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OPTIMIZATION OF SINGLE SCREW EXTRUSION 
 

Abstract: Multi-objective evolutionary optimization algorithms (MOEA) are used 
for the optimization of plasticating single screw extrusion. For this purpose, a 
specific MOEA is linked to available process modelling routines. The methodology 
is used to set the operating conditions and identify the screw geometry for a 
specific case study, thus demonstrating the practical utility of this approach. 
Keywords: extrusion process, optimization, Pareto chart 

 
1. Introduction 

The optimization of single screw extrusion is a difficult task as it involves 
taking into attention several conflicting objectives [1-3]. Two major practical 
challenges are the definition of the optimal operating conditions and/or the 
identification of the geometrical parameters yielding the best process 
performance. Traditionally, a trial-and-error approach combined with empirical 
knowledge has been used for this purpose. Also, some attempts based on 
mathematical models coupled to statistical analysis have been applied [4-6].  
Nevertheless, a more efficient approach is to handle single screw extrusion as an 
optimization problem where different conflicting objectives are to be considered 
simultaneously [1, 3, 7]. In such a case, Multi-objective Evolutionary algorithms 
(MOEA), such as the Reduced Pareto Set Genetic Algorithm (RPSGA) [1, 2], 
can be used. Generally, the outcome of these methodologies is a group of 
solutions approaching the set of Pareto optimal solutions, which represents 
different trade-offs between the objectives. Decision making strategies can be 
implemented to assist the decision maker to select, from the Pareto optimal set, 
the more suitable solutions for the single screw extrusion process.  

This chapter discusses the application of a multi-objective optimization 
methodology based on evolutionary algorithms for the definition of the operating 
conditions and/or the geometry of a single screw extruder for a representative 
case study. 

 
2. Optimization problem formulation 

The optimization of the single screw extrusion requires coupling different 
tools that will create a comprehensive system being able to consider the response 
of the extruder to the appropriate set of input parameters. Thus, the MOEA is  
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coupled to a modelling routine of plasticating extrusion, which must be able to 
compute the values of the relevant objectives for a given set of equipment 
geometry and dimensions, operating conditions and polymer properties. The 
modelling routine is presented in more detail in chapter 1 and in references [1, 2]. 
It describes mathematically the plasticating sequence by a set of balance 
equations that are coupled to a rheological constitutive law and a set of boundary 
conditions [2].  

The most relevant objectives (extruder performance) are generally considered 
to be the mass output (Q), the length of screw required for melting the polymer 
(Zt), the melt temperature at the die exit (Texit), the mechanical power consumption 
(Power) and the degree of mixing. The latter may be quantified by the weighted-
average total strain (WATS), a measure of distributive mixing. Usually, the aim is 
to maximize Q and WATS and minimize Zt, Texit and Power. The values attained 
by these objectives depend on the values of the decision variables. There are two 
groups of variables (Figure 1). One corresponds to the operating conditions of the 
extruder, specifically the screw speed ( ), and the temperature profile of the 
heater bands in the barrel (Tb1, Tb2, Tb3). The range of variation of the former 
depends on the mechanical power system (motor and reduction gear) of the 
extruder. The lower and upper bounds for the range of temperatures of the heater 
bands are the polymer melting temperature and the onset of degradation, 
respectively. The other group of variables comprises the geometrical parameters,  

 

 
Fig. 1. Operational and geometrical variables to be optimized 

 
which encompass the internal screw diameter of the feed (D1) and metering zones 
(D3), the axial lengths of the feed (L1), compression (L2), and metering zones (L3), 
the flight thickness (e) and the screw pitch (p). The ranges of variation of the 
geometrical parameters are usually defined based on empirical knowledge. For 
example, if the compression zone is too short, the rate of decreasing channel depth 
downstream could become higher than the melting rate, resulting in material 
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clogging. Conversely, since the shallower the screw channel the higher the 
melting rate, a very long compression zone will result in an unnecessarily long 
melting stage.  It should be noted that all these decision variables are continuous. 

