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Resumo

O metabolismo actua como uma máquina que mantém a funcionalidade da célula como

resposta a várias perturbações, mantendo os nı́veis de metabolitos cruciais e componentes

celulares e produzindo energia através da quebra de determinados compostos. Uma mel-

hor compreensão destes mecanismos não se pode restringir ao conhecimento das funções

de tecidos ou tipos celulares, também requer um conhecimento sobre as suas interacções.

O fı́gado humano tem um grande número de funções fisiológicas relacionadas com o

metabolismo, como a produção de bile, hormonas e vitaminas. Os hepatócitos têm um

grande impacto no metabolismo humano, sendo as suas células as metabolicamente mais

activas. Um mau funcionamento do metabolismo destas células está associado com al-

gumas doenças, como hepatite, cirrose ou doença hepática gordurosa não alcoólica, onde

esta última se encontra associada a obesidade.

Uma via metabólica particular tem sido associada não só com a obesidade, mas também

com cancro e diabetes tipo 2, a via metabólica mecânica TOR (mTOR). A sinalização

desta via tem efeito na maior parte das funções celulares e regula o crescimento e proliferação.

Foi demonstrado que alterações nesta via pode levar a acumulação de gordura em pessoas

obesas. Uma melhor compreensão desta via complexa pode ajudar os investigadores para

revelar mais informação sobre como esta via funciona e como pode ajudar no tratamento

de diversas doenças.

O aumento de dados provenientes de alto débito, devido aos avanços na sequenciação

e outras técnicas experimentais, permitiram-nos ter um melhor conhecimento sobre as car-
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acterı́sticas moleculares da célula. Uma ferramenta útil para processar toda esta informação

são os Modelos Metabólicos à Escala Genómica (MMEG). Um MMEG é uma lista de

reacções balanceadas pela massa, que pode ser relacionada com compartimentos celu-

lares, como o citoplasma. Dados os dados de alto rendimento, MMEG podem ser uti-

lizados para a simulação do metabolismo de um certo tipo celular através de modelação

baseados em restrições. Existem vários algoritmos/ferramentas para criar modelos metabólicos

especı́ficos para um tecido (baseado em modelos metabólicos humanos, como o Recon2)

incluindo o tINIT, MBA ou mCADRE.

Apesar de todos estes métodos ainda apresentarem algumas limitações, os modelos

gerados pode simular tecidos humanos e ser um bom ponto de partida para uma melhor

compreensão de doenças complexas. Uma limitação importante destes modelos é o facto

de apenas representarem a camada metabólica da célula, enquanto para os modelos serem

capazes de suportar simulações precisas, outros sub-sistemas (ex: regulação, sinalização)

devem ser também tidos em consideração. Estes modelos (modelos integrados) combi-

nam a informação e fluxo de material dos três sistemas previamente descritos, fornecendo

assim uma ferramenta robusta com maior poder preditivo.
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Abstract

Metabolism acts a machinery by maintaining the functionality of the cell in response

to several perturbations, keeping a balance in the levels of crucial metabolites and cell

components and producing energy by breaking down certain compounds. A better un-

derstanding of these mechanisms cannot be restricted to the knowledge of the function of

specific tissues or cell types, it also requires knowledge about their interactions.

The human liver has a high number of physiological functions related to the metabolism,

such as the production of the bile, hormones and vitamins. The hepatocytes have a major

impact in human metabolism, being the most metabolically active cell types in humans.

Malfunction on the metabolism of this type of cells is related to several diseases, like

hepatitis, cirrhosis or non-alcoholic fatty liver disease (NAFLD), where the last one is

considered a manifestation of obesity.

A particular pathway has been associated not only with obesity, but also with cancer

and type 2 diabetes, the mechanistic TOR (mTOR) pathway. Signalling of this pathway

has an effect on most of cellular functions and regulates growth and proliferation. It has

been shown that alterations in this pathway can lead to fat accumulation in the liver of

obese people. A better understanding of this complex pathway may help researchers to

unveil more information on how this pathway works and how it can help in the treatment

of several diseases.

The increase of high-throughput data, due to the advances in sequencing and other

experimental techniques, allowed us to better understand the molecular characteristics
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of the cell. A useful tool to process all this information are Genome-scale metabolic

models (GSMMs). A GSMM is a list of mass-balanced reactions, which can be related to

cellular compartments, like the cytoplasm. Given high-throughput data, GSMMs can be

utilized for the simulation of the metabolism of a certain cell type through a constraint-

based modelling framework. There are several algorithms/ tools to create tissue-specific

metabolic models (based on a generic human model, such as Recon2) including tINIT,

MBA or mCADRE.

Although all these methods still face a number of issues, the generated models can

simulate human tissues and can be a good starting point for a better understanding of

complex diseases. An important limitation of these models is the fact that they only

represent the metabolic layer of the cells, while for models to be able to support accurate

simulations, a number of other important sub-systems (e.g. regulation, signalling) should

also be taken into account. This models (Integrative models) combine the information

and material flow of the three previous mentioned sub-systems, delivering a more robust

tool with more predictive strength.

vi



Acknowledgments

First, I would like to thank Professor Miguel. He has been a great (if not the greatest)

teacher I have had since I started to study. It has helped throughout the whole master

degree and gave me the opportunity to go abroad and develop even more my knowledge.

To Julio, who has welcomed me as any person would want to be and helped with a lot

with my work.

To all the new friends I made in Aachen, who helped me through all the time I was

there and with my work.

To all my friends in Braga, who were always available for me when I needed help and

with whom I share good times.

To Sara Correia, who has one hell of a patience with me, who helped me to get moti-

vated and as taught me a lot in this area.
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Chapter 1

Introduction

1.1 Motivation and Context

Metabolism acts a machinery by maintaining the functionality of the cell in response

to several perturbations, keeping a balance in the levels of crucial metabolites and cell

components and producing energy by breaking down certain compounds. A better un-

derstanding of these mechanisms cannot be restricted to the knowledge of the function of

specific tissues or cell types, it also requires knowledge about their interactions (Bordbar

et al., 2011; Hsu and Sabatini, 2008; Varemo et al., 2013).

The human liver has a large number of physiological functions related to metabolism,

such as the production of the bile, hormones and vitamins (Tortora and Derrickson, 2014).

The hepatocytes have a major impact in human metabolism, being the most metabolically

active cell types in humans. Malfunction on the metabolism of this type of cells is related

to several diseases, like hepatitis, cirrhosis or non-alcoholic fatty liver disease (NAFLD),

where the last one is considered a manifestation of obesity (Neuschwander-Tetri and Cald-

well, 2003).

The increase of high-throughput data, due to the advances in sequencing and other

experimental techniques, allowed to better understand the properties of cells and their
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behavior. Useful tool to process all this information, mainly related to metabolism, are

Genome-scale metabolic models (GSMMs). A GSMM is a list of mass-balanced reac-

tions, which can be related to cellular compartments, like the cytoplasm.

Given high-throughput data, GSMMs can be utilized for the simulation of the metabolism

of a certain cell type, through a constraint-based modeling framework. There are several

algorithms/ tools to create tissue-specific metabolic models (based on a generic human

model, such as Recon2 (Thiele et al., 2013)), including tINIT (Agren et al., 2014a), MBA

(Jerby et al., 2010a), mCADRE (Wang et al., 2012b), FASTCORE (Vlassis et al., 2014)

or CORDA (Schultz and Qutub, 2016). There have been several biomedical applications

for the reconstructed models throughout the years (Kim et al., 2014; Mardinoglu et al.,

2014; Park et al., 2012) using these methods, a significant part of which are related to

cancer.

Cancer is a disease commonly associated with an unrestrained cell growth and able

to invade several parts of the human body (Seely, 1980). The urge for understanding and

finding new ways to fight cancer has been a challenge for the past years for the scientific

community.

The Genomics of Drug Sensitivity in Cancer (GDSC) project comprises around 1000

different gene expression profiles cell lines of cancer; alongside with this, there is also

265 different drug IC50 values related to them (Yang et al., 2013).

For this work, the associations between the drugs and gene expression were analyzed,

as well as with reconstructed models for these cell lines.

With this we want to achieve a better understanding of the importance and possible

applications of the reconstructed models for the cancer knowledge and treatment.
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1.2 Objectives

Given the context presented above, one of the main aims of this work is the development

of reconstructed metabolic models for liver cells, addressing the evaluation of available

tissue-specific model reconstruction algorithms. This should allow to obtain a better un-

derstanding of its metabolism and changes occurring in both normal and cancer cells.

As a second aim, and after assessing the most suitable algorithm and applying it to

a panel of cancer cell lines, we will try to evaluate if reconstructing metabolic models

based on gene expression can lend more knowledge. In particular, we verify if it can be

complemented by analyzing data on drug sensitivity for a set of rugs administered to the

same cell lines. In the final part of the work, we will try to unveil mechanisms of action

of the drugs based on the associations obtained.

In more detail, the work will address the following scientific/technological objectives:

• Review the state of the art in the constraint-based modeling of hepatocytes and liver

cancer cells, and also on available tissue-specific reconstruction algorithms;

• Based on available experimental data (transcriptomics, proteomics), apply different

methods for the metabolic model reconstruction of hepatocyte cell liness (both for

normal and cancer ones);

• Create a pipeline for the discovery of associations between genes/reactions with

drugs by performing an adequate statistical analysis;

• Achieve a better understanding for the mechanism of action of the drugs and its

targets by analyzing the locations of the genes in a simplified network;
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1.3 Thesis organization

In the second chapter we describe the state of the art of the work. We will define certain

important concepts, such as metabolism, cancer and reconstructed models.

In the third chapter, the materials and methods are presented and discussed. We will

describe the data used and the methods used (with a brief explanation of how they work),

as well as a separation of the two parts of this work, which will be the reconstruction of

liver metabolic models using different algorithms and how the associations between the

gene expression/reconstructed models against drugs are calculated.

In the fourth one, we will present and discuss the results in this work. As described

before, the work is divided in two parts, so in the first part we present the results for

the model reconstruction algorithms, using both liver normal and cancer data. As part

of the analysis, we evaluate the similarities and differences in the models, performed a

functional analysis and evaluate if they were capable of producing biomass as well as

fulfill specific liver tasks. In the second part, we present and discuss the results obtained

from the associations generated with the gene expression and the reconstructed models.

In chapter five, we present the conclusions for the work and some future perspectives.
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Chapter 2

State of the Art

2.1 Metabolism

Metabolism is a cellular mechanism mainly responsible for the control of the growth

and good functioning of the cells. The main goal for unicellular organisms is to be able

to grow as much their environment allows, which means that with the right amounts of

carbon, energy and nutrients, they are able to generate new cells.

