
RAIRO-Oper. Res. 42 (2008) 435–453 RAIRO Operations Research

DOI: 10.1051/ro:2008027 www.rairo-ro.org

A BRANCH-AND-PRICE-AND-CUT ALGORITHM
FOR THE PATTERN MINIMIZATION PROBLEM

Cláudio Alves
1

and J.M. Valério de Carvalho
1

Abstract. In cutting stock problems, after an optimal (minimal stock
usage) cutting plan has been devised, one might want to further reduce
the operational costs by minimizing the number of setups. A setup
operation occurs each time a different cutting pattern begins to be
produced. The related optimization problem is known as the Pattern
Minimization Problem, and it is particularly hard to solve exactly. In
this paper, we present different techniques to strengthen a formulation
proposed in the literature. Dual feasible functions are used for the
first time to derive valid inequalities from different constraints of the
model, and from linear combinations of constraints. A new arc flow
formulation is also proposed. This formulation is used to define the
branching scheme of our branch-and-price-and-cut algorithm, and it
allows the generation of even stronger cuts by combining the branching
constraints with other constraints of the model. The computational
experiments conducted on instances from the literature show that our
algorithm finds optimal integer solutions faster than other approaches.
A set of computational results on random instances is also reported.

Keywords. Pattern Minimization Problem, column generation, cut-
ting planes, branch-and-bound, dual feasible functions.

Mathematics Subject Classification. 90C10, 90C57.

Introduction

Trim loss has been traditionally considered as the primary objective of cutting
stock problems, but other costs may also be relevant. A setup cost, for example,

Received October 24, 2005; Accepted January 9, 2008.

1 Escola de Engenharia, Universidade do Minho, 4710-057 Braga, Portugal;
claudio@dps.uminho.pt

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2008

http://dx.doi.org/10.1051/ro:2008027
http://www.rairo-ro.org
http://www.edpsciences.org

436 CLÁUDIO ALVES AND J.M. VALÉRIO DE CARVALHO

is incurred each time we move from a pattern to a different one in a cutting plan.
These changes take time. The knives must be repositioned to fit the next pattern.
As a consequence, waste may be generated since various trial runs may be needed
to reach the right positions. The problem of minimizing these setups is known
as the Pattern Minimization Problem (PMP). In this paper, we propose an exact
solution approach to solve it based on column generation, branch-and-bound and
cutting planes.

The PMP is strongly NP-hard. Most of the literature reports on heuristic so-
lution approaches. One of the oldest papers is due to Haessler [10,11]. It presents
a sequential heuristic procedure. Other researchers tried to reduce the number of
setups starting with a given solution by combining two or more patterns. Allwood
and Goulimis [2] and Johnston [12,13] developed such algorithms. Foerster and
Waescher [6] proposed recently the KOMBI heuristic, which allows many types of
combinations. Chen et al. [4] proposed a slight variation of the basic simulated an-
nealing algorithm to solve a non-linear model with two-sided demand constraints,
different sizes of raw material, load balancing between the cutting machines and
a combined trim loss and pattern minimization objective. The authors compared
their algorithm to the standard simulated annealing using a small size instance
(4 machine roll widths and 4 ordered items), and performed an extensive statis-
tical analysis of the effects of the parameters. They obtained better objective
values in less time. Teghem et al. [16] also used a simulated annealing algorithm
for the problem of printing book covers with fixed and variable costs. Umetani
et al. [17] proposed an iterated local search metaheuristic. Their algorithm was
compared to the sequential heuristic procedure of Haessler and to the KOMBI
heuristic. The computational experiments conducted indicate a comparable per-
formance. Goulimis [9] solved the cutting stock problem with two-sided demand
constraints using branch-and-bound and cutting planes. He focused on a set of
small instances for which the complete set of cutting patterns can be generated in
reasonable time. Setups were minimized afterwards, combining patterns using an
approach inspired by Johnston [12].

