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ABSTRACT 
 

Regenerative medicine, a new paradigm stemming from technologies such as tissue 
engineering and the controlled release of therapeutic molecules, is revolutionizing the 
clinical practices. The sophisticated smart materials used in these biomedical applications 
must meet strict criteria, namely convenient mechanical properties and degradation rate, 
biocompatibility, porosity and interconnectivity, functional properties related to the 
interaction with cells and the release of pharmaceuticals, etc.  

This review will focus on injectable hydrogels, whose great interest in the clinical 
perspective is, to a large extent, due to the minimal invasive manner through which they 
can be implanted in the human body. The injectable hydrogels share the same general 
advantages as those of the hydrogels, with the additional benefit of being able to fill 
irregular shaped defects doing so in a minimal invasive manner. The materials and the 
challenging requirements for the design of injectable hydrogels and their applications in 
the biomedical field will be addressed. 
 
 

1. INTRODUCTION 
 
The advent of tissue engineering has emerged as a promising approach to circumvent the 

limitations of the existing therapies for the treatment of tissue loss or organ failure, serving 
the challenging task of producing tissues substitutes that might restore, maintain or improve 
the structural features and physiological functions of natural living tissues [1-3]. The strategy 
underlying the creation of new tissues includes the isolation and cultivation of cells within 
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suitable scaffolds to support their three dimensional growth, promoting the cell adhesion, 
growth and differentiation through the incorporation of bioactive molecules [4,5]. The 
possibility for long term support of the proliferating cells using growth and differentiation 
factors, turned the controllable release systems into the fusion step in the development of a 
new generation of biomedical tools [6]. The scaffold provides the necessary support for cells 
to attach, proliferate, maintaining their differentiated state and can even define the overall 
shape of the tissue-engineered transplant. The seeding of the cells into the scaffolds can be 
performed using two distinct strategies. The temporary support can be required for an in vitro 
maturation stage, serving as an adhesive substrate providing physical support for the cells, 
before being implanted. In another approach, the scaffold is implanted to fill a void in the 
damaged tissue, already carrying cells or being then subsequently seeded, to stimulate the 
new tissue formation.  In the later strategy, the scaffold can either be formed before 
implantation or directly injected to form the three dimensional structure in situ. This review 
will focus on injectable hydrogels, the materials and the challenging requirements for their 
design and their applications in the biomedical field. 

 
 

1.1. Hydrogels as Scaffolds 
 
The development of biomedical devices has focused on the design of three-dimensional 

structures made from natural or synthetic materials, termed scaffolds. Among them, hydrogels 
are receiving an increasing attention, as several biomedical applications require materials that 
possess a jelly consistency, which can set and be molded into a desired shape under 
physiological conditions. Hydrogels are a class of hydrophilic polymeric scaffolds, with 
appealing features from the perspective of biological mimicking. They have a good 
biocompatibility, degradability and appropriate mechanical properties, allowing for a 
favorable controlled interaction with living systems. The importance of hydrogels in 
biomedical applications was first reported in the late 1950s, with the development of 
poly(hydroxyethyl mehacrylate) (PHEMA) gels as a soft contact lens material [7]. Nowadays 
they are used in numerous applications, including ophthalmic devices, biosensors, 
biomembranes, to support and promote tissue regeneration, and as attractive systems for the 
controlled release of pharmaceutically active molecules. 

 

 

1.2. Rational for the Clinical Need of Injectable Formulations 
 
All therapies would benefit from minimal surgical procedures which might decrease 

patient morbidity. From this perspective, the use of injectable scaffolds has recently become 
of great interest, to a large extent due to the minimal invasive manner through which they can 
be implanted in the human body, associated to improved patient compliance. Other 
advantages are lower risk of infection and reduced scar formation. The injectable hydrogels 
share the same general advantages as those of the hydrogels with the additional benefit of 
being able to fill irregular shaped defects, avoiding the need for patient specific prefabrication 
[8]. In addition, the hydrogel components being in solution before gelation, a more 
homogeneous distribution of bioactive molecules or cells may be obtained [9-12]. These 
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injectable formulations are, hence, promising matrices not only for tissue regeneration, but 
also to serve as controlled release devices for local drug delivery [13,14]. Recent works report 
the use of injectable hydrogels as lumen-fillers of guidance channels for nerve regeneration, 
gathering the function of providing a 3D matrix on which cells can adhere, proliferate and 
differentiate, with the ability of entraping biomolecules (namely neurothophic factors), 
protecting them from degradation, while also controlling the release rates, resulting in a 
leading outcome for nerve repair [15-20]. Cells are being increasingly exploited as alternative 
drug delivery devices, by acting as drug depots enabling the delivery of therapeutic molecules 
over an extended time period. Stem cells, progenitor cells, and lineage-committed cells are 
thus being considered as a new generation of drug depots for the sustained release of 
therapeutic biomolecules. The entrapment of cells in hydrogels, while providing a physical 
barrier to protect the cells from hostile extrinsic factors, must simultaneously improve the 
secretion of therapeutic proteins from cells [21]. The cell-material interactions and the 
mechanical properties of the hydrogel may have an impact on the profile of protein 
expression, and thus current work in the bio-materials and biomedical fields use gene 
expressions of cells and their responses to their 3D environments to measure the performance 
of these tissue-engineering constructs [22,23]. 

