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A B S T R A C T

Gracilaria tikvahiae, an endemic western North Atlantic red alga, was cultivated for nutrient bioextraction in
urbanized estuarine waters in Long Island Sound and the Bronx River Estuary, USA. This study assesses the
feasibility of an integrated approach of using G. tikvahiae produced in this bioextraction system as sustainable
biomass source for agar production. Agars were extracted after alkaline pre-treatment and characterized in terms
of gelling strength, chemical composition, chemical structure and gel structure. Results indicated that this
seaweed performed similar to other cultivated Gracilaria in terms of extraction yield and gelling strength of the
agar. Differences between sites were not significant in terms of agar gel strength, though yield was higher at
Long Island Sound. The extracted agars were sulfated, methylated and with no detectable pyruvate substituents.
It is possible to use an integrated strategy of nutrient bioextraction in urbanized estuarine waters and agar
exploitation with G. tikvahiae.

1. Introduction

With increasing ecological concerns and with the world aiming to
build a sustainable future, the use of biodegradable and biocompatible
materials is becoming a true necessity of modern times. In this respect,
seaweed polysaccharides have long been explored in the manufacture
of biomaterials covering a broad spectrum of areas as diverse as food,
biomedical, pharmaceutical and biotechnological sciences (Matsuhashi,
1990; Pereira & Yarish, 2008; Rinaudo, 2008). Agars extracted from
some red seaweeds are made up of two main fractions: agarose and
agaropectin. Agarose is a neutral polysaccharide responsible for the
gelling ability of agar and its basic repeating unit is the alternating 1,3-
linked β-D-galactopyranose and 1,4-linked 3,6-anhydro-α-L-galactopyr-
anose. Agaropectin results from the presence of several substituent
groups in the basic repeating unit such as sulfates, methyl ethers and
pyruvates at different positions along the polysaccharide chain and
constitutes the non-gelling polymer fraction (Lahaye & Rochas, 1991;
Rees, 1969). Depending on the molecular weight and on the type,
pattern and degree of substitution, different functional properties are
achieved and a wide range of applications can be considered

(Villanueva, Sousa, Goncalves, Nilsson, & Hilliou, 2010).
The ability to produce commercial grade seaweed polysaccharides

in sufficient amounts that enable a broader exploitation of these bio-
materials is a crucial step towards its sustainability. Commercial grade
agars are mainly extracted from red seaweeds, including species of
Gelidium and/or Gracilaria/Gracilariopsis. Bacteriological or pharma-
ceutical agars and agarose are traditionally produced from wild har-
vested Gelidium. Gracilaria/Gracilariopsis species usually lead to weaker
agar gels, suitable for food applications, but these taxa are easily cul-
tivated. Gracilaria/Gracilariopsis have been mostly cultivated in two
Asian countries, China and Indonesia. These two countries produce
approximately 98% of global production (FAO, 2016; Kim, Yarish,
Hwang, Park, & Kim, 2017). In the Americas, Chile produces nearly 13
tons of dried extract powder per year with an annual value of US $29
million (FAO, 2016). Agars from Gelidium present typically a low de-
gree of substitution and, thus low sulfate content, resulting in agars
with high gel strength. On the other hand, agars from Gracilaria/Gra-
cilariopsis have usually higher sulfate contents resulting in lower gelling
capability. However, geographic factors, seasonal variations, growth
stages, nutrient availability and environmental conditions can influence
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the synthesis, yield and chemistry of agar leading to a high hetero-
geneity of agars (Lahaye & Rochas, 1991). The extraction conditions
(e.g. time, temperature, solvent to seaweed ratio) can also be refined to
produce agars with an enhanced gelling ability (Arvizu-Higuera,
Rodriguez-Montesinos, Murillo-Alvarez, Munoz-Ochoa, & Hernandez-
Carmona, 2008; Sousa, Alves, Morais, Delerue-Matos, & Goncalves,
2010). Chemical treatments are also used for improving the properties
of extracted agars. Alkaline hydrolysis of agars from Gracilaria prior to
extraction allows the conversion of L-galactose 6-sulfate units to the 3,6-
anhydro-L-galactose residues responsible for the ability of the polymer
to form a gel.

Agar's unique gelling properties make it particularly suitable for
food applications. Its gelling strength is high, even at low concentra-
tions, gelation is reversible, though it only melts above 80 °C avoiding
the need for refrigeration (an advantage over gelatin), and it can retain
its gelling ability even at high temperature, allowing proper steriliza-
tion. Furthermore, its high temperatures resistance widens its usability,
allowing, e.g., its use as thickening or stabilizing agent in the baking
industry. In adition, it is tasteless and does not need the presence of
extra reagents to induce gelation, being preferred over a wide range of
other phycocolloids or gums. In fact, ca. 90% of the produced agar is
used for food applications (McHugh, 2003), and its price is generally
higher than for other food grade phycocolloids (Porse & Rudolph,
2017). Nevertheless, other emerging food applications include its use in
low fat food as a fat replacer, in prebiotics, and as an edible film-
forming or coating-forming agent.

No short term shortage of Gracilaria is predicted, due to the growth
of Chinese and Indonesian production and processing capacities, and its
price has decreased significantly in this last decade (Porse & Rudolph,
2017). However, this decrease in the price of raw materials did not have
relevant impact in the final price of food grade agar. Due to the
alarming decrease in natural populations of Gelidium, high grade agar is
becoming scarce (Porse & Rudolph, 2017; Santos & Melo, 2018).

Seaweeds can be used as biofilters, removing nutrients, heavy me-
tals and other organic and inorganic matters from the ecosystem. This
process is now called nutrient bioextraction (Kim, Kraemer, & Yarish,
2014, 2015a; Rose et al., 2015). Some species of Gracilaria have proven
to be good candidates for nutrient bioextraction removing inorganic
nutrients from urbanized coastal waters (Abreu et al., 2009; Abreu,
Pereira, Yarish, Buschmann, & Sousa-Pinto, 2011; Kim et al., 2014;
Rose et al., 2015). The high volume of biomass generated in these
nutrient bioextraction systems can lead to a sustainable source of these
hydrocolloids.