As far as we know, only two exact approaches have been proposed in the liter-
ature. Vanderbeck [18] solved the PMP assuming a fixed number of stock rolls.
He defined a model where columns are patterns with an associated multiplicity,
and solved it using a branch-and-price-and-cut algorithm. The pricing subprob-
lem is originally non-linear, but it can be linearized and solved as a sequence of
integer bounded knapsack problems. Even if it improves the Linear Programming
(LP) bound of the compact assignment formulation, the lower bound given by the
model of Vanderbeck remains quite weak. In part, this is due to what the author
called LP cheating, i.e., columns with a large multiplicity getting preferentially
fractional values in the LP solutions. For a set of 16 real-life instances, the author
experienced an integrality gap of 33.5%, which was reduced to 13.8% by adding
cutting planes to the LP relaxation. His branch-and-bound algorithm relies on a
branching scheme based on 7 different rules. According to the author, these rules
may fail in eliminating all the fractional solutions, and hence, the integrality gap
may not be closed at the end of the algorithm.

A BRANCH-AND-PRICE-AND-CUT ALGORITHM FOR THE PMP 437

Belov [3] considered the combined trim loss and pattern minimization problem.
He used a model that was originally proposed by Vanderbeck [18], which is based
on the Gilmore and Gomory formulation [8] for the standard Cutting Stock Prob-
lem (CSP). The model has general integer variables that represent the usage of
the cutting patterns, and a binary variable for each cutting pattern with a value
that depends on whether the pattern is used in the solution or not. Setups are
modeled through these binary variables. For each valid cutting pattern, there are
two columns in the model: one that represents the pattern, and another for the
corresponding binary variable. Additionally, for each binary variable, there is also
a defining constraint. Hence, in addition to a huge set of columns, the model has
also a huge set of constraints. Belov showed that, using a bound on the pattern
frequencies similar to the bound of Vanderbeck for the pattern multiplicities, the
model becomes as strong as the model used by Vanderbeck in [18]. However, in
order to make it suitable for practical computation, he removed the binary vari-
ables and the corresponding constraints, and used a non-linear objective function
instead (with variable costs and fixed setup costs). The objective function is finally
approximated by a linear one, and the resulting model is solved with branch-and-
price. The model used by Belov has a very weak LP bound, and, as a consequence,
his algorithm failed to solve 8 of the 16 instances used in [18]. Vanderbeck was
unable to close the integrality gap for only 4 of them.

In this paper, we present an exact branch-and-price-and-cut algorithm for the
PMP in the case where the number of stock rolls is bounded. In Section 1, some
formulations are reviewed. We show how the largest pattern multiplicity can be
reduced in the model of Vanderbeck, and we discuss the effects of this reduction.
A new formulation based on arc flow variables is also introduced. In Section 2, we
describe a new set of valid inequalities for the integer knapsack polytope derived
using for the first time the dual feasible functions of Fekete and Schepers [5]. In
Section 3, we clarify the details of our branch-and-bound procedure. Computa-
tional results are reported in Section 4, and followed by some final conclusions.

1. Integer linear programming formulations

In the PMP, we are given a set of m items of width wi and demands of bi units,
i = 1, . . . , m, and a set of stock rolls with length W . Throughout the paper, we
will assume all the data to be integer-valued. The problem consists in finding
the cutting plan that minimizes the number of different patterns, while not using
more than zCSP stock rolls. Here, we consider that zCSP is equal to the optimal
solution of the corresponding CSP. In the sequel, we will assume that the items
are sorted by decreasing widths, from w1 the largest to wm the smallest.

