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Abstract  

This paper overviews a Domain-Specific Language (DSL) for 
parallel and grid computing, layered on top of AspectJ. This DSL 
aims to bridge the gap between sequential code and parallel/grid 
applications, by avoiding invasive source code changes in scien-
tific applications. Moreover, it aims to promote the localization of 
parallelization and gridification issues into well defined modules 
that can be (un)plugged (from)to existing scientific applications. 
This paper builds on previous work based on AspectJ and pre-
sents the main motivations for implementing a DSL in preference 
to a pure-AspectJ solution. The paper presents the DSL’s design 
rationale, overviews current implementation and open research 
issues. 

1. Introduction 

The landscape of parallel computing has drastically changed in 
the last years due to wide availability of parallel processing capa-
bilities in every desktop machine. Moreover, grid systems connect 
worldwide computer resources that offer an almost unlimited 
computing power. This demands an important shift in the way that 
software is designed and developed. To take advantage of recent 
and future hardware, applications must be re-designed to be struc-
tured along parallel activities that can leverage these intrinsically 
parallel platforms. In addition, many decades of research on paral-
lelizing compilers did not produce an approach competitive to 
hand-coded parallelization. 

Traditional programming environments for parallel and dis-
tributed systems (e.g., OpenMP [3] and MPI [2], which are cur-
rently supported by most compilers/systems vendors) do not 
promote a proper separation of core and parallelization concerns. 
For instance, is has been argued that sending and receiving mes-
sages among processes is the goto of parallel programming [10]. 
Parallelization concerns usually become tangled with domain-
specific code, which makes it hard to develop and maintain appli-
cations tailored for parallel and distributed systems [11]. This 
complicates the transition from sequential to parallel applications, 
as it requires invasive and non-reversible changes. Applications 

become dependent of a particular parallelization strategy, becom-
ing hard to change parallelization issues without impact on the 
overall program structure. As a consequence, when scientists 
adapt sequential applications for parallel execution, they usually 
lose control of the program structure. Since their code becomes 
polluted with parallelization issues, they tend to loose the focus 
on their core activity, which is to develop applications for their 
research. 

In earlier work, we addressed the separation of concerns in 
parallel computing by relying on AspectJ. We proposed the sepa-
ration of parallelization concerns into partition, concurrency and 
distribution [19][16]. We developed reusable aspect libraries for 
concurrency [6] and partitioning [18]. Within this path, we also 
identified some kinds of functionality that cannot be implemented 
by an AspectJ library, so we resorted to the generation of code for 
that kind of functionality [20]. 

Our initial approach was to develop an aspect oriented frame-
work that would provide an explicit separation between domain-
specific and parallelization issues. Parallelization and gridification 
[13] issues should be (un)pluggable: enabling scientific code to 
run on parallel/grid systems should not require invasive changes 
on source code and these applications should be able to run when 
these concerns are not included into the build. 

Unfortunately, the results derived were unsatisfactory, for two 
reasons. First, developing the framework proved to be harder than 
expected, since AspectJ does not provide a suitable model for 
composing the various concerns involved. The asymmetric model 
of AspectJ does not properly address the composition of multiple 
reusable aspects when these aspects act on a shared set of join-
points. In addition, the mechanisms provided by AspectJ to man-
age and configure the composition of aspects are inflexible. 
Second, we wanted the ensuing system to be used by people with-
out a background in either aspect-oriented programming or paral-
lel computing. Using a general-purpose aspect language is not a 
suitable approach to meet this requirement. To address the afore-
mentioned issues, we resorted to a DSL that could integrate all 
features into a unified set of programming abstractions. 

The rest of this paper is structured as follows. The next section 
discusses in more detail the motivations to develop a DSL for 
parallel and grid computing. Section 3 presents the design ration-
ale under the developed DSL, the main abstractions supported and 
how they are composed to develop complex parallelization strate-
gies. Section 4 outlines the current DSL implementation and Sec-
tion 5 concludes the paper. 



2. Motivation for a DSL for Parallel and Grid 

Computing 

One of our main motivations to build a DSL was to “hide” details 
specific to AOP from the user of the framework. For instance, in 
[6] we introduced a reusable aspect intended to replace the intru-
sive synchronized Java keyword. To apply this abstraction to a 
concrete method, the programmer has to write something like the 
following code: 
 
aspect aspect_name extends SynchroniseProtocol { 
 pointcut synchronisedUsingCapturedLock(): 
  <pointcut definition>; 
} 
 
The programmer has to write an aspect that extends the Syn-

chroniseProtocol and to implement the pointcut named synchro-
nisedUsingCapturedLock providing the poincut definition. 