 

 

Figure 1. Injectable hydrogel applications for regeneration of various tissues. Examples include 
scaffolds delivering angiogenic growth factors to induce blood vessel formation, scaffolds seeded with 
osteoblasts/chondrocytes for bone and cartilage regeneration, growth factor and other bioactive 
molecules releasing systems for local delivery, and porous conduits-fillers for cell encapsulation and 
nerve regeneration.  
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2. MATERIALS  
 

The development of biomaterials for medical applications has focused on the design of 
biomimetic materials that might be able to interact with surrounding tissues by biomolecular 
recognition, to make them capable of eliciting specific cellular responses, mediated by 
specific interactions [24-26]. The selection of a scaffold material is both critical and difficult. 
A wide variety of biomaterials, both synthetic and natural, is currently available (Table 1). 
Naturally derived and recombinant biomaterials that combine the beneficial aspects of both 
natural and many of the desirable features of synthetic materials have been designed and 
produced (Figure 2). In general, some authors claim that the latter offer some advantages, 
since they can be tailored to give a wide range of properties and more predictable and 
reproducible results that the materials derived from natural sources [27-29]. However, natural 
biomaterials are more likely to induce the appropriate biological response which is 
fundamental in view of its biomedical application (Figure 2).  

An interesting concept suggests the use of entirely autologous hydrogel systems, based on 
the use of plasma proteins and relying on hemostasis to trigger the gelation process. In this 
approach, the host plasma is co-injected at the site of interest with culture medium with high 
free calcium concentration, thus leading to clot formation and an excellent interaction with cells 
and tissues [30]. A similar approach was described by Yunsong Liu and colleagues, consisting 
of a novel injectable tissue-engineered bone composed of human platelet rich plasma and 
human adipose-derived stromal cells, co-injected with thrombin to start gelation [31]. 

 

 

Figure 2. Chemical   structures of selected natural and synthetic materials. 
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Table 1. Biomaterials currently available as injectable scaffolds. 
 

 Material 
Solidification 
mechanism 

Medical applications References 

Inorganic 
materials 

Calcium phosphate  Ceramics setting 
Bone/other mineralized 
tissues regeneration 

 
206-208 

Collagens Thermal gelation 69, 97, 212 

Hyaluronic acid (HA) 
and derivates 

Photo crosslinking 106-108, 184, 184, 206-208 

Alginate  
Photo crosslinking/Ionic 
gelation 

19, 35, 60, 68, 99-112, 122-
128, 182, 187, 188, 202, 214 

Starch based polymers  
Chemical crosslinking 
Radical Polymerization 57, 77, 83, 84, 99, 100, 103 

 
MethylCellulose 

 
Thermal gelation 

11, 59, 176, 183, 229 

 
Chitosan  

Thermal gelation 
19, 61, 101, 103, 112, 178, 
187-189, 193, 209.214 

Natural 
organic 
materials 

Pullulan 
 
Blood plasma proteins 

 
Chemical crosslinking 
 
Enzymatic (hemostasis) 
gelation 

Soft tissue regeneration 
Controlled drug delivery 
Cell encapsulation 
Cell culture surfaces 

123, 124, 187 
 
30, 31, 161. 173, 174, 203 

Poly(glycolic acid) 
(PGA) and copolymers 

Photocrosslinking 
Thermal gelation 202-208 

Poly(lactic acid) 
(PLA) and copolymers 

Photo crosslinking 114, 145 

Poly(vinyl alcohol) 
(PVA) 

Photo crosslinking 44 

Poly(ε-caprolactone) 
(PCL) 

Photo crosslinking  

Polyanhydrides  Photo crosslinking  

Poly(N- 
isopropylacrylamide) 
(PNIPAM)  and 
copolymers 

Thermal gelation 12,45,94,114-117 

Poly(ethylene glycol) 
(PEG) and copolymers 
 

Enzymatic crosslinking 
Michael-type addition 
Photo crosslinking 
Self assembly 

62,72,81 

Synthetic 
materials 

Poly(propylene 
fumarate) (PPF) 
Polyurethanes 

Photo crosslinking 
Radical polymerization 
Chemical crosslinking 

Bone and cartilage 
repair 
Ophthalmic applications 
Artificial skin 
Controlled drug delivery 
Cell encapsulation 
Cell culture surfaces 

54, 74, 215, 216 
 
68,214,217-223 

 
 
 

3. PHYSICAL, CHEMICAL AND BIOLOGICAL PROPERTIES 
IN DESIGNING INJECTABLE HYDROGELS 

 

The requirements for a scaffold suitable for a biomedical application are complex; 
however, the following basic characteristics must be addressed to bring about the desired 
biologic response [32]: (1) The scaffold should be biocompatible. Neither it nor its 
degradation products should induce any adverse response or toxicity. (2) The scaffold should 
possess the appropriate mechanical properties, to provide the correct environment, matching 
the intended site of implantation. (3) Additionally the scaffold should be made from material 
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with controlled biodegradability or bioresorbability, so that tissue will eventually replace the 
scaffold. (4) It should have an interconnected pore network, enhancing the diffusion rates, 
improving oxygen and nutrient supply and waste removal, thereby facilitating the 
vascularization. (5) Furthermore an appropriate surface chemistry should favor cellular 
attachment, differentiation and proliferation. (6) The additional characteristic of injectability 
is an essential issue regarding its final application as an injectable formulation. The scaffold 
should be easily processed into a variety of shapes and sizes as well as easily sterilized 
[1,3,9,33-41]. The speed of gel formation is also very important; it should be slow enough as 
to allow the mixture of the gel components (including cells and active molecules), but fast 
enough to be of pratical use. 