1.1. A compact formulation

The PMP can be formulated using a compact model with assignment variables
and non-linear constraints as follows:

438 CLÁUDIO ALVES AND J.M. VALÉRIO DE CARVALHO

min
zCSP∑
k=1

yk (1)

s.t.
zCSP∑
k=1

zkxik = bi, i = 1, . . . , m, (2)

zCSP∑
k=1

zk ≤ zCSP , (3)

zk ≤ zCSPyk, k = 1, . . . , zCSP , (4)
m∑

i=1

wixik ≤ Wyk, k = 1, . . . , zCSP , (5)

xik ≥ 0 and integer, i = 1, . . . , m, k = 1, . . . , zCSP , (6)
yk ∈ {0, 1}, k = 1, . . . , zCSP , zk ≥ 0 and integer, k = 1, . . . , zCSP . (7)

Variables xik denote the number of items i that are in pattern k, and zk the
number of times pattern k is used. Variables yk are binary; they are equal to 1
only if pattern k is used. Since the objective is to minimize the sum of these yk

variables, and zk are general integer variables, two patterns k1 and k2 with k1 �= k2

will be necessarily different in an optimal solution. The demand constraints (2)
involve non-linear terms. Constraint (3) limits the total number of rolls to zCSP ,
the maximum number of stock rolls, while (5) represent the knapsack constraints.
This compact model was first proposed by Vanderbeck in [18]. It has exactly
2zCSP + mzCSP variables.

1.2. Column generation reformulation

In [18], Vanderbeck proposed an alternative column generation model obtained
by keeping in the master problem only constraints (2) and (3). This decomposition
yields a non-linear pricing subproblem, which can be linearized by fixing one of its
variables. Each column of the master is now a pattern replicated as many times
as given by the column multiplicity. The master problem is stated as follows:

min
∑
p∈P

ub(Pp)∑
n=1

λpn (8)

s.t.
∑
p∈P

ub(Pp)∑
n=1

naipλpn = bi, i = 1, . . . , m, (9)

∑
p∈P

ub(Pp)∑
n=1

nλpn ≤ zCSP , (10)

λpn ∈ {0, 1}, p ∈ P, n = 1, . . . , ub(Pp). (11)

A BRANCH-AND-PRICE-AND-CUT ALGORITHM FOR THE PMP 439

The set of valid cutting patterns is denoted by P . Coefficients aip represent the
number of items i in pattern p. The λpn variables denote the usage of the pattern
p replicated n times, the so called pattern multiplicity. The maximum value of n

for a pattern p, denoted as ub(Pp), is equal to min
i=1,...,m

⌊
bi

aip

⌋
.

The pricing subproblem is the following non-linear knapsack problem:

max n

(
m∑

i=1

πixi + ρ

)
(12)

s.t.
m∑

i=1

wixi ≤ W, (13)

nxi ≤ bi, i = 1, . . . , m, (14)
n ∈ {1, . . . , nmax}, xi ≥ 0 and integer, i = 1, . . . , m, (15)

with a global upper bound on pattern multiplicities denoted by nmax. The vector
of dual variables for (9) and (10) are denoted by π and ρ, respectively. Vanderbeck
suggested the following value for nmax:

nmax = min
{
zCSP − z + 1, max

i
bi

}
, (16)

where z is a given lower bound on the minimum number of setups. The nonlin-
earities in (12)–(15) can be avoided if we consider instead a sequence of bounded
integer knapsack problems with a fixed multiplicity n. In his paper, Vanderbeck
noticed that, sometimes, it is not necessary to enumerate all the possible values
of n, since an optimal solution to the linearized pricing subproblem may remain
optimal for successive values of n. However, depending on the extra constraints
that may be enforced in the master (branching constraints or cutting planes), a
complete enumeration may be unavoidable.

1.3. Improving the column generation model of Vanderbeck

The model of Vanderbeck can be improved by using a bound on the total
waste. Since the maximum number of stock rolls that can be used is at most
equal to zCSP , the waste in any solution must be at most equal to l = zCSP W −∑m

i=1 wibi. Clearly, a column that corresponds to a replicated pattern with a total
waste greater than l will never belong to any optimal integer solution. We can
avoid generating these columns by enforcing the following constraint in the pricing
subproblems:

W −
m∑

i=1

wixi ≤
⌊

l

n

⌋
. (17)

As referred above, each column generation iteration consists in solving a sequence
of knapsack problems for different values of n. For a given value of n, the knapsack

440 CLÁUDIO ALVES AND J.M. VALÉRIO DE CARVALHO

problem with the additional constraint (17) consists in finding the best pattern that
fits in the knapsack, and which is larger than or equal to W −⌊ l

n

⌋
. The number of

columns decreases compared to the original model of Vanderbeck. Expectably, the
LP bound of the master problem should be stronger, but this is not the main value
of this maximum waste constraint. This constraint helps in reducing the value of
nmax and, hence, the number of knapsack problems that have to be solved to price
the attractive columns.

