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Abstract
AIM
To examine the effect of Fusobacterium nucleatum 
(F. nucleatum ) on the microenvironment of colonic 
neoplasms and the expression of inflammatory mediators 
and microRNAs (miRNAs).

METHODS
Levels of F. nucleatum  DNA, cytokine gene mRNA 
(TLR2 , TLR4 , NFKB1 , TNF , IL1B , IL6  and IL8 ), and 
potentially interacting miRNAs (miR-21-3p, miR-22-3p, 
miR-28-5p, miR-34a-5p, miR-135b-5p) were measured 
by quantitative polymerase chain reaction (qPCR) 
TaqMan® assays in DNA and/or RNA extracted from 
the disease and adjacent normal fresh tissues of 27 
colorectal adenoma (CRA) and 43 colorectal cancer 
(CRC) patients. KRAS mutations were detected by direct 
sequencing and microsatellite instability (MSI) status by 
multiplex PCR. Cytoscape v3.1.1 was used to construct 
the postulated miRNA:mRNA interaction network.

RESULTS
Overabundance of F. nucleatum  in neoplastic tissue 
compared to matched normal tissue was detected in 
CRA (51.8%) and more markedly in CRC (72.1%). We 
observed significantly greater expression of TLR4 , IL1B, 
IL8, and miR-135b in CRA lesions and TLR2 , IL1B, IL6, 
IL8 , miR-34a and miR-135b in CRC tumours compared 
to their respective normal tissues. Only two transcripts 
for miR-22 and miR-28 were exclusively downregulated 
in CRC tumour samples. The mRNA expression of IL1B, 
IL6 , IL8  and miR-22 was positively correlated with F. 
nucleatum quantification in CRC tumours. The mRNA 
expression of miR-135b and TNF  was inversely correlated. 
The miRNA:mRNA interaction network suggested that 
the upregulation of miR-34a in CRC proceeds via  a 
TLR2/TLR4-dependent response to F. nucleatum. Finally, 
KRAS  mutations were more frequently observed in CRC 
samples infected with F. nucleatum and were associated 
with greater expression of miR-21 in CRA, while IL8 was 
upregulated in MSI-high CRC.

CONCLUSION
Our findings indicate that F. nucleatum  is a risk factor 
for CRC by increasing the expression of inflammatory 
mediators through a possible miRNA-mediated activation 
of TLR2 /TLR4 .

Key words: Colorectal cancer; Colorectal adenoma; 
Fusobacterium nucleatum ; Inflammation; Cytokines; 
MicroRNAs
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Core tip: We examined the influence of Fusobacterium 
nucleatum (F. nucleatum) in colorectal adenoma (CRA) 
and colorectal cancer (CRC) on the mRNA expression 
of inflammatory mediators and the association with 
microRNA (miRNA) levels, KRAS  mutation, and micro

satellite instability (MSI). We suggest that F. nucleatum 
contributes to CRC development by increasing the 
expression of inflammatory mediators through a possible 
miRNA-mediated activation of TLR2 /TLR4. The miRNA:
mRNA interaction network suggests an upregulation of 
miR-34a in CRC via  a TLR2 /TLR4-dependent response 
to F. nucleatum. KRAS  mutations were more frequent 
in F. nucleatum -infected CRC and were associated with 
a greater expression of miR-21 in CRA, while IL8  was 
upregulated in MSI-high CRC.
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INTRODUCTION
Colorectal cancer (CRC) is one of the three leading 
causes of cancer-related deaths and the third most 
frequently diagnosed cancer worldwide, with 1849518 
new cases and 880792 deaths estimated in 2018[1]. In 
Brazil, CRC is the third most frequent cancer in men 
and the second most frequent cancer in women[2]. CRC 
is associated with chronic inflammation and oxidative 
processes that can induce malignant cell transformation 
and activate carcinogenic processes such as proliferation 
and angiogenesis[3].

The human intestinal microbiota is composed of many 
species that may play an important role in inflammatory 
gastrointestinal diseases, such as inflammatory bowel 
disease and CRC. Among the microbiota, Fusobacterium 
nucleatum (F. nucleatum) has emerged as a potential 
factor in CRC aetiology[4-7]. This bacterium is a gram-
negative anaerobic commensal pathogen that is 
associated with several human diseases, especially those 
related to the oral and intestinal tracts[5,8]. Some studies 
suggest that F. nucleatum can cause a pro-inflammatory 
microenvironment in the intestine through deregulating 
inflammatory and immune responses, thereby promoting 
a microenvironment propitious for tumour initiation and 
CRC progression[5,6,9]. However, the mechanisms involved 
in this proposed tumourigenic process are still under 
discussion.

Studies have shown an abundance of F. nucleatum 
in tumour tissues and stool samples from CRC patients 
compared to adjacent normal tissues, colorectal 
adenomas (CRA) or even healthy subjects, and this 
observation was also correlated with shorter post-
diagnosis overall survival[6,10-12]. These results reinforce 
the importance of F. nucleatum detection to assist in 
the identification of risk groups and early detection of 
CRC with implications for disease prognosis as well.
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The interaction of microorganisms with the intestinal 
epithelium initially involves recognition by Toll-like 
receptors (TLRs)[13] and activation of the nuclear factor-
kappa B (NF-κB) pathway, which is the main signalling 
pathway regulating inflammatory responses implicated in 
colorectal tumourigenesis[14]. NF-κB may facilitate tumour 
progression through the expression of pro-inflammatory 
cytokines[15], which have different roles in colorectal 
carcinogenesis. These pro-inflammatory cytokines 
include interleukin (IL) IL1B, which can induce tumour 
cell proliferation[16]; IL6 and IL8, which are related to 
tumour growth, angiogenesis and metastasis[17]; and 
tumour necrosis factor (TNF) A, which can decrease cell 
death[16,18].

F. nucleatum infection has also been associated 
with common CRC tumour genetic and epigenetic 
alterations, such as microsatellite instability (MSI), CpG 
island methylator phenotype (CIMP), and mutations 
in the BRAF and KRAS genes[19-21]. These alterations 
are thought to be due to F. nucleatum-mediated 
inflammatory responses influencing the molecular 
pathways of colorectal carcinogenesis via generation 
of reactive oxygen species (ROS) and greater pro-
inflammatory gene expression, resulting in aberrant 
DNA methylation and DNA damage.