Some mechanisms could be implemented by annotations (e.g., 
@Synchronized). However, this leads to the non-localization of 
parallelization issues. In addition, not all mechanisms can be im-
plemented through annotations (e.g. see the Waiting guards in 
[6]). To compound the problem, not all mechanisms can be im-
plemented by a reusable aspect in AspectJ. One such mechanism 
is the injection of distribution code (e.g., to make a class RMI 
enabled, allowing it to be remotely accessible). Although in this 
particular case we can modularize distribution code into a single 
aspect [15] or to automate the generation of code [5][21], it is not 
possible to build a reusable aspect in AspectJ for that purpose. On 
the other hand, it is it relatively easy to use a code template that 
can be applied to each specific case through simple text pattern 
replacement. 

We also aim for an easier and more explicit aspect instantia-
tion, including the ability to apply the same abstraction more than 
once to a given system, as well as an explicit control over aspect 
precedence. The AspectJ mechanism to specify aspect precedence 
has significant limitations, namely in cases when the aspects ex-
tend a common super-aspect. Moreover, declaring precedence in 
AspectJ requires the implementation of a new aspect just for that 
purpose. We want a simpler AOP language, with a compositional 
model that is easier to understand and use by people without a 
background in AOP. One of such models was suggested in [12]. 

Despite these limitations AspectJ has nice features that make it 
attractive to our specific application domain: 

• aspects can modularize many parallelization and gridifi-
cation issues and can be easily (un)plugged from domain-
specific code; 

• in many cases where it is not possible to develop a reus-
able aspect, it is generally easier to generate a case spe-
cific aspect (from a predefined code template) than to 
generate plain Java for the same purpose. 

Thus, to take advantage of AspectJ’s features and overcome its 
shortcomings, we developed a DSL on top of AspectJ. 

3. Overview of the DSL  

The first motivation of our DSL was to hide the details specific to 
AspectJ, as much as possible. Using the example of the replace-
ment of the Java synchronized keyword, the only thing that the 
programmer should care about is the name of the mechanism to be 
used (in this case, Synchronized) and the pointcut definition (e.g., 
joinpoints where the mechanism applies). Following this ration-
ale, we just need to supply the name of the mechanism and the 
pointcut specification. Among several possible alternatives, we 
selected a syntax akin to that of C++ templates. In this specific 
case, we instantiate the mechanism through: 

 Synchronized<pointcut definition> 
 

In general, all mechanisms implemented as reusable aspects in 
AspectJ can be applied to concrete cases using this type of syntax. 
Abstract pointcuts, abstract methods and configuration parameters 
(e.g., integer values) are all specified by template parameters. We 
followed a similar strategy for mechanisms that cannot be imple-
mented through a reusable aspect. In such cases, all parameters 
required to generate the code are provided through template pa-
rameters. 

To illustrate the rationale of this DSL we present a simple ex-
ample: the RayTracer benchmark from the Java Grande Forum 
[14] that was previously studied using a pure AspectJ solu-
tion [19]. This benchmark renders an image of sixty spheres. The 
domain-specific code creates an instance of a RayTracer and calls 
the method render, specifying an image interval to render: 
 
RayTracer rt = new RayTracer(); 
Interval interval = new Interval(0,500); 
Image result = rt.render(interval); 
 

To develop a parallel version of this code, we could create sev-
eral instances of RayTracer objects and call the method render on 
each instance, providing a different image interval to render and 
combining the partial results produced by each instance. 

This kind of functionality can be provided through a reusable 
aspect. To replicate instances of class RayTracer, we can develop 
a reusable aspect that creates an aggregate of instances instead of 
a single instance by using a marker interface: 
 
interface Aggregate {}; 
 
Aggregate around() : call (Aggregate+.new()) { 
 for(i=0; i<numberOfWorkers; i++) 
  farm[i] = proceed(); 
 return(farm[0]); 
} 
 

Next we can build an aspect that applies this replicate func-
tionality to the RayTracer class, using the AspectJ construct de-
clare parents : RayTracer implements Aggregate. 

A reusable aspect to call the method render on each RayTracer 
instance requires access to the aggregate (created by the replicate 
aspect) and the specification of two abstract methods. The first 
(divideFunction) specifies how the interval is divided among in-
stances of class RayTracer and the second (combineFunction) 
specifies how to combine the results computed by each instance: 
 
abstract Vector<P> divideFunction(P); 
abstract R combineFunction(Vector<R>); 
abstract pointcut poincutName(/*…*/); 
 
R around(/*…*/) : poincutName(/*…*/) { 
 Vector<P> parms = divideFunction(/* args */); 
 Vector<R> results = new Vector<R>(); 
 for(i=0; i<numberOfWorkers; i++) 
  results.add( proceed(farm[i], parms[i]) ); 
 return(combineFunction(results)); 
} 
 
divideFunction and combineFunction have the purpose, re-

spectively, to divide a data set into disjoint parts and to combine 
results obtained by independently processing each part. This is a 
type of parallelization common in many parallel applications, 
known as MapReduce [7] or farm [8]. AOP implementations have 
the advantage of promoting an explicit separation between do-
main-specific and parallelization issues. In addition, paralleliza-
tion issues become (un)pluggable: they do not require invasive 
changes on source code and applications can still run when these 
concerns are not included into the build. 



