for the automaton. The program a
1

; a
2

,
for instance, reads “trigger event a

1

and then event a
2

”. Programming languages
for nondeterministic A ⇥ X ! PX and probabilistic automata A ⇥ X ! DX are
obtained analogously by replacing the identity monad with the powerset P and the
distribution monad D, respectively.

In order to generate richer programming languages, we need to incorporate program
operations in the notion of a Kleisli representation. So consider an object of a finitary
quasi-variety V – our programming language – defined by a signature ⌃ = � [ {skip, ;}
with arity map ar : ⌃ ! N, and a set of quasi-equations E that contains the monoid
laws with respect to {skip, ;}. Consider also a monad T on a category C with products.
We then proceed in footsteps of [HKL14]: for each n-ary program operation � 2 �, we
choose a natural transformation,

↵� : T (ar(�)) ! T

where T 0 = 1, and define J�K : EndT(X)ar(�) ! EndT(X) by,

J�K(a1, . . . , aar(�)) = ↵�X · ha1, . . . , aar(�)i

We can now state the general definition of Kleisli T-representation.

Definition 3.1.14. Let T be a monad on a category C with products and A an object of
a quasi-variety V as defined above. A Kleisli T-representation of A in CT is an assignment
of every � 2 � to a natural transformation ↵� : T ar(�) ! T together with a V-algebra
morphism,

(A, ; , skip,�)! (EndT(X), • , ⌘X , (J�K)�2�)

In the formalism of Kleisli representations several interesting questions can be asked in
rigorous terms. For example,
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(i) For a monad T which programming languages can be given a Kleisli T-representation,
or in other words which kinds of program and program operation can T-computations
support ?

(ii) Conversely, given a programming language ⇧ what are the good choices of monads
T to define Kleisli T-representations of ⇧ ?

(iii) More generally, given a programming language ⇧ and a monad T what are the Kleisli
representations ⇧! EndT(X) ?

To concretely answer these questions we need to determine which additional algebraic
structures can be placed on monoids of the form EndT(X) for a given monad T. Frequently,
EndT(X) inherits the algebraic structure of T, for example EndP(X), for P the powerset
monad, is always a complete lattice, and EndD(X), for D the distribution monad, is
always a convex algebra. In this case, the questions above can be informally rephrased
as: which algebraic structures are hidden within the algebraic structure of T ? Ultimately,
we want to know which natural transformations Tn ! T a given monad T supports, as
they are the basis of all program operations (with the exception of Kleisli composition).
Let us illustrate these remarks with some examples.

Example 3.1.15. We saw how free monoids of atomic programs are given a Kleisli T-
representation for any monad T. This set-up can now be extended in several ways.

1. Consider the signature {skip, ; , 0} and recall that a pointed set is simply a set X

together with a map 1! X. Recall also that the Eilenberg-Moore category SetM of
the maybe monad is equivalent to the category of pointed sets and point-preserving
maps. This equivalence renders evident the existence of a natural transformation
1! M that constantly outputs ‘failure’ (it is given by the free pointed set construc-
tion). We can use this natural transformation to interpret 0 as an abort operation
since it is not hard to show that 1 ! M and Kleisli composition endow EndM(X)

with the structure of a monoid equipped with an absorbing element. Given an
interpretation map At! EndM(X) we freely extend it,

(⇧, ; , skip, 0)! (EndM(X), • , ⌘X , J0K)

into the category of monoids with an absorbing element. In the language, 0 is the
program that ‘always fails’; its composition with any program always yields 0.

2. Consider now idempotent semirings, with signature {skip, ; , 0,+}. For the powerset
monad P, the monoid EndP(X) can be extended to an idempotent semiring by
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taking ↵0 : 1! P to be the natural transformation that outputs ; at every set, and
↵+ : P2 ! P to be the natural transformation that given two sets outputs their
union (these transformations are given by the free complete lattices). Now given a
set of atomic programs At, every map At! EndP(X) can be freely extended to an
idempotent semiring morphism from the corresponding freely generated language
to EndP(X). The reader might recall that the actions of propositional dynamic
logic are seen as non-deterministic programs [HKT00]. If the Kleene star is not
considered, then their semantics is given precisely by the free idempotent semiring
extension of At! EndP(X).

3. We already know how to generate a basic programming language (⇧, ; , skip) for
an automaton A ⇥ X ! X (see Example 3.1.13). So suppose now that we wish
to enrich the language with a probabilistic choice operation +�, � 2 [0, 1]. This
new ingredient suggests that we replace the interpretation domain EndId(X) by
EndD(X), which can be easily achieved with the composition of monoid morphisms,

(⇧, skip, ;)! (EndId(X), • , ⌘X) ⇢ (EndD(X), • , ⌘X)

where the one on the right is given by the inclusion Set ! SetD (Definition 3.1.8).
The task now boils down to finding suitable natural transformations D2 ! D to
interpret the probabilistic choice operation.

A set DDX is always a convex algebra. In particular, for each � 2 [0, 1] there exists
a natural transformation ↵� : D2 ! D defined at each X by,

(↵�)X(µ1, µ2) = �µ1 + (1� �)µ2

Let us interpret probabilistic choice using these natural transformations and endow
EndD(X) with this algebraic structure in the usual way. Consider the variety V

generated by the signature {skip, ; , (+�)�2[0,1]} and the monoid laws for {skip, ;}.
The tuple,

(EndD(X), • , ⌘X , (J+�K)�2[0,1])

is an element of V. Given an interpretation map A ! EndId(X) one obtains A !
EndId(X) ⇢ EndD(X). The last step is to freely extend this composition into a
V-homomorphism,

(⇧, ; , skip, (+�)�2[0,1])! (EndD(X), • , ⌘X , (J+�K)�2[0,1])
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and the desired programming language is obtained. The program (a
1

+0.3 a2) ; a3,
for example, reads “trigger with probability 0.3 the event a

1

and with probability
0.7 the event a

2

. After this, trigger the event a
3

”.

Remark 3.1.16. The programming language in the last example can be refined with
additional laws: e. g. one can safely assume idempotency p +� p and a weak form of
commutativity p+� q = q+1�� p.

The examples above tell us that programming paradigms can be thoroughly examined
by characterising natural transformations Tn ! T and their interaction with Kleisli
composition. This is the strategy that we will employ to study the hybrid paradigm, and
in this mission Yoneda lemma [ML98] will be an essential tool.

Lemma 3.1.17 (Yoneda lemma). Let C be a locally small category. For every functor
F : C! Set and C-object X there exists a bijection,

[C, Set] (C(X, � ), F ) ' FX

that is natural both in X and F .

In order to exemplify the high relevance of Yoneda lemma in the context of Kleisli represen-
tations, consider again the signature {skip, ; , 0}. We already know that the maybe monad
M supports programming languages with signature {skip, ; , 0} (see Example 3.1.15). So
we may ask ourselves “are there any others monads that support programming languages
of this type ?” Or equivalently, “are there any other monads T that possess a natural
transformation 1 ! T ?”. Since the constant functor 1 : Set ! Set is representable as
C(;, � ) : Set! Set, Yoneda lemma reduces the answers to these questions to a triviality:
we have the following chain of bijections,

[Set, Set](1, T ) ' [Set, Set](C(;, � ), T ) ' T;

and hence a monad T supports a programming language with signature {skip, ; , 0} iff
its underlying functor does not preserve the empty set. We can actually go a bit further
and state that,

Corollary 3.1.18. The maybe monad, the list monad, and the powerset monad have
exactly one possible interpretation for the construct 0. The rectangular bands monad and
the distribution monad have no possible interpretation for the construct 0, and therefore
they cannot support an abort operation.
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We conclude this subsection by considering quotient representations which further justify
the naturality condition imposed on program operations.

Often one will need to abstract away details of a representation ⇢ : A! EndT(X) in a
large, fine-grained space X by building a representation ⇢0 : A ! EndT(Q) in a coarser
one, but in such a way that both representations ‘agree’ with each other. Formally, for a
quotient map q : X ! Q, we need that the equation,

Tq · ⇢(a) = ⇢0(a) · q (1)

holds for all programs a 2 A. This property tells that abstracting and then interpreting
is the same as interpreting and then abstracting. The naturality of program operations
promotes a compositional construction of quotient representations, because it allows to
prove that Equation (1) holds just by showing that it holds for atomic programs. For
sequential composition, this follows from the naturality of µ,

X
⇢(a)
//

q
✏✏

TX
T⇢(b)

//

Tq
✏✏

TTX
µ
X

//

TTq
✏✏

TX

Tq
✏✏

Q
⇢0(a)
// TQ

T⇢0(b)
// TTQ µ

Q

// TQ

and for other operations the naturality requirement on ↵ : T⇥T ! T makes the following
diagram also commute.

X
h⇢(a),⇢(b)i

//

q
✏✏

TX ⇥ TX
↵
X

//

Tq⇥Tq
✏✏

TX

Tq
✏✏

Q
h⇢0(a),⇢0(b)i

// TQ⇥ TQ ↵
Q

// TQ

So naturality allows to freely extend an abstraction from atomic programs to all programs
in the language.

3.2 the hybrid monad

In Chapter 1 and 2 we saw that physical processes, like time, velocity, and radioactive
decay, are traditionally specified via systems of differential equations [KH96; BS02; Per13].
For example, the water level of a tank can be described by the equation,

l̇ = k (2)
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where the constant k is the subtraction of the rate of water flowing out from the rate of
water flowing in. Another example is the position and velocity of a vehicle, which in a
one-dimensional perspective can be specified by,

ṗ = v, v̇ = a (3)

where a denotes the vehicle’s acceleration.
If a system of differential equations specifies a physical process, then its solution is

the physical process itself. A solution (in computer science terminology, a model) of a
system of ordinary differential equations is a dynamical system for the additive monoid
of non-negative reals [Per13]; more concretely, a map � : Rn ⇥R�0 ! Rn that makes the
following diagrams commute.

Rn hid,0i
//

id
&&

Rn ⇥ R�0

�
✏✏

Rn

Rn ⇥ R�0 ⇥ R�0

�⇥id

✏✏

id⇥(+)
// Rn ⇥ R�0

�

✏✏

Rn ⇥ R�0
�

// Rn

Intuitively, a physical process � controls ad infinitum the evolution (in some contexts,
called trajectory) �(v,�) : R�0 ! Rn of a given value v 2 Rn. In the presence of a digital
device, however, physical processes can only act for specific time intervals – a consequence
of a computer’s ability to dictate which physical process is active at a certain time (recall
Chapter 2, where switched systems and their visual interpretation were introduced). For
example, in the water tank, Equation (2) must frequently be updated in order to reflect
changes in the valves that let water flow in/out, the latter being typically controlled by a
computer. In regard to the moving vehicle, Equation (3) must also change but this time
to reflect different choices of acceleration made by the cruise controller.

In the current section we will see that the hybrid monad captures this basic interaction
between physical processes and digital devices.

Definition 3.2.1. Define H : Set! Set as the coproduct of hom functors,
a

d2R�0

hom([0, d], � )

Definition 3.2.2. Let the unit ⌘ : Id ! H be defined at each set X by ⌘X(x) = (x, 0)

where x : [0, 0]! X is the map constant on x. It is natural because it can be written as
the composition,

Id ' hom(1, � )
!⇤�! hom([0, 0], � )

i0�! H
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where the natural transformation !⇤ : hom(1, � )! hom([0, 0], � ) is the one induced via
Yoneda embedding by the universal map ! : [0, 0]! 1.

The unit has two obvious inverses ✓ : H ! Id and � : H ! Id: the first one sends an
evolution (f, d) to the image f(0) and the second one to f(d).

The multiplication requires the following operation for concatenating evolutions.

Definition 3.2.3. Define (++) : H⇥ H! H as the natural transformation such that for
every set X the equation,

(f, d) ++X (g, e) = (h, d+ e)

holds with h(x) = f(x) if x  d and h(x) = g(x � d) otherwise. The transformation is
natural because it can be written as the following composition,

H⇥H '
a

d2R�0

hom([0, d], � )⇥
a

e2R�0

hom([0, e], � )

'
a

d,e2R�0

hom([0, d], � )⇥ hom([0, e], � )

'
a

d,e2R�0

hom([0, d] + [0, e], � )

`
f⇤�!

a

d,e2R�0

hom([0, d+ e], � )

[i
d+e

]�! H

where f : [0, d+ e]! [0, d] + [0, e] is defined as f(x) = i1(x) if x  d and f(x) = i2(x� d)

otherwise.

Definition 3.2.4. Define the multiplication µ : HH! H at each set X by,

µX(f, d) = (✓X · f, d) ++X (f(d))

It is natural because it can be written as the composition HH
hH✓,�Hi

// H⇥H
(++)

// H .

Remark 3.2.5. The multiplication has an intuitive visual interpretation: an element
of (f, d) 2 HHX can be seen as a ‘square’ whose columns are elements of HX. Under
this view, the multiplication sends (f, d) to the concatenation of the square’s bottom line
(✓X · f, d) with and column f(d), as illustrated below.
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y

z

(✓X · f, d)

f(d)

This perspective also offers a visual sketch of the proof that µ · Hµ = µ · µH. First, an
element of HHHX can be seen as the cube depicted below, where a projection on the
x-axis yields an element of HHX.

x

z

�y

Through multiplication, the cube is flattened into a square in two different ways: via
µH : HHHX ! HHX or Hµ : HHHX ! HHX. In the former case, only the front and
right surfaces are kept (depicted below on the left). In the latter case, the function Hµ

applies µ to each projection on the x-axis, and thus only the bottom and back surfaces
are kept (depicted below on the right).

x

z

�y

x

z

�y

Finally, to apply µ : HHX ! HX to the resulting squares yields the same result,

x

z

�y

Theorem 3.2.6. The triple H = (H, ⌘, µ) is a monad.
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Proof. In Appendix A.

Let us explore the Kleisli composition of the hybrid monad and compare it against the
remarks made at the section’s beginning. Consider two maps f : X ! HY , g : Y ! HZ

and for every element x 2 X denote f(x) by (f(x, � ), d). Then calculate,

g • f(x) = µ ·Hg · f(x)

= µ(g · f(x, � ), d)

= (✓ · g · f(x, � ), d) ++ (g (f(x, d)))

If the equation ✓Z · g = id holds then the last expression is equivalent to,

(f(x, � ), d) ++ (g (f(x, d)))

which is simply the concatenation of (f(x, � ), d) with g (f(x, d)). Otherwise, up to
completion of [0, d], g alters the evolution given by f and then proceeds with its own
evolution. These notions are illustrated in the following example, where we will see that
Kleisli composition can be used to switch between physical processes; as mentioned in
Chapter 2, this was the idea that gave rise to the whole concept of hybrid system [Wit66].

Example 3.2.7. Consider two signal generators s1, s2 : R! HR defined by,

s1(x) = (x+ sin(� ), 3⇡), s2(x) = (x+ sin(3⇥ � ), 3⇡)

The evolution s1 • s2 • s1 (0) is depicted in the plot below on the left. This type of
signal is commonly seen in frequency modulation, where the varying frequency is used to
encode information for electromagnetic transmission. In the hybrid systems perspective,
the map s1 • s2 • s1 (0) can be regarded as the result of a computer giving control of 0’s
evolution to s1, after some time to s2, and then to s1 again.

In order to amplify signals, one can use the map a : R ! HR defined by a(x) =

(x⇥ 2, 0). Note that it does not respect ✓R ·a = id and therefore it can alter the evolutions
of other maps. Given the input 0, the system s1 • s2 • a • s1 returns the evolution below
on the right.

0 5 10 15 20 25

�2

0

2

s1 • s2 • s1 (0)

0 5 10 15 20 25

�2

0

2

s1 • s2 • a • s1 (0)
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Definition 3.2.8. Consider a map f : X ! HX. We call it a unit-action if the equation
✓X · f = id holds.

3.2.1 Hybrid programming languages

Using both the hybrid monad and the framework of Kleisli representations, we can start
to develop hybrid programming languages systematically. Let us analyse a very simple
case: take a finite set of real-valued variables X = {x1, . . . , xn} and denote by At(X) the
set given by the grammar,

' 3 (x1 := t, . . . , xn := t) | (ẋ1 = t, . . . , ẋn = t& d), t 3 r | r · x | t+ t

where d and r are real numbers and x 2 X.
Denote the usual interpretation of a term t over a valuation (v1, . . . , vn) 2 Rn by

JtK(v1,...,vn) 2 R, or simply JtK if the valuation is clear from the context. Since linear
systems of ordinary differential equations have always unique solutions [Per13] there exists
an interpretation map,

At(X)! EndH(Rn)

that sends (x1 := t1, . . . , xn := tn) to the function Rn ! H(Rn) defined by,

(v1, . . . , vn) 7! ⌘ (Jt1K, . . . , JtnK)

and that sends (ẋ1 = t1, . . . , ẋn = tn & d) to the respective solution Rn ! (Rn)R�0 but
restricted to Rn ! (Rn)[0,d].

Remark 3.2.9. Solutions of systems of ordinary differential equations are dynamical
systems for the additive monoid (R�0,+, 0). Therefore, the interpretation � : Rn !
(Rn)[0,d] of an expression (ẋ1 = t, . . . , ẋn = t& d) is always a unit-action.

The free monoidal extension of the interpretation map induces a programming language,

p = a 2 At(X) | skip | p ; p

which includes assignments and differential equations.

Examples 3.2.10. Let us explore the language with a series of examples.

1. Recall that the water level of a tank can be described by the equation l̇ = k, and
suppose that a valve connected to it opens at precisely ten seconds. The program,

(l̇= k& 10) ; (l̇= k+ m& n)
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describes this behaviour: it makes the water level change at the rate of k cm/s for
ten seconds and then at k+ m cm/s for n seconds.

2. Consider a heating program (ṫ= 2& 10) that makes the temperature go up at
the rate of 2�C/s, and a (simplistic) program (ṫ= 0& 10) that maintains a given
temperature for ten seconds. The composition,

(l̇= 2& 10) ; (l̇= 0& 10)

makes the current temperature rise for ten seconds, and then keeps it stable for
another ten seconds.

3. Recall that the movement of a vehicle can be described by the system of equations,

ṗ = v, v̇ = a

where a denotes an acceleration chosen by the controller. The program,

a := 5 ; (ṗ= v, v̇= a& 1) ; a := a+ 2 ; (ṗ= v, v̇= a& 1)

sets the acceleration to 5m/s2, lets position and velocity evolve for one second,
increases the acceleration, and finally lets position and velocity evolve again for one
second. Assuming that position and velocity are equal to zero, this program yields
the following plot with respect to the vehicle’s position and velocity.
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Evolution of the vehicle’s position and velocity

The language illustrated by the previous examples is time-triggered : i. e. a program (ẋ1 =

t1, . . . , ẋn = tn & d) terminates precisely when the instant of time d is achieved. It is also
possible to consider event-triggered languages by forcing a program to terminate as soon
as a certain event occurs. To do this, however, we need to be very strict on the kinds
of event allowed: consider the expression (ẋ = 1 & x > 7). We want to interpret it as a
program that terminates as soon as the condition x > 7 is satisfied, but given an initial
value for x, can we find the earliest time at which the condition is satisfied ?
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Remark 3.2.11. Already in [Wit66], Witsenhausen considered the possibility of hybrid
systems being event-triggered by forcing a physical process to terminate as soon as it
intersects a given closed set C ✓ Rn. The assumption of C being closed ensures that if
C is eventually reached then there exists an earliest time at which this occurs. We adopt
the same strategy for the event-triggered language presented below.

Consider a finite set of real-valued variables X = {x1, . . . , xn} and denote by Ate(X) the
set given by the grammar,

' 3 (x1 := t, . . . , xn := t) | (ẋ1 = t, . . . , ẋn = t&  ), t 3 r | r · x | t+ t

 3 t  t | t � t |  ^  |  _  

where x 2 X. Then, for a predicate  define J K ✓ Rn by,

Jt1  t2K = {(v1, . . . , vn) 2 Rn | Jt1K  Jt2K}
Jt1 � t2K = {(v1, . . . , vn) 2 Rn | Jt1K � Jt2K}

J 1 ^  1K = J 1K \ J 2K
J 1 _  1K = J 1K [ J 2K

Theorem 3.2.12. For every predicate  the set J K is closed in Rn.

Proof. Start with Jt1  t2K. We will to show that for every family of real numbers
(ai, bi)i2n and (c, d) 2 R⇥ R the set,

A =
n

(v1, . . . , vn) 2 Rn |
X

i2I
aivi + c 

X

i2I
bivi + d

o

is closed in Rn. Recall that the order relation R ✓ R ⇥ R is closed and consider two
maps f, g : Rn ! R defined by,

f(v1, . . . , vn) =
X

i2I
aivi + c, g(v1, . . . , vn) =

X

i2I
bivi + d

Clearly both f and g are continuous since they can be written as compositions of multipli-
cation and addition maps. Moreover, A = hf, gi�1(R) and therefore A must be closed
in Rn.

An analogous reasoning applies to Jt1 � t2K since the order relation R� ✓ R ⇥ R is
also closed. For the cases that involve conjunction and disjunction apply the property of
closed sets being closed under intersections and finite unions.

Corollary 3.2.13. Consider a program (ẋ1 = t1, . . . , ẋn = tn &  ), its solution � :

Rn⇥R�0 ! Rn, and a valuation (v1, . . . , vn) 2 Rn. If there exists a time instant t 2 R�0

such that �(v1, . . . , vn, t) 2 J K then there exists a smallest time instant that also satisfies
this condition.
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Proof. By Theorem 3.2.12 the set �(v1, . . . , vn, � )�1(J K) \ [0, t] is compact and thus it
has a minimum.

We can now introduce an event-triggered programming language in the following manner.
Define the interpretation map,

Ate(X)! EndH(Rn)

as the one that sends (x1 := t1, . . . , xn := tn) to the function Rn ! H(Rn) defined by,

(v1, . . . , vn) 7! ⌘ (Jt1K, . . . , JtnK)

and (ẋ1 = t1, . . . , ẋn = tn &  ) to the function Rn ! H(Rn) defined by,

(v1, . . . , vn) 7! (�(v1, . . . , vn, � ), d)

where d is the smallest time instant that intersects J K if ��1(v1, . . . , vn, � )(J K) 6= ;
(Corollary 3.2.13) and 0 otherwise. The free monoidal extension of this interpretation
map provides a hybrid programming language,

p = a 2 Ate(X) | skip | p ; p

with events.

Examples 3.2.14. Let us analyse it with a few examples.

1. Consider a heating program (ṫ= 2& t = 20) that terminates when the temperature
of 20�C is reached, and a maintenance program (ṫ= 0, u̇= 1& u = 10) that keeps
the current temperature, terminating when the instant of time 10 reached. If the
initial temperature is below 20

�C, the composition,

(ṫ= 2& t = 20) ; u := 0 ; (ṫ= 0, u̇= 1& u = 10)

makes the current temperature rise to 20

�C, and then keeps it stable for ten seconds.
In this context, the variable u marks the passage of time.

2. Consider a bouncing ball dropped at a positive height p and with no initial velocity
v. Due to the gravitational acceleration g, it falls into the ground and then bounces
back up, losing part of its kinetic energy in the process. Consider the program,

(ṗ= v, v̇= g& p  0 ^ v  0) ; (v := v⇥�0.5)

denoted by b. The composition (v := 0, p := 5) ; b ; b ; b encodes the action of
dropping the ball at the height of five meters and letting it bounce exactly three
times. The projection on p of this program yields the plot below.
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Evolution of the bouncing ball’s position

Our next programming language brings evolutions with discontinuities into the scene.
As explained in [GST09], this feature is useful for modelling (i) abrupt changes in a
trajectory (resulting e. g. from collisions, chemical or biological reactions), and (ii) the
evolution of discrete variables over time. Classic examples of (i) range from stopwatches,
which along an execution can reset their time variables, to chemical solutions in which one
can ‘instantaneously’ add new quantities of a chemical ingredient that is being gradually
consumed [Jac00]. In regard to (ii), typical examples include semaphores (one wants to
see which lights are on during a given period of time), digital sound synthesizers, and,
more generally, any computational device that needs to provide certain outputs at certain
instants of time.

An evolution (e, d) 2 HX induces another evolution (he,mdi, d) 2 H(X⇥2) where md :

[0, d]! 2 is defined by md(x) = ? if x 6= d and md(x) = > otherwise. This construction
allows to extend the codomain of a morphism f : X ! HX into f2 : X ! H(X ⇥ 2) in
such a way that the new program can explicit announce when it terminates.

Recall the interpretation map Ate(X)! EndH(Rn) that generated the event-triggered
programming language introduced before. Let us compose it with the function,

EndH(Rn)! EndH(Rn ⇥ 2)

that sends an endomorphism f 2 EndH(Rn) to the map g defined by,

g(v, x) =

8

>

<

>

:

⌘Rn(v,?) if x = ?

f2(v) otherwise

The free monoidal extension of the composition,

Ate(X)! EndH(Rn ⇥ 2)

provides another Kleisli representation for the event-triggered programming language,

p = a 2 Ate(X) | skip | p ; p
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In this language, discrete assignments are applied precisely at the end of an evolution,
and evolutions produced by two programs are concatenated.

Examples 3.2.15. Let us analyse some simple cases.

1. Consider a stopwatch that counts time during five seconds, resets, and then counts
time during ten seconds. This is given by the composition,

t := 0 ; (ṫ= 1& t = 5) ; t := 0 ; (ṫ= 1& t = 10)

which yields the plot below.
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An execution of a stopwatch

t := 0

2. Suppose that we want to implement a semaphore that every ten seconds switches
between a red light and a green one. It can be obtained by taking the composition,

(u := 0, l := 0) ; (u̇= 1& u = 10) ; (u := 0, l := 1) ; (u̇= 1& u = 10)

here abbreviated to s. The program s ; s, for example, yields the plot below.

0 10 20 30 40

An execution of a semaphore
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3.3 program operations

3.3.1 A general theorem for the characterisation of program operations

Introduced the hybrid monad and some of its programming languages, our next task is
to list all natural transformations of the type H ⇥ H ! H. As discussed in Section 3.1,
these are basis of program operations in hybrid programming, and so by detailing them
we will be able generate hybrid programming languages more sophisticated than the ones
introduced so far.

In order to list the natural transformations above, we will resort to the following theo-
rem which provides a detailed account on natural transformations TU ⇥ TU ! TU for
T a coproduct of hom functors and U : C! Set a right adjoint.

Theorem 3.3.1. Consider an adjunction,

Set ?

F
((

U

hh C

If T : Set! Set is a functor expressible as a coproduct of hom functors, i. e. if there exists
a non-empty family (Xi)i2I of sets such that T '

`

i2I hom(Xi, � ), then,

[C, Set] (TU ⇥ TU, TU) '
Y

i,j2I
TUF (Xi +Xj)

Proof. In Set binary products distribute over arbitrary coproducts. It follows that,

TU ⇥ TU '(
a

i2I
hom(Xi, U))⇥ (

a

j2I
hom(Xj , U))

'
a

i,j2I
hom(Xi, U)⇥ hom(Xj , U)

'
a

i,j2I
hom(Xi +Xj , U)

'
a

i,j2I
hom(F (Xi +Xj), � )
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where the one but last step follows from contravariant hom functors sending colimits to
limits, and the last step follows from U being the right adjoint of F . Then,

[C, Set] (TU ⇥ TU, TU) ' [C, Set] (
a

i,j2I
hom(F (Xi +Xj),�), TU)

'
Y

i,j2I
[C, Set] (hom(F (Xi +Xj),�), TU)

'
Y

i,j2I
TUF (Xi +Xj)

where the last step is an application of the Yoneda lemma. Given an element s 2
Q

i,j2I TUF (Xi + Xj) with components si,j 2 TUF (Xi + Xj), the respective natural
transformation ↵s is defined at each X by,

(a, b) 2 hom(Xi, UX)⇥ hom(Xj , UX) 7! TU [a, b](sij)

where [a, b] is the left adjunct of [a, b].

Corollary 3.3.2. If T : Set! Set is a functor expressible as a coproduct of hom functors,
i. e. if there exists a non-empty family (Xi)i2I of sets such that T '

`

i2I hom(Xi, � ),
then,

[Set, Set] (T ⇥ T, T ) '
Y

i,j2I
T (Xi +Xj)

Given an element s 2
Q

i,j2I T (Xi+Xj) with components si,j 2 T (Xi+Xj), the respective
natural transformation ↵s is defined at each X by,

(a, b) 2 hom(Xi, X)⇥ hom(Xj , X) 7! T [a, b] (sij)

Examples 3.3.3. Let us apply this corollary to some well-known monads, allowing us to
identify the program operations that their underlying programming paradigms support.

1. The functor of the rectangular bands monad can be written as hom(2, � ) : Set!
Set, which means that it has precisely 16 ' (2 + 2)2 natural transformations,

(� )2 ⇥ (� )2 ! (� )2

Every element s 2 (2 + 2)2 is a list of size two over 2 + 2 and it dictates what
the transformation ↵s does to all tuples ((a, b), (c, d)) 2 X2 ⇥X2; basically, it tells
which values given at input will appear in the output and how many times. For
example, i1(0)i2(0) 2 (2 + 2)2 yields (a, c), i1(1)i2(0) yields (b, c), and i1(0)i1(0)

yields (a, a). Thus, these transformations can also be seen as maps,

(� )2 ⇥ (� )2
h⇡

✏(1)·⇡✏(2),⇡✏(3)·⇡✏(4)i
// (� )2
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where ✏ : 4! 2 is an arbitrary map.

2. The functor of the maybe monad can be written as hom(;,�) + hom(1,�). It
follows from Corollary 3.3.2 that the natural transformations M ⇥M ! M are in
bijective correspondence with the set M(2) ⇥M(1) ⇥M(1), in particular there are
exactly 12 natural transformations M ⇥ M ! M. The M(2)-coordinate specifies
what a transformation does to pairs (x, y) with x, y 6= ⇤, i. e. projecting to the left,
to the right or mapping to ⇤, the first M(1)-coordinate specifies what happens to
pairs (x, ⇤), x 6= ⇤, i. e. projecting to the left or the right, and similarly for the last
coordinate and pairs (⇤, y), y 6= ⇤.

3. The functor of the list monad can be written as the coproduct
`

n2N hom(n,�).
Thus, the natural transformations L⇥L! L are in one-to-one correspondence with
Q

i,j2N L(i + j). Similarly to the rectangular bands monad, each (i, j)-coordinate
specifies what a transformation does to pairs of lists of length i and j. In particu-
lar, it tells how the values in a given pairs of lists are distributed in the new list.
For example, if the (1, 2)-coordinate is given by the word i1(1)i2(1)i1(1)i2(1)i2(2)

then the natural transformation will send a pair of words (a, bc) of length 1 and 2,
respectively, to ababc.

4. The functor of the hybrid monad is the coproduct
`

d2R�0
hom([0, d], � ), therefore

the natural transformations H⇥H! H are in bijective correspondence with the set
Q

i,j2R�0
H([0, i] + [0, j]). Similarly to the list monad, each (i, j)-coordinate sij dic-

tates what a transformation does to pairs of evolutions with duration [0, i] and [0, j].
In particular, it tells how the values in a given pair of evolutions (f, g) of duration
[0, i] and [0, j] are distributed in the new evolution: one has the composition,

[0, k]
s
ij

//

↵s

X

(f,g)

55[0, i] + [0, j]
[f,g]

// X

which makes clear that for every element a 2 [0, k] the value ↵s
X(f, g) (a) arises from

one of the two starting functions f or g. For example, if i1 = sij : [0, i]! [0, i]+[0, j]

then ↵s
X(f, g) = f , and if sij : [0, i]! [0, i] + [0, j] is defined by,

sij(a) =

8

>

<

>

:

i1(a) if a 2 Q

i2(a) otherwise

then ↵s
X(f, g)(a) = f(a) if a 2 Q and ↵s

X(f, g)(a) = g(a) otherwise.
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5. Using the isomorphism A ⇥ Xn '
`

a2A hom(n,X) it is routine to prove that
Corollary 3.3.2 applies to all polynomial functors.

Remark 3.3.4. Document [AAG03] provides a powerful representation theorem that can
also be used to prove Corollary 3.3.2 (a particular case of Theorem 3.3.1). This, however,
involves the notions of container and fibration which is not required in our case.

3.3.2 Axioms

Corollary 3.3.2 provides a detailed description of natural transformations of the type
H ⇥ H ! H, which as mentioned before, are the basis of hybrid program operations. In
order to study program operations’ axiomatics, we will further enrich this description
by characterising the natural transformations H ⇥ H ! H that satisfy common axioms,
namely commutativity, idempotence, associativity, and units.

Commutativity. We start with the following proposition which tells that commutative
natural transformations T ⇥ T ! T for coproducts of hom functors T must adhere to
rather harsh conditions.

Proposition 3.3.5. If T '
`

i2I hom(Xi,�), a natural transformation ↵ : T 2 ! T ,
given by an element (sij)i,j2I 2

Q

i,j2I T (Xi+Xj) via Corollary 3.3.2, is commutative iff
for all i, j 2 I, the equation below holds.

[i2, i1] · sij = sji : Xk ! Xj +Xi

In particular, for all i 2 I, sii must be the map with empty domain, which means that if
there is no set Xi = ; then there is also no commutative natural transformation T 2 ! T .

Proof. If a natural transformation ↵s is commutative then for every a : Xi ! X, b :

Xj ! X the equation,

↵s(a, b) = [a, b] · sij = ↵s(b, a) = [b, a] · sji

must hold. In particular, the equation,

[i2, i1] · sij = [i1, i2] · sji = sji (4)

holds for the injections i2 : Xi ! Xj +Xi, i1 : Xj ! Xj +Xi.
Let us now assume that Equation (4) holds. The goal is to show that for every a :

Xi ! X, b : Xj ! X the equation [a, b] · sij = [b, a] · sji holds. Thus reason,

[b, a] · sji = [b, a] · [i2, i1] · sij = [a, b] · sij
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Examples 3.3.6. Let us analyse the monads in Examples 3.3.2 under the light of this
proposition.

1. Since (� )2 ' hom(2, � ) and 2 6' ;, by Proposition 3.3.5 there is no commutative
natural transformation (� )2 ⇥ (� )2 ! (� )2.

2. A natural transformation M ⇥M ! M for the maybe monad can be commutative
only if its (1, 1)-coordinate lies in the third summand of M(1 + 1). In other words,
if two elements different than failure are mapped to failure. A commutative natural
transformation M ⇥ M ! M is thus completely determined by the coordinates
M(;+ 1) and M(1 + ;). Actually, even just M(;+ 1) is enough, since the equation
[i2, i1] · s;1 = s1; holds and therefore s;1 completely determines s1;. This means
that there are precisely two commutative natural transformations M⇥M! M.

3. Commutative natural transformations L ⇥ L ! L must always map pairs of lists
with the same length to the empty list.

4. Since H =
`

d2R�0
hom([0, d], � ) and [0, d] 6' ; for every d 2 R�0, there cannot

exist commutative natural transformations H⇥H! H.