MicroRNAs (miRNAs) have a well-established role 
in inflammatory processes and can serve as molecular 
markers for diagnosis, prognosis, and treatment 
response[22]. Several miRNAs have been associated 
with CRC development and progression[23-25], including 
investigations of F. nucleatum-induced inflammation and 
CRC[26-28].

However, the interaction and (dys)regulation 
between inflammatory genes and miRNAs in potential 
F. nucleatum-induced colorectal carcinogenesis has not 
previously been elucidated. Thus, we investigated the 
association of F. nucleatum abundance in CRA and CRC 
tissues with the expression of inflammatory genes (TLR2, 
TLR4, NFKB1, TNF, IL1B, IL6 and IL8) and miRNAs (miR-
21-3p, miR-22 -3p, miR-28-5p, miR-34a-5p and miR-
135b-5p). These genes and miRNAs were selected due to 
their proposed involvement in the inflammatory process 
or colorectal carcinogenesis from the literature and public 
databases (TarBase v7.0 and miRBase 2.1)[29,30]. Our 
findings suggest that the host inflammatory response to 
F. nucleatum contributes to the neoplastic progression of 
CRA to CRC though TLR2 and TLR4 activation of the pro-
inflammatory cytokines IL1B, IL6 and IL8 in a potentially 
miRNA-dependent process. 

MATERIALS AND METHODS
Clinical samples
This study was approved by the Research Ethics 
Committee of IBILCE/UNESP, São José do Rio Preto (SP), 
Brazil (reference 1.452.373). Written informed consent 
was obtained from all individuals, and all samples were 
coded to protect patient anonymity.

A total of 43 fresh-frozen CRC tissue samples and 
the matched adjacent normal tissue (N-CRC) as well 
as 27 CRA tissue samples and the matched adjacent 
normal tissue (N-CRA) were collected from the 
Proctology Service of Hospital de Base and Endoscopy 
Center Rio Preto, both in SP (Brazil) during the period of 
2010 to 2012.

All required information on demographic and 
clinical histopathological parameters was obtained from 
the patients’ medical records. The inclusion criteria 
were patients with a confirmed diagnosis of pre-
cancerous adenomas or sporadic CRC by standard 
clinical histopathological measures without previous 
chemotherapy and radiotherapy, and the exclusion 
criterion was patients with hereditary CRC.

Acid nucleic extraction and cDNA reverse transcription
Simultaneous extraction of total RNA and DNA from 
colorectal tissue samples was performed using the 
TRIzol reagent (Ambion, Carlsbad, CA, United States) 
and corresponding protocol from the manufacturer. A 
reverse transcriptase reaction was performed using a 
High Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems, Foster City, CA, United States) as described 
previously[31]. The synthesis of cDNA to the miRNAs 
was carried out with a TaqMan® MicroRNA Reverse 
Transcription Kit (Applied Biosystems, Foster City, CA, 
United States) according to the manufacturer’s protocol.

Quantification of F. nucleatum
Quantification of F. nucleatum was performed in 
CRA, CRC and the respective adjacent normal 
DNA samples by quantitative real-time PCR 
(qPCR). TaqMan® Gene Expression Assays (Applied 
Biosystems, Foster City, CA, United States) with 
specific probes for the bacterial gene target NusG 
(5’-TCAGCAACTTGTCCTTCTTGATCTTTAAATGAACC-3’ 
TAMRA probe FAM) and the human gene PGT 
(5’-CCATCCATGTCCTCATCTC-3’ TAMRA probe FAM) 
as a reference were assayed by StepOnePlus Real-
Time PCR (Applied Biosystems, Foster City, CA, United 
States). The reactions were performed separately 
for each gene at a 12 μL final volume using 20 ng of 
genomic DNA, 400 nmol/L primer (NusG sequences: 
5’-CAACCATTACTTTAACTCTACCATGTTCA-3’ and 
3’-GTTGACTTTACAGAAGGAGATTATGTAAAAATC-5’, 
PGT:  5 ’-ATCCCCAAAGCACCTGGTTT-3’  and 
3’-AGAGGCCAAGATAGTCCTGGTAA-5’) (Invitrogen, 
Carlsbad, Califórnia, United States), 400 nmol/L probe 
and GoTaq probe 1 × qPCR Master Mix (Promega, 
Madison, Wisconsin, United States). The reaction was 
subjected to temperatures of 50 ℃ for 2 min, 95 ℃ for 
10 min, then 60 cycles of 95 ℃ for 15 s and 57 ℃ for 1 
min[10]. All reactions were performed in duplicate, and 
all experiments had a no-template control that was 
used to confirm no contamination in samples. Cq (cycle 
quantification) values were calculated after adjusting 
the threshold by StepOne software (v. 2.2.2) (Applied 
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network with the nodes representing the genes, miRNAs, 
and/or proteins and the edges representing their 
interactions.

KRAS mutation
KRAS (codons 12 and 13) hotspot mutation regions 
were analysed by PCR, followed by direct sequencing, 
as previously described[38]. PCR was performed at a 
final volume of 15 μL under the following conditions: 
1.5 μL of buffer (Qiagen, Venlo, The Netherlands), 
2 mmol/L MgCl2 (Qiagen, Venlo, The Netherlands), 
100 mmol/L dNTPs (Invitrogen, Carlsbad, Califórnia, 
United States), forward and reverse primers at 0.2 
mmol/L (Sigma Aldrich), 1 unit of HotStarTaq DNA 
polymerase (Qiagen, Venlo, The Netherlands) and 1 
μL of DNA at 50 ng/μL. The KRAS primers used were 
5’-GTGTGACATGTTCTAATATAGTCA-3’ (forward) and 
3’-GAATGGTCCTGCACCAGTAA-5’ (reverse)[39].

PCR products were purified with ExoSAP (GE 
Technology, IL, United States) and then added to a 
sequencing reaction mix containing 1 μL of BigDye 
(Applied Biosystems, Foster City, CA, United States), 
1.5 μL of sequencing buffer (Applied Biosystems, Foster 
City, CA, United States) and 1 μL of primer, followed by 
post-sequencing purification with a BigDye XTerminator 
Purification Kit (Applied Biosystems, Foster City, CA, 
United States) according to the instructions from the 
manufacturer. Direct sequencing was performed on a 
3500 xL Genetic Analyzer (Applied Biosystems, Foster 
City, CA, United States). All mutations were confirmed 
in a second, independent PCR experiment.

