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Abstract: In geostatistics it is commonly assumed that the selection of the sam-
pling locations does not depend on the values of the spatial variable. One has
preferential sampling when this assumption fails (e.g. maximum values search).
We first show that the impact of a preferential design on the traditional predic-
tion methods is not negligible. We address this problem by proposing a model-
based approach, for stationary Gaussian processes. This new parametric model
is founded on a flexible class of log-Gaussian Cox processes. A numerical study
is then included to compare the performance of the model proposed and the
traditional geostatistical model.
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1 Introduction and motivation

Suppose that the data for analysis are of the form (xj,y;) : i = 1,...,n,
where Xj,...,X, are locations within an observation region D C IR? and
Y1, ..., Yn are measurements associated with these locations. The {x; : ¢ =
1,...,n} is the sampling design and y; is assumed to be a realization of
Y: = Y(x3), where {Y(x) : x € D} is the measurement process. We also
assume the existence of an unobserved field process {S(x) : x € D}, usually
regarded as our goal of prediction. Often, Y; can be considered as a noisy
version of the underlying random variable S(x;), the value at location x;
of process S.

Preferential sampling refers to any situation in which the sampling de-
sign process is stochastically dependent of the field process .S. Consequently,
the corresponding geostatistical model (specified by the joint distribution of
the processes involved) must take into account the conditional distribution
of the sampling design. For example, some prior scientific knowledge about
S, such as the expected local level of contamination in air pollution, may
cause the concentration of samples in areas with atypically large values.



2 Preferential Sampling

1.1 A class of log-Gaussian Cox processes

The sample locations x are assumed to be realizations of a point process
P. Under complete spatial randomness (CSR), the point process modelling
is typically based on some homogeneous Poisson process. To propose a
model for preferential sampling, we need a class of point processes where
the constant intensity A\ of the Poisson process is replaced by a spatially
varying intensity function, A(x). More precisely, we wish to model aggre-
gated spatial point patterns where the aggregation is due to some stochastic
heterogeneity. This leads us to a class of inhomogeneous Poisson processes,
P, with stochastic intensity functions, called the Cox processes.
Additionally, we must have in mind our intention to model the dependency
of point process P on field process S. Assuming Gaussian data, we shall
then consider log-Gaussian Cox processes for P, i.e. Cox processes where
the logarithm of the intensity surface is a Gaussian process (see e.g. Moller
et al., 1998).

A geostatistical model for preferential sampling is a specification
of the joint distribution of the field process, the point process and the
measurement process of the form [S, P, Y] = [S][P|S][Y|S] where [.] means
“the distribution of”. So, the proposed model for preferential sampling
might be exemplified by:

o S ~ SGP(u,0%,p(.)) — S is a stationary Gaussian process with
mean pu, standard deviation o and spatial correlation function p(.).

e P|S ~ Poisson (exp{a + 8S5(x)}) — « and 3 are real numbers, and
| 3] identifies the degree of preferability.

o Y(xi)=9(x;)+ Z;, i=1,....,n, where Z; ~N(0,72).

The signal of 3 is an indicator of a positive or negative association between
P and S. A null value for g leads to the classical geostatistical model
and, in this case, one has [S, P,Y] = [S][P][Y|S].

1.2 Prediction ignoring preferential sampling

We now wish to assess how misleading it might be using standard kri-
ging methodology for preferential sampling. Suppose our target of pre-
diction is S(xg) the value of process S at a generic location xq, given
sample data (xi,y;),¢ = 1,2,...,n. The prediction problem may be forma-
lized by invoking the conditional distribution of S given the observed data
y. E[S(x0)]y] = S(xo) specifies the predicted value and Var[S(x¢)|y] =
E[(S(x0) — §(xo))2] specifies the prediction variance.

Having in mind that kriging provides a BLUE estimator, we proceed with
Monte Carlo experiments to examine the behaviour of bias and variance,
by analysing the expectation and the variance of the prediction errors,
respectively. We compare three sampling designs: CSR, just clustered and
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TABLE 1. Impact of preferential sampling on prediction. Monte Carlo appro-
ximations for: expectation and variance of prediction errors.