As illustrated in the examples above, commutativity is a problematic axiom for the
class of functors treated by Corollary 3.3.2. It necessarily leads to trivial natural trans-
formations, in the sense that no pair of instructions in the same set hom(Xi, X) for
`

i2I hom(Xi, � ) ' T can be non-trivially combined. As shown below, commutativity
also does not get along with idempotence.

Idempotence. We start with a result in the same spirit than Proposition 3.3.5.

Proposition 3.3.7. If T '
`

i2I hom(Xi,�) a natural transformation ↵ : T 2 ! T ,
given by an element (sij)i,j2I 2

Q

i,j2I T (Xi +Xj) via Corollary 3.3.2, is idempotent iff
for each i 2 I, sii 2 T (Xi +Xi) is a map sii : Xi ! Xi +Xi such that O · sii = id where
O : Xi +Xi ! Xi is the codiagonal.

Proof. If a transformation ↵s is idempotent then for every i 2 I, a : Xi ! X, the equation
↵s(a, a) = [a, a] · sii = a : Xi ! X holds. In particular, we have

O · sii = [id, id] · sii = id : Xi ! Xi (5)

Now assume that Equation (5) holds and reason,

a = a · id = a · [id, id] · sii = [a, a] · sii
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Examples 3.3.8. The idempotent natural transformations T ⇥ T ! T for the functors
in Examples 3.3.2 are described in the following manner.

1. Idempotent natural transformations ↵s : (� )2 ⇥ (� )2 ! (� )2 are in bijective
correspondence with maps s : 2! 2+2 such that O · s = id. The latter correspond
to the words i1(0)i1(1), i1(0)i2(1), i2(0)i1(1), and i2(0)i2(1). Therefore, there are
exactly four idempotent natural transformations for the rectangular bands monad.

2. A natural transformation M ⇥ M ! M is idempotent iff its (1, 1)-coordinate is
either in the first or second summand of M(1+1). Hence, there exist precisely eight
idempotent natural transformations for the maybe monad.

3. The idempotent natural transformations L ⇥ L ! L are the ones which take pairs
of words (w1, w2) of length n to a word w

✏(1)
1 . . . w

✏(n)
n , where ✏ is a map n! {1, 2}

and wj
i is the i-th letter in the word wj , j = 1, 2. More succintly, the i-th letter of

the new word is either the i-th letter of w1 or the i-th letter of w2.

4. The idempotent natural transformations ↵s : H ⇥ H ! H for the hybrid monad
follow a reasoning analogous to the one for the list monad: the transformation ↵s is
idempotent iff for every two evolutions (f, g) with the same duration [0, d], ↵s(f, g)

has domain [0, d], and for every element a 2 [0, d] either ↵s(f, g)(a) = f(a) or
↵s(f, g)(a) = g(a). Thus, the restriction of an idempotent natural transformation
↵s : H⇥H! H to pairs of evolutions with duration [0, i] can be seen as a map,

(� )[0,i] ⇥ (� )[0,i]
h⇡

r

·⇡
⇢(r)iri

// (� )[0,i]

where ⇢ : [0, i]! 2 is a function.

It follows from Propositions 3.3.5 and 3.3.7 that the combination of commutativity and
idempotence is impossible when T is a coproduct of hom functors with an Xi 6= ; in its
presentation, since then Proposition 3.3.5 requires that sii be of type ; ! Xi + Xi but
Proposition 3.3.7 requires that sii be of type Xi ! Xi +Xi. Thus none of the monads in
Examples 3.3.8 can support a programming language with a commutative and idempotent
binary operation on programs.

Associativity. In general, we have not found any useful characterisation of associativity,
and unravelling the definition seems to be the surest way of checking whether associativ-
ity holds for a given natural transformation H ⇥ H ! H. We can, however, make the
following observations: there exist associative natural transformations H ⇥ H ! H, the
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obvious projections being two prime examples. There also exist non-associative natural
transformations H ⇥ H ! H. Take, for example, the natural transformation that sends
the pair ((f, d), (g, e)) 2 HX ⇥HX to ⌘X · f(0) if d < e and to ⌘X · g(0) otherwise.

Units. We now examine the possibility of representing units for natural transformations
of the type H ⇥ H ! H. At first sight, there are two obvious possibilities: a unit can
either be a constant, represented by a natural transformation 1 ! H, or it can be the
unit of H. However,

Corollary 3.3.9. The hybrid monad has no natural transformation 1! H.

Proof. Observe that H; = ; and 1 ' hom(;, � ). Then apply Yoneda lemma.

So the first possibility is unviable. The following theorem shows that the second possibility
is unviable as well.

Theorem 3.3.10. Consider a monad T with the unit ⌘ : Id ! T injective and with
T '

`

i2I hom(Xi, � ). Under these conditions, ⌘ can never be the unit of a natural
transformation ↵s : T ⇥ T ! T .

Proof. Using Yoneda lemma, it is straightforward to show that ⌘ factorises through an
inclusion hom(Xk,�) ! T with k 2 I and Xk 6= ;. Now consider the two-point set 2,
observe that ⌘2(0) 2 hom(Xk, 2), and define a = � · (⌘2(0)) where � : 2 ! 2 is the ‘bit
flip’ operation. Assuming that ⌘ is the monad’s unit entails that the equation,

[a, ⌘2(0)] · skk = [⌘2(0), a] · skk : Xk ! 2

holds. However, this cannot happen when Xk 6= ;.

Corollary 3.3.11. All monads T in Examples 3.3.8 cannot have ⌘ : Id! T as the unit
of a natural transformation T ⇥ T ! T .

3.3.3 Program operations over algebraic structures

Recall that natural transformations T ⇥T ! T for a monad T are traditionally the basis
for T-program operations [Mog91; PP01b; HKL14]. To conclude this section, we propose a
more generic approach: to adopt instead natural transformations of the type TU⇥TU !
TU where U is the forgetful functor of a variety. In principle, these transformations allow
to use different algebraic structures on program operations, which ultimately leads to
more powerful ways of combining programs. This is particularly clear in the context of
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hybrid programming, since the set Rn – which lies at the center of our hybrid programming
languages – has very rich algebraic structures.

To illustrate our point, let us characterise these transformations in the same way that
we did for those of the type T ⇥ T ! T . To start, observe that the functor U mentioned
above is always a right adjoint, and this means that Theorem 3.3.1 can be used in our
quest.

Examples 3.3.12. Let U : Mon! Set be the forgetful functor for monoids.

1. Consider the functor of the rectangular bands monad. The natural transformations
of the type U2 ⇥U2 ! U2 are in bijective correspondence with the set (L(2 + 2))2,
whose elements are pairs of lists over 2 + 2. One such element s dictates what the
transformation ↵s

M does to all tuples ((a, b), (c, d)) 2 (UM)2 ⇥ (UM)2 where M

abbreviates (X, ·, 1). In particular, the left value in the pair ↵s
M ((a, b), (c, d)) is the

M -product of a list over {a, b, c, d}, which is obtained from the left list in s, and
similarly for the right value. For example, if s is (✏, ✏) then ↵s

M ((a, b), (c, d)) = (1, 1)

and if s is (i1(1)i2(1), i1(2)i2(2)) then ↵s
M ((a, b), (c, d)) = (a · c, b · d).

2. Consider now the maybe monad. The natural transformations of the type MU ⇥
MU ! MU are in bijective correspondence with ML; ⇥ML1 ⇥ML1 ⇥ML2. The
set ML; specifies what a transformation does to the pair (⇤, ⇤), i. e. sending to ⇤
or to the unit of the monoid; the set ML1 tells what happens to pairs (x, ⇤), i. e.
sending to ⇤ or to,

x · . . . · x
| {z }

n times

for some natural number n, and similarly for pairs (⇤, x). The ML2-coordinate tells
what happens to pairs (x, y), i. e. sending to ⇤ or to the M -product of a list over
{x, y}.

3. Consider the hybrid monad. The natural transformations of the type HU⇥HU!
HU are in bijective correspondence with the set,

a

i,j2R�0

HL([0, i] + [0, j])

Each (i, j)-coordinate tells what a transformation ↵s
M does to pairs of evolutions

((f, i), (g, j)) with duration [0, i] and [0, j]. In particular, one has the composition,

[0, k]
s
ij

//

↵s

M

(f,g)

55L([0, i] + [0, j])
[f,g]

// UM
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where [f, g] is the free monoidal extension of [f, g]. This means that for every
a 2 [0, k] the value ↵s

M (f, g)(a) is the M -product of a list over img f [ img g which
is specified by sij(a). For example, if sij : [0,max(i, j)]! L([0, i] + [0, j]) is defined
by,

sij(a) = i1(min(a, i))i2(min(a, j))

then the respective natural transformation (+) : HU⇥HU! HU M -multiplies the
evolutions f and g pointwise: in particular, if M is the monoid (R,+, 0) and i = j

then (f, i) +M (g, i)) = (f + g, i).

4. The natural transformations for the list monad follow a reasoning similar to the one
used in the previous case.

The natural transformations HU ⇥ HU ! HU with U the forgetful functor for groups
can be described in a manner similar to above; the only difference is that whilst in the
case of monoids a natural transformation always outputs evolutions whose values are
M -products of lists, in the case of groups the transformations output evolutions whose
values are M -products of lists that contain inverses. For example, take the components
sij : [0,max(i, j)]! [0, i] + [0, j] defined by,

sij(a) = i1(min(a, i))i2(min(a, j))� i1(0)

Then the induced natural transformation (k) : HU ⇥ HU ! HU sends two evolutions
((f, i), (g, j)) to the map (h,max(i, j)) defined by,

h(x) = f(min(x, i)) · g(min(x, j))� f(0)

Recall from Examples 3.3.3 (4) that no natural transformation H⇥H! H behaves as any
of the two natural transformations (+) and (k), defined above. Therefore, one indeed gains
more expressive power by adopting natural transformations of the type TU ⇥ TU ! TU

instead of the ones used in the classic approach. As a further attestment to this, note
that (+) is commutative and we previously showed that there is no commutative natural
transformations H⇥H! H.

Examples 3.3.13. Let us now explore natural transformations of the type HU⇥HU!
HU in the context of hybrid programming.

1. A harmonic oscillator [Blo13] is traditionally specified by the differential equation
ẍ = �!2x, where !/2⇡ is the angular frequency. The solution to this equation is
equal to the solution of the system,

ṗ = v, v̇ = �!2p
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projected on p, i. e. the map � : R2 ⇥ R�0 ! R defined by,

�(x, y, t) = x cos(!t) + (y/!) sin(!t)

Thus, the projection on p of the program,

(p := a, v := 0, u := 0) ; (ṗ= v, v̇= �!2

p, u̇= 1& u = 20)

yields the function t 7! a cos (!t) with duration twenty.

Consider the natural transformation (+) : HU⇥HU! HU of Examples 3.3.12 which
M -multiplies two evolutions pointwise. It is associative and it has a unit given by
the natural transformation 1 ! HU that picks the evolution with duration 0 and
constant on the unit of the monoid M . The set of endomorphisms EndH(Rn) can
thus be equipped with a bimonoid structure, as shown in the definition of Kleisli
representation (Definition 3.1.14). Now recall the interpretation map Ate(X) !
EndH(Rn) respective to the event-triggered language of Examples 3.2.14. Its free
bimonoidal extension provides a hybrid programming language,

p = a 2 Ate(X) | skip | p ; p | 1 | p+ p

that brings the principle of superposition into play [Fre12]. For example, we can
now sum two harmonic oscillators,

(p := 1, v := 0, u
1

:= 0, u
2

:= 0) ;

((ṗ= v, v̇= �p, u̇
1

= 1& u

1

= 20) + (ṗ= v, v̇= �9p, u̇
2

= 1& u

2

= 20))

The projection on p of this program yields the following plot.

0 5 10 15 20

�2

0

2

Superposition of two harmonic oscillators
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2. Recall that the water level of a tank can be described by the differential equation l̇ =

k and consider the natural transformation (k) : HU⇥HU! HU of Examples 3.3.12,
which is defined at each group G by,

(f, i) kG (g, j) = (h,max(i, j))

with h(x) = f(min(x, i)) + g(min(x, j)) � f(0). This operation is associative, and
thus the set of endomorphisms EndH(Rn) can be equipped with a monoid and a
semigroup structure, as shown in the definition of Kleisli representation (Defini-
tion 3.1.14). Consider the interpretation map Ate(X) ! EndH(Rn) that was used
in the previous example. The corresponding free extension now provides a hybrid
programming language whose programs can contribute to (or compete over) shared
resources.

p = a 2 Ate(X) | skip | p ; p | p k p

For example, the effect of two open valves that let water flow in can be modelled
by the composition,

(u
1

:= 0, u
2

:= 0) ; ((l̇= k, u̇
1

= 1 & u

1

= 10) k (l̇= m, u̇
2

= 1 & u

2

= 10))

which is equivalent to the program below.

(u
1

:= 0, u
2

:= 0) ; (l̇= k+ m, u̇
1

= 1, u̇
2

= 1 & u

1

= 10)

3.4 classic programming constructs

3.4.1 If-then-else

In non-deterministic programming, if-then-else constructs emerge from two well-known
natural transformations [Koz97; Pla10], namely 1 ! P, constant on the empty set, and
↵+ : P⇥ P! P that sends two sets to their union. The first one introduces tests: given
a condition  , the test program J K : X ! PX is defined by J K(x) = {x} if x satisfies  
and J K(x) = ; otherwise. The second combines the two possible execution paths of an
if-then-else statement. Both transformations together give rise to if-then-else statements
by defining if  then p else q, or more shortly p+ q, as,

( ; p) + ((¬ ) ; q)

This procedure also applies to faulty programs by taking the natural transformation
1 ! M, constant on ‘failure’, and the natural transformation ↵ : M ⇥M ! M defined
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at each set X by ↵X(⇤, ⇤) = ↵X(x, y) = ⇤ and ↵X(⇤, x) = ↵(x, ⇤) = x. It does not
apply, however, in a general setting, since it presupposes the existence of two natural
transformations that might not always exist. This is in fact the case for the distribution
and hybrid monads, which do not have a natural transformation 1! T (Corollary 3.1.18
and Corollary 3.3.9).

In order to solve this issue, we will ‘embed’ if-then-else constructs directly in the notion
of Kleisli representation by replacing monoids, as the basic structure of programming
languages (see Section 3.1), with conditional monoids.

Definition 3.4.1. Let  be a set of conditions. A  -conditional monoid is a tuple
(X, ·, 1, (m ) 2 ) such that (X, ·, 1) is a monoid and for every condition  2  , m :

X ⇥X ! X is a binary map.

Consider the map s :  ⇥X ! X +X defined by,

s( , x) =

8

>

<

>

:

i1(x) if x satisfies  

i2(x) otherwise

A monoid of endomorphisms (EndT(X), •, ⌘) can be extended into a -conditional monoid
by defining,

m (f, g) = [f, g] · s( , � ) (6)

Intuitively, if an input x 2 X satisfies  then the program m (f, g) : X ! TX tells
f to execute with x as input, otherwise g executes also with x as input. Such is the
classic behaviour of if-then-else statements, and moreover this construction applies to all
monads on Set.

Definition 3.4.2. Let V be a finitary quasi-variety defined by a signature ⌃ = {skip, ;}[
 [ � and a set of quasi-equations such that the {skip, ; , }-fragment is the variety of
 -conditional monoids. Consider also a Set-monad T equipped with a map s :  ⇥X !
X +X.

A conditional Kleisli T-representation of a V-object A is an assignment of every � 2 �
to a natural transformation ↵� : T ar(�) ! T together with a V-algebra morphism,

A! (EndT(X), • , ⌘X , (m ) 2 , (J�K)�2�)

with m defined as in Equation (6).
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Recall the event-triggered programming language of Examples 3.2.14. In order to extend
it with if-then-else constructs, we just need a suitable set of conditions  and a satisfaction
map s :  ⇥ Rn ! Rn + Rn. Let  be the set generated by the grammar,

 3 t  t | t � t |  ^  |  _  | ¬ , t 3 r | r · x | t+ t

where x 2 X, and s :  ⇥ Rn ! Rn + Rn be the canonical extension of the map,

(t1  t2, (v1, . . . , vn)) 7! i1(v1, . . . , vn) iff Jt1K(v1,...,vn)  Jt2K(v1,...,vn)
(t1 � t2, (v1, . . . , vn)) 7! i1(v1, . . . , vn) iff Jt1K(v1,...,vn) � Jt2K(v1,...,vn)

Denote the forgetful functor of the variety of  -conditional monoids by U, and recall the
interpretation map Ate(X) ! EndH(Rn) of the event-triggered programming language
just mentioned. The free extension of the interpretation map,

At(X)! U(EndT(X), • , ⌘X , (m ) 2 )

provides an event-triggered hybrid programming language with if-then-else constructs.

p = a 2 Ate(X) | skip | p ; p | p+ p ( 2  )

Examples 3.4.3. Let us explore this new language.

1. Consider a tank with water flowing out at one cm/s. Then suppose a computer
checks every ten seconds if the water level is lower than two cm; if such is the case,
it opens a valve that lets water flow in at two cm/s, otherwise it either keeps the
valve closed or closes it. Denote the program,

(e := 2 +
l<2

e := 0) ; u := 0 ; (l̇= k+ e, u̇= 1& (l = 0 ^ k+ e < 0) _ u = 10) ;

(l̇= 0 , u̇= 1& u = 10)

by w. The composition,

w ; . . . ; w
| {z }

6 times

= w6

encodes the behaviour of the system described above for six iterations. Note that
the left side of the disjunction (l = 0 ^ k+ e  0) _ u = 10 forbids the water level
to go below zero, which is a physical constraint of our system.
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2. Consider a (simplistic) convoy system comprised of a truck that moves at con-
stant velocity and a follower truck equipped with a computer that either orders
the truck to accelerate with force a > 0 or brake with force b < 0. Now let d be
the desired minimum distance between the leader and the follower, and assume
that the periodicity of the computer’s orders is exactly one second. The condition
p

l

+ v

l

� p

f

� v

f

� 1

2

a � d – which we will abbreviate to  – tells whether the min-
imum distance is going to be violated in the next second if acceleration a is chosen.
Denote the program,

(a
f

:= a + a

f

:= b) ; u := 0 ; (ṗ
l

= v

l

, ṗ
f

= v

f

, v̇
f

= a

f

, u̇= 1& u = 1)

by c. The composition c10 encodes the possible executions of the convoy system for
ten iterations.

3. Consider the following biological system, which was addressed in [GST09]. Every
firefly has an internal clock which helps it to know when to flash: when the clock
reaches a threshold the firefly flashes and the clock’s value is reset to zero. The
flash of a firefly increases the internal clock’s value of all other fireflies nearby.

In order to model this biological system, we will need the programming language
with discontinuities that was explored in Examples 3.2.15. We can easily extend it
with if-then-else constructs using conditional Kleisli representations, and this allows
us to build the program below.

(ḟ
1

= 1, ḟ
2

= 1& f

1

� 10 _ f
2

� 10) ; {

(f
1

:= 0, f
2

:= f

2

+ 1) +
f

1

�10 ^ f

2

<10

{

(f
2

:= 0, f
1

:= f

1

+ 1) +
f

2

�10 ^ f

1

<10

(f
1

:= 0, f
2

:= 0) }

}

Let us denote it by f. It models the internal clocks of two fireflies which are close
to one another. The program (f

1

:= 8, f
2

:= 5) ; f4, for example, yields the plot
below.
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The plot discloses the existence of cyclic behaviour in the biological system: the
evolution in the interval [2, 4] is equal to the evolution in the interval [11, 13], which
means that the whole behaviour of the system can be unfolded by analysing the
first eleven seconds.

Remark 3.4.4. Using conditional Kleisli representations, one can systematically endow
programming languages with if-then-else statements. Another approach for this, is to com-
bine the hybrid monad with the maybe using the distributive law MH ! HM described
in Theorem 3.1.11. This gives rise to the partial hybrid monad HM which inherits useful
properties from M: (i) it has a natural transformation 1! HM that picks the evolution
with duration zero and constant on failure – thus the partial hybrid paradigm supports
abort operations and tests. (ii) It has a natural transformation HM⇥HM! HM defined
at each set X by,

((f, d), (g, e)) 7! (↵X · hf, gi,max(d, e))

with ↵ : M ⇥M ! M, ↵X(⇤, ⇤) = ↵X(x, y) = ⇤ and ↵X(⇤, x) = ↵(x, ⇤) = x – together
with the transformation 1 ! HM, it brings if-then-else constructs to the partial hybrid
paradigm. (iii) These results emerge without the need for conditional Kleisli representa-
tions.

So why did we chose the latter approach, the reader might ask. The reason is that
HM adds a new layer of complexity to the hybrid paradigm, and this makes difficult to
accomplish the current chapter’s goal, namely to examine purely hybrid computations.
Our main topic for future work, however, lies precisely in the possible combinations of
the hybrid monad with other ones (e. g. maybe, powerset, distribution . . . ) and on the
investigation of the resulting programming paradigms.
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3.4.2 Feedback and while loops

We will now analyse the existence of feedback operators in hybrid programming. In the
monadic setting, feedback operators on programs are usually obtained by endowing the
hom sets EndT(X) of a monad T with a suitable order [Koz97; GS13; HK15]: intuitively,
for a map f : X ! TX, the feedback f⇤ : X ! TX of f is defined by,

f⇤ =
_

�

⌘X , f, f2, f3, . . .
 

which requires certain completeness properties on the set of endomorphisms EndT(X).
The widely famous Kleene star [Koz97; HKT00] is one feedback operator that arises in
this way: the complete partial order (PX,✓) induces an order on EndP(X) via pointwise
extension, and the Kleene star of a program f : X ! PX is given by,

f⇤(x) =
[

�

⌘X(x), f(x), f2(x), f3(x), . . .
 

Our approach for analysing feedback operators in hybrid programming will follow a path
similar to this case; to start we introduce a natural order on the sets HX.

Definition 3.4.5. Consider a set X and two evolutions (f, d), (g, e) 2 HX. Then define,
(f, d) v (g, e) if d  e and the diagram below commutes.

[0, d] �
�

//

f
##

[0, e]

g

✏✏

X

Consider a unit-action f : X ! HX defined as f(x) = (x, 1). It is straightforward to
show that each x 2 X induces a chain,

⌘X(x) v f(x) v f2(x) v . . .

This chain, however, does not have a colimit, otherwise there would exist evolutions with
infinite duration in HX. To fix this issue we need to extend the hybrid monad with
precisely this type of evolution.

Definition 3.4.6. Let H⇤ : Set ! Set be the coproduct of functors H + hom(R�0, � )

and ⌘ : Id! H⇤ be the composition,

Id
⌘H
// H // // H⇤
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Then observe that the operation for concatenating evolutions (see Section 3.2) can be
straightforwardly extended to a natural transformation of the type H ⇥ H⇤ ! H⇤. This
gives rise to the natural transformation µ1 : HH⇤ ! H⇤ that is defined as the composition,

HH⇤
hH✓,�H⇤ i

// H⇥H⇤
(++)

// H⇤

Definition 3.4.7. Let I denote the hom functor hom(R�0, � ) : Set ! Set and µ2 :

IH⇤ ! H⇤ be the natural transformation defined at each set X by,

µ2X(f) = (✓X · f,1)

It is natural because it can be written as the composition,

IH⇤
'
// hom(R�0,H⇤)

✓⇤
//// hom(R�0, � ) // // H⇤

Finally,

Definition 3.4.8. Define µ : H⇤H⇤ ! H⇤ as the mediating map in the diagram below.

HH⇤ // //

µ1
##

H⇤H⇤

✏✏

IH⇤

µ2
{{

oooo

H⇤

Theorem 3.4.9. The triple (H⇤, ⌘, µ) forms a monad.

Proof. In Appendix A.

The Kleisli composition of H⇤ behaves exactly like the Kleisli composition of H if restricted
to evolutions with finite duration. In order to analyse what happens to those with infinite
duration, consider two maps f : X ! H⇤Y , g : Y ! H⇤Z and an element x 2 X such
that f(x) = (h,1). According to the multiplication of H⇤, the equation,

g • f (x) = (✓Z · g · h,1)

holds. If g is a unit-action (Definition 3.2.8) the equation is simplified into g•f (x) = f (x).
This means that g never executes if it is the solution of a system of ordinary differential
equations, since then it needs to wait for the evolution f (x) to finish which will clearly
never happen.

It is easy to show that H is a submonad of H⇤. This provides an inclusion functor
SetH ⇢ SetH⇤ which for every set X gives rise to a monoid monomorphism,

�

EndH(X), • H, ⌘HX
�

⇢
�

EndH⇤(X), • H⇤ , ⌘H⇤
X

�
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Consequently, the hybrid programming languages that were derived in the previous sec-
tions can also be seen as (conditional) Kleisli H⇤-representations. Adding to this, the
extended hybrid monad H⇤ has better completeness properties than the hybrid one, as
attested by the theorem below.

Theorem 3.4.10. Consider a set X and let (H⇤X,v) be the partially ordered set that
canonically extends (HX,v). Every directed subset (fi, di)i2I of H⇤X with

W

i2I di = 1
has a colimit.

Proof. In order to construct the colimit of (fi, di)i2I , observe that for every a 2 R�0 the
set,

{fi(a) | i 2 I such that a  di}

must be a singleton {xa}, otherwise there would exist two elements i, j 2 I such that
fi(a) 6= fj(a) which violates the directedness property. So consider the function (f,1)

defined by f(a) = xa for every a 2 R�0.
It follows from the definition of f that (fi, di) v (f,1) for all i 2 I. Every other

function (g,1) that respects this property must also satisfy the equation g(a) = fi(a) =

f(a) for every i 2 I with a  di and a 2 [0, di]. Since
W

i2I di = 1, the equation f = g

holds and the condition (f,1) v (g,1) arises.

Remark 3.4.11. The condition
W

i2I di =1 is essential for the previous theorem. Con-
sider, for example, the chain,

(x, 1) v (x, 1 + 1/2) v (x, 1 + 1/2 + 1/4) v . . .

Its supremum needs to have [0, 2] as the duration and moreover it must output x for every
element a 2 [0, 2). However, the set of all such functions in H⇤X does not have a smallest
element which forbids the existence of a colimit for the chain.

Hybrid systems whose executions yield this sort of chain are traditionally called Zeno
and are known to be quite thorny [Zha+01; Höf09; Pla10]. We will address them more
throughly later on.

Consider a diagram functor D : (N0,) ! (H⇤X,v). According to Theorem 3.4.10, it
has a colimit if the equation,

colim
�

⇡2 · D : (N0,)! ([0,1],)
�

=1 (7)

holds. If the D-image has a final object, i. e. if there exists a natural number i 2 N0 such
that the condition,

D(j) v D(i) (j 2 N0) (8)
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holds then by definition D has a colimit. Finally, observe that if ⇡2 ·D has a final object
then Condition (8) necessarily holds. These conditions will help us build a feedback map
for f : X ! H⇤X and are illustrated in the examples below.

Definition 3.4.12. Consider a unit-action f : X ! H⇤X such that for every element
x 2 X the diagram functor,

f (� )(x) : (N0,)! (H⇤X,v)

with f0(x) = ⌘X(x) satisfies either Condition (7) or Condition (8). Then f supports a
feedback map f! : X ! H⇤X which is given by,

f!(x) = colim f (� )(x)

Intuitively, it corresponds to the infinite composition of f with itself.

Examples 3.4.13. Let us explore this operator using the time-triggered programming
language of Examples 3.2.10.

1. Consider the composition,

(ẋ= 1& 1) ; (ẋ= �1& 1)

and observe that its interpretation always satisfies Condition (7) since it adds two
time units at each iteration. For each r 2 R, the corresponding feedback map
returns a triangular wave of infinite duration, as illustrated below.

1 2 3 4

0.2

0.4

0.6

0.8

1

J(ẋ= 1& 1) ; (ẋ= �1& 1)K! (0)

2. Consider now the program,

(ẋ= �1& 1) +
x>0

skip

It is straightforward to show that its interpretation always satisfies Condition (8),
since after a finite number of iterations only skip will execute. Thus, a feedback
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map exists; and essentially it continuously decreases a given real number through
successive iterations until it becomes negative.

This example directs us to while loops in hybrid programming: for every program
p that supports feedback one can define,

Jwhile  do pK = Jp + skipK!

Note that these while loops do not behave exactly as the ones in classic programming.
In fact, they differ in two fundamental aspects: (i) in the hybrid case, a while loop
might not terminate precisely when  is falsified; it terminates instead at the end
of the iteration in which  becomes false. One prime example of this aspect is the
program,

while x < 0 do (ẋ= �1& 1)

which was presented above. (ii) Infinite while loops are possible and sometimes
desirable in hybrid programming. Take, for example,

while true do { (ẋ= 1& 1) ; (ẋ= �1& 1) }

which was also presented above.

3. Recall that the movement of a vehicle can be described by the systems of equations,

ṗ = v, v̇ = a

where a denotes an acceleration chosen by a digital controller. Consider a positive
acceleration a > 0, a negative one b < 0, and a desired speed s. The interpretation
of the program,

(ṗ= v, v̇= a& 1) +
vs

(ṗ= v, v̇= b& 1)

clearly supports feedback since it adds one time unit at each iteration and thus
satisfies Condition (7). In this case, the feedback map can be seen as a (simplistic)
cruise controller that tries to maintain a desired speed (s).

In the sequel, we will examine some theoretical properties of the feedback operator (� )!

(Definition 3.4.12). The main result is that the feedback map f! can be characterised as
the smallest fixed point of (� • f) : EndH⇤(X)! EndH⇤(X).
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We start with the following observation which provides a natural order to EndH⇤(X):
the ordered set (H⇤X,v) induces the product

Q

X(H⇤X,v) and since there exists a bijec-
tion,

Y

X

H⇤(X) ' EndH⇤(X)

the set of endomorphisms EndH⇤(X) automatically inherits an order: explicitly, f v g iff
f(x) v g(x) for every x 2 X. The order on EndH⇤(X) arises canonically from (H⇤X,v),
and, among other things, this allows to prove the following theorem quite easily.

Theorem 3.4.14. Let f : X ! H⇤X be a map that supports feedback and consider the
diagram functor,

f (� ) : (N0,)! (EndH⇤(X),v)

The feedback of f is the colimit of this functor.

Proof. We just need to observe that the diagram below commutes, recall Definition 3.4.12
and that isomorphisms preserve colimits.

(N0,)
f (� )

//

hf (� )(x)i
x2X ++

(EndH⇤(X),v)
✏✏

h⇡
x

i
x2X

✏✏
✏✏

Q

X(H⇤(X),v)

The following two results show that the map (� • f) : EndH⇤(X) ! EndH⇤(X) is
monotone and that it preserves the colimit of the chain,

f (� ) : (N0,)! (EndH⇤X,v)

These are two useful points for showing that f! is a smallest fixed point.

Lemma 3.4.15. Every map f : X ! H⇤X induces a functor,

(� • f) : (EndH⇤(X),v)! (EndH⇤(X),v)

Proof. We need to show that for every two elements a v b 2 EndH⇤(X) the condition
a • f v b • f holds. Observe that a v b entails ✓X · a = ✓X · b, and denote f(x) by
(f(x, � ), d). If the latter is infinite,

a • f(x) v ✓X · a · f(x, � )

v ✓X · b · f(x, � )

v b • f(x)
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Otherwise,

a • f(x) v ✓X · a · f(x, � ) ++ a · f(x, d)

v ✓X · b · f(x, � ) ++ a · f(x, d)

v ✓X · b · f(x, � ) ++ b · f(x, d) (a v b)

v b • f(x)

Theorem 3.4.16. The functor (� • f) : (EndH⇤(X),v) ! (EndH⇤(X),v) preserves
the colimit of the chain f (� ) : (N0,)! (EndH⇤(X),v).

Proof. In appendix A.

Corollary 3.4.17. Consider a map f : X ! H⇤X with feedback f!. The latter is the
smallest fixed point of,

(� • f) : (EndH⇤(X),v)! (EndH⇤(X),v)

Proof. It follows from Theorem 3.4.16 that f! is a fixed point. Then by induction, we
can show that any fixed point g is a cocone for the chain,

f (� ) : (N,)! (EndH⇤(X),v)

since ⌘X v g and fn v g entails fn+1 v g • f v g. Finally, the feedback f! is a colimit
for the chain which proves that f! v g.

Remark 3.4.18. There exists no least/greatest fixed point for (f • � ) : EndH⇤(X)!
EndH⇤(X). The reason is that every constant map (x,1) yields,

f • (x,1) = (x,1)

but there does not exist an element in (EndH⇤(X),v) that is smaller/greater than all
these maps.

3.4.3 Feedback on complete metric spaces

To conclude the section, we will briefly analyse the existence of feedback operators for
Zeno systems. Aside from a few exceptions (e. g. [AAS05; Zha+01]), the latter have not
been thoroughly addressed by the hybrid systems community. This is mainly due to two
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reasons: (i) they are not realisable by computational devices, and (ii) to analyse them is
highly problematic. In order to further detail these aspects, consider the formal definition
of Zeno system.

Definition 3.4.19. An endomap f 2 EndH⇤(X) is called Zeno if there exists some
element x 2 X such that the function,

f (� ) : N0 ! EndH⇤(X)

yields a bounded family ⇡2 · f (� ) with no greatest element.

Thus, if an endomap is Zeno, Conditions (7) and (8) necessarily fail, and consequently the
feedback operator (� )! cannot be used. As a further attestment to the obstinacy of Zeno
devices, [Pla10] uses the Kleene star as an iteration operator for hybrid systems. However,
any system that comes after a Zeno one will never be reached through a finite number
of iterations, which means that the operator is not suitable for Zeno devices. Recall for
example the bouncing ball of Examples 3.2.14,

(ṗ= v, v̇= g& p  0 ^ v  0) ; (v := v⇥�0.5)

It is Zeno because an infinite number of progressively smaller bounces occur in a finite
amount of time. Now suppose that when the ball stops something or someone kicks it.
Clearly, this action cannot be reached in a finite number of iterations. So whilst we really
want a notion of infinite composition for Zeno devices, the case seems hopeless if one just
relies on the notion of feedback (� )! introduced in Definition 3.4.12.

A way of solving this prickly problem (up to some extent) is to assume that the set
H⇤X is a complete metric space [Kel55; Gou13]: consider the following proposition [Gou13,
page 41].