MSI status
MSI evaluation was performed using a multiplex PCR 
comprising six quasimonomorphic mononucleotide 
repeat markers (NR-27, NR-21, NR-24, BAT-25, BAT-26 
and HSP110), as previously described[40,41]. Primer 
sequences, as described[41,42], were each reverse 
primer end-labelled with a fluorescent dye as follows: 
6-carboxyfluorescein (6-FAM) for BAT-26 and NR-21; 
20-chloro-70-phenyl-1,4-dichloro-6-carboxyfluorescein 
(VIC) for BAT-25, NR-27 and HSP110; and 2,7,8-benzo-
5-fluoro-2,4,7-trichloro-5-carboxyfluorescein (NED) for 
NR-24. PCR was performed using a Qiagen Multiplex 
PCR Kit (Qiagen, Venlo, The Netherlands) with 0.5 μL 
of DNA at 50 ng/μL and the following thermocycling 
conditions: 15 min at 95 ℃; 40 cycles of 95 ℃ for 30 s, 
55 ℃ for 90 s and 72 ℃ for 30 s; and a final extension at 
72 ℃ for 60 min. Fragment analyses were performed on 
a 3500 xL Genetic Analyser (Applied Biosystems, Foster 
City, CA, United States) according to the instructions 
from the manufacturer, and the results were analysed 
using GeneMapper v4.1 (Applied Biosystems, Foster 
City, CA, United States). Cases exhibiting instability at 
two or more markers were considered to have high 
MSI (MSI-H), cases with instability at one marker were 
defined as having low MSI (MSI-L) and cases that 
showed no instability were defined as microsatellite 

Biosystems, Foster City, CA, United States), and all 
samples with a resulting Cq value were considered 
positive. Relative quantification (RQ) for the F. nucleatum 
gene (NusG) was calculated based on the 2-ΔΔCt 
method[32] and was expressed for each group relative to 
the respective normal tissue samples both in an unpaired 
way, using the mean of adjacent normal samples as a 
calibrator for each group, and in a paired way, using the 
respective adjacent normal of each sample as its specific 
calibrator.

Relative quantification of inflammatory mediator genes 
and miRNAs
Relative quantifications for the expression of 7 
inflammatory genes [TLR2 (Hs00610101_m1), TLR4 
(Hs01060206_m1), NFKB1 (Hs00765730_m1), IL1B 
(Hs01555410_m1), IL6 (Hs00985639_m1), IL8 
(Hs00174103_m1) and TNF (Hs00174128_m1)] and 
5 miRNAs [hsa-miR-21-3p (TM002438), hsa-miR-22-
3p (TM000398), hsa-miR-28-5p (TM000411), hsa-
miR-34a-5p (TM000426), and hsa-miR-135b-5p 
(TM002261)] were performed in 27 CRA and 43 CRC 
cDNA samples. Adjacent normal tissue samples of 
each lesion (CRA and CRC) were studied as a sample 
pool with the same amount of cDNA. The qPCRs were 
performed using the TaqMan® Gene Expression Assays 
(Applied Biosystems, Foster City, CA, United States) 
with specific probes for each gene according to the 
instructions from the manufacturer, in a final volume of 
10 μL using 25 ng of cDNA for the cytokine genes and 
0.66 ng for the miRNAs. All reactions were performed 
in duplicate, and all experiments had a no-template 
control. The reactions were subjected to the StepOne 
Plus Real-Time PCR System (Applied Biosystems, Foster 
City, CA, United States). Cq values were calculated 
after adjusting the threshold by the StepOne software 
(v.2.2.2) (Applied Biosystems, Foster City, CA, United 
States). For the mRNA analyses, the ACTB and GAPDH 
genes were used as reference genes, as validated in a 
previous study[31]. For the miRNA analysis, the method 
of global normalization was employed[33]. RQ values 
were calculated using the 2-ΔΔCt method[32], considering 
the pool of the respective adjacent normal samples 
as the calibrator and considering the Cq mean of CRA 
expression for the CRC samples.

miRNA-mRNA interaction networks
Prediction of targets regulated by miRNAs was performed 
using the miRNA Data Integration Portal bioinformatics 
tool (http://ophid.utoronto.ca/mirDIP/)[34]. A protein-
protein interaction network was generated via the 
String database (version 9.1) using the target genes 
as an input[35]. The identified miRNAs and target genes 
were integrated into interaction networks by Cytoscape 
software (version 3.1.1)[36]. The biological function of the 
identified genes in the network was defined using the 
BiNGO tool in Cytoscape (version 3.0.2)[37]. Cytoscape 
software also provides a graphical visualization of the 
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stable (MSS)[40].

Statistical analysis
KRAS mutation and MSI status were compared between 
groups using Fisher’s exact test. The distribution of 
continuous data was evaluated using the D’Agostino-
Pearson normality test. The Wilcoxon signed-rank test was 
used to test the significance of the RQ of the measured 
genes from the qPCR experiments. Spearman’s rank 
correlation coefficient test was performed to compare the 
F. nucleatum quantification with the expression of the 
inflammatory genes and miRNAs. For all analyses, P < 0.05 
was considered statistically significant. The analysis was 
performed by GraphPad Prism software (version 6.01).

RESULTS
Quantification of F. nucleatum in CRA and CRC tissues
Among 43 CRC and 27 CRA samples and their 
respective normal adjacent mucosa (N-CRC and 
N-CRA, respectively) quantified for F. nucleatum, 33 
(76.7%) CRC samples, 31 (72.1%) N-CRC samples, 14 
(51.8%) CRA samples, and 13 (48.1%) N-CRA samples 
were positive for bacterial DNA. Of these samples, 
the presence of the bacterium was observed in both 
the lesion and its matched normal mucosa for 6 CRA 
samples and 27 CRC samples. A significant increase in 
bacterial DNA was found for both CRA (RQ = 5.64) and 
CRC (RQ = 8.67) tissues compared to the respective 
normal adjacent tissues (Figure 1).

In addition, the analysis of F. nucleatum quantification 
for the CRC group was also performed in a paired way, 
using the respective adjacent normal tissue of each 
sample as its specific calibrator. This result was consistent 
with the unpaired analysis showing more F. nucleatum in 
tumour tissues (RQ = 17.71, P = 0.0002). For the CRA 
samples, this paired analysis was not performed due 
to the low potential of analysing the available 6 paired 

samples.
A comparison of CRC samples with CRA samples, 

using the Cq mean of CRA rather than the normal 
mucosa as a calibrator for the analysis, estimated the 
quantification of F. nucleatum as 24.84 times greater in 
CRC samples than in CRA samples (P < 0.0001) (Figure 1).