For multicellular organisms, like humans, the availability of required molecules to

produce a new cell usually does not represent a problem. Physiological functions, as neu-

ral communication or relaxing a muscle, require energy which is obtained from metabolic

processes (Muñoz-Pinedo et al., 2012; Vander Heiden et al., 2009). Cells must be able to

manage their mechanisms to proliferate.

The human liver is responsible for a major part of the metabolism. It is relevant to

the production of bile, certain vitamins and hormones, storage of glycogen or degrada-

tion of toxic substances, regulation of certain components of the blood like the plasma

or red blood cells and glucose (Tortora and Derrickson, 2014). The liver is composed

with two types of cells; parenchymal ones (bile duct and hepatocytes cells) and the non-

parenchymal, which comprises the Kupffer, hepatic stellate and sinusoidal endothelial
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cells (Kmieć, 2001).

Deregulation of the functions of the liver can lead to several diseases. The main

diseases associated with the liver are hepatitis, nonalcoholic fatty liver disease (NAFLD),

cirrhosis and hepatocellular carcinoma (HCC) which affects more than half a million

people worldwide (Baffy et al., 2012; Finn, 2010; Lanpher et al., 2006). The study of the

molecular and cellular mechanisms of the liver can lead to a better understanding of the

disorder and improving the knowledge about normal and disease states.

An important mechanism in mammals is the signaling network mTOR (also known as

“mechanistic TOR”). This specific pathway controls diverse processes that either control

the use of nutrients or the production of energy, which consequently regulates the growth

and proliferation of the cells, macromolecule biosynthesis or cytoskeletal organization.

Although cancer seems an obvious disorder caused by the deregulation of the previous

processes, this pathway is also related with obesity, type 2 diabetes and neurodegenera-

tion.

mTOR is composed by two different complexes of proteins known as mTOR complex

1 (mTORC1, which has six proteins) and mTOR complex 2 (mTORC2, composed by

seven proteins). Specifically, while mTORC1 reacts to amino acids, stress, oxygen or

growth factors, mTORC2 is responsible to respond to growth factors or regulation of cell

survival (Laplante and Sabatini, 2013).

As stated before, the liver is responsible for the control of glucose and lipid ho-

moeostasis, and the mTOR pathway plays an important role in the well functioning of

the liver. If the levels of activity of the mTORC1 are low (for example, during fasting),

studies have demonstrated that this complex does not impair the activation of the ketoge-

nesis, a biochemical process responsible for the degradation of the fatty acid as opposed

when it activity is high, where the hepatic lipogenesis is upregulated, leading to the non-

alcoholic fatty liver disease. One serious consequence of it, a disorder where there is a

unnatural fat accumulation in the liver, is obesity, which can be implicated in the appear-
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ance of others diseases, like cirrhosis or hepatocellular carcinoma (Sengupta et al., 2010;

Yecies et al., 2011).

2.2 Cancer

2.2.1 Hallmarks of Cancer

Cancer is a disease that is characterized by an uncontrolled cell growth and, in some cases,

is able to invade several parts of the body. There are known over 200 types of cancer (but

not in all parts of the human body), being the most frequent ones the breast, lung and

colon ones, while it is very rare to have heart or skeletal muscle cancer (Seely, 1980).

The complexity of the research of this disease has been increasing over the years. A

number of “hallmarks” were suggested to have a way of describing several features of

the disease (Hanahan and Weinberg, 2000, 2011). This can be seen as a “multi-layered”

process, where each layer has a specific contribution either in genetic or morphological

changes, which contribute to the evolution of cancer cells. Despite the number of different

types, there some specific traits which can be “shared” that are acquired during tumor

development.

The first six hallmarks of cancer were suggested (Hanahan and Weinberg, 2000) and

later revisited (Hanahan and Weinberg, 2011). The first one is the self-sufficiency in

growth signals, which is a required process for cells when they are in active proliferative

state. Mostly, the signals are transmitted by signaling molecules that can be classified

as diffusible growth factors, extracellular matrix components, cell-to-cell adhesion and/or

interaction molecules. Although, in a normal condition, convenient diffusible mitogenic

factors are required, tumor cells can overcome this need by generating their own growth

signals (Hanahan and Weinberg, 2000).

Although this process is crucial, cells must also be able to suppress other signals

from their neighborhood that are anti-proliferative (regulated by tumor suppressor genes).
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The main two genes associated with this process are the RB (retinoblastoma-associated),

which responds both to extra- and intra-cellular signals and decides the fate of the cell,

and TP53 proteins, which in their turn, respond to the stress and aberrant intra-cellular

function, like DNA damage, lack of nucleotides, nutrients or growth-promoting signals or

levels of oxygen, arresting the cell cycle until the optimal conditions are met. In extreme

cases, where the damage is irreversible, TP53 proteins can trigger apoptosis. Although

they are important genes to take into account, their single absence in some cases has no

influence in the outcome of proliferation. This suggests that they are a part of a bigger

network and that there are other underlying mechanisms that can fill the gaps and need

research (Hanahan and Weinberg, 2011).

The next suggested hallmark for cancer is insensitivity to antigrowth signals. In nor-

mal conditions, the cells “communicate” with each other to preserve cellular quiescence

and tissue homeostasis, usually through transmembrane cell surface receptors linked to

intracellular signaling circuits. To control the cellular growth, cells may be “forced” to

stay in the G0 state, only proliferating again if needed by the organism or when differen-

tiated into specific types of cells. During cancer development, the cells are able to “jump

out” of the G0 state, becoming “insensitive” to anti-proliferative signals and progressing

to the G1 and S phase. But there is more to add, since cancer may also arise from tissues

where cells are told to enter a differentiated state (which should be irreversible). However,

the change in certain mechanisms may alter this and lead cells to proliferate.

Another hallmark of cancer is escaping the cell’s programmed death, known as apop-

tosis. It is probably the most common mechanism in cancer, and it further helps the uncon-

trollable expansion of the disease. Normally, the apoptosis’ mechanism is present in all

cells across the human body and, once activated, it unlocks a very consistent “cascade”

of processes to achieve its goal. The disintegration of the cell membrane, the cleavage

of cytoplasmatic and nuclear skeleton, the expel of the cytosol, disassemble of chromo-

somes and disintegration of the nucleus and lastly, the remaining of the cell is assimilated
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by other surrounding cells; all of these steps are part of apoptosis.

The apoptotic process can be divided in two components: sensors and effectors. The

first is a mechanism that is evaluating if the cell should die or not by overseeing the intra-

and extra-cellular environment for anomalies. The latter is “controlled” by the first, so

if there is any signal that could instruct the death of the cell, the effectors initiate the

apoptotic process. Externally, cell surface receptors that bind to survival or death factors

are responsible for triggering apoptosis, while internally, the “mission” is to evaluate

abnormalities, like DNA damage, uneven signaling or hypoxia (Evan and Littlewood,

1998).

Putting together all the three past hallmarks, we have the “perfect” combination for an

unlimited and uncontrolled proliferation of cancer cells. However, researchers found that

even if the previous conditions were met, alone they were not sufficient to lead to tumor

growth, since some mammalian cells have a limited number of replications (controlled

by the cell), achieving then the process called senescence (Hayflick, 1997). It is thought

that this mechanism is independent of cell-to-cell signals described before, and it has to

be also disrupted for the tumor to grow into a malignant tumor.

As any other cell in the organism, certain requirements must be achieved. Nutrients

and oxygen are vital for cell survival and function. Particularly during human develop-

ment (organogenesis), the regulated formation of blood vessels is crucial. As for cancer,

as a requisite to increase even more the tumor, it must develop angiogenesis (Bouck et al.,

1996; Hanahan and Folkman, 1996). As other mechanisms of the cell, it is important to

keep a balance between the different signals either to favor or stop angiogenesis. Soluble

factors and its receptors on the surface of the endothelial cells are one form of signal to

control this process, as well as integrins and adhesion molecules which mediate cell-to-

matrix and cell-to-cell associations. This happens during the tumor development when

there seems to be a “switch” that makes angiogenesis active and sustained again in tumor

cells, specially in the mid-stage lesions, before the appearance of developed tumors. How-
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ever, in some forms of cancer like human cervix, breast and skin (Hanahan and Folkman,

1996), it seems that angiogenesis occurs in an earlier stage.

One of the most aggravating characteristics of cancer is the development of metas-

tases, a process where the cells “move” from their original place, invade another tissues

and “conquer” new places to continue its proliferation. Due to this, the lethality of the

disease skyrockets up to 90% (Sporn, 1996). We can see this as a migration for a new part

of the human body, looking for more space and nutrients (an analogy could be made with

the nomadism). This hallmark shares similar characteristics with the others, like activa-

tion of extra-cellular proteases to adapt to the new environment and physical pairing with

the “new” cells.

Although the hallmarks are important processes for a better understanding and char-

acterization of the cancer, there are some important characteristics that enable their rise.

Changes in the genome (like mutations) are usually acquired by cancer cells. Although

single gene mutations are not an efficient way to create genome instability (due to the

mechanism of DNA repair), the structures that oversee the state of the cell are the ones

that lead to an increase of the mutations on the genome (Lengauer et al., 1998).

One of the most common alterations in cancer is the alteration of the TP53 tumor

suppressor proteins (Levine, 1997). Besides this cell viability check, other genes/proteins

associated with other mechanisms like chromosomal segregation during mitosis, have

been implied in cancer (Lengauer et al., 1998), giving an advantage in its growth. Another

enabler of this could be the leftovers of an apoptotic body (Holmgren et al., 1999), due

to the horizontal transfer of genes when the phagocytosis occurs. The genome instability

may be considered the main trigger for “appearance” of the hallmarks of cancer.

Although the past six hallmarks have been extensively reported, there are two emerg-

ing ones suggested in later work (Hanahan and Weinberg, 2011). One of them is related

with how the cancer cells are able to evade the immune system destruction. Our organism

has a “constant” surveillance for any kind of abnormalities, including early developed
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cancer cells and by some modifications, solid tumors have found a way of tricking it or

at least shorten the number of tumor cells eradicated, so it can be seen as an effective

obstacle for tumorigenesis and tumor progression. This has been demonstrated in cases

were rats immunodeficient for certain components of the immune system developed more

times and/or faster when compared to the control . Also, when transplanting tumor in the

first stage from immunodeficient rats to immunocompetent ones, the tumor was not able

to advance to the second stage, whereas in the reverse case, the tumor began to develop

in the immunodeficient one (Kim, 2007; Teng et al., 2008). This behavior of the immune

system has been described as “immunoediting”, - constant destruction of highly immuno-

genic cancer cell clones. A side effect of this is “leaving behind” cancer cells which are

less immunogenic and later grow into solid tumors (Smyth et al., 2006).