Proposition 3.4.20. Let X be a set and (M,d : M ⇥M ! [0,1]) be a complete metric
space. The set of functions MX can also be equipped with a complete metric defined by,

d⇤(f, g) = sup
x2X

d (f(x), g(x))

Let M be a complete metric space and consider the set [0,1] with the usual Euclidean
metric. The binary product MR�0⇥ [0,1] with the sup metric is also complete, and since
there exists an inclusion,

H⇤M ,!MR�0 ⇥ [0,1]

the set H⇤M can be equipped with a complete metric as well. Finally,
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Definition 3.4.21. Let M be a complete metric space and consider an endomap f 2
EndH⇤(M) such that for every x 2 M the family (f i(x))i2N forms a Cauchy sequence.
Then define,

f!(x) = lim
i!1

f i(x)

Example 3.4.22. We already saw that the bouncing ball is a Zeno system. It is modelled
by the composition,

(ṗ= v, v̇= g& p  0 ^ v  0) ; (v := v⇥�0.5)

which we will abbreviate to b. Let us (co)restrict its interpretation JbK : R2 ! H⇤(R2)

to the set R�0 ⇥ R, since the ball can never be below ground. The set R�0 ⇥ R with
the usual metric is complete and therefore the set H⇤(R�0 ⇥ R) can be equipped with a
complete metric as well. Our next task is to show that every element x 2 R�0⇥R induces
a Cauchy sequence,

(JbKi(x))i2N

This is laborious but easy to show, because the distance between JbKi(x) and JbKi+1(x)

is the height of the last jump in JbKi+1(x) and, therefore, as the index i increases the
distance between JbKi(x) and JbKi+1(x) becomes progressively smaller. It is also easy to
show that the magnitude of the ball’s velocity becomes progressively smaller with each
iteration. This means that the feedback JbK! of JbK is well-defined. In particular, the
composition,

JbK! • Jp := 5, v := 0K

encodes the action of letting the ball drop at, five meters and letting it bounce until it
stops. Consider also the composition,

JbK! • Jv := 7K • JbK! • Jp := 5, v := 0K

It encodes the action of kicking the ball right after it stops, as shown in the plot below.
This last case illustrates that, in contrast to the Kleene star operator [Pla10], feedback
over complete metric spaces does not lead to unreachability problems.
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3.5 open challenges

In this chapter we introduced the hybrid monad and showed that it captures the basic
interaction between programs and physical processes, initially pointed out in the sixties
by Witsenhausen [Wit66] and further examined in the following decades by several peo-
ple (e. g. [Tav87; Hen96; Höf09; SH11]). Using the framework of Kleisli representations
and the hybrid monad, we generated different hybrid programming languages, listed all
program operations available in this paradigm, and examined the possibility of adding
classic programming constructs, such as if-then-else statements and while loops. In this
process, several interesting questions emerged for which we still lack a definitive answer.
We summarise them next.

The algebraic theory of the hybrid monad. As discussed in Section 3.1, every monad
T induces a category CT of Eilenberg-Moore algebras, which in many cases is equivalent
to a familiar category of algebras (see Examples 3.1.7). We also saw in Examples 3.1.15
that when building a programming language from a monad T it is often useful to have
an affable description of the corresponding category of Eilenberg-Moore algebras. Can
we find one such description for the category of Eilenberg-Moore algebras of the hybrid
monad ? For now, we only have the following result: the coproduct of hom functors,

HN =
a

n2N
hom(n, � ) : Set! Set

equipped with the operations of the hybrid monad is a monad as well. And the category
of Eilenberg-Moore HN-algebras is equivalent to the variety V generated by a single binary
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operation (·) that satisfies (a · b) · c = a · c. Let us briefly see why. It is straightforward
to prove the existence of a free-forgetful adjunction,

Set ?

F
((

U

hh V

such that the free algebras are the tuples (
`

n2N hom(n,X), ⇤) with the binary operation
defined by,

(x1 . . . xn) ⇤ (y1 . . . ym) = x1y1 . . . ym

The unit Id ! UF of the adjunction is the unit of the hybrid monad, and the counit
✏ : FU! Id is defined at each algebra (X, ·) by the equations,

✏(X,·)(x) = x ✏(X,·)(x1 . . . xn) = x1 · ✏(X,·)(x2 . . . xn)

It is then routine to prove that the triple (UF, ⌘,U✏F) is the monad HN. An application
of the following theorem shows that V is equivalent to the category of Eilenberg-Moore
algebras of this monad [AHS09, Proposition 20.20].

Theorem 3.5.1. Each finitary variety is a monadic construct.

Stability. Despite being rarely a concern in the programming languages field, the notion
of stability is a crucial aspect of control theory. Can the programming languages generated
by the hybrid monad be endowed with a suitable notion of stability, allowing us to reason
about the stability of a program in a compositional manner ? A quick analysis of this
question yields a negative answer: the hybrid monad is defined on Set which lacks sufficient
structure for defining a suitable notion of stability. However, in Chapter 5 we prove
that the hybrid monad also lives in the category of topological spaces, which provides a
more suitable setting to address this notion. For example, we will see that a notion of
stability naturally emerges from the topological hybrid monad, and that the latter allows
to generate programming languages whose operators are closed under this notion. Among
other things, we use these results to prove that all programs built from the programming
language of Examples 3.2.10 are stable.

Feedback. We introduced two types of iteration, but both behest strict conditions. Can
we relax them ? And which types of iteration does the hybrid monad actually supports ?
We still lack definitive answers for these questions, but it should be mentioned that this
particular problem is being addressed in [Jak18].
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Monad combinations. Having studied purely hybrid computations, a next natural step
is to analyse possible combinations of the hybrid monad with other monads. We already
saw that there exists a distributive law MH ! HM relating the maybe monad over the
hybrid one; can we find other interesting cases ? One positive answer is given by the
following theorem.

Theorem 3.5.2. Let Q be the non-empty powerset monad. There exists a distributive
law � : HQ! QH defined at each set X by,

�X(f, d) = {(g, d) 2 HX | g 2 f}

where g 2 f is shorthand notation for the condition 8t 2 [0, d] . g(t) 2 f(t).

Proof. In Appendix A.

The non-deterministic hybrid monad QH, induced by the distributive law above, gen-
erates hybrid programming languages with different types of interesting features, from
non-deterministic assignments, to differential predicates and programs that do not termi-
nate at precisely the prescribed time. Consider, for example, the following programming
language: denote by At(X) the set given by the grammar,

' 3 (x1 := [t, t], . . . , xn := [t, t]) | (ẋ1 = t, . . . , ẋn = t& d), t 3 r | r · x | t+ t

where d and r are real numbers and x 2 X. It is straightforward to build a Kleisli
QH-representation for the programming language below,

p = a 2 At(X) | skip | p ; p | p+ p | p⇤

which includes differential equations, non-deterministic assignments, non-deterministic
choice, and the Kleene star operator. Using this language we can model, for example, a
non-deterministic bouncing ball,

(p := 5, v := 0) ; (ṗ= v, v̇= g& p  0 ^ v  0) ; v := [v⇥�0.5, v⇥�0.7] ;

(ṗ= v, v̇= g& p  0 ^ v  0)

whose projection on p yields the plot below.
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4
BLACK-BOX HYBRID PROGRAMMING

Overview. In this chapter, we develop the theory of hybrid programs with internal mem-
ory, which, as discussed in the introduction, form the basis of component-based software
development in hybrid programming. These programs adopt a black-box, observational
perspective in which digital computations are hidden from the environment, and influence
physical processes, which are external and make up the observable behaviour. In this ob-
servational context, notions of bisimulation, behaviour, and regular expression become
central elements of the game, and we provide them to these programs using standard
results in Coalgebra.

Along the process, we show that the coalgebraic approach permits to uniformly extend
these results to hybrid programs with different types of internal memory, covering in
particular hybrid automata – the standard formalism of hybrid systems – and a number
of their variants. We explore this feature by developing a uniform framework of hybrid
automata, which we use to prove that apparently different notions of bisimulation for
these devices are instances of a single, coalgebraic definition, and that the same applies
to their semantics.

Roadmap. We start by reviewing the basic notions of Coalgebra (Section 4.1). Then,
we introduce hybrid programs with internal memory and develop their coalgebraic theory
(Section 4.2). After this, we take the generic view mentioned above: starting with a brief
detour to hybrid automata’s land – so that we can precisely relate them to this work and
build useful intuitions (Section 4.3) – we develop a generic framework for hybrid programs
with different types of internal memory, which covers syntax, semantics, and bisimulation
(Section 4.4). We conclude with a discussion on several challenges that emerged from this
research and that we think deserve further study, e. g. (generic) notions of approximate
bisimulation, composition operators, and techniques for handling hybrid systems with
infinite state spaces (Section 4.5).

4.1 preliminaries: basic notions of coalgebra

The theory of coalgebras [Rut00; Adá05; Jac16] provides an abstract framework for state-
based transition systems that allows to derive notions and results parametric on a tran-

65
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sition type. Examples of this include generic definitions of bisimulation [Sok05], uniform
trace semantics [HJS07], and a generalisation of Kleene’s theorem to different families
of transition systems [Sil10]. This high level of genericity is possible due to the inter-
pretation of a transition type as a functor F : C ! C – the corresponding family of
transition systems is formed by the C-arrows of the type X ! FX, which are what we
call F -coalgebras or, more simply, coalgebras.

Examples 4.1.1. Let A and B be arbitrary sets.

1. Coalgebras for the powerset functor, i. e. P-coalgebras, are Kripke frames [BBW06].

2. Coalgebras for (� ⇥ A) : Set ! Set are stream automata [HKR17], which can be
seen as black-box machines with two interfaces: a button and a display. When the
button is pressed the machine internally jumps into a new state and sends a value
of type A to the (external) display.

3. Coalgebras for (� ⇥ A)B : Set ! Set are Mealy machines [Bar03; BRS09], which
extend stream automata with an input dimension. In the black-box machine anal-
ogy, instead of having a single button the user now has a family of buttons indexed
by the elements of B.

4. Coalgebras for P(� ⇥A) : Set! Set are labelled transition systems, and coalgebras
for 2⇥ (� )A : Set! Set are deterministic automata [Rut00].

5. Let Stone be the category of Stone spaces and continuous maps [Joh86]. Let also
V : Stone ! Stone be the restriction of the compact Vietoris functor to Stone (see
Examples 3.1.2 and [Mic51]). Coalgebras for this functor are (up-to isomorphism)
descriptive general frames [KKV04].

6. Let D : Set! Set be the functor of distributions (see Examples 3.1.2). Coalgebras
for it are simply discrete Markov chains [Sok05].

Coalgebras carry several useful constructs for state-based transition systems, from state
minimisation and bisimulation techniques to notions of observable behaviour. In the
current section we review some of these aspects, focusing specially on those with an
important role in our work. Observe that,

Definition 4.1.2. Every functor F : C! C induces a category CoAlg (F ) whose objects
are F -coalgebras (X, c : X ! FX) and morphisms,

f : (X, c : X ! FX)! (Y, d : Y ! FY )
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are C-arrows f : X ! Y that make the diagram below commute.

X

c
✏✏

f
// Y

d
✏✏

FX
Ff
// FY

For every functor F : C ! C there exists a forgetful functor U : CoAlg (F ) ! C that
sends coalgebras to their carrier.

4.1.1 Bisimulation and observable behaviour

Since the notion of coalgebra serves as an abstract definition of transition system, it is
perhaps not surprising that bisimulation takes a central place within coalgebraic theory.
Its definition, parametric on a transition type and extensively studied in several papers
(see [Sta11]), resorts to the notion of coalgebra homomorphism, and it is usually based
on Set.

Definition 4.1.3. Consider a functor F : Set! Set, two F -coalgebras (X, c), (Y, d), and
a relation R ✓ X ⇥ Y . Then R is called an F -bisimulation (or simply, a bisimulation) if
there exists a coalgebra (R, r) that makes the following diagram commute.

X

c
✏✏

R
⇡1

oo
⇡2

//

r
✏✏

Y

d
✏✏

FX FR
F⇡1
oo

F⇡2
// FY

We say that two states x 2 X and y 2 Y are bisimilar, in symbols x ⇠ y, if they are
related by some F -bisimulation. If the relation R ✓ X ⇥ Y is both an equivalence and
an F -bisimulation then we call it an F -bisimulation equivalence.

Examples 4.1.4. Let A and B be arbitrary sets.

1. Bisimulation for P-coalgebras is exactly bisimulation for Kripke frames [BBW06].

2. Consider two (� ⇥A)-coalgebras (X, ha, bi) and (Y, hc, di). A relation R ✓ X ⇥ Y

is a bisimulation if x R y entails,

a(x)R c(y) and b(x) = d(y)

Recall the black-box machine of Examples 4.1.1 (2). Each state x 2 X (resp. y 2 Y )
corresponds to one such machine whose initial state is x (resp. y). Two states x
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and y are bisimilar if we cannot differentiate one another using just the interfaces
(button and display) of the two associated machines.

3. Denote the right transpose of a function f : A⇥B ! C by f : A! CB.

Then, consider two (� ⇥A)B-coalgebras (X, ha, bi) and (Y, hc, di). A relation R ✓
X ⇥ Y is a bisimulation if x R y entails,

a(x, i)R c(y, i) and b(x, i) = d(y, i) (i 2 B)

4. A relation R ✓ X ⇥ Y induces a relation ⇣R ✓ DX ⇥DY on distributions defined
by µ1 ⇣R µ2 iff there exists a distribution ⌫ 2 D(X ⇥ Y ) such that,

⌫(x, y) > 0 entails x R y, ⌫({x}⇥ Y ) = µ1(x), ⌫(X ⇥ {y}) = µ2(y)

Consider two D-coalgebras (X, c), (Y, d) and a relation R ✓ X ⇥ Y . Then R is
a bisimulation if x R y entails c(x) ⇣R d(y). In other words, bisimulation for D-
coalgebras is exactly bisimulation for discrete Markov chains [Sok05].

5. Consider a functor F : Set! Set that preserves weak pullbacks and an F -coalgebra
homomorphism f : (X, c) ! (Y, d). The graph of this morphism is a bisimulation
for (X, c) and (Y, d) [Rut00].

Another central concept in Coalgebra is the notion of observable behaviour, which is given
by final coalgebras.

Definition 4.1.5. Consider a functor F : C ! C and an F -coalgebra (X, c). We call
the latter a final coalgebra if for every F -coalgebra (Y, d) there exists a unique coalgebra
homomorphism [(� )] : (Y, d)! (X, c).

Intuitively, the final F -coalgebra collects in its carrier the behaviours of all F -coalgebras’
states, and the universal maps associate each state of an F -coalgebra to its behaviour.
For example,

Examples 4.1.6. Let A and B be arbitrary sets.

1. The final coalgebra of the category CoAlg (� ⇥A) is the map htl, hdi : A! ! A!⇥A
induced by the ‘tail’ and ‘head’ functions where A! is the set of streams whose values
are of type A.

In the black-box machine analogy (see Examples 4.1.1 (2)), to press the button an
infinite number of times can be seen as the computation of the machine’s observable
behaviour, which in this case is a stream of values of type A.
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2. The final coalgebra of the category CoAlg (� + 1) is the ‘predecessor’ function,

p : N [ {1}! (N [ {1}) + 1

which maps every number greater than zero to its predecessor and to ‘fail’ otherwise
[Jac16]. The observable behaviour of a (� +1)-coalgebra’s state s can be intuitively
seen as the number of times the coalgebra switches between states (starting in s)
before it fails.

3. Let B+ denote the set of non-empty lists whose values are of type B. The final
coalgebra of the category CoAlg

�

(� ⇥A)B
�

is the function,

hapd, sngi : AB+ ! (AB+ ⇥A)B

where apd(f, b)(bs) = f(b : bs) and sng(f, b) = f [b] [Rut00].

4. The final coalgebra of the category CoAlg
�

A⇥ (� )B
�

is the function,

hapd, empi : AB⇤ ! (AB⇤
)B ⇥A

where apd(f, b)(bs) = f(b : bs) and emp(f) = f(✏) [Rut00].

Recall from Examples 4.1.1 that (2⇥ (� )B)-coalgebras are deterministic automata.
The set 2B

⇤ is the powerset of words over B, and in this context every state of a
deterministic automaton is associated with the set of words that it accepts.

5. The final coalgebra for the finitary powerset functor P! : Set ! Set is the set of
finitely-branching trees modulo bisimilarity equipped with the function that maps
a tree into its set of subtrees [Wor05].

To conclude this subsection, let us see why coalgebra homomorphisms are also called
‘behaviour-preserving morphisms’.

Consider a functor F : Set! Set that preserves weak pullbacks and that admits a final
coalgebra (⌫F ,m). Consider also two F -coalgebras (X, c), (Y, d) and a bisimulation (R, r)

for them. By uniqueness, the following diagram commutes.

(R, r)
⇡2
//

⇡1
✏✏

(Y, d)

[(� )]

✏✏

(X, c)
[(� )]

// (⌫F ,m)

Therefore, for every two bisimilar states x 2 X and y 2 Y the equation [(x)] = [(y)] holds.
Recall from Examples 4.1.4 (5) that the graph of a coalgebra homomorphism f : (X, c)!
(Y, d) is a bisimulation. This entails that x ⇠ f(x) and therefore [(x)] = [(f(x))].
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Remark 4.1.7. It is also true that [(x)] = [(y)] entails x ⇠ y. Consider the pullback,

P
⇡2
//

⇡1
✏✏

Y

[(� )]

✏✏

X
[(� )]

// ⌫F

and then use the weak pullback preserving property of F : Set ! Set to obtain suitable
a morphism P ! FP .

4.1.2 Colimits, factorisation structures, and subcoalgebras

Dually to categories of algebras, categories of coalgebras are very well-behaved with re-
spect to colimits. In particular, every forgetful functor,

CoAlg (F )! C

creates colimits [Rut00; Che13]. Coequalisers of coalgebras, for example, are obtained in
the following way.

Definition 4.1.8. Assume that C has coequalisers. Consider two F -coalgebras (X, c)

and (Y, d) and a pair of coalgebra homomorphisms,

(X, c)
f
//

g
// (Y, d)

The latter induce a coalgebra whose carrier is the C-coequaliser Q of the two morphisms
f, g : X ! Y and the arrow Q! FQ is given by the commuting diagram below.

X
f
//

g
//

c

✏✏

Y
q
// //

d
✏✏

Q

m

✏✏

FX
Ff
//

Fg
// FY

Fq
// FQ

The coalgebra (Q,m) is the coequaliser of the morphisms f, g : (X, c)! (Y, d).

The quest for a suitable notion of subcoalgebra, required later in the thesis, justifies the
following incursion on factorisation structure for morphisms [AHS09].

Definition 4.1.9. Consider two classes E and M of morphisms in a category C. We say
that C has an (E,M)-factorisation structure if,
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1. every morphism in E or in M is closed under composition with isomorphisms,

2. the category C has (E,M)-factorisations, i. e. every C-morphism can be written as
a composition e ·m such that e 2 E and m 2M ,

3. the category has the unique fill-in property, i. e. for every diagram,

• e
//

f

✏✏

•
g

✏✏

d

��

• m
// •

such that e 2 E, m 2 M and the outer square commutes, there exists a unique
morphism d that makes the diagram commutative.

Example 4.1.10. The category Set has an (Epi,Mono)-factorisation structure and the
category Top has an (Epi,Subspace)-factorisation structure [AHS09].

Categories of coalgebras frequently inherit the factorisation structure of their underlying
categories [Che13].

Theorem 4.1.11. Consider a category C with an (E,M)-factorisation structure and
a functor F : C ! C that preserves M -morphisms. The category CoAlg (F ) has an
(U�1E,U�1M)-factorisation structure.

Via an orchestrated use of factorisation structures and the results below, we can obtain
a generic notion of subcoalgebra that is closed under unions and intersections.

Definition 4.1.12. Consider a category C. Let M be a class of C-monomorphisms and
X be a C-object. An M -subobject of X is a pair (S,m : S ⇢ X) such that S is a C-object
and m : S ⇢ X is an M -morphism.

The class of M -subobjects of X forms a preorder category Sub(X) defined by,

S1
m1⇢ X  S2

m2⇢ X

iff there exists a C-morphism h : S1 ! S2 that makes the diagram below commute.

S1
h
//

  

m1
  

S2
✏✏

m2

✏✏

X

Document [Bor94a, Proposition 4.2.6] tells that the category Sub(X) is cocomplete (i. e.
it has unions of M -subobjects) if C has a suitable factorisation structure and coproducts.
More concretely,
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Theorem 4.1.13. Let C be a category with an (E,M)-factorisation structure such that
M ✓ Mono(C). Suppose also that it has coproducts. Then for every C-object X, the
category Sub(X) of M -subobjects of X is cocomplete.

Proof. Consider a family of M -subobjects (mi : Si ⇢ X)i2I . Since C has coproducts,
one may assume the existence of a C-morphism,

[mi]i2I :
a

i2I
Si ! X

which can then be factorised as shown in the diagram below.

`

i2I Si

[m
i

]
i2I

$$e
// // Y //

m
// X

Si

◆
i

OO

m
i

>>

Clearly Y is an M -subobject of X. Moreover the condition,

Si
m

i⇢ X  Y
m⇢ X (i 2 I) (9)

holds. Finally, take an M -subobject Z ⇢ X of X that also satisfies Condition (9). We
need to show that,

Y
m⇢ X  Z ⇢ X

which follows directly from the diagonal fill-in property,
`

i2I Si
// //

✏✏

Y

{{

✏✏

✏✏

Z // // X

The category Sub(X) is, therefore, cocomplete if some mild conditions are satisfied. The
following definition [AHS09] will help us show that frequently Sub(X) is also complete,
i. e. it also has intersections of M -subobjects.

Definition 4.1.14. Recall that for a C-object X, C/X denotes the slice category over X.
Let M be a class of C-monomorphisms and note that each C-object X induces the full
subcategory of C/X whose objects are morphisms in M . We say that the category is M -
wellpowered if for every C-object X the corresponding subcategory of C/X is essentially
small.
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If C is M -wellpowered and Sub(X) is cocomplete Sub(X) is also complete. This is due
to the following theorem, which tells that ‘cocompleteness almost implies completeness’
[AHS09, Theorem 12.7].

Theorem 4.1.15. A small category is cocomplete iff it is complete.

Corollary 4.1.16. Assume the conditions of Theorem 4.1.13 and let the category C be
M -wellpowered. Consider a C-object X and a family of M -subobjects (mi : Si ⇢ X)i2I .
The intersection

V

i2I Si is given by the union,
_

{Y | Y is an M -subobject of Si for all i 2 I}

Let us instantiate these results in categories of coalgebras.
Consider a category C with an (E, M)-factorisation structure such that M ✓ Mono(C).

The functor U : CoAlg (F ) ! C is faithful, and, therefore, the inequation U�1M ✓
Mono(CoAlg (F )) holds. Via Definition 4.1.12, we obtain a notion of U�1M -subobject in
CoAlg (F ), which is equivalent to the following notion of subcoalgebra.

Definition 4.1.17. Let C be a category with an (E,M)-factorisation structure such that
M ✓ Mono(C), and let F : C ! C be a functor that preserves M -morphisms. Consider
also two F -coalgebras (X, c) and (Y, d). Then (X, c) is an M -subcoalgebra of (Y, d) if
there exists a coalgebra homomorphism (X, c) ⇢ (Y, d) whose U-image is in M .

An application of Theorem 4.1.11 tells that CoAlg (F ) has an (U�1E,U�1M)-factorisation
structure. So if the previous definition assumes that C is cocomplete, M -subcoalgebras
become closed under unions (Theorem 4.1.13). According to the following theorem and
Corollary 4.1.16, intersections of these objects can also be obtained by forcing C to be
M -wellpowered.

Theorem 4.1.18. Let C be a category with an (E,M)-factorisation structure. If C is
M -wellpowered, CoAlg (F ) is U�1M -wellpowered.

Proof. For each F -coalgebra (X, c), take the set of U�1M -subobjects of (X, c) whose
carrier is in the set of M -subobjects of X. The claim then follows straightforwardly.

Examples 4.1.19. In the thesis we will consider coalgebras over different categories, two
prime examples being Set and Top. Let us see how the previous results on subcoalgebras
are instantiated to these two cases.

1. It is well-known that the category Set has an (Epi,Mono)-factorisation structure,
and that it is Mono-wellpowered [AHS09]. It is also cocomplete and every functor
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F : Set! Set preserves monomorphisms [Rut00]. Then, for an F -coalgebra (X, c),
the category of Mono-subcoalgebras of (X, c) is essentially the set of all F -coalgebras
(S, a) such that S ✓ X and the inclusion S ,! X is a coalgebra homomorphism
(S, a) ,! (X, c). The union of subcoalgebras _i2I(Si, ai) is the coalgebra whose
carrier is [i2ISi and whose morphism [i2ISi ! F ([i2ISi) is the union of the
functions,

(ai : Si ! FSi ⇢ F ([i2ISi))i2I

seen as relations ai ✓ ([i2ISi) ⇥ F ([i2ISi). The meet ^i2I(Si, ai) is simply
the biggest Mono-subcoalgebra of (X, c) that is smaller than all subcoalgebras in
(Si, ai)i2I .

2. Recall that a monomorphism is called regular if it is the equaliser of two morphisms.
Recall also that the category Top has an (Epi, RegMono)-factorisation structure and
that it is RegMono-wellpowered [AHS09]. It is also cocomplete and most functors
F : Top! Top that we will consider preserve regular monomorphisms. Now, for an
F -coalgebra (X, c) the category of regular subcoalgebras of (X, c) is essentially the
set of all F -coalgebras (S, a) such that S is a subspace of X and the inclusion map
S ,! X is a coalgebra homomorphism (S, a) ,! (X, c). In the case of F preserving
regular monomorphisms, the join of subcoalgebras _i2I(Si, ai) is constructed as in
Set with the difference that the set [i2ISi is equipped with the subspace topology.
The meet of regular subcoalgebras follows as expected.

4.2 hybrid programs with internal memory

4.2.1 A change of perspectives in hybrid programming

In Chapter 3 we put the spotlight on programming languages that treat assignments
and differential equations in the same manner, effectively mixing discrete and continu-
ous behaviour. In this chapter, we adopt and explore a complementary perspective for
developing hybrid programs with internal memory.

This new perspective brings a black-box paradigm to hybrid programming by making a
conceptual distinction between discrete computations and continuous, physical processes.
In detail, discrete assignments are internal, hidden from the environment, whilst contin-
uous evolutions are external, making up the observable behaviour. Think for example
of a cruise control system; one cannot directly observe the computations of the digital
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device, only their effect over the car’s velocity and movement which evolve over time. An
analogous pattern occurs e. g. in thermostats, pacemakers, and water level regulators.

Let us illustrate the black-box paradigm with a very simple case. In Examples 3.4.13,
we examined an oscillator defined by the composition,

((ẋ= 1& 1) ; (ẋ= �1& 1))!

In the black-box perspective, we see it as the machine below,

a :=�1

a := 1

(ẋ = a & 1)

which already gives some intuitions on what we mean by hybrid programs with internal
memory. They have an internal automaton which discretely changes the computer’s mem-
ory when certain events occur, and for each mode there exists an observable continuous
dynamics.

Remark 4.2.1. Another important advantage of this perspective is that, since discrete
devices and physical processes are explicitly separated, the engineer can apply classic
automata theory to the discrete part and classic analysis to the continuous counterpart –
e. g. we will show that in this context notions of bisimulation, observable behaviour, and
regular expression can be obtained straightforwardly using Coalgebra. Just to get an idea
of the things that we will explore, and not getting into many details for now, we will see
that the oscillator’s black-box representation corresponds to the regular expression below,

µx. ((x | a := 1) 7 (ẋ= a& 1) | a := �1) 7 (ẋ= a& 1)

Intuitively, the construct µx. introduces recursion and the expression (' | a := t) denotes
a transition to a state specified by ' together with a change in the computer’s internal
memory (a := t).

4.2.2 Component-based software development in hybrid programming

The black-box perspective and the hybrid monad (Chapter 3) will be key ingredients in
introducing hybrid programs with internal memory, but more generally on providing a
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solid foundation for component-based software development in hybrid programming [Szy98;
BO03; Sif+15] which is the current chapter’s main goal: in particular, (i) hybrid programs
with internal memory, based on the black-box perspective, are formally seen as compo-
nents in the sense of [BO03]; (ii) and the hybrid monad will yield different composition
operators for them, as explained below.

Component-based software development is often explained with a visual metaphor: a
palette of computational units, and a canvas in which they are dropped and intercon-
nected by drawing wires that abstract different composition and synchronisation mech-
anisms. One generic way of looking at components, proposed in [BO03], emphasises
an observational semantics, through a signature of observers and methods, that makes
them amenable to a coalgebraic characterisation as (generalisations of) Mealy machines.
The resulting component calculus [BO03] is parametric on a behavioural model given by a
monad, and analogously to Moggi’s case [Mog89], this captures partial, non-deterministic,
probabilistic, and, using Chapter 3’s results, hybrid components.

We will show that black-box representations, such as the one for the oscillator, can be
naturally interpreted as hybrid programs with internal memory i. e. hybrid components
in the sense of [BO03], which provides for free different composition operators to them.
We will focus on providing a suitable language for these representations, and suitable
notions of bisimulation and observational behaviour. This provides the first steps towards
component-based software development in hybrid programming.

We start with a simple observation by turning our attention back to the oscillator and
its visual representation as a black-box: one can unfold the latter into the automaton
below, which is much easier to draw than the black-box, and, more importantly, moves
us close to Coalgebra, as explained next.

ẋ = a

1

a:=�1

&&

ẋ = a

1

a:=1

ff

Such automata can be encoded as coalgebras quite easily: to see how, consider a finite set
of real-valued variables X = {x1, . . . , xn} and recall the grammars of terms and events
that were used in Chapter 3,

t 3 r | r · x | t+ t  3 t  t | t � t |  ^  |  _  
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with r 2 R and x 2 X. Then denote by Ev(X) the set of ‘time-triggered’ differential
equations (ẋ1 = t, . . . , ẋn = t & r), and by Tr(X) the set of discrete assignments (x1 :=

t, . . . , xn := t). Coalgebras of the type,

M !M ⇥ Tr(X)⇥ Ev(X)

capture the automaton above. By overloading Ev(X) to also denote the set of event-
triggered differential equations, other familiar examples can be captured.

Examples 4.2.2.

1. Consider a bouncing ball dropped at a specific positive height p and with no initial
velocity v. Due to the gravitational acceleration g, it falls into the ground and then
bounces back up, losing part of its kinetic energy in the process. The following
automaton sums up this behaviour.

ṗ = v

v̇ = g

p = 0 ^ v  0,
v := v⇥�0.5ee

2. Consider now a system comprised of a tank and a valve connected to it. The valve
allows water to flow in filling the tank at the rate of 2cm/s during intervals of c
seconds; between these periods the valve is shut also for c seconds. We can describe
this behaviour via the automaton below.

l̇ = 2

ṫ = 1

t = c

t := 0

((

l̇ = 0

ṫ = 1
t = c

t := 0

hh

Remark 4.2.3. The reader may have noticed that the automata above are very similar
to hybrid automata (Chapter 2). This connection is detailed in Section 4.3. In Section 4.4
we will show that a straightforward generalisation of the coalgebraic theory developed in
the this section provides a uniform framework for hybrid automata and their variants.

Since we also wish to have an input dimension, we will take a slightly more general
perspective by considering finite coalgebras of the type,

M !M ⇥ (Tr(X)⇥ Ev(X))I

where I is a finite set. As alluded before, we will call them representations, due to their
ability to represent hybrid programs with internal memory.
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4.2.3 Regular expressions

Using document [Sil10] as basis, we start to develop the coalgebraic theory of hybrid
programs with internal memory and their representations by pursuing a Kleene-like the-
orem for the latter. In order to avoid a heavy notation we will drop the letter X in the
expressions Tr(X) and Ev(X).

Let Pos be the category of partially ordered sets and monotone maps. The forgetful
functor Pos! Set has a left adjoint Set! Pos which equips a set with its discrete order.

Set ?
((

hh Pos

Recall that a semilattice X is a partially ordered set with finite joins. Recall also that
every object X in Pos has an order-embedding into its Dedekind-Macneille completion
CX [Joh86, page 109]: if X is discrete, this is just the set X+{?,>} whose order extends
that of X by interpreting the elements {?,>} as a bottom and top elements, respectively.

Definition 4.2.4. Consider two partially ordered sets (X,) and (Y,). Their product
is the set X ⇥ Y equipped with the product order defined by,

(a, b)  (c, d) ⌘ a  c and b  d

Proposition 4.2.5. The product of two semilattices is also a semilattice.

Proof. This is a particular case of the following fact: if two categories have limits of a
certain type then their product has limits of the same type.

We are ready to introduce the grammar of regular expressions for representations. In
order to be more familiar to the hybrid systems’ community, the grammar (and asso-
ciated notions) will be slightly different than the one introduced in [Sil10, Chapter 4].
The changes, however, do not require substantial modifications to the theory nor to the
underlying proofs of most results in the op. cit.

Definition 4.2.6. Let I be a finite set of inputs and X a finite set of variables. Then
consider the grammars below.

✏ 3 ; | x | i (✏ | a) | i # b | ✏7 ✏ | µx. �, � 3 ; | i (✏ | a) | i # b | � 7 � | µx. �

(a 2 CTr, b 2 CEv, i 2 I, x 2 X). An expression ✏ is called closed if every variable x

in ✏ is under the scope of the binder µx; the set of closed expressions is denoted by Exp.
Expressions that occur right after a binder µx are called guarded ; and the set of guarded
expressions is denoted by Expg.



4.2. Hybrid programs with internal memory 79

Intuitively, for an input i the expression i (✏ | a) denotes a transition to a state specified
by ✏; the letter a records the assignment. The expression i # b specifies the continuous
behaviour associated with an input i 2 I. Finally, the construct µx. introduces recursion
and the construct 7 works as the conjunction.

Remark 4.2.7. Assume that the set of inputs I is the singleton set. The previous
grammar can then be simplified into,

✏ 3 ; | x | (✏ | a) | b | ✏7 ✏ | µx. �, � 3 ; | (✏ | a) | b | � 7 � | µx. �

(a 2 CTr, b 2 CEv, x 2 X). If we also wish to discard assignments, as in the case of
switched systems (Chapter 2), the grammar can be further simplified into,

✏ 3 ; | x | ⇧ ✏ | b | ✏7 ✏ | µx. �, � 3 ; | ⇧ ✏ | b | � 7 � | µx. �

(b 2 CEv, x 2 X).

Example 4.2.8. Recall the bouncing ball introduced in Example 4.3.3. Its behaviour is
formulated by the expression,

µx. (x | v := v⇥�0.5) 7 (ṗ = v ^ v̇ = g, p  0 ^ v  0)

The set of closed expressions Exp can be equipped with a coalgebra structure,

Exp! (Exp⇥ Cmd)I

where Cmd is the product of the semilattices CTr and CEv. We will see that this
provides a natural semantics for expressions and moreover it allows to relate them with
representations’ internal modes in regard to bisimilarity.

Definition 4.2.9. Define the coalgebra h�1, �2i : Exp! (Exp⇥ Cmd)I as follows.

�1(;, i) = ;

�1(j(✏ | a), i) = ✏ if (i = j) else ;

�1(j # b, i) = ;

�1(✏1 7 ✏2, i) = �1(✏1, i) 7 �1(✏2, i)

�1(µx.�, i) = �1(�[µx.�/x], i)

�2(;, i) = ?

�2(j(✏ | a), i) = (a,?) if (i = j) else ?

�2((j # b), i) = (?, b) if (i = j) else ?

