
Appl. Math. Inf. Sci. ??, No. ??, 1-12 (2014) 1

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/MS HS-DE systems revised

Finding Multiple Roots of Systems of Nonlinear
Equations by a Hybrid Harmony Search-Based Multistart
Method
Gisela C.V. Ramadas1, Edite M.G.P. Fernandes2 and Ana Maria A.C. Rocha2

1Department of Mathematics, School of Engineering, Polytechnic of Porto, 4200-072 Porto, Portugal
2Algoritmi Research Centre, University of Minho, 4710-057 Braga, Portugal

Received: ..., Revised: ..., Accepted: ...
Published online: ...

Abstract: A multistart (MS) clustering technique to compute multiple roots of a system of nonlinear equations through the global
optimization of an appropriate merit function is presented. The search procedure that is invoked to converge to a root, starting from
a randomly generated point inside the search space, is a new variant of the harmony search (HS) metaheuristic. The HS draws its
inspiration from an artistic process, the improvisation process of musicians seeking a wonderful harmony. The new hybrid HS algorithm
is based on an improvisation operator that mimics the best harmony and uses the idea of a differential variation, borrowed from the
differential evolution algorithm. Computational experiments involving a benchmark set of small and large dimensional problems with
multiple roots are presented. The results show that the proposed hybrid HS-based MS algorithm is effective in locating multiple roots
and competitive when compared with other metaheuristics.

Keywords: nonlinear equations, multistart, harmony search, differential evolution

1 Introduction

Some problems in engineering, chemistry, physics,
medicine and economics aim at determining the roots of a
system of equations. In general, these problems are
nonlinear and difficult to solve. The most popular
technique to solve nonlinear equations is the Newton’s
method [1]. It is a computationally expensive method
since the Jacobian matrix and the solution of a system of
linear equations are required at each iteration. On the
other hand, Quasi-Newton methods are less expensive
since they avoid either the necessity of computing
derivatives, or the need of solving a full linear system per
iteration or both tasks [2,3,4]. However, they assume that
the functions are smooth so that derivatives can be
properly approximated by finite differences. Another
disadvantage of the traditional Newton-type methods is
that their convergence and practical performance are
highly sensitive to the provided initial approximations. In
most practical cases, it is not an easy task to guess a good
initial approximation. Furthermore, they are only capable
of finding one root at each run of the algorithm.

This study extends the work presented in [5,6]. Here,
we aim at investigating the performance of a multistart
(MS) method combined with the harmony search (HS)
metaheuristic to compute multiple roots of a system of
nonlinear equations of the form

f (x) = 0, (1)

where f (x) = (f1(x), f2(x), . . . , fn(x))T , each
fi : Ω ⊂ Rn → R, i = 1, . . . ,n is a continuous possibly
nonlinear function in the search space and Ω is a closed
convex set, herein defined as [l,u] =
{x : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . ,n}. We do not
assume that the functions fi(x), i = 1, . . . ,n are
differentiable. Thus, we are interested in deriving a
derivative-free technique that does not assume
smoothness, convexity and differentiability. The problem
of solving a nonlinear system of equations can be
naturally formulated as a global optimization problem.
Problem (1) is equivalent to

min
x∈Ω⊂Rn

M (x)≡
n

∑
i=1

fi(x)2, (2)

∗ Corresponding author e-mail: gcv@isep.ipp.pt
c⃝ 2014 NSP

Natural Sciences Publishing Cor.

2 G.C.V. Ramadas, E.M.G.P. Fernandes, A.M.A.C. Rocha: Multiple roots by a multistart harmony search

in the sense that they have the same solutions. These
required solutions are the global minima, and not just the
local minima, of the function M (x), known as merit
function, in the set Ω . Problem (2) is similar to the usual
least squares problem for which many iterative methods
have been proposed. They basically assume that the
objective function is twice continuously differentiable.
However, the objective M in (2) is only once
differentiable if some, or just one, of the fi, (i = 1, . . . ,n)
are not differentiable. Thus, methods for solving the least
squares problem cannot be directly applied to solve (2).

Preventing premature convergence to a local while
trying to locate global solutions of problem (2) is the goal
of the present study. Here, we are concerned with the
performance of a metaheuristic to solve global
optimization problems without the use of derivative
information. Metaheuristics are general heuristic methods
which can be applied to a wide variety of optimization
problems. In the last decade, algorithms based on
metaheuristics have been proposed to solve systems of
nonlinear equations mainly using the reformulation (2) [7,
8,9,10,11,12,13]. In general, they do not require any
information concerning root location, since they are able
to converge to the solutions starting from points that can
be randomly generated in the search space. Furthermore,
their performance do not depend on any type of derivative
information.

Although finding a single root of a system of
nonlinear equations is a trivial task, finding all roots is
one of the most demanding problems. Approaches that
combine metaheuristics with techniques that modify the
objective function in problem (2) have been reported in
the literature [8,10]. The technique in [8,12] relies on the
assignment of a penalty term to each previously
computed root so that a repulsion area around the root is
created. In [10], an evolutionary optimization algorithm is
used together with a type of polarization technique to
create a repulsion area around previously computed roots.
A multiobjective evolutionary approach is another
technique available for locating multiple roots [14,15].
MS methods are very popular and simple stochastic
techniques that emerge when multiple solutions to
problems are required [16,17,18,19]. When an MS
strategy is implemented, a search procedure is applied to
a set of randomly generated points of the search space
aiming to converge to the multiple solutions of the
problem in a single run. However, the same solutions may
be computed more than once. Convergence to previously
computed solutions can be avoided by implementing a
clustering technique which aims to define prohibited
regions based on the closeness to the previously
computed solutions [13,17]. Each time a point is
randomly selected from these prohibited regions, it will
be discarded since the implementation of the search
procedure will eventually produce one of the previously
computed solutions. Most MS approaches implement a
local search algorithm rather than a global one, when
trying to locate a solution. The basic idea is to search for

a highly accurate solution in a specified and small region,
starting from a randomly selected promising point. Good
local search procedures, like the traditional BFGS
Quasi-Newton method, have been used in the past. The
well-known ‘MinFinder’ and the ‘Ideal Multistart’ are
two examples of this kind of multistart paradigms [13,17,
19]. Unfortunately they use first derivatives of the
involved functions to define the most promising direction
to search for the required solution. However, in the
present study we aim to find multiple solutions as
efficient as possible without relying on analytic or
numerical derivatives. Thus, a search procedure has to be
implemented that is capable of finding high quality
solutions targeting reduced computational requirements.
The basic HS algorithm that emerged in 2001 relies on a
set of points and is inspired by natural phenomena [20]. It
draws its inspiration not from a biological or physical
process like most metaheuristic optimization techniques,
but from an artistic one – the improvisation process of
musicians seeking a wonderful harmony. HS has efficient
strategies for exploring the entire search space, as well as
techniques to exploit locally a promising region to yield a
high quality solution in a reasonable time. The dynamic
updating of two important parameters in the HS algorithm
has improved the efficiency and robustness of the
metaheuristic [21].