 
 

3.1. Biocompatibility 
 

Apart from favorable physico-chemical and mechanical properties, the most important 
requirement for an injectable hydrogel to be used in medical applications is its 
biocompatibility in a specific environment, the absence of an exacerbate inflammatory 
reaction, together with the non-cytoxicity of its degradation products. Most of the toxicity 
problems associated with hydrogels is associated to the unreacted monomers, oligomers and 
initiators that leach out during application. These leachables can exhibit varying levels of 
reactivity and consequently toxicity. In addition, it is also necessary to consider the potential 
toxicity of the degradation products. Therefore, the knowledge of the degradation processes 
and the effects that the by-products might have is crucial for long-term success of the 
hydrogel application [42-45]. Moreover, to prevent infections, the injectable precursors 
should be sterilized before injection, and the sterilization process itself, should not have 
significant impact on the chemical properties of the resulting hydrogel [45,46].  

 
 

3.2. Mechanical Properties 
 
Mechanical properties of hydrogels are very important for pharmaceutical applications 

and shall match, as much as possible, those of the tissue to be regenerated, since they can 
have important effects on cellular phenomena such as cell adhesion or even gene expression 
[47,48]. The scaffold should be stable in the body after injection and solidification, providing 
the correct mechanical strength to support cellular growth and, at the same time, to withstand 
biomechanical load. In the case of a drug delivery device, the integrity of the system is 
crucial, during the lifetime of the application. The system must protect a sensitive therapeutic 
agent, such as protein, maintaining its integrity until it is released out of the system. The 
mechanical properties are closely related with the swelling ability and the chemical structure 
of the matrix. Changes in the crosslinking density of the hydrogels have been routinely 
applied to achieve the desired mechanical properties, ultimately affecting both the diffusion 
and the release profiles [49,50].  

The mechanical stiffness of hydrogels may furthermore influence the viability and 
function of encapsulated cells via integrin-ligand bonds. The stiffness of biomaterials 
regulates the cellular activities of adherent cells, including proliferation, apoptosis, and 
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differentiation. However, relatively little research has focused on the possibility of regulating 
the cell's ability to secrete therapeutic molecules through the mechanical properties of a 3D 
hydrogel matrix. Tuning of mechanical properties of cell-encapsulated hydrogels to an 
optimal level may improve the cell's ability to secreted drug molecules and also protect cells 
from external hostile environments [21]. 

 
 

3.3. Degradation Kinetics 
 
The desired kinetics for hydrogel degradation depends on the final application. 

Degradation is essential in many small and large molecule release applications and in 
functional tissue regeneration. Ideally, the rate of scaffold degradation should be adequate for 
the controlled release of bioactive molecules or reflect the rate of new tissue formation. 
Degradation of hydrogel may occur according to different pathways: hydrolysis, enzymatic 
cleavage and dissolution. Most of the synthetic hydrogels are degraded through hydrolysis of 
ester linkages. As hydrolysis occurs at a constant rate, the degradation can be manipulated by 
the composition of the material, the crosslinking, the molecular weight, morphology and 
porosity and other factors, such as the pH of the surrounding milieu [51-56]. In addition, the 
degradability also plays a critical role in determining overall diffusion rates and release 
profiles; the degradation of crosslinks, by increasing the mesh size of the hydrogel, allows for 
a facilitated diffusion of the entrapped molecules [57-60].  

 
 

3.4. Injectability and Solidification Process 
 
For injectable hydrogels, the solidification process will occur in vivo. Frequently, at the 

time of the injection, the precursor is carrying cells and/or bioactive molecules. It is, 
therefore, essential that the process occurs in a way that is compatible both with the 
surrounding tissues and with the encapsulated cells. In general, the injectability of a scaffold 
is related to its rheological properties, the solidification rates being determined by the 
structure/composition of the formulations and their processing conditions. Some approaches 
use polymers dissolved in organic solvents, which precipitates after injection as they are 
insoluble in physiologic fluids [61]. However, organic solvents or harsh processing 
conditions, such as high setting temperatures, should be avoided, as they may be potentially 
harmful for cells.  Ideally, the solvent used should be physiological saline, cell culture 
medium or a biologically compatible organic solvent [62,63]. In addition, a commitment in 
the solidification time must be achieved. It should be, at the same time, short enough to allow 
for a homogeneous distribution of the cells and/or bioactive molecules and guarantee the 
hydrogel cohesivity at the injection site, and still sufficient to a proper surgical handling. In 
this context, thermally or photochemically activated polymerization and crosslinking methods 
are preferable for a fast and mild solidification procedure. In these cases, the chemical 
composition and concentration of the macromonomers, the initiators and the crosslinking 
parameters, are the most important factors influencing the injectability of the scaffold [62,64-
67]. Environmentally sensitive polymers have also been paid special attention as they can be 
tailored to provide solidification at physiologic temperature and pH, in desirable time frames. 
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3.5. Functionality 
 