�2(✏1 7 ✏2, i) = �2(✏1, i) _ �2(✏2, i)

�2(µx.�, i) = �2(�[µx.�/x], i)

The expression �[µx.�/x] denotes syntactic substitution. It reads: ‘in the expression �

replace any free occurrence of x by µx.�’.
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Proposition 4.2.10. The coalgebra h�1, �2i : Exp! (Exp⇥Cmd)I is well-defined. More
concretely, the equations

�1(µx.�, i) = �1(�[µx.�/x], i), �2(µx.�, i) = �2(�[µx.�/x], i)

are well-defined.

Proof. The proof is analogous to the one in [Sil10, page 55].

As discussed in Examples 4.1.6 (3), the functor (� ⇥ Cmd)I : Set ! Set admits a final
coalgebra,

CmdI
+ ! (CmdI

+ ⇥ Cmd)I

which means that every expression ✏ 2 Exp can be mapped into its behaviour [(✏)] 2
CmdI

+
. Assume that I = 1 and consider the composition,

beh : Exp
[(� )]

// Cmd1
+ '

// Cmd!

We will use it to compute the stream associated with the expression in Example 4.2.8.

Example 4.2.11. Recall the bouncing ball described in Example 4.3.3 and its expression,

µx. (x | v := v⇥�0.5) 7 (ṗ = v ^ v̇ = g, p  0 ^ v  0)

The associated stream is ((a, b), (a, b), . . . ) where a denotes the assignment v := v⇥�0.5
and b the pair (ṗ = v ^ v̇ = g, p  0 ^ v  0). Abbreviating the expression above into
µx. , this is generated by unfolding,

beh(µx.  ) = ((a,?) _ (?, b)) : beh(µx.  7 ;)
= (a, b) : beh(µx.  7 ;)
= ((a, b), (a, b) _ ?) : beh(µx.  7 ; 7 ;)
= ((a, b), (a, b)) : beh(µx.  7 ; 7 ;)
= . . .

= ((a, b), (a, b), (a, b) . . . )

Given the set of expressions Exp, the next natural step is to provide a correspondence
between representations’ internal modes and expressions. For this, observe that the
embedding Tr ⇥ Ev ,! CTr ⇥ CEv allows to interpret without loss of information a
(� ⇥ Tr⇥ Ev)I -coalgebra as a (� ⇥ Cmd)I -coalgebra. Thus,
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Definition 4.2.12. Take a finite (� ⇥ Cmd)I -coalgebra hnxt, outi : M ! (M ⇥ Cmd)I

with M = {m1, . . . ,mn}. For every mode ml 2M define the expression,

A0
l = µml. 7i2I i((ml)i | al) 7 i # bl

where (ml)i = nxt(ml, i) and (al, bl) = out(ml, i). Moreover, Ak+1
l = Ak

l {Ak
k+1/xk+1}

with k 2 {0, . . . , n � 1} and where {Ak
k+1/xk+1} denotes substitution without renaming

the free variables in Ak
k+1 that become bound due to the substitution. Finally, define

✏l = An
l .

Intuitively, this construction eliminates free variables at each iteration, starting with m1

and ending with mn.

Proposition 4.2.13. Consider an expression Ak
l with k 2 {1, . . . , n}. All variables

m1  m  mk are closed in Ak
l .

Proof. The proof is analogous to the one in [Sil10, Theorem 4.2.7]

Example 4.2.14. Recall Examples 4.2.2 (2), which describes the behaviour of a water
tank system. Let us compute the expression relative to the left mode of the associated
automaton. Denote the assignment t := 0 by a, and the tuples,

(l̇= 2, ṫ= 1& t = c), (l̇= 0, ṫ= 1& t = c)

by b

1

and b

2

, respectively. Then we have,

A0
1 = µm1.(m2 | a) 7 b1

A0
2 = µm2.(m1 | a) 7 b2

A1
1 = A0

1{A0
1/m1} = A0

1

A1
2 = A0

2{A0
1/m1}

A2
1 = A0

1{A1
2/m2}

A2
2 = A1

2{A1
2/m2} = A1

2

Hence, the left mode of the automaton corresponds to the expression A2
1,

µm1. (✏ | a) 7 b1

where ✏ abbreviates µm2. (µm1. (m2 | a) 7 b1 | a) 7 b2.

Consider the bisimulation equivalence R generated by the set {(✏, ✏ 7 ;) | ✏ 2 Exp}. As
discussed in the previous section, this equivalence induces a quotient coalgebra,

Exp/R! (Exp/R⇥ Cmd)I

of the coalgebra of expressions � : Exp ! (Exp ⇥ Cmd)I . In order to avoid a burdened
notation, we will use the latter as if it were the former.
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Theorem 4.2.15. Recall Definition 5.3.1. Let ml 2M be the internal mode of a hybrid
component (M, hnxt, outi) and ✏l the associated expression. Then we have ml ⇠ ✏l.

Proof. In Appendix A.

Our goal now is to generate a representation from an expression ✏ 2 Exp – recall that
the former are interpreted as finite (� ⇥ Cmd)I -coalgebras and vice-versa. In a first
analysis, it may seem that the task is done, since there exists a smallest subcoalgebra
{✏} of (Exp, �) whose carrier contains the expression ✏. However, as discussed in [Sil10],
this coalgebra is not necessarily finite. To overcome this, we need to further quotient the
coalgebra of expressions � : Exp! (Exp⇥ Cmd)I using the equivalences,

✏7 ✏ ⌘ ✏, ✏1 7 ✏2 ⌘ ✏2 7 ✏1, (✏1 7 ✏2) 7 ✏3 ⌘ ✏1 7 (✏2 7 ✏3)

This gives rise to a quotient map [_] : Exp ⇣ Exp/R, and the associated quotient
coalgebra,

m : Exp/R! (Exp/R⇥ Cmd)I

We will prove that for every expression ✏ 2 Exp the subcoalgebra {[✏]} of (Exp/R,m) is
finite. The strategy for this will rely on showing the existence of a finite set C(✏) that
contains [✏] and that forms a subcoalgebra of (Exp/R,m). By the definition of smallest
subcoalgebra, its existence entails that {[✏]} is finite.

Definition 4.2.16. Consider an expression ✏ 2 Exp. Let cl(✏) be the smallest set gener-
ated by the following equations, with a slight abuse of notation in the last one.

cl(x) = {x}

cl(;) = {;}

cl(i(✏ | a)) = cl(✏) [ {i(✏ | a)}

cl(i # b) = {i # b}

cl(✏1 7 ✏2) = cl(✏1) [ cl(✏2) [ {✏1 7 ✏2}

cl(µx.�) = cl(�)[µx.�/x] [ {µx.�}

Then define the set C(✏) as,

{ [✏1 7 · · · 7 ✏k] | ✏1, . . . , ✏k 2 cl(✏), and ✏1, . . . , ✏k all distinct }

with [;] as the empty sum.

Theorem 4.2.17. For every ✏ 2 Exp the associated set C(✏) is finite and forms a sub-
coalgebra of (Exp/R,m).
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Proof. Since the set cl(✏) is finite the set C(✏) must be finite as well. In order to show
that the set C(✏) forms a subcoalgebra of (Exp/R,m) we will prove that,

if [] 2 C(✏) then [i] 2 C(✏)

This result follows by induction on the structure of closed expressions. In particular,

• [;i] = [(a # b)i] = [;] 2 C(✏), by definition of C(✏).

• If [i( | a)] 2 C(✏) then i( | a) 2 cl(✏) and therefore [ ] 2 C(✏).

• If [1 7 2] 2 C(✏) then by the induction hypothesis [1i], [2i] 2 C(✏). We may
assume that 1i = [ 1 7 · · · 7  k], 2i = [⇠1 7 · · · 7 ⇠l]. By definition, we have
[ 1 7 · · · 7  k 7 ⇠1 7 · · · 7 ⇠l] 2 C(✏).

• If [µx.�] 2 C(✏) then, by definition of cl(✏), [�[µx.�/x]] 2 C(✏). Using the induction
hypothesis, [(�[µx.�/x])i] 2 C(✏).

Corollary 4.2.18. Let ✏ 2 Exp be an expression. Then there exists a finite (� ⇥Cmd)I-
coalgebra {[✏]} and [✏] ⇠ ✏.

Examples 4.2.19. We will consider the bouncing ball and the water tank that were
described in Examples 4.2.2.

1. The bouncing ball corresponds to the expression,

µx. (x | v := v⇥�0.5) 7 (ṗ = v ^ v̇ = g, p  0 ^ v  0)

which we abbreviate into µx. . The subcoalgebra {[µx. ]} unfolds into the automa-
ton below.

ṗ = v

v̇ = g

p = 0 ^ v  0,
v := v⇥�0.5ee

2. For the water tank, we saw that the expression µm1. (✏ | a) 7 b1 specifies the
automaton’s left mode where ✏ is

µm2. (µm1. (m2 | a) 7 b1 | a) 7 b2
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Denote the expression µm1. (✏ | a) 7 b1 by µm1.  1. The subcoalgebra {[µm1. 1]}
unfolds into the automaton below.

l̇ = 2

ṫ = 1
t = c

t := 0

// l̇ = 0

ṫ = 1

t = c

t := 0

((

l̇ = 2

ṫ = 1
t = c

t := 0

hh

In Examples 4.2.2 (2), we specified the water tank via an automaton with two modes.
Here we ended up with three, because the subcoalgebra {[µm1. 1]} is not minimal.
To make it so one we need to show that the left and right modes are bisimilar and
then identify them.

4.2.4 Semantics

Denote the category CoAlg
�

(� ⇥H(Rn))I
�

of hybrid components by Hyb, and then the
category of their representations CoAlg

�

(� ⇥ Tr⇥ Ev)I
�

by RepHyb. We start this sub-
section by building an interpretation functor,

RepHyb! Hyb

To achieve this, recall some basic machinery introduced in Chapter 3, namely the interpre-
tation map J� K : Ate(X)! EndH(Rn) used for generating event-triggered programming
languages and the natural transformation � : H ! Id that sends evolutions to their last
point. Consider also a map,

ha, b, ci : M ⇥ I !M ⇥ Tr⇥ Ev

It induces a new map M ⇥ Rn ⇥ I !M ⇥ Rn ⇥H(Rn) defined by,

(m, v, i) 7!
�

a(m, i), Jb(m, i)K · �Rn · Jc(m, i)K(v), Jc(m, i)K(v)
�

(10)

Theorem 4.2.20. There exists an interpretation functor J� K : RepHyb! Hyb that acts
on objects as (10) and that sends a coalgebra morphism f to f ⇥ id.

Proof. A direct consequence of Theorem 4.4.2.

Intuitively, every representation induces a hybrid component such that, for every internal
state, (m, v) 2M ⇥Rn and external input i 2 I, it gives rise to an observable, continuous
evolution – i. e. an element of H(Rn) – and an internal, discrete transition to the next
state. Let us illustrate this idea with a few examples.
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Examples 4.2.21.

1. Consider the bouncing ball from Examples 4.2.2 and its automaton (M, c). The
latter’s interpretation J(M, c)K is clearly a (� ⇥ H(Rn))-coalgebra which means
that for every state (m, v) 2 M ⇥ Rn there is a canonical, observable behaviour
[((m, v))] 2 (H(Rn))!. For example, hiding the evolutions concerning the ball’s
velocity to keep our illustration simple, the first three elements of [((m, 5, 0))] are
shown in the following plots.
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2. Recall the tank-and-valve system described in Examples 4.2.2 and its automaton
(M, c). The latter’s interpretation J(M, c)K is also a (� ⇥ H(Rn))-coalgebra and
thus for every state (m, v) 2 M ⇥ Rn there is a canonical, observable behaviour
[((m, v))] 2 (H(Rn))!. In this case what we observe is the water level going up at
intervals of c seconds.

3. Recall that every ten seconds the semaphore described in Examples 3.2.15 switches
between a red light and a green one. In the black-box perspective, this corresponds
the following automaton.

ẋ = 0

ṫ = 1

t = 10

x := 1, t := 0

))

ẋ = 0

ṫ = 1

t = 10

x := 0, t := 0

ii

Denote its left mode by m 2 M and observe that its interpretation J(M, c)K is a
(� ⇥H(Rn))-coalgebra. The state (m, 0, 0) 2M ⇥R2 yields a stream of evolutions
[((m, 0, 0))] whose first three elements are depicted below.
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4. Suppose also that one is able to change the dampening factor of the bouncing ball
at each bounce. This gives rise to an automaton,

(M,m) : M ! (M ⇥ Tr⇥ Ev)I

with I as the set of possible dampening factors and with v := v⇥�i as the new
assignment. The interpretation J(M, c)K is now a (� ⇥ H(Rn))I -coalgebra which
means that for every state (m, v) 2 M ⇥ Rn there exists an observable behaviour
[((m, v))] 2 (H(Rn))I

+ .

For example, the following three expressions [((m, 5, 0))] [1.5], [((m, 5, 0))] [1.5, 0.7],
and [((m, 5, 0))] [1.5, 0.7, 0.7] yield the sequence of plots below.
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[((m, 5, 0))] [1.5]
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[((m, 5, 0))] [1.5, 0.7, 0.7]

The coalgebraic semantics illustrated in these examples marks a clear frontier between the
discrete domain and the continuous one: the elements of H(Rn) that we considered live
in the continuous domain whilst the structures (H(Rn))! and (H(Rn))I

+ clearly possess
a discrete nature. The semantics is thus faithful to the black-box perspective previously
discussed since all the discrete behaviour is kept hidden and the only thing that we can
observe are the continuous evolutions.

4.2.5 Bisimulation

We already know that the coalgebraic notion of bisimulation is parametric on a functor,
which provides at once notions of bisimulation for several types of transition system. Two
subsections back, when we developed a language for representations, we adopted a notion
of bisimulation that was obtained precisely in this way. From now on we will call it syn-
tactic bisimulation since it is anchored to the syntactic level (the level of representations)
rather than to the semantic one (the level of hybrid components).

As the reader may have already guessed, syntactic bisimulation is often too strong. In
the bouncing ball (Example 4.2.2), for example, to replace the differential equation ṗ = v

by ṗ = v+ 0 yields a totally different automaton in the sense that the mode of the original
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one is not syntactically bisimilar to the mode of the modified version. Nevertheless, one
knows that at the semantic level both modes will produce exactly the same behaviour.
Fortunately, the category Hyb of hybrid components also carries a notion of bisimulation
and there exists a functor,

J� K : RepHyb! Hyb

that maps each representation to its corresponding model. These will allows us to compare
two internal modes of representations also at the semantic level.

The following result is a sanity check which states that if two internal modes are
syntactically bisimilar then they are bisimilar also at the semantic level.

Theorem 4.2.22. Consider two representations (M, c), (N, d), two modes m 2 M , n 2
N that are syntactically bisimilar m ⇠ n, and a state (m, v) 2 M ⇥ Rn. The property
(m, v) ⇠ (n, v) holds.

Proof. Since m ⇠ n, there must exist a span {⇡i : (R, r) ! (Mi, ci)}i22 in RepHyb

such that (m,n) 2 R. The interpretation functor J� K : RepHyb ! Hyb maps this
span into a another span in Hyb, which by an application of Examples 4.1.4 (5) provides
(m, v) ⇠ ((m,n), v) ⇠ (n, v)

Previously, we showed that every internal mode m of a representation (M, c) induces an
expression ✏ such that m and ✏ are syntactically bisimilar. An application of the previous
theorem shows that m and ✏ are bisimilar also at the semantic level. The corollary below
is another useful consequence of the previous theorem; intuitively, it states that when
computing the observable behaviour of an internal mode m 2 M one can either move
directly to Hyb and compute its behaviour there, or first compute its behaviour [(m)](M,c)

in RepHyb and then move to Hyb to compute the behaviour of [(m)](M,c).

Corollary 4.2.23. Let (M, c) be a representation. For every state (m, v) 2M ⇥ Rn the
following property holds.

(m, v) ⇠ ([(m)](M,c), v)

Proof. Follows directly from Examples 4.1.4 (5) and the previous theorem.
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4.3 a detour to the land of hybrid automata

4.3.1 The general theory

We will now show how representations connect to hybrid automata – the standard formal-
ism for hybrid systems. As discussed in the following section, this exposition will lay the
necessary steps to generalise the previous section’s work into a uniform theory of hybrid
automata and variants.

We start by introducing the classic definition of hybrid automata and associated notions.
We will use document [Hen96] as basis, but with a notation much closer to the coalgebraic
perspective so that the connection with our work becomes clear.

Definition 4.3.1. Given a finite set X, the set of predicates ' over X, denoted by Pr(X),
is generated by the grammar below in the left.

' 3 ¬' | ' ^ ' | t < t | t = t, t 3 t+ t | t · t | x | r (x 2 X, r 2 R)

Definition 4.3.2. A hybrid automaton is a tuple (M, e,X, inv, dyn, asg, grd) such that

• M is a finite set of control modes and e : M ! PM is a relation between them.

• X is a finite set of real-valued variables {x1, . . . , xn}.

• inv : M ! Pr(X) is a function that associates each mode to an invariant, the latter
being given as a predicate over the variables in X.

• dyn : M ! Pr(X [ Ẋ) is a function that associates each mode to a predicate
over X [ Ẋ, where the set Ẋ = {ẋ1, . . . , ẋn} represents the first derivatives of the
variables in X. This map is used to dictate which evolutions may occur in a given
mode.

• Denote by G (f) be the graph of a function f . Then, asg : G (e) ! Pr(X [ X 0)

is a function that associates each edge to a predicate over X [ X 0, where X 0 =

{x01, . . . , x0n} represents the variables in X immediately after a discrete jump. In
other words, asg is a function that provides an assignment to each edge.

• Finally, the function grd : G (e)! Pr(X) associates each edge with a guard.

The following example of a bouncing ball may help to illustrate and clarify some aspects
of this definition.
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Example 4.3.3. Consider a bouncing ball dropped at a specific positive height p and
with no initial velocity v. Due to the gravitational acceleration g, it falls into the ground
and then bounces back up, losing part of its kinetic energy in the process. The following
hybrid automaton sums up this behaviour.

ṗ = v

v̇ = g

p � 0

p = 0 ^ v  0,
v

0 = v⇥�0.5ff

Observe that only one mode exists; let us call it m. Furthermore there exists exactly one
discrete transition: (m,m) 2 G (e). Then X = {p, v}, and inv(m) is p � 0. Moreover,
we have that grd(m,m) is p = 0 ^ v  0, dyn(m) is ṗ = v ^ v̇ = g, and asg(m,m) is
v

0 = v ⇥ �0.5 ^ p

0 = p. Note that the second conjunct does not appear in the hybrid
automaton above, a common practice to avoid a notational burden.

Contrary to document [Hen96], we do not consider initial states nor labels in the definition
of hybrid automata. This is because we wish to keep our results simple and intuitive.
Moreover, both mechanisms can be accommodated later on in a straightforward manner.

Assumptions 4.3.4. We also make the following common assumptions.

1. The function dyn always returns a system of linear differential equations. This is a
usual assumption (e.g. [Alu+95; Dav97; Jac00]), as the hybrid systems described
in literature rarely involve non-linear differential equations. The important point is
that this condition allows the function dyn to induce a map,

sol : M ⇥ Rn ⇥ R�0 ! Rn

such that given a pair (m, v) 2 M ⇥ Rn, the map sol (m, v,�) : R�0 ! Rn is
the solution of the system of differential equations associated to a specific mode
and valuation (m, v) 2 M ⇥ Rn. Its domain (R�0) represents time and n is the
cardinality of the set X (i. e. the number of real-valued variables).

2. All assignments are deterministic, i. e. they take the form x := t with t a term.

The traditional semantics of hybrid automata is given in terms of labelled transition
systems [Hen96]. More concretely,

Definition 4.3.5. A hybrid automaton H induces a transition system (ZH , L, tH) such
that,

ZH = {(m, v) 2M ⇥ Rn | v |= inv(m)}

L = 1 + R�0, and the map tH : ZH ⇥ L! P(ZH) is defined by,
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• (m2, v2) 2 tH(m1, v1, ⇤) iff one has m2 2 e(m1), v1 |= grd(m1,m2), and (v1, v2) |=
asg(m1,m2).

• (m2, v2) 2 tH(m1, v1, r) iff m1 = m2, sol(m1, v1, r) = v2, and for all a 2 [0, r]

sol(m1, v1, a) |= inv(m1).

We write z2 2 tH(z1, l) as z1
l! z2, and, whenever found suitable, we omit the subscripts

in (ZH , L, tH).

Example 4.3.6. Let us recall the hybrid automaton that describes the bouncing ball
of Example 4.3.3. The associated labelled transition system (Z,L, t) is defined as Z =

{m}⇥ R�0 ⇥ R, and

• (m, p1, v1)
⇤! (m, p2, v2) iff p1 = 0 ^ v1  0 and v2 = v1 ⇥�0.5 ^ p2 = p1.

• (m, p1, v1)
r! (m, p2, v2) iff sol(m, p1, v1, r) = (p2, v2), and for every a 2 [0, r] one

has sol(m, p1, v1, a) |= p � 0.

The function sol, determined by dyn, describes the continuous evolution of the ball’s
position and velocity between jumps.

Remark 4.3.7. Note that both discrete events and continuous evolutions are embedded
into the map t. Not only this makes difficult to adopt the black-box perspective men-
tioned before, but it also makes the verification of hybrid automata extremely challenging,
as a large number of states and edges need to be taken into consideration. The standard
technique for overcoming the latter is to quotient the state space by a bisimulation equiv-
alence, i. e. to collapse states that possess equivalent behaviour. The resulting states
become symbolic representations of (possibly infinite) regions, and verification techniques
are applied to the reduced system instead.

Definition 4.3.8. Consider the underlying labelled transition system (Z,L, t) of a hybrid
automaton and an equivalence relation � ✓ Z ⇥ Z over the states. A �-bisimulation
R ✓ Z ⇥ Z is a relation R such that x1 R y1 entails the following cases:

1. x1 � y1, and for every label l 2 L,

2. if x1
l! x2 then there exists a state y2 such that y1

l! y2 and x2 R y2,

3. if y1
l! y2 then there exists a state x2 such that x1

l! x2 and x2 R y2.

Two states x, y 2 Z are �-bisimilar (in symbols, x ⌘� y) if they are related by a �-
bisimulation.
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This is the notion of bisimulation that hybrid automata traditionally use.
Let us consider now a probabilistic variant of hybrid automata, often referred to as

probabilistic hybrid automata [Spr00a; Spr00b].

Definition 4.3.9. A probabilistic hybrid automaton is a tuple (M,X, e, inv, dyn) where,

• M is a finite set of control modes.

• X is a finite set of real-valued variables {x1, . . . , xn}.

• e : M ! PD (M ⇥ Pr(X [X 0)⇥ Pr(X)) is a function that associates each mode to
a set of probability distributions over modes, assignments, and guards.

• inv : M ! Pr(X) is a function that associates each mode to a predicate over the
variables in X.

• dyn : M ! Pr(X [ Ẋ) is a function that associates each mode to a predicate over
the variables in X [ Ẋ.

Probabilistic hybrid automata capture the likelihood of events associated with digital
computations. For example, the probability of occurring a computer malfunction if tem-
perature gets too high, or the probability of a reset after a specific time. Technically, these
automata harbour such a behaviour due to their transition maps, which before a jump
(or state transition) presents us with set of distributions (over modes, guards, and assign-
ments) to choose from. The chosen distribution is then used to compute the likelihood of
a given state to become the next one in the execution process.

The documents [Spr00b; Spr00a] provide several examples of probabilistic hybrid au-
tomata and explain some of their intricacies. Their semantics is also discussed: it is given
in terms of probabilistic transition systems which requires some preliminary definitions
that we will recall next.

Definition 4.3.10. Consider a probabilistic hybrid automaton. Given a pair (m, v) 2 Z,
define N(m,v) ✓ DZ as the set such that µ 2 N(m,v) iff there exists a distribution ⌫ 2
e(m) that respects the following condition: let {(m1, a1, g1), . . . , (mn, an, gn)} denote the
support of ⌫; for every pair (m0, v0) 2 Z we have,

µ(m0, v0) =
X

i2I
⌫(mi, ai, gi), I =

�

1  i  n | m0 = mi, v
0 = ai(v), v |= gi

 

Intuitively, the summation above is used to add the probabilities of triples in the set
M ⇥Pr(X [X 0)⇥Pr(X) that lead to the same result from a valuation (m, v) 2M ⇥Rn.
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Remark 4.3.11. The previous definition is slightly simpler than the one given in [Spr00b;
Spr00a], a consequence of Assumptions 4.3.4 (2). Probabilistic hybrid automata tradition-
ally come equipped with a colouring map M ! C. This feature can be accommodated
in Definition 4.3.9 straightforwardly: recall the embedding of functions into relations,

G : MC ⇢ P(M ⇥ C)

and observe that a probabilistic hybrid automaton with a colouring map M ! C can be
seen as a probabilistic hybrid automaton whose set of modes is a subset of the cartesian
product M ⇥ C.

Definition 4.3.12. A probabilistic hybrid automaton induces a probabilistic transition
system (Z,L, t), such that L = 1 + R�0, and the map t : Z ⇥ L! PDZ is defined by,

t(m, v, ⇤) = N(m,v)

t(m, v, r) =

8

>

<

>

:

{�} if sol(m, v, a) |= inv(m) (a 2 [0, r])

; otherwise

where � is the Dirac distribution on (m, sol(m, v, r)). Finally, let us recall the standard
notion of bisimulation for probabilistic hybrid automata.

Definition 4.3.13. Recall from Examples 4.1.4 that every relation R ✓ X ⇥ Y induces
a relation on distributions ⇣R✓ DX ⇥ DY . Consider a probabilistic hybrid automaton,
its transition system (Z,L, t), and let � ✓ Z ⇥ Z be an equivalence relation. A relation
R ✓ Z ⇥ Z is a probabilistic �-bisimulation iff z1 R z2 entails:

1. z1 � z2,

2. if µ1 2 t(z1, l) then there exists a distribution µ2 2 t(z2, l) such that µ1 ⇣R µ2,

3. if µ2 2 t(z2, l) then there exists a distribution µ1 2 t(z1, l) such that µ1 ⇣R µ2.

Two states x, y 2 Z are �-bisimilar (in symbols, x ⌘� y) if they are related by a �-
bisimulation.

4.3.2 Hybrid automata as coalgebras

Let the set Pr(X [X 0)⇥Pr(X) of assignments and guards be denoted by Tr, and the set
Pr(X [ Ẋ)⇥ Pr(X) of differential equations and invariants by Ev.
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Remark 4.3.14. The transition map hasg, grdi : G (e)! Tr of a hybrid automaton can
be embedded into the set P(M ⇥ Tr)M , as witnessed by the following composition.

TrG (e) // // (Tr + 1)M⇥M // // (PTr)M⇥M ' ((PTr)M )M ' P(M ⇥ Tr)M

Every hybrid automaton is, therefore, equivalently represented by a coalgebra,

M ! P(M ⇥ Tr)⇥ Ev

for the functor P(� ⇥ Tr) ⇥ Ev : Set ! Set, which means that hybrid automata are
essentially a non-deterministic generalisation of representations (Section 4.2).

Even if quite simple, this remark has several useful consequences. First, it tells that hybrid
automata can be organised in a category of coalgebras and therefore part of their theory
comes for free – as shown in Section 4.2 for the deterministic case, this includes notions
of bisimulation, observable behaviour, and regular expression languages. Secondly, it
provides the basis for a systematic, coalgebraic description of hybrid automata and their
variants, in many cases the coalgebraic descriptions being simpler than the standard
counterparts. Probabilistic hybrid automata, for example, are simply finite coalgebras
of the type M ! PD(M ⇥ Tr) ⇥ Ev. Thirdly, the remark is the basis for a uniform
framework of hybrid automata by considering finite coalgebras of the type,

M ! (F (M ⇥ Tr)⇥ Ev)I (11)

where I is a finite set and F : Set ! Set is a ‘discrete’ transition type. We call them
F -representations.

In the sequel, we provide a generic, coalgebraic semantics to the latter, which generalises
the standard semantics for a subclass of classic and probabilistic hybrid automata. Con-
trary to the usual semantics of these devices (see Remark 4.3.7), the generic, coalgebraic
one is faithful to the black-box perspective introduced in this chapter, and keeps discrete
and continuous behaviour separated; not only this supports component-based software
development [BO03], but it also makes easy for the engineer to apply classic automata
theory to the discrete part and classic analysis to the continuous one (Remark 4.2.1).
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Coalgebra Functor F Behaviour

M ! (Id(M ⇥ Tr)⇥ Ev)I IdX = X Deterministic [Liu+99]

M ! (M(M ⇥ Tr)⇥ Ev)I MX = X + 1 Faulty

M ! (�(M ⇥ Tr)⇥ Ev)I �X = X ⇥X Replicating

M ! (P(M ⇥ Tr)⇥ Ev)I PX = {A ✓ X} Nondeterministic [Hen96]

M ! (D(M ⇥ Tr)⇥ Ev)I DX ✓ {µ 2 [0, 1]X |µ[X] = 1} Probabilistic [Spr00b]

M ! (PD(M ⇥ Tr)⇥ Ev)I PD — Segala [Spr00b]

M ! (W(M ⇥ Tr)⇥ Ev)I WX ✓ SX ; S is a semiring. Weighted [ATP04]

Table 1.: Possible variants of F .

4.4 hybrid machines: when different types of memory appear

4.4.1 The general picture

In this section we examine coalgebras of the type hnxt, outi : M ! (F (M ⇥ Tr) ⇥ Ev)I

where F : Set ! Set determines a discrete transition type and I is a finite set of inputs.
These arrows can be decomposed into,

nxt : M ⇥ I ! F (M ⇥ Tr), out : M ⇥ I ! Ev

which makes clear that variations in the functor F : Set ! Set correspond to variations
in the transition relation e and the maps asg and grd (recall Definition 4.3.2). In other
words, F dictates how an F -representation discretely jumps to a next (internal) state.

Table 1 lists functors F : Set! Set and respective F -representations. Some of the latter
are already well known (e. g. the non-deterministic case in the fourth row), and others are
new (e. g. the replicating case in the third row). This illustrates the high level of genericity
that Coalgebra brings to the theory of hybrid automata: specific types of automaton are
captured in specific instantiations of F : Set ! Set and global constructions and results
are defined parametric on F once and for all.

Faulty and replicating behaviour. The Maybe functor M : Set ! Set (second row) brings
faulty behaviour into the scene by giving rise to coalgebras,

M ! (M(M ⇥ Tr)⇥ Ev)I
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which can terminate an execution at a discrete transition, as a response, for instance, to
a program exception or loss of information.

The diagonal functor � : Set! Set yields coalgebras typed as,

M ! (�(M ⇥ Tr)⇥ Ev)I

These behave like the representations introduced Section 4.2, but now a discrete transition
goes to two different places at the same time, which means that these systems ‘replicate’
themselves at each discrete transition – for example, in this context the bouncing ball
turns into two at each bounce. From a strict computer science point of view, this kind of
behaviour may seem rather strange, but in other areas it is quite common: e. g. in biology,
cells replicate when a specific saturation point is reached.

Nondeterministic, probabilistic, and Segala behaviour. The powerset functor P : Set! Set

leads to coalgebras typed as,

M ! (P(M ⇥ Tr)⇥ Ev)I

which clearly subsume classic hybrid automata (see Section 4.3), and similarly for PD :

Set! Set with probabilistic hybrid automata.

Weighted behaviour. Consider a semiring S and recall that it induces a weight functor
W : Set! Set (Chapter 3). The latter yields finite coalgebras typed as,

M ! (W(M ⇥ Tr)⇥ Ev)I

which decorate each edge, associated guard and assignment, with a cost. This feature has
already been discussed somes times in the hybrid systems’ domain (e. g. [ATP04; Bou06]).

4.4.2 Semantics

Let us now introduce a generic semantics for a broad class of F -representations, by fol-
lowing essentially the same steps than the ones presented in Section 4.2. We will not
consider state invariants, because they can be accomodated later on straightfowardly and
we want to keep our exposition clear and intuitive.

We start by placing a restriction on F -representations: assume that there can only exist
one guard per each internal mode, and that a transition from a mode must occur as soon
as the corresponding guard is satisfied. The restriction is achieved by assuming that Ev

is the set of event-triggered differential equations (ẋ1 = t, . . . , ẋn = t &  ) and Tr is the
set of discrete assignments (x1 := t, . . . , xn := t) both introduced in Chapter 3.
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Remark 4.4.1. This condition is important so that the models of F -representations can
have a meaningful notion of observable behaviour whenever F is bounded [GS02]. This
topic is more throughly detailed in the following section, and also in the following chapter.

In the lines below, we will see that the interpretation of an F -representation is naturally
defined as a coalgebra of the type,

(M ⇥ Rn)! (F (M ⇥ Rn)⇥H(Rn))I

which clearly generalises the notion of hybrid component presented in Section 4.2. Note
that this broader class of coalgebras does not give components in general [BO03] since
neither FH nor HF are necessarily monads. We will thus call them F -hybrid machines,
due to their resemblance with Mealy machines (Section 4.1).

Denote the category of (F (� ) ⇥ H(Rn))I -coalgebras by Hyb(F ), and the category of
(F (� ⇥ Tr)⇥ Ev)I -coalgebras by RepHyb(F ). We will build an interpretation functor,

RepHyb(F )! Hyb(F )

To achieve this, we need to recall some basic machinery introduced in Chapter 3, namely
the interpretation map J� K : Ate(X) ! EndH(Rn) used for generating event-triggered
programming languages and the natural transformation � : H! Id that sends evolutions
to their last point. Recall also that every functor F : Set! Set is equipped with a natural
tranformation ↵ : F ⇥ Id! F (Id⇥ Id) [Jac16]. Given a map M ⇥ I ! F (M ⇥Tr)⇥ Ev

consider the composition,

M ⇥ I //

ha,bi

33
F (M ⇥ Tr)⇥ Ev

F (id⇥J� K)⇥J� K
// F (M ⇥ EndId(Rn))⇥ EndH(Rn)

It induces a new map M ⇥ Rn ⇥ I ! F (M ⇥ Rn)⇥H(Rn) defined by,

(m, v, i) 7!
⇣

F (id⇥ ev) · ↵
�

a(m, i),� · b(m, i)(v)
�

, b(m, i)(v)
⌘

(12)

Theorem 4.4.2. There exists an interpretation functor J� K : RepHyb(F ) ! Hyb(F )

that acts on objects as (12) and that sends a coalgebra morphism f to f ⇥ id.

Proof. It is straightforward to show that the mapping above preserves identity maps and
distributes over composition. So it remains to show that it sends morphisms in RepHyb(F )

to morphisms in Hyb(F ). Take a RepHyb(F )-morphism,

f : (M, ha, bi)! (N, hc, di)
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We will prove that the diagram,

M ⇥ Rn ⇥ I
(f⇥id)⇥id

//

Jha,biK
✏✏

N ⇥ Rn ⇥ I

Jhc,diK
✏✏

F (M ⇥ Rn)⇥H(Rn)
F (f⇥id)⇥id

// F (N ⇥ Rn)⇥H(Rn)

commutes by showing that the two diagrams below commute.