Gracilaria tikvahiae is native to western Atlantic Ocean, extending
from Nova Scotian, cold temperate regions, to Florida and into the
Caribbean, warm subtropical regions (Ganesan, 1989; Littler & Littler,
2000; Mathieson & Hehre, 1986; McLachlan, 1979; Schneider,
Suyemoto, & Yarish, 1979). This alga is known to be a highly oppor-
tunistic species occurring in eutrophic estuaries and bays (Peckol &
Rivers, 1995). G. tikvahiae may grow up to 40 cm long and its thallus
color can be highly variable, ranging from dark green to red and brown
(Littler, Littler, Bucher, & Norris, 1989). Green mutants have been re-
ported (Kim, Mao, Kraemer, & Yarish, 2015b). Its branches spread ir-
regularly and can be either somewhat flattened or cylindrical (Littler
et al., 1989). Interestingly, particular morphtypes can persist even
when cultured under uniform conditions, suggesting the morphological
differences are genetically controlled (Patwary & Meer, 1984). Graci-
laria tikvahiae is a euryhaline species (Bird, Chen, & McLachlan, 1979;
McLachlan & Bird, 1984). For example, G. tikvahiae collected from
Tampa Bay, FL survived salinities between 8 and 60 psμ and was re-
ported to grow well between 15 and 35 psμ (Bird & McLachlan, 1986).
Furthermore, G. tikvahiae grows well at high temperature up to 29 °C
but was found to not grow at prolonged sub-optimal temperatures
(e.g. < 15 °C; Lapointe, Rice, & Lawrence, 1984; Gorman, Kraemer,
Yarish, Boo, & Kim, 2017).

There have been attempts to cultivate Gracilaria tikvahiae to use the

biomass as a source of agar in North America (Bird, Hanisak, & Ryther,
1981; Cheney, Mar, Saga, & Meer, 1986; Craigie & Jurgens, 1989;
Craigie & Wen, 1984). These authors have not only cultivated local
populations of G. tikvahiae but also developed selected mutants. Some
mutants (e.g. MP-40 and MP-44) showed superior characteristics in
terms of their agar quality in comparison to the wild type clones
(Patwary & Vandermeer, 1983; 1984). Although the extraction of agar
from Gracilaria tikvahiae was a very active pursuit at laboratory scale in
the 1980s, we are not aware of any studies on agar extraction from this
species during recent years. Furthermore, no studies were found dealing
with the integrated exploitation of agars from bioextraction systems,
nor with the agar extraction from G. tikvahiae cultivated in open waters.

This study follows a field-scale evaluation of Gracilaria tikvahiae
aquaculture as a nutrient bioextraction strategy in Long Island Sound
and the Bronx River Estuary, USA. Therefore, the objective of this study
was to assess the feasibility of integrating the exploitation of agars in
bioextraction systems using Gracilaria tikvahiae. Seaweeds were culti-
vated at two different open water farms, Long Island Sound (LIS) and at
the mouth of the Bronx River estuary (BRE), and the agar quality from
the cultivated Gracilaria biomass was monitored in terms of yield, gel
strength (GS), sulfate and 3,6-anhydro-L-galactose content contents
(3,6-AG), gel structure and NMR chemical and structural profile.

2. Materials and methods

Commercial agar (ref. A-7002 with an ash content of 2–4.5%) was
obtained from Sigma-Aldrich Co. (St. Louis, MO). All other chemicals
were of analytical grade.

2.1. Cultivation and sampling

Gracilaria tikvahiae (G-RI-ST1) was cultivated by means of two, 50 m
long-line culture systems at two, near-shore sites in Long Island Sound
(LIS; Fairfield, CT; 41º06.882′ N/73º15.277’ W) and at the mouth of the
Bronx River Estuary (BRE; Bronx, NY; 40° 48.047′N/73° 52.164′W). The
long-lines were deployed at two depths (0.5 m and 1.0 m) in July 28,
2011 in LIS and in September 20, 2011 at the BRE site. Twenty gram
bundles of G. tikvahiae thalli were inserted into nylon rope (5/8” high
liner sink line) for every condition tested. The samples were randomly
collected from each seaweed culture unit and then transferred to the
laboratory in a cooler within 2 h. After the material was washed with
autoclaved seawater, the samples were dried in an oven at 55 °C until
they were completely dried.

Salinity at the LIS site during the growing season ranged from 26 to
30 psμ. The salinity at the BRE site was slightly lower and ranged from
20 to 25 psμ. Light penetration did not differ between sites during the
growing season. At the LIS site, the light penetration was 81.2%
(SD ± 9.2%) at 0.5 m and 53.2% (SD ± 14.4%) at 1.0 m deep, during
midday on cloudless days. At the BRE site, it was 80.5% (±10.0%) at
0.5 m and 48.2% (± 4.9%) at 1.0 m deep during midday on cloudless
days. The water temperature was measured at both culture depths
during sampling using a YSI 556 MPS meter. The temperature was si-
milar at both sites and at both culture depths. The water temperature
from July to September was 22–24 °C and started to drop below 20 °C in
October and reached below 13 °C in early November. Water samples
(n= 3) were also collected adjacent to the longlines at 1.0 m and then
transferred to the laboratory in a cooler within 2 h. The samples were
filtered through 0.45 μm glass microfiber filters (Whatman,
Buckinghamshire, UK) and kept at −20 °C until measurements were
made. Inorganic nutrients were analyzed using a SmartChem Discrete
Analyzer (Unity Scientific, LLC, Brookfield, CT, USA). Nitrogen and
phosphorus concentrations in the water column at the LIS site during
the month of July 2011 ranged for 2.7–3.4 μmol L−1 and
0.9–1.2 μmol L−1, respectively. The nitrogen and phosphorus con-
centrations at this site started to increase from late August and were as
high as 8.4 and 4.7 μmol L−1, respectively. The nutrient concentrations
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at the BRE site were significantly higher than those at the LIS site
(37–55 μmol L−1 of nitrogen and 14–19 μmol L−1 of phosphorus, re-
spectively, during the months of August through October 2011).

2.2. Agar extraction and purification

Agar was hot-water extracted from the dried biomass using pre-
viously optimized conditions (Villanueva et al., 2010). The dried sea-
weeds (4 g) were pre-treated with 200mL of NaOH 6% (w/w) at 85 °C
for 3.5 h. The mixture was washed several times with tap water and
neutralized with 200mL of acetic acid 0.5% (w/w) for 1 h at room
temperature. The extraction was then performed with 200mL distilled
water at 85 °C for 2 h and the mixture was filtered whilst still hot with a
filter cloth (100% cotton). Agar was recovered through a freeze-
thawing process, washed, dehydrated with ethanol (96%) and dried at
60 °C overnight. The obtained products were milled in a coffee grinder.
Finally, agar samples were purified by heat solubilization at 0.2% (w/
w) followed by centrifugation in a Beckman Coulter Allegra 25R cen-
trifuge (40 °C, 21000×g for 1 h) and dried at 60 °C.