The hydrogel scaffold should provide the structural and chemical support for two main 

functional goals: 1) in tissue engineering applications, to allow cells to proliferate, 
differentiate and migrate within the scaffold and 2) in both tissue engineering and controlled 
release applications, to store and release, in a controlled way, bioactive molecules, for 
instance growth factors. The structure of the scaffold, namely the porosity and 
interconnectivity of the pores, is of paramount relevance regarding cell proliferation and 
tissue regeneration. The availability of chemical structures (e.g. peptides), functioning as 
anchors where the cells attach, may determine the viability of the cells [68]. The chemical and 
physical properties of hydrogels often regulate the activities of adherent cells, including 
proliferation and differentiation, performing like a natural extracellular matrix. In a similar 
manner, the hydrogel properties may also regulate the cellular secretion level of therapeutic 
molecules by activating the desired cell signaling and subsequently stimulating the gene 
expression level. Various nanoscale and microscale techniques will probably provide 
significant benefits in modulating individual properties of hydrogels to continuously control 
the cellular response [69]. 

 
 

4. MAIN TYPES OF INJECTABLE HYDROGELS 
 

4.1. In Situ-Gelling Materials 
 
For the majority of applications, the solidification process of the injectable hydrogels 

occurs in situ (Figure 3, Table 2). The mechanisms underlying this process directly affect the 
kinetics of the gelation and the stability of the resulting scaffold [70]. Typical in situ 
solidification mechanisms include thermally or photoinitiated chemical 
polymerization/crosslinking, thermal gelation, ionic crosslinking, self-assembly and Michael-
addition reactions. 

 
4.1.1 Chemical Gelation 

 
4.1.1.1. Thermally or photoinitiated chemical polymerization/crosslinking 

 
Thermal or photo activated chemical polymerization/crosslinking are conventional 

approaches to obtain hydrogels from precursors with functional groups [20,62,71-78]. In this 
mechanism, radicals produced by an initiator or photoinitiator, react with the functionalized 
monomers bearing multi residues, in a so-call chain-reaction polymerization, commonly 
known as radical polymerization. Free radicals can, however, directly react also with cellular 
components such as cell membranes, proteins and DNA, thereby directly inducing unwanted 
cellular damage, or indirectly via formation of reactive oxygen species (ROS). Despite the 
use of the exogenous defenses against oxidative damage and intracellular anti-oxidants to 
quench ROS, exposure to ultraviolet A (UVA) radiation can induce the formation of ROS. 
Adverse effects of photopolymerization on viability and cell cycle progression of exposed 
multipotent stromal cells monolayers has been demonstrated. However, the viability of 
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hydrogel encapsulated cells was not adversily affected, likely due to the exposition to a lower 
amount of reactive species available for cell-damage [79]. In tissue engineering applications, 
the most commonly used functional groups are (meth)acryloyl [71-73,80-86], styryl [87,88] 
and fumaryl [56,89]. The solidification process is determined by a number of factors 
including reactivity, functionality, concentration and molecular weight of the precursors, 
intensity of visible or UV light, temperature, reaction time, as well as the type and 
concentration of the initiator. Recent advances in photopolimerizable hydrogels, include the 
use of hyperbranched methacrylated polyglycerol, phosphoester-based polymers and 
copolymer networks containing lactic and caproic acid segments, with successful application 
in the tissue engineering field [90-93]. When compared with the thermal activated systems, 
the photo initiation can be, sometimes, disadvantageous, as some areas show limited capacity 
of light penetration, restricting its application [86]. Due to this problem, water-soluble redox 
initiation systems, such as N,N,N ,́N´-tetramethylethylenediamine and ammonium persulfate, 
have been successfully developed by several groups for the production of a variety of 
hydrogels and aplications [94,95]. 

 
4.1.1.2. Chemical crosslinked gels 

 
Concerning the use of reticulating agents free of initiators, such as glutaraldehyde, 

polyepoxides and isocyanates, the major concern relates to its toxicity, potentially harmful for 
the human beings [96,97]. Agents that crosslink without incorporation, by activating the 
carboxylic acid residues in biopolymers, such as acyl azides and carbodiimides, are 
considered less toxic. The use of potentially less toxic reagent, adipic acid dihydrazide,  have 
been firstly reported by Bouhadir et al. as crosslinking agent for oxidized poly(aldehyde 
guluronate) [98]. Subsequent studies have successfully applied the same approach to produce 
injectable in situ forming scaffolds from oxidized alginate, gelatin and dextran for cell 
encapsulation and drug delivery, avoiding the toxicity problems associated with the initiators 
[99-102]. Due to toxicity concerns, the use of polymeric systems that react without the use of 
initiators neither crosslinking agents is very attractive. One of such systems was recently 
introduced by Lihui Weng and colleagues [103]. Oxidized dextran and N-
carboxyehtylchitosan readily react under physiological conditions, solidification occurring in 
a time scale of 1 to 6 minutes, depending on the degree of oxidation of dextran. These gels 
were successfully used to encapsulate cells and also in wound regeneration assays. 