M ⇥ Rn ⇥ I
(f⇥id)⇥id

//

⇡1·Jha,biK
✏✏

(1)

N ⇥ Rn ⇥ I

⇡1·Jhc,diK
✏✏

F (M ⇥ Rn)
F (f⇥id)

// F (N ⇥ Rn)

M ⇥ Rn ⇥ I
(f⇥id)⇥id

//

⇡2·Jha,biK
✏✏

(2)

N ⇥ Rn ⇥ I

⇡2·Jhc,diK
✏✏

H(Rn)
id

// H(Rn)

We start with Diagram (2). By assumption, we have b(m) = d(f(m)) which entails the
commutativity of the diagram. Commutativity of Diagram (1) follows from the commu-
tativity of the diagrams below,

M ⇥ Rn ⇥ I
(f⇥id)⇥id)

//

g

✏✏

N ⇥ Rn ⇥ I

h
✏✏

F (M ⇥ Tr)⇥ Rn

F (f⇥id)⇥id
//

↵
M⇥Tr,Rn

✏✏

F (N ⇥ Tr)⇥ Rn

↵
N⇥Tr,Rn

✏✏

F (M ⇥ Tr⇥ Rn)
F (f⇥id⇥id)

//

F (id⇥ev)
✏✏

F (N ⇥ Tr⇥ Rn)

F (id⇥ev)
✏✏

F (M ⇥ Rn)
F (f⇥id)

// F (N ⇥ Rn)

where g(m, v, i) =
�

a(m, i),�Rn · b(m, i)(v)
�

and analogously for h.

The following two theorems tell that the semantics defined above generalises the semantics
of classic and probabilistic hybrid automata, which is proved by unfolding Definition 4.3.5.
Recall that every hybrid automaton induces a labelled transition system (Z,L, t) (Defini-
tion 4.3.5). Then,

Theorem 4.4.3. Consider a hybrid automaton and the corresponding P-representation
(M, ha, bi) 2 RepHyb(P). Consider also two states (m1, v1), (m2, v2) 2 Z. The following
equivalences hold.

(m1, v1)
r! (m1, v2) ⌘

�

⇡2 · Jha, biK(m1, v1)
�

(r) = v2

(m1, v1)
⇤! (m2, v2) ⌘ (m2, v2) 2

�

⇡1 · Jha, biK(m1, v1)
�

(if v1 |= grd(m1))
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Let us now recall that every probabilistic hybrid automaton induces a probabilistic
transition system (Z,L, t) (Definition 4.3.12). Then,

Theorem 4.4.4. Consider a probabilistic hybrid automaton and the corresponding PD-
representation (M, ha, bi) 2 RepHyb(PD). Consider also states (m1, v1) 2 Z, (m1, v1) 2
Z, and a distribution µ 2 DZ. The following equivalences hold.

(m1, v1)
r! �(m1,v2) ⌘

�

⇡2 · Jha, biK(m1, v1)
�

(r) = v2

(m1, v1)
⇤! µ ⌘ µ 2

�

⇡1 · Jha, biK(m1, v1)
�

(if v1 |= grd(m1))

4.4.3 �-bisimulation

Our next task is to generalise the notion of �-bisimulation (described in Section 4.3) to
F -representations by making it parametric on a transition type. In this quest, we will
not consider inputs since all notions of �-bisimulation involved also do not, and moreover
inputs can be accomodated later on straightforwardly, due to our coalgebraic approach.

Let us start by considering a functor F : Set ! Set and a quotient map q : X ⇣ Q.
These data induce a functor between categories of coalgebras,

Gq : CoAlg (F (� )⇥HX)! CoAlg (F (� )⇥HQ)

Also, an F -hybrid machine (M ⇥ Rn, JcK) induces an F (� )⇥H(M ⇥ Rn)-coalgebra,

JcK† : M ⇥ Rn ! F (M ⇥ Rn)⇥H(M ⇥ Rn)

defined by (m, v) 7!
�

⇡1 · JcK(m, v), hm,⇡2 · JcK(m, v)i
�

. Now,

Definition 4.4.5. Consider an F -representation (M, c) and an equivalence relation over
the state space � ✓ (M ⇥ Rn) ⇥ (M ⇥ Rn). A relation R ✓ (M ⇥ Rn) ⇥ (M ⇥ Rn) is a
coalgebraic �-bisimulation if it is a bisimulation for the coalgebra G�(J(M, c)K†).
Two states s1, s2 2 M ⇥ Rn are coalgebraically �-bisimilar, in symbols s1 ⇠� s2, if they
are related by a coalgebraic �-bisimulation.

As discussed in Section 4.3, hybrid automata and probabilistic hybrid automata already
carry a notion of �-bisimulation, detailed in Definition 4.3.8 and Definition 4.3.13. The
following results relate both definitions with Definition 4.4.5.

Theorem 4.4.6. Consider a hybrid automaton, the corresponding P-representation (M, c) 2
RepHyb(P), and a �-bisimulation R ✓ Z ⇥ Z. The equivalence below holds.

z1 ⇠� z2 ⌘ z1 ⌘� z2
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Proof. Direct consequence of Lemma A.2.5 and Lemma A.2.6.

Theorem 4.4.7. Consider a probabilistic hybrid automaton, the corresponding PD-repre-
sentation (M, c) 2 RepHyb(PD), and a coalgebraic �-bisimulation R ✓ Z ⇥ Z. The
equivalence below holds.

z1 ⇠� z2 ⌘ z1 ⌘� z2

Proof. Direct consequence of Lemma A.2.7 and Lemma A.2.8.

4.5 open challenges

In the current chapter, we built a basis for component-based software development in
hybrid programming: we showed that its basic elements are representations (of hybrid
black-box machines) and that they are naturally interpreted as hybrid components (i. e.
hybrid programs with internal memory) in the sense of [BO03]. Using standard results of
Coalgebra, we developed the basic theory of representations and their models, including
languages, notions of bisimulation, and observational behaviour.

Remark 4.5.1. In this work we make a conceptual distinction between discrete and
continuous behaviour, emphasising that the former should be internal, hidden from the
environment, and the latter external, making up the observable behaviour. Interestingly, a
somewhat dual view appears in document [Jac00]. The author pursues an object-oriented
approach for hybrid systems by seeing them as coalgebras equipped with a monoid action
(to represent time) that acts over the state space, forcing continuous evolutions to be
hidden from the environment. This brings forth physical processes that continuously
evolve internally and that we can only interact with via external, discrete events at specific
periods of time.

We showed that the work in Section 4.2 can be straightforwardly extended into a broader
context, by allowing representations to have different types of internal transitions. We
saw that this covers different variants of hybrid automata, including the classic and proba-
bilistic cases. Despite being the standard formalism for hybrid systems, hybrid automata
frequently need to be modified so that different types of computational behaviour can be
taken into account. But in the coalgebraic theory developed here, the variations can be
studied in a uniform manner, allowing results to be stated at a generic level, indepen-
dently of whatever intricacies a variant may have. We exemplified this with a generic
semantics and a generic notion of �-bisimulation for hybrid automata
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The work reported in this chapter raised several interesting questions for which we lack
a definitive answer. Let us summarise them next.

Behaviour. In Section 4.4, we put two restrictions on F -representations: namely, (i)
each internal mode must have exactly one guard and (ii) as soon as the corresponding
guard is satisfied the mode must switch. The first case can be dropped by interpreting
F -representations as coalgebras of the type,

(M ⇥ Rn)! F (M ⇥ Rn ⇥H(Rn))

in following manner: we can assume the existence of a map Tr⇥ (Rn)R�0 ! Rn ⇥H(Rn)

that for every guard, assignment, and trajectory, it returns both the smallest evolution
H(Rn) whose last point satisfies the guard, and the assignment’s application to this last
point. Then, for an F -representation M ! F (M ⇥ Tr)⇥ Ev we obtain its model,

M ⇥ Rn // F (M ⇥ Tr)⇥ (Rn)R�0 // F (M ⇥ Tr⇥ (Rn)R�0) // F (M ⇥ Rn ⇥H(Rn))

via the tensorial strength of F . Can Restriction (ii) also be dropped without significant
consequences ? A first analysis of this question yields a negative answer: in order to drop
the restriction, one needs to have a function,

Tr⇥ (Rn)R�0 ! P(Rn ⇥H(Rn))

to collect all trajectories whose last point satisfies the guard given as input. Then, for an
F -representation M ! F (M ⇥ Tr)⇥ Ev we can build its model as shown above,

M ⇥ Rn // F (M ⇥ Tr⇥ (Rn)R�0) // F (M ⇥ P(Rn ⇥HRn)) // FP(M ⇥ Rn ⇥H(Rn))

this time also using the tensorial strength of P. Note that without Restriction (ii), all
F -representations have some degree of non-determinism and, worse, their interpretations
do not admit a final coalgebra due to the presence of the powerset functor. This turns
out to be a quite thorny problem.

A way of solving this issue, up to some extent, is to shift from the category Set to other
categories where continuous behaviour can be better handled. For example the category
of topological spaces or the category of Polish spaces. We will pursue this strategy in the
following chapter.

Bisimulation. We resorted to the uniform framework of hybrid automata, developed
in the previous sections, for providing a generic notion of �-bisimulation. Can we also
do this for other types of bisimulation ? A very interesting case would be a quantitative
variant [GP11].
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Calculi for Representations. We derived a coalgebraic language for representations
(Section 4.2), and, as discussed in [Sil10], this result can be extended to a more general
setting by allowing the discrete type functor F : Set! Set to be, for example, polynomial,
the powerset, or a weight functor.

Using [Sil10], we can additionally derive axiomatisations for these languages, but in
most cases the axioms will not be rich enough: they do not reflect the fact that differential
equations themselves are part of the language; in other words, they do not encompass
a calculus for differential equations, and we will therefore obtain problems analogous to
those of syntactic bisimulation (Section 4.2). Is it possible to extend the work in [Sil10] to
obtain a systematic method for deriving complete axiomatisations for F -representations ?

Composition operators. The chapter’s main goal was to provide a solid foundation
for a component-based software development discipline in hybrid programming. Up to a
large extent, it was devoted to developing the basic theory of the corresponding compo-
nents, from languages, to notions of bisimulation and observable behaviour. Using the
hybrid monad and the generic component calculus introduced in [BO03], we can also
systematically develop different composition operators for these components, as well as
wiring mechanisms and refinement techniques. In particular, we are very interested on
knowing which kinds of composition operator are supported by component-based hybrid
programming, similarly to our goal in Section 3.3.

We will show one simple example of one such operator, without getting into many
details in this concluding note: let us consider two representations ha, b, ci : M ! Tr⇥Ev

and hd, e, fi : N ! N ⇥ Tr⇥ Ev. We can sequentially compose their models,

Jha, b, ciK ; Jhd, e, fiK : M ⇥N ⇥ Rn !M ⇥N ⇥ Rn ⇥H(Rn)

by defining (m,n, v) 7!
�

a⇥ d (m,n) ,�Rn · (p ; Je(n)K) (v) , p (v)
�

where p denotes the
composition of hybrid programs Jc(m)K ; Jb(m)K ; Jf(n)K. Intuitively, the first component
ha, b, ci produces an evolution and changes its internal state space in the expected way;
then, the second component takes action by continuing the previous evolution and at the
end it changes its internal state space as well.

Example 4.5.2. Consider the two oscillators below, which produce triangular waves with
the period of one milisecond.

ẋ = 1

1

((

ẋ = �1

1

hh

;
ẋ = 1

1

((

ẋ = �1

1

hh
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Their composition is another oscillator but that produces triangular waves with the period
of two miliseconds.

This sequential composition is essentially the component-based analogue of the sequential
composition operator for hybrid programs that was discussed in Chapter 3.



5
WHEN SETS DO NOT SUFF ICE

Overview. We tackle two problems that came up in Chapter 3 and Chapter 4: the lack
of suitable formalised notions of (i) stability in hybrid programming and (ii) behaviour
for certain types of representations (of hybrid black-box machines). In both cases, the
strategy will consist on moving part of our previous results into the category Top of
topological spaces and continuous maps.

In regard to (i), we show that this new setting yields a topological analogue of the
hybrid monad which not only provides a notion of stability to hybrid programming, but
also supports a compositional analysis of hybrid programs with respect to this notion,
effectively bringing aspects of control theory into the programming practice.

For (ii), we show that the topological framework allows to significantly increase the
class of representations for which a suitable notion of observational behaviour can be ob-
tained. In the process of addressing this last problem, we introduce several new theoretical
theoretical results on limits in categories of coalgebras.

Roadmap. The chapter starts with a review of the existing literature on limits in cat-
egories of coalgebras. In the same section, we introduce three new results on this topic
– Theorem 5.1.14, 5.1.22, and 5.1.27 – which take an important role in our quest (Sec-
tion 5.1). In order to tackle problem (ii), we introduce Vietoris coalgebras, discuss their
ability to interpret representations, and examine the existence of limits in their cate-
gories, putting a special focus on final coalgebras for the obvious reasons (Section 5.2
and 5.3). After this, we concentrate on the problem of stability in hybrid programming
(Section 5.4). As usual, we conclude by discussing some challenges that emerged from
this chapter’s research and that we think deserve further study (Section 5.5).

5.1 preliminaries: limits in categories of coalgebras

Limits in categories of coalgebras are the building blocks of several useful constructions
in Coalgebra, including notions of observational behaviour, given by final coalgebras (see
Chapter 4), and of coequation, which are given by equalisers of coalgebras [Rut00; Adá05].

As already mentioned, colimits often exist because the forgetful functor CoAlg (F )! C

creates them (Chapter 4). But the story about limits is far more complex. We start this

103
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section by reviewing some well-known results on the topic, and in particular by recalling
some basic notions of diagram functors.

Definition 5.1.1. A diagram D : I! C is codirected if I is a codirected partially ordered
set, i. e. I is non-empty and for all i, j 2 I there is some k 2 I with k  i and k  j.
A cone for a codirected diagram is called a codirected cone, and a limit of a codirected
diagram is called a codirected limit.

Inverse sequence (or !op) diagrams, which have the shape depicted below, are codirected.

· � · � · � . . .

Inverse sequence diagrams have a central role in showing that a given functor admits a
final coalgebra. This is attested by the following well-known theorem [Rut00; Adá05].

Theorem 5.1.2. Let C be a category with a final object 1 and F : C! C be a functor. If
the category C has a limit L for the diagram,

1 � F1 � FF1 � . . .

and F preserves this limit, then the canonical isomorphism L! FL is a final F -coalgebra.

The following theorem is another standard result but for general limits.

Theorem 5.1.3. Assume that F : C! C preserves limits of a certain type. The forgetful
functor CoAlg (F )! C creates limits of the same type.

An important consequence of the last theorem is that CoAlg (F ) has all types of limit
that C has and that the functor F : C! C preserves. Unfortunately, as we will see later
on, this assumption is frequently too strong. The following results, which resort to the
notion of a covarietor, are often more helpful.

Definition 5.1.4. A functor F : C ! C is called a covarietor if the canonical forgetful
functor CoAlg (F )! C is a left adjoint.

The defining condition of a covarietor is quite mild; in fact all finitary functors respect it
[GS01; GS02; AM10]. If F is a covarietor and C has a final object, the category CoAlg (F )

admits a final coalgebra. The latter is given by the right adjoint of CoAlg (F ) ! C,
which preserves final objects. One can also take advantage of the theory of (co)monads
regarding (co)completeness of Eilenberg-Moore (co)algebras [AHS09, Theorem 20.56] to
derive the following theorem [Lin69].
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Theorem 5.1.5. Let F be a covarietor over a complete category. If CoAlg (F ) has equalis-
ers then it is also complete.

Related to this, J. Hughes proved the following theorem [Hug01, Theorem 2.4.2].

Theorem 5.1.6. Let C be regularly wellpowered ( i. e. RegMono-wellpowered), cocomplete,
and possess equalisers. Moreover, assume that it has an (Epi, RegMono)-factorisation
structure, and that the functor F : C ! C preserves regular monomorphisms. Then
CoAlg (F ) has equalisers.

Using Theorem 5.1.5, one can then easily deduce the following corollary.

Corollary 5.1.7. If the conditions in the last theorem hold, C is complete, and F is a
covarietor, then the category CoAlg (F ) is complete.

We refer the interested reader to other important results on limits in categories of coalge-
bras: in particular, the work of A. Kurz [Kur01], which shows that CoAlg (F ) is complete
whenever it has a suitable factorisation structure, F is a covarietor, and C is complete;
and [GS01], where the authors study the existence of equalisers and products in categories
of coalgebras over Set.

Next, we provide an improvement to Hughes’ theorem using the notion of factorisation
structure for cones [AHS09].

Definition 5.1.8. Given a small category I, a cone for I in a category C is a functor
D : I! C together with a cone for D . Let E be a class of C-morphisms and M a class of
cones for I. We say that C has an (E,M)-factorisation structure of cones for I if,

1. every morphism in E is closed under post-composition with isomorphisms and every
cone in M is closed under pre-composition with isomorphisms.

2. the category C has (E,M)-factorisations of cones for I, i. e. every cone for I can be
written as a composition m · e, where m 2M and e 2 E.

3. the category also has the unique fill-in property, i. e. for every diagram,

• e
//

f

✏✏

•
g

✏✏

d

��

• m
// •

such that e 2 E, m 2 M, g is a cone for I, and the outer square commutes, there
exists a unique morphism d that makes the diagram commute.
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Definition 5.1.9. Consider a class M of cones for I. Each functor D : I! C induces the
full subcategory of Cone(D) whose objects are cones in M. We say that the category C is
M-wellpowered if for every functor D : I! C the corresponding subcategory of Cone(D)

is essentially small.

The following result is the key ingredient for improving Hughes’ theorem. It is in the spirit
of [AHS09, Section 12], which shows that ‘cocompleteness almost implies completeness’.

Lemma 5.1.10. Let C be a cocomplete category and I be a small category. Let also E be a
class of C-morphisms closed under post-composition with isomorphisms and M be a class
of cones for I in C. If C is M-wellpowered and every cone for I has (E,M)-factorisations,
then C has limits of shape I.

Proof. We will show that the diagonal functor,

� : C! CI

has a right adjoint, using Freyd’s General Adjoint Functor Theorem [ML98]. The category
C is cocomplete by assumption and the functor � clearly preserves colimits, so we just
need to show that the Solution Set Condition holds. In this context, it unfolds into the
following condition: for every functor D : I! C, there exists a set S of cones for D such
that every cone (fi : X ! D(i))i2I for D factors through a cone in S.

Since C is M-wellpowered we have, by assumption, a set S of representants for D

in M. Moreover, every cone for I has a (E,M)-factorisation, which means that a cone
(fi : X ! D(i))i2I can be factorised as depicted below,

X
f
i

//

e
��

D(i)

A

g
i

==

with the cone (gi : A! D(i))i2I in S.

In order to apply this lemma to categories of coalgebras, we will need the following two
results, which are simple generalisations of Theorem 4.1.11 and Theorem 4.1.18.

Theorem 5.1.11. Let C be a category with an (E,M)-factorisation structure of cones
for I and consider a functor F : C ! C that sends cones in M to cones in M. Then the
category CoAlg (F ) has (U�1E,U�1M)-factorisations and the class U�1E is closed under
post-composition with isomorphisms.
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Theorem 5.1.12. Let C be an M-wellpowered category. The category CoAlg (F ) is U�1M-
wellpowered as well.

Finally,

Theorem 5.1.13. Let F : C ! C be a functor over a cocomplete category C and I be
a small category. Assume that C has an (E,M)-factorisation structure of cones for I, is
M-wellpowered, and that F sends cones in M to cones in M. The category CoAlg (F ) has
limits of shape I.

Proof. Follows directly from the three previous results.

The following lines present two ways of constructing (E,M)-factorisation structures of
cones for I from classic (E,M)-factorisation structures. This will allow us to precisely
relate the last result with Hughes’ theorem.

Let us consider a category C with an (E,M)-factorisation structure such that C is
M -wellpowered. Under mild assumptions, the factorisation structure can be extended to
cones for I. Being more concrete,

1. assume that C has products. Then define,

M =

(

all cones (fi : X ! D(i))i2I for I where hfiii2I : X !
Y

i2I
D(i) is in M

)

The category C has an (E,M)-factorisation structure [AHS09, Proposition 15.19].
Moreover, it is M-wellpowered: take the set of M -representants for

Q

i2I D(i) and
post-compose them with the cone (⇡i :

Q

i2I D(i)! D(i))i2I.

2. Assume that I = {1 ◆ 2} and that E is contained in the class of C-epimorphisms.
The class of cones,

M = {all cones (fi : X ! D(i))i2I for I with f1 in M} ,

also provides an (E,M)-factorisation structure of cones for I.

Together with the previous theorems, the last construction yields the following result.

Theorem 5.1.14. Let F : C ! C be an endofunctor over a cocomplete category C. If C
is regularly wellpowered, has an (Epi, RegMono)-factorisation structure and F : C ! C

preserves regular monomorphisms, then CoAlg (F ) has equalisers.

Proof. Let I = {1 ◆ 2} and use the previous construction to provide an (E,M)-factorisation
structure of cones for I. The category C is clearly M-wellpowered and a simple reasoning
shows that F sends cones in M to cones in M. Now apply Theorem 5.1.13.



108 5. when sets do not suffice

This last theorem shows that Hughes’ assumption on C having equalisers is not necessary.
Note also that Theorem 5.1.13 (from which we derived Theorem 5.1.14) holds in a broader
context than Hughes’ result, since it allows to prove the existence not only of equalisers
but of any type of limit. In the sequel, we will take advantage of this generalisation.

Next, we introduce another result on limits in categories of coalgebras. It requires the
notion of a topological functor [AHS09], which is detailed below.

Definition 5.1.15. Let F : A ! B be a functor. A cone C = (X ! Yi)i2I in A is said
to be initial with respect to F if for every cone D = (Z ! Yi)i2I and every morphism
h : FX ! FZ such that FD = FC ·h, there exists a unique A-morphism h̄ : X ! Z such
that D = C · h and h = Fh̄.

We simply say that the cone is initial whenever no ambiguities arise.

Examples 5.1.16. Let us consider some simple examples.

1. A cone (fi : X ! Xi) in Top is initial with respect to the forgetful functor Top! Set

if and only if X is equipped with the so called initial (weak) topology. Explicitly,
the topology generated by the subbasis,

f�1
i (U) (i 2 I, U ✓ Xi open)

The subbasis is also a basis if the cone is codirected.

2. Let Meas be the category of measurable spaces and measurable maps. A cone
(fi : X ! Yi) in Meas is initial with respect to the forgetful functor Meas ! Set if
and only if X is equipped with the �-algebra generated by,

f�1
i (A) (i 2 I, A ✓ Xi measurable)

3. Let Ord be the category of preordered sets and monotone maps. A cone (fi : X !
Yi) in this category is initial with respect to the forgetful functor Ord ! Set if
and only if the following condition holds for every x1, x2 2 X: if for all i 2 I,
fi(x1)  fi(x2) then x1  x2.

4. A monocone in the category CompHaus of compact Hausdorff spaces and continuous
maps is initial in Top (cf. [Gou13, Theorem 4.4.27]). Interestingly, the converse also
holds, as a initial cone in Top whose domain is a T0 space is necessarily mono.

Theorem 5.1.17 ([AHS09, Proposition 13.15]). Let F : A ! B be a limit preserving
faithful functor and D : I ! A a diagram. A cone C for D is a limit of D if and only if
the cone FC is a limit of FD and C is initial with respect to F .
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Definition 5.1.18. A functor U : A ! B is called topological if every cone C = (X !
UXi)i2I in B has a U -initial lifting, i. e. an initial cone D = (A! Xi)i2I with respect to
U : A! B such that C = UD.

Example 5.1.19. The canonical forgetful functors of the categories Top, Meas, and
Ord are topological. The forgetful functor of the category of pseudometric spaces and
contractions is also topological [AHS09].

As discussed in [AHS09], topological functors are extremely well-behaved. Among other
things, they are both left and right adjoints, faithful, and lift (co)limits.

Next, we will show that it is frequently possible to lift topological functors to categories
of coalgebras; i. e. for a topological functor U : A! B and two functors F : A! A and
F : B! B that make the diagram below commute,

A F
//

U
✏✏

A

U
✏✏

B
F
// B

we will show that under certain conditions there exists another topological functor,

CoAlg
�

F
�

! CoAlg (F )

In the following section, we will use this result to prove that all categories of polynomial
coalgebras over Top are complete. Let us start with the following proposition.

Proposition 5.1.20. Consider a topological functor U : A! B, two functors F : A! A

and F : B ! B, and a natural transformation � : UF ! FU . This induces a functor
U : CoAlg

�

F
�

! CoAlg (F ) defined by the equations,

U(X, c) = (UX, �X · Uc), Uf = Uf

that makes the diagram below commute.

CoAlg
�

F
�

//

U
✏✏

A

U

✏✏

CoAlg (F ) // B

If the natural transformation � : UF ! FU is mono and the functor U : A! B is faithful,
the induced functor U : CoAlg

�

F
�

! CoAlg (F ) is faithful as well.
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Lemma 5.1.21. Assume that the natural transformation � : FU ! UF is mono and that
U is faithful. Let (fi : (X, c)! (Yi, di))i2I be a cone in CoAlg

�

F
�

, and (fi : X ! Yi)i2I

be initial with respect to U : A ! B. The cone (fi : (X, c) ! (Yi, di))i2I is initial with
respect to U : CoAlg

�

F
�

! CoAlg (F ).

Proof. In Appendix A.

Theorem 5.1.22. Assume that F : A ! A preserves initial cones and that the equation
UF = FU holds. If U : A ! B is topological, the induced functor U : CoAlg

�

F
�

!
CoAlg (F ) is topological as well.

Proof. Take a cone (fi : (X, c) ! U(Yi, di))i2I in CoAlg (F ). Since U : A ! B is
topological, the induced cone (fi : X ! UYi)i2I admits a U -initial lifting,

(f i : A! Yi)i2I

The cone F (f i : A! Yi)i2I is initial (by assumption) and the following equations hold.

U(A
f
i! Yi

d
i! FYi) = (X

f
i! UYi

Ud
i! FUYi)

U(FA
F f

i! FYi) = (FX
Ff

i! FUYi)

Therefore, we have the factorisation below.

X
Ud

i

·f
i

##

c
✏✏

FX
Ff

i

// FUYi

This provides an arrow c : A! FA such that Uc = c and the diagram below commutes.

A
d
i

·f
i

""

c
✏✏

FA
F f

i

// FYi

Thus, we have a cone (f i : (A, c) ! (Yi, di))i2I in CoAlg
�

F
�

. To finish the proof recall
that the cone (f i : A ! Yi)i2I is initial with respect to U : A ! B and apply Lemma
5.1.21.

Corollary 5.1.23. Consider a topological functor U : A! B and two functors F : A! A

and F : B ! B. Assume that F : A ! A preserves initial cones and that the equation
UF = FU holds. Under these conditions, the category CoAlg

�

F
�

is complete iff CoAlg (F )

is complete.
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We already mentioned that in the next section we will use Theorem 5.1.22 – and in
particular the last corollary – to prove that all categories of polynomial coalgebras over
Top are complete. Despite our restriction to Top, it will become clear that it is possible
to obtain analogous results for other well-known categories, such as the one of preordered
sets or the one of measurable spaces (see Examples 5.1.22).

As a conclusion of this section, we will introduce a last result on limits in categories of
coalgebras. More concretely, we will list a set of conditions under which a functor,

CoAlg (F )! CoAlg (G)

is left adjoint. We will also see that often this functor is fully faithful, and when such is
the case CoAlg (F ) is as complete as CoAlg (G). We start with the definition below.

Definition 5.1.24. Consider a natural transformation � : F ! G. It induces a faithful
functor CoAlg (F )! CoAlg (G), defined by,

(X, c) 7! (X,�X · c), f 7! f

Proposition 5.1.25. If � : F ! G is a monomorphic natural transformation, the induced
functor I : CoAlg (F )! CoAlg (G) is full.

Proof. Take a homomorphism f : I(X, c) ! I(Y, d). By assumption, the equation Gf ·
�X · c = �Y · d · f holds. Then, by naturality and the fact that �Y : FY ! GY is a
monomorphism we obtain Ff · c = d · f .

Assumption 5.1.26. In the rest of this section, let C be a cocomplete category with an
(E,M)-factorisation structure with M included in the class of monomorphisms. Assume
that C is M -wellpowered, that G preserves M -morphisms, and that � : F ! G is a
natural transformation whose components �X are in M .

Theorem 5.1.27. Under Assumption 5.1.26, the functor I : CoAlg (F ) ! CoAlg (G) is
left adjoint.

Proof. We will show that the assumptions of the General Adjoint Functor Theorem
hold. Since C is cocomplete, the category CoAlg (F ) is cocomplete as well. Moreover,
I : CoAlg (F ) ! CoAlg (G) preserves colimits, because UI : CoAlg (F ) ! C preserves
colimits and the forgetful functor U : CoAlg (G) ! C reflects them. It remains to verify
the Solution Set Condition. For this, take a coalgebra d : Y ! GY . Let S0 be a set of
representatives of the collection of all C-objects Q admitting an M -morphism Q ! Y ,
and let S be the set of all F -coalgebras based on an object in S0. Let now (X, c) be
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an F -coalgebra and f : (X,�X · c) ! (Y, d) be a homomorphism of G-coalgebras. By
hypothesis, f : X ! Y factorises as f = m · e,

X
e�! Q

m��! Y

with e 2 E and m 2 M . Since �Q : FQ ! GQ and Gm : GQ ! GY are in M , there
exists a diagonal q : Q ! FQ so that the right hand square and the lower-left square in
the diagram below commute.

GX
Ge
// GQ

Gm
// GY

FX

�
X

OO

Fe
// FQ

�
Q

OO

X

c

OO

e
// Q m

//

q

OO

Y

d

OO

commute. The upper-left square also commutes because � is a natural transformation. It
follows that f : (X,�X · c)! (Y, d) factorises via the image of an object in S.

Corollary 5.1.28. The category of coalgebras CoAlg (F ) has limits of a certain type if
CoAlg (G) does so.

Proof. Since CoAlg (F )! CoAlg (G) is fully faithful, its image is a full subcategory X of
CoAlg (G) that is equivalent to CoAlg (F ). The functor is also left adjoint, which means
that X is coreflective and therefore has all limits that CoAlg (G) has. The claim then
follows from X and CoAlg (F ) being equivalent.

By assuming some additional properties in Theorem 5.1.27, we can obtain a direct and
intuitive way of building the coreflection of a G-coalgebra (Y, d): intuitively, it boils down
to taking the largest M -subcoalgebra of (Y, d) that factorises as an F -coalgebra. We will
make this idea precise via the notion of M -taut natural transformation [Möb83; Man02].

Definition 5.1.29. A natural transformation � : F ! G is M -taut if each naturality
square induced by a morphism in M is a pullback square. In other words, if for every
morphism m : X ! Y in M the diagram below is a pullback square.

FX
Fm
//

�
X

✏✏

FY

�
Y

✏✏

GX
Gm
// GY



5.1. Preliminaries: Limits in categories of coalgebras 113

Recall from Definition 4.1.12 that, for monomorphisms m1 : M1 ! X and m2 : M2 ! X,
m1 is smaller than m2 whenever there exists some m : M1 ! M2 with m2 · m = m1.
Then assuming that C has pullbacks, take a G-coalgebra (Y, d) and consider the following
pullback square in C.

S

i
✏✏

// FY

�
Y

✏✏

Y
d
// GY

(13)

According to [AHS09, Proposition 14.15], the morphism i : S ! Y lives in M . Intuitively,
S is the largest subobject of Y whose ‘next states’ are contained in FY .

Lemma 5.1.30. Assume that the natural transformation � : F ! G is M -taut and let
m : (Q, q) ! (Y, d) be a homomorphism in CoAlg (G) where m 2 M and m  i. Then
there exists an F -coalgebra structure q0 : Q! FQ on Q with �Q · q0 = q.

Proof. Let m̄ : Q! S be the arrow in C with i · m̄ = m. Then, since in the diagram,

Y
d

// GY

S
i

>>

// FY

�
Y

<<

GQ

Gm

OO

Q

m̄

OO

q

JJ

m

11

// FQ

Fm

OO

�
Q

<<

the right hand parallelogram is a pullback square and the outer diagram and the top
parallelogram commute, we can obtain the desired arrow Q! FQ.

Theorem 5.1.31. In addition to Assumption 5.1.26, let C have pullbacks and � be M -
taut. The coreflection of a G-coalgebra (Y, d) is the supremum of all G-subcoalgebras
m : (Q, q) ⇢ (Y, d) such that m : Q ⇢ Y is smaller than i : S ! Y (as defined by the
pullback square (13)).

Proof. In Appendix A.
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5.2 limits in categories of vietoris coalgebras

5.2.1 Representations meet Topology

In Section 4.2, we saw that representations of hybrid black-box machines can be naturally
interpreted as coalgebras typed as M ⇥Rn !M ⇥Rn⇥H(Rn) if the following condition
is assumed: as soon as the guard of a given mode is satisfied, the mode must switch. We
showed that in order to drop this condition one would need to consider instead coalgebras
of the type M ⇥ Rn ! P(M ⇥ Rn ⇥ H(Rn)) as the models of representations. Such
coalgebras, however, do not admit a final coalgebra and so representations would lack a
notion of observational behaviour which is essential for their analysis.

A possible way of fixing this, as detailed in the following section, is to adopt weaker
versions of the assumption instead of completely dropping it. One particularly promising
case is to force transitions to occur not as soon as the corresponding guard is satisfied,
but within a compact, or more permissively, a closed interval of time. Under this strategy,
the models of representations would naturally be seen as coalgebras over Top typed as,

M ⇥ Rn ! V(M ⇥ Rn ⇥Hc(Rn)) (14)

where V : Top! Top is a Vietoris functor (detailed below) and Hc is a topological variant
of the hybrid monad (to be introduced in the following section).

Of course for this approach to succeed, coalgebras of the type (14) must admit a final
coalgebra. Moreover, if we also wish to consider F -representations (Section 4.4), then we
will need to show that coalgebras typed as M ⇥Rn ! FV(M ⇥Rn⇥Hc(Rn)) have a final
coalgebra as well.

Driven by this challenge, the main goal of the current section is to carefully examine
the existence of limits in categories of coalgebras whose underlying functor is Vietoris
polynomial – intuitively, the topological analogue to a Kripke polynomial functor. As
compositions of constant, (co)product, identity, and powerset functors, Kripke polynomial
ones have long been recognised as a particularly relevant class of functors [Rut00; BRS09;
KKV04]. They are intuitive and the corresponding coalgebras subsume several types
of state-based transition systems. Moreover, they are well-behaved with respect to the
existence of limits in their categories of coalgebras if the powerset functor is subjected to
certain cardinality restrictions. These reasons render their topological analogues a natural
starting point for interpreting F -representations in Top.