2.3. Gel strength

Agar (1.5% w/w) was solubilized with distilled water at boiling
temperature until complete dissolution. 15 g of the hot solution were
poured into a cylindrical container with 30mm diameter covered and
allowed to rest at room temperature for ca. 20 h. A texture analyzer
(TA-XT2 from Stable Micro Systems, Surrey, England) equipped with a
cylindrical probe with 10mm diameter was used for the gel strength
determination. The rate of penetration was set at 0.2 mm/s and the
experiment was performed at least in triplicate for each agar sample.
Gel strength was considered to be the stress required for breaking the
gel surface, with the test parameters used.

2.4. Gelling and melting temperatures

Agar (1.5% w/w) was solubilized with distilled water at boiling
temperature until complete dissolution. Gelling and melting tempera-
tures were measured in a controlled stress rheometer AR-G2 (TA
Instruments, New Castle, USA) fitted with a parallel cross hatched plate
geometry (40mm diameter, gap 1000 μm). The solution was de-gassed
and poured onto the pre-heated plate of the rheometer. Liquid paraffin
oil was used to prevent water loss. A temperature ramp from 80 to 20 °C
at the rate of 2 °C/min was applied. The sample was equilibrated for
30min at 20 °C and heated from 20 to 95 °C with the same rate of 2 °C/
min. Storage and viscous moduli were recorded at the end of the
equilibration time at 20 °C. All experiments were performed with a
frequency of 6.28 rad/s and 1.0% strain. Preliminary strain sweep tests
were performed to ensure that the used strain was within the linear
visco-elastic region.

2.5. Chemical analyses

Sulfate content was estimated by turbidimetry using the method
with BaCl2 after hydrolysis, as described by Jackson and McCandless
(1978). Agar samples (approx. 20mg) were pre-hydrolyzed in 10mL
HCl of 1mol/L concentration and subsequently diluted to a final vo-
lume of 50mL. The precipitating reagent was then added to the samples
and the optical density read at a wavelength of 500 nm using a UV/Vis
spectrometer (Jasco, V-630 Bio). Sulfate standards were prepared with
sodium sulfate at final concentrations ranging from 0.002 to 0.09% (w/
w) and treated in the same manner as the hydrolyzed samples. The 3,6-
anhydro-L-galactose content (3,6-AG) was determined through the re-
sorcinol–acetal colorimetric method (Yaphe & Arsenault, 1965). D-
fructose was used as standard. All chemical determinations were made
in triplicate.

2.6. Structure

The samples with highest and lowest gelling ability were further
characterized through Nuclear Magnetic Resonance spectroscopy
(NMR), attenuated total reflectance Fourier-transform infrared spec-
troscopy (ATR-FTIR) and intrinsic viscosity measurements. The micro-
structure of their gels was imaged by Scanning Electron Microscopy
(SEM).

The NMR experiments were carried out at CEMUP (Centro de
Materiais da Universidade do Porto, Porto, Portugal) following a pro-
cedure described elsewhere (Sousa et al., 2013). All spectra (1H, 13C
and 1He13C correlations recorded through a phase-sensitive HSQC
(heteronuclear single quantum coherence)) were acquired non-spinning
at 80 °C in a 400MHz Bruker Avance III spectrometer and using a 5mm
QNP probe equipped with a z gradient coil. The purified agar powders
were dissolved in D2O to a final concentration of 15mg/mL and using
TSP as internal reference (δH=−0.017 ppm; δC=−0.18 ppm). For
details on the acquisition parameters as well as the shorthand notation
used for the chemical nomenclature of agar units (i.e. 3,6-anhydro-α-L-
galactose, LA; 6-O-methyl-β-D-galactose, G6M; 2-O-methyl-3,6-an-
hydro-α-L-galactose, LA2M; α-L-galactose 6-sulfate, L6S) previous pa-
pers can be consulted (Sousa et al., 2010, 2013).

The FTIR spectra of extracted agars were recorded using an ALPHA
FTIR Spectrometer (Bruker, USA), by acquiring 60 scans with 4 cm−1

resolution.
A Cannon-Fenske viscometer for transparent liquids (according to

ASTM D-2515) was used to measure intrinsic viscosities ([η]; mL/g)
following the procedure described by Sousa et al., 2012. Diluted agar
solutions were prepared using 0.75mol/L NaSCN to inhibit agar ag-
gregation. Concentrations were set to obtain relative viscosities from
1.2 to 2.0 (approximately), to allow linear regression according to
Huggins and Kraemer relations, and extrapolation to zero. Viscosity
average molecular weight (Mv) for each agar sample was calculated
using the Mark-Houwink relationship (Rochas & Lahaye, 1989):

=η M[ ] 0.07 v
0.72 (1)

The microstructure of the agar gels was confirmed by Cryogenic
Scanning Electron Microscopy (CryoSEM) at CEMUP. For each sample,
a small volume of the gel (approx. 1–3mm3) was frozen in slushy ni-
trogen (−210 °C), transferred to an ALTO 2500 cryo-preparation
chamber and placed onto a cool stage (−150 °C), where it was frac-
tured exposing the internal surface. The ice formed on the exposed
fractured surface was removed by sublimation at −90 °C for 1.5min.
The sample was then sputter-coated with an AuePd thin film at
−150 °C for 40 s, from a sputter head using ultra-pure argon gas. The
analysis was performed at −150 °C in a JEOL JSM 6301F scanning
electron microscope equipped with a Gatan ALTO 2500 cryo-prepara-
tion chamber using an accelerating voltage of 15 kV and working dis-
tances (WD) of 15mm.

2.7. Thermal behavior

The thermal properties of agar samples were assessed through dif-
ferential Scanning Calorimetry using a PerkinElmer DSC 6000. Samples
were cooled to −20 °C, heated up to 160 °C, cooled back to −20 °C and
re-heated up to 200 °C, at a heating or cooling rate of 10 °C/min. At
least two replicates were made for each sample.

Thermal gravimetric analyses were performed in a PerkinElmer
TGA 4000 (PerkinElmer, Massachusetts, EUA). Samples were heated
from 25 °C to 600 °C at a heating rate of 10 °C/min under a nitrogen
atmosphere. At least two replicates were made for each sample.

2.8. The properties of agar-based films

Film forming solutions were prepared by heating 1.5% agar
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solutions up to 95 °C and the temperature was kept for 30min, until
complete dissolution. Samples were left to cool to 70 °C, and glycerol
was added as plasticizer to a final content of 0.15 g/gdry agar. 40 g of
each film-forming solution were poured into polyoxyethylene methy-
lene (POM) petri dishes with a diameter of 12 cm. Films were dried at
40 °C for 18 h and equilibrated for 48 h at 53% RH, in a desiccator at
20 °C with a saturated salt solution of Mg(NO3)2, before further ana-
lyses.