As noted above, the aim is to optimize several conflicting criteria 
simultaneously. This implies, for example, increasing the screw speed which will 
bring out higher outputs, but also lower quality of mixing and greater energy 
consumption. Therefore, there is no single solution that optimizes all criteria, but 
instead a set of solutions that represents different trade-offs between them. This 
type of problems can be formulated as a multi-objective optimization problem 
(MOP). A general mathematical formulation of a MOP can be written as follows: 

 

(1) 

 
where,  are the  objective functions,  are the constraint 
functions and  and  are two finite sets of indices. For ,  are the inequality 
constraints and for ,  are the equality constraints.  and  are the vectors 
of the lower and upper bounds on the decision variables, respectively. 

A point that satisfies the constraints is called a feasible point. The set of 
feasible points is defined by:  

. 
Thus, the multi-objective optimization problem (1) can be rewritten more 

compactly as: 
             (2) 

 
In multi-objective optimization, the solutions are compared in terms of 

dominance. The following definitions are used [8]. 
 
Definition 1 (Pareto dominance): Given , the point  is said to dominate 
point , denoted by  , if and only if 

, for all  and  for at least one 
. 

 
Definition 2 (Pareto optimality): Let  be a feasible point; is Pareto 
optimal if there is no vector the point  that 

, for all  and  for at least one  
. 
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The set of the images of the Pareto optimal set is called the Pareto optimal 
front. Mathematically, any maximization objective can be converted as a 
minimization one since  is equivalent to . Hence, in this 
chapter any maximization objective will be reformulated as a minimization one.  

 
In the context of the optimization of a specific single screw extrusion process, 

the objective functions , for  can be normalized taking into 
consideration reference values for them in the search space of the real problem. 
Thus, the objective functions can be re-scaled to the same order of magnitude in 
the interval [0,1], the normalized objectives being computed  
by: 

 

 
where  and  is called the objective ideal 

vector, and each component   of the vector  is an 
estimation of the nadir objective vector obtained from a payoff table [10]. For 
normalized objectives, a maximization objective can also be reformulated as a 
minimization objective as follows: 
 

                (4) 

 
This reformulation is adopted in this work. The single screw optimization 

problem is a bound constrained multi-objective optimization problem. To 
simplify the formulation, the decision variables are denoted by 

. For the extruder size range and layout  
illustrated in Figure 1 and assuming the processing of a typical thermoplastic 
polyolefin (High Density Polyethylene (HDPE), the lower and upper bounds 
vectors are  and 

, respectively. The minimum 
and maximum values of the objective functions are defined based on the practical 
experience with this equipment and material. Table 1 presents normalized 
objective functions, for generic values of  and .  
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Table 1. Objective functions to be optimized 

Description Aim   Normalization 

Mass output - Q (kg/hr) maximize 1.0 20.0 
 

Length  Zt (m) minimize 0.2 0.9  

Melt temperature - Tmelt 
 

minimize 150.0 210.0  

Power consumption - 
Power (W) 

minimize 0.0 9200  

Mixing degree - WATS maximize 0.0 1300 
 

 
Thus, the mathematical formulation of the single screw multi-objective 
optimization problem is given by 
 

 

where the , for  are given in Table 1. 
 
3. Multi-objective Optimization Methods 

Different approaches for solving multi-objective optimization problems are 
reported in the literature [8, 10]. One approach includes the use of scalarization 
methods. In these methods, the multi-objective optimization problems are 
reformulated as single objective optimization using a scalarized function that 
depends on the set of parameters, such as weights or reference points. Different 
sets of parameters must be used to obtain different approximations to the Pareto 
optimal solutions. Thus, in this type of approach several single optimization 
problems must be solved.  

For example, in the weighted sum scalarization method, the MOP in equation 
(3) is reformulated using an aggregated function, as follows: 

  (6) 

where  are the weights, and . One advantage of these methods is 
the possibility of being solved using the simpler single objective optimization 
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algorithms available in the literature. Nevertheless, these methods have some 
drawbacks. They require the definition of appropriate sets of values for the 
parameters that depend on the problem. Additionally, to approximate the Pareto 
optimal front of the multi-objective problem, solving several single objective 
optimization problems can be computationally expensive. 

Alternatively, Evolutionary Algorithms (EAs) can be used instead [9, 10]. 
EAs are particularly suited to deal with the multi-objective nature of real 
problems since they work with a population of candidate solutions (or vectors), 
rather than with a single solution point. Moreover, EAs have the ability to seek 
the global optimum, avoiding being trapped in local optima. In Multi-objective 
Evolutionary algorithms (MOEAs), some mechanisms are used to promote the 
convergence towards the Pareto front. It is also possible to implement diversity 
preserving techniques during the search, to obtain a representative and diverse set 
of compromise solutions. Thus, MOEAs can provide, in a single run, 
approximations to several Pareto optimal solutions, representing different trade-
offs between the objectives.  