Let L′
n and Ln denote the pricing subproblem (12)–(15) for a given value of n

with and without constraint (17), respectively. Given a fixed n, L′
n and Ln are

both integer linear programs. Whatever the value of n, Ln has always a feasible
solution (at least the null solution is always valid), but this conclusion does not
apply to L′

n. Indeed, it may be impossible to find a combination of items larger
than or equal to W − ⌊ l

n

⌋
that fits in the knapsack. Furthermore, since the

knapsack problem is bounded (see constraint (14)), and given that the bounds
depend on the value of n, if L′

n is infeasible for n = n1, it will be infeasible for
n = n1 + 1, and so on. Hence, the formula for nmax can be rewritten as follows:

nmax = min
{
zCSP − z + 1, max

i
bi, n

′
}

, (18)

with n′ being the maximum value that n in L′
n can take in order for the problem to

remain feasible. Generally, the value given by (18) is smaller than the multiplicity
given by (16). In practice, it is not necessary to compute the exact value of n′ a
priori. Once the first infeasible pricing subproblem L′

n is found, the column gener-
ation iteration can be stopped. Thus, the value of n′ can be updated dynamically.
Similarly, when constraint (17) is considered, the maximum multiplicity ub(Pp) of

a pattern Pp becomes min
{

min
i=1,...,m

⌊
bi

aip

⌋
,
⌊

l
W−∑m

i=1 wiaip

⌋}
.

To evaluate the impact of the maximum waste constraint, we solved the LP
relaxation of (8)–(11) for the instances in [18], with and without this constraint.
The results are reported in Table 1. Column Waste lists the waste generated in
each instance by the optimal solution of the corresponding CSP. Column kpLP

reports the total number of knapsack problems solved. The number of generated
columns (colsLP), the maximum multiplicity among the added columns (mult) and
the optimal LP solution (zLP) are also reported. For these instances, the LP bound
increases by 0.4% on average. On the other hand, the number of column generation
subproblems solved is significantly reduced. While 880 knapsack problems are
needed on average to reach the optimal LP solution, with the maximum waste
constraint this value goes down to 585, a saving of almost 34%. Furthermore,
there are 13% less columns generated and the maximum multiplicity of the newly
generated columns decreases by almost 30%.

1.4. An arc flow formulation

The PMP can also be formulated as a flow problem over an acyclic digraph
G = (V, A), with three-indexes flow variables. A vertex in V corresponds to a

A BRANCH-AND-PRICE-AND-CUT ALGORITHM FOR THE PMP 441

Table 1. Measuring the impact of the maximum waste constraint.

Without With
max. waste const. max. waste const.

Name Waste kpLP colsLP mult zLP kpLP colsLP mult zLP

kT03 3088 110 30 31 4.77 99 26 31 4.77
kT05 102108 120 42 25 5.65 114 42 15 5.65
kT01 274 160 34 13 2.00 95 22 10 2.10
kT02 16575 468 114 13 15.93 461 112 13 15.93
kT04 36703 295 86 9 6.71 253 100 8 6.74

d16p6 36693 295 86 9 6.71 253 100 8 6.74
7p18 3826 264 44 84 3.74 155 32 56 3.74

d33p20 39905 869 160 13 6.05 583 136 8 6.18
12p19 526 643 98 13 2.88 489 90 12 2.89

d43p21 39764 1204 210 17 7.86 1018 202 13 7.86
kT06 1981 833 76 37 1.72 472 54 32 1.75
kT07 4990 1061 104 55 2.86 640 78 36 2.86