Film thickness was measured with a digital micrometer (No.
293–561, Mitutoyo, Japan) at 6 random positions for each film.

Tensile strength (TS) and elongation at break (EB) were determined
in a TA. HDplus texture analyzer (Stable MicroSystems) equipped with
tensile test attachments, following the guidelines of ASTM D882-91
standard method, as described by Costa et al., 2018. The tests were
replicated eight times.

Water vapor permeability (WVP) was measured gravimetrically
according to ASTM E96-92 standard test. The equilibrated films were
sealed tightly to a permeation cell containing distilled water (100%
relative humidity (RH)) and placed inside a desiccator with silica gel
(0% RH). Weight loss was monitored every 2 h for 10 h. Testing was
performed in triplicate. WVP was calculated by linear regression, using
Eq. (2), as described by Silva, Mauro, Goncalves, & Rocha, 2016:

=
×

× ×

WVP Δm x
ΔP A t (2)

Δm represents the weight loss (g), x is the average film thickness
(m), A is the permeation area, t is duration (s) and ΔP is the difference
of the water vapor partial pressure at 20 °C (2337 Pa) between the two
sides of film. Three replicates were made.

2.9. Statistical analyses

All statistical analyses were made using the data analysis software
Statistica version 8.0 (StatSoft, Inc, Tulsa, OK, USA). The influence of
time (random) and depth (fixed, two levels) on yield, gel strength,
sulfate and 3,6-anhydro-α-L-galactose contents were analyzed by fac-
torial analysis of variance (ANOVA). A separate analysis was made for
location (fixed, two levels), including also time (only samples from
October and November) and depth (fixed, two levels), as data were
more limited for the BRE site. For significant differences from ANOVA,
variances were tested for homogeneity and statistically significant dif-
ferences were analyzed a posteriori with Scheffé’s multiple comparisons
test. The significance level was defined as p≤ 0.05, for all tests.

3. Results and discussion

Results obtained for agar extracted from Gracilaria tikvahiae are
presented in Tables 1–5 and Figs. 1–8. Gracilaria was collected in the
summer and fall of 2011. The extraction conditions were based on early
optimization studies concerning G. vermiculophylla from the Portuguese
coast (Villanueva et al., 2010).

3.1. Yield, gel strength and physico-chemical properties

Yields for LIS samples after the purification step (Fig. 1) ranged from
13 to 17% (15–19% prior to purification). A wide range of extraction
yields can be found in the literature, due to different seaweeds and
extraction protocols applied, but yield values of near 20% are fre-
quently reported for pre-treated agar from different Gracilaria spp.
without re-extraction steps (e.g. Arvizu-Higuera et al., 2008; Lewis &
Hanisak, 1996; Skriptsova & Nabivailo, 2009; Villanueva et al., 2010).
Nevertheless, extraction yields below 10% were reported for G. tikva-
hiae (Lopezbautista & Kapraun, 1995), making the yields achieved in
this work significant. However, the low yield reported by Lopezbautista
& Kapraun was obtained in July, with very high water temperatures (ca.
30 °C). Yields for the BRE samples were significantly lower than those

from LIS samples in October and November and ranged from 11 to 12%
(Figs. 1 and 2). No significant differences were observed in agar yields
between Gracilaria cultivated at different depths at each site. Overall
extraction yields unrelated with light intensity were also reported for
Gelidium pulchellum (Sousa-Pinto, Murano, Coelho, Felga, & Pereira,
1999), though higher amounts of agar with a lower melting point were
extracted with increased irradiance.

At the LIS site, seasonal variations were significant (Table 1), the
yield being higher during August which generally decreased until No-
vember (Fig. 1). From the literature, these results with higher yields in
summer and steep decreases in autumn and winter were expected for
sites within a temperate climate (e.g. Marinho-Soriano and Bourret
(2003), for Gracilaria bursa-pastoris and Martin et al. (2013), for G.
gracilis). Slight seasonal differences in yield and strong seasonal dif-
ferences in gel strengths were also reported for agars from G. tikvahiae
(Bird & Hinson, 1992). The yield of agar has often been positively
correlated with temperature and salinity and negatively with nitrogen
content, as reported for G. bursa-pastoris (Marinho-Soriano & Bourret,
2003) or G. gracilis (Martin et al., 2013). With the decrease of nitrogen,
for instance, protein synthesis decreases in favor of polysaccharide
synthesis. Water temperature was higher at the beginning of August,
and decreased slightly until the beginning of October and declined
sharply after that. The tissue nitrogen content started to increase also
from late August at the LIS site. Differences in nitrogen content and
salinity may also justify the differences in agar yield between both sites:
BRE had considerable higher nitrogen content and slightly lower sali-
nity, leading to concomitant lower yields.

Seasonal differences in the gel strength were also statistically sig-
nificant (Fig. 3; Table 1). With the exception of some samples from late
October and November, all samples presented acceptable GS (from 580
to 893 g/cm2). This gel strength was in fact higher than that in another
study using the same species (Lopezbautista & Kapraun, 1995). Another
statistical analysis was made excluding the out-lying October and No-
vember samples, when temperature started decreasing sharply. In this
new statistical analysis, differences in GS at different depths became
significant (Table 1), particularly for samples in September and early
October. This result may be related with faster temperature variations
(drops) near the surface (at 0.5 m).

Gel strength was highest in September and lowest in late October
and early November (Fig. 3). For Gracilaria at 1.0 m, values in No-
vember (610 g/cm2) were similar to values at mid-August (580 g/cm2).
The growth rate of another Gracilaria (Gracilaria multipartita) has been
negatively correlated with agar gel strength (Givernaud, El Gourji,
Mouradi-Givernaud, Lemoine, & Chiadmi, 1999), with the GS de-
creasing from February to July; increasing from August to October,
decreasing in November–December and increasing again in January
and February, on the Atlantic coast of Morocco. The results obtained at
LIS and BRE are similar, with the autumn decrease in growth rate
starting slightly earlier, due to the colder climate at these sites in
comparison to Morocco.

Light has been inversely correlated in the literature with increasing
gel strength (Villanueva, Hilliou, & Sousa-Pinto, 2009). However, the
present study showed that the Gracilaria grown at 0.5 m had a higher
GS than the same seaweed grown at 1.0 m during summer (Fig. 3). In
autumn, however, no defined trend was observed: the samples from LIS
in late October and November had higher a GS at 1.0 m (lower light
intensity), and the samples from BRE and LIS in the beginning of Oc-
tober had a higher GS when grown at 0.5 m. Nevertheless, as the sea-
weeds were cultivated in open-water farms, weather may be governing
the differences, being the seaweeds cultivated nearer the surface more
vulnerable to weather changes.