Remark 5.2.1. Vietoris polynomial functors arise from the composition of different Vi-
etoris functors [Vie22; Mic51; CT97] – the topological analogues to the powerset – with
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polynomial functors over Top. To keep the nomenclature simple, every coalgebra whose
underlying functor is Vietoris polynomial will be called a Vietoris coalgebra.

We consider two instances of Vietoris functors: namely, the lower Vietoris and the com-
pact Vietoris. Both have already been addressed in a coalgebraic setting: the former in
[BKR07] and the latter in multiple documents [KKV04; BFV10; VV14; DDG16; BBH12].
Some of these works study the existence of final coalgebras. For example, [KKV04] shows
that compact Vietoris polynomial functors in the category Stone of Stone spaces and con-
tinuous maps admit a final coalgebra. Also, document [DDG16] presents a theorem that
can be generalised to show that the compact Vietoris functor in the category CompHaus

of compact Hausdorff spaces and continuous maps, admits a final coalgebra. In fact, this
generalised result is also implicitly mentioned in [Eng89, page 245].
Since the current section is relatively big, and rather theoretical, we summarise our main
findings next.

• Using the results in Section 5.1, we show that all categories of (sub)polynomial
coalgebras over Top are complete,

• and that the same applies to all categories of compact Vietoris coalgebras over
CompHaus.

• Using [Zen70, Lemma B], we show that all categories of compact Vietoris coalgebras
are complete in the category Haus of Hausdorff spaces and continuous maps.

• We take advantage of the limit-preserving properties of the inclusion functors CompHaus!
Top and Haus! Top to show that every compact Vietoris polynomial functor over
Top that can be restricted either to CompHaus or Haus admits a final coalgebra.

• We show that all categories of lower Vietoris coalgebras over the category StablyComp

of stably compact spaces and spectral maps are complete.

5.2.2 Polynomial coalgebras over Top and a brief review of Vietoris functors

Definition 5.2.2. Let C be a category with (co)products. An endofunctor in C is called
polynomial if it can be defined recursively from the grammar below,

F 3 F + F | F ⇥ F | A | Id

where A is a C-object.
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Alternatively, one can define the class of polynomial functors as the smallest class of
endofunctors in C that contains the identity, all constant functors, and is closed under
products and sums. Given two functors F,G : C ! C, their product and their sum are
defined, respectively, as the compositions,

C
hF,Gi����! C⇥ C

(⇥)��! C C
hF,Gi����! C⇥ C

(+)��! C

Theorem 5.2.3. Let F : Top ! Top be a (sub)polynomial functor. Its category of
coalgebras is complete.

Proof. Clearly, the identity and constant functors preserve initial cones. The product
also (⇥) : Top ⇥ Top ! Top preserves initial cones by [HST14, page 141], and it is
straightforward to show that the sum (+) : Top ⇥ Top ! Top preserves initial cones as
well. Now apply Theorem 5.1.22 and Theorem 5.1.27.

In Set, the powerset functor is a standard construction for bringing non-deterministic
behaviour into the scene. In the topological context, the situation is more complex,
because a number of functors can be seen as analogues to the powerset. Most of them
have their roots in the Hausdorff metric [Pom05; Hau14] and in Vietoris’ “Bereiche zweiter
Ordnung” [Vie22] whose powerset construction is detailed next.

Consider a compact Hausdorff space X. The classic Vietoris space VX [Vie22] is the set
of all closed subsets of X, VX = {K ✓ X | K is closed}, equipped with the hit-and-miss
topology, generated by the sets,

U⌃ = {A 2 VX | A \ U 6= ?} (“A hits U”) ,

U⇤ = {A 2 VX | A ✓ U} (“A misses X \ U”),

where U ✓ X is open. There exist several variants of this archetype [Mic51; CT97], but
for now let us concentrate on the two cases detailed below.

Examples 5.2.4. Let X be a topological space and f : X ! Y be a continuous map.

1. Define VX = ({K ✓ X | K is compact }, hit-and-miss topology on X) and the
continuous map Vf : VX ! VY by Vf(A) = f [A] . We call this variant compact
Vietoris.

2. Define VX = ({K ✓ X |K is closed}, hit topology on X) and the continuous map
Vf : VX ! VY by Vf(A) = f [A], where f [A] denotes the closure of f [A]. This
variant is frequently called lower Vietoris [CLP91; Pet96; BKR07].
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Remark 5.2.5. Adding the sets U⇤ to the subbasis of Example 5.2.4 (2) does not define a
functor: consider the set {1, 2, 3} equipped with the topology generated by the sets {1, 2}
and {2, 3}. For the subspace embedding i : {1, 2} ,! {1, 2, 3}, (V i)�1({1, 2}⇤) = {?, {1}}.
However, every open set of V{1, 2} that contains {1} contains {1, 2}.

Definition 5.2.6. Let V : Top ! Top be the lower Vietoris functor. We qualify an
endofunctor in the category Top as lower Vietoris polynomial if it can be recursively
defined from the grammar below. If we consider instead the compact Vietoris functor
V : Top! Top, the endofunctor is called compact Vietoris polynomial.

F 3 F + F | F ⇥ F | A | Id | V

5.2.3 Vietoris Coalgebras

Theorem 5.2.3, which shows that a category of (sub)polynomial coalgebras over Top is
always complete, is a positive result in our study. When we add Vietoris functors to the
mix, however, a whole new level of difficulty arises, which calls for an investigation of the
preservation properties of these functors and in particular the preservation of codirected
limits (Theorem 5.1.2). This is the goal of the current subsection.

We start with the following lemma, which will help us to introduce some results on the
preservation of codirected cones by Vietoris functors.

Lemma 5.2.7. Let X be a topological space and B be a basis for the topology of X.

1. The set {B⌃ | B 2 B} is a subbasis for the lower Vietoris space VX.

2. If B is closed under finite unions, the set {B⌃ | B 2 B} [ {B⇤ | B 2 B} is a
subbasis for the compact Vietoris space VX.

Proof. Let S be a set of open subsets of X. First note that, for both the lower and the
compact Vietoris space,

⇣

[

S
⌘⌃

=
[

n

S⌃ | S 2 S
o

This proves the first statement. To see that the second one is also true, observe that,
⇣

[

S
⌘⇤

=
[

⇢

⇣

[

F
⌘⇤

| F ✓ S finite
�

since we only consider compact subsets of X.

Lemma 5.2.8. Both the compact and the lower Vietoris functor V : Top! Top preserve
initial codirected cones.
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Proof. Let (fi : X ! Xi)i2I be an initial codirected cone in Top. The set,
�

f�1
i (U) | i 2 I, U ✓ Xi open

 

is a basis for the topology of X (Examples 5.1.16) and it is closed under finite unions.
Therefore, by the previous lemma, the proof follows from the equations,

((fi)
�1(U))⇤ = (Vfi)

�1(U⇤) ((fi)
�1(U))⌃ = (Vfi)

�1(U⌃),

for all i 2 I and U ✓ Xi open, which are straightforward to show.

Neither the compact nor the lower Vietoris functor preserve monocones in general. Take,
for example, a compact Hausdorff space X with at least two elements. The set A =

{(x, x) | x 2 X} is closed in X ⇥X and it is different from B = X ⇥X. Then,

V⇡1(A) = V⇡1(B) = X = V⇡2(A) = V⇡2(B)

which shows that the cone V(⇡i : X ⇥X ! X)i22 is not mono. However,

Theorem 5.2.9. The lower Vietoris functor preserves initial codirected monocones. The
compact Vietoris functor preserves initial codirected monocones of Hausdorff spaces.

Proof. For a topological space X the lower Vietoris space VX is T0 and, if X is Hausdorff,
the compact Vietoris space VX is Hausdorff as well [Mic51]. Then we just need to recall
that an initial cone in Top whose domain is T0 (or T2) is necessarily mono and apply
Lemma 5.2.8.

As shown by the following theorem, the two last results provide a clear picture with
respect to the existence of equalisers in categories of Vietoris coalgebras.

Theorem 5.2.10. The category of coalgebras of a Vietoris polynomial functor has always
equalisers.

Proof. All polynomial functors preserve regular monomorphisms (Lemma A.2.9) and the
lower Vietoris functor preserves them as well (Theorem 5.2.9). The compact Vietoris
functor preserves initial morphisms (Lemma 5.2.8) and it is straightforward to show that it
preserves monomorphisms. Then, an application of Theorem 5.1.14 proves the claim.

But what we really need, is to prove the existence of final coalgebras rather than of
equalisers. The traditional approach for this is to show that the Vietoris polynomial
functors preserve limits of !op-chains, or equivalently, codirected limits. They turn out
to not preserve such limits, as demonstrated by the following examples.



5.2. Limits in Categories of Vietoris Coalgebras 119

Examples 5.2.11. Neither the compact Vietoris functor nor the lower one preserve
codirected limits. For example,

1. Consider the diagram functor D : N ! Set that sends n  m to the inclusion
map {0, . . . , n} ,! {0, . . . ,m}. The set N is a colimit of this directed diagram and
the composition hom(�,N) · Dop : Nop ! Set defines a codirected diagram with
limit hom(N,N) whose projections ⇡i : hom(N,N) ! Set({0, . . . , i},N) restrict the
domain of a given function. To equip all sets with the indiscrete topology provides a
codirected limit in Top. The compact Vietoris functor, however, does not send this
limit to a monocone, because the projections (V⇡i)i2N cannot distinguish between
the set hom(N,N) and,

{f : N! N | {n 2 N | f(n) 6= 0} is finite}

This proves that the compact Vietoris functor does not preserve !op-limits.

2. The next example is based on the ‘empty inverse limit’ [Wat72]. Let I be the set of
all finite subsets of R equipped with the usual order; note that it is directed. Then,
let D : Iop ! Top be the diagram functor that sends D(n) to the discrete space of
all injective functions n ! N and n ✓ m to the map D(m) ! D(n) that restricts
the domain of a given function. The limit of this diagram is empty, because if it
had an element it would define an injective function R ! N. Note also that each
map D(n ✓ m) is surjective. These two facts entail that the lower Vietoris functor
does not send the limit of D to the limit of VD : the former is empty and the latter
has at least two elements, namely (?)n2I and (D(n))n2I.

Using the indiscrete topology in lieu of the discrete one, shows that the lower
Vietoris functor does not preserve codirected limits of diagrams of compact spaces
and closed maps.

3. The previous example holds even when one considers spaces that are T0, compact,
and locally compact: consider the natural numbers N equipped with the topology,

{"n | n 2 N} [ {?}

where "n = {k 2 N | n  k}. The space N is T0 and every non-empty collection of
open subsets of N has a largest element with respect to inclusion ✓. This implies
that, for every finite set n, every subset of Nn is compact. To see why, recall that
the topology of Nn is the initial one for the projections (⇡i : Nn ! N)in. Then
consider a subset C of Nn and assume that it is covered by the subbasic sets,

C ✓
[

�2⇤
⇡�1
a
�

("b�)
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For every natural number i  n, the set
�

⇡�1
a
�

("b�) | � 2 ⇤ such that a� = i
 

has a
largest element which we denote by mi. This proves that,

C ✓
[

in

mi

which, according to Alexander’s Subbase Theorem [Eng89], entails that the set C

is compact.

Define I as in the previous example. Then, let D : Iop ! Top be the diagram functor
that sends a natural number n to the subspace of Nn whose functions are injective,
and n  m to the map D(m)! D(n) that restricts the domain of a given function.
The limit of D still is the empty set and the limit of VD still contains the elements
(?)n2I and (D(n))n2I.

These examples show that it is highly problematic to consider all topological spaces,
because the lower and the compact Vietoris functors do not preserve codirected limits
in Top. We will, therefore, restrict our attention to different subcategories, where more
positive results appear.

Definition 5.2.12. A topological space is called stably compact whenever it is T0, locally
compact, well-filtered, and every finite intersection of compact saturated subsets is com-
pact [Law11; Gou13]. A continuous map between stably compact spaces is called spectral
whenever the inverse image of compact saturated subsets is compact. Stably compact
spaces and spectral maps form a category which we denote by StablyComp.

The reader will find in documents [Gie+03; Jun04; Law11; Gou13] detailed accounts of
stably compact spaces.

Theorem 5.2.13. The category StablyComp is complete and regularly wellpowered. The
inclusion functor StablyComp! Top preserves limits and finite coproducts.

Proof. Finite coproducts of stably compact spaces are stably compact as well [Gou13,
Proposition 9.2.1]. The other claims hold because the inclusion functor StablyComp !
Top is monadic [Sim82] and monadic functors create limits and detect wellpoweredness
[AHS09, Proposition 20.12]. Note that [Sim82] uses the designation well-compacted in-
stead of stably compact.

Further properties of the category StablyComp can be easily derived if ones takes an
order-theoretic perspective.
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Definition 5.2.14. A partially orderered compact space is a triple (X,, ⌧) that consists
of a set X, a partial order  on X, and a compact topology ⌧ on X, so that the set,

{(x, y) 2 X ⇥X | x  y}

is closed with respect to the product topology.

Remark 5.2.15. Every partially ordered compact space (X,, ⌧) is Hausdorff. This
follows from the antisymmetry property of the relation  and the continuity of the map
h⇡2,⇡1i : X ⇥ X ! X ⇥ X: both entail that the diagonal {(x, x) | x 2 X} is closed in
X ⇥X.

The category StablyComp is isomorphic to the category PosComp of partially orderered
compact spaces and monotone continuous maps [Gie+80]. The isomorphism PosComp!
StablyComp sends a partially ordered compact space (X,, ⌧) to the stably compact
space with the same underlying set and the topology defined by the upper-open sets of
(X,, ⌧). Its inverse functor uses the specialisation order of a topological space, defined
by x  y iff x 2 {y}. It maps a stably compact space (X, ⌧) into the space (X, ⌧ 0,)
whose relation  is the specialisation order and ⌧ 0 is the patch topology of (X, ⌧), i. e. the
topology generated by the complements of compact saturated subsets and also the opens
in (X, ⌧).

The canonical forgetful functor PosComp! CompHaus has a left adjoint which equips
a compact Hausdorff space with the discrete order. Using the isomorphism between
StablyComp and PosComp, the adjunction,

PosComp >

forgetful

((

discrete

hh CompHaus

then reads in the language of stably compact spaces as,

StablyComp >

patch

((

inclusion

hh CompHaus

In the sequel we will jump freely between both perspectives.

Theorem 5.2.16. The category PosComp is cocomplete and has an (Epi,RegMono)-
factorisation structure.

Proof. The first claim follows directly from [Tho09, Corollary 2]. The second one follows
from [HN16, Proposition 4.7, Corollary 4.8].
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Let us turn our attention back to Vietoris functors. The lower Vietoris functor on Top

can be restricted to a functor on StablyComp [Sch93]. Its counterpart on PosComp is
described in the following manner.

Theorem 5.2.17. The isomorphism StablyComp ' PosComp and the lower Vietoris
functor on StablyComp induce the functor,

PosComp! PosComp

that sends a partially ordered compact space X to the space of all lower-closed subsets of
X, with inclusion ✓ as the order, and the topology generated by the sets,

{A ✓ X | A lower-closed and A \ U 6= ?} (U ✓ X upper-open), (15)

{A ✓ X | A lower-closed and A \K = ?} (K ✓ X upper-closed)

For a map f : X ! Y in PosComp, the functor returns the map that sends a lower-closed
subset A ✓ X to the down-closure #f [A].

Proof. In Appendix A.

The lower Vietoris functor preserves codirected initial monocones (Theorem 5.2.9), which
entails that for every every codirected diagram functor D : I ! StablyComp with limit
cone (⇡i : LD ! D(i))i2I, the canonical comparison map,

h : VLD ! LVD , K 7! (⇡i[K])i2I

is a subspace embedding. To show that V : StablyComp ! StablyComp preserves these
limits, we are only left with the task of proving that h is also surjective since the functor
StablyComp ! Top reflects isomorphisms [AHS09, Proposition 20.12]. To do so, we will
use the fact that StablyComp inherits a nice characterisation of codirected limits from the
category CompHaus. This characterisation was first hinted in [Bou66], but, to the best of
our knowledge, is rarely used in the literature. Actually, we were not able to find a proof
except for [Hof99] which is written in German. So we sketch one below.

Theorem 5.2.18. Let D : I! CompHaus be a codirected diagram and (pi : L! D(i))i2I

be a cone for D . The following conditions are equivalent:

1. The cone (pi : L! D(i))i2I is a limit of D .

2. The cone (pi : L! D(i))i2I is mono and for every i 2 I the inequality below holds.
\

j!i

imgD(j ! i) ✓ img pi
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Proof. Assume that the cone (pi : L! D(i))i2I satisfies condition (2) and consider a cone
(fi : X ! D(i))i2I for D . Take an element x 2 X and for every i 2 I write Ai = p�1

i (fi(x)).
Since D(i) is a T1-space, the subset Ai ✓ X is closed. Moreover, it is non-empty because,

img fi ✓
\

j!i

imgD(j ! i) ✓ img pi

Since the family (Ai)i2I is codirected and L is compact, there exists some element z 2
T

i2I Ai. So write f(x) = z, and in this way we obtain a map f : X ! L such that
pi · f = fi for all i 2 I. Since (pi : L! D(i))i2I is a monocone it must be a limit of D .

Conversely, if (pi : L ! D(i))i2I is a limit of D then it must also be a monocone.
Consider two elements i0 2 I and x 2

T

j!i0
imgD(j ! i0). We may assume that i0 is

final in I [AR94, page 18]. Then for each i 2 I define,

Ai =

(

(xi)i2I 2
Y

i2I
D(i) | xi0 = x and for all i! j 2 I, xj = D(i! j)(xi)

)

The set Ai is non-empty, and, moreover, closed in
Q

i2I D(i) because it is an equaliser
of continuous maps between Hausdorff spaces. It is routine to show that for every map
i ! j 2 I the inequality Ai ✓ Aj holds. Hence, there exists some element z 2

T

i2IAi,
which, by construction, lives in L and respects the equation pi0(z) = x.

For every cone (pi : X ! D(i))i2I the inequation img pi ✓
T

j!i imgD(j ! i) always
holds. Therefore, according to the previous theorem, if the cone (pi : X ! D(i))i2I is a
limit for D the following equation holds for every i 2 I,

img pi =
\

j!i

imgD(j ! i)

Proposition 5.2.19. Let A be a codirected set of closed subsets of a partially ordered
compact space X. Then, #

T

A2AA =
T

A2A #A.

Proof. In Appendix A.

Proposition 5.2.20. Let D : I! PosComp be a codirected diagram functor, (⇡i : LD !
D(i))i2I be a limit for D , and (LVD ! VD(i))i2I be a limit for VD : I! PosComp. Then
the function h : VLD ! LVD defined by K 7! (#⇡i[K])i2I is surjective.

Proof. Consider an element (Ki)i2I 2 LVD . For every i 2 I the subset Ki ✓ D(i) is
closed, and therefore Ki 2 PosComp. Thus, consider the codirected diagram functor
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K : I ! PosComp defined by K (i) = Ki and K (i ! j) as the map induced by the
restriction of D(i! j) to K (i). Note that the equation,

#K (i! j)[K (i)] = K (j) (16)

holds for every i! j 2 I.
Let (pi : LK ! K (i))i2I be a limit for K . By construction, and since a compact

subset of a Hausdorff space is closed, the subset LK ✓ LD is lower-closed and therefore
LK 2 VLD . We claim that h[LK ] = (Ki)i2I. Let i0 2 I. Since the diagram of forgetful
functors,

PosComp

""

// CompHaus

{{

Set

commutes and PosComp ! CompHaus preserves limits, Theorem 5.2.18 tells that the
equation

pi0 [LK ] =
\

j!i0

K (j ! i0)[K (j)]

holds. Recall that a continuous map whose domain is compact and codomain is Hausdorff
is necessarily closed, and finally apply Proposition 5.2.19 and Equation (16) to obtain,

#pi0 [LK ] = #
\

j!i0

K (j ! i0)[K (j)]

=
\

j!i0

#K (j ! i0)[K (j)]

= K (i0)

= Ki0

Corollary 5.2.21. All lower Vietoris polynomial functors in the category StablyComp

preserve codirected limits.

Proof. It follows from Theorem 5.2.9, Proposition 5.2.20, and the monadicity of the in-
clusion functor StablyComp ! Top that the lower Vietoris functor preserves codirected
limits. For the remaining cases, recall that that the inclusion functor StablyComp! Top

preserves and reflects limits, and proceed with the proof as in Lemma A.2.9.

Theorem 5.2.22. The category of coalgebras for a lower Vietoris polynomial functor in
StablyComp is always complete.
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Proof. Theorems 5.2.13 and 5.2.16 clearly guarantee the assumptions of Theorem 5.1.6.
This entails that the category of coalgebras for a lower Vietoris polynomial functor in
StablyComp has equalisers. The assertion then follows from Corollary 5.2.21 and [Bar93,
Theorem 2.1].

In what concerns final coalgebras, there is still room to improve the theorem above: the
inclusion functor StablyComp! Top preserves limits and therefore,

Theorem 5.2.23. Every lower Vietoris polynomial functor in Top that can be restricted
to StablyComp admits a final coalgebra.

Proof. Consider a lower Vietoris polynomial functor F : Top ! Top and its restriction
F : StablyComp! StablyComp (assuming it exists) to the category StablyComp. Denote
the diagram,

1 F1oo FF1oo · · ·oo

by D : N! Top and observe that it can be written as a composition,

N K�! StablyComp
I�! Top

Our goal is to show that the isomorphism F (limD) ' limFD holds. So we reason,

F (limD) ' F (lim IK )

' FI(limK ) (I preserves limits)

' IF (limK )

' I(limFK ) (F preserves codirected limits)

' (lim IFK )

' (limFIK )

' (limFD)

The lower and the compact Vietoris functor in Top are seemingly unrelated. However,
when restricted respectively to the categories StablyComp and CompHaus, they become
very close to each other: the lower Vietoris functor in PosComp induces the compact
Vietoris functor in CompHaus via the composition,

CompHaus
discrete����! PosComp

V�! PosComp
forgetful�����! CompHaus
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Since the functor PosComp
forgetful�����! CompHaus is a right adjoint, it must preserve all limits.

The inclusion functor CompHaus
discrete����! PosComp also does so, because the monadic func-

tor StablyComp! Top reflects limits and the inclusion CompHaus! Top preserves them
[AHS09, Examples 13.31]. An important consequence of this is that studying the preserva-
tion of limits by the lower Vietoris functor in the category StablyComp ' PosComp encom-
passes studying the preservation of limits by the compact Vietoris functor in CompHaus.
In particular, the following results come for free.

Corollary 5.2.24. All compact Vietoris polynomial functors in the category CompHaus

preserve codirected limits.

Proof. The lower Vietoris functor in StablyComp preserves codirected limits, so it follows
that the compact Vietoris functor in CompHaus preserves these limits as well. For the
remaining cases, recall that the inclusion CompHaus ! Top preserves limits and since it
is full it also reflects them.

By taking advantage of the fact that a compact subspace of an Hausdorff space is also
compact Hausdorff, [Zen70] proves that,

Theorem 5.2.25. The compact Vietoris functor in Haus preserves codirected limits.

We can then develop the following results.

Theorem 5.2.26. Every compact Vietoris polynomial functor in the category Haus pre-
serves codirected limits.

Proof. The previous theorem tells that the compact Vietoris functor in Haus preserves
codirected limits. For the remaining cases, note that Haus is a reflective full subcategory
of Top [AHS09, Examples 16.2] which means that the inclusion Haus ! Top preserves
and reflects limits. Then proceed as in Lemma A.2.9.

Corollary 5.2.27. The category of coalgebras for a compact Vietoris polynomial functor
in Haus is always complete.

Proof. Since it is a full reflective subcategory of Top, the category Haus is both complete
and cocomplete. It is also regularly wellpowered, a property that inherits directly from
Top. Recall that regular monomorphisms in Haus are precisely the closed embeddings
[AHS09, Examples 7.58] and observe that the compact Vietoris functor preserves these
maps. Moreover, the category Haus has an (Epi,RegMono)-factorisation structure, in
which continuous functions f : X ! Y are factorised as,

X
f
⇣ f [X] ,! Y
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These data ensure that we can apply Theorem 5.1.6 to prove that the category of coalge-
bras for a compact Vietoris polynomial functor has equalisers. The assertion then follows
from Theorem 5.2.26 and [Bar93, Theorem 2.1].

Theorem 5.2.28. Every compact Vietoris polynomial functor in the category Top that
can be restricted to Haus admits a final coalgebra.

Proof. Since Haus is a reflective subcategory of Top the inclusion Haus ! Top preserves
limits. Then proceed analogously to Theorem 5.2.23.

We can then extend the results above to subfunctors of Vietoris polynomial ones.

Corollary 5.2.29. Let F : Top ! Top be a lower Vietoris polynomial functor that can
be restricted to StablyComp. Every subfunctor of F admits a final coalgebra.

Proof. Follows directly from Theorem 5.2.23 and Theorem 5.1.28.

Corollary 5.2.30. Let F : Top! Top be a compact Vietoris polynomial functor that can
be restricted to Haus. Every subfunctor of F admits a final coalgebra.

Proof. Follows directly from Theorem 5.2.28 and Theorem 5.1.28.

This last corollary applies to several well-known variants of the compact Vietoris functor.
Some interesting cases include the variant that discards the empty set, the variant that
takes infinite sets out of comission, and the variant that only considers compact and
connected subsets [Dud72].

5.2.4 Some notes about related work

To conclude this section, a few remarks on the relation of our work with those reported in
[KKV04; BKR07] are in order. Recall that document [KKV04] considers compact Vietoris
polynomial functors in the category Stone of Stone spaces and continuous maps. Recall
also that [BKR07] considers coalgebras for the lower Vietoris functor in the category
Spectral of spectral spaces and spectral maps.

The categories Stone and Spectral are closely related with CompHaus and StablyComp,
respectively. Using the section’s results, we will capitalise on this relation to derive the
two following results: (i) every compact Vietoris polynomial functor in Stone admits a
final coalgebra (as already proved in [KKV04]), (ii) and every lower Vietoris polynomial
functor in Spectral admits a final coalgebra as well. We start with the following remark.
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Remark 5.2.31. A Stone space X is a compact Hausdorff space with a basis of clopen
sets. This is equivalent to saying that X is compact Hausdorff and that the cone of
continuous maps X ! 2 to the discrete space 2 is initial with respect to the forgetful
functor Top! Set.

Lemma 5.2.32. Let (X ! Xi)i2I be an initial cone in CompHaus where Xi is a Stone
space for every i 2 I. Then X is a Stone space as well.

Proof. Each space Xi induces a initial cone of continuous maps Xi ! 2. Moreover, initial
cones are closed under composition [AHS09, Proposition 10.45]. This means that one can
build, via composition, a initial cone of continuous maps X ! 2.

Corollary 5.2.33. The inclusion functor Stone ! CompHaus creates limits. So the
category Stone is complete and the inclusion preserves and reflects limits.

Theorem 5.2.34. Every compact Vietoris polynomial functor in the category Stone pre-
serves codirected limits.

Proof. Every compact Vietoris polynomial functor F : Stone ! Stone [Gou13, Proposi-
tion 4.11.7] has an analogous functor F : CompHaus! CompHaus that makes the diagram
below commute. The claim then follows directly from the inclusion Stone ! CompHaus

preserving and reflecting limits, and from Corollary 5.2.24.

Stone

✏✏

F
// Stone

✏✏

CompHaus
F
// CompHaus

Corollary 5.2.35. Every compact Vietoris polynomial functor in the category Stone ad-
mits a final coalgebra.

Proof. Follows directly from Theorem 5.2.34 and Theorem 5.1.2.

Let us now focus on spectral spaces and the lower Vietoris functor.

Remark 5.2.36. A spectral space X is a stably compact space with a basis of compact
open subsets. This is equivalent to saying that X is stably compact and that the cone of
spectral maps X ! 2 to the Sierpiński space is initial.

Lemma 5.2.37. Let (X ! Xi)i2I be an initial cone in StablyComp where Xi is a spectral
space for every i 2 I. Then X is a spectral space as well.
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Proof. Each space Xi induces a initial cone of spectral maps Xi ! 2. Moreover, initial
cones are closed under composition [AHS09, Proposition 10.45]. This means that one can
build, via composition, a initial cone of spectral maps X ! 2.

Corollary 5.2.38. The inclusion Spectral ! StablyComp creates limits. Hence, the
category Spectral is complete, and the inclusion preserves and reflects limits.

Theorem 5.2.39. Every lower Vietoris polynomial functor F : Spectral ! Spectral pre-
serves codirected limits.

Proof. Every lower Vietoris polynomial functor F : Spectral! Spectral [Gou13, page 433]
has an analogous functor F : StablyComp ! StablyComp that makes the diagram below
commute. The claim then follows directly from the inclusion Spectral ! StablyComp

preserving and reflecting limits, and from Corollary 5.2.21.

Spectral

✏✏

F
// Spectral

✏✏

StablyComp
F
// StablyComp

Corollary 5.2.40. Every lower Vietoris polynomial functor in the category Spectral ad-
mits a final coalgebra.

Proof. Follows directly from Theorem 5.2.39 and Theorem 5.1.2.

5.3 notions of behaviour for hybrid machines

5.3.1 The topological hybrid monad

Using the previous section’s results on final coalgebras, we can now tackle the problem
of representations lacking a canonical notion of behaviour when the condition ‘as-soon-as’
is dropped (see Section 4.5 and Section 5.2). Our first step in this quest is to build a
topological variant of the hybrid monad in order to interpret representations as coalgebras
over Top. We start with the following definition [Bor94b].

Definition 5.3.1. Every topological space X induces the exponential functor,

(� )X : Top! Top
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that maps a space Y to the space of continuous maps Y X whose topology is generated
by the sets,

�

f 2 Y X | f [K] ✓ U
 

(K compact in X,U open in Y )

The exponential (� )X is right adjoint of the functor (� ⇥ X) : Top ! Top if X is
locally compact, i. e. if every neighbourhood of a point x 2 X also contains a compact
neighbourhood of this point [Kel55; Bor94b].

We will also need the following fact: the space of non-negative reals R�0 is Hausdorff
and locally compact. It has, therefore, a one-point compactification [Kel55, page 150],
namely the set of extended non-negative reals [0,1] equipped with the topology that is
generated by the subsets {(i,1] | i 2 R�0} and {(i, j) \ R�0 | i, j 2 R}.

Let us start by building the topological analogue of the functor H⇤ : Set! Set.

Definition 5.3.2. Define Hc : Top! Top as the subfunctor of,

(� )R�0 ⇥ [0,1] : Top! Top

that maps a space X to the subspace
�

(f, d) 2 XR�0 ⇥ [0,1] | f ·min(� , d) = f
 

where
min : R�0 ⇥ [0,1]! R�0 is the minimum function.

Remark 5.3.3. The reader might be wondering why the functor Hc was not written
as a coproduct of function spaces, like the hybrid monad in Set. The reason for this
boils down to two important observations: first, for every space X, HcX is in bijective
correspondence with the coproduct of continuous maps,

a

i2R�0

X [0,i] +XR�0

So the space HcX and the expected coproduct presentation only differ in their topol-
ogy. Second, every connected space X induces an isomorphism Top

�

X,
`

i2I Ai

�

'
`

i2I Top (X,Ai) [Bou66, page 107], which means that if Hc had been presented as a
coproduct, a hybrid program,

Rn ! Hc(Rn) '
a

i2R�0

(Rn)[0,i] +XR�0

would not be able to output evolutions of different durations along different inputs (due
to the space Rn being connected).

Now let us equip Hc : Top ! Top with the unit and multiplication maps of the hybrid
monad (Chapter 3). Once shown that the inherited maps are continuous, the proof that
(Hc, ⌘, µ) is a monad follows directly.
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Proposition 5.3.4. Every component of the unit ⌘ : Id! Hc is continuous and the same
applies to the components of the multiplication µ : HcHc ! Hc.

Proof. In Appendix A.

Corollary 5.3.5. The triple (Hc, ⌘, µ) is a monad.

Proof. Let U : Top ! Set be the forgetful functor that sends topological spaces to their
carrier and observe that there exists a monomorphic natural transformation UHc ,!
HU. The proof then follows directly from the fact that Hc and H share their unit and
multiplication.

Theorem 5.3.6. The functor Hc : Top ! Top can be restricted to the category of Haus-
dorff spaces.

Proof. Consider a Hausdorff space X. The space XR�0 is finer than the product
Q

R�0
X

which entails that XR�0 is Hausdorff. The proof then follows directly from the fact that
Hausdorff spaces are closed under products and subspaces.

In the following subsection, we will work with the topological hybrid monad as if it did
not contain evolutions with infinite duration. Such evolutions will come into play later in
the chapter.

5.3.2 Bounded representations

Recall the notion of representation (Section 4.2): a coalgebra M !M ⇥ Tr⇥ Ev on the
category Set where Tr denotes the usual set of discrete assignments and Ev is the set of
event-triggered differential equations. One example of a representation is the automaton
below which encodes the behaviour of a (simplistic) thermostat.

ẋ = 1

18 x 20

((

ẋ = �1

10 x 12

hh

Previously, we showed how to interpret representations as coalgebras over Set by adopting
the ‘as-soon-as’ condition. We also showed that dropping the latter entails the loss of a
notion of observational behaviour for representations, including the thermostat above.

One interesting thing about the thermostat, however, (which is common to a large
number of representations) is that its guards are interpreted as compact subsets in Rn,
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which hints at the possiblity of interpreting the thermostat in the category Top via the
compact Vietoris functor V : Top! Top. For this, we will need the following two results.

Proposition 5.3.7. There exists a natural transformation � : (� )R�0 ⇥ R�0 ! Hc

defined at each space X by �X(f, d) = f ·min (d, � ).

Proof. The continuity of the components follows directly from both the exponentials’
universal property and the continuity of the minimum function. The naturality property
is easy to prove.

Proposition 5.3.8. Let V : Top! Top be the compact Vietoris functor. It has a tensorial
strength ⌧ : V ⇥ Id! V(� ⇥ � ) defined at spaces X and Y by,

⌧X,Y (K,x) = K ⇥ {x}

Proof. In Appendix A.

Let us denote the thermostat’s automaton by ha, b, ci : M ! M ⇥ Tr ⇥ Ev. Using
Proposition 5.3.8, it is straightforward to show that it induces a continuous map f :
`

m2M Rn ! V(R�0) defined by,

(m, v) 7!

8

>

<

>

:

��1
(m,v)(J K) if ��1

(m,v)(J K) 6= ;

{0} otherwise

where �(m,v) is the solution of c(m) with v as the initial condition, and  is the guard in
c(m). Intuitively, f gives the instants of time at which the evolution �(m,v) satisfies the
guard  if at least one such instant exists. Otherwise, it just returns {0}.

Remark 5.3.9. The fact that f returns {0} if the evolution �(m,v) never intersects  
may be somewhat odd, but it is necessary for f to be continuous since the empty set is an
isolated point in V(R�0) [Mic51]. Later on, we will show how to exclude this behaviour
of f through a subcoalgebra construction.