2.2.2 Metabolism and Cancer

Like any other machinery, that to function needs “fuel”, cells also need energy. Looking at

it from a simple point of view, under aerobic conditions, glucose is first transformed into

pyruvate (glycolysis, in the cytosol) and then into carbon dioxide (in the mitochondria).

Under anaerobic conditions, glycolysis is preferred and a small amount of pyruvate is

transferred to the oxygen-consuming mitochondria.

This was one of the characteristics observed related to the metabolism of cancer cells,

where the cells were able to reprogram their glucose metabolism (and therefore the energy

production), by facilitating predominantly glycolysis, named “aerobic glycolysis” (War-

burg, 1956; Warburg et al., 1927; Weinhouse et al., 1956). Although this process is by

far less efficient than the “regular” glycolysis, there are some advantages to cancer cells

when opting for the “aerobic” one. When revisiting an old theory (Potter, 1958), Vander

Heiden and his colleagues hypothesized that this shift in the pathway for production of

ATP can lead to a deviation of some intermediates of the glycolysis for another pathways,

mainly related to the generation of nucleotides and amino acids, aiding he production of
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macromolecules and organelles needed for the manufacturing of new cells (Vander Hei-

den et al., 2009). They also suggest that alterations which favor tumor progression lead

the cell to a self-governing nutrient uptake and force the metabolism to the proliferative

state; on the other hand, when trying to suppress the cancer, the cell restricts pathways

that require nutrient for anabolic purposes. This may be possible for the cell if it reverts

to its embryonic form or if the cell “evolves” for the facilitating of the metabolism to help

cell growth.

It has been also found that there is a second type of population of cells which com-

pensate the waste of the “aerobic” ones, which expels lactate as waste, and have found

a way to metabolize it to energy, using part of the citric acid cycle to achieve it (Feron,

2009; Kennedy and Dewhirst, 2010; Semenza, 2008). Although this may seem a “new”

feature for the cancer cells, the same process occurs in the muscle cells.

2.2.3 Drugs discovery for cancer treatment

Looking at all the hallmarks, we can begin to think about a more personalized and effec-

tive way of treatment for this disease. Looking to the rapid growth of available therapeu-

tics, we can categorize them through the hallmarks. If a drug is targeted for a specific

hallmark, it would be expected to lead, at least, to show some progress in the cancer

treatment (or at least be efficient in killing it), but that is not always the case.

This may suggest the existence of a core of pathways that are shared among the hall-

marks; so, even if a drug targets a specific hallmark, the shared core still can develop

resistance to the treatment, overcome the selective pressure (by either mutation, epige-

netic reprogramming and others mechanisms), making the tumor grow in such conditions.

Even in some cases, there was an unbalance in the “importance” of the hallmarks in or-

der for it to survive. For example, when administrated angiogenesis inhibitors in certain

preclinical models, even though the hallmark was successfully suppressed, the models

favored the invasion and metastasis, to obtain the requirements for their growth (Azam
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et al., 2010; Bergers and Hanahan, 2008; Ebos et al., 2009).

Looking at all the issues that have been described and the amount of information

present, informatics opens a new way of processing all the information. Processes like

analysis of sequence similarity (both for genes or proteins) or annotation of high-throughput

data created a new field of study, Bioinformatics. Allied with computational modeling and

statistical analysis, it has achieved the development of ontologies (to merge the medical

and “biological” knowledge), applied statistics (for the test of hypothesis) and compu-

tational biology (for the generation of models, some cases as described before). Also,

text mining tools have also been proved useful to obtain a faster and accurate retrieval of

information.

Since the disease is so heterogeneous, the need for an individualized therapy has never

been so imperative, and here Informatics could provide a vast help. If we look at the par-

ticularities of the disease, such as unique biomarkers to each individual at a molecular

level, the genetic evolution of the patient, to access the outcome of each treatment, could

be the work, allied with other areas of knowledge, for bioinformatics. Ideally (and pos-

sibly in a near future), treatments will not have aggressive side effects, a model for the

disease will be generated according to the genomic, proteomic, metabolic (and so on)

profile of the patient and the treatments will be more and more efficient (Ochs et al.,

2010).

As we stated before, cancer is a complex disease and a mathematical approach could

be an important way to lead for a better understanding of it. Although it may not be

simple (cancer is supported by nonlinear dynamics, such as growth rate, rate of mutations

and others), it could provide insight for more than the empirical, traditional view of the

disease. In order to do so, we have to combine both systems. While the main component

of research should be biomolecular (both in vitro and vivo), it should be also coupled with

hypothesis approach, modeling the disease with mathematical models for the purpose of

construction of frameworks to understand the data, guide new experiments and accelerate
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new discoveries (Gatenby, 2010).

With the increase of knowledge granted by this, the number of potential drug target

candidates continues to increase every day, but unfortunately it is not translated into new

and more effective drugs (Cartwright et al., 2010). The main issue with the introduction

of new drugs in the market is the rate failure in clinical trials, mainly in phases II and III

(Paul et al., 2010), primarily due to the reasons described before. With the help of sys-

tem biology and bioinformatics, additional insights can be given to the drug mechanism

of action understanding and discovery, in other words, integration of drugs (or a combi-

nation of them) with physiological pathways and complex disease systems, like cancer

(Fernald et al., 2011). A clear advantage of this approach is the modulation of the dosage

(consequently, the significance of several regimens), leading to a decrease in the cost of

development of the drug (Wang and Deisboeck, 2014).

2.3 Constraint-based Metabolic Modeling

2.3.1 Principles of constraint-based approaches

Systems biology is a science field based on the construction and in silico validation of

biological models, using data obtained from experiments. A reconstruction is a set of bio-

chemical reactions that occur in a certain cellular system, like the metabolism, taking into

account relations between proteins, transcripts and genes and their respective reactions.

This can ultimately be converted to a model with the inclusion of the flux and nutrient flow

rates. The main objective of these models is to simulate a cell under different conditions.

To build models, several considerations have always to be made, like the sub-cellular

localization of the metabolic reactions and information about gene-protein-reactions (GPR)

where it is important to take in consideration the alternative splicing of each gene (Ryu

et al., 2015). Basically, a GPR is a description of a reaction. If a gene is involved in an

OR condition, the gene will be automatically taken into account to build the relationships;
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if it is in an AND condition, the genes that form it can only be taken into account if all

the genes have an association found (Figure 2.1).

Figure 2.1: Example of a GPR. Considering M as a metabolite, this reaction can happen in two different
ways. If gene A is present, the reaction occurs in the cell (since it has an OR condition, the gene alone is
enough for the reaction to take place). But, if the gene A is missing, only if genes B and C are present, will
the reaction take place; if one of them is missing (and it is an AND condition), the reaction will not occur.

Constraint-based metabolic modeling principle resides in the mass balance of metabo-

lites, the assumption of a pseudo-steady state and the use of a stoichiometric matrix to be

able to perform simulations using numerical optimization (Orth et al., 2010). It can also

be used to simulate different variables (genetic, physicochemical and environmental) that

are imported to the model in the form of constraints that are taken in account when the

optimization is being performed for the prediction of fluxes (Ryu et al., 2015).

For this analysis, Flux Balance Analysis (FBA) can be used to achieve phenotype

simulation, calculating a flux distribution, through an optimization approach, which max-

imizes an artificial biomass flux (representing cell growth). It takes into account these

constraints, alongside with the reversibility and other constraints over maximum and min-

imum flux values (Kauffman et al., 2003).

2.3.2 Human Metabolic Models

The decrease of the cost of genome sequencing and other high-throughput omics data

and the scientific advances in bioinformatics tools have enabled reconstructions, not only

for smaller organisms, but also for eukaryotes. The first metabolic human GSMM was
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released in 2007, the Recon 1, with a very accurate manual curation for the model to be

able to validate each single metabolic reaction (Duarte and Becker, 2007).

Currently, the most extensive human metabolic models are the Recon 2 (Thiele et al.,

2013) and HMR 2.0 (Mardinoglu et al., 2014). The Recon 2 is the result of the merge

of other metabolic components present in Recon 1, together with the Edinburgh Human

Metabolic Network (EHMN) (Hao et al., 2010), HepatoNet1 (Gille et al., 2010a), a mod-

ule containing information about acyl carnitine and fatty-acid oxidation (Sahoo et al.,

2012) and another model with data about the human small intestinal enterocyte (Sahoo

and Thiele, 2013). Regarding the HMR 2.0, it has also integrated information from the

Recon 1, EHMN, HepatoNet1, iHuman1512 (Agren et al., 2012a) and iAdipocytes1809

(Mardinoglu et al., 2013a), and also information from the four major metabolic databases

(KEGG (Kanehisa et al., 2012), HumanCyc (Romero et al., 2005), LIPID MAPS Lipidomics

Gateway (Fahy et al., 2009) and REACTOME (Croft, 2013)).

2.3.3 Tissue-specific Metabolic Models

The creation of methods for the integration of omics data for the generation of tissue/cell

type-specific metabolic models has been of crucial significance for a better understanding

of the biochemical and genetic complexity of the human metabolism (Mardinoglu et al.,

2013b). Still, the integration of the omics data to generate tissue-specific models raises

significant challenges.

Given the different algorithms to create tissue-specific metabolic models based on a

generic human model, we briefly explain the five that will be used in this work. INIT/-

tINIT, MBA, mCADRE and FASTCORE were already implemented by Sara Correia. The

pseudo-code of all the algorithms described can be viewed in Table 2.1. The addition of

the CORDA algorithm is an effort to improve the current tool and knowledge for the liver,

and was done as part of this work.
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INIT/tINIT

The Integrative Network Interface for Tissues (INIT) algorithm maximizes the matches

between reaction states (active or inactive) and data regarding expression or non expres-

sion of genes/proteins, returning flux values and a tissue-specific model (i.e. a set of

reactions from the original model considered to exist in the tissue). The method solves

a Mixed Integer Linear Program (MILP), where binary variables represent the presence

of each reaction from the template model in the resulting model. Although the algorithm

normally uses proteomic data from HPA, transcriptomics can also be given as an input.

In the definition of the objective function, positive weights are given to reactions with

a higher evidence from the input, and negative to the ones who have low or no expression.

If there is supportive information (usually metabolomics) that corroborate the presence of

a certain metabolite, the necessary reactions may be included in the final model to pro-

duce (Agren et al., 2012b). The Task-driven INIT (tINIT) is an extension of the previous

algorithm (Agren et al., 2014b). The improvement is based on the possibility to define

a metabolic task in agreement with the context of the reconstruction. These may be the

consumption or production of a metabolite or activation of the reactions of a particular

pathway for the tissue.