Temperature decreased slowly from August to early October. From
late October, a steep decrease was observed at both cultivation sites
(Kim et al., 2014). This together with high variations in diffuse at-
tenuation coefficients (with different trends at each site) may have been
responsible for the inconsistent results in the values of GS during this
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last tested period.
Though depth of cultivation seemed to have an effect opposite to the

expected in gel strength, this did not happen with 3,6-AG and sulfate
contents (Fig. 4). In fact, at least until early October, the sulfate content
was globally higher when biomass was grown at the shallower depths
(and higher light intensities) and the 3,6-AG content seemed to be
globally lower from material cultivated at the shallower depths. It has
been often reported that darkness has a negative effect on sulfate
content and a positive effect on 3,6-AG content. For instance, it was
reported that a 10 days dark post-harvest treatment of Chondrus im-
proved the gelling properties of the extracted carrageenan through the
decrease in sulfate and increase in 3,6-AG content, in a similar way to
the alkali extraction pre-treatment (Villanueva et al., 2009).

This probably means that, in spite of the effect of darkness on 3,6-
AG and sulfate contents, other factors were also conditioning agar
performance, such as sulfate position, molecular weight, other sub-
stituent groups (such as methyl) and/or the presence of other storage
polysaccharides (e.g. floridean starch). Furthermore, despite the alkali
pre-treatment, the sulfate content was still moderate and no relation-
ship was found between differences in the contents of sulfate and 3,6-
AG. Therefore the sulfate groups were probably not mainly in the form

Table 1
Results from the statistical analyses (ANOVA and Scheffé’s test (main differences).

Yield GS Sulfate 3,6-AG

From Aug to Nov

Depth Not significant Not significant Significant Significant
Seasonality Significant Significant Significant Significant
Scheffé’s test Different in August and late

autumn
Different in late August, September and
November

Different in August and late October Different at 0.5 m in late
August

From Aug to early Oct

Depth Not significant Significant Significant Significant
Seasonality Significant Significant Significant Significant
Scheffé’s test Different in August and October Different also in September, at different

depths
Different at 0.5 m in September and October Different at 0.5 m in late

August

From Oct to Nov

Location Significant Not significant Significant Significant
Depth Not significant Not significant Significant Not significant
Seasonality Significant Significant Significant Significant
Scheffé’s test Only different for site location Different in early October Different in late October (0.5 and 1 m) and

November (1 m)
Different at 1 m in November

Table 2
Rheological data obtained through dynamic rheological measurements in a stress-controlled rheometer for agar from two sites and two different depths from August
to November (storage modulus, G’; viscous modulus, G’’; gelling temperature, Tg; melting temperature, Tm; mean ± SD).

Depth (m) Date G' (Pa) G’’ (Pa) Tg (°C) Tm (°C)

LIS 1.0 8-16-11 9617 ± 5 129 ± 6 47.9 ± 0.3 89.7 ± 0.5
LIS 0.5 8-16-11 12860 ± 113 252 ± 20 48.7 ± 0.1 90.2 ± 0.7
LIS 0.5 8-26-11 12375 ± 1379 226 ± 29 47.2 ± 0.3 89.5 ± 0.6
LIS 1.0 8-26-11 11690 ± 622 162 ± 1 47.1 ± 0.1 90.4 ± 0.1
LIS 0.5 9-15-11 16780 ± 240 315 ± 2 45.8 ± 0.1 89.0 ± 0.1
LIS 1.0 9-15-11 13070 ± 1174 268 ± 10 45.6 ± 0.3 90.9 ± 0.9
LIS 0.5 10-7-11 14043 ± 2397 283 ± 33 46.7 ± 0.4 89.7 ± 1.3
LIS 1.0 10-7-11 10860 ± 240 164 ± 4 48.6 ± 0.4 89.3 ± 0.5
LIS 0.5 10-24-11 14624 ± 2214 315 ± 51 44.9 ± 0.3 90.4 ± 1.5
LIS 1.0 10-24-11 11564 ± 984 276 ± 20 45.8 ± 0.6 90.7 ± 0.5
LIS 1.0 11-4-11 13500 ± 1004 261 ± 24 46.7 ± 0.4 88.1 ± 0.3
LIS 0.5 11-4-11 13710 ± 42 246 ± 2 45.2 ± 0.1 83.3 ± 0.4
BRE 0.5 10-5-11 14890 ± 2263 281 ± 16 46.4 ± 0.1 87.8 ± 1.6
BRE 1.0 10-5-11 12405 ± 148 235 ± 45 47.1 ± 0.4 85.3 ± 0.4
BRE 1.0 10-19-11 12530 ± 679 250 ± 22 46.5 ± 0.6 87.8 ± 0.5
BRE 0.5 10-19-11 16430 ± 1372 311 ± 11 45.3 ± 0.8 87.4 ± 3.1
BRE 1.0 11-2-11 11440 ± 184 187 ± 6 47.0 ± 0.1 83.0 ± 0.1
BRE 0.5 11-2-11 15850 ± 764 301 ± 9 45.6 ± 0.3 86.0 ± 1.5

Table 3
Chemical shifts assignments by 1H NMR for alkali-treated agar.

Ref. Shifts (ppm)
(Villanueva et al.,
2010)

LIS 9–15;
1M

LIS 9–15;
0.5M

LIS 11-04;
1M

BRE 11-02;
1M

G1 4.55 4.54 4.54 4.55 4.54
G2 3.63 3.62 3.62 3.63 3.62
G3 3.76 3.76 3.76 3.75 3.76
G4 4.11 4.11 4.11 4.12 4.10
G5 3.69 3.66 3.67 3.67 3.67
G6 3.73(1)/3.79(2) 3.75/3.82 3.73/3.81 3.68/3.83 3.68/3.82
G6M 3.41 3.40 3.41 3.41 3.41
LA1 5.13 5.12 5.13 5.13 5.13
LA2 4.11 4.11 4.11 4.12 4.10
LA3 4.55 4.54 4.54 4.55 4.54
LA4 4.65 4.65 4.65 4.65 4.65
LA5 4.55 4.54 4.54 4.55 4.54
LA6 4.02(3)/4.24(4) 4.02/4,29 4.02/4,28 4.03/4.24 4.04/4.24
LA2M 3.52 3.51 3.51 3.52 3.51
L6S 5.28 n.d. n.d. 5.21 5.21

n.d. not discernible.
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of L6S (Givernaud et al., 1999).
Rheological parameters for various agar gels are presented in