In this study, we borrow the ideas present in the global
best variant of HS [22], propose self-adaptive updating
rules for two relevant parameters in HS, and hybridize the
HS algorithm with a mutation strategy quite common in
the differential evolution (DE) method introduced in [23].
The herein proposed HS algorithm will be denoted by
hybrid HS algorithm. Previous studies related with the HS
and DE algorithms confirm that these metaheuristics are
effective in computing one single root of system (1) [5,6].
However, the present work extends some of the previous
ideas to the problem that consists of locating multiple
roots of nonlinear systems like (1). This issue is herein
addressed by using an MS strategy that relies on an
attraction radius to prevent convergence to previously
computed solutions, so reducing the overall required
computational effort.

This paper is concerned with computing multiple roots
of a system of nonlinear equations using an MS paradigm
and the HS algorithm hybridized with a DE mutation as
an effective search procedure. Thus, Section 2 reports on
the hybrid HS algorithm and Section 3 addresses the MS
strategy. Then, some numerical experiments are shown in
Section 4 and we conclude the paper in Section 5.

2 Hybrid HS algorithm

First, the main ideas behind the basic HS algorithm [20]
and two other popular versions of the algorithm available
in the literature [21,22] are presented. Second, an
introduction to the DE algorithm [23] is included. Finally,
the hybrid version of the HS algorithm, combining the HS

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. ??, No. ??, 1-12 (2014) / www.naturalspublishing.com/Journals.asp 3

paradigm with the DE mutation operator, aiming to
increase the exploration feature of the HS algorithm, is
described.

2.1 The HS algorithm

The HS algorithm was developed to solve global
optimization problems in an analogy with the music
improvisation process where music players improvise the
pitches of their instruments to obtain better harmony [20,
24]. An overview of the existing variants of the HS is
presented by Alia and Mandava in [25]. At each iteration
k, the basic HS algorithm provides a set of solution
vectors from which the best and the worst solutions, in
terms of their fitness - objective function values - are
selected. Table 1 lists the most relevant nomenclature
used in the basic HS algorithm.

Table 1: Nomenclature for the HS algorithm

HM harmony memory
HMS size of the HM
NI number of allowed improvisations/iterations
xbest the best solution in HM
xworst the worst solution in HM
HMCR harmony memory considering rate
PAR the pitch adjusting rate
BW distance bandwidth

The HM is a memory with HMS solution vectors that
are maintained in memory throughout the iterative
process. The HMCR and PAR parameters are used to find
globally and locally improved solutions, respectively.
After generating the HM randomly in the search space Ω ,
x j, j = 1, . . . ,HMS, the vectors are evaluated and the best
harmony, xbest , and the worst, xworst , in terms of
objective/merit function value are selected. Thereafter, a
new harmony is improvised meaning that a new vector y
is generated using three improvisation operators:

O1.HM operator;
O2.random selection operator;
O3.pitch adjustment operator.

The HMCR parameter varies between 0 and 1 and gives
the probability of choosing the component of the new
harmony/vector from the HM (operator O1). Otherwise,
the component is randomly generated in Ω (operator O2):

yi =

{
x j

i , j random ∈ {1, . . . ,HMS}, if rand()< HMCR
li + rand()(ui − li), otherwise

(3)
for i = 1, . . . ,n, where rand() represents a random
number in the range (0,1). The operator O3 is

subsequently applied with probability PAR to refine only
the components i produced by O1, as follows:

yi =

{
yi ± rand()BW, if rand()< PAR
yi, otherwise (4)

where BW is an arbitrary distance bandwidth. Finally, the
HM is updated. The new harmony is compared with the
worst harmony in the HM, in terms of M values. The
new harmony is included in the HM, replacing the worst
one if it is better than the worst harmony. Algorithm 1
presents the main steps of the basic HS algorithm. As

Data: HMS, NI, HMCR, PAR, BW
Set k = 1
Initialize HM: randomly generate x j, j = 1, . . . ,HMS
Evaluate HM, select xbest and xworst

while k ≤ NI do
Improvise a new harmony y and evaluate
Update HM and select xbest and xworst

Set k = k+1
if xbest is sufficiently accurate then

STOP

Algorithm 1: HS algorithm

shown in (4), the classical HS algorithm uses fixed value
for both PAR and BW. However, small values of PAR
with large values of BW can considerably increase the
number of iterations required to converge to an optimal
solution of (2). Experience has shown that BW must take
large values at the beginning of the iterative process to
enforce the algorithm to increase the diversity of solution
vectors. However, small BW values in the final iterations
increase the fine-tuning of solution vectors. Furthermore,
large values of PAR combined with small values of BW
usually cause the improvement of best solutions in the
final stage of the process. To eliminate the drawbacks due
to fixed values of PAR and BW, an improved HS (I-HS)
algorithm is proposed in [21]. The I-HS uses parameter
values dynamically dependent on the iteration number k,
as shown:

PAR(k) = PARmin + k
(PARmax −PARmin)

NI
(5)

where PARmin and PARmax are the minimum and
maximum pitch adjusting rate respectively, and

BW(k) = BWmaxeck, for c =
ln(BWmin

BWmax
)

NI
(6)

where BWmin and BWmax are the minimum and maximum
bandwidth respectively.

In [22], a new variant of HS, called the global-best
harmony search (gb-HS), is proposed. The
pitch-adjustment step of the HS is modified in a way that

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

4 G.C.V. Ramadas, E.M.G.P. Fernandes, A.M.A.C. Rocha: Multiple roots by a multistart harmony search

the new harmony can mimic the best harmony in the HM,
adding a social dimension to the HS and replacing the
BW related parameters altogether. Thus, the new pitch
adjustment operator, O3, is applied with probability
PAR(k), computed from (5), to refine only the
components produced by O1, in the following way:

yi =

{
xbest

t , t random ∈ {1, . . . ,n}, if rand()< PAR(k)
yi, otherwise

(7)
where best is the index of the best harmony in the HM.

2.2 The DE algorithm

Algorithm 2 contains the pseudocode of the basic DE
algorithm [23]. This is an evolutionary population-based
technique that relies on three operators – mutation,
crossover and selection – to define the m points for the
next iteration. The most commonly used mutation is

Data: m, F , CR, Kmax
Set k = 1
Randomly generate target points xi ∈ Ω , i = 1 . . . ,m
Evaluate the points and select xbest

while k ≤ Kmax do
Perform mutation to generate the mutant points
Perform crossover to generate the trial points
Evaluate the trial points
Perform selection to define target points, select xbest

Set k = k+1
if xbest is sufficiently accurate then

STOP

Algorithm 2: DE algorithm

referred to as DE/rand/1 and defines the mutant point, v j,
as follows:

v j = xr1 +F(xr2 − xr3) (8)

with uniformly chosen random indices r1,r2,r3 from the
set {1,2, . . . ,m}, mutually different and F is a real
parameter in [0,2] which controls the amplification of the
differential variation, xr2 − xr3 . The indices r1, r2 and r3
are also chosen to be different from the index j. xr1 is
called the base point. There are other frequently used
mutation strategies, for instance, the DE/best/1, which
uses the best point of the population as the base point:

v j = xbest +F(xr1 − xr2) (9)

where xbest is the best point in the current population. The
crossover operator aims to increase the diversity on the
components of the mutant point. Thus, the crossover point,
called trial point, y j, is formed as:

y j
i =

{
v j

i , if rand()≤CR or i = s j

x j
i , otherwise

(10)

for i = 1, . . . ,n, where rand() denotes a random number in
(0,1) and aims to perform the mixing of the component i
of the points, CR∈ [0,1] is the parameter for crossover, and
the index s j, randomly selected from {1, . . . ,n}, ensures
that y j gets at least one component from v j.