MBA

Differently from INIT, the Model-Build Algorithm (MBA) (Jerby et al., 2010b) returns

only a final model and no flux values. This algorithm accepts as input a generic metabolic

model and two sets of reactions. The first set (CH) comprises reactions with high support

(e.g. literature) for the inclusion on the final model, while the other one (CM ) contains

usually information derived from high-throughput data. In an iterative way, all the non-

core reactions (based on the previously established sets) are removed in a random order,

while the model is tested for consistency. The iteration ends when all the reactions have

been submitted for the removal test in the final model. The final model should contain the
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whole set of the CH , a maximum number of reactions from the CM and the least possible

of the remaining non-core ones, normally requested to avoid connectivity issues.

Since the order by which each reaction is tested for removal matters, there is the need

to repeat this algorithm several times to obtain a set of models. The final one should be

a model based on the ranking of the frequency of the reactions in the set, adding them to

the CH core until a coherent model is found (Jerby et al., 2010b).

mCADRE

The Metabolic Context specificity Assessed by Deterministic Reaction Evaluation (mCADRE)

(Wang et al., 2012c) algorithm is quite similar to the MBA, but only requires the recon-

struction of a single model. It is initialized by ranking the reactions on the original model

using three distinct scores: confidence, expression and connectivity. With the help of a

threshold value for the scores, a core of reactions and the order of removal of the non-core

ones are established.

The input for the algorithm considers the frequency of expression states in a set of

profiles (requiring a change of the data to binary values), instead of levels of expression.

Regarding the connectivity, the reactions are ranked by the reactions in the “neighbour-

hood”. For the confidence levels, the reactions are ranked according to the evidences of

that reaction in the general metabolic model.

In the process of the reconstruction, if the removal of a non-core reaction does not

compromise the production of essential metabolites and the core of reactions, those reac-

tions are removed on the previous order. However, if a particular situation requires it, the

elimination of core reactions is possible.

FASTCORE

In a similar approach to MBA (trying not to alter the set of core reactions), the FAST-

CORE (Vlassis et al., 2014) algorithm uses another strategy by solving two Linear Prob-
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lems (LP). The first maximizes the number of reactions in the core, comparing the values

of a reaction with a constant, while the other decreases the number of reactions that are

absent in the core by minimizing the L1-norm of the flux vector. Until the core is coherent

(the whole set of core reactions is activated with the smallest number of non-core reac-

tions), both problems are being solved alternatively and in a repeated way. For reversible

reactions, the algorithm analyses both directions.

CORDA

One of the main features of this algorithm is that it only needs a FBA (which is a Linear

Problem) and can provide a faster reconstruction in comparison to other algorithms. As

a novel approach, the developers of the algorithm created the dependency assessment as

a new way to identify the importance of desirable reactions (with higher evidence) in

contrast to the one with less information.

They start by modifying the network in four different ways. In the first step, they split

the reversible reactions into forward and backward ones. The second step is the addition

of a pseudo-metabolite for every single reaction in the model. Reactions who have less

evidence will have a higher “cost” associated. On the third step, a reaction is added to the

model consuming this pseudo-metabolite.

At last, a positive lower bound is assigned to the reaction being tested, forcing it to

carry flux. After these modifications, FBA is performed, while minimizing the flux of the

reaction added on the third step. With this step, any reaction with an high cost should not

be included, unless it is necessary for the reaction being tested to be able to carry flux

itself.

Similar to other algorithms, the reactions are classified in four groups by their confi-

dence (High (HC), Medium (MC), Negative (NC) and Other (OT)). After the definition

of the groups, the algorithm starts by including all the reactions present in the HC group

into the final model (called as RE in the original paper). Using the dependency assess-
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ment with the help of FBA, the algorithm tries to find associations between MC and NC

reactions with each reaction of the RE (in this moment, it is the same as the HC) and are

moved to the model being reconstructed.

The next step tackles the remaining NC reactions that may be associated with the

remaining reactions of the MC group and are also transferred to the final model. The

reactions of NC group that are left out are blocked (both bounds set to zero). As the

third step, MC reactions are tested for the ability to carry flux. If they pass the test, they

are moved to the final model. In the final step, the OT reactions that are associated with

any reaction from the RE group are also included in the final model (Schultz and Qutub,

2016).

2.3.4 Biomedical applications of constraint-based modeling

Although these models are simply a mathematical representation of a “cell”, they have

proved that their application can have an high value for biomedical purpose. Character-

istics like its ease of implementation or their potential predictive power have made pos-

sible the prediction of which genes to manipulate in metabolic engineering (production

of shikimic acid and putrescine in E. coli.) (Park et al., 2012), predict drug targets (five

essential metabolites were considered critical to the Vibrio vulnificus CMCP6 and lead

to the selection of their chemical analogs) (Kim et al., 2014) and specific cells linked to

diseases, for example, the hepatocytes with patients who suffered for nonalcoholic fatty

liver disease (with their experiment, they were able to demonstrate that the analysis of

chondroitin and heparan sulphates were crucial to diagnose nonalcoholic steatohepatitis

and to determine the stage of nonalcoholic fatty liver disease) (Mardinoglu et al., 2014).
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Table 2.1: Formulation and description of algorithms of MBA, tINIT, mCADRE and FASTCORE. In the
table, RG represents the list of reactions from the global template model, RC the set of core reactions on
mCADRE, CH and CM the core and moderate probability sets used in MBA, r a reaction and the for(i)
and the rev(i) represent the i-th reaction direction (forward and reverse). In the FASTCORE algorithm, N
is the set of all reactions in the model, C is the core set of reactions, and I the set of irreversible reactions.
J ⊆ C is a set with the irreversible reactions from C and P = (N\C)\A is a “penalty” set which contains
all the non-core reactions that have not been added to A.

MBA tINIT

generateModel(RG, CH , CM) min
∑

i∈R wi ∗ yi
RP ← RG s.t.
RS ← RP\(CH ∪ CM) Sv = b
P ← randomPermutation(RS) |vi| ≤ vmax

for(r ∈ P ) 0 < vi + (vmax ∗ yi) ≤ vmax

inactiveR← CheckModel(RP , r) bj ≥ δ j ∈Metabolomics
eH ← inactiveR ∩ CH bj = 0 j 6∈Metabolomics
eM ← inactiveR ∩ CM yfor(i) + yrev(i) ≤ 1
eX ← inactiveR\(CH ∪ CH) vi ≥ δ, i ∈ RequiredReac
if(|eH | == 0 AND |eM | < δ ∗ |eX |) yi ∈ 0, 1
RP ← RP\(eM ∪ eX) wi, score for i ∈ R

endif
endfor
returnRP

endfunction

mCADRE FASTCORE
generateModel(RG, treshold) FASTCORE(N,C)
RP ← RG J ← C ∩ I
RC ← score(RP ) > treshold flipped← False, singleton← False
coreActiveG← flux(r)! = 0, r ∈ RC A← findSparseMode(J, P, singleton)
RNC ← RP\RC J ← C\A
for(r ∈ order(RNC)) while(J 6= ∅)
inactiveR← CheckModel(RP , r) P ← P\A
s1 = |inactiveR ∩RC | A← A ∪ findSparseMode(J, P, singleton)
s2 = |inactiveR ∩RNC | if(J ∩ A 6= ∅)

if(r 6∈ withExpressionV alues AND J ← J\A, flipped← False
s1\s2 <= RACIO AND else
checkModelFunction(Rp\inactiveR)) if(flipped)
RP ← RP\inactiveR flipped← False, singleton← True

elseif(|s1| == 0 AND else
checkModelFunction(Rp\inactiveR)) flipped← True
RP ← RP\inactiveR if(singleton)

endif J̃ ← firstElement(J)
returnRP else

endfunction J̃ ← J
endif

for(r ∈ J̃\I)
flip the sign in stoichiometric matrix
and swap the bounds of reaction r

endfor
endif

endif
endwhile

endFunction
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2.4 Omics Data

As stated before, the evolution of the high throughput technologies have improved and

generated high amounts of data from various sources, such as genetic, proteomic or

metabolic (Duarte and Becker, 2007). We will now describe some of the sources and

how the information is generated.

The Gene Expression Barcode (GEB) is a database which contains gene expression

information for 131 human tissues (also including disease ones). These data are generated

by an algorithm when accessing information from Gene Expression Omnibus (GEO) and

ArrayExpress which contain information about microarrays or next-generation sequenc-

ing (McCall et al., 2014).

The Human Protein Atlas (HPA) is a database which contains information about pro-

teins from different types of tissue. This data is obtained from immunochemistry on tissue

microarrays (Uhlen et al., 2010).

The Genomics of Drug Sensitivity in Cancer (GDSC) project has more than 1000 dif-

ferent cancer cell lines, comprising cancer of epithelial, mesenchymal and haematopoei-

etic origin for both adults and children. These have been genomically characterized by the

Cancer Genome Project at the Wellcome Trust Sanger Institute. They include information

on somatic mutations in 75 cancer genes, markers of microsatellite instability, tissue type

and transcriptional data, among other information.

Also related to the GDSC database, we are able to find data related to compounds

who have anticancer therapeutic properties, as cytotoxic chemotherapeutics or targeted

agents. In this collection of drugs, there are already approved compounds, others that are

still under clinical development and trials, and even new drugs who are on a initial phase

of development. Processes like cell cycle control, DNA damage response and receptor

tyrosine kinase signalling or targets like cytoskeleton or the mTOR complex are a few of

the examples that are related with cancer biology and that are the target of some drugs.

The sensitivity of a drug in a given cell line is measured using fluorescence-based cell
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viability assays followed by a 72 h drug treatment. The values hosted on the database

are the half maximal inhibitory concentration (IC50), in other words, how much of a

given compound is necessary to inhibit a biological process by half, the slope of the dose-

response curve and the area under the curve (AUC) for each experiment (Yang et al.,

2013).

Another database containing information about cancer is the The Cancer Genome At-

las (TCGA) which is a collaboration from several organizations in order to map genes that

are associated with cancer. However, now it is integrated within the NCI Center for Can-

cer Genomics (CCG), a new database containing information also from other databases,

such as Therapeutically Applicable Research to Generate Effective Treatments (TAR-

GET) initiative and the Cancer Genome Characterization Initiative (CGCI) (Grossman

et al., 2016).
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Chapter 3

Materials and Methods

In this chapter, we will describe the methods required to perform this work. First, we

selected the data that we were going to use in order to use. For the evaluation of the tis-

sue specific reconstruction, we used liver data (both for normal and cancer cells) and for

the second we utilized the cells line from the GDSC. Also, we decided that the template

model for the human cell would be Recon1, since it is one of the most well established

models available. After the evaluation of the tissue specific algorithm through different

parameters, we decided to pick the FASTCORE one to perform a tissue-specific recon-

struction for all the cell lines present in the GDSC. With the help of GDSCtools and

PyPath package, we tried to uncover new relationships with the IC50s of the drugs that

were tested with those cell lines and evaluate the new insights that this approach could

give. The Figure 3.1 shows an overview of all the process.