Table 2. The storage or elastic modulus (G′) is a measure of the solid
nature of a sample and is expected to be positively correlated with the
gel strength. In fact, G’ at 20 °C followed a similar trend to the gel
strength, being highest in September. The storage modulus was sig-
nificantly different at different depths being consistently higher at 0.5
m, confirming the general trend of GS (with the exceptions in GS re-
ferred above). Site differences were not visible. Melting temperatures of
around 90 °C (Table 2) are typical of agar samples suitable as agar
standards (Arvizu-Higuera et al., 2008) according to the United States
Pharmacopeia (USP) criteria (Tm > 85 °C). Differences related to
depth and seasonality were only significant in November. Agars from
the LIS site presented slightly higher melting temperature than agars
from BRE (with higher nitrogen content). Gelling temperatures were
slightly higher than the typical gelling temperatures of commercial
agars, which are generally below 40 °C, but common in agar from
Gracilaria sp., particularly if highly methylated. Despite the good gelling
ability, the gel temperatures above 32–36 °C made these agars un-
suitable for direct use in bacteriological grade applications (Skriptsova
& Nabivailo, 2009).

3.2. NMR, FTIR and molecular weight

The 13C and 1H chemical assignments of alkali-treated agars were
obtained through NMR spectroscopy. The chemical shift assignments by
1H NMR are presented in Table 3. The 12 characteristic 13C signals of
agarose and the presence of substituent groups such as sulfate, O-me-
thyl, pyruvic acid ketals, and other monosaccharides in the agar
backbone were inspected at typical signals by comparison with pre-
vious studies on agar NMR characterization (Rodriguez, Matulewicz,
Noseda, Ducatti, & Leonardi, 2009; Villanueva et al., 2010).

The backbone substitutions, induced by physiological (i.e. during
the life cycle of the alga) and environmental aspects (i.e. growth con-
ditions, season of collection, cultivation site) as well as the extraction
conditions, are crucial factors since they define the final properties of
the polysaccharide. For instance, the alkaline treatment of agar causes
the conversion of the α-L-galactose 6-sulfate (L6S) in 4-linked 3,6-an-
hydro-α-L-galactose (LA) units, leading to a significant increase in gel
strength. L6S residues were detected through a minor peak ∼5.17 ppm
in the 1H spectra and a minor cross-peak in the HSQC at (∼5.17; 102.1)

ppm attributed to H1 and C1 of L6S, respectively. This peak was un-
detected in LIS September samples that showed the highest gel strength.
The peak was still present (though very small) in BRE and LIS
November samples, with the lowest gel strength. The persistence of this
signal, after alkali treatment, indicated that these samples had origin-
ally more L6S groups (i.e. before the alkaline pre-treatment, in ac-
cordance with previous studies reporting higher sulfate content in the
cold season (e.g. Romero et al., 2007).

Furthermore, samples isolated from biomass grown at both LIS and
BRE sites in November presented a minor peak at 62.8 (13C spectra)
that may correspond to amylose from contaminating floridean starch.
This peak was absent from the September samples. Therefore, under the
more adverse environmental conditions for seaweed growth, storage
polysaccharide accumulation was starting to be relevant, as could be
expected. Furthermore, the presence of the floridean starch may have
been responsible for the differences the behavior between the rheolo-
gical parameters (namely, storage and viscous moduli) and gel strength
for the BRE samples and those from LIS in November. In fact, despite

Table 4
Thermal properties and molecular weight.

LIS 9–15; 1M LIS 9–15; 0.5M LIS 11-04; 1M BRE 11-02; 1M

Mv (kDa) 338 302 180 131
T1 (⁰C) n.d. 98.5 ± 0.1 93.7 ± 0.9 97.7
T2 (⁰C) n.d. 131 ± 1 128 ± 1 126
T3 (⁰C) 136 ± 7 138 ± 3 139 ± 7 138 ± 1
ΔH3 (J/g) 246 ± 37 172 ± 10 191 ± 11 232 ± 63
Tglass (⁰C) 22.8 ± 0.1 22.7 ± 0.3 22.6 ± 0.1 22.7 ± 0.1
cp (J/(g⁰C) 0.0345 ± 0.008 0.0485 ± 0.005 0.0410 ± 0.002 0.0395 ± 0.006
Water content (%)

(TGA)
15.1 ± 0.2 15.7 ± 1.4 16.1 ± 0.5 16.7 ± 0.4

Tsd 197 ± 8 197 ± 3 211 ± 9 206 ± 1
Td 277 ± 2 283 ± 2 289 ± 1 239 ± 1

n.d. not discernible; Tsd – temperature at which the degradation ramp starts; Td – temperature at which degradation rate is maximum (measure as the negative peak
in the first derivative curve).

Table 5
LIS agar's films properties.

Thickness (mm) Mechanical properties WVP (g/(msPa))

Tensile strength (MPa) Elongation at break (%)

0.049 ± 0.005 16.8 ± 1.2 11.2 ± 1.7 2.6× 10−11± 0.1× 10−11

Fig. 1. Effective yield (gpurified extract/gseaweed): Long Island Sound 0.5 m;
Long Island Sound 1.0 m; Bronx River Estuary 0.5 m; Bronx River Estuary
1.0 m (* significant differences in seasonality; ** significant differences in site
location), mean ± SD.
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the general decrease in the GS after September, storage and viscous
moduli were higher. Floridean starch generally has a negative effect on
the GS of agar (Rodriguez et al., 2009). An unidentified minor peak in
the LIS November samples was present at 64.3 (13C).

Nevertheless, overall the HSQC pattern was typical of agar samples
in all cases (Fig. 5), with all characteristic signals from agarose being
easily identified, confirming that this was the main extracted compo-
nent. Overall samples presented significant degrees of methylation
substitution at C6 of the G units, which was detected with the presence
of a peak at about 60 ppm in the 13C spectra, due to the downshift in the
nearest carbon resonance (Usov, 1984), and a sharp singlet at 3.41 ppm.
The presence of methylated substituents was probably responsible for
the high gelling temperature (above 45 °C), as they are known to raise
the gel setting temperature. For instance, Falshaw, Furneaux, and
Stevenson (1998) reported an increase in the melting temperature from
33 to 37 °C for non-methylated agar samples to 42–49 °C for naturally
methylated material. The presence of 4-O-methyl-L-galactose has also
been associated with the age of G. tikvahiae (Craigie & Jurgens, 1989).
In fact, these authors concluded that young tissues had only traces of 4-
O-methyl-L-galactose groups and that they were markedly present in the
agar extracted from mature seaweeds. Therefore, the presence of sig-
nificant methylation could be related with the age of the seaweeds, as
G. tikvahiae thalli were harvested after some growth period.