 
4.1.1.3. Michael-type addition reaction 

 
Hydrolytically degradable PEG-peptide hydrogels, have been produced through a 

conjugate addition reaction (also termed Michael-type addition reaction) between 
multiacrylated compounds and dithiols [104-106]. The Michael-type addition reaction can be 
carried out at physiological temperature and pH without requiring organic solvents. The ester 
in the conjugate addition product is susceptible to hydrolysis, rendering the material 
degradable. In addition, during the degradation of the hydrogel, the formed products are 
primarily neutrally charged, due to the high molecular weight of the PEG multiacrylate in the 
hydrogel precursor. These properties make this hydrogel formation and degradation 
mechanism rather suitable for the encapsulation and release of chemically functional, 
biologically labile agents like protein drugs. The architecture of the networks, namely the 
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gelation rates and the mechanical characteristics of the resultant hydrogels, can be tailored by 
a number of factors, such as the functionality, molecular weight and concentration of the 
precursor macromonomers, the preparation conditions including the stoichiometry of the 
reactive groups and the pH during cross-linking. Recent studies refer the production of in situ 
crosslinked hyaluronic acid-poly(ethylene oxide) hydrogel for bone regeneration [107,108]. 

 

 

Figure 3. Schematic representation of an injectable hydrogel system. The percursors can be dissolved in 
water or phisiological buffer solutions. Cells or bioactive molecules can be incorporated in solution 
before injection. The gelation occurs after injection and the implantation of the biomaterial can be 
carried out in a minimal invasive manner. Chemical hydrogels are often highly versatile and the 
resulting networks possess superior mechanical strength. However, toxic chemical agents are often 
employed in its formulations, adversely affecting cells and bioactive molecules during solidification. 
Physical crosslinking can overcome these limitations, as the initiatores are avoided, but the resultant 
networks usually possess limited mechanical properties and stability. 

 
4.1.2 Physical Gelation 

 
4.1.2.1. Thermal gelation 

 
Injectable physical hydrogels constitute promising alternatives to chemical hydrogels. 

Some polymer solutions have the ability to undergo gelation in response to a change in 
temperature. The major advantage in using physical gelation is that this process does not 
require any chemical reaction, therefore avoiding the biocompatibility problems associated 
with residual initiators or monomers. In addition, the gelation point can be set at a 
temperature close to the human body, so that they can be injected in a liquid form before 
solidifying inside the body. Both natural-based and synthetic thermogelling polymer systems 
have been developed and tested in tissue engineering [109,110]. Among the natural polymer-
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based hydrogels that have been reported are cellulose derivatives [11], laminin [111], chitosan 
and gelatin [112,113]. As the most intensively investigated thermosensitive synthetic 
polymers are N-isopropylacrylamide-based copolymers, poloxamer (Pluronics®) polymers 
and PEG-based block copolymers [12,45,94,114-117]. These materials exhibit a sol–gel 
transition, as the temperature is increased above their lower critical solution temperature 
(LCST), which is due, in general, to the drastic solubility differences below and above that 
critical temperature. The gelation is related to the chain entanglement and the gradual chain 
collapse as the temperature increases [118,119]. The transition temperature underlying the 
gelation process can be further tuned by changing the polymer concentration and/or molecular 
weight, and the composition of the copolymers. Once the gels are formed, they do not change 
their water content and the gelation is reversible without appreciable hysteresis. Besides the 
advantage of being free of chemicals, thermogelling formulations offer the additional benefit 
that the low temperature used when mixing polymers and drugs before injection, protects 
them from denaturation or aggregation, the same occurring with cells [120,121]. 

 
Table 2. Hydrogel classification based on the solidification mechanism 
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4.1.2.2. Ionic crosslinking 
 
Hydrogels formed through ionic crosslinking belong to the group of stimulus-responsive 

scaffolds. It is well known that aqueous solutions of alginate can form hydrogels in the presence 
of di- or trivalent cations and have shown excellent potential in a variety of biomedical 
applications, including scaffolds for tissue engineering or carriers for drug delivery systems 
[122]. Commonly derived from seaweed, alginate is a linear polysaccharide consisting of β-D-
mannuronic acid (M) and α-L-guluronic acid (G) monomers that are arranged in blocks of G 
and M in varying proportions and sequential arrangements [122,123]. The gelation process can 
be easily controlled by the cation type and concentration, as well as by alginate composition and 
concentration, and gelation temperature [124]. The drawback associated with the use of these 
systems is that the ionically crosslinked hydrogels have a tendency to swell and eventually 
dissolve in physiological environment, with the mechanical properties and the overall 
dimensional stability being compromised because of loss of crosslinking ions when in the 
presence of calcium chelators (e.g. phosphates), monovalent ions (e.g. K+, Na+, etc.), and 
noncrosslinking divalent ions (e.g. Mg2+), which are often present in tissue culture medium and 
other biological solutions [125]. Alginate hydrogels are commonly used as extracellular matrix 
analogues, with excellent biocompatibility and biointeractive behavior [126,127].  In spite of 
these results, various efforts have been made to stabilize alginate crosslinks, such as the use of 
barium- and copper-crosslinked or covalently crosslinked alginate gels, which are relatively 
stable in aqueous solutions. However, both the cations and the reagents involved in the covalent 
crosslinking reactions are often cytotoxic. Alternatively, promising results have been described 
by Kuo and Ma, which achieved dimensional stability via controlling the calcium ion 
concentration of a culture environment [128].  