CSR (8 =0) Clustered Preferential (5 = 2)

E[PE] (—0.081,0.059) (—0.082,0.186) (1.290,1.578)
Var[PE]  (0.282,0.363)  (0.996,1.137) (1.150,1.471)

preferential. In each case, 500 realizations in all were used, each with n =
100. As we are assuming stationarity, we choose just one prediction point,
that for which x¢ = (0.5,0.5). For each replica j = 1...500, we derive the
corresponding prediction error, PE; = §j (x0) — Sj(x0).

The main results are summarized in Table 1. The most evident conclusion
is that the bias, represented by E[PE], considerably increases under pre-
ferential sampling. This is because S(xg) tends to be over-estimated, as we
are forcing a higher density of sample locations close to maximum values
of the underlying field S. Additionally, it is quite evident, that Var[PE]
increases under preferential or just clustered sampling designs. Bear in
mind that this variance represents an empirical prediction variance, which
depends on sampling design x; and on the estimation of model parameters,
and that the latter is affected by a non-random design.

These results illustrate how misleading it would be to adopt classical kri-
ging methodology for preferential sampling. They support the need for an
alternative solution, which will be discussed in next Section.

2 A model-based approach

The term model-based geostatistics was first used by Diggle et al. (1998) to
describe the application of formal statistical models and likelihood-based
methods of inference to geostatistical problems. We suggest a solution for
the preferability issue following this approach. We aim to apply an explicit
parametric stochastic model to preferential sampling, and proceed with
likelihood inference to estimate the parameters of the proposed model to
allow for spatial prediction. The values of these parameters that maximize
the likelihood are referred to as the MLE’s.

The marginal likelihood function of the observed data, L(6| Y, P), is derived
from the density f(y,x) = [ f(s,y,x)ds = [ f(y)f(x|s)f(s|y)ds. In this
way, this likelihood can be written as L(0| Y, P) = f(y) Esjy [f(x[s)], and
the corresponding log-likelihood function becomes

1(0] Y, P) =log f(y) +log Egy [f(x]s)]. (1)

Here, we highlight that the first term is assumed to be the one used under
Gaussian assumptions in classical geostatistics (see e.g. Diggle et al., 2003),
and the second is the correction term obtained for the preferability issue.
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TABLE 2. MLE’s confidence intervals obtained from a total of 100 independent
samples. The true values of model parameters are u =4, 0 = 1.4, ¢ = 0.2 and
7 = 0.3. In the case of a non-null degree of preferability, 8 = 2.

Preferential sampling 7

No Yes
PS model Traditional PS model Traditional
n (3.880,4.134)  (3.886,4.141) (3.749,4.038)  (5.090,5.372)
o (1.198,1.326)  (1.211,1.337) (0.911,1.046) (0.807,0.888)
a (0.165,0.190)  (0.167,0.192) (0.137,0.163)  (0.112,0.130)
T (0.296,0.322)  (0.295,0.321) (0.296,0.311)  (0.305,0.318)
B (-0.015,0.011) — (1.752,1.833) —

Numerical study. We now present a numerical study aiming to compare
the MLE’s assuming the traditional Gaussian model in classical geostatis-
tics with the MLE’s obtained under the proposed preferential sampling
model. This assessment is implemented for spatial data in both the prefer-
entially and non-preferentially sampled cases. Parameters 6 = (i, o, ¢, 7, )
are the target of estimation. The maximization of [(f) given in (1) yields
the MLE’s of the model parameters.

Table 2 summarizes the results of this numerical study. We performed 100
simulations of sample data sets with p =4, 0 =1.4, ¢ = 0.2, 7 = 0.3 and
8 = 0, and 100 more simulations for § = 2. The main conclusions may
be summarized as follows. As expected, if spatial data were not preferen-
tially sampled, the traditional and the PS models present very similar MLE
results. However, the correction term proposed for the preferability issue
in (1) proves to be important, when the preferability degree is non-null.
Note that the MLE’s confidence intervals derived using the PS model do
not include the true values of the parameters in the case of o, ¢ and (3,
nevertheless they are always closer to those true values than the MLEs of
the traditional model.
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