2.3 The hybrid HS algorithm

To develop a new hybrid HS algorithm, the ideas from the
gb-HS algorithm to improvise a new harmony and the
mutation operator present in DE to increase the
explorative power of the classical HS are used. The new
proposal replaces the improvisation operator O1 by
another one that mimics the best harmony and uses the
mutation operator of the DE algorithm [23]. Basically, the
idea is to generate a trial point by adding the weighted
difference between two points to a third one [5]. Thus, the
parameter HMCR sets the probability of choosing the
component of the new harmony from the best harmony in
HM adding a differential variation, i.e., for each
i = 1, . . . ,n:

yi =

xbest
i +F(x j1

i − x j2
i), if rand()< HMCR

and j1 ̸= j2
x j

t , t random ∈ {1, . . . ,n}
j random ∈ {1, . . . ,HMS}, if rand()< HMCR

and j1 = j2
li + rand()(ui − li), otherwise

(11)
is used instead of (3), where F ∈ [0,2] and the indices j1,
j2 are randomly chosen values from the set {1, . . . ,HMS}.
However, when these indices are not different, a randomly
chosen component of a point randomly selected from the
HM is selected, to diversify the search.

We note that when defining y, some components can
be generated outside the domain Ω . Thus, each component
should be checked and a projection to the bounds is carried
out:

y j
i = max

{
li, min

{
y j

i ,ui

}}
, for i = 1, . . . ,n. (12)

In the HS context, to further explore the search space
for a promising region where a global solution lies, the
pitch adjustment operator (O3) is maintained although the
parameters PAR and BW are updated according to new
self-adaptive rules. The proposed updating rule for the
probability PAR ensures that the larger values appear in
the final iterations and are combined with small values of
the bandwidth BW (as shown below in (13)):

PAR =
1

1+M (xworst)

where xworst is the worst harmony in the HM in terms of
the merit function (at the current iteration). For the BW, an

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. ??, No. ??, 1-12 (2014) / www.naturalspublishing.com/Journals.asp 5

adaptive value for each component i = 1, . . . ,n is assigned
as follows

BWi = BWi
max

(
1− 1

1+M (xworst)

)
, (13)

where BWi
max = ui − li depends on the lower and upper

bounds of each component i.

3 Multistart algorithm

MS methods are mainly used to locate multiple solutions
of bound constrained optimization problems [16,17,18,
19,26], although they can be used to locate multiple
solutions of other kind of problems [8,10,13]. MS
repeatedly invokes a search procedure starting from a set
of randomly generated points of the search space aiming
to converge to the multiple solutions of the problem.
However, the same solutions may be computed over and
over again. To avoid convergence to previously computed
solutions, a clustering technique that defines prohibited
regions based on the closeness to the previously located
solutions may be integrated into the multistart algorithm.
This way, points that are generated from these prohibited
regions are discarded since the search procedure would
converge most certainly to a previously located solution.

Hence, to compute multiple roots of a set of nonlinear
equations like the one in (1), computing global
minimizers of the problem (2), the herein implemented
MS methodology uses a clustering technique to avoid
convergence to an already located solution. The
exploration feature of the MS strategy is carried out by
generating points randomly spread all over the search
space Ω . The exploitation of promising regions is carried
out by invoking a search procedure starting from each of
the randomly generated points. In contrast to the line
search BFGS method presented in [19], our proposal for
the search procedure relies on a global search heuristic
that is capable of computing global minimizers of a merit
function with high quality and reduced computational
effort.

The presented clustering technique also uses the
concept of regions of attraction of previously identified
solutions. First, the region of attraction of a minimizer, χi,
associated with a search procedure, herein denoted by
HS, is defined as:

Ai ≡ {x ∈ [l,u] : HS(x,R, [l,u]) = χi} , (14)

where χi is the global, eventually a local (non-global),
minimizer produced by the hybrid HS algorithm which is
applied in the search space [l,u], starting with x ∈ R and
randomly generating the remaining HMS-1 points of the
HM inside the region R. The ultimate goal of the MS
algorithm is to invoke the procedure HS as many times,
say N times, as the number of global solutions of (2). If a
generated point x ∈ [l,u] belongs to a region of attraction

A j then the solution χ j would be obtained when the
hybrid HS algorithm starts with a HM which includes the
point x. The idea is to apply the hybrid HS algorithm only
when x does not belong to any of the regions of attraction
of already computed solutions, or equivalently to the
union of those regions of attraction, since they do not
overlap. The probability p that a randomly generated
point will not belong to the union of the regions of
attraction of r already computed solutions, can be
estimated by

p = Prob[x /∈ ∪r
i=1Ai] =

r

∏
i=1

Prob[x /∈ Ai]≈ Prob[x /∈ Ao]

where Ao is the region of attraction of the nearest to x
solution χo (see details in [19]). The region of attraction
Ao of a solution χo could be estimated by an exhaustive
enumeration of all starting points that converge to χo.
Alternatively, an a priori estimation involves the
probability Prob[x /∈ B(χo,Ro)] where B(χ,R) denotes the
hyper-sphere (henceforth denoted by sphere) centered at
χ with a radius R.

Let the maximum attractive radius of the minimizer χi
be defined by:

Ri = max
j

{∥∥∥x(j)
i −χi

∥∥∥} , (15)

where x(j)
i is one of the generated points that made the

hybrid HS algorithm to converge to χi. Given x, let di =
∥x−χi∥ be the distance of x to χi. We remark that:

1.if di ≥ Ri then x is likely to be outside the region of
attraction of χi;

2.on the other hand, if di < Ri and the direction from x
to χi is descent then x is likely to be inside the region
of attraction of χi; however, if the direction from x to
χi is ascent then x is likely to be outside the region of
attraction of χi.