14p12 190500 1230 118 50 3.72 766 98 29 3.75
kT09 699 1577 130 94 3.65 1203 118 64 3.65
11p4 19000 1775 124 85 2.47 806 72 57 2.48
30p0 2562 3176 238 61 5.50 1946 194 36 5.51
avg. 31199.63 880.00 105.88 38.06 5.14 584.56 92.25 26.75 5.16

discrete position within the roll. Vertex 0 represents the leftmost border of the
roll, and W the rightmost. Hence, we have |V | = W + 1. The set of arcs A is
subdivided into nmax subsets An, one for each multiplicity. An arc (i, j) in An

represents an item of width j − i placed at a position i of the leftmost border
of the roll in a pattern with multiplicity n. The unused portion of the rolls are
represented by arcs (i, j) with j − i = 1. A pattern of multiplicity n is a path that
starts at vertex 0 and ends at vertex W , using only arcs of An. The minimum
number of different patterns is given by the minimum flow over G subject to some
additional constraints. The model is stated as follows:

min
nmax∑
n=1

zn (19)

s.t. −
∑

(r,s)∈An

xn
rs +

∑
(s,t)∈An

xn
st =

⎧⎨
⎩

zn, if s = 0,
−zn, if s = W ,
0, otherwise,

∣∣∣∣∣∣n = 1, . . . , nmax, (20)

nmax∑
n=1

∑
(r,r+wi)∈An

nxn
r,r+wi

= bi , i = 1, . . . , m, (21)

xn
rs ≥ 0 and integer, n = 1, . . . , nmax, ∀(r, s) ∈ An, (22)

zn ≥ 0 and integer, n = 1, . . . , nmax. (23)

442 CLÁUDIO ALVES AND J.M. VALÉRIO DE CARVALHO

Variables xn
rs denote the flow on arc (r, s) of An, while zn, n = 1, . . . , nmax,

represent the number of patterns with multiplicity n used. There is conservation
of flow (constraints (20)) only among the arcs of the same set An. The maximum
waste constraint discussed above is enforced by restricting in each An the set
of arcs with unit size, those that model the unused space in the pattern. Note
that although the variables of (8)–(11) are binary, the variables of the arc flow
model (19)–(23) are general integer variables. Model (19)–(23) is an alternative
formulation. Our branching scheme will be based on it.

Any pattern in (8)–(11) can be mapped into different sets of arc flows in G. In
order to associate a single path in G to each specific column of the master (8)–(11),
so that we can easily define sets of columns with a common property to branch
on, we define the following mapping rule. A column with multiplicity n maps into
an ordered sequence of arcs in An, starting at node 0, the left border of the roll.
Items are converted into arcs in the order of decreasing widths. Hence, for two
arcs in the same path, say (r, s) and (t, u) of An, if s− r ≥ u − t, then s ≤ t. The
arcs with unit size are left to the end of the roll.

2. New general cutting planes

In [18], Vanderbeck gave a set of valid superadditive inequalities for S = {x ∈
N

n :
∑

i aixi ≤ b, a ∈ N
n, b ∈ N, ai ≤ b, ∀i}. Using the superadditive function

F γ(z) = max
{
0,
⌈

γz
b

⌉− 1
}
, with γ ∈ {2, . . . , b}, he derived the inequalities:

∑
i

(⌈γai

b

⌉
− 1
)

xi ≤ γ − 1, (24)

and used them to strengthen the LP relaxation of (8)–(11). In this section, we
present a new family of valid inequalities for S derived using dual feasible functions.

A function f : [0, 1] → [0, 1] is said to be dual feasible if
∑

x∈S x ≤ 1 ⇒∑
x∈S f(x) ≤ 1 holds for any finite set S of non-negative real numbers. Three dual

feasible functions were used recently by Fekete and Schepers [5] to derive lower
bounds for bin-packing problems. In the sequel, we will show that their functions
are superadditive, and can consequently be used to generate valid inequalities for
integer knapsack polytopes [15]. To the best of our knowledge, these functions
were never used for this purpose.