3.1 Models and Data

Three distinct data types were used for this work. The Liver Data is used for the first

objective of the work and the GDSC cell lines and Colon Cancer data are utilized for the

latter. The Human Genome-Scale Metabolic Model is crucial for the reconstruction of
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Figure 3.1: Overview of the work. In the top part of the Figure, it is exemplified the evaluation of the
tissue-specific algorithms, as in the bottom is illustrated the workflow of the analysis of the drug sensitivity
for the reconstructed models

the tissue specific metabolic models throughout the work. The Recon1 is one of the most

established and used metabolic models for a human cell. It comprises 3742 reactions,

2766 metabolites, 2004 proteins and 1905 genes.

Two different types of data were used for the first part of the work. The transcriptomics

data was extracted from three different samples of HepG2 cell lines from the GSE7307

dataset from Gene Expression Omnibus (GEO), and from the information present in the

Gene Expression Barcode (GEB) (McCall et al., 2014) for the hepatocytes from the nor-

mal liver tissue data. The data was pre-processed as described by Wang and his colleagues

(Wang et al., 2012b).

Regarding the proteomics data, it was retrieved from the Human Protein Atlas (HPA)

(Uhlen et al., 2010), containing information about the concentration levels of the proteins.

For this work, the version 14 was used for both the HepG2 cell line derived from a hepa-

tocellular carcinoma (Knowles et al., 1980) and hepatocytes from the normal liver tissue

data.
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For the second one, we used the gene expression from 990 cell lines from GDSC (see

section 2.4) that had corresponding IC50 values for 265 different drugs (for the MANOVA

analysis, we used the values 1− AUC) (Yang et al., 2013).

3.2 Algorithms for the reconstruction of the tissue spe-

cific metabolic models

In this study, we reconstructed 20 models comprising all the five algorithms described

above, using both conditions and data sources. Due to the fact that we are using the

Recon1 metabolic model as the template model for the tissue-specific models, the data

used is filtered for the genes present in this model.

All the software tools used and datasets are provided, to allow for full reproducibil-

ity of the results, in a software container (using the Docker application). The image

and instructions for running it are provided in Docker Hub: https://hub.docker.

com/r/saracorreia/is_cls_hepg2 with the exception of the CORDA one (im-

plemented later on).

For the reconstruction of the MBA models, we generated 50 different models and

merged them in a single model (the cut-offs for the creation of the core were “High” and

“Medium” for the HPA data and 0.9 and 0.5 for the GEB data).

For both the mCADRE and FASTCORE cores, the cut-offs were either “Medium” or

0.5, for HPA and GEB data, respectively. The cut-offs for the tINIT algorithm were the

levels “High”, “Medium”, “Low” and “Not Detected” were respectively 0.9, 0.5, 0.1 and

0.

Also for the tINIT algorithm, we provided a set of specific metabolic tasks that the

cell needs to perform that were given on the original paper for the algorithm (Agren et al.,

2014b).

Finally, regarding the CORDA algorithm, the way that “cut-offs” are handled are a bit
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different. Here, the algorithm is built around the high confidence reactions, and all the

other type (medium, negative or other) can be added to the model, if it is identified as

important for the ones present in the reconstruction.

3.3 Analysis of the drug sensitivity for the reconstructed

models

3.3.1 Data preprocessing and model generation

For the second part of this work, we decided to evaluate if the reconstruction of tissue

models for the GDSC cell lines library could improve the prediction of drug efficiency for

the cell lines against the predictions made with gene expression. As shown in the first part

of the work, there are several options for model generation with different advantages/dis-

advantages in terms of time/computation efficiency or more “biological meaning”. As

later shown in the Results, the algorithm that fulfills the most requirements is the FAST-

CORE one, considering a scenario where many models need to be generated.

Since the data given is “raw”, we decided to apply simple statistic procedures to the

data. Initially, the genes used were only the ones that were present in the Recon1 (1254

of 1501 present in the model).

The “discretization” of the data, either by gene or cell line (rows or columns of the data

matrix), was achieved by computing the “Z-score” or standard score. After calculating

the mean and standard deviation of the vector, each element is “scaled” by subtracting the

mean and dividing by the standard deviation (Kreyszig, 2006).

Due to the way that the “omics” data are imported, the data was transformed by the

following rules: if there were no data for a given gene in a cell line or the Z-score was

less than -1, the level would be considered as “Not Detected”; if the Z-score was between

-1 and 0, it would be assigned the “Low” level; if higher than 0 and lower than 1, the
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“Medium” level would be assigned; finally, if greater than 1, the level would be “High”.

Since for this analysis we will also compare to the gene expression alone, the genes

that had a level assigned of “Medium” or “High”, would get a value of 1; otherwise, the

value for that gene is 0.

As mentioned above, the algorithm for the reconstruction of tissue specific models is

the FASTCORE. Parameters used for this algorithm were the same as used for the first

part, the cut-off being at the “Medium” value. Recon1 was again used as the template

model.

After the models for all the cell lines were generated, a matrix was built that had as

rows the cell lines and as columns the reactions of Recon1; if a reaction was present in a

given model, the value for that cell is 1; otherwise, if the reaction is not in the model the

cell would be filled with 0.

3.3.2 ANOVA analysis

We created the four binary matrices, the first one containing gene expression information

and discretization by gene, the second discretized by cell line, the third containing infor-

mation for reactions and the discretization for their reconstruction by gene and the last

one discretized by cell line. Letters and numbers will be given to simplify the reading

process: G1 - MANOVA analysis with the gene expression normalized by genes; G2 -

Same as G1 but the normalization is by cell lines; R1 - MANOVA analysis with the re-

constructed models from the gene expression of G1; R2 - same as R1 but the models are

reconstructed with the gene expression of G2.

Then, we used the Python package GDSCtools to perform a MANOVA analysis in

combination with the IC50 of 265 drugs. The GDSCtools is a free open-source Python

library used for testing drug sensitivity on the GDSC panel (Cokelaer et al., 2017). Using

this package, we evaluate if the features being tested (in our case, gene expression or

reactions from the reconstructed models) can be used as predictors for sensibility of the
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drug being analyzed.

In this case, to take into account the multiple factors (tissue origin, microsatellite

instability, for example), a more versatile analysis of variance (ANOVA) is implemented.

In a simple way, an ANOVA test is performed for each combination of the feature to a

given drug.

Since we are dealing with an high number of features, it is needed to perform a error

control for multiple testing. For our work, we used the False Discovery Rate (FDR),

method to correct the p-values (Lin, 2005). Also, to take into account the variations

between the p-values, the effect sizes of the tested statistical interactions are also included,

computed by the Cohen models.

When analyzing a set of features, linear models are also applied to the computation. In

our work, we used the Ordinary Least Squares (OLS), a method to estimate the unknown

parameters in a linear regression model, also used in the pipeline (Cokelaer et al., 2017).

The settings used for this analysis were the default ones, with parameters like re-

gression alpha set to 0.01, with p-value correction method as false discovery rate, and

considered significant if less than 25%. Another possible parameter that can be used is

effect size where the values tested were 1.1 (there is a drug which is associated to too

many features with an effect size near 1.1) and 2.

To compute the associations across all the cell lines and drugs, the ANOVA was done

across all features (either gene expression or reactions, but for all the cell lines) and all

drugs. The output of the analysis generates a HTML report with several statistics and

graphs (e.g. volcano plots) for an easy visualization and interaction with the results.

If an association has a FEATURE delta MEAN IC50 below 0, the association found is

considered sensible; otherwise, it is resistant.

To be able to compare the information that could be obtained from the reconstruction

of the models, we defined five different types of relationships for the comparison between

the associations found on the analysis performed on the gene expression and the tissue
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models. With this, each type of association defined will be an exact interaction between

the feature and the drug. However, since the features of the analysis made with the recon-

structed models are the reactions, we decided to track back the genes involved with each

reaction Gene-to-Protein Rule (GPR) (Figure 2.1).

With all this in mind, we defined five types of relationships:

• Type 1 - Reaction with a found association, but the genes present in its GPR do

not have one.

• Type 2 - Reaction and Gene of its GPR have been associated with the same drug.

• Type 3 - Reaction and Gene of its GPR have been associated with different

drug(s).

• Type 4 - Reactions without a GPR (e.g. exchange ones) but with an association

to a drug.

• Type 5 - Genes with a found association, but their reaction(s) do not have one.

In addition, features (reactions or genes) who have multiple associations with different

drugs can have distinct sensitivity. In these situations, the association is divided into

sensitive or resistant. For later queries, the reactants and products of each reaction are

included.

The final output of this part of the algorithm is a matrix with 12 columns and the asso-

ciations as rows, as exemplified in the example table.csv present in darwin.diuminho.

pt/mscthesis_jmlf.

3.3.3 Associations between reactions or genes and drugs

With the 2 matrices produced by the last algorithm, we decided to take another approach

to try the validation of the associations found. We decided to use the package PyPath, a
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tool designed to combine the molecular information from multiple online resources. With

this, it is possible to generate a network of molecular interactions from the several sources,

containing not only proteins, but also RNA, drug compounds and other molecules (Türei

et al., 2016).

With this in mind, the objective of using this package is to try to find intermediates

that can explain how the drug was associated with the reaction, gene or metabolite.

Since PyPath does not work with Recon reactions, we selected the genes associated

with them and transcribed them to their respective protein name. As for the drugs, to find

how they could impact the pathways of the genes/reactions, we only selected the cases

where drug targets were genes (e.g. cases like “DNA replication” as drug target were

excluded).

With this, we find the shortest path in the network between a single or set of drugs to a

single or set of genes or reactions or metabolites, resulting in an image (.PNG file), where

the networks created are represented (Figure 3.2).

Given the input for the search, the networks generated have a specific color code.

Nodes that are colored blue are the ones that are related to either the reaction (single or

set of genes), metabolite (single or set of reactions and therefore genes) or gene. The

green nodes are the “intermediate” genes in between the drug(s) target(s) and the gene(s)/

reaction(s)/ metabolite(s) associated.

Finally, the nodes that are colored as either red, brown or pink are drug targets. Nodes

as red mean that the targeted gene is sensitive to the drug found in the association, brown

is related to the resistance of the gene to a given drug and pink means that the gene is

sensitive and resistant to the given gene(s)/ reaction(s)/ metabolite(s). Arrows shown at

red represent inhibition of a gene/protein by another.