The Reduced Pareto Set Genetic Algorithm (RPSGA) is a MOEA that has 
been used successfully to optimize single screw extrusion [1-3, 7, 11]. RPSGA 
uses a clustering technique to reduce the number of solutions and to guarantee 
their good distribution along the Pareto front during the search procedure. 
Initially, a population of points is generated randomly. At each generation, 
several operations are performed. First, the solutions of the population are 
evaluated (i.e., the values of the objectives are computed). Next, a clustering 
technique is applied to reduce the number of non-dominated solutions (i.e., 
approximations to the Pareto front) based on ranks. Then, a linear ranking 
function is used to compute the fitness value of the solutions. This value depends 
on the rank of each solution in the population, which is related to its performance, 
location and non-domination condition. The best individuals are selected for 
reproduction using a roulette wheel selection. For the reproduction, a SBX 
recombination operator and polynomial mutation are used [11]. The iterative 
process stops when a pre-defined maximum number of generations is reached. 
Details about RPSGA can be found in [11]. 

MOEAs are easy to implement, explore the entire search space and, 
consequently, are able to escape from local optimal solutions and can be easily 
adapted to work in the optimization in different conditions. 
 
4. Numerical Results 

In this section, the RPSGA is used to optimize the single screw extrusion 
problem defined in Figure 1 and Table 1. Seven different scenarios, identified in 
Table 2, are considered to optimize the operating conditions and the screw 
geometry. In scenarios 1 to 4, the operating conditions of the extruder are 
optimized using only two objectives. These correspond to bi-objective 
optimization problems, that are relevant to check if the solutions produced by the 
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RPSGA are suitable for the extrusion process. Moreover, the results obtained are 
simpler to analyze, enable an easier visualization of the trade-offs between the 
solutions, as well as easier selection of the best solution to use from the set of the 
dominated solutions obtained. In the case of the scenarios 5 to 7, all five 
objectives were considered. Concerning the decision variables, in scenarios 1 to 
5 only the operating conditions are considered, in scenario 6 only the geometrical 
parameters are optimized, whilst scenario 7 includes both types of decision 
variables are used. 

 
Table 2. Scenarios for single screw extrusion optimization 

Scenarios Objectives Decision variables 
1 (Q, Zt)  

2 (Q, Tmelt)  

3 (Q, Power)  

4 (Q, WATS)  

5 (Q, Zt, Tmelt, Power, 
WATS) 

 

6 (Q, Zt, Tmelt, Power, 
WATS) 

 

7 (Q, Zt, Tmelt, Power, 
WATS) 

 

 
The thermal, physical and rheological characteristics (the shear rate and 

temperature dependence of the viscosity are modelled by the Carreau-Yasuda 
equation) for a High Density Polyethylene, HDPE (grade ALCUDIA TR-135, 
manufactured by Repsol) are presented in Table 3: 

  

 
 

The values chosen for the parameters of the RPSGA used resulted from 
previous empirical studies [1, 3, 11]: 50 generations; crossover probability of 0.8; 
mutation probability of 0.05; internal and external populations with 100 
individuals; limits of the clustering algorithm set at 0.2; and number of ranks set 
at 30. 
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Table 3. Properties of the HDPE ALCUDIA TR-135, manufactured by Repsol 