In case 1., the hybrid HS search procedure could be
invoked, with x as one of the points in the HM, since a
new solution could be obtained with high probability.
However, when the direction from x to χi is descent, there
is a high probability that the search procedure will
converge to the previous χi, thus the hybrid HS procedure
might not be invoked. Thus, the probability that x /∈ Ai is
estimated by:

Prob(x /∈Ai)≈

1, if di ≥ Ri or the direction from x to χi
is ascent

ϕ , otherwise

where ϕ ∈ [0,1). It is reasonable to expect that the
probability ϕ is larger at the beginning of the iterative
process and smaller towards the final iterations since at
the beginning there is a higher chance that the hybrid HS
procedure will converge to a new solution. Thus, a

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

6 G.C.V. Ramadas, E.M.G.P. Fernandes, A.M.A.C. Rocha: Multiple roots by a multistart harmony search

dynamic updating scheme for ϕ is proposed, depending
on the iteration number k > 0,

ϕk = γp

(
1− k

kmax

)
(16)

where γp ∈ (0,1) is a constant and kmax is the maximum
number of iterations defined for the process. The smaller
the parameter γp, the lower the likelihood of invoking the
search procedure HS when the direction from x to χi is not
ascent.

Since derivative information is not used in the
algorithm, the direction from x to χi is considered to be
ascent if M (x+β (χi − x))−M (x) > 0 for a sufficiently
small positive β . The pseudocode of the herein
implemented MS method is presented in Algorithm 3
where Σ denotes the set where the computed minimizers
are saved. To identify a solution that has not been
previously located, χ /∈ Σ , one of the following conditions
must hold: ∥χ − χ j∥ > tol or

∣∣M (χ)−M (χ j)
∣∣ > tol for

all χ j ∈ Σ , where tol is a small tolerance.
There are two important issues that should be noted

whenever the HS search procedure is invoked in the
Algorithm 3. First, the region R from which the
remaining HMS-1 points of the HM are randomly
selected is a sphere centered at x with a specified radius R,
B(x,R). This way, the likelihood that the hybrid HS will
converge to the nearest to x minimizer (not yet located) is
higher than that of any other far away previously located
minimizer. Also, in the HS context, the (hyper-)box from
which the new harmony y is generated (see (11) and (12))
depends on the closeness of x to χo. If the likelihood of x
being inside the region of attraction of χo is high, the
entire box is used; otherwise, a more restrictive box is
defined [max{l,x−Ro},min{x+Ro,u}]. Algorithm 3 is
thus termed ‘sphere-based MS’ algorithm.

Although this type of algorithm is simple, it would
not be effective if a stopping condition that prevents an
exhaustive search of the search space is used. Besides
allowing a reasonable number of iterations to be
performed, kmax, the algorithm has an alternative
stopping rule. The goal is to make the algorithm to stop
when all roots have been located with certainty.
Furthermore, it should not need to invoke the search
procedure a large number of times to decide that all roots
have been found. A simple condition uses an estimate of
the fraction of uncovered space,

Us =
r(r+1)
t(t −1)

where r is the number of different computed roots and t
represents the number of times the search procedure has
been invoked [19]. The MS algorithm then stops if Us ≤ ε ,
for a small ε > 0.

Data: kmax, γp ∈ (0,1), ε < 1, β ≪ 1
Set Σ = /0, r = 1
Randomly generate x ∈ [l,u]

Set R = B(x,
mini{ui − li}

2
)

Compute χ1 = HS(x,R, [l,u]), set t = 1
Compute R1 = ∥x−χ1∥, set Σ = Σ ∪χ1, set k = 1
while k ≤ kmax do

Randomly generate x ∈ [l,u]
Set o = argmin j=1,...,r d j ≡ ∥x−χ j∥
if do < Ro then

if the direction from x to χo is ascent then
Set p = 1 and
(l̂, û) = (max{l,x−Ro},min{x+Ro,u})

else
Set p = ϕk using (16) and (l̂, û) = (l,u)

else
Set p = 1 and
(l̂, û) = (max{l,x−Ro},min{x+Ro,u})

if rand()< p then
Set R = B(x,Ro)
Compute χ = HS

(
x,R, [l̂, û]

)
, set t = t +1

if χ /∈ Σ then
Set r = r+1, χr = χ , Σ = Σ ∪χr
Compute Rr = ∥x−χr∥

else
Update Rl = max{Rl ,∥x−χl∥}

else
Update Ro = max{Ro,∥x−χo∥}

Set k = k+1
if Us ≤ ε then

STOP

Algorithm 3: ‘sphere-based MS’ algorithm

4 Numerical results

In this section, we investigate the performance of the
proposed ‘sphere-based MS’ method that uses the hybrid
HS algorithm as the search procedure on a set of
benchmark small and large dimensional problems. They
are listed below as Problems 1 – 10. We set the
parameters of the algorithms as follows:

–in the MS algorithm: ε = 0.05, γp = 0.5, β = 0.001,
tol =0.5e-2 and kmax = 30 (unless otherwise stated);

–in the hybrid HS, HMS = {2n,5n}, HMCR= 0.95,
F = 0.9, NI is set to depend on the problem
(NI = 1000 in Problems 1, 2 and 6, NI = 50000 in
Problem 3, NI = 2000 in Problem 7, NI = 10000 in
Problems 4 and 5, NI = 10000n in Problems 8 and 9
and NI = 2000n in Problem 10), and xbest is identified
as a global minimizer if the merit function value falls
below 1e-10. We consider 1e-08 instead when solving
Problems 8–10.

–in I-HS, additionally to the values described above,
PARmin=0.35, PARmax=0.99, BWmin=0.000001 and
BWmax=5.

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. ??, No. ??, 1-12 (2014) / www.naturalspublishing.com/Journals.asp 7

The experiments were carried out on a PC Intel Core 2
Duo Processor E7500 with 2.9GHz and 4Gb of memory.
The algorithms were coded in Matlab Version 8.0.0.783
(R2012b).

4.1 Comparative tests with small dimensional
problems

We now consider a set of seven small dimensional
problems. First, we use three examples to illustrate the
behavior of the ‘sphere-based MS’ algorithm when trying
to locate multiple roots.

Problem 1. [14]: A simple nonsmooth nonlinear system with
two roots (−0.5,0.5),(0.5,−0.5) in [−3,3]2:

f (x) =
{

x2
1 − x2

2 = 0
1−|x1 − x2|= 0

.

Fig. 1 illustrates the method on the merit function to
locate the two global solutions. The generated points
correspond to a specific run with kmax = 10 and five calls
to the hybrid HS algorithm. Solution
(−0.500004,0.500002) was obtained three times. The
first time that the solution was located, the search
procedure required 337 function evaluations (f.e.) and
0.019 seconds (sec.) to reach a merit value of 4.08e-11.
Solution (0.499993,−0.500000) was reached twice and
the first time it was located a merit function of 8.73e-11
was obtained using 442 f.e. and 0.044 sec. The figure
displays for each solution the initial point that converged
for the first time to the solution (black ‘⋆’) the initial
points that converged in second (or in third) place to the
solution (blue ‘×’) and the points that were discarded and
were not used to call the search procedure (magenta ‘◦’).
Overall, the ‘sphere-based MS’ algorithm required 2135
f.e. and 0.147 sec.

(0.499993,−0.500000)

(−0.500004,0.500002)

x
1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 1: Illustration of the ‘sphere-based MS’ on the merit
function of Problem 1

Problem 2. [10] This system of two nonlinear equations has
three roots (0,−2),(1,−1),(0.7071,−1.5) in [−3,3]2:

f (x) =

{
x2

1 − x2 −2 = 0

x1 + sin(
πx2

2
) = 0

.