An important consideration to take into the following results is that not every gene

or drug target are sure to be mapped on the PyPath package, which in the algorithm will

lead to an error which will tell that it is not possible to generate the graph with the given
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Figure 3.2: Representation of the shortest path between the protein DUOX1 and the drugs that target
HDAC1 and DHFR. In the image, we can see that the gene DUOX1 (associated with the synthesis of
hydrogen peroxide) has an association found with drugs that target HDAC1 (important in the acetylation of
the DNA) and DHFR (catalyzes an essential reaction for de novo glycine and purine synthesis).

input. Also, if the mapping can not be “completed” automatically, it is given the user the

possibility of mapping the gene manually (which will be saved for future queries).

With the Table ?? in mind, the algorithm designed for the query can be used in the

following ways:

• Type of association - for every query created, we can choose which type of associ-

ations we want to select (only if applicable, e.g., if we choose type 4 association,

since they are exchange reactions, no genes are involved, so when querying genes,

we can not select this type of association).
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• Reactions - in this type of query, with a given reaction (from the Recon1), if there

is an association found with a drug, the algorithm will pick the related gene(s) and

drug target(s) and build the graph; only associations of type 1, 2, 3 and 4 (or all the

four) will work.

• Genes - when querying for Genes, the algorithm will select only the genes (from

the gene expression) which had an association with the drugs; in this scenario, only

type 2, 3 and 5 (or all) associations can be filtered.

• Type of drug - in specific occurrences (like type 3 associations), it is given the

user the choice of the drug targets he/she wants to analyze (since in this type of

associations, both the associations from the reactions and gene expression have at

least one association with a drug); for example, the user may want to evaluate how

the drug associated with the reaction has (or not) an association with the gene (from

gene expression) and vice-versa.

• Metabolites - for this input, asides from the selection of all the types of associations

(since each line contains at least one metabolite), this filter has other options:

Reactant or Product - with this option, the query for the metabolite will either

be performed for one or both.

Compartment - according to the nomenclature of the model used, this field can

be filled with any compartment available (if it is left with an empty string, all the

compartments will be taken into account).
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Chapter 4

Results

4.1 Analysis of the models for liver cells

Here we are going to present the results and a discussion. First, we will evaluate the

algorithms for the tissue-specific reconstruction. This analysis will be made regarding the

runtime of them, their number of reactions (normal and cancer cells, and also the shared

ones), a clustering to evaluate the distance between them and a functional analysis. Also,

we will perform a test to check the number of liver tasks (Gille et al., 2010a) and for the

cancer cells see how many precursors the reconstructed models are able to produce, add

the missing reactions (to produce the remaining precursors) and assess the production of

biomass.

After the evaluation of the algorithms, we reconstructed the GDSC cell lines using

FASTCORE. With the gene expression and the reactions from the reconstructed mod-

els from the GDSC cell lines, we performed an ANOVA analysis with the IC50s of the

drugs administrated for the GDSC cell lines in order to evaluate their sensitivity, using the

GDSCtools package. After the associations were calculated, we used the Pypath pack-

age to analyze the cellular signalling pathways of the associations found and searched the

literature for scientific work that could support some of the findings.
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4.1.1 Similarities and Differences in the models

As explained in the previous chapter, we reconstructed 20 models for liver, 10 for normal

cells and 10 for cancer cells with the parameterization described. In the previous chapter,

one of the most important factors in the algorithms evaluation is the runtime. In this

scenario, the one that performed better was the FASTCORE algorithm, normally taking

less than 3-5 minutes to be completed. The tINIT one takes about 2-5 more minutes, the

mCADRE and the CORDA algorithm takes around one day to be completed. For the

MBA, since we have to produce intermediary models, the whole process usually takes

more than 1 day.

For a visual understanding of the results, considering the number of reactions in each

model, we display Venn Diagrams in Figures 4.1 and 4.2, with the number of reactions

that are shared for each set of conditions and different data sources.

Analysing the figures, we can tell that the algorithm that shares the most reactions

between the two conditions for both data sources is the tINIT algorithm. This may be

due to the nature of the algorithm because, although it can not guarantee that the model is

capable of performing all the tasks, if possible, it tries to find a set of essential reactions

and ensures that those reactions in the model have flux. For the other algorithms, their

percentage of shared reactions is very similar (although the MBA for HPA data has the

lowest percentage of shared reactions).

The next step was to execute a hierarchical clustering process of the 20 models. With

this method, we will try to identify the relations between conditions, data sources and

algorithms.

Taking a closer look to the clustering results (Figure 4.3), we are able to differentiate

three separate clusters. The first one includes all the models from the CORDA algorithm

and divided by data source. This might happen due to the nature of the algorithm, since it

tries to minimize the number of reactions that are needed for the High Confidence (HC)

ones to be able to carry flux, thus reactions that are and “support” the HC ones are similar
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Figure 4.1: Common and exclusive reactions between Normal and Cancer cells from HPA data using MBA,
mCADRE, tINIT and FASTCORE algorithms. The values under each Venn diagram represent the percent-
age of shared reactions for both conditions. The blue one is relative to the Normal model and the green to
the Cancer one.

across tissue type.

The second one encompasses the tINIT algorithm. Looking at the sectioning of the

four models, we can conclude that there is not a clear separation of any kind. This could be

explained since the tasks that are used in the reconstruction of this algorithm can heavily

influence the reactions included and may not be suitable, for example, to generate cancer

models, requiring a further analysis to find tasks more appropriate.

The other two groups, as one would expect, are clustered by condition, healthy and
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Figure 4.2: Common and exclusive in reactions between Normal and Cancer cells from GEB data using
MBA, mCADRE, tINIT and FASTCORE algorithms. The values under each Venn diagram represent the
percentage of shared reactions for both conditions.The blue one is relative to the Normal model and the
green to the Cancer one.

cancer cells, which shows that there are significant differences between both types of

models, regardless of type of data and algorithm. We can further discriminate the groups

by data source, since there is a clear separation of the HPA from the GEB ones. Fi-

nally, within these sub-clusters, including three models from three algorithms, FAST-

CORE models are always closer to mCADRE, with MBA further apart. This is expected

given the way these different algorithms are designed, as explained in the chapter 2.
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Figure 4.3: Hierarchical Clustering of all the 20 models generated with the method “complete”.

4.1.2 GO analysis

Another test to the models obtained was conducted by performing an enrichment analysis.

With the objective of evaluating the processes that are lost and gained by the cancer cells,

when compared to the normal ones, a p-value of 0.025 was used while using the Category

and GOstats packages from Bioconductor. The analysis was performed by the genes that

are different from each model when comparing the same algorithm and data source, but

different tissue.

When analyzing the data source from the HPA, the normal MBA models generated

“acquired” more biological processes related to the purine metabolism, organophosphate

and organonitrogen metabolic processes, while the HepG2 ones favor ion and anion trans-

membrane transport and also organophosphate and organonitrogen metabolic processes

but probably through another pathway.

It has been shown in some works that a shift in the transport of ions has been asso-
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ciated with certain hallmarks of cancer (Andersen et al., 2014; Martial, 2016). One of

the characteristics in cancer is the alteration of pH which are associated with proton ex-

changes and water transport, neovascularization with Ca2+, K+ and Na+ channels; also, the

Na+, K+, Ca+ and Cl– are associated with the transition to metastasis (see (Andersen et al.,

2014)).

Looking at the mCADRE models, the normal model is similar to the ones obtained in

the MBA one, while the HepG2 contains even more biological processes and only related

to transport, also including hydrogen and inorganic ions one.

Regarding the tINIT ones, the normal model “gained” related to fatty acid metabolism

(also unsaturated), mono- and carboxylic and organic acid metabolic processes, though

the cancer model has enriched ones related to ATP synthesis, oxidative phosphorylation

and nucleotide synthesis. This could be a strange behavior, since usually cancer cells

choose glycolysis rather that oxidative phosphorylation in order to produce energy (Hana-

han and Weinberg, 2011). It has also been reported that the decrease in the oxidative

phosphorylation leads to a decline in the apoptosis process in cancer cells (Chandra et al.,

2002; Dey and Moraes, 2000), which is contradictory to the results obtained from the

tINIT reconstructed models. However, it has been described that in some cases of aci-

dosis, the cancer cells are able to use oxidative phosphorylation for energy production,

thus explaining the ATP synthesis enrichment (Chen et al., 2010; Koivunen et al., 2007;

Romero-Garcia et al., 2014).

For the FASTCORE models, processes related to the production of nucleotides, organophos-

phate and organonitrogen are “acquired” in the normal model, whereas in the HepG2 one

has similarities with the tINIT for HepG2 one regarding the ATP synthesis, ions and an-

ions transport and also production of nucleotides, though with different genes/pathways.

In last, for the CORDA ones, both models share the same “enriched” biological pro-

cesses (but not sharing the same set of genes), such as organonitrogen metabolic processes

and carboxylic acid, oxoacid and organic acid metabolic processes. The differences on
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the normal one are icosanoid, fatty acid derivative and drug metabolic processes, while

the HepG2 one are organophosphate biosynthesis, tricarboxylic acid cycle and sodium

transport. Tumor cells have a requirement of an high number of nutrients in order to

proliferate and maintain their metabolism (DeBerardinis et al., 2007). Two of the main

biological needs of the tumor are the need to produce fatty acids (for lipid biosynthe-

sis) and ribose-5-phosphate (for nucleotide biosynthesis). There are characteristics that

both processes share and are important in the context of cancer evolution. Both of them

use glucose as carbon source, use intermediates of the Krebs cycle, need NAPDH for its

reductive power and anaplerosis (refresh of the intermediates of the Krebs cycle). The in-

crease of fatty acid on the cell (eventually leading to their accumulation) can alter cellular

processes such as signal transduction and gene expression, mainly due to cytosolic pro-

teins, enzymes and membrane-targeted proteins, usually leading to an evasion of apop-

tosis (DeBerardinis et al., 2008). Regarding the nucleotide production, tumor cells use

glucose as the main precursor of the ribose-5-phosphate, mainly using the non-oxidative

branch of the pentose phosphate pathway (Romero-Garcia et al., 2014).

Looking at the analysis made with GEB data, the MBA models do not differ much

from the HPA one. In the normal model, the enriched processes are oxoacid, organic acid

and monocarboxylic acid metabolic ones, also with lipid , dicarboxylic acid and amino

acid metabolism while the HepG2 ones favor again the trasmembrane transport of ions,

anions and cations.