 
4.1.2.3. Self-assembly 

 
Self-assembling systems do not use chemical crosslinking agents or initiators, preventing 

the biological systems to be exposed to these potentially cytotoxic chemicals, which 
represents a major advantage of the self-assembly strategy [129]. Unfortunately, due to the 
lack of covalent crosslinking, hydrogels formed this way, often lack the mechanical strength 
that can be achieved through the conventional methods of chemical crosslinking. The self-
assembled systems can be unable to withstand the, sometimes, great mechanical load or 
tension of tissue engineering applications. On the other hand, it is not possible to fine-tunethe 
release profiles, as the crosslinking density cannot be adjusted in many self-assembled 
systems [130,131]. Two major strategies are currently used in the production of these systems 
are the phase segregation and the use of amphiphiles. In the case of phase segregation, as the 
polymer phase is water insoluble, the injection into an aqueous environment results in 
exchange of the injected solvent with water from the surrounding environment, leading to 
precipitation of the polymer phase [131-133]. The amphiphiles have both hydrophilic and 
hydrophobic domains, such that the macromolecules self-assemble to maximize interactions 
between the hydrophilic domains and the environment [134-142]. The hydrophilic domain is 
often a peptide specific for cell integrins, thus allowing a control over the interaction with the 
surrounding living tissue or the encapsulated cells. In addition, under the principles of the 
self-assembly, other conformations have been developed, such as self-assembling micelles 
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containing hydrophobic drugs within their hydrophobic core [143]. The control of the relative 
molecular weight and relative hydrophilic/hydrophobic character of the domains provides a 
simple way to obtain fibres, sheets or spheroid structures.  

 
 

4.2. Pre-Gelated Composite Materials (Micro and Nanoparticles) 
 
Despite the great attention paid to the in situ gelation processes, a wide variety of 

composite materials is available as injectable systems, most of them finding application in the 
drug delivery field . The most common carrier materials are PLGA [144,145] and gelatin 
[146], and the majority of formulations refer to degradable micro- or nanoparticles or spheres 
that contain the drug to be delivered [95,147-153]. The injectability of the particle containing 
systems depends on the particle concentration and the type of injection system used, and must 
be carefully chosen in order to obtain an effective delivery of the composite in the appropriate 
location with a reasonable amount of force needed for injection [154-160].  

 
 

5. SMART AND BIOMIMETIC DEVICES 
 
Recent advances in the development of hydrogels encompasses its modification, at a 

surface or bulk level, so that they will selectively interact with cells through specific 
biomolecular recognition, thus, being rendered ‘biomimetic’.  

Early studies reported on the use of long chains of ECM proteins such as fibronectin 
(FN), vitronectin and laminin for surface modification, with successful promotion of cell 
adhesion and proliferation [161]. More recent trends leave behind the long chain proteins, 
using instead short peptide fragments and antibodies as signaling domains, which are more 
stable during the modification process and can be massively synthesized. The most 
commonly used peptides for modification are Arg-Gly-Asp (RGD), the signaling domain 
derived from fibronectin and laminin, Tyr-Ile- Gly-Ser-Arg (YIGSR), Arg-Glu-Asp-Val 
(REDV) and Ile-Lys-Val-Ala-Val (IKVAV) [64,162-167]. 

The functionalization with these bioactive molecules, serving the purpose of mimicking 
ECM, allows for the modulation of cellular functions such as cell attachment, proliferation, 
and differentiation.  

There are some situations, namelly in controlled delivery, which require the use of 
‘intelligent’ hydrogels. Hydrogels have a structure that can be tethered, allowing for control 
of drug diffusion, the sensitivity to its environment, or the recognition of a specific target by 
incorporation of functional groups in the matrix. A specific feature includes the incorporation 
of enzymatically or otherwise cleavable sequences, allowing the degradation to be modulated 
by the presence of enzymes or other compounds that specifically recognize cleavage sites 
within the hydrogel, which is a very fine approach in hydrogels designed for controlled 
release, since the cleavage of the sequence releases the bioactive agent to which is linked 
[168]. 

Another typical example is a hydrogel prepared by grafting an antigen and the 
corresponding antibody to the network structure. The binding between the antigen and the 
antibody introduces extra crosslinks in the network. When the hydrogel is in contact with free 
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antigen solutions, competitive binding of the diffused free antigen triggers a change in the 
hydrogel volume owing to the breaking of the noncovalent crosslinks.  

The possibilities offered by a precise molecular design, confers these smart devices 
precise bioresponsive behaviour, not only in improving cell-material interactions, but also in 
the release properties and specific targeting.  

Taking the nanoparticles as an example, recent works report the covalent attachment of 
drugs via cleavable linkers [169,170]. These responsive particles presented an oxidation-
sensitive bulk and PEG outer layer with RGD-containing peptide sequences [171]. The 
presence of an oxidative environment as sign of inflammatory reactions, allows for the release 
to be driven in an inflammation-sensitive fashion. In addition, the pegylated surface 
prolonged the circulation time in body fluids.  

 
 

5.1. Autologous and ECM-Like Hydrogels 
 
Research on the design of scaffolds for regenerative medicine is shifting away from the 

use of inert synthetic materials towards an increasing emphasis on interactive scaffolds, 
which can influence cell adhesion or phenotype expression through selective ligand 
presentation or targeted degradation. A family of peptide-amphiphile (PA) molecules that 
self-assemble into high-aspect ratio nanofibers under physiological conditions, and can 
display bioactive peptide epitopes along each nanofiber’s periphery, has been developed in an 
attempt to design suitable bioactive scaffold materials that can act as artificial extracellular 
matrices [140].  