In this paper, the dual feasible functions will be applied to the knapsack poly-
topes associated to different constraints of (8)–(11), namely the demand con-
straints (9), the constraint on the maximum number of rolls (10) and an additional
total waste constraint. Note that these knapsack polytopes are different from the
knapsack polytope associated to the pricing subproblems. The functions will be
used to derive cutting planes that are also valid for the LP master problem.

All the dual feasible functions described in [5] are based on rounding. The first
one (u(k), k ∈ N) slightly improves a function proposed earlier by Lueker:

A BRANCH-AND-PRICE-AND-CUT ALGORITHM FOR THE PMP 443

u(k) : [0, 1] → [0, 1]

x 	→
{

x, for (k + 1)x ∈ Z,
�(k+1)x�

k , otherwise.

Function u(k) is clearly nondecreasing. Its superadditivity is proved next.

Proposition 2.1. For k ∈ N, u(k) is superadditive over [0, 1].

Proof: Let x, y, and x+y be nonnegative real values in R+∩ [0, 1]. For (k+1)(x+
y) /∈ Z, we have
u(k)(x + y) = �(k+1)(x+y)�

k

=

{
�(k+1)x�

k + �(k+1)y�
k , if (k + 1)(x + y) − (�(k + 1)x� + �(k + 1)y�) < 1,

�(k+1)x�
k + �(k+1)y�

k + 1
k , if (k + 1)(x + y) − (�(k + 1)x� + �(k + 1)y�) ≥ 1.

Hence, the following cases may arise:
1. (k + 1)x ∈ Z and (k + 1)y /∈ Z: since (k + 1)(x + y) /∈ Z and �(k+1)x�

k =
(k+1)x

k > x, we have u(k)(x) + u(k)(y) = x + �(k+1)y�
k < u(k)(x + y);

2. (k+1)x /∈ Z, (k+1)y /∈ Z and (k+1)(x+y) /∈ Z: we have u(k)(x)+u(k)(y) =
�(k+1)x�

k + �(k+1)y�
k ≤ u(k)(x + y).

Additionally, we have to consider the following cases:
3. (k + 1)x ∈ Z and (k + 1)y ∈ Z: this implies (k + 1)(x + y) ∈ Z, and

u(k)(x) + u(k)(y) = x + y = u(k)(x + y);
4. (k + 1)x /∈ Z, (k + 1)y /∈ Z and (k + 1)(x + y) ∈ Z: this implies (k +

1)(x + y) − (�(k + 1)x� + �(k + 1)y�) = 1. Rearranging the terms, we get
x+y = �(k+1)x�

k + �(k+1)y�
k + 1−(x+y)

k . Since x+y must be in R+∩ [0, 1], we
have finally u(k)(x) + u(k)(y) = �(k+1)x�

k + �(k+1)y�
k ≤ x + y = u(k)(x + y).

�
With the next proposition, we show that u(k) generates valid inequalities that are
at least as strong as (24).

Proposition 2.2. For S = {x ∈ N
n :
∑

i aixi ≤ b, a ∈ N
n, b ∈ N, ai ≤ b, ∀i}

and k ∈ N, the following inequality is equivalent to or dominates (24):

∑
i

u(k)
(ai

b

)
xi ≤ 1. (25)

Proof: Let zi = ai

b and, without loss of generality, assume that k = γ − 1. In-
equalities (24) can be rewritten as follows

∑
i
�γzi�−1

γ−1 xi ≤ 1. For γzi /∈ Z, we

have �γzi�−1
γ−1 = �γzi�

γ−1 = �(k+1)zi�
k = u(k)(zi), being (25) equivalent to (24). On

the other hand, for γzi ∈ Z, we have u(k)(zi) = zi ≥ �γzi�−1
γ−1 , since zi ≤ 1, and