Gene expression of inflammatory mediators
Gene expression of inflammatory mediators in CRA 
samples and CRC samples relative to adjacent normal 
tissue samples showed significantly increased mRNA 
levels for TLR4 (RQ = 2.27, P =0.0003), IL1B (RQ = 
2.27, P = 0.0047) and IL8 (RQ = 3.33, P = 0.0006) 
in CRA tissues (Table 1, Figure 2A) and for TLR2 (RQ 
= 2.36, P < 0.0001), IL1B (RQ = 4.13, P < 0.0001), 
IL6 (RQ = 6.67, P < 0.0001) and IL8 (RQ = 6.36, P < 
0.0001) in CRC tumours (Table 1, Figure 2B).

Additionally, elevated expression of TLR2 (RQ = 1.68, 
P < 0.0001), IL1B (RQ = 4.79, P < 0.0001), IL6 (RQ = 
9.40, P < 0.0001) and IL8 (RQ = 12.12, P < 0.0001) 
was observed in CRC tumours compared to CRA tissues 
(Table 1, Figure 2C).

miRNA gene expression
A similar estimation of miRNA relative gene expression 
was performed for CRA and CRC samples, in which 
miRNAs (miR-21, miR-22, miR-28, miR-34a, miR-135b) 
were quantified in each neoplastic tissue sample relative 
to a pool of the adjacent normal tissue. For the CRA 
group, only miR-135b was upregulated (RQ = 2.19, 
P = 0.0074) (Table 2, Figure 3A). However, for CRC 
samples, while miR-34a (RQ = 1.38, P = 0.0029) and 
miR-135b (RQ = 9.31, P < 0.0001) were upregulated, 
miR-22 (RQ = 0.27, P < 0.0001) and miR-28 (RQ = 
0.65, P = 0.0045) were downregulated (Table 2, Figure 
3B). Relative to the CRA group, CRC samples also 
presented a significant increase in the gene expression 
of miR-34a (RQ = 1.26, P = 0.01) and miR-135b (RQ = 
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Figure 1  Relative quantification of the Fusobacterium nucleatum NusG gene in adenoma and colorectal cancer samples compared to adjacent normal 
tissues and colorectal cancer compared to adenoma tissue. Statistically significant differences, according to the Wilcoxon signed-rank test, were as follows: 
colorectal adenoma: aP = 0.0002, colorectal cancer: bP = 0.0002, colorectal cancer/adenoma: cP < 0.0001. Median with interquartile range graph. CRA: Colorectal 
adenoma; CRC: Colorectal cancer; CRC/AD: Colorectal cancer/adenoma; RQ: Relative quantification; F. nucleatum: Fusobacterium nucleatum.
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2.64, P < 0.0001) (Table 2, Figure 3C).

Interactions between F. nucleatum abundance with the 
expression of inflammatory mediator genes and miRNAs 
A correlation analysis was performed between the RQ 
values of inflammatory genes (TLR2, TLR4, NFKB1, 
TNF, IL1B, IL6 and IL8) and F. nucleatum DNA levels in 
all neoplasms. For the CRA group, the only significant 
finding was a negative correlation between TLR4 and 
F. nucleatum quantification (r = - 0.62, P = 0.0235). 
However, for CRC, significant positive correlations were 
observed for bacterial DNA levels with cytokines IL1B (r 
= 0.46, P = 0.0066), IL6 (r = 0.47, P = 0.0059), and 
IL8 (r = 0.54, P = 0.0013) (Table 3).

In the miRNA analysis, while no significant corre
lations was observed for the CRA group, there was 
a significant positive correlation between miR-22 
expression and F. nucleatum (r = 0.38, P = 0.0331) in 
the CRC group (Table 3).

miRNA-mRNA correlation and interaction networks
Finally, independent of considerations of F. nucleatum 

levels, we also performed a correlation analysis 
between the RQ values of miRNAs and inflammatory 
genes in both CRA and CRC samples. For CRA samples, 
there was a positive correlation of IL8 with miR-21 (r = 
0.40, P = 0.0466), miR-34a (r = 0.44, P = 0.0296) and 
miR-135b (r = 0.46, P = 0.0200) (Table 4). Regarding 
CRC, several positive correlations were observed 
between miR-21, miR-22, and miR-28 and most of the 
inflammatory genes evaluated, and there was also a 
significant inverse correlation between miR-135b and 
TNF (r = - 0.32, P = 0.0411) (Table 4).

Additionally, we identified in silico a miRNA:mRNA 
interaction network that may be deregulated in CRC 
(Figure 4). This analysis demonstrated the interrelations 
of the inflammatory mediator genes alone and with their 
miRNA moderators (e.g., miR-28 and miR-34a targeting 
TLR4, miR-22 targeting TLR2 and miR-135b targeting 
IL6). The negative correlation of the expression of miR-
135b and TNF found in this study (Table 4) was also 
demonstrated in this in silico a miRNA:mRNA interaction 
network, although not functionally validated in our study 
and not yet predicted by public databases[34] (Figure 4).

Table 1  Relative quantification of mRNA expression of the inflammatory genes in adenoma and colorectal cancer samples compared 
with adjacent normal tissue samples and colorectal cancer samples relative to the adenoma group

TLR2 TLR4 NFKB1 IL1B IL6 IL8 TNF

CRA
RQ median 0.87 2.27 1.02 2.27 1.12 3.33 0.75
RQ Range 0.36-10.80 0.32-11.25 0.45-3.38 0.14-76.76 0.09-80.41 0.10-874.50 0.14-2.60
P value 0.2940 0.0003a 0.5360 0.0047a 0.2473 0.0006a 0.0527
CRC
RQ median 2.36 0.74 0.90 4.13 6.67 6.36 0.72
RQ Range 0.31-35.80 0.20-23.42 0.31-8.49 0.13-245.70 0.09-192.80 0.16-194.20 0.06-31.76
P value < 0.0001a 0.4476 0.9855 < 0.0001a < 0.0001a < 0.0001a 0.2391
CRC/CRA
RQ median 1.68 0.54 0.78 4.79 9.40 12.14 0.70
RQ Range 0.22-25.49 0.15-17.22 0.27-7.35 0.15-284.80 0.13-271.80 0.31-370.60 0.06-30.77
P value < 0.0001a 0.0608 0.1237 < 0.0001a < 0.0001a < 0.0001a 0.1560

Wilcoxon signed rank test. aP value < 0.05 were considered statistically significant. CRA: Colorectal adenoma; CRC: Colorectal cancer; RQ: Relative 
quantification; TNF: Tumour necrosis factor; IL: Interleukin; NFKB: Nuclear factor kappa B; TLR: Toll-like receptor.