(−0.000009 ,−1.999999)

(0.999991,−1.000020)

(0.707120,−1.499983)

x
1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 2: Illustration of the ‘sphere-based MS’ on the merit
function of Problem 2

The ‘sphere-based MS’ algorithm located three roots
in 0.476 sec. and required 8526 f.e.. During this single
run of 10 iterations, the hybrid HS search procedure was
called five times. Fig. 2 illustrates the multistart method
on the merit function to locate the three roots. The root
(−0.000009,−1.999999) was located twice, and the first
time required 512 f.e. and 0.036 sec. to reach the merit
value 9.99e-11. The solution (0.707120,−1.499983) was
located just once after 799 f.e., 0.043 sec. with a merit
value of 3.11e-11. Finally, the root
(0.999991,−1.000020) was located twice and the first
time required 760 f.e., 0.050 sec. with a merit value of
8.68e-11.

Problem 3. [12] This is the Himmelblau problem and the
number of roots in [−5,5]2 is nine:

f (x) =
{

4x3
1 +4x1x2 +2x2

2 −42x1 −14 = 0
4x3

2 +2x2
1 +4x1x2 −26x2 −22 = 0

.

Fig. 3 shows the nine located roots and displays the
merit function value and the number of function
evaluations (inside parentheses) for each found root in a
single run of the algorithm. The ‘sphere-based MS’
algorithm run for 30 iterations and the HS search
procedure was invoked 13 times. The first located root
was (3.584428, -1.848126) with merit value of 9.99e-11
and after 0.858 sec. and was located again in the third
iteration. The second root was (-0.270845, -0.923039)
with merit 4.44e-11 and after 0.848 sec. and was again
recovered in the 7th, 10th, 13th, 17th, 18th and 29th
iterations. The third root (-2.805118, 3.131312) with
merit 9.94e-11 was located after 0.302 sec., the fourth
was (-3.779310, -3.283186) with merit 1.79e-11 and
0.676 sec., the fifth was (-0.127961, -1.953715) with

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

8 G.C.V. Ramadas, E.M.G.P. Fernandes, A.M.A.C. Rocha: Multiple roots by a multistart harmony search

 1.0e−10(19721)

 4.4e−11(19454)

 9.9e−11(6942)

 1.8e−11(15566)

 9.9e−11(5962)

 9.7e−11(10081)

 8.6e−11(15321)

 9.9e−11(37973) 9.6e−11(9334)

x
1

x 2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 3: Merit function values and number of function
evaluations for the located roots of Problem 3

merit 9.92e-11 and 0.306 sec. (and recovered again in the
14th and 20th iterations), the sixth was (3.000000,
2.000000) with a merit value of 9.73e-11 and 0.441 sec.,
the seventh (0.086677, 2.884255) with merit 8.57e-11
was located after 0.664 sec. and the last two (3.385154,
0.073851) with merit 9.85e-11 and (-3.073026,
-0.081353) with merit 9.56e-11 were located after 1.645
and 0.407 sec., respectively. Overall, this run required
241724 f.e. and 10.541 sec. to locate all the roots of the
problem.

To analyze further the convergence performance of
the proposed algorithm, 30 independent runs were carried
out and the average values of three performance criteria –
number of located roots, ‘n.r.’, number of function
evaluations, ‘n.f.e.’, and CPU time in seconds, ‘time’ –
are reported. The results produced by the algorithm are
also compared with other heuristics. To analyze the effect
of different HS variants as well as some parameter values
on the algorithm’s convergence behavior, the next three
tables contain the results of

Table 2 i) MS with R = [l,u],γp = 0.5 invoking the
hybrid HS as search procedure;
ii) MS with R = [l,u],γp = 0.5 invoking I-HS
as search procedure;

Table 3 i) Algorithm 3 with (l̂, û) = (l,u) in all cases, and
γp = 0.5;
ii) Algorithm 3 with (l̂, û) = (l,u) in all cases, and
γp = 0.05;

Table 4 i) Algorithm 3 as it is, with γp = 0.5;
ii) Other results from the literature.

Besides the previously described, other small dimensional
problems are the following.

Problem 4. (Application in robotic) [10] This equation has six
roots in [−1,1]

k0 + k2x2 + k4x4 + k6x6 +(k1x+ k3x3 + k5x5)
√

1− x2 = 0

where k0 = 3.9852,k1 = −8.8575,k2 = −10.039,k3 =
20.091,k4 = 7.2338,k5 =−11.177,k6 =−1.17775.

Problem 5. (Geometry problem) [9,10] The system has two
roots in [0,50]3

f (x) =

x1x2 +(x1 −2x3)(x2 −2x3)−165 = 0
x1x3

2
12

− (x1 −2x3)(x2 −2x3)
3

12
−9369 = 0

2(x2 − x3)
2(x1 − x3)

2x3

x1 + x2 −2x3
−6835 = 0

.

Problem 6. (Floudas problem) [8,12,13] This system has two
roots in [0.25,1]× [1.5,2π]

f (x) =

0.5sin(x1x2)−0.25

x2

π
−0.5x1 = 0(

1− 0.25
π

)
(exp(2x1)− e)+ e

x2

π
−2ex1 = 0

.

Problem 7. (Merlet problem) [8,12,13] The system has 13
roots in [0,2π]2

f (x) =
{
−sin(x1)cos(x2)−2cos(x1)sin(x2) = 0
−cos(x1)sin(x2)−2sin(x1)cos(x2) = 0 .

Table 2 aims to show the effect of two HS variants,
the proposed hybrid HS and the I-HS, on the results
produced by a more classical MS algorithm where
R = [l,u] is the search space to generate the points of the
HM and the constraint [l,u] is the box to create the new
harmony y. It is possible to conclude that both variants
perform almost evenly although the hybrid HS is more
efficient since it requires less function evaluations and
CPU time mostly, and I-HS is more consistent in finding
new roots.