Methylation on the C2 of LA units, detected by the presence of small
peaks in the region 3.51–3.52, was also observed but at a much lower
extent. The LIS sample from November seemed to have a different
pattern related to the methylated groups, namely the LA2M groups,
with a more intense peak in the 1D 1H NMR spectra (Fig. 5; 3.51 ppm),
when compared to the September LIS sample. This observation may be
responsible for the differences in the Tm. In fact, the Tm values for the
LIS samples in November were significantly lower than that from the
LIS samples taken in other months. Pyruvate residues were not found in
any of the samples.

FTIR spectra are presented in Fig. 6 and generally confirmed the
NMR results. Spectra of all samples were very similar and the typical
bands for agar samples were easily identified: 1370 and 1250 cm−1 are
referred to be related with total sulfate (ester sulfates and S]O
stretching vibration, respectively), 930 cm−1 is related with the CeO
vibration of LA units, (Sousa et al., 2012). The broad absorption region
between 1100 and 1000 cm−1 as well as the band at 1150 cm−1 are
common to all polysaccharides and could be assigned CeOeH bending
and to CeO and CeC stretching (Warren, Perston, Royall, Butterworth,
& Ellis, 2013). The characteristic peak at 1640 cm−1 is assigned to C]
O stretching (Selvalakshmi, Vijaya, Selvasekarapandian, & Premalatha,
2017). The band at 890 cm−1 is also typical of agar samples and could
be related with the CeH bending at the anomeric carbon in G residues.
The absence of peaks at 805 and 830 cm−1 indicated no sulfates at C2
in LA and G moieties, respectively, and the small shoulder at 850 cm−1

Fig. 2. Overall comparison of yield and GS between the two sites - Long Island
Sound (LIS) and Bronx River Estuary (BRE) (only data from October and
November was considered) - Yield; , mean ± SD.

Fig. 3. Gel strength at two different sites and two different depths: Long
Island Sound 0.5 m; Long Island Sound 1.0 m; Bronx River Estuary 0.5
m; × Bronx River Estuary 1.0 m (* significant differences in seasonality; **
significant differences in site location), mean ± SD.

Fig. 4. Chemical properties of the extracted agar: a) 3,6-AG content; b) sulfate
content; Long Island Sound 0.5 m; Long Island Sound 1.0 m; Bronx River
Estuary 0.5 m; × Bronx River Estuary 1.0 m (* significant differences in sea-
sonality; ** significant differences in site location), mean ± SD.
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indicated low amount of sulfates at C4 of G moieties (Romero,
Villanueva, & Montano, 2008). Furthermore, the absence of a band at
820 cm−1 indicated no or very low sulfates at C6 of G moieties (Rochas,
Lahaye, & Yaphe, 1986), as expected due to the alkali pre-treatment.
Nevertheless, a small shoulder could be seen in the BRE sample, con-
firming the results from NMR. Bands at 740 and 770 cm−1 are related
with skeletal bending of the galactose ring (Rhein-Knudsen, Ale,
Ajalloueian, Yu, & Meyer, 2017). Finally, the band at 2920 cm−1 is
related with the CeH, being a good measure of total sugar content
(Rochas et al., 1986). The small shoulder on this band at 2850 cm−1 is
typical of highly methylated agars which is once more in accordance
with NMR results.

In terms of molecular weight measurements, samples from
September had a much higher viscosity average molecular weight than
samples from November, as expected from the GS values. Furthermore
samples from the BRE site had the lowest gelling strength. Depth of

Fig. 5. HSQC spectra with the corresponding 1D NMR spectra of each nucleus for the alkali-treated agar from: a) Long Island Sound 0.5 m in 15/09; b) Long Island
Sound 1.0 m in 15/09; c) Bronx River Estuary 1.0 m in 02/11; d) Long Island Sound 1.0 m in 04/11.

Fig. 6. FTIR spectra for the alkali-treated agar from: a) Long Island Sound 0.5 m
in 15/09; b) Long Island Sound 1.0 m in 15/09; c) Bronx River Estuary 1.0 m in
02/11; d) Long Island Sound 1.0 m in 04/11.

Fig. 7. Thermal behavior for the alkali-treated agar: a) Typical DSC thermo-
gram (alkali-treated agar from Long Island Sound 1.0 m in 15/09): - First
heating cycle; ; ; b) TGA:

; ;
; – Bronx River Estuary 1.0 m 2/11.
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cultivation did not seem to have a significant effect, though the values
for samples cultivated at 1 m were slightly higher, unlike the GS.

3.3. DSC and TGA

A typical thermogram achieved for DSC is presented in Fig. 7a.
Three main endotermic peaks were detected in the first heating cycle:
one slightly below 100 °C, one around 130 °C and the biggest one near
140 °C. The first peak is usually assigned to the residual water present in
the sample (Ouyang et al., 2018). Peaks in the range of 126–144 °C
correspond to agar transitioning into the disordered state, from double
helix to single chain. A corresponding transition was also seen in the
rheological tests with high water content (gel melting Tm), but occurred
at lower temperatures. This process was not reversible for low moisture
samples (i.e. the sample does not resume its double helical state), but
the second heating cycle showed a shift around 22.7 °C (Table 4) for all
analyzed agar samples, normally assigned to a glass transition. A
commercial agar was used for comparison purposes and also showed a
glass transition temperature at 23.4 ± 0.4 °C. In fact, glass transition
temperatures referred to in literature for low moisture agars but their
final value is highly dependent on the type of agar, the moisture content
and the drying history (Cooke, Gidley, & Hedges, 1996; Mitsuiki,
Yamamoto, Mizuno, & Motoki, 1998).

Thermogravimetric analyses indicate two different regions of
weight loss (Fig. 7b): a first one, up to 130 °C, assigned to the removal
of adsorbed and bond water and a second one starting from ca. 200 °C,
depending on the sample, assigned to thermal degradation. All samples
presented similar weight loss patterns, though slight differences could
be seen for the BRE sample in the thermal degradation region. In par-
ticular, the value of the temperature that corresponds to the minimum
of the first derivative curve was significantly lower than the samples
from the LIS site, corresponding to a maximum degradation rate at a
lower temperature.

3.4. Gelling and film forming ability

3.4.1. The gel structure
As referred to in the introduction, the main food applications of agar

are related with its gelling ability. Samples from late August and
September presented quite high gel strengths matching the values of
high quality commercial agars, confirming the commercial viability of
the LIS agars. According to the criteria defined by the Japanese
Specifications for Processed Agar (JSPA), all samples would be first
grade food agar, with a GS higher than 350 g/cm2 (Skriptsova &
Nabivailo, 2009). However, though late August to early October alkali-
treated agars could be superior grade agars using these criteria (GS
higher than 600 g/cm2), their higher gelling temperatures hamper
bacteriological and pharmaceutical applications.