Abbreviate the composition of continuous maps,

V�Rn · ⌧R�0,(Rn)
R�0 : V(R�0)⇥ (Rn)R�0 ! VHc(Rn)

by r. The expression r(f(m, v),�(m,v)) is the set of restrictions of �(m,v) whose last
point satisfy  . Then, let us interpret the thermostat’s automaton as a V(� ⇥Hc(Rn))-
coalgebra of type M ⇥Rn ! V(M ⇥Rn ⇥Hc(Rn)). Equip M with the discrete topology
and define the mapping,

(m, v) 7!
�

(a(m), Jb(m)K · �Rn(e), e) | e 2 r(f(m, v),�(m,v))
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This mapping is continuous because it can be written as a composition of continuous
functions via the tensorial strength of the Vietoris functor, the natural transformation
� : Hc ! Id that sends an evolution to its last point, and the application map (Rn)R

n ⇥
Rn ! Rn. Moreover, the functor,

V(� ⇥Hc(Rn)) : Top! Top

can be restricted to the category of Hausdorff spaces (Theorem 5.3.6) which means that
it admits a final coalgebra, and thus we obtain a notion of observable behaviour for the
thermostat. Intuitively, the elements of the final V(� ⇥ Hc(Rn))-coalgebra can be seen
as compactly branching trees – i. e. trees where the set of descendants of each node is
compact – and whose edges are labelled by elements of Hc(Rn).

An illustrative representation of an element in the final V(� ⇥ Hc(Rn))-coalgebra is
the superposition of the evolutions in each level of the tree. For example,

Example 5.3.10. Consider the thermostat’s automaton and denote its left mode by m.
The first three levels of the tree [((m, 10))] are depicted in the plot below.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
8

10

12

14

16

18

20

time

The first three levels of [((m, 10))]

The dashed horizontal lines mark the region in which the guards are satisfied, and the
shaded regions mark the values that are possible to observe at each instant of time.

Remark 5.3.11. Let m denote the left mode of the thermostat’s automaton and n the
right mode. The model M⇥R! V(M⇥R⇥Hc(R)) of the thermostat has a subcoalgebra
of the type,

`

i2MAi ! V(
`

i2M Ai ⇥Hc(R))

with Am = (�1, 22] and An = [10,1). In this case, the behaviour of f that was discussed
in Remark 5.3.9 never occurs, because the evolutions that start either in Am or An always
intersect the corresponding guards.
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We provided a notion of behaviour to the thermostat, but unfortunately we cannot apply
the same strategy to all representations whose guards are interpreted as compact subsets
of Rn: consider, for example, the following automaton.

ẋ = 0

x � 1 ^ x  2
ee

Starting with valuation one, a jump can occur at any instant of time because the evolution
induced by ẋ = 0 is stationary. This means that the function f :

`

m2M Rn ! V(R�0)

considered before is not well-defined for this automaton, as ��1
(m,1)([1, 2]) = R�0 is clearly

not compact.
Up to this moment, we still do not know of any general characterisation of representa-

tions for ensuring that they can equipped with a notion of observational behaviour in the
category Top. So checking that their function f :

`

m2M Rn ! V(R�0) is well-defined
and continuous, as we did for the thermostat, is still our main approach for a equipping
a representation with one such notion. We can, however, provide the following theorem.

Theorem 5.3.12. Assume that Ev is the set of event-triggered differential equations of
the type (ẋ1 = r, . . . , ẋn = t & a  x1  b) where r 6= 0, and a and b are real numbers.
Then, representations,

M !M ⇥ Tr⇥ Ev

can always be interpreted as V(� ⇥Hc(Rn))-coalgebras.

Proof. According to the previous remarks, we just need to show that the corresponding
function f :

`

m2M Rn ! V(R�0) is well-defined and continuous. So take a mode m 2M

and consider its expression (ẋ1 = r, . . . , ẋn = t&a  x1  b). For this mode, the function
f can be written as,

(m, (v1, . . . , vn)) 7!

8

>

<

>

:

[a� v1/r, b� v1/r] if r > 0

[v1 � b/r, v1 � a/r] if r < 0

where � is the truncated subtraction over the real numbers. Since closed intervals of
the type [r1, r2] are compact in R�0, the function is well-defined. Since the truncated
subtraction is continuous, the function must be continuous as well.

We qualify as bounded all representations of the type described in the theorem above. Let
us analyse a simple example of one such representation.
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Example 5.3.13. In Examples 4.2.21, we considered a semaphore that switches between
a green light and a red one every ten seconds. This behaviour was represented by the
automaton below.

ẋ = 0

ṫ = 1

t = 10

x := 1, t := 0

))

ẋ = 0

ṫ = 1

t = 10

x := 0, t := 0

ii

Now, a reasonable expectation is that the semaphore does not switch the lights when
precisely ten seconds have passed, but e. g. between nine and eleven seconds. This yields
the automaton below.

ẋ = 0

ṫ = 1

9  t  11

x := 1, t := 0

))

ẋ = 0

ṫ = 1

9  t  11

x := 0, t := 0

ii

This representation is clearly bounded, and, therefore, by Theorem 5.3.12 it has a notion
of observational behaviour. Denoting its left mode by m, we can analyse the behaviour
e. g. of the state (m, 0): the first three levels of the tree J(m, 0)K are depicted below.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
�1

0

1

2

time

The first three levels of J(m, 0)K

Note that between nine and eleven seconds we cannot know for sure which light is on,
so we assume that both are on at the same time, and similarly for the interval of time
[18, 22]. Note also that the margin of error increases by two seconds at each iteration.

Remark 5.3.14. It is straightfoward to extend the interpretation of representations pre-
sented in this section so that it encompasses non-deterministic assignments. For example,
let Tr be the set of assignments of the type x := t⇥ [r1, r2] with r1  r2. The expression
t⇥[r1, r2] denotes the multiplication of t with all values between r1 and r2. Then, consider
a representation ha, b, ci : M ! M ⇥ Tr ⇥ Ev, assume that it has a continuous function
f :

`

m2M Rn ! V(R�0), and define M ⇥ Rn ! V(M ⇥ Rn ⇥Hc(Rn)) by,

(m, v) 7!
[

�

(a(m), u, e) | e 2 r(f(m, v),�(m,v)), u 2 Jb(m)K · �Rn(e)
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This mapping is continuous because it can be written as a composition of continuous
functions via the tensorial strength of the Vietoris functor, the natural transformation
S

: VV ! V that takes unions [Mic51], the natural transformation � : Hc ! Id that
sends an evolution to its last point, and the application map (V(Rn))R

n ⇥ Rn ! V(Rn).

5.4 compact stability

We will now address stability – which, as already mentioned, is a central aspect of control
theory [Lya92; Goe+04; Sho+07; GST09]. Roughly put, a system – in our context, a
hybrid program – is called stable if small changes in its state or input do not make it
behave very differently. Consider, for example, a bouncing ball in the edge of a precipice:
it is an unstable system because slight changes in its location might produce drastic
changes in its behaviour.

Even if not a common topic in computer science, the notion of stability is crucial for
hybrid systems because of the deep interaction of computational devices with physical
processes. In program verification, for example, it is important that the hybrid program
at hand is stable, for otherwise it might behave as expected with a certain initial configu-
ration, but behave very badly with a configuration close to the intended one: think again
of the bouncing ball near a precipice.

There are different notions of stability: traditional examples include the widely famous
Lyapunov stability [Lya92], extensively studied in the last decades, asymptotic Lyapunov
stability [Goe+04], and bounded-input, bounded-output stability [Sho+07]. We will re-
strict ourselves to the classic Lyapunov stability. We will show that a slightly weaker
and more general version of this notion can be directly encoded in the topological hybrid
monad. And among other things, we will use this feature to generate different program-
ming languages that support a compositional analysis of hybrid programs with respect to
stability: i. e. by showing that the (simpler) constituents of a (complex) hybrid program
are stable one proves that the latter is stable as well.

We start by introducing Lyapunov stability [Lya92].

Definition 5.4.1. Let U : Top! Set be the functor that sends topological spaces to their
underlying set. Consider a metrisable space M and a function f : UM ! UHcM . An
element x 2 M is an equilibrium point if the evolution f(x) is constant. An equilibrium
point x 2M is Lyapunov stable if for every ✏ > 0 there exists a � > 0 such that,

d(x, y) < � entails d(f(x, t), f(y, t)) < ✏
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for every y 2 M and t 2 R�0. The function f is called Lyapunov stable if every equilib-
rium point is Lyapunov stable.

Example 5.4.2. The bouncing ball b that was described in Examples 3.2.14 has a unique
equilibrium point: (0, 0) 2 R2, viz. the ball is on the ground and has no velocity. The
point is Lyapunov stable because for every real number ✏ > 0, to drop the ball at height
✏/2(= �) will never make it reach the distance of ✏ units from the ground neither will it
reach the velocity of ✏ units.

Let us now examine the notion of stability that is encoded in the topological hybrid
monad and compare it against Lyapunov stability.

Definition 5.4.3. A function f : UX ! UHcX is qualified as compact stable if it is
continuous with respect to the topological spaces X and HcX, in other words if it is a
hybrid program f : X ! HcX for the monad Hc.

The definition is quite compact, and so at first sight it might not disclose much. However,
it uses the notion of continuity and this brings an intuitive description into the picture:
the map f is compact stable if close points in X yield close evolutions in HcX. Formally,
the definition can be unravelled in the following manner: let X and Y be topological
spaces where S is a subbasis of Y . Then recall that a function f : X ! Y is called
continuous if for every x 2 X and subbasic neighbourhood S 2 S of f(x) there exists an
open neighbourhood U of x such that f [U ] ✓ S. Now, denote the sets,

n

g 2 Y R�0 | g[K] ✓ V
o

by [K,V ]. The topology of HcX has as subbasis the sets of type ([K,V ] ⇥W ) \ HcX

where K is a compact subset of R�0, V is an open subset of X, and W is an open subset
of [0,1] (see Definition 5.3.1). Finally, the function f : UX ! UHcX is compact stable
if for every element x 2 X and every subbasic neighbourhood ([K,V ]⇥W )\HcX of f(x)
there exists an open neighbourhood U of x such that,

f [U ] ✓ ([K,V ]⇥W ) \HcX

In words, the evolutions of points close to x satisfy two conditions: (i) their durations are
contained in W , and (ii) in the interval of time K they are contained in the region V .

Example 5.4.4. Let X be the Euclidean space R and f(2) be the evolution depicted in
the plot below. If the function f : UX ! UHcX is compact stable we can choose, for
example, the subbasic neighbourhood,

S =
�⇥

[2, 6], (2, 4)
⇤

⇥ (10� 0.1, 10 + 0.1)
�

\HcX
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of f(2) and there must exist a positive real number � > 0 such that, for every x 2 X,
| x� 2 |< � entails f(x) 2 S.

0 2 4 6 8 10
0

2

4

6

An illustration of compact stability

2� �

2 + �

f(2)

Intuitively, all evolutions of points close to 2 must have duration close to 10, and in the
interval of time [2, 6] they must be contained in (2, 4).

The following theorem relates compact stability to the Lyapunov one in a precise way.

Theorem 5.4.5. Consider a hybrid program f : X ! HcX where X is a metrisable
space. For every equilibrium point x 2 X, real number ✏ > 0, and compact subset K of
R�0, there exists a real number � > 0 such that,

d (x, y) < � entails d (f(x, t), f(y, t)) < ✏

for every y 2 X and t 2 K.

Proof. Take an equilibrium point x 2 X, a value ✏ > 0, and a compact subset K of
R�0. Then let B be the open ball centred in f(x, 0) and with radius ✏. Since x is an
equilibrium point, the condition f [{x} ⇥ K] ✓ B holds. Therefore, one can build the
subbasic neighbourhood,

S = ([K,B]⇥ R�0) \HcX

of f(x). The assumption on continuity provides an open ball U centred in x such that
f [U ] ✓ S, and the radius � of U satisfies the required condition.

Intuitively, the theorem above tells that compact stability ‘almost’ entails Lyapunov stabil-
ity; the difference is that the former considers compact durations and the latter considers
the whole duration R�0. In the case of all evolutions with finite duration compact stability
entails Lyapunov stability.
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Example 5.4.6. Let us consider the atomic program J(ẋ= 1& 1)K : R ! HcR. It
is compact stable by definition, but it is not Lyapunov stable: it has an equilibrium
point, viz. 0, and whatever positive point v close to it one chooses, the trajectory J(ẋ =

1 & 1)K(v) will eventually become bigger than a given ✏ > 0.
Every atomic program J(ẋ= 1& d)K : R ! HcR with d finite is Lyapunov stable (a

consequence of the previous theorem).

When compared with Lyapunov stability, compact stability applies to a broader context:
it does not need equilibrium points and it does not require the spaces involved to be
metrisable. It also possesses an interesting feature which was mentioned before: it allows
to reason about the stability of hybrid programs in a compositional manner. To see why,
consider two continuous maps f : X ! HcX, g : X ! HcX and observe that we can
always form the composition g • f : X ! HcX which is another continuous map. This
means that sequential composition of hybrid programs is closed under compact stability,
and thus we obtain the following result: recall from Chapter 3 the notion of Kleisli
representation. Then,

Corollary 5.4.7. Let U : V! Set be the forgetful functor of a quasi-variety V. The free
extension of an interpretation map,

A! U(EndHc(X), • , ⌘X , (J�K)�2�)

defines a hybrid programming language whose operations are closed under compact stabil-
ity.

Example 5.4.8. Recall the time-triggered programming language,

p = a 2 At(X) | skip | p ; p

introduced in Chapter 3, and how it was generated: briefly, take a finite set of real-valued
variables X = {x1, . . . , xn} and denote by At(X) the set induced by the grammar,

' 3 (x1 := t, . . . , xn := t) | (ẋ1 = t, . . . , ẋn = t& d), t 3 r | r · x | t+ t

where d and r are real numbers, and x 2 X. Using the notion of Kleisli representation,
the programming language was (freely) generated by an interpretation map At(X) !
U(EndH(Rn), • , ⌘Rn). The latter factorises through the monoidal inclusion,

(EndHc(Rn), • , ⌘Rn) ,! (EndH(Rn), • , ⌘Rn)

Thus, all atomic programs of this language are compact stable and all of its program
constructs are closed under compact stability. In particular, the water tank system, the



140 5. when sets do not suffice

heating system, and the cruiser controller detailed in Examples 3.2.10 are all compact
stable.

Recall the event-triggered programming language introduced in Chapter 3. Its atomic
programs need not be compact stable: consider, for example, (ẋ= 1& x = 0 _ x = 1).
Given input zero, this program returns an evolution whose duration is zero, and for every
positive input close to zero the program returns an evolution whose duration is close to
one.

We can show, however, that all program operations of this language are also closed
under compact stability: consider the interpretation map J� K : Ate(X) ! EndH(Rn)

with respect to the event-triggered programming language. Then let us take the pullback,

P //

✏✏

Ate(X)

J� K
✏✏

EndHc(Rn) �
�

// EndH(Rn)

It is essentially the subset P ✓ Ate(X) of compact stable atomic programs, and the
function P ! EndHc(Rn) is an interpretation map for them. The free monoidal extension
of this interpretation map generates a subprogramming language of the one obtained from
the free extension of J� K : Ate(X)! EndH(Rn). The former contains all atomic programs
of the latter that are compact stable, and allows to compose them whilst preserving
compact stability. For example, the heating program – which was written as a composition
of compact stable programs (Examples 3.2.14) – is compact stable, and for every finite
number n of bounces,

b ; . . . ; b
| {z }

n times

the bouncing ball is also compact stable (Examples 3.2.14).

The following theorem provides a complete characterisation of natural transformations
Hc⇥Hc ! Hc. As mentioned before, these are the basis of hybrid program operations in
the topological setting.

Theorem 5.4.9. The binary natural transformations Hc ⇥ Hc ! Hc are in bijective
correspondence with the continuous maps m : [0,1]⇥ [0,1]! Hc(R�0 +R�0) such that
for every i, j 2 [0,1], m(i, j) is a pair (f, k) with f [R�0] ✓ [0, i] + [0, j].

Proof. In Appendix A.
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Given a continuous map m : [0,1] ⇥ [0,1] ! Hc(R�0 + R�0) as defined above, the
associated natural transformation ↵m is defined at each space X by,

↵m
X((f, i), (g, j)) = ([f, g] · (⇡1 ·m(i, j)),⇡2 ·m(i, j))

This means that natural transformations of the type Hc ⇥ Hc ! Hc behave essentially
like those typed as H ⇥ H ! H (characterised in Chapter 3). There is, however, one
remarkable difference, which arises from the topological context: continuity puts severe
restrictions on the transformations Hc ⇥ Hc ! Hc, as demonstrated by the following
calculation. The spaces R�0 and [0,1] are connected. Therefore,

hom
�

[0,1]2,Hc(R�0 + R�0)
�

,! hom
⇣

[0,1]2, (R�0 + R�0)
R�0 ⇥ [0,1]

⌘

' hom
⇣

[0,1]2, ((R�0)
R�0 + (R�0)

R�0)⇥ [0,1]
⌘

' hom
⇣

[0,1]2, ((R�0)
R�0 ⇥ [0,1]) + ((R�0)

R�0 ⇥ [0,1])
⌘

'
a

2

hom
⇣

[0,1]2, (R�0)
R�0 ⇥ [0,1]

⌘

The calculation tells that for every pair of evolutions, (f, i), (g, j), a natural transforma-
tion Hc ⇥ Hc ! Hc can only return an evolution (h, k) whose values come exclusively
from (f, i) or exclusively from (g, j). In other words, (h, k) is either a redistribution of
the values in (f, i) or a redistribution of the values in (g, j), which means that natural
transformations Hc ⇥Hc ! Hc cannot combine evolutions.

This highlights one message of the thesis (Chapter 3): when developing hybrid program
operations, one may want to look at natural transformations over algebraic structures. For
example, in Chapter 3 we introduced a natural transformation (+) : HU ⇥ HU ! HU

over monoids, which multiplies evolutions pointwise; this allowed to sum the signals of two
harmonic oscillators. We also introduced a natural transformation (k) : HU⇥HU! HU

over groups, which allowed for hybrid programs to compete over (or contribute to) shared
resources. Both transformations can be defined in the topological setting by considering
topological monoids and topological groups. Therefore, the programming language that
allows to sum signals,

p = a 2 Ate(X) | skip | p ; p | 1 | p+ p

and the programming language with concurrency,

p = a 2 Ate(X) | skip | p ; p | p k p

(see Chapter 3) are closed under compact stability.
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To conclude this section, we will examine the feedback operator (� )!, introduced in
Chapter 3, with respect to compact stability. We start with the following remark.

Remark 5.4.10. The feedback operator (� )! is not closed under compact stability.
Take, for example, the map f : R ! HcR defined by f(r) = (t 7! r,max(0, r)). The
evolution f!(0) has duration zero and the evolution f!(r) of every positive real number
r close to zero has infinite duration.

This problem disappears if ones assumes that there exists a real number r > 0 such that
for every x 2 X, a hybrid program f : X ! HcX outputs an evolution with duration
greater than r, i. e. inf ⇡2 · f [X] 6= 0

Theorem 5.4.11. Consider a hybrid program f : X ! HcX with feedback. If the condi-
tion inf ⇡2 · f [X] 6= 0 holds the feedback is also a hybrid program f! : X ! HcX.

Proof. Using the assumptions above, we will show that the feedback of f can be written
as a composition X ! XR�0 ⇢ HcX, where X ! XR�0 is a mediating map of a limit in
Top and the injection sends a function f to (f,1). This is enough to prove our claim.

Let D : R�0 ! Top be the diagram functor that sends a non-negative real number i

to the space [0, i) and an arrow i  j to the corresponding inclusion map. The space
R�0 with the subspace inclusions [0, i) ,! R�0 is the colimit of D . Now consider the
contravariant exponential functor,

X(� ) : Topop ! Top

Lemma A.2.12 tells that the limit of XDop

: (R�0)
op ! Top is the space XR�0 equipped

with the projections XR�0 ! X [0,i) that restrict a function’s domain to [0, i). The next
step is to build a suitable cone

�

mi : X ! X [0,i)
�

i2R�0
for the diagram functor XDop .

Since the map f has a minimum time that is different from zero, there must exist a
natural number n 2 N such that, for every x 2 X, the condition ⇡2 · fn(x) � i holds.
This naturally induces a map mi : X ! X [0,i) that for every x 2 X outputs the evolution
fn(x) restricted to the subspace [0, i). Finally, we need to show that for every i  j the
diagram,

X
m

i

||

m
j

""

X [0,i) X [0,j)

XDop(ij)

oo

commutes, but this follows directly from f being a unit-action (Chapter 3). When post-
composed with the injection XR�0 ⇢ HcX, the map hmiii2R�0

: X ! XR�0 is the
feedback of f by Definition 3.4.12.
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Example 5.4.12. In Examples 5.4.8, we saw that all program operations of the time-
triggered programming language there described are closed under compact stability. Now
consider a program p of this language and assume that it can be put in feedback. Assume
also that it can be written as a composition,

a
1

; . . . ; a
n

such that at least one of the constituents a
i

has the form (ẋ1 = t, . . . , ẋn = t & d) with
d 6= 0. Under these assumptions, program p in feedback is compact stable. For example,
the oscillator defined in Examples 3.4.13 is compact stable.

5.5 open challenges

Even if most coalgebraic literature takes Set as the base, working category, state-based
transition systems often demand a shift to richer categories, where more sophisticated
mechanisms to handle their behaviour are available. Such was the case in [Pan09; Dob09],
two research lines on the topic of stochastic systems that involved the category of measur-
able spaces, and in [KKV04; BFV10], where the category of Stone spaces and continuous
maps plays a key role in setting an appropriate coalgebraic semantics for finitary modal
logics.

In this chapter we adopted Top as the base category. This was because the Set-based
context proved to be insufficient for providing a notion of observable behaviour to repre-
sentations when the condition ‘as-soon-as’ is dropped. Our shift to the topological setting
allowed to remedy this problem up to some extent: we could provide a notion of behaviour
to bounded representations, and, if certain conditions are satisfied, to other cases as well.

The topological setting also helped us to establish a notion of stability for hybrid
programming: in particular, we introduced the topological hybrid monad, which yields
the notion of compact stability – closely related and also more general than the widely
acclaimed Lyapunov stability – and allows to generate different programming languages
whose operators are closed under compact stability.

The chapter’s work covered a broad spectrum of research, from theoretical developments
in Section 5.1 and Section 5.2, to more practical ones in Section 5.3 and Section 5.4. In
the process, several questions emerged for which we still lack a definitive answer. Let us
summarise them next.

Final coalgebras for Vietoris functors. In Section 5.2, we examined the preservation
of codirected limits by Vietoris functors in different topological contexts, showing cases in



144 5. when sets do not suffice

which they were preserved and cases in which they were not. Nonetheless, we are still not
precisely sure what is the ‘weakest’ context in which they are preserved. For example, is
the Hausdorff condition necessary for the compact Vietoris functor to preserve codirected
limits ? Also, can we relax the conditions on which we showed that the lower Vietoris
functor preserves codirected limits ?

Topological functors. In Section 5.1, we studied the existence of topological functors
between categories of coalgebras (Theorem 5.1.22), which, among other things, allowed to
prove that all categories of (sub)polynomial coalgebras over Top are complete. Since the
study applies to arbitrary topological categories and not just Top, a natural research line
is to inquiry under which conditions one can prove that all categories of (sub)polynomials
coalgebras over a topological category are complete. Two prime examples that we are
particularly interested in are the coalgebras over preordered sets, and the coalgebras over
pseudometric spaces. These have significant relevance within the coalgebraic community
(e. g. [Bal+14; BK11; BKV12]) and we believe that our study can contribute to the topic.

Beyond bounded representations. Theorem 5.3.12 tells that all bounded representa-
tions can be equipped with a notion of observable behaviour. But since we could also
provide this notion to the thermostat (Section 5.3), which is clearly not bounded, there
must exist a broader class of representations for which we can systematically provide the
notion. Can we characterise this class in a precise way ?

F -representations in Top. We used the theoretical results of Section 5.2 to provide
a notion of observable behaviour to deterministic representations, i. e. representations
with Id : Top ! Top as the discrete transition type. However, these results apply to
a much more general context, in particular to representations with different transition
types F : Top ! Top. This raises the following interesting question: for which discrete
transition types can the corresponding representations be equipped with a canonical notion
of observational behaviour ?

Stability in hybrid programming. Finally, in Section 5.4 we showed that a topological
analogue of the hybrid monad can be used to systematically generate different types
of programming languages whose operators are closed under compact stability. This
supports a compositional analysis of hybrid programs with respect to this notion, as
exemplified with several systems in the section (e. g. oscillators, bouncing ball, heating
systems. . . ). A question that naturally arises from this work is how do program operations
behave when hybrid programs are stable only on certain inputs ? In particular, for which
inputs is a composition of such hybrid programs stable ?



6
EP ILOGUE

The writing of this note concludes the author’s Ph.D project – but not his interest !
– on the topic of hybrid systems and their programming languages. The goal was to
investigate these devices from a foundational point of view, by deconstructing the basic
interactions between programs and physical processes, and building from, the ground up,
the programming paradigm that naturally underlies them:

• we introduced different programming languages, and showed how to systematically
extend them with classic program constructs. We listed all program operations (over
algebraic structures) available, and showed how to build them in a simple manner,
giving rise, for example, to programming languages that support superposition and
different aspects of concurrency. We introduced a notion of stability to hybrid
programming, showed how to reason about it compositionally, and used this feature
to prove that many of the hybrid programs considered in the thesis are stable.

• We also established a component-based software development discipline in hybrid
programming. Its basic constituents are hybrid programs with internal memory, for
which we developed languages, notions of bisimulation, and observational behaviour.
We generalised these results to provide a uniform framework of hybrid automata
– the standard formalism in the project of hybrid systems. Along the process, we
introduced new coalgebraic results, including proofs on the existence of canonical
notions of behaviour for non-deterministic transition systems with an infinite state
space.

It is our belief that these results provide a firm step towards the design of the next-
generation programming languages.

One central pillar of our approach was the theory of monads: not only it was the basis for
systematically generating hybrid programming languages, but it also allowed to smooth
the integration of hybrid computations with other behavioural effects. The latter aspect
was exemplified with partial and non-deterministic computations, which as we saw, can
be combined with the hybrid case via suitable distributive laws.

The modular approach that monads provide resonates with another topic, that of sys-
tematic combination of logics, which the author has been pursuing in parallel to his Ph.D.
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The motivation for combining logics was elegantly summarised by J. Goguen and J.
Meseguer in [GM87]: “The right way to combine various programming paradigms is to
discover their underlying logics, combine them, and then base a language upon the com-
bined logic”. The present note ends with some highlights of the author’s research on this
topic.

Hybrid(ised) logics. The hybridisation method [Mar+11] is a systematic process for
extending a given, arbitrary logic with the typical features of hybrid logic [Bra11] – con-
fusingly, the term ‘hybrid’ in the latter does not pertain hybrid systems, but the ability of
this logic to pinpoint states of a Kripke frame. In document [Nev+16c], we further devel-
oped the hybridisation method so that it can also extend a calculus of the given, base logic
into a calculus for the hybridised one. We showed that if the base calculus is complete the
extended calculus will also be complete, which generalises standard completeness results
of hybrid logic [Bra11].

Using the hybridisation method, we also established a methodology for the rigorous
design of reconfigurable systems (those that switch between different modes of operation
along their execution) from the very beginning of the development process, with natural
language boilerplates, to the later stage of model verification. We also introduced and
examined hierarchical hybrid logic in order to handle refinements processes in software
design [Mad+18].

Renato Neves, Alexandre Madeira, Manuel A. Martins, and Luis S. Barbosa. “Proof
theory for hybrid(ised) logics”. In: Science of Computer Programming (2016).

Alexandre Madeira, Renato Neves, Luis S. Barbosa, and Manuel A. Martins. “A method
for rigorous design of reconfigurable systems”. In: Science of Computer Programming
(2016).

Alexandre Madeira, Renato Neves, Manuel A. Martins, and Luis S. Barbosa. “Hierarchical
hybrid logic”. In: LSFA’17: Logical and Semantic Frameworks with Applications, 12th
Workshop. Electronic Notes in Theoretical Computer Science, Elsevier (In press).

Asymmetric combination of logics. Asymmetric combination of logics, of which hy-
bridisation, temporalisation [FG92], and probabilisation [Bal13] are particular cases, is
a formal process for developing the characteristic features of a specific logic on top of
another one, with the three cases mentioned above being prime examples. In [Nev+16a],
we showed that such processes can frequently be regarded as endofunctors in a suitable
category of logics and translations between them. The op. cit. allows to systemati-
cally extend the combination of logics to combinations of their translations and moreover
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opens several research avenues due to its functorial view: from (co)limit preservation by
combinations to the study of their adjoints.

Renato Neves, Alexandre Madeira, Luis S. Barbosa, and Manuel A. Martins. “Asym-
metric Combination of Logics is Functorial: A Survey”. In: WADT’16: Recent Trends
in Algebraic Development Techniques, 23rd International Workshop. Lecture Notes in
Computer Science. Springer, 2016.





A
PROOFS AND LEMMATA

a.1 proofs

Proof of Theorem 3.2.6.

We will start by showing that the equation µ · ⌘H = id holds.

µ · ⌘H = (++) · hH✓,�Hi · ⌘H
= (++) · hH✓ · ⌘H,�H · ⌘Hi

= (++) · hH✓ · ⌘H, idi (� is an inverse of ⌘)

= (++) · h⌘ · ✓, idi (Naturality)

= id (Lemma A.2.1)

Let us then show that µ ·H⌘ = id.

µ ·H⌘ = (++) · hH✓,�Hi ·H⌘

= (++) · hH✓ ·H⌘,�H ·H⌘i

= (++) · hH✓ ·H⌘, ⌘ · �i (Naturality)

= (++) · hid, ⌘ · �i (✓ is an inverse of ⌘)

= id (Lemma A.2.1)

Finally, we need to prove that the equation µ·Hµ = µ·µH also holds. This is a consequence
of showing that the diagram below is commutative.

HHH
hH✓H,�HHi

//

Hµ

✏✏

HH⇥HH
(++)

//

H✓⇥hH✓,�Hi
✏✏

HH

hH✓,�Hi
✏✏

H⇥H⇥H
(++)⇥id

//

id⇥(++)
✏✏

H⇥H

(++)
✏✏

HH
hH✓,�Hi

// H⇥H
(++)

// H

149
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The right bottom square commutes by Lemma A.2.1, and the right top one by the follow-
ing calculation:

((++)⇥ id) · (H✓ ⇥ hH✓,�Hi) = ((++)⇥ id) · hH✓ ⇥H✓,�H · ⇡2i (Product associativity)

= h(++) · (H✓ ⇥H✓),�H · ⇡2i

= hH✓ · (++),�H · ⇡2i (Naturality)

= hH✓ · (++),�H · (++)i

= hH✓,�Hi · (++)

Finally, the left square commutes because,

hH✓,�Hi ·Hµ = hH✓ ·Hµ,�H ·Hµi

= hH(✓ · µ), µ · �HHi (Naturality)

= hH(✓ ·H✓), µ · �HHi (Lemma A.2.2)

= hH✓ ·HH✓, µ · �HHi

= hH✓ ·H✓H, µ · �HHi (Naturality)

= (H✓ ⇥ µ) · hH✓H,�HHi

⇤

Proof of Theorem 3.4.9.

Let us start with the left triangle in the diagram below.

H⇤
⌘H⇤
//

Id
""

H⇤H⇤

µ

✏✏

H⇤
H⇤⌘
oo

Id
||

H⇤

It can be decomposed into the following diagram and therefore it is only necessary to
show that the equation µ1 · ⌘H = Id holds. This is straightforward because the arrow µ1

is essentially the multiplication map of the hybrid monad H.

H⇤

Id //

⌘H
// HH⇤

µ1

$$

// // H⇤H⇤

µ

✏✏

H⇤
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Let us now focus on the right triangle of the previous unit diagram: it can be decomposed
into the following diagram.

I
✏✏

✏✏

I⌘
// IH⇤
✏✏

✏✏

µ2

��

H⇤
H⇤⌘

// H⇤H⇤
µ

// H⇤

H
OO

OO

H⌘
// HH⇤
OO

OO

µ1

HH

The transformation ✓ is an inverse of ⌘ and the equation µ2 = i2 · I✓ holds. It follows that
µ2 · I⌘ = i2. Since, the triple (H, ⌘H, µH) is a monad and the arrow µ1 behaves essentially
as µH, the equation µ1 ·H⌘ = i1 must also hold. It then follows by the universal property
of coproducts that µ · H⇤⌘ = Id. Next, we need to prove that the following diagram
commutes.

H⇤H⇤H⇤
H⇤µ

//

µ

✏✏

H⇤H⇤

µ

✏✏

H⇤H⇤ µ
// H⇤

It can be unravelled into the diagram,

HH⇤H⇤ // //

Hµ

✏✏

µ1H⇤
//

H⇤H⇤H⇤
µH⇤
✏✏

IH⇤H⇤oooo

µ2H⇤
oo Iµ

✏✏

H⇤H⇤

µ
✏✏

HH⇤ µ1

// H⇤ IH⇤µ2

oo

which tells that the proof is finished once shown that the following equations hold.

µ2 · Iµ = µ · µ2H⇤ (17)

µ1 ·Hµ = µ · µ1H⇤ (18)

So let us start with Equation (17), which corresponds to the diagram below.

H⇤H⇤

µ

✏✏

IH⇤oooo

µ2
{{

IH⇤H⇤
I✓H⇤
oo

Iµ
✏✏

H⇤ IH⇤µ2

oo
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It commutes because the equations ✓ · µ = ✓ · H⇤✓ = ✓ · ✓H⇤ hold (Lemma A.2.3 and
naturality of ✓).

Then, consider Equation (18). In order to prove that it holds, we will resort to the
subfunctors F,G of HH⇤H⇤ that are defined by,

FX =
�

(f, d) 2 HH⇤H⇤X | f(d) 2 HH⇤X
 

GX =
�

(f, d) 2 HH⇤H⇤X | f(d) 2 IH⇤X
 

Observe that F +G ' HH⇤H⇤ and that the compositions,

F �
� ◆

F

// HH⇤H⇤
µ1H⇤

// H⇤H⇤ G �
� ◆

G

// HH⇤H⇤
µ1H⇤

// H⇤H⇤

factorise through the injections HH⇤ ⇢ H⇤H⇤ and IH⇤ ⇢ H⇤H⇤, respectively. This leads
to the diagram below and we need to show that it commutes.