Table 2: MS with R = [l,u], γp = 0.5: comparison of HS
variants

MS + hybrid HS MS + I-HS
Prob. n.r. n.f.e. time n.r. n.f.e time

1 1.9 10506 0.426 2.0 12254 0.469
2 2.6 26026 1.074 2.6 28289 1.091
3 6.3 491116 20.209 7.0 683488 26.259
4 5.0 159007 5.521 4.5 135745 4.313
5 1.9 90128 4.418 1.9 134951 5.801
6 1.8 12664 0.542 1.2 15277 0.623
7 6.5 33817 1.520 7.8 29052 1.150

Table 3 reports the results produced by the
‘sphere-based MS’ algorithm, in which the region R is a
sphere and the constraint [l,u] is always used as the
search space to define the new harmony y, i.e.,
(l̂, û) = (l,u) in all the three considered cases (see
Algorithm 3). Results from the second, third and fourth
columns correspond to γp = 0.5 and the remaining
correspond to γp = 0.05. As previously stated, the lowest
value of γp yields fewer calls to the HS search procedure
and consequently less function evaluations and smaller
execution time. Thus, efficiency can be improved by
reducing the value of the parameter γp. However, we

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. ??, No. ??, 1-12 (2014) / www.naturalspublishing.com/Journals.asp 9

Table 3: Algorithm 3 with (l̂, û) = (l,u) in all three cases

γp = 0.5 γp = 0.05
Prob. n.r. n.f.e. time n.r. n.f.e time

1 2.0 7265 0.321 2.0 5000 0.218
2 3.0 14159 0.613 2.8 9824 0.450
3 5.4 388304 16.888 4.6 291348 12.922
4 4.4 96165 3.728 4.3 76227 3.039
5 1.9 58257 3.027 1.7 35240 1.879
6 2.0 12928 0.575 1.7 8448 0.386
7 4.4 881 0.038 4.1 575 0.024

observe from the table that the average number of located
roots has slightly decreased. Here the main goal is to
improve consistency (in locating different roots) even if
with additional computational requirements. When a
comparison is made with the results of Table 2, it is
observed that the efficiency has in general slightly
improved, the consistency has improved with Problems 1,
2 and 6 but has worsened with Problems 3, 4 and 7.

Finally, Table 4 reports the average results produced
by the ‘sphere-based MS’ algorithm, as it is designed in
Algorithm 3, and aims to compare with those from the
literature [8,9,10,12,13,14], where ‘–’ indicates that the
information is not available. We note that the results
reported in [8] are obtained after 100 runs and those in
[10] seem to correspond to one run. In [13], a sample size
of 20 randomly generated points is used and the two sets
of values shown in the table correspond to the best and
the worst results obtained with two different stopping
rules in the MS algorithm. It is noteworthy that the results
produced by the Algorithm 3 in Table 4 are better than
those shown in previous tables.

Table 4: Comparative results

Algorithm 3 other works
Prob. n.r. n.f.e. time runs n.r. n.f.e time

1 2.0 7283 0.323 [14] – 2† – –
2 3.0 15908 0.719 [10] 1 3 – –
3 7.4 460192 19.917 [12] 30 9 253877 5
4 5.3 147664 5.345 [10] 1 6 – –
5 2.0 83187 4.367 [9] – 2‡ – –

[10] 1 1 – –
6 2.0 10968 0.505 [8] 100 2 – 0.461

[13] 30 2 69627 0.53
30 2 4273 0.03

[12] 30 2 211652 0.607
7 7.9 18857 0.881 [8] 100 13 – 20

[13] 30 13 8033 0.08
30 13 3297 0.03

[12] 30 13 401021 46

† the reported solutions are not the global minimizers of M .
‡ only the best solutions are reported; one solution is outside Ω .

During these 30 runs, the two roots of Problem 1 were
located by the ‘sphere-based MS’ algorithm in all runs. On
average, each run of 30 iterations invoked the HS search
procedure 11 times, required 7283 f.e. and 0.323 sec. to
locate both roots, as reported in Table 4. However, the best
run required 4003 f.e. and 0.183 sec. and the worst 9445
f.e. and 0.416 sec.

The ‘sphere-based MS’ algorithm located the three
roots of Problem 2 in all runs. Fig. 2 displays the position
of the roots in the search space [−3,3]2. The HS search
procedure was invoked on average 13.1 times, and the
average number of f.e. and time were 15908 and 0.719
sec., respectively. The best run required 7159 f.e and
0.320 sec. and the worst 21989 f.e. and 1.165 sec.

The nine roots of Problem 3 were located in two out
of the 30 runs. The roots displayed in Fig. 3 and reported
above when describing Problem 3 were obtained in the
best of these two runs. The algorithm found eight roots in
11 runs, seven roots in 13 runs and six roots in four runs.
Considering the 30 runs, the hybrid HS algorithm was
invoked on average 16.7 times and the average number of
located roots, the average number of function evaluations
and the average CPU time are reported in Table 4.

The six roots -0.999627, -0.880777, 0.483253,
0.876481, 0.958852 and 0.991557, with merit function
values ranging from 4.86e-12 to 1.11e-10, of the
Problem 4 have been identified in the best of the ten runs
that located six different roots. The run invoked the HS
procedure 10 times, required 75186 f.e. and 2.998 sec.
The remaining 20 runs located five roots. On average, the
HS search procedure was invoked 18.4 times, and the
algorithm required 147664 f.e. and 5.345 sec.

When solving Problem 5 the two roots were located in
all runs. The best run required 55119 f.e., 2.921 sec. and
11 calls to the HS procedure. The HS procedure needed
0.532 sec. to locate the root (43.154623, 10.128917,
12.944063) with merit 2.01e-09, and 0.188 sec. to locate
(7.602990, 24.541978, 11.576714) with merit 6.97e-12.
The worst of the 30 run invoked 15 times the HS
procedure, required 106218 f.e. and 5.508 sec.
Considering all the runs, the average number of calls to
the HS procedure was 12.2 and the algorithm required an
average of 83187 f.e. and 4.367 sec.

The two roots of Problem 6 were found in all runs.
The best run invoked the HS procedure 6 times, lasted for
0.218 sec. and used 4722 f.e.; the worst invoked the HS
procedure 15 times, lasted for 0.616 sec. and required
13824 f.e. During the best run, the root (0.299447,
2.836914) with merit value 7.27e-11 was located after
731 f.e. and 0.032 sec. and (0.499997, 3.141584) with
merit 4.51e-11 was located after 582 f.e. and 0.026 sec.
Overall, each run required on average 0.505 sec., 10968
f.e. to find the two roots (see Table 4) and invoked on
average 12.9 times the HS procedure.

When solving Problem 7, the 13 roots (0, 0),
(3.141582, 6.283185), (4.712388, 4.712389), (6.283185,
0), (1.570791, 1.570801), (6.283185, 6.283185),
(9.885e-08, 3.141593), (0, 6.283185), (3.141593,

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

10 G.C.V. Ramadas, E.M.G.P. Fernandes, A.M.A.C. Rocha: Multiple roots by a multistart harmony search

3.141595), (1.570776, 4.712411), (6.283185, 3.141584),
(3.141589, 9.480e-07), and (4.712362, 1.570822) were
obtained although not all in the same run. The best run
that found 10 roots, invoked the hybrid HS algorithm 15
times, required 10148 f.e. and lasted 0.470 sec. The times
required by the 10 calls to the search procedure that
converged to the 10 different roots were 0.0009, 0.0002,
0.0003, 0.029, 0.094, 0.038, 0.0098, 0.0006, 0.094 and
0.094 sec. Nine roots were found in six runs, eight roots
in 13 runs and seven roots in ten runs. The average
number of roots found by the ‘sphere-based HS’
algorithm was 7.9 after 18857 f.e. and 0.881 sec. (see
Table 4).