ECM hydrogels have been utilized as vectors for cellular delivery using a mixture of 
ECM components associated with cell adhesion and recognition, such as collagen, keratin, 
elastin and fibrin, which have been used for tissue engineering applications such as nerve 
conduits. These components provide an ideal substrate for cellular delivery and in vivo 
culture [69].  

Recent applications of injectable fibrin hydrogels include the incorporation of the 
biological activity of ECM proteins, such as fibronectin, vitronectin, laminin, and collagen. 
The peptide domains responsible for the biological activity of these proteins are synthesized 
for covalent cross-linking to the fibrin hydrogel through a transglutaminase-catalyzed 
reaction, in which the bioactive domain peptide is coupled to a transglutaminase substrate 
sequence (NQEQVSP) to generate a bifunctional peptide or bi-domain peptide. Moreover, as 
an extension of this concept, a heparin-binding domain can be synthesized for subsequent 
crosslinking to fibrin [172]. 

A further development of the biomimetic approach relies on the production of hydrogels 
on entirely autologous materials and mechanisms. Gels are derived from autologous host 
plasma, thus providing a totally natural material for cell expansion and implantation, 
overcoming potential complex histocompatibility issues associated with organic implantable 
biomaterials. Furthermore, the exploitation of enzymatic mechanisms such as hemostasis 
allows for the gelification of materials without any chemicals [30]. Geuze and colleagues 
have recently used a similar cell-based bone-tissue engineering strategy, in which an 
injectable platelet gel, obtained from a platelet and leukocyte-rich plasma mixed with trombin 
and combined with bone marrow stomal cells (BMSCs), was used to promote bone formation 
[173]. In another study, Yamada and co-workers also used an injectable platelet-rich plasma 
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scaffold with immobilized osteogenic differentiated BMSCs for bone regeneration in 
maxillary sinus augmentation [174]. The same approach was attempted by Cheng et al., using 
similar scaffolds as bone grafts substitutes, in the repair of cranial deffects in rabbits, with 
promising results [175]. Additionally, injectable mixtures of hydroxyapatite/tricalcium 
phosphate particules, fibrin and ex vivo-expanded BMSCs, could assemble into mature bones 
with histologic and mechanical properties similar to standard bone transplants (Mankani et al. 
2008 Tissue Engineering). The use of an injectable cellulose-based hydrogel containing 
autologous chondrocytes was successfully used for the repair of articular cartilage [176]. 

 
 

6. TISSUE ENGINEERING AND DELIVERY APPLICATIONS 
 
The injectable formulations are currently being applied in research areas  encompassing 

sustained drug [109,120,177-179], cell [152] and gene delivery [153,180,181], vaccination 
[182],  tissue adhesion prevention [77,78,183,184], soft and mineralized tissue regeneration or 
promotion of angiogenesis. Generically, the problem underlying the delivery of bioactive 
molecules in a given location lies in the short half-life and easy diffusion of these compounds 
in vivo, giving rise to the need of an appropriate system which enhances the delivery efficacy. 
In this context, injectable hydrogels have been studied as such a delivery vehicle due to their 
easy preparation and handling.  

The subcutaneous delivery of hidrogels loaded with dendritic cells successfully triggers 
an immune response. It has been demonstrated that antigene-loaded dendritic cells, after a 
prolonged time period at a defined site, behaving as “vaccination nodes”, led to the 
recruitment of activated antigen-specific T cells, thus showing as a promising immunotherapy 
tools [182]. 

Hafeli and coleagues have recently developed a radiopharmaceutical system that consists 
of an injectable gel to be applied in brain tumors to deliver high focal doses of radiation 
[185,186]. The gel, which strongly adheres to tissue in the treatment area, consists of fibrin 
containing the β-emitters rhenium-188 and rhenium-186 in microsphere-bound form. This gel 
provides an effective method of delivering high doses of local radiation to tumor tissue, 
particularly to wet areas where high adhesive strength and long-term radiation (with or 
without drug) delivery are needed. Normal brain tissue can be spared and the application of 
radioactive fibrin gel may be possible even in critical areas such as near the optical nerve. 

 
 

6.1. Angiogenesis 
 
Angiogenesis – a key process in tissue regeneration – is a challenging task achieved 

through the controlled release of vascular endothelial growth factor (VEGF) and fibroblast 
growth factor (FGF). In this context, several hydrogels have been developed such as 
alginate/heparin microparticles, alginate microspheres or beads, fibrin, sodium hyaluronate, 
chitosan and PLGA millicylinders[187-194]. Recent works by Leroyer et al. report the use of 
microparticles containing CD40 ligand+ from human atherosclerotic plaques to stimulate 
endothelial proliferation and angiogenesis [195,196].  
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6.2. Cartilage Regeneration 
 