Micrographs obtained from the cryo-SEM analyses of gels made
from the extracted agar were in accordance with expectations resulting
from the analyses of their chemical and physical properties (Fig. 8).

Data derived from agar gels of samples grown at different depths did
not present any significant differences. The LIS gel from November
presented a slightly more open network, which agreed with the slightly
lower gelling strength, probably due to the residual presence of L6S
groups. The BRE gels from November samples grown at 1.0 m produced
the coarser network, due to the lowest gel strength, in spite of the high
3,6 AG value and low sulfate content. As the presence of L6S was si-
milar to the LIS November sample, molecular weight was probably
governing the gel structure. In fact, the molecular weight from the BRE
sample was significantly lower than from the LIS sample (Table 4).

3.4.2. Films
Though the application as a food additive is the typical use in the

food industry, much research work has been made assessing the via-
bility of using agar-based materials for food packaging and edible
coatings with interesting results. Therefore, agar samples collected at
the LIS site from August till early October were mixed in a single batch
and their edible-film forming ability was also tested. Mechanical
properties, thickness, thermal properties (TGA) and water permeability

Fig. 8. CryoSEM pictures of agar gels: a) Long Island Sound 1.0 m 15/09; b) Long Island Sound 0.5 m 15/09; c) Long Island Sound 1.0 m 4/11; d) Bronx River Estuary
1.0 m 2/11; error bar corresponds to 6 μm in all pictures.
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of the films were assessed for benchmarking with agar-based films de-
scribed in the literature.

Transparent and flexible films were obtained, with an average
thickness of ca. 50 μm (Table 5). Values found in literature for films
produced by casting using formulations with agar and glycerol ranged
from 37 to 60 μm (Arham, Mulyati, Metusalach, & Salengke, 2016;
Kanmani & Rhim, 2014; Malagurski et al., 2017; Phan, Debeaufort, Luu,
& Voilley, 2005; Shankar & Rhim, 2016).

As for mechanical properties, the dispersion of values found in the
literature is also high. Film forming solutions have agar concentrations
ranging from 1 to 3% and glycerol (plasticizer) contents of 0–0.5 g/gdry
agar (Arham et al., 2016; Atef, Rezaei, & Behrooz, 2014; Freile-Pelegrín
et al., 2007; Kanmani & Rhim, 2014; Malagurski et al., 2017; Mohajer,
Rezaei, & Hosseini, 2017; Phan et al., 2005; Rhim, 2011; Shankar &
Rhim, 2016; Sousa & Goncalves, 2015; Wu, Geng, Chang, Yu, & Ma,
2009). Though typical films conditioning for mechanical properties
assessment is made at 50 or 53% relative humidity (RH), this is not
frequently the case. As water has a strong plasticizer effect, mechanical
properties will strongly differ upon RH variations. The achieved tensile
strength (ca. 17MPa) and elongation at break (ca. 11%) are within the
expected from the results reported with similar conditioning at 50–53%
RH. Freile-Pelegrín et al. (2007) achieved a TS of 3.2MPa and EB of
6.5% with 1.5% agar solutions without glycerol, but the agar used had a
lower Mv (100 kDa) than the samples from LIS. Mohajer et al. (2017)
reported a TS of 18.7 MPa and an EB of 30%, using 0.3 g/gdry agar of
glycerol, Arham et al. (2016) reported a TS of 20MPa and a EB of 15%
using 0.15 g/gdry agar of glycerol and Atef et al. (2014) reported a TS of
18MPa and a EB of 19 using 0.3 g/gdry agar of glycerol.

In terms of barrier to water, another important property for
packaging and in particular, for food packaging, the dispersion in re-
ported results is even higher. Phan et al. (2005), analyzed WVP con-
ditioning samples at different RH and using different humidity gra-
dients. For 3% agar solutions with 0.15 g/gdry agar of glycerol, they
reported a WVP of 6×10−11 g/(msPa), achieved conditioning films at
57% (slightly higher than the used in this work). Nevertheless, the re-
sults are in the same order of magnitude as this work, but slightly
higher. Sousa & Gonçalves (2015) also reported values of 4.6× 10−11

g/(msPa) for alkaline treated agars from Gracilaria vermicullophyla with
no glycerol and Atef et al. (2014) reported 1.6×10−10 g/(msPa) but
using 0.33 g/gdry agar of glycerol and a commercial food grade agar.
These are promising results, with water vapor permeability matching
the values of cellophane as reported by Phan et al. (2005).

The properties of agar films are highly variable and strongly depend
on several factors, including: the film forming methodology; plasticizer
type and content; the presence of other additives; the source of agar and
agar's properties; RH at which films are conditioning before analyses.
Nevertheless, it can be concluded that films formulated with LIS agar
samples matched the properties of other agar films and may be an in-
teresting alternative application, both as edible films (as external
packaging) or edible coatings (in direct contact with food). However,
and as happens for other hydrocolloids, agar's price is still not compe-
titive for packaging applications. Furthermore, biopolymers' perfor-
mance continues to be a drawback for bioplastics applications.
Therefore, most published articles involve strategies to improve me-
chanical and barrier properties including the inclusion of a reinforcing
agent, such as nanoparticles, or the formulation in composites, taking
advantage of synergies or interesting properties from other biopolymers
(e.g. Malagurski et al., 2017; Shankar & Rhim, 2016).

4. Conclusions

Previous studies showed that Gracilaria tikvahiae cultivated in open
farms could be effectively used for nutrient bioextraction from urba-
nized estuarine waters, namely in Long Island Sound and the Bronx
River Estuary, USA. Though Gracilaria/Gracilariopsis spp. are commonly
used for agar production, information on agar from G. tikvahiae was

scarce, probably because Gracilaria/Gracilariopsis have been mostly
cultivated in China and Indonesia, and this particular species is not
grown there. Furthermore, most reported yields for G. tikvahiae were
low, not encouraging further industrial exploitation. Nevertheless, this
study showed that it is possible to use G. tikvahiae biomass, cultivated in
open waters, for agar production, which matches the performance of
other Gracilaria agars used for food applications. Furthermore, this
study also proved that an integrated strategy of nutrient bioextraction
and agar exploitation is feasible, using the biomass from the first pro-
cess as a sustainable source of seaweeds for the extraction of the hy-
drocolloid.
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