In the mCADRE normal model, processes related with synthesis of ATP and its trans-

port, oxidation-reduction and metabolic processes associated with organonitrogen, car-

boxylic, oxo- and organic acid are also highlighted. In the HepG2, processes related with

transport of protons, hydrogen, iron and proton derived from ATP hydrolysis and phago-

some maturation are featured. There has been a report (although it is on breast cancer)

which demonstrated that in case of acidification, acidic vesicules (containing phagocy-

tosed extracellular material) could be correlated with the invasive profile of the cancer.
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This is also related with the other enriched processes, such as ATP hydrolysis and trans-

port of hydrogen, which could lead to an acidification and facilitate the process (Mont-

courrier et al., 1994).

Analyzing the tINIT models, the processes are related to the metabolic and biosyn-

thetic ones of carboxylic, oxo-, organic, monocarboxylic, as well as the bile acid biosyn-

thetic process, whereas the HepG2 one is again based on the transport of electrons from

NADH, ATP synthesis (also in mitochondria), respiratory chain and oxidative phospho-

rylation and cellular respiration processes.

For the FASTCORE models, both models share biological processes like small molecule,

single-organism and carboxylic acid metabolic ones (again, probably with the use of dif-

ferent genes on the same pathway). For the normal one, the enriched biological processes

are carboxylic, organic and oxo- acid and lipid metabolism, single organism biosynthesis

and catabolism, anion transport and oxidation-reduction processes. In the HepG2 model,

again metabolism of organophosphate and organonitrogen is enriched, as well as cellular

lipid and CDP-diacylglycerol metabolic processes.

Lastly, for the CORDA models, both share processes related to small molecule and

single organism metabolism. In regard to the normal one, metabolism of several acids

like carboxylic, oxo-, organic and alpha-amino one are enriched, and also processes as-

sociated with the catabolism of single-organism, small molecule, organic and carboxylic

acid. For the cancer model, the biological processes highlighted are biosynthesis (and its

metabolic processes) of carbohydrate derivate, organonitrogen and sulfur and biosynthe-

sis of glycosaminoglycan.

4.1.3 Metabolic tasks, precursors and biomass

In another analysis, we decided to evaluate the performance of the models by verifying

how many liver-specific metabolic tasks (from (Gille et al., 2010b)) they could complete.

From a total of 408 tasks tested, Recon1 can perform 281. Table 4.1 illustrates the per-
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centage of tasks that our tissue specific models can perform and the heatmap present in

Figure 4.4 shows which subset of the metabolic tasks are performed by each model (some

subsets were removed since no models were able to perform any task).

Table 4.1: Percentage of performed tasks by condition and algorithm of the 281 tasks that Recon1 is able
to perform.

MBA mCADRE tINIT FASTCORE CORDA Mean
Normal HPA 7.8% 9.6% 87.9% 58.4% 44.1% 51.4%
Normal GEB 55.2% 26.7% 88.6% 71.5% 64.1%
HepG2 HPA 63% 2.5% 92.5% 40.5% 66.5% 56.5%
HepG2 GEB 79.4% 10.3% 76.5% 71.9% 62.3%

There are several aspects in this analysis. Looking at the Table 4.1, we can see that

the algorithm that has an higher percentage of tasks performed is the tINIT and in average

the tumor models are able to fulfil around 5% more tasks than the normal ones.

Looking particularly at both models from the HPA data, they mainly differ in two

aspects: the normal tissue-specific model is not capable of catabolizing bilirubin and

biosynthesizing fatty acids; on the other hand, the cancer model is not able to biosynthe-

sizing creatine. It has been reported that a low level of production of creatine is common

in liver cancer patients; Patra and his colleagues hypothesize that low levels of creatine

may be associated with a dysfunction of ATP and could be related with cancer (Chen

et al., 2009; Patra et al., 2012).

Analyzing at the GEB models, both are not capable of catabolizing bilirubin and trans-

forming fatty acid (which at least the normal tissue should be able to accomplish), the

tumor one is not capable of performing detoxification of xenobiotics. Indeed, it has been

reported that the way these compounds are metabolized can affect the outcome of the liver

cancer (Williams, 1980). However, the tumor model is not able to perform gluconeogen-

esis and this is different from expected, since one of the treatments applied to this type of

cancer is the inhibition of this pathway (Wang et al., 2012a).
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Figure 4.4: Heatmap illustrating the percentage of the subset of metabolic tasks (that can be done by
Recon1) performed by each tissue-specific metabolic models.

The algorithm that performed worse was without any doubt the mCADRE one. Even

though the best model is the one based on the GEB data for the normal tissue, it is only

capable of performing 26.7% of the tasks. The only tasks that all models were able to

perform are related to the Carbohydrate and energy metabolism, and not even all of them.

With this is mind, this set of models are not of “great help” for this part of the analysis.

Looking at the FASTCORE algorithm, none of them is capable of detoxification of

xenobiotics, catabolism of bilirubin, fatty acid transformation or gluconeogenesis. Cu-

riously, both HepG2 models for the FASTCORE algorithm are not able to biosynthesize

sphingolipids. In this aspect, they have been controversial in respect to what is their role in

cancer, since in some cases they act as tumorigenic and in others as, for example, repress

tumor extension (Ségui et al., 2006).
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Looking at the MBA models, we can see that the model generated with the HPA data

for the normal tissue is the “worst” model of the group. We can also verify that the none

of the tissue specific models is capable of performing glycogenolysis or gluconeogenese

or even fatty acid transformation. When comparing the models generated from different

data, tasks related with the glycogenesis, bilirubin catabolism or ketogenesis were only

performed by the GEB models.Finally, when comparing what are the tasks that HepG2

models are capable to perform in comparison to the normal ones, the metabolism of purins

and pyrimidines, synthesis and degradation of proteins, both biosynthesis of creatine and

phospholipid are only achievable by them.

Finally, analyzing the CORDA models we can see that all of them “fail” in tasks

related to regeneration of NAD(P)H, transformation of fatty acids and biosynthesis of

cholesterol, sphingolipid and farnesylpyrophosphate. On the other hand, all of them

“passed” on the tasks related to rephosphorylation of purines and pyrimidines, glyco-

genlysis, fatty acid degradation and detoxification of reactive oxygen species (although

it may seem contradictory, it seems that cancer may require a balance in reactive oxygen

species (Liou and Storz, 2010)). Another interesting result is that both models generated

with the HPA data are “not able” to perform ureogenesis, only normal models are able to

biosynthesize creatine.

As the final part of the work, we decided to “force” our cancer models to produce

biomass. This makes biological sense, since cancer cells evolve to replicate as fast as

possible, and, therefore, it is expected that they possess the cellular machinery to obtain

all needed precursors.

The Recon1 model does not possess a biomass reaction. We, thus, retrieved this reac-

tion from the Recon2 model (Thiele et al., 2013) and introduced it to the Recon1 model.

However, none of our tissue specific models were capable of producing it. The Table 4.2

shows how many biomass precursors each model was able to achieve.

This analysis was achieved by performing an FBA in which the objective function
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Table 4.2: Number of precursors that each cancer model had before the inclusion of the new reactions to be
able to produce biomass (38 in total).

MBA mCADRE tINIT FASTCORE CORDA
HepG2 HPA 29 9 32 23 27
HepG2 GEB 33 14 28 26 24

was the maximization of the excretion of each metabolite, using the RPMI-1640 medium

from Folger et al (Folger et al., 2011). tINIT and MBA have the best overall results for

the production of the precursors of biomass, with mCADRE being the “least” capable of

such task.

Due to this, we decided to add the reactions necessary for each model to fulfill the

production of biomass. The following Table 4.3 shows the number of reactions needed to

add to each model to be able to produce biomass.

Table 4.3: Number of reactions added to each cancer model to be able to produce biomass.

MBA mCADRE tINIT FASTCORE
HepG2 HPA 17 28 8 26
HepG2 GEB 9 30 10 16

As expected, the tINIT algorithm models are the ones who need the least number of

reactions to be able to produce biomass. MBA reconstructed models need more reactions

to be introduced in their models. Again, the mCADRE algorithm showed the highest

number of reactions needed. It is also worth noticing that in the general case, the tumor

models produce more precursors and need less reactions to be able to produce biomass,

which may be biologically plausible.

As the final objective of this work, we decided to perform an FBA to evaluate the

differences in the production of biomass for the different cancer models generated (Table

4.4).
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Table 4.4: Production of biomass by the cancer models after the integration of the necessary reactions (in
mmol.gDW−1.hr−1).

MBA mCADRE tINIT FASTCORE
HepG2 HPA 0.084 0.003 0.069 0.029
HepG2 GEB 0.084 0.012 0.084 0.084

Since the production of the Recon1 model with the biomass reaction is also 0.084

mmol.gDW−1.hr−1, there are 4 models which can achieve the same amount of biomass

production and mCADRE has the lowest overall amount. This shows that the generated

cancer models are able to grow at the maximum theoretical level, which is the one defined

by the template global GSMM.

Looking at the results, we can make the conclusion that there is no best algorithm,

since all of them present advantages and disadvantages. However, since FASTCORE can

achieve similar results to the other algorithms (GO analysis, tasks performed) and the time

consumption is significantly less, it appears to be a time-efficient and accurate algorithm

for the reconstruction of a large collection of gene expression. So, for this reasons, the

algorithm will be chosen to perform the second part of the work.

4.2 Reconstructed models for the evaluation of cancer

drugs

For the second part of this work, we decided to take an approach to try to find associations

between drugs and reaction(s), gene(s) or metabolite(s) (for simplicity, all of them will

be defined as features), using ANOVA analysis to infer if a given drug is associated with

the features, as well as classifying them either resistant or sensitive to a given drug. As

described in the Material and Methods, we have four different matrices (see section 3.3.2)

The following Table 4.5 is a summary of the output of the GDSCtools analysis for the
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four matrices with no threshold regarding the effect size (the values tested were 1.1 and

2.0).

Table 4.5: Summary of the results obtained through the GDSCtools analysis. The percentage inside paren-
thesis is related to the total of the feature being analyzed included in that analysis. The number of associ-
ations are the ones which their false discovery rate is below 25% and the p-value of the ANOVA is under
0.001.

Data #Reactions #Genes #Drugs #Associations
G1 - 836 (55.7%) 258 (97.4%) 3169
G2 - 571 (38%) 259 (97.7%) 2334
R1 1121 (30%) - 239 (90.2%) 3268
R2 1425 (38.1%) - 138 (52.1%) 3438

Total Reactions 3742 - - -
Total Genes - 1501 - -
Total Drugs - - 265 -

Total Associations found - - - 12209

As stated in the Materials and Methods, the same analysis was performed taking into

account different effect size 1.1 and 2. Both Tables 4.6 and 4.7 show the information as

shown in Table 4.5.

Looking at the tables, it is clear that the effect size is an important feature regarding

the number of associations that are found by the MANOVA analysis. In the total of

associations found, there is a decrease of around 93.5% regarding the effect size of 1.1,

and around 98% when the value is 2. This occurs due to drugs which are highly associated

(Trametinib (targets MEK1 and 2) and Bleomycin (responsible for DNA damage)) and

possibly could lead to “less significant” results.