Table 2  Relative quantification of microRNAs in adenoma and colorectal cancer samples compared with adjacent normal tissue 
samples and colorectal cancer samples relative to the adenoma group

miR-21 miR-22 miR-28 miR-34a miR-135b

CRA
RQ median 0.75 0.85 0.73 0.97 2.19
RQ Range 0.15-13.91 0.10-3.05 0.08-2.17 0.12-4.74 0.10-25.13
P value 0.6349 0.1747 0.1904 0.3306 0.0074a

CRC
RQ median 0.53 0.27 0.65 1.38 9.31
RQ Range 0.08-12.53 0.026-2.78 0.11-7.27 0.20-30.0 0.45-74.00
P value 0.1725 < 0.0001a 0.0045a 0.0029a < 0.0001a

CRC/CRA
RQ median 1.01 0.59 0.77 1.26 2.64
RQ Range 0.15-23.91 0.06-6.07 0.14-8.79 0.18-27.51 0.13-20.96
P value 0.0969 0.5770 0.1271 0.0101a < 0.0001a

Wilcoxon signed rank test. aP value < 0.05 were considered statistically significant. CRA: Colorectal adenoma; CRC: Colorectal cancer; RQ: Relative 
quantification.

Proença MA et al . F. nucleatum in colorectal carcinogenesis



5357 December 21, 2018|Volume 24|Issue 47|WJG|https://www.wjgnet.com

KRAS mutation and MSI status in CRA and CRC tissues
Mutations in codons 12 and 13 of the KRAS gene 
were detected in 8/27 (30%) of CRA tissues and 
11/43 (26%) of CRC tissues (P = 0.7854), of which 
p.Gly12Asp (G12D) and p.Gly13Asp (G13D) were the 
most frequent changes in both CRA and CRC tissues 
(Table 5). Regarding the MSI status, all the CRAs were 
microsatellite stable or MSI-low, while 7/43 (16%) of 
CRC samples were MSI-high (P = 0.0382; Table 5). 
The KRAS mutation was associated with F. nucleatum 
presence in CRC tumours (P = 0.0432) and had greater 
expression of miR-21 in CRA samples (P = 0.0409). The 
MSI-high tumour status was associated with increased 
expression of IL8 (P = 0.0171). Other comparisons 
of the association between KRAS mutations and MSI 
status with F. nucleatum levels or cytokine gene and 
miRNA expressions showed no significant differences.

DISCUSSION
To better understand the possible mechanistic 
relationship between F. nucleatum presence and the 
immune response in CRC development, we evaluated 

the association between F. nucleatum quantification 
and the expression of cytokines and miRNAs involved 
in the inflammatory stress response in CRA and CRC 
tissues from a South American patient study. Our results 
corroborated previous studies showing that F. nucleatum 
is present in greater amounts in tumours compared to 
both CRA and matched normal tissues. Importantly, 
our work further suggests that the abundance of F. 
nucleatum can affect cytokine expression possibly via 
recognition by TLR4 and TLR2 with regulation by miRNAs 
such as miR-34a, miR-135b and miR-22.

Several studies in North American, European and 
Asian populations showed the overabundance of F. 
nucleatum when comparing CRC tissues with normal 
adjacent tissues, healthy subjects[5,10,11,37,40,43-45] or CRA 
tissues[10,43]. A recent meta-analysis concluded that 
intestinal F. nucleatum is a valuable diagnostic marker 
for CRC[46]. A different Brazilian study with a small 
sample size, also in the southeast region, previously 
showed greater levels of F. nucleatum in CRC (DNA 
levels in faecal samples of CRC patients were compared 
to those of healthy subjects)[47]. Our study of fresh 
tissue samples from Brazilian CRA and CRC patients 

60

40

20

10

8

6

4

2

0

R
Q

a
b

a

TLR2      TLR4    NFKB1     IL1B       IL6        IL8       TNFA

Adenoma

60

40

20

10

8

6

4

2

0

R
Q

a

a

TLR2     TLR4     NFKB1    IL1B       IL6        IL8       TNFA

Colorectal cancer

a

a

60

40

20

10

8

6

4

2

0

R
Q

a

a

TLR2     TLR4     NFKB1    IL1B       IL6        IL8       TNFA

Cancer compared to Adenoma

a

a

A B

C

Figure 2  Relative quantification of inflammatory genes in (A) adenoma and (B) colorectal tumour tissue samples compared to a pool of respective 
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range graph. RQ: Relative quantification.

Proença MA et al . F. nucleatum in colorectal carcinogenesis



5358 December 21, 2018|Volume 24|Issue 47|WJG|https://www.wjgnet.com

provided more evidence of the increasing abundance 
of F. nucleatum in the progression from adenoma to 
cancer.

The mechanism by which F. nucleatum function
ally contributes to colorectal tumourigenesis has 
been investigated in several studies. It has been 
shown that this bacterium causes an inflammatory 
microenvironment more favourable to CRC development 
among other bacteria that colonize at the tumour site[6]. 
A carcinogenic mechanism proposed is that F. nucleatum 
promotes an oncogenic and inflammatory response via 
FadA, the main virulence factor of F. nucleatum, binding 
to E-cadherin and activating the B-catenin pathway[48]. In 
addition, the F. nucleatum lectin Fap2 binds to the Gal-
GalNAc polysaccharide expressed by CRC cells, likely 
increasing immune-mediated inflammation[9]. Moreover, 
the presence of F. nucleatum in the gut affects tumour-
related cytokines and activates the JAK/STAT and MAPK/
ERK pathways involved in CRC tumour progression[49] 
(Figure 5).