Density 
Solids  495.0 

 
Melt  854.4 

Thermal 
Conductivity 

Solids  0.186 
 

Melt  0.097 

Specific Heat 
Solids  2350 

 
Melt  2535 

Melting 
Heat  167x103  

Temperature  119.9  

Carreau-Yasuda 
equation 

Viscosity 

 18000  
 10000  

 0.70  
 1.70  
 0.30  
 463.15  

 
Figure 2 shows the Pareto fronts obtained for scenarios 1 to 4 (left column in 

Figure 2) and the two-dimensional projections of the Pareto front for scenario 5 
(right column in Figure 2). In the first case, since only two objectives are 
optimized simultaneously, the algorithm converges to a curve, the Pareto front, 
that defines the trade-offs between the objectives in a two-dimensional space. For 
example, in scenario 2 the higher the output the higher is the melt temperature, 
as the viscous dissipation becomes more important. In scenario 5, the algorithm 
works in a 5-dimensional objective space. To visualize the trade-offs among the 
objectives, four two-dimensional projections of the Pareto front are drawn (right 
column in Figure 2). In such a case, it is important to note that some points that 
seem to be dominated in a given two-dimensional representation are non-
dominated in another two-dimensional projection. In Figure 2, points P1 to P5 
identify the best values for each objective, respectively. For example, point P1 
identifies the maximum value of the output, while point P2 is the minimum value 
of the length of the screw required for melting. 

Tables 4 and 5 show the decision variables and the corresponding objective 
functions values for these solutions. For instance, the maximum output for 
scenarios 1 to 4 is 8.57 kg/h, whilst for scenario 5 it attains just 7.69 kg/h, a 
reduction of 10.2%. This shows that the existence of several objectives (in 
scenario 5) may hinder attaining better/higher values of the individual objectives. 
Table 6 presents the relative difference between the values of the objectives for 
scenario 5 and scenarios 1 to 4 (in percentage). As it can be seen, for some 
objectives, in scenario 5 it was actually possible to improve some values (melt 
temperature and mechanical power consumption objectives). 
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Fig. 2. Comparison between the Pareto fronts for scenarios 1 to 4 (left column) and the 

two-dimensional projections of the Pareto front for scenario 5 (right column) 
 

Table 4. Solutions with the best values for each objective function for scenarios 1 to 4 

 Operating conditions Objectives 

  
(rpm) 

 
( C) 

 
( C) 

 
( C) 

Q 
(kg/h) 

Zt 

(m) 
Tmelt 

( C) 
Power 
(W) 

WATS 
 

P1 59.4 210 196 199 8.57 0.544 206 1694 256 

P2 28.8 203 200 197 4.37 0.200 202 1051 406 
P3 10.7 150 202 150 1.64 0.323 152 296 297 
P4 11.6 204 201 207 1.91 0.198 205 276 398 
P5 12.3 209 154 150 1.77 0.145 157 524 454 
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Table 5. Solutions with the best values for each objective function for scenario 5 

 Operating conditions Objectives 

  
(rpm) 

 
( C) 

 
( C) 

 
( C) 

Q 
(kg/h) 

Zt 

(m) 
Tmelt 

( C) 
Power 
(W) 

WATS 
 

P1 54.2 188 170 177 7.69 0.562 191 1654 254 

P2 29.5 185 184 162 4.22 0.201 177 1292 392 

P3 25.4 151 188 157 3.66 0.215 160 1598 369 

P4 14.7 170 178 189 2.26 0.246 183 586 342 

P5 29.5 185 184 162 4.22 0.200 177 1292 392 

 
 

Table 6. Relative differences between the values of the objectives of scenario 5 and 
those of scenarios 1 to 4 (in %) 

 
Objectives 

Q 
(kg/h) 

Zt 

(m) 
Tmelt 

( C) 
Power 

(W) 
WATS 

 

P1 -10.2 -3.2 7.2 2.3 -1.1 

P2 -3.5 -0.5 12.5 -22.9 -3.5 

P3 123.0 33.4 -4.8 -439.5 24.4 

P4 18.5 -24.7 11.1 -112.3 -14.2 

P5 138.5 -38.7 -12.7 -146.7 -13.7 

 
A similar analysis of the results can be done for scenarios 6 and 7. Figure 3 

shows the two-dimensional projections of the Pareto front for scenario 6. The 
clouds of non-dominated solutions indicate the existence of a compromise 
between all the objectives. Table 7 presents the geometrical parameters 
corresponding to the best values for each objective function. Table 8 identifies 
the operating conditions and geometrical parameters corresponding to the best 
values for each objective function for scenario 7. Finally, Table 9 shows the 
relative difference between the values of the objectives for scenario 7 and 
scenarios 1 to 4 (in percentage). In scenario 7, all the objectives were improved, 
except the length of screw required for melting.  
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Table 7. Optimal point corresponding to the best values for each objective           
function for scenario 6 

 
Geometrical parameters 

 (mm)  (mm)  (mm)  (mm)  (mm)  (mm) 