4.2 Problem with a large number of roots

We now aim to analyze the performance of the proposed
‘sphere-based HS’ algorithm when a large number of
roots are present. The following problem is particularly
interesting since the number of roots increases with the
magnitude of the set Ω .
Problem 8. [13] This problem is known as Effati-Grosan 1
and has been tested for different values of a in the set
Ω = [−a,a]2. Although the exact number of roots is unknown,
it has been reported one root when a = 2, 13 roots when a = 10
and 127 when a = 100 [13]:

f (x) =
{

cos(2x1)− cos(2x2)−0.4 = 0
2(x2 − x1)+ sin(2x2)− sin(2x1)−1.2 = 0 .

Table 5 reports the average results produced by
Algorithm 3 when solving the three instances of
Problem 8. We compare our results with two sets of
results reported in [13]. These correspond to the best and
the worst results obtained with different stopping rules in
the MS algorithm. We remark that the therein used
multistart approach is based on a quasi-Newton BFGS
variant as local search procedure. Thus, the convergence
speed is expected to be higher than that of our algorithm,
since approximations to first and second derivatives are
used.

On average, each run of 30 iterations invoked the HS
search procedure 9 times, required 10785 f.e. and 0.623
sec. to locate one root of the instance identified with
a = 2, as reported in Table 5. When solving the instance
with a set to 10, we allowed the Algorithm 3 to run for a
maximum of 200 iterations. On average, the HS search
procedure was invoked 59 times and an average of 12.5
roots were found. The best run of the set found the 13
roots after invoking the HS procedure 61 times, where
each one required an average of 4406 f.e. and 0.258 sec.,
with a merit value of 3.528e-09. Finally, when the
instance with a = 100 was solved, the algorithm was
allowed to run for a maximum of 500 iterations, invoked
on average the HS search procedure 364.6 times and was
able to locate on average 117.2 roots. The best run found
120 roots after invoking the HS procedure 360 times,
where each one required on average 36155 f.e. and 1.992
sec., with a merit function value of 3.524e-09.

Table 5: Results from Algorithm 3 and [13], when solving
the 3 instances of Problem 8

Algorithm 3 [13]
a n.r. n.f.e. time n.r. n.f.e time

2 1 1.1e+04 0.623 1 4.0e+03 0.04
1 3.7e+03 0.03

10 12.5 2.82+05 15.63 13 2.0e+04 0.15
13 5.3e+03 0.04

100 117.2 1.2e+07 692.1 127 1.6e+05 1.35
127 7.3e+04 0.59

4.3 Tests with large dimensional problems

To analyze the convergence behavior of the Algorithm 3
when solving large dimensional problems, we use two
problems with varied dimensions. With each problem we
test the algorithm with the following dimensions 10, 20,
30, 40.

Problem 9. [13] This is the Yamamutra problem that has three
roots in [−2,2]n, and it can be tested for different values of n:

fi(x) = xi −
1
2n

(
n

∑
j=1

x3
j + i

)
= 0, i = 1, . . . ,n.

Table 6 reports the average results produced by
Algorithm 3 when solving the four instances of
Problem 9. We also report the results available in [13] for
comparison. The ‘emphasized’ values inside parentheses
show the average number of function evaluations and the
average time in seconds required by each call of the HS
search procedure. Besides the criteria ‘n.r.’, ‘n.f.e.’ and
‘time’, the table also shows the ‘HMS’ value used in these
experiments. When solving the instance with n = 10, the
HS procedure was invoked an average of 10.4 times and
the average number of located roots was 2.6. On the other
hand, when solving the instance with n = 20, the HS
procedure was invoked an average of 10.9 times and the
average number of located roots was 2.4. When solving
the instance with n = 30, the best run found the 3 roots
after 16 calls to the HS procedure. Overall the averaged
values of the three criteria are 1.4 (‘n.r.’), 2.1e+06
(‘n.f.e.’) and 614.04 (‘time’), as shown in Table 6. Finally,
when setting n = 40 in Problem 9, the algorithm located
an average of 1.5 roots, after 9.4 calls to the HS search
procedure, and required 3.0e+06 f.e. and 1077.1 sec.
Further, the best run that found 3 roots required 5.18e+06
f.e., 1.82e+03 sec. and invoked 16 times the HS
procedure.

Problem 10. [27]: Consider the Broyden tridiagonal system, a
frequently used problem for testing sensitivity to provided initial
approximations, which has been tested for different values of n
and has one root in [−1,0]n:

f (x)=

 f1(x) = (3−2x1)x1 −2x2 +1 = 0
fi(x) = (3−2xi)xi − xi−1 −2xi+1 +1 = 0, i = 2, . . . ,n−1
fn(x) = (3−2xn)xn − xn−1 +1 = 0

.

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. ??, No. ??, 1-12 (2014) / www.naturalspublishing.com/Journals.asp 11

Table 6: Results from Algorithm 3 and [13], when solving
the 4 instances of Problem 9

Algorithm 3 [13]
n HMS n.r. n.f.e. time n.r. n.f.e time

10 10 2.6 1.5e+05 41.68 3 1.9e+05 4.47
(1.4e+04) (4.01) 3 1.6e+04 0.36

20 10 2.4 3.6+05 69.56 3 1.2e+05 7.27
(3.3e+04) (6.38) 3 2.3e+04 1.46

30 30 1.4 2.1e+06 614.04 3 1.5e+05 17.89
(2.4e+05) (68.99) 3 2.8e+04 3.53

40 40 1.5 3.0e+06 1077.1 3 1.7e+05 37.55
(3.2e+05) (114.58) 3 3.3e+04 6.89

Table 7 reports the average results produced by
Algorithm 3 when solving the four instances of
Problem 10 (when n is set to 10, 20, 30, 40). This table
also includes the average number of calls to the HS
procedure, ‘n.calls’. With this example we aim to analyze
the effect of the size of the harmony memory in the hybrid
HS-based algorithm. We note here that the root was found
in all runs whatever the instance and HMS. From the
results we conclude that the HMS does not affect the
performance of the ‘sphere-based HS’ algorithm.

Table 7: Results from Algorithm 3, when solving the 4
instances of Problem 10

Algorithm 3
n HMS n.calls n.r. n.f.e. time

10 10 4.9 1 8.0e+04 7.22
20 10 4.5 1 1.6e+05 21.72

20 4.8 1 1.7e+05 23.66
30 10 4.9 1 2.7e+05 50.02

20 4.4 1 2.4e+05 44.85
30 3.9 1 2.2e+05 41.11

40 10 3.8 1 2.9e+05 68.64
20 4.6 1 3.5e+05 82.55
30 4.4 1 3.4e+05 79.22
40 3.4 1 2.6e+05 60.49

According to the results presented in the last four
tables, we may conclude that the proposed ‘sphere-based
MS’ algorithm is able to locate multiple roots of small as
well as large dimensional systems of nonlinear equations.
Since the hybrid HS-based search procedure does not
require any derivative information, the algorithm is
general-purpose and can be applied even to nonsmooth
problems.