For the purpose of cartilage regeneration, the injectable scaffolds have also found a great 
application. Since during cartilage repair, extracellular matrix formation is affected by the 
properties of the scaffolds, such as swelling ratio, compression modulus, degradation rate and 
cell seeding density, a careful control over the crosslinking density and structure of the 
macromonomers is, thus, necessary [81,197]. Various systems have been developed fitting 
these requirements, including oligo(poly- (ethylene glycol) fumarate) [147], poly(N-
isopropylacrylamide) copolymers [198-201], poly(ethylene oxide) [62,72,81] alginate, fibrin 
[197], PLGA-g-PEG [45,114], pluronics [202-205], calcium phosphate/hyaluronic acid 
composites [206-208] and chitosan [209-211]. A hydrogel composite of collagen-coated 
polylactide microcarriers with chitosan, formed at neutral pH and body temperature, was 
recently used as an injectable scaffold for cartilage regeneration [212]. The Antonios Mikos 
group investigated the development of an injectable, biodegradable hydrogel composite of 
oligo(poly(ethylene glycol) fumarate) (OPF) with encapsulated rabbit marrow mesenchymal 
stem cells (MSCs) and gelatin microparticles (MPs) loaded with transforming growth factor-
b1 (TGF-b1) for cartilage tissue engineering applications [213]. Rabbit MSCs and TGF-b1-
loaded MPs were mixed with OPF, a poly(ethylene glycol)-diacrylate crosslinker and the 
radical initiators ammonium persulfate and N,N,N’,N’-tetramethylethylenediamine, and then 
crosslinked at 37 ºC for 8 min to form hydrogel composites. The authors demonstrated the 
viability of MSC in the hydrogel and the up-regulation of cartilage relevant genes. 

 
 

6.3. Bone Regeneration 
 
Injectable scaffolds have also been extensively investigated for applications in bone and 

soft tissue regeneration. Injectable materials have been successfully used as osteogenic bone 
substitutes [214]. Recent advances in chemistry, molecular biology, physiology, and 
biomaterials science have translated into the development of novel synthetic, injectable bone 
graft substitutes. These materials may offer several advantages over the traditionally used 
autografts or allografts. The flowable nature and in situ polymerization of these materials 
allows filling defects of any shape. In addition, the clinician can fill the defect via minimally 
invasive procedures and avoid the morbidity associated with traditional open surgical 
exposures. Important intrinsic features of synthetic bone substitutes include material 
composition, mechanical strength and stiffness, biocompatibility, safety, and degradation 
time. An essential characteristic of the synthetic graft is its microarchitecture. For optimum 
bone ingrowth, the material must possess a system of interconnected pores that allows 
cellular migration, deposition of extracellular matrix, and the diffusion of nutrients and waste 
products [215]. 

Poly(propylene fumarate) (PPF) has been investigated as an injectable, biodegradable 
scaffold for orthopedic applications. The foaming technique created a porous, interconnected 
scaffold, demonstrating that clinically useful polymers can be fabricated for use in various 
bone tissue engineering applications [215].  

Adhikari et al. developed a two-part injectable prepolymer system (crosslinked 
polyurethanes) [216]. The mixture, with incorporated tricalcium phosphate, remains 
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injectable for up to 10 minutes, and gradually increases viscosity. Sheep studies demonstrated 
that the injected polymers did not cause any adverse reaction and evidence of new bone 
growth and gradual degradation of the polymers was observed up to 6 months. 

Injectable scaffolds have also been extensively investigated for applications in bone and 
soft tissue regeneration. A large variety of injectable materials is being successfully 
developed as osteogenic bone substitutes [68,214,217-223]. 

 
 

6.4. Neural Regeneration 
 
Injectable formulations have found their ultimate function in promoting the axonal 

rewiring in spinal cord injuries [224-227].  
Peptide amphiphile (PA) molecules that self-assemble in vivo into supramolecular 

nanofibers were used as a therapy in a mouse model of spinal cord injury (SCI) [228]. 
Because self-assembly of these molecules is triggered by the ionic strength of the in vivo 
environment, nanoscale structures can be created within the extracellular spaces of the spinal 
cord by simply injecting a liquid. The molecules are designed to form cylindrical nanofibers 
that display to cells of the spinal cord the laminin epitope IKVAV. IKVAV PA nanofibers are 
known to inhibit glial differentiation of cultured neural stem cells and to promote neurite 
outgrowth from cultured neurons. In this work, in vivo treatment with the PA after SCI 
reduced astrogliosis, reduced cell death, and increased the number of oligodendroglia at the 
site of injury.  

Another recent work reported the use of injectable liquid agarose and methylcellulose 
hydrogel combinations, which polymerize once exposed to physiological temperatures 
naturally [229]. Furthermore, in vitro experiments suggested that the application of the 
hydrogel did not negatively affect neurons spared from the initial injury. Therefore, these 
hydrogel blends could prove to be beneficial as a component of a multi-faceted neuronal 
treatment, through providing a mechanism for drug delivery and anchoring scaffolding for 
directed regenerating of neurons through an injury site.  

 
 

7. FINAL REMARKS 
 
In the past decade one assisted to the rising of a wide range of injectable formulations 

developed via chemical or physical processes. Injectable systems offer the advantages of 
filling irregular shaped defects, simple incorporation of cells and/or pharmaceutically active 
agents, doing so with limited surgical invasion. Chemical cross-linking is highly versatile for 
the preparation of injectable scaffolds, and the resulting networks possess superior 
mechanical strength. However, toxic chemical agents are often employed in the formulations, 
adversely affecting cells and bioactive molecules during solidification. Physical crosslinking 
can overcome these limitations, but the resultant networks usually possess limited mechanical 
properties and stability. Therefore, careful selection of precursor formulation and appropriate 
crosslinking methods are crucial to the preparation of injectable hydrogels. In light of the 
rapid development of regenerative medicine, the demand for new systems that can fulfill its 
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challenging requirements is increasing. Likewise, novel injectable hydrogels are welcomed 
and will have to be tailored to fit specific future applications. 
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