P1 131 259 22.1 27.9 38.7 3.1 

P2 101 183 22.0 31.7 32.2 3.3 
P3 168 301 21.8 32.0 37.0 3.5 
P4 390 365 21.7 30.9 40.7 3.1 
P5 101 181 21.9 31.9 31.1 3.4 

 
Table 8. Optimal point corresponding to the best values for each objective function for 

scenario 7 

 
Operating conditions Geometrical parameters 

 
(rpm) 

 
 

 
 

 
 

 
(mm) 

 
(mm) 

 
(mm) 

 
(mm) 

 
(mm) 

 
(mm) 

P1 58.1 189 198 172 174 266 23.3 27.3 38.1 3.5 

P2 24.1 207 195 177 143 305 24.2 26.8 37.6 3.3 

P3 19.7 152 180 156 204 248 25.0 31.1 36.2 3.1 

P4 10.9 161 196 152 270 290 25.1 29.4 37.9 3.3 

P5 46.8 183 179 173 138 220 25.0 31.2 41.4 3.5 

 
Table 9. Relative differences between the values of the objectives of scenario 7 and 

those of scenarios 1 to 4 (in %) 

 
Objectives 

Q 
(kg/h) 

Zt 

(m) 
Tmelt 

( C) 
Power 

(W) 
WATS 

 

P1 61.9 -9.2 -0.9 -18.0 -39.8 

P2 32.2 -27.9 -12.7 46.8 -23.1 

P3 -5.3 -77.4 1.0 49.6 0.6 

P4 8.5 -54.6 12.6 36.1 -22.2 

P5 63.6 -66.0 -5.8 -35.8 20.5 
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Fig. 3. Two-dimensional projections of the Pareto front for scenario 6 

 
5. Decision Making  

The decision maker (DM) must select the most suitable solution for the single 
screw extrusion problem from the Pareto optimal set. In this context, decision 
making strategies can be used to assist the DM [11]. In this work, the weighted 
sum method is used with different sets of weights to identify solutions according 
to the DM preferences. In practice, it is possible to define a tolerance ( ) that 
allows to reduce the region of the solutions. 
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For each scenario studied in the previous section, different sets of weights 
were used and an  = 0.1. For instance, Figure 4 top shows the original Pareto 
front for scenario 1 (upper left side in Figure 2) and Figure 4 bottom presents the 
solutions obtained for three sets of weights, considering the DM preferences. The 
set of weights are , , and , the 
corresponding solutions being denoted in the graph as a), b) and c), respectively. 
As it can be seen, the method is sensitive to the preferences of the DM. For 
example, as the output weight is decreased, the lower is the output of the 
solutions. 

   

 
Fig. 4. Pareto front for scenario 1 (top) and the solutions obtained for three sets of 

weights (bottom) 
 

Figure 5 presents the two-dimensional projections of the solutions obtained 
using the weighted sum method for scenario 5, considering two sets of weights: 

 and . Again, when 
the output weight decreases, the lower is the output of the solutions. Furthermore, 
the Pareto solutions are concentrated in smaller regions when compared with 
those obtained initially for scenario 5 (see Figure 2).  
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Fig. 5. Two-dimensional projections of the solutions obtained for two sets of weights for 

scenario 5 
 
6. Conclusions 

Traditionally, the optimization of single screw extrusion is performed based 
on empirical knowledge, often combined with trial-and-error procedures. 
Tentative extrusion experiments, or machining of screws, are performed until a 
desirable performance is obtained. This is costly and inefficient. Instead, setting 
the adequate operating conditions, or defining the screw geometry, can be 
assumed as an optimization problem. This chapter introduced a scientific 
approach to solve correctly and efficiently an important class of practical 
technological problems, including single screw extrusion.  

Single screw extrusion was modelled as a multi-objective optimization 
problem, where the aim is to optimize its performance, as measured by several 
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relevant objectives. This problem involves different conflicting objectives, that 
depend on the operating conditions, or geometrical parameters, or both. The 
optimization method proposed was able to solve satisfactorily the problem and 
the solutions are viable and in agreement with current process knowledge 
(experimental validation is difficult and costly for obvious reasons). Finally, a 
decision making strategy incorporating the DM preferences was applied to assist 
the selection of solutions in the Pareto front.  
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