The DSL includes two abstractions to provide the above func-
tionality. The first, Replicate<Class T> creates several replicas of 
class T (the number of replicas may be provided by a parameter or 
selected by the run-time system). The second, DivideCom-
bine<Class T, pointcut P, divideFunction, combineFunction> 
implements the MapReduce functionality.  

Using these abstractions we can write the parallelization of the 
RayTracer as follows: 

 
Replicate<RayTracer> 

 
Vector<Interval> split(Interval in) { 
     … // split in into sub-intervals 
} 
Image join(Vector<Image> in) { 
     … // join rendered sub-images 
} 
DivideCombine<RayTracer, render, split, join> 

 
The previous code can parallelize the ray tracer to take advan-

tage of computing systems based on shared memory. Additional 
abstractions were designed to develop applications that can take 
advantage of clusters and grids of clusters. The Separate<Class 
T> enables an instance of a class to be remote (e.g., by using Java 
RMI) and makes it possible to remotely create and to receive re-
mote method invocations on machines on a local network (e.g., 
cluster). GridSeparate has a similar purpose but for grid systems, 
where computing systems are connected through wide area net-
works (it relies on a grid middleware to remotely deploy instances 
of a class). A rich set of abstractions address concurrent execution 
[6], application partitioning [18], including abstractions to cope 
with data dependences among tasks, and grid specific issues [17], 
such as load distribution and fault-tolerance. 

The ability to compose the set of abstractions provided by the 
DSL is particularly useful in parallel and grid computing. One 
way to improve application scalability is to decentralize applica-
tion control in a hierarchical manner. Grid systems are usually 
made of clusters of clusters of multi-core machines. A hierarchy 
of control closely matches the physical hierarchy of the systems, 
being able to better taylor the system’s structure to the local 
bandwidth (e.g., by using communication based on shared mem-
ory when object instances are placed on the same machine). This 
hierarchy of control can be achieved by applying the Replicate 
abstraction more than once. For instance, instead of having a 
single aggregate of ray tracers (e.g., with 256 instances) we could 
have an aggregate of smaller aggregates (e.g., an aggregate of 16 
ray tracers, each one with 16 ray tracers). 

The main composition problem of using reusable aspects to 
implement the DSL is that reusable aspects were not designed to 
expose joinpoints for other aspects (e.g., proceed is not supported 
in AspectJ’s joinpoint model). We could try to overcome this 
shortcoming by using some intricate solution (e.g., by encapsulat-
ing every proceed into a method), but at this stage we decided to 
simply avoid the use of proceed. In our specific case, our repli-
cate aspect template would be something like:  
 
T around() : call (T.new()) { 
 for(i=0; i<numberOfWorkers; i++) 
  farm[i] = new T(); 
 return(farm[0]); 
} 
 

Replicate<RayTracer> abstraction replaces T by RayTracer. 
This solution solves our main composition issue, in that every 
abstraction exposes a set of joinpoints (new RayTracer() in this 
case). This allows us to write Replicate<Replicate<RayTracer>> 
to create a two-level hierarchy of RayTracer. 

A more subtle composition issue is that each abstraction acts 
incrementally: it can only intercept joinpoints in the domain-
specific code or introduced by the previous aspect in the chain 
(but not both). This way, the DSL presents a simpler rationale 
than AspectJ and includes support for incremental development. 

This incremental model of composition leads us to view our 
approach as more “transformation oriented”. We start with a se-
quential program and apply a set of programmer-specified trans-
formations (i.e., high-level parallel programming abstractions) 
that generate the parallel version of the same code. Actually, we 
derived these programming abstractions by looking at sequential 
and parallel versions of the same program, and devised a set of 
abstractions supporting the automation of the code transforma-
tions. This yields a parallelization approach that is non-invasive, 
modular and (un)pluggable. For more complex transformations, 
we introduced a constructor that allows us to store the result of a 
transformation into a variable.  

This rationale allows us to write some nice combinations of 
the Separate and Replicate abstractions. For instance, the follow-
ing example creates an aggregate of ray tracers that are distributed 
along the nodes of a local cluster (through the Separate abstrac-
tion) and that are replicated again on each cluster node (for in-
stance to take advantage of multi-core nodes). 
 