In our study, in CRA disease tissues, we found 
that the mRNA expression of TLR4, IL1B, and IL8 was 
increased, as was the expression of miR-135b. In CRC 
tumour tissues, the TLR2 receptor and the IL genes 
IL1B, IL6 and IL8 were significantly upregulated when 
compared to adjacent normal tissues and to CRA 
tissues. miRNA levels of miR-34a and miR-135b were 

more highly expressed in CRC tumours, while miR-22 
and miR-28 were downregulated (Figure 5). These 
findings indicate that several of these genes are already 
dysregulated in early CRA stages of colorectal neoplasia 
as well as in CRC; thus, these genes may contribute 
to inflammatory stresses that drive the progression 
from CRA to CRC. Greater TLR2 expression appears 
to be a later event in colorectal carcinogenesis, as also 
indicated by our recent study showing increased mRNA 
and protein expression of TLR2 in CRC tissues[31].

Recent studies have demonstrated that the TLR4/
MYD88/NF-κB pathway is activated by F. nucleatum 
infection, which stimulates the overexpression of 
miR-21[28]. Moreover, the TLR4/MYD88 innate immune 
signalling and the miR-18a and miR-4802 expression 
in CRC patients with a high amount of F. nucleatum 
activate the autophagy pathway to control CRC 
chemoresistance[50]. In summary, these findings 
suggest the involvement of both TLR2 and TLR4 in F. 
nucleatum immune recognition.

Correlations of both inflammatory genes and miRNA 
expression with F. nucleatum levels showed positive 
associations with IL1B, IL6, and IL8 as well as with 
miR-22 in CRC tissues. Increased expression of IL1B, 
IL6 and TNF has also been reported by in vitro and 
animal model studies after F. nucleatum infection[51,52].

Together with existing data, our results are 
consistent with a scenario in which F. nucleatum triggers 
an increased expression of IL1B, IL6 and IL8, which 
further adds to inflammatory pressures fuelling the 
progression of colorectal neoplasia. Our work suggests 
that this phenomenon may proceed by an alternative 
pathway involving the recognition by the TLR2 receptor 
(Figure 5) to that pathway previously shown for the 
invasion of epithelial cells via FadA[48].

To date, several studies evaluated the abundance of 
F. nucleatum with miRNA expression in CRC[26-28]. In our 
study, we found a positive correlation between miR-22 
and the abundance of F. nucleatum in CRC. miR-22 
suppresses the expression of the p38 gene, which can 
impair the production of dendritic cells in tumours[53]. 
As dendritic cells are important in the TLR-mediated 
recognition of microorganisms[54], patients with 
upregulated miR-22 may have a compromised immune 
system due to fewer dendritic cells, favouring the 
proliferation of microorganisms such as F. nucleatum. 
Therefore, this positive correlation observed between 
miR-22 and F. nucleatum levels may be related to its 
role in the immune response and should be further 
investigated.

In addition, we also observed associations between 
both the KRAS mutation and MSI status and the 
expression of inflammatory genes or miRNAs in CRA 
and CRC tissues. Interestingly, we observed a greater 
expression of miR-21 associated with the KRAS 
mutation in the CRA tissues, but not in CRC tissues. In 
non-small cell lung cancer (NSCLC), the overexpression 
of wild type KRAS or mutated KRAS (G12D) was 

Table 3  Correlation analysis between the relative 
quantification of the inflammatory genes and microRNAs with 
the quantification of Fusobacterium nucleatum  in adenoma 
and colorectal cancer samples

Spearman correlation coefficient (r ) CRA CRC

TLR2 0.42 0.09
P value 0.1557 0.6335
TLR4 -0.62 -0.01
P value 0.0235a 0.9587
NFKB1 -0.40 -0.04
P value 0.1809 0.8045
IL1B 0.31 0.46
P value 0.3064 0.0066a

IL6 0.01 0.47
P value 0.9716 0.0059a

IL8 -0.07 0.54
P value 0.8166 0.0013a

TNF 0.30 0.23
P value 0.3156 0.2027
miR-21 -0.21 0.26
P value 0.4643 0.1467
miR-22 0.17 0.38
P value 0.5528 0.0331a

miR-28 0.04 0.01
P value 0.8872 0.9413
miR-34a 0.17 0.00
P value 0.5630 0.9905
miR-135b -0.05 0.22
P value 0.8637 0.2163

Spearman correlation test. aP value < 0.05 were considered statistically 
significant. CRA: Colorectal adenoma; CRC: Colorectal cancer; TNF: 
Tumour necrosis factor; IL: Interleukin; NFKB: Nuclear factor kappa B; 
TLR: Toll-like receptor.
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reported to modulate the expression of miRNAs, 
including miR-21 and miR-30c[55]. The authors showed 
that miR-30c and miR-21 were specifically activated 
by KRAS and played an important role in lung cancer 
development and chemoresistance by targeting crucial 
tumour suppressor genes. Moreover, we also observed 
a positive association between the expression of IL8 
mRNA and MSI-H colorectal carcinoma, independent of 
the presence and abundance of F. nucleatum. Recently, 
Hamada et al[20] reported an association of F. nucleatum 
levels with the immune response to colorectal carcinoma 
according to the tumour MSI status, suggesting an 
interplay between F. nucleatum, MSI status, and 
immune cells in the CRC tumour microenvironment. 
MSI-H colorectal carcinomas generate immunogenic 
peptides due to a mismatch repair deficiency, resulting 
in a strong anti-tumour immune response thought to 
underlie the reported favourable prognosis and better 
response to immunotherapies of this molecular subtype 
of CRC[20].

We also evaluated the correlation between the 
expression of miRNAs and inflammatory mediator 
genes, and we formulated a miRNA:mRNA interaction 
network based on predicted database targets[34]. The 
correlations were mainly positive, including miR-21, 

miR-34a and miR-135b with IL8 in CRA tissues and 
between miR-21, miR-22 and miR-28 with most of the 
inflammatory mediator genes studied in CRC tissues. 
However, a negative correlation was observed between 
miR-135b and TNF.

miR-135b has been previously associated with an 
increased expression in CRC and CRA tissues[56-58] and 
has been proposed to be an oncomiR targeting several 
tumour suppressor genes[56,58]. Studies have proposed 
that the detection of miR-135b in stool samples can 
be used as a non-invasive biomarker for CRC and 
CRA[59], and silencing miR-135b may be considered 
a possible therapy for CRC[56,58]. Data showing that 
miR-135b indirectly inhibits the production of LPS 
(lipopolysaccharide)-induced TNF by suppressing the 
production of ROS and the activation of NF-κB in human 
macrophages[60] support the negative correlation found 
between miR-135b and TNF in this study. Although this 
proposed miRNA-mRNA relationship is not yet predicted 
by the major miRNA public databases[34], TNF may have 
an indirect immune regulation by miR-135b.