To begin evaluating the impact of the reconstruction of the models on the MANOVA

analysis, we will first analyze how the type of the associations can lead to an improvement

of the knowledge. We “merged” the analysis from both the ANOVA analysis with the

gene expression and the reconstructed models (as explained in Material and Methods)

to produce two matrices, one for each type of normalization. The following table 4.8
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Table 4.6: Summary of the results obtained through the GDSCtools analysis. The percentage inside paren-
thesis is related to the total of the feature being analyzed included in that analysis. The number of associ-
ations are the ones which their false discovery rate is below 25% and the p-value of the ANOVA is under
0.001. The effect size is higher than 1.1.

Data #Reactions #Genes #Drugs #Associations
G1 - 5 (0.3%) 4 (1.5%) 7
G2 - 179 (11.9%) 172 (64.9%) 557
R1 27 (0.7%) - 20 (7.5%) 37
R2 102 (2.7%) - 62 (23.4%) 199

Total Reactions 3742 - - -
Total Genes - 1501 - -
Total Drugs - - 265 -

Total Associations found - - - 800

shows the number of each type of associations found, also when taking into account the

values 1.1 and 2 for the effect size.

As we can see from the Table 4.8, as we increase the effect size, the percentage of

associations of the types from 1 to 4 decreases, in contrast to the type 5 ones (with the

exception of the PC). Another interesting fact is that there are only type 4 associations

with the normalization by gene and effect size equals to 2. Also, it is important to take

notice that the decrease in the total of associations is higher when the normalization is

made by gene in comparison to when is made by cell line (from 0 to 1.1 and 2, in the

cell line scenario, the decrease is 83.3% and 93.4% where in the normalization by gene is

99% and 99.9%). This is somehow expected, since the increase of the effect size “acts”

as a threshold for narrowing down our results.

To try to obtain a better understanding of the biological meaning of these associations,

we decided that looking at how possibly the association between the reaction and the drug

could happen, by looking at the signaling pathways. To perform this in order to cover all

the associations found, we used the Python package pypath, which allows us to analyze

cellular signaling pathways. Although this analysis could be subjective, we think this is
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Table 4.7: Summary of the results obtained through the GDSCtools analysis. The percentage inside paren-
thesis is related to the total of the feature being analyzed included in that analysis. The number of associ-
ations are the ones which their false discovery rate is below 25% and the p-value of the ANOVA is under
0.001. The effect size is higher than 2.

Data #Reactions #Genes #Drugs #Associations
G1 - 0 (0%) 0 (0%) 0
G2 - 77 (5.1%) 104 (39.2%) 218
R1 3 (0.1%) - 3 (1.1%) 3
R2 29 (0.8%) - 18 (6.8%) 46

Total Reactions 3742 - - -
Total Genes - 1501 - -
Total Drugs - - 265 -

Total Associations found - - - 177

Table 4.8: Summary of the number of the associations (and their type) found in the analysis. PC stands for
the Pancan analysis with the expression normalized by cell line and PG for the normalization by genes, ES
for Effect Size.

Data (ES) #Type 1 #Type 2 #Type 3 #Type 4 #Type 5 Total
PC (0) 1028 (27.9%) 98 (2.7%) 909 (24.7%) 1101 (30%) 540 (14.7%) 3676
PG (0) 482 (9.7%) 1035 (20.8%) 1126 (22.7%) 1238 (24.9%) 1087 (21.9%) 4968

PC (1.1) 44 (7.2%) 6 (1%) 29 (4.7%) 118 (19.2%) 416 (67.9%) 613
PG (1.1) 5 (10.2%) 6 (12.2%) 1 (2%) 21 (42.9%) 16 (32.7%) 49
PC (2) 15 (6.2%) 2 (0.8%) 4 (1.7%) 30 (12.5%) 190 (78.8%) 241
PG (2) (%) (%) (%) 3 (100%) (%) 3

the best way to approach the results.

As part of our work, we developed methods to iterate over the results obtained in the

previous analysis and build the shortest path between each association. As described in

Materials and Methods, there are a panoply of parameters (or filters) that can be set to

obtain a better understanding of the associations discovered.

The next set of images are going to show some results obtained and how possibly

the help of a signaling network can lead us to a better understanding of the mechanisms

of action of a drug. In order to obtain a better understanding of how the network could
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be deciphered, we decided to take several approaches. Basically, we performed manual

queries in Google’s Scholar search engine with different keywords, ranging between the

gene associated with the reaction to the drug targets and the metabolites involved.

Figure 4.5: Example of a type 2 association. In this case, we can observe that the results obtained from the
MANOVA analysis show that IGF1R is associated with the PTEN gene and that some drugs confer both
resistance and sensitivity to the IGF1R gene

Looking at Figure 4.5, we can observe an association of type 2 between the PTEN

gene and IGF1R (drug target). As Gallardo and his colleagues suggested (Gallardo et al.,

2012), both genes can be related in cancer. For us, we consider this case as the drug in

question was conferring resistance to gene, and our interpretation of it is that the target

was not “affected” by the drug, or at least, it didn’t have an impact on the expression of

the gene associated.

When looking at Figure 4.6, we can see a more “chaotic” network when compared
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Figure 4.6: Drug targets associated with the reaction that tryptophan to serotonin with the help of the gene
DDC. Different that the Figure 4.5, here we only have drug targets that confer sensitivity.

to the previous one. It is harder to analyze (more “intermediate” genes), some of them

inhibit others and it is difficult to see how it really affects the gene.

Although this is not optimal and could be eased with text mining with the correct

inputs, we decided to tackle the possible combinations (including the metabolites). In a

study from Osawa and this colleagues (Osawa et al., 2011), it was found that L-Tryptophan

was increasing the levels of lipids in the cell when producing serotonin, which activates

mTOR signaling and the latter inhibits autophagy, a mechanism which one of its function

is the regulation of the breakdown of stored lipids; and as we can see in the network, there

is an association between DDC and mTOR and targeting mTOR leads to sensitivity.

As Soll and his colleagues found (Soll et al., 2010), serotonin promotes tumor growth

in Human Hepatocellular Cancer, through the activation of downstream targets of mTOR,
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p70S6K and 4E-BP1. In this study, they found that inhibiting a receptor of the Serotonin,

HTR2B helped reducing the growth of the cancer. Although we did not find the same

receptor, there is a transport reaction mediated by both SLC6A4 or SERT (not present in

the network, but present in the tables with all the associations) that had been associated

with a drug which targets gamma-secretase and some of the Figure 4.6 and new ones (see

Figure 4.7).

Figure 4.7: Drug targets associated with the reaction transports serotonin with the help of potassium and
calcium, with the help of the gene SLC6A4. As in the Figure 4.6, all of the drug targets confer sensitivity.

According to a Gwynne and his colleagues (Gwynne et al., 2017), the serotonergic

system usually has an high expression of the SLC6A4 and serotonin is present in human

breast cancer, disregarding their molecular and clinical type and also present in lymh-

phomas and leukemia, protaste cancer, among others (Sarrouilhe et al., 2015).

As we can see from the networks shown, the results obtained from the merge between
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the MANOVA analysis (reactions/genes - drugs associations) and the signaling pathway

can be possibly used as an useful resource to understand the underlying mechanism of

drugs. Although the results should be tested in wet lab, there are some findings that al-

ready have literature support, which can also indicate that among all the other associations

found, some new interactions can be found.

In the end, this pipeline created shows some interesting results. From this, we under-

stand the value of the addition of another layer of biological knowledge that can increase

and maximize the other, as in this case, the reconstruction of the models with the gene

expression lead up to new findings.
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Chapter 5

Conclusions and Future Perspectives

Metabolism is a crucial part of what makes us human. It is the powerhouse that provides

energy and nutrients necessary for the cell to perform its tasks. Looking at the human

body, one of the most important organs regarding the metabolism is the liver. Degrada-

tion of toxic substances, regulation of the plasma and blood cells are some of its most

important features.

Due to the recent growth and evolution of the high throughput technologies (and

mainly its cost decrease over the years), it is easier to have more data. With that came

the necessity of “adding” informatics with the conventional biology, proving a completely

different window time to be able to process all the new information obtained.

Integration of the transcriptomics/proteomics data to provide a better understanding

of the metabolism was the initial step for the workflow. Since our current knowledge for

liver cancer is reduced, we reconstructed metabolic models using different algorithms for

both healthy and cancer cells, from two different data sources. With this, we were able

to simulate which are the differences regarding liver cancer. Looking at the algorithms,

tINIT was the most successful reconstruction algorithm, sharing more reactions, perform-

ing more tasks, needing less reactions to produce biomass. However, this all could be re-

lated to the nature of the algorithm and its “proximity” with the template model (Recon1).
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Considering this, the FASTCORE one came in second, with similar results and with less

computational time (for the reconstruction) and for us, became the better choice for the

second part of this work, where a large number of models is needed to be reconstructed.

Cancer is a complex disease, which does not look at age or sex, and has rapidly be-

come one of the most (if not the most) deadliest disease on the world. Due to its het-

erogeneity, it has been a challenge for the scientific community to fully characterize it,

although good progresses have been made. So, with the previous results obtained we

reconstructed almost 1000 cell lines of cancer (with gene expression values) with the

FASTCORE algorithm and performed a MANOVA analysis (with the GDSCtools Python

package) with the administration of 265 different drugs to see if we could gain more

knowledge when compared only with the gene expression. With a total of roughly 12.2

thousand associations, about 1.5 thousand were linked directly to the reactions of the

models, which leads to believe that this approach could boost the knowledge obtained.

After all the associations were computed, we tried to trace how the drug target and

the feature (gene or reaction) interact with each other, with the help of the PyPath Python

package. For this, we charted the shortest path between them and see what could be

between that could lead to a better understanding of the computed associations. One of

the examples found is the possible association that links the serotonin metabolism with

several types of cancer.

In this work, we provided a pipeline that could serve as the initial guideline for a

new approach for the utility of reconstructed models. Besides the analysis of biological

functions, we can also start to use them as a potential additional tool , an “add-on” for

the “conventional” genomic analysis. Though, several aspects of the pipeline can be

improved, as for example, text mining when trying to link the results obtained with the

PyPath or even different algorithms to find the paths between the associations.

While FASTCORE proved to be a interesting choice for the development of the second

part of the work, it still has its flaws (as the other ones). The need for new, faster and more
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precise reconstruction algorithms, the ability to have more omics input (like metabolomic

data) and even if possible, its combinations, should lead to an overall increase of the

quality of the models and therefore the knowledge that can be obtained.
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