Replicate<Separate<Replicate<RayTracer>>> 
 

This composition model also allows us to extend abstractions 
by composition. For instance, to address machines with different 
speeds, we implemented a scheduler service [17] that selects the 
fastest instance of an aggregate for each method call and a failover 
service that addresses faulty nodes in a grid environment. Both 
services can be combined with the Replicate/DivideCombine tem-
plate to adapt and configure applications for grid environments. 

4. Overview of the DSL’s Implementation 

Our current prototype [4] uses the ANTLR tool to recognize pro-
grams written into the DSL syntax and generates code by process-
ing predefined code templates.  

Each programming abstraction in the DSL is implemented by 
one code template. A simple string replacement tool generates 
application specific aspects from code templates. We generate one 
aspect for each template instantiation in a DSL program and no 
changes are performed to the original sequential program (al-
though, changes are performed by the AspectJ weaver to compose 
the base program with the generated aspects). For instance, the 
replicate template is as follows: 
 
<T> around() : call (<T>.new()) <TARGET> { 
 for(i=0; i<numberOfWorkers; i++) 
  farm[i] = new <T>(); 
 return(farm[0]); 
} 
 

The <T> tag is replaced by the target class and the <TAR-
GET> tag is replaced by the target aspect where the abstraction 
applies (e.g., the previous aspect in the chain). 

To illustrate the composition of multiple aspects we show the 
code generated to implement Replicate<Replicate<RayTracer>>. 
In this case two aspects are generated: 
 
aspect replicate1replicate1replicate1replicate1 { 
 RayTracer around() : call (RayTracer.new())  
  && within(/*MAIN*/) { 
   for(i=0; i<numberOfWorkers; i++) 
    farm[i] = new RayTracer(); 
   return(farm[0]); 
 } 
} 



aspect replicate2replicate2replicate2replicate2 { 
 RayTracer around() : call (RayTracer.new()) 
  && within(replicate1)&& within(replicate1)&& within(replicate1)&& within(replicate1) { 
   for(i=0; i<numberOfWorkers; i++) 
    farm[i] = new RayTracer(); 
   return(farm[0]); 
 } 
} 
 

In the case of templates that have joinpoints as parameters, we 
follow a similar strategy, although we use additional tags to refer 
to different kinds of template parameters. Currently we only sup-
port templates where the poincut refers to one method call. We 
use several tags to identify each element of that method (such as 
<METHOD>, <RT>, <ARGS> and <ARGS_L>). Our AspectJ 
code template for the DivideCombine is as follows: 
 
DivideCombine<T, POINTCUT, MDIVIDE, MCOMBINE> 
 
<RT> around(<ARGS>) : 
  call (<RT> <T>.<METHOD>(..)) /* ... */ { 
 Vector parms = <<MDIVIDE>>(<<ARGS_L>>); 
 Vector<<RT>> results = new Vector<<RT>>(); 
 for(i=0; i<numberOfWorkers; i++) 
   results.add(farm[i].<METHOD>(parms[i])); 
 return(<MCOMBINE>(results)); 
} 
 

The DSL can be extended with new templates, either by com-
bining existing templates or by building new code templates. This 
is possible since each DSL abstraction is implemented by one 
code template and the template tool can manage new templates. 

Although the current solution enables us to overcome the main 
limitations detected in AspectJ, especially by improving its com-
position ability, this solution has some limitations. First, we can-
not support polymorphic pointcuts. Indeed, the DSL presently 
supports pointcuts relating to calls to a single method. Second, 
this solution suffers a code bloat problem similar to that of C++ 
templates. Performance of the current DSL implementation is 
comparable to the use of case specific aspects (e.g., hand written, 
already presented in [16][17]). 

5. Conclusion 

This paper presents a DSL for parallel and grid computing layered 
on top of AspectJ. The DSL aims to localize parallelization and 
gridification issues into modules that can be (un)plugged from 
scientific programs. 

This DSL results from an effort to modularize parallelization 
concerns by means of AOP. The original motivation for this DSL 
was to hide AOP technology and to provide a more flexible and 
explicit way to compose abstractions developed as reusable as-
pects. 

AspectJ enables us to quickly develop an initial DSL prototype 
to assess the feasibility of this kind of approach. The current DSL 
implementation is being used to parallelize and gridify several 
scientific applications [1], without polluting them with paralleli-
zation and gridification issues. 

The DSL incorporates abstractions whose implementations 
tested the capabilities of AspectJ to the limit. The addition of new 
kinds of abstractions requires other kinds of tools. One is the sup-
port for distributed data structures (e.g., the partitioning of an 
array and the subsequent distribution among a set of machines, 
and the management of data dependences). AspectJ lacks a suit-
able joinpoint for this, as transforming these data representations 
involves fine-grained joinpoints and overhead is very sensitive to 
implementation strategy. Another issue is the support for a clearer 
separation of concerns in parallel computing, based on multiple 
concern-specific languages, one for each kind of concern. 
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