F ⌘ q

◆
F

##

µ1H⇤

**

GM m

◆
G

{{

µ1H⇤

**
HH⇤

##

##

µ1

((

IH⇤
{{

{{

µ2

vv

HH⇤H⇤
µ1H⇤

//

Hµ
✏✏

H⇤H⇤

µ

✏✏

HH⇤ µ1

// H⇤

Since the triple (H, ⌘H, µH) is a monad and the arrow µ1 is essentially equal to µH, it is
straightforward to show that the equation µ1 ·Hµ · ◆F = µ1 ·µ1H⇤ holds. Thus, it remains
to show that the equation µ1 ·Hµ · ◆G = µ2 · µ1H⇤ holds as well. So we calculate,

µ1 ·Hµ · ◆G(f, d) = (✓ · µ · f, d) ++ µ(f d)

= (✓ · µ · f, d) ++ (H⇤✓ (f d)) ((f, d) 2 GX)

= (✓ ·H⇤✓ · f, d) ++ (H⇤✓ (f d)) (Lemma A.2.3)

= (✓ · ✓H⇤ · f, d) ++ (H⇤✓ (f d)) (Naturality)

= H⇤✓ ((✓H⇤ · f, d) ++ (f d)) (Naturality)

= µ2 · µ1H⇤(f, d)

⇤
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Proof of Theorem 3.4.16.

Observe that the following diagram commutes.

(N0,)
f (� )

//

hf (� ) • f(x)i
x2X

//

(EndH⇤(X),v)
(� • f)

// (EndH⇤(X),v)
✏✏

h⇡
x

i
x2X

✏✏
✏✏

(H⇤X,v)

According to it, we just need to show that the following equation holds.

h⇡xix2X
⇣⇣

colim f (� )
⌘

• f
⌘

= colim hf (� ) • f(x)ix2X

More concretely, that f! • f(x) = colim f (� ) • f(x) for every element x 2 X. So first
assume that f(x) is an evolution with infinite duration. For this case, the colimit of the
chain,

(N0,)
f (� ) • f(x)

// (H⇤X,v)

is simply f(x) and clearly the equation f! • f(x) = f(x) holds. Now assume that f(x)

is an evolution with finite duration and denote it by (f(x, � ), d). Then reason,

f! • f(x) = f(x, � ) ++ f!(f(x, d))

= f(x, � ) ++
⇣

colim f (� ) (f(x, d))
⌘

= colim
⇣

f(x, � ) ++ f (� ) (f(x, d))
⌘

(Lemma A.2.4)

= colim
⇣

f (� ) • f(x)
⌘

⇤

Proof of Theorem 3.5.2.

It is straightforward to prove that � : HQ! QH is a natural transformation, and that it
makes the following diagram commute.

H
H⌘Q

}}

⌘QH

!!

HQ
�

// QH

Q
⌘HQ

``

Q⌘H

>>
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So we will just that the natural transformation � : HQ ! QH also makes the following
diagram commute.

HQQ
�Q
//

Hµ

✏✏

QHQ
Q�
// QQH

µQ

✏✏

HQ
�

// QH

HHQ
H�
//

µQ

OO

HQH
�H
// QHH

Qµ

OO

Start with the upper square by considering an element (f, d) 2 HQQX. A straightforward
calculation provides the following equations.

�X ·HµX(f, d) = { (g, d) 2 HX | g 2 [ · f }

µQX ·Q�X · �QX(f, d) =
[

{ �X (h, d) | (h, d) 2 HQX ^ h 2 f }

and so we just need to prove that both sets are the same. For this, start with an element
(g, d) 2 HX, and reason,

g 2 [ · f ⌘ 8t 2 R�0. g (t) 2 [ · f

⌘ 8t 2 R�0. 9A 2 f (t) . g (t) 2 A

⌘ 9(h, d) 2 HQX. g 2 h ^ h 2 f

⌘ 9(h, d) 2 HQX. (g, d) 2 �X (h, d) ^ h 2 f

Both sets are therefore indeed the same. Let us now concentrate on the lower square.
Consider an element (f, d) 2 HHQX and let the expression ⇡2 · f(d) be denoted by e. A
straightforward calculation shows that the following equations hold.

�X · µQX (f, d) =
�

(g, d+ e) 2 HX | g 2 (✓QX · f, d) ++ (f(d))
 

QµX · �HX ·H�X (f, d) =
�

(✓X · g, d) ++ (g(d)) | (g, d) 2 HHX ^ g 2 �X · f
 

We will show that both sets are also the same: start with an element (h, d + e) 2 HX,
and reason as follows.

h 2 (✓QX · f, d) ++ (f(d))

⌘ 8t  d . h (t) 2 ✓QX · f (t) ^ 8t > d . h (t) 2 (f(d)) (t� d)

⌘ 8t  d . h (t) 2 Q✓X · �X · f (t) ^ 9(g, e) 2 �X (f(d)) . 8t > d . h (t) = g (t� d)

⌘ 9(g, d) 2 HHX . 8t  d . g (t) 2 �X (f(t)) ^ ✓X · g (t) = h (t) ^ 8t > d . h (t) = (g(d)) (t� d)

⌘ 9(g, d) 2 HHX . (h, d+ e) = (✓X · g, d) ++ (g(d)) ^ g 2 �X · f



A.1. Proofs 155

⇤

Proof of Theorem 4.2.15.

We will show that the map f : M ! Exp that associates each mode with its expression
makes the diagram below commute.

M

hnxt,outi
✏✏

f
// Exp

�
✏✏

(M ⇥ Cmd)I
(f⇥id)I

// (Exp⇥ Cmd)I

After this we simply need to recall Examples 4.1.4 (5) to finish the proof. First, in order
to keep the notation simple, for a (� ⇥ Cmd)I -coalgebra (S, ha, bi) denote the function
a(� , i) by (� )i. Then, note that for every input i 2 I the equation out(ml, i) = out(✏l, i)

always holds. It remains to show that the equation (ml)i = (✏l)i also holds. So let us
reason,

(An
l )i = ((µml. l){A0

1/m1} . . . {An�1
n /mn})i

(Definition of (_)i and definition of  l)

= ( l{A0
1/m1} . . . {Al�2

l�1/ml�1}{Al
l+1/ml+1} . . . {An�1

n /mn})i[An
l /ml]

(Definition of  l and An
l has no free variables)

= ( l{A0
1/m1} . . . {Al�2

l�1/ml�1}[An
l /ml]{Al

l+1/ml+1} . . . {An�1
n /mn})i

(An
l has no free variables)

= ( l{A0
1/m1} . . . {Al�2

l�1/ml�1}{An
l /ml}{Al

l+1/ml+1} . . . {An�1
n /mn})i

(⇤)

= ( l{A0
1/m1} . . . {Al�2

l�1/ml�1}{Al�1
l /ml}{Al

l+1/ml+1} . . . {An�1
n /mn})i

(Definition of (_)i and definition of  l)

= Ak�1
k {Ak

k+1/xk+1} . . . {An�1
n /xn}

= An
k

The step (⇤) relies on the equality,

'{B{C1/y1} . . . {Cn/yn}/x}{C1/y1} . . . {Cn/yn} = '{B/x}{C1/y1} . . . {Cn/yn}

which always holds if ' does not bind the variables y1, . . . , yn. Note that Ak�1
k can only

bind the variables m1  m  mk.



156 A. proofs and lemmata

⇤

Proof of Lemma 5.1.21.

Let (fi : (X, c)! (Yi, di))i2I be a cone in CoAlg
�

F
�

and (fi : X ! Yi)i2I be initial with
respect to U : A! B. Consider another cone (gi : (Z, e)! (Yi, di))i2I in CoAlg

�

F
�

and
assume that its U -image is factorised as shown by the diagram below.

U(Z, e)

h
✏✏

Ug
i

%%

U(X, c)
Uf

i

// U(Yi, di)

(19)

The canonical forgetful functor CoAlg (F ) ! B yields the following factorisation of the
cone (Ugi : UZ ! UYi)i2I .

UZ

h
✏✏

Ug
i

""

UX
Uf

i

// UYi

Since the cone (fi : X ! Yi)i2I is initial with respect to U : A! B, there exists a unique
arrow h : Z ! X in A such that for all i 2 I the following equations hold.

gi = fi · h Uh = h

It remains to show that the arrow h : Z ! X is also a coalgebra homomorphism h :

(Z, e) ! (X, c). Diagram (19) tells that the equation Fh · �Z · Ue = �X · Uc · h holds,
which gives,

Fh · �Z · Ue = �X · Uc · h ⌘ FUh · �Z · Ue = �X · Uc · Uh

⌘ �X · UF h · Ue = �X · Uc · Uh (Naturality)

) UF h · Ue = Uc · Uh (� is mono)

⌘ U(F h · e) = U(c · h)

) F h · e = c · h (U is faithful)

⇤

Proof of Theorem 5.1.31.

Recall the definition of coreflection (e. g. [AHS09, Definition 4.25]) and observe that the
supremum of a set of G-subcoalgebras of (Y, d) always exists (Theorem 4.1.13). Since
there exists a fully faithful functor CoAlg (F ) ! CoAlg (G), we will interpret CoAlg (F )

as a full subcategory of CoAlg (G).
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Now, let us build the supremum C(Y, d) of G-subcoalgebras of (Y, d) as described
in the theorem’s statement. According to Lemma 5.1.30, the coalgebra C(Y, d) lives
in CoAlg (F ), and since it is a subcoalgebra of (Y, d), there exists a G-homomorphism
c : C(Y, d) ⇢ (Y, d) in M .

Then, consider an F -coalgebra (Z, z) with a G-homomorphism f : (Z, z)! (Y, d). We
need to show that it can be uniquely written as a composition,

(Z, z) // C(Y, d) //
c
// (Y, d)

with the first morphism living in CoAlg (F ). The factorisation of f : (Z, z)! (Y, d) yields
a subcoalgebra of (Y, d) that is smaller than C(Y, d). By Lemma 5.1.30, this subcoalgebra
also lives in CoAlg (F ). The claim then follows directly from � being mono.

⇤

Proof of Theorem 5.2.17.

Let us consider a partially ordered compact space (X,, ⌧) and its stably compact cor-
respondent (X,�). The underlying set of V(X,�) is the set of all lower-closed subsets of
(X,, ⌧), because the opens of (X,�) are precisely the upper-opens of (X,, ⌧).

We will now show that the specialisation order of V(X,�) is the inclusion ✓. Take
two lower-closed subsets A,B ✓ X and assume that A ✓ B. It follows that for every
upper-open U of (X,, ⌧) the condition A 2 U⌃ ) B 2 U⌃ holds, which proves that
A 2 {B}. Conversely, assume that A 2 {B}. Since B is lower-closed, the condition
A 2 (X\B)⌃ ) B 2 (X\B)⌃ holds and consequently A ✓ B.

Let us now concentrate on maps in PosComp. Document [Nac65, Proposition 4] shows
that for every function f : X ! Y in PosComp and every lower-closed subset A ✓ X, the
down-closure #f [A] is closed in Y . Observe that every closed set of (Y,�) that contains
f [A] must be down-closed and that #f [A] is the smallest such set.

It remains to prove that the patch topology of V(X,�) coincides with the topology
defined by (15). First note that every set of the form,

{A ✓ X | A lower-closed and A \ U 6= ?} (U ✓ X upper-open),

is open in V(X,�) and therefore is also open in the patch topology. For K ✓ X upper-
closed, the complement of the set,

{A ✓ X | A lower-closed and A \K = ?}

is equal to K⌃. Using Alexander’s Subbase Theorem, it is straightforwad to verify that
K⌃ is compact in V(X,�), because K is compact in X. Since the specialisation order of
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V(X,�) is subset inclusion, K⌃ is saturated in V(X,�) [Law11]. The topology generated
by (15) is thus coarser than the patch topology of V(X,�). Since the former is also
Hausdorff, by [Jun04, Lemma 2.2 (i)], both topologies coincide [Gou13, Theorem 4.4.27].

⇤

Proof of Proposition 5.2.19.

It is straightforward to show that the inequality #
T

A2AA ✓
T

A2A #A holds. In order to
prove that the reverse inequality also holds, consider an element z 2

T

A2A #A. For every
A 2 A, the set "z \ A is non-empty, and closed because the singleton {z} is compact
[Nac65, Proposition 4]. Since A is codirected, the set {"z \ A | A 2 A} has the finite
intersection property. Therefore, by compactness, it follows that "z\

T

A2AA 6= ?, which
implies that z 2 #

T

A2AA.

⇤

Proof of Proposition 5.3.4.

It follows from the exponential’s universal property that every component ⌘X : X ! HcX

is continuous. So it remains to show that all components µX : HcHcX ! HcX are
continuous as well. Via straightforward calculations, one proves that for every space X

the function µX is defined by,

µX(f, d) =
�

t 7! g (min(t, d), t� d) ,m(f, d)
�

where � : R�0 ⇥ [0,1]! R�0 is the truncated subtraction, m is the map defined by,

m(f, d) =

8

>

<

>

:

(⇡2 · f(d)) + d if d 6=1

1 otherwise

and g : R�0 ⇥ R�0 ! X is the function obtained from f by via the continuous map
Hc⇡1 and the property of exponential functors being product preserving. Therefore, the
proof is finished once shown that the three maps min,�, and m are continuous. This is
achieved by an application of Lemma A.2.10.

⇤

Proof of Proposition 5.3.8.

Let X and Y be topological spaces. For all S 2 VX and y 2 Y , since S is compact, the



A.1. Proofs 159

product S⇥{y} is also compact, which entails that S⇥{y} 2 V(X⇥Y ). Then, continuity
of the map ⌧X,Y is a direct consequence of the equalities below.

⌧�1
X,Y

h⇣

[

i2I
Ui ⇥ Vi

⌘⌃ i
=
[

i2I
(Ui)

⌃ ⇥ Vi

⌧�1
X,Y

h⇣

[

i2I
Ui ⇥ Vi

⌘⇤ i

=
[

n⇣

[

i2F
Ui

⌘⇤
⇥
\

i2F
Vi | F ✓ I finite

o

The proof that all naturality squares commute is straightforward.

⇤

Proof of Theorem 5.4.9.

First, observe that there exists a retraction,

Hc
)  ((

d� e
hhhh (� )R�0 ⇥ [0,1]

with the epimorphism is defined at each space X by d(f, d)eX = (f ·min(� , d), d). Then
let F be the set of functions,

m : [0,1]⇥ [0,1]! Hc(R�0 + R�0)

such that for every i, j 2 [0,1], m(i, j) is a pair (f, k) with f [R�0] ✓ [0, i]+[0, j]. Let also
Fc be the subset of F whose maps are continuous. Lemma A.2.11 provides the diagram
below.

[Top,Top](Hc ⇥Hc,Hc)
� �

// [Top, Set](UHc ⇥UHc,UHc)

'
✏✏

Fc
� �

// F

Our strategy is to show that the composition in the upper right corner factorises through
the inclusion Fc ,! F , and that the composition in the bottom right corner factorises
through the other inclusion [Top,Top](Hc ⇥Hc,Hc) ,! [Top, Set](UHc ⇥UHc,UHc).

Now, Lemma A.2.11 tells that the composition in the upper right corner sends a natural
transformation ↵ : Hc⇥Hc ! Hc to the map m : [0,1]⇥ [0,1]! Hc(R�0+R�0) defined
by,

m(i, j) = ↵R�0+R�0
(d(i1, i)e, d(i2, j)e)

with i1, i2 : R�0 ! R�0 + R�0 the usual injections into the non-negative reals. This
makes easy to see that m is a composition of continuous maps.
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Let us now focus on the composition in the bottom right corner. Pick a continuous map
m : [0,1] ⇥ [0,1] ! Hc(R�0 + R�0). In Lemma A.2.11, we saw that the composition
sends this map to the natural transformation ↵m : Hc ⇥Hc ! Hc that is defined at each
space X by,

↵m
X((f, i), (g, j)) = ([f, g] · (⇡1 ·m(i, j)),⇡2 ·m(i, j))

Alternatively, ↵m
X can be written as the composition of continuous maps below, which

proves its continuity.

HcX ⇥HcX
(⇤)
⇢ XR�0 ⇥XR�0 ⇥ [0,1]⇥ [0,1]

' XR�0+R�0 ⇥ [0,1]⇥ [0,1]

id⇥m�! XR�0+R�0 ⇥Hc(R�0 + R�0)

,! XR�0+R�0 ⇥ (R�0 + R�0)
R�0 ⇥ [0,1]

( · )⇥id�! XR�0 ⇥ [0,1]

d� e
⇣ HcX

The map (⇤) arises from the inclusion HcX ,! XR�0 ⇥ [0,1] and the swap operation
A ⇥ B ⇢ B ⇥ A. The isomorphism results from coproducts of locally compact spaces
being locally compact as well [Gou13].

⇤

a.2 lemmata

Lemma A.2.1. The following conditions hold for every set X.

(i) Every evolution (f, d) 2 HX has (f(0), 0) as a left unit and (f(d), 0) as a right unit.

(ii) Consider three evolutions (f, d), (g, e), (h, i) 2 HX. If f(d) = g(0) and g(e) = h(0)

then (f ++ g) ++ h = f ++ (g ++ h).

Proof. Consider two intervals [0, d] and [0, e]. They induce the pushout depicted in the
diagram below.

1
0

//

d
✏✏

[0, e]

(+d)
✏✏

g

◆◆

[0, d] �
�

//

f 00

[0, d+ e]

f++g

&&

X
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Using this property, it is easy to show that (f(0), 0) is a left unit for (f, d). In fact, the
pairs (f(0), 0), (f, d) give rise to the commutative diagram,

1
0

//

0
✏✏

[0, d]

(+0)

✏✏

f

✓✓

[0, 0] �
�

//

f(0)
11

[0, 0 + d]

f(0)++f

&&

X

and since (+0) = id, the equation f(0) ++ f = f must hold. An analogous reasoning
shows that (f(d), 0) is a right unit for (f, d).

In order to show that (ii) holds, we will prove that both morphisms (f ++ g) ++ h and
f ++ (g ++ h) mediate the diagram of pushouts below.

1
0

⌧⌧

d+e

⇡⇡

1
0

//

e
✏✏

[0, i]

+e

✏✏

1

0
))

d
))

1
0

//

d

✏✏

[0, e]

+d

✏✏

� �
// [0, e+ i]

+d

✏✏

g++h



[0, d] �
�

// [0, d+ e] �
�

//

f++g
33

[0,d+ e+ i]

%%

X

Start with (f ++ g) ++ h. We need to prove that the following system of equations holds.

8

>

<

>

:

((f ++ g) ++ h) · ◆[0,d+e] = f ++ g

((f ++ g) ++ h) · (+d) = g ++ h
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The equation ((f ++ g) ++ h) · ◆[0,d+e] = f ++ g holds because (f ++ g) ++ h arises from the
pushout below.

1
0

//

d+e
✏✏

[0, i]

(+d)·(+e)
✏✏

h

��

[0, d+ e] �
�

//

f++g

44

[0, d+ e+ i]

(f++g)++h

%%

X

In regard to equation ((f ++ g) ++ h) · (+d) = g ++ h, observe that it is equivalent to the
following system of equations.

8

>

<

>

:

((f ++ g) ++ h) · (+d) · (+e) = h

((f ++ g) ++ h) · (+d) · ◆[0,e] = g

Clearly, the first equation holds. For the second one, we calculate,

((f ++ g) ++ h) · (+d) · ◆[0,e] = ((f ++ g) ++ h) · ◆[0,d+e] · (+d)

= (f ++ g) · (+d)

= g

The proof that f ++(g++h) also mediates the diagram follows by an analogous reasoning.

Lemma A.2.2. The equation ✓ ·H✓ = ✓ · µ holds.

Proof. One simply calculates,

✓ · µ = ✓ · (++) · hH✓,�Hi

= ✓ · ⇡1 · hH✓,�Hi

= ✓ ·H✓

Lemma A.2.3. The following diagram commutes.

H⇤H⇤
µ
//

H⇤✓
✏✏

H⇤

✓
✏✏

H⇤
✓
// Id
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Proof. For evolutions with finite duration the proof is essentially that of Lemma A.2.2.
For evolutions with infinite duration one just needs to show that the left square in the
diagram below commutes, which is clearly true.

IH⇤ // //

I✓
✏✏

i2·I✓

%%

H⇤H⇤
µ
//

H⇤✓
✏✏

H⇤

✓
✏✏

I // // H⇤
✓
// Id

Lemma A.2.4. Every map h 2 H⇤X induces a functor,

(h++ � ) : (H⇤X,v)! (H⇤X,v)

that preserves colimits.

Proof. Take a diagram functor D : I ! (H⇤X,v). If the family ⇡2 · D is bounded and
has no greatest element then there is no colimit to preserve (see Remark 3.4.11). On the
other hand, if ⇡2 · D is unbounded, i. e. if Condition (7) holds, the family ⇡2 · (h ++ D)

is unbounded as well, and thus h ++ (colim D) is a cocone for h ++ D . Since there can
only be one such cocone, due to the unboundedness property, it must also be a colimit for
h++D . If ⇡2 ·D has a greatest element then D has a final object, i. e. Condition (8) holds,
which by definition is a colimit for D . Since (h ++ � ) is a functor, the diagram h ++ D

has h++ (colim D) as a final object which again by definition is a colimit for h++D .

Lemma A.2.5. Consider a hybrid automaton, the corresponding P-representation (M, c) 2
RepHyb(P), and a �-bisimulation R ✓ Z ⇥ Z. The relation R ✓ Z ⇥ Z is a coalgebraic
�-bisimulation as well.

Proof. Assume that (m1, v1)R(m2, v2). We will show that the following cases hold.

• The condition
�

⇡2 · JcK†(m1, v1)
�

�
�

⇡2 · JcK†(m2, v2)
�

holds.

(m1, v1)R (m2, v2)

( Definition of �-bisimulation and Theorem 4.4.3 )

)
�

⇡2 · JcK†(m1, v1)
�

R
�

⇡2 · JcK†(m2, v2)
�

( Definition of �-bisimulation )

)
�

⇡2 · JcK†(m1, v1)
�

�
�

⇡2 · JcK†(m2, v2)
�
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• For every x 2
�

⇡1 · JcK†(m1, v1)
�

there exists y 2
�

⇡1 · JcK†(m2, v2)
�

such that x R y.

Let vl1 be �Rn · ⇡2 · JcK(m1, v1) – i. e. the last point of the evolution generated by
(m1, v1) – and similarly for vl2. Then,

(m1, v1)R (m2, v2), x 2
�

⇡1 · JcK†(m1, v1)
�

( Definition of �-bisimulation and Theorem 4.4.3 )

) (m1, v
l
1)R (m2, v

l
2)

( Definition of �-bisimulation and Theorem 4.4.3 )

) (m2, v
l
2)

⇤! y, x R y

( Theorem 4.4.3 )

) y 2
�

⇡1 · JcK†(m2, v2)
�

, x R y

• For every y 2
�

⇡1 · JcK†(m2, v2)
�

there exists x 2
�

⇡1 · JcK†(m1, v1)
�

such that x R y.

Analogous to the previous case.

To assume that R ✓ Z ⇥ Z is a coalgebraic �-bisimulation does not entail that it is a
�-bisimulation. This is explained by our adoption of the black-box perspective which,
in contrast to the traditional semantics of hybrid automata, interprets the valuations
between jumps as outputs and not as internal states. We can, however, construct a
relation R ✓ Z ⇥ Z such that R ✓ R and show that it is a �-bisimulation: define R as
the smallest relation such that R ✓ R and if x R y then

�

⇡2 · JcK†(x)
�

R
�

⇡2 · JcK†(y)
�

.

Lemma A.2.6. Consider a hybrid automaton, the corresponding P-representation (M, c) 2
RepHyb(P), and a coalgebraic �-bisimulation R ✓ Z ⇥ Z. The relation R ✓ Z ⇥ Z is a
�-bisimulation.

Proof. Assume that (m1, v1)R (m2, v2). We will show that the following cases hold.
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• The condition (m1, v1) � (m2, v2) holds.

(m1, v1)R (m2, v2)

( Definition of R )

) 9a, b 2 Z, r 2 R�0. a R b ^
�

⇡2 · JcK†(a)
�

(r) = (m1, v1) ^
�

⇡2 · JcK†(b)
�

(r) = (m2, v2)

( Definition of coalgebraic �-bisimulation )

) (m1, v1) � (m2, v2)

• If (m1, v1)
l! x then there exists a state y such that (m2, v2)

l! y and x R y.

In the case of an evolution step,

(m1, v1)R (m2, v2), (m1, v1)
r!
�

⇡2 · JcK†(m1, v1)
�

(r)

( Definition of R )

)
�

⇡2 · JcK†(m1, v1)
�

R
�

⇡2 · JcK†(m2, v2)
�

, (m1, v1)
r!
�

⇡2 · JcK†(m1, v1)
�

(r)

( Theorem 4.4.3 )

) (m2, v2)
r!
�

⇡2 · JcK†(m2, v2)
�

(r),
�

⇡2 · JcK†(m1, v1)
�

(r)R
�

⇡2 · JcK†(m2, v2)
�

(r)

In the case of a discrete transition,

(m1, v1)R (m2, v2), (m1, v1)
⇤! x

( Definition of R )

) 9a, b 2 Z, r 2 R�0. a R b ^
�

⇡2 · JcK†(a)
�

(r) = (m1, v1) ^
�

⇡2 · JcK†(b)
�

(r) = (m2, v2)

(
�

⇡1 · JcK†(a)
�

=
�

⇡1 · JcK†(m1, v1)
�

and Theorem 4.4.3 )

) x 2
�

⇡1 · JcK†(a)
�

( Definition of coalgebraic �-bisimulation )

) y 2
�

⇡1 · JcK†(b)
�

, x R y

(
�

⇡1 · JcK†(b)
�

=
�

⇡1 · JcK†(m2, v2)
�

, Theorem 4.4.3, and R ✓ R )

) (m2, v2)
⇤! y, x R y

• If (m2, v2)
l! y then there exists a state x such that (m1, v1)

l! x and x R y.
Analogous to the previous case.
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Lemma A.2.7. Consider a probabilistic hybrid automaton, the corresponding PD-represen-
tation (M, c) 2 RepHyb(PD), and a �-bisimulation R ✓ Z ⇥ Z. The relation R ✓ Z ⇥ Z

is a coalgebraic �-bisimulation as well.

Proof. Analogous to Lemma A.2.5.

Lemma A.2.8. Consider a probabilistic hybrid automaton, the corresponding PD-represen-
tation (M, c) 2 RepHyb(PD), and a coalgebraic �-bisimulation R ✓ Z ⇥ Z. The relation
R ✓ Z ⇥ Z is a �-bisimulation.

Proof. Assume that (m1, v1)R (m2, v2). We will show that the following cases hold.

• The condition (m1, v1) � (m2, v2) holds.

(m1, v1)R (m2, v2)

( Definition of R )

) 9a, b 2 Z, r 2 R�0. a R b ^
�

⇡2 · JcK†(a)
�

(r) = (m1, v1) ^
�

⇡2 · JcK†(b)
�

(r) = (m2, v2)

( Definition of coalgebraic �-bisimulation )

) (m1, v1) � (m2, v2)

• If (m1, v1)
l! µ1 then there exists µ2 such that (m2, v2)

l! µ2 and µ1 ⇣R µ2.

Let us first consider an evolution step.

Denote
�

⇡2 · JcK†(m1, v1)
�

(r) by x,
�

⇡2 · JcK†(m2, v2)
�

(r) by y, and assume that
(m1, v1)

r! �x. It is then straightforward to prove that (m2, v2)
r! �y, so we will

just show that the condition �x ⇣R �y holds. Consider the Dirac distribution �(x,y)
of (x, y). We will show that the three conditions below hold.

1. �(x,y)(a, b) > 0 entails a R b.

(m1, v1)R (m2, v2), �(x,y)(a, b) > 0

( Definition of R )

)
�

⇡2 · JcK†(m1, v1)
�

R
�

⇡2 · JcK†(m2, v2)
�

, �(x,y)(a, b) > 0

( Definition of �(x,y) )

) a R b
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2. �x(a) = �({a}⇥ Z).

Follows directly from the definition of �(x,y).

3. �y(b) = �(Z ⇥ {b}).

Analogous to the previous case.

For the discrete case, assume that (m1, v1)R (m2, v2) and (m1, v1)
⇤! µ1.

(m1, v1)R (m2, v2), (m1, v1)
⇤! µ1

( Definition of R )

) 9a, b 2 Z, r 2 R�0. a R b ^
�

⇡2 · JcK†(a)
�

(r) = (m1, v1) ^
�

⇡2 · JcK†(b)
�

(r) = (m2, v2)

(
�

⇡1 · JcK†(a)
�

=
�

⇡1 · JcK†(m1, v1)
�

and Theorem 4.4.4 )

) µ1 2
�

⇡1 · JcK†(a)
�

( Definition of coalgebraic �-bisimulation )

) µ2 2
�

⇡1 · JcK†(b)
�

, µ1 ⇣R µ2

(
�

⇡1 · JcK†(b)
�

=
�

⇡1 · JcK†(m2, v2)
�

, Theorem 4.4.4, and R ✓ R )

) (m2, v2)
⇤! µ2, µ1 ⇣R µ2

• If (m2, v2)
l! µ2 then there exists µ1 such that (m1, v1)

l! µ1 and µ1 ⇣R µ2.
Analogous to the previous case.

Lemma A.2.9. All polynomial functors in Top preserve regular monomorphisms.

Proof. Let us start by recalling a few categorical definitions that concern the notion of
regular monomorphism.

A category C is said to be connected if it is non-empty and every two objects A,B 2 C

can be connected by a finite zig-zag of morphisms as depicted below.

A ·! · · · ·! B

A diagram D : I ! C is called a connected diagram if I is connected, and a limit of D is
called a connected limit if D : I ! C is connected. Recall that a regular monomorphism
is an equaliser of a pair of morphisms, and that equalisers are connected limits.
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Then, note that the identity functor Id : Top ! Top preserves all limits and that the
constant functor A : Top ! Top trivially preserves the connected ones. The functor
(⇥) : C ⇥ C ! C is right adjoint, so if two functors F,G : C ! C preserve limits of
a certain type their product preserves limits of this type as well. Finally, it is well-
known that the functor (+) : Set⇥ Set! Set preserves connected limits, so observe that
(+) : Top ⇥ Top ! Top preserves initial cones and apply Theorem 5.1.17. This entails
that if two functors F,G : C! C preserve connected limits their sum preserves limits of
this type as well.

Lemma A.2.10. Consider a continuous map f : X ⇥ R�0 ! Y . If the conditions below
are satisfied, it can be extended into a continuous map of the type X ⇥ [0,1]! Y .

1. For every element x 2 X, the limit limr!1 f(x, r) is well-defined.

2. For every element x 2 X and neighbourhood V of limr!1 f(x, r), there exists a
neighbourhood U of x and a number k 2 R�0 such that,

f [U ⇥ (k,1)] ✓ V

Proof. Consider a continuous function f : X⇥R�0 ! Y . We can extend it into a function
f : X ⇥ [0,1]! Y by applying condition (1); more concretely, by defining,

f(x,1) = lim
r!1

f(x, r)

at every point (x,1) 2 X⇥[0,1]. It remains to show that the extended map is continuous
at the point (x,1). So take a neighbourhood V of f(x,1). Condition (2) provides an
open U ⇥ (k,1) such that,

f [U ⇥ (k,1)] = f [U ⇥ (k,1)] ✓ V

Since f(x,1) 2 V , the condition f [U ⇥ (k,1]] ✓ V holds, and clearly the property
(x,1) 2 U⇥ (k,1] holds as well. The proof then follows from the definition of continuity
in terms of neighbourhoods.

Lemma A.2.11. Let U : Top! Set be the forgetful functor that sends topological spaces
to their carrier. The natural transformations UHc ⇥ UHc ! UHc are in bijective cor-
respondence with the maps m : [0,1] ⇥ [0,1] ! UHc(R�0 + R�0) such that for every
i, j 2 [0,1], m(i, j) is in the image of Hc(◆i + ◆j).
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Proof. Let # (� ) be the operation that sends an element a 2 [0,1] to the down-closure
{r 2 R�0 | r  a}, and observe that for every i, j 2 R�0 there exists an injection,

Hc(◆i + ◆j) : Hc(# i+ # j) ⇢ Hc(R�0 + R�0)

There also exists an isomorphism,

UHc '
a

i2[0,1]

hom(# i, � )

Moreover, in Top binary products distribute over arbitrary coproducts. It follows that,

UHc ⇥UHc '
⇣

a

i2[0,1]

hom(# i, � )
⌘

⇥
⇣

a

j2[01]

hom(# j, � )
⌘

'
a

i,j2[0,1]

hom(# i, � )⇥ hom(# j, � )

'
a

i,j2[0,1]

hom(# i+ # j, � )

where the last step follows from contravariant hom functors sending colimits to limits.
Then we calculate,

[Top, Set] (UHc ⇥UHc,UHc) ' [Top, Set]
⇣

a

i,j2[0,1]

hom(# i+ # j, � ),UHc

⌘

'
Y

i,j2[0,1]

[Top, Set] (hom(# i+ # j, � ),UHc)

'
Y

i,j2[0,1]

UHc(# i+ # j)

where the last step is an application of the Yoneda lemma. Given an element s 2
Q

i,j2[0,1]UHc(# i+ # j) with components sij = (aij , bij) 2 UHc(# i+ # j), the respective
natural transformation ↵s is defined at each X by,

↵s
X((f, i), (g, j)) = ([fi, gj ] · aij , bij)

where fi and gj are the restrictions of f and g to the domains # i and # j, respectively.
The injection Hc(◆i + ◆j) : Hc(# i+ # j) ⇢ Hc(R�0 + R�0) gives rise to the composition,

[Top, Set](UHc ⇥UHc,UHc)

'
✏✏

hom([0,1]⇥ [0,1],UHc(R�0 + R�0))

Q

i,j2[0,1]UHc(# i+ # j) // //
Q

i,j2[0,1]UHc(R�0 + R�0)

'

OO
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whose image (isomorphic to the domain) is the set of functions m : [0,1] ⇥ [0,1] !
UHc(R�0+R�0) such that for every i, j 2 [0,1], m(i, j) is in the image of Hc(◆i+ ◆j) i. e.
for every elements i, j 2 [0,1], m(i, j) is a pair (f, k) with f [R�0] ✓ [0, i] + [0, j].

Lemma A.2.12. Let D : R�0 ! Top be the diagram functor that sends a non-negative
real number i to the subspace [0, i) and the arrow i  j to the respective inclusion map.
The contravariant exponential functor X(� ) : Topop ! Top sends the colimit of D to the
limit of XDop

: (R�0)
op ! Top.

Proof. The hom functor hom : (� , X) : Topop ! Set sends colimits to limits. So accord-
ing to Theorem 5.1.17, we just need to show that the cone,

⇣

fi : X
R�0 ! X [0,i)

⌘

i2R�0

formed by the maps fi that restrict a function’s domain to [0, i), respects the following
condition: for every subbasic set [K,U ] of XR�0 there exists a non-negative real number
i and an open subset V of X [0,i) such that [K,U ] = f�1

i (V ).
The subset K ✓ R�0 is compact, therefore there exists a non-negative real number i

such that K ✓ [0, i). It is then routine to show that [K,U ] = f�1
i ([K,U ]).
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