Regarding the role of miR-34a in CRC, studies 
demonstrated that it acts as both an oncomiR that 
is upregulated[61,62] and as a tumour suppressor that 
displays reduced expression[63-66]. According to our 

Table 4  Correlation analysis between the relative quantification of microRNAs with the inflammatory genes in adenoma and 
colorectal cancer samples

Spearman correlation coefficient (r ) miR-21 miR-22 miR-28 miR-34a miR-135b

CRA
TLR2 0.09 0.29 0.31 0.23 0.09
P value 0.6608 0.1655 0.1266 0.2606 0.6714
TLR4 0.18 0.06 0.18 0.41 0.38
P value 0.3892 0.7926 0.3955 0.0431 0.0598
NFKB1 -0.01 -0.17 -0.21 -0.19 -0.20
P value 0.9796 0.4252 0.3191 0.3650 0.3454
IL1B 0.29 0.15 0.09 0.45 0.38
P value 0.1667 0.4834 0.6555 0.0232 0.0610
IL6 0.30 0.08 0.05 0.26 0.24
P value 0.1430 0.7148 0.8237 0.2136 0.2417
IL8 0.40 0.18 0.17 0.44 0.46
P value 0.0466a 0.4017 0.4273 0.0296a 0.0200a

TNF -0.21 -0.04 -0.03 -0.05 -0.11
P value 0.3083 0.8638 0.9012 0.8152 0.6084
CRC
TLR2 0.29 0.53 0.18 0.19 -0.14
P value 0.0777 0.0005a 0.2790 0.2408 0.3923
TLR4 0.07 0.34 0.33 0.26 0.05
P value 0.668 0.0377a 0.0401a 0.1216 0.7586
NFKB1 0.18 0.31 0.02 -0.10 -0.30
P value 0.2779 0.0499a 0.8958 0.5462 0.0574
IL1B 0.53 0.43 0.13 0.22 -0.10
P value 0.0004a 0.0055a 0.4139 0.1668 0.5248
IL6 0.54 0.57 0.18 0.21 0.05
P value 0.0004a 0.0002a 0.2813 0.2095 0.7680
IL8 0.53 0.37 0.09 0.23 0.13
P value 0.0005a 0.0180a 0.5734 0.1506 0.4314
TNF 0.26 0.42 0.03 0.08 -0.32
P value 0.1094 0.0071a 0.8406 0.6264 0.0411a

Spearman correlation test. aP value < 0.05 were considered statistically significant. CRA: Colorectal adenoma; CRC: Colorectal cancer; TNF: Tumour 
necrosis factor; IL: Interleukin; NFKB: Nuclear factor kappa B; TLR: Toll-like receptor.
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miRNA:mRNA interaction network analysis, miR-34a 
can target TLR4 (Figure 4). This may explain the low 
expression of TLR4 in CRC samples and overexpression 
in CRA samples, in which miR-34a had basal expression. 
Our data, together with that of previous studies, showed 
an increased expression of TLR2 in CRC samples. 
Therefore, in CRC, a significant mechanism for the 
recognition of F. nucleatum may operate via TLR2, with 
consequent activation of ILs IL1B, IL6 and IL8 via NF-κB. 

Moreover, TLR2 is a predicted target of miR-22, which 
was downregulated in the CRC samples evaluated in our 
study (Figure 5).

Evidence suggests that miR-22 and miR-28 
function as tumour suppressors. miR-22 can target 
key oncogenes for tumour invasion, metastasis and 
angiogenesis in CRC[67,68]. A recent study showed 
reduced expression of miR-28 in the tissues of CRC liver 
metastases[69]. However, the activity of this miRNA differs 

Table 5  KRAS mutation and microsatellite instability status in adenoma and colorectal cancer groups

KRAS status/mutation type CRA, n  = 27 (%) CRC, n  = 43 (%) P  value

WT 19 (70.4) 32 (74.5) 0.7854
Mutation 8 11
p.Gly12Ala (G12A) 1 (3.7) 0
p.Gly12Ser (G12S) 1 (3.7) 1 (2.3)
p.Gly12Val (G12V) 1 (3.7) 2 (4.6)
p.Gly12Asp (G12D) 3 (11.1) 4 (9.3)
p.Gly13Asp (G13D) 2 (7.4) 4 (9.3)
MSI status
MSS + MSI-L 25 + 2 (100) 34 + 2 (83.7) 0.0382a

MSI-H 0 7 (16.3)

Fisher's exact test. aP value < 0.05 were considered statistically significant. WT: Wild; MSI: Microsatellite instability; MSS: Microsatellite stable; MSI-L: 
Microsatellite instability low; MSI-H: Microsatellite instability high; CRA: Colorectal adenoma; CRC: Colorectal cancer.
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by 3p or 5p strand translation. miR-28-3p has been 
implicated in increased tumour migration and invasion, 
while miR-28-5p, analysed in our study, was reported 
to play a role in reducing tumour proliferation, migration 
and invasion in CRC[70].

Our results showed a greater level of F. nucleatum 
in CRA and CRC tissues, which was more striking 
for CRC samples, suggesting an expansion of F. 
nucleatum colonization during the progression from 
adenoma to adenocarcinoma. Our gene expression data 
suggested that this phenomenon may lead to increased 
inflammatory pressures during CRC development based 
on the high expression of pro-inflammatory ILs IL1B, 
IL6 and IL8 and the correlation with F. nucleatum levels. 
Immune recognition of F. nucleatum may be mainly 
mediated by TLR2 and/or TLR4 and dependent on 
interactions with differently regulated miRNAs. Together, 
these findings provide further potential mechanistic 
rationale for the immune-comprised pro-inflammatory 
role of F. nucleatum in colorectal carcinogenesis. Efforts 
to develop early detection strategies for CRC could 

include these biological interactors as potential functional 
biomarkers of F. nucleatum-mediated disease in addition 
to overall measures of F. nucleatum levels.

ARTICLE HIGHLIGHTS
Research background
Recently, Fusobacterium nucleatum (F. nucleatum), an anaerobic bacterial 
component of the oral and gut commensal flora, has emerged as a risk factor 
for colorectal cancer (CRC) development. Several studies have observed an 
association between overabundance of F. nucleatum in colonic tumor tissue 
compared to the normal matched mucosa. However, despite progress in this 
field the molecular mechanisms of how the bacterium etiologically contributes 
to carcinogenesis are still unclear.