5 Conclusions

In this paper, a hybrid HS-based MS method to compute
multiple roots of a system of nonlinear equations has been

presented. The method, denoted by ‘sphere-based MS’
algorithm, relies on some new ideas aiming to increase
the exploration power of an MS algorithm and enhance
the exploitation of more restrictive regions of the search
space. The search procedure that is invoked in the MS
paradigm is a global search algorithm from the
metaheuristic class. The name ‘hybrid HS’ algorithm
comes from the hybridization of a classical HS algorithm
with a mutation operator present in the DE algorithm.
Furthermore, self-adaptive rules for the parameters PAR
and BW of the pitch adjustment operator are proposed.
The main differences between the proposed MS-type
algorithm and the others in the literature lie in the regions
that are provided to the search procedure to look for a
new solution (instead of the usual search space Ω). In the
HS context, those regions that are used to create the HM
are spheres centered at the sampled point with appropriate
radius. Further, the new harmony is generated inside a
box that may coincide with the given box constraints of
the problem or a more restrictive box, depending on the
position of the sampled point relative to the previously
located solutions. From the numerical experiments
carried out with a set of ten benchmark small and large
dimensional problems we may conclude that the proposed
‘sphere-based MS’ algorithm with the hybrid HS search
procedure is effective in locating multiple roots and
competitive when compared with other metaheuristics.

Acknowledgement

The authors are grateful to the anonymous referees for their
helpful suggestions to improve the paper. This research has been
supported by CIDEM (Centre for Research & Development in
Mechanical Engineering, Portugal), by COMPETE
POCI-01-0145-FEDER-007043 and FCT (Foundation for
Science and Technology, Portugal) within the projects
UID/EMS/0615/2016 and UID/CEC/00319/2013.

References

[1] J.E. Dennis and R.B. Schnabel, Numerical Methods
for Unconstrained Optimization and Nonlinear Equations,
Prentice-Hall Inc., 1983.

[2] M.D. González-Lima and F.M. Oca, Numerical Algorithms
52, 479–506 (2009).

[3] J.M. Martı́nez, Journal of Computational and Applied
Mathematics 124, 97–122 (2000).

[4] U. Nowak and L. Weimann, A family of Newton codes for
systems of highly nonlinear equations, Technical Report. Tr-
91-10, K.-Z.-Z. Inf. Berlin, 1991.

[5] G.C.V. Ramadas and E.M.G.P. Fernandes, 13th International
Conference Computational and Mathematical Methods in
Science and Engineering, J.V. Aguiar et al. (Eds.), ISBN:
978-84-616-2723-3 Vol. IV, 1176–1186, June 2013.

[6] G.C.V. Ramadas and E.M.G.P. Fernandes, 11th International
Conference of Numerical Analysis and Applied Mathematics
2013 AIP Conf. Proc. Vol. 1558, 582–585 (2013).

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

12 G.C.V. Ramadas, E.M.G.P. Fernandes, A.M.A.C. Rocha: Multiple roots by a multistart harmony search

[7] C.H. Chen, 2003 Joint Conference on AI, Fuzzy System and
Gray System, Taipei, Taiwan, 4–6 (2003).

[8] M.L. Hirsch, P.M. Pardalos and M. Resende, Nonlinear
Analysis: Real World Applications 10, 2000–2006 (2009).

[9] M. Jaberipour, E. Khorram and B. Karimi, Computers and
Mathematics with Applications 62, 566–576 (2011).

[10] E. Pourjafari and H. Mojallali, Swarm and Evolutionary
Computation 4, 33–43 (2012).

[11] G.C.V. Ramadas and E.M.G.P. Fernandes, International
Journal of Computer Mathematics 89, 1847–1864 (2012).

[12] R.M.A. Silva, M.G.C. Resende and P.M. Pardalos, Journal
of Global Optimization 60, 289–306 (2014).

[13] I.G. Tsoulos and A. Stavrakoudis, Nonlinear Analysis: Real
World Applications 11, 2465–2471 (2010).

[14] C. Grosan and A. Abraham, IEEE Transactions on Systems,
Man and Cybernetics - Part A: Systems and Humans 38, 698–
714 (2008).

[15] C. Grosan and A. Abraham, International Journal of
Innovative Computing, Information and Control 4, 2161–
2170 (2008).

[16] M.M. Ali and M.N. Gabere, Journal of Computational and
Applied Mathematics 233, 2661–2674 (2010).

[17] I.G. Tsoulos and I.E. Lagaris, Computer Physics
Communications 174, 166–179 (2006).

[18] W. Tu and R.W. Mayne, International Journal for Numerical
Methods in Engineering 53, 2239–2252 (2002).

[19] C. Voglis and I.E. Lagaris, Applied Mathematics and
Computation 213, 1404–1415 (2009).

[20] Z.W. Geem, J.H. Kim and G. Loganathan, Simulation 76,
60–68 (2001).

[21] M. Mahdavi, M. Fesanghary and E. Damangir, Applied
Mathematics and Computation 188, 1567–1579 (2007).

[22] M.G.H. Omran and M. Mahdavi, Applied Mathematics and
Computation 198, 643–656 (2008).

[23] R. Storn and K. Price, Journal of Global Optimization 11,
341–359 (1997).

[24] K.S. Lee and Z.W. Geem, Computational Methods and
Applied Mechanical Engineering 194, 3902–3933 (2004).

[25] O.M. Alia and R. Mandava, Artificial Intelligence Review
36, 49–68 (2011).

[26] R. Marti, Multi-start methods, In: Handbook of
Metaheuristics, F. Glover, G. Kochenberger (Eds), Kluwer
Academic Publishers, 355–368 (2003).

[27] J. More, B. Garbow and K. Hillstrom, ACM Transactions on
Mathematical Software 7, 17–41 (1981).

Gisela C.V. Ramadas
is an Adjunt Professor at the
Department of Mathematics
in the School of Engineering,
Polytechnic of Porto.
She received the PhD degree
in Production and Systems
Engineering from the
University of Minho in 2004.
Her research interests are

in the area of applied mathematics including the
metaheuristics for nonlinear systems of equations. She
has published more than 10 research papers in indexed
international journals, book chapters and conference
proceedings in the mathematical and engineering sciences
areas.

Edite M.G.P. Fernandes
is a retired Full Professor
at the University of Minho.
She received the PhD
degree in Mathematics
from the University of Oxford
in 1980 and her Habilitation
in Systems Engineering and
Industrial Processes from the
University of Minho in 2002.

At present, her main research interests are in the areas of
global optimization and constraint handling. She has
published more than 40 papers in reputed international
journals of applied mathematics and optimization and 56
papers as book chapters in the field of nonlinear
optimization.

Ana Maria A.C.
Rocha is an Assistant
Professor at the University
of Minho. She received
the PhD degree in Production
and Systems Engineering
from the University of
Minho in 2005. Her research
interests include global
optimization, stochastic

methods, penalty techniques and dynamic systems
optimization. She has published more than 20 papers in
indexed international journals, 23 as book chapters and 20
in indexed conference proceedings.

c⃝ 2014 NSP
Natural Sciences Publishing Cor.