Research motivation
We previously observed an association of the TLR2-196 to -174del genetic 
variant with increased CRC risk, together with an increased expression of 
TLR2 mRNA and protein in tumor tissues[31]. The major postulated mechanism 
of F. nucleatum-mediated colorectal tumorigenesis involves immune related 
inflammatory responses. Therefore, we decided to extend our previous work 
by measuring the transcript levels of important mediators in the pathogen-
activated immune and inflammatory response, including TLR2 / TLR4 receptor 
and cytokine genes, and then evaluating the association of their expression 
with F. nucleatum levels in colorectal tumors. As microRNAs have been shown 
to be epigenetic regulators of inflammatory responses, we further examined the 
involvement of miRNAs in modulating the bacterial - cytokine interaction.

Research objectives
The main objective of this study was to investigate the association between 
inflammatory genes and F. nucleatum in colorectal carcinogenesis, by 
examining tissues from the major colorectal neoplasms of adenoma and 
adenocarcinomas. A secondary objective was to examine the interaction of 
the bacterial mediated immune response with microRNA (miRNA) regulation. 
The elucidation of likely mechanisms whereby F. nucleatum may contribute to 
inflammatory mediated colorectal carcinogenesis will help to better understand 
the molecular pathways activated by this bacterium and where prevention and 
treatment strategies can be best targeted.

Research methods
Robust techniques were used for DNA quantification of F. nucleatum and RNA 
transcript measures of the inflammatory genes and miRNAs in normal and 
tumor tissues. For this purpose, we used TaqMan gene expression assays 
(Applied Biosystems, Foster City, CA, United States) with specific probes for 
each gene and miRNA for relative quantification. The reactions were analyzed 
using the StepOnePlus real-time PCR System (Applied Biosystems, Foster 
City, CA, United States). Mutation testing of the KRAS gene was performed by 
direct sequencing and microsatellite instability (MSI) evaluation was performed 
using a multiplex PCR. In addition, we also used a bioinformatic tool ‘miRNA 
Data Integration Portal’ (http://ophid.utoronto.ca/mirDIP/)[34] to build an miRNA:
mRNA interaction network by using Cytoscape software (version 3.1.1)[36]. 

Research results
Ours results confirm the overabundance of F. nucleatum in adenoma and 
tumor neoplasms compared to their respective matched normal tissues, as 
previously found in several populations. We further suggest that this bacterial 
load increases the expression of TLR2 and TLR4 receptors and consequently 
of pro-inflammatory interleukins IL1B, IL6 and IL8. This immune-modulation 
of the inflammatory response to F. nucleatum colonic invasion also affects the 
expression of miRNA regulators of the inflammatory response. In particular, 
these miRNA:mRNA interactions network indicate a mechanism of colorectal 
carcinogenesis where altered expression of miR-34a, miR-135b, and miR-22, 
previously associated with CRC, occurs via a TLR2/TLR4 dependent response 
to F. nucleatum. In analyses stratified by tumor molecular characteristics, 
we observed that KRAS was more frequently mutated in tumors with F. 
nucleatum, and that an increased IL-8 expression was associated with MSI-
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Figure 4  Protein interaction network showing microRNAs and their 
predicted gene targets. The protein interaction network (grey lines) shows 
the interaction between proteins encoded by target genes that are predicted 
to be regulated by microRNAs (miRNAs). Predicted interactions between 
miRNAs and target genes are shown by black lines. The dashed black line 
represents the possible interaction suggested in this study for miR-135b-5p and 
TNF. Ellipses represent target genes and/or proteins; red triangles represent 
upregulated miRNAs; green triangles represent downregulated miRNAs. TNF: 
Tumour necrosis factor; IL: Interleukin; NFKB: Nuclear factor kappa B; TLR: 
Toll-like receptor.
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high status. Therefore, more studies of gene function and regulation within the 
inflammatory pathways impacted by F. nucleatum invasion are needed, along 
with consideration of tumor molecular subtypes.

Research conclusions
Our findings reinforce the increasing invasion of F. nucleatum during the 
colorectal adenoma to cancer development. This appears to increase 
expression of pro-inflammatory mediators and dysregulation of miRNA 
expression, leading to a more carcinogenic microenvironment alongside genetic 
alterations such as KRAS mutation and MSI-high. Therefore, together with other 
studies, our results suggest that F. nucleatum is involved in CRC development 
through immune responses to inflammatory stresses. Further work is needed 
to functionally demonstrate these postulated tumorigenic mechanisms, and 
also for early CRC detection and diagnosis strategies using biomarkers of F. 
nucleatum presence or the consequent immune response.

Research perspectives
The intestinal microbiota is very diverse and important for the maintenance 
of epitelial homeostasis. Disturbances of this microbiome balance appears 
to be a major factor in CRC etiology. F. nucleatum has been implicated in 
recent years, by in vitro and in mouse models, as a carcinogenic bacterium 
through generation of a microenvironment conducive to cancer development. 
Considering that F. nucleatum has been found to be highly abundant in both 
adenoma and CRC neoplasms, it may have uses as a tissue or non-invasive 

biomarker in faeces (or possibly mouth-rinse samples) for CRC and the 
early detection of adenomas (which may help define a higher risk group for 
CRC development due to the presences of the bacterium). However, further 
investigations are needed to understand the molecular mechanisms in the 
immuno-inflammatory response to the increased invasion of this bacterium 
into developing neoplasms, and if this can promote genetic and epigenetic 
alterations that may culminate in CRC development.
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sensitive haemagglutinin and adhesion protein binding to Gal-GalNAc, contributes to the invasive ability of F. nucleatum. The TLR2/TLR4/MYD88 pathway is activated 
in response to F. nucleatum, leading to the activation of NF-κB, a transcription factor that is involved in regulating the expression of many genes, leading to elevated 
expression levels of oncogenes and pro-inflammatory cytokines, mainly interleukin (IL)1B, IL6, IL8 and tumour necrosis factor, inducing the production of reactive 
oxygen species, which subsequently lead to inflammation and DNA damage that promotes tumour growth and progression. Furthermore, these pathways may be 
under the regulation of differentially expressed microRNAs. ROS: Reactive oxygen species; TNF: Tumour necrosis factor; IL: Interleukin; NF-κB: Nuclear factor kappa 
B; TLR: Toll-like receptor; miRNA: MicroRNA.
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