�γzi�−1
γ−1 = �(k+1)zi�−1

k = (k+1)zi−1
k = zi + zi

k − 1
k , and so (25) dominates (24). �

444 CLÁUDIO ALVES AND J.M. VALÉRIO DE CARVALHO

The second dual feasible function (u(ε)
1) discussed in [5] formalizes a procedure of

Martello and Toth [14] to derive the bin-packing lower bound L2. This function is
also superadditive and nondecreasing, but the inequalities it generates for S = {x ∈
N

n :
∑

i aixi ≤ b, a ∈ N
n, b ∈ N, ai ≤ b, ∀i} can be weaker or stronger than (24),

depending on the coefficients ai and b of the original knapsack constraint. Let
ε ∈ [0, 1

2

]
. The function is defined as follows:

u
(ε)
1 : [0, 1] → [0, 1]

x 	→
⎧⎨
⎩

0, for x < ε,
x, for ε ≤ x ≤ 1 − ε,
1, for x > 1 − ε.

Proposition 2.3. Function u
(ε)
1 is superadditive over [0, 1], for ε ∈ [0, 1

2].

Proof: Let x, y, x + y ∈ R+ ∩ [0, 1] and consider the following three cases:

1. x+y < ε : in this case, we have u
(ε)
1 (x+y) = 0 and, since x < ε and y < ε,

the following holds u
(ε)
1 (x) + u

(ε)
1 (y) = 0 = u

(ε)
1 (x + y);

2. ε ≤ x + y ≤ 1 − ε : then x ≤ 1 − ε, y ≤ 1 − ε, and consequently u
(ε)
1 (x) +

u
(ε)
1 (y) ≤ x + y = u

(ε)
1 (x + y);

3. x + y > 1 − ε : since ε ≤ 1
2 and x + y ∈ [0, 1], if x > 1 − ε, then y < ε and

u
(ε)
1 (x) + u

(ε)
1 (y) = 1 = u

(ε)
1 (x + y), otherwise u

(ε)
1 (x) + u

(ε)
1 (y) ≤ x + y ≤

1 = u
(ε)
1 (x + y). �

Using two simple cases, the following example shows that inequalities (24) can
dominate or be dominated by the following inequalities generated with u

(ε)
1 for

S = {x ∈ N
n :
∑

i aixi ≤ b, a ∈ N
n, b ∈ N, ai ≤ b, ∀i}
∑

i

u
(ε)
1

(ai

b

)
xi ≤ 1. (26)

Example 2.1. For S = {x ∈ N
2 : 50x1 + 52x2 ≤ 100} and ε = 0.5, (26) takes the

form 0.5x1 + x2 ≤ 1. The value of γ×52
100 �−1

γ−1 (the coefficient of the left-hand side

in (24)) is 1 only when γ = 2. In that case, γ×50
100 �−1

γ−1 = 0. For γ = 2, (24) yields
x2 ≤ 1, which is weaker than 0.5x1 + x2 ≤ 1. For all the other values of γ, we

have γ×52
100 �−1

γ−1 < 1. Furthermore, γ×50
100 �−1

γ−1 ≤ 0.5, ∀γ ∈ [2, 100], and hence, (24)
never leads to an inequality stronger than 0.5x1 + x2 ≤ 1.

Consider now S = {x ∈ N
2 : 10x1 + 19x2 ≤ 100}. With γ = 11, (24) takes

the form 0.1x1 + 0.2x2 ≤ 1. For ε ∈ [0, 0.1], we have u
(ε)
1 (0.1) = 0.1, while

for ε ∈)0.1, 0.5], we have u
(ε)
1 (0.1) = 0. Similarly, for ε ∈ [0, 0.19], we have

u
(ε)
1 (0.19) = 0.19, while for ε ∈)0.19, 0.5], we have u

(ε)
1 (0.19) = 0. The following

inequalities hold for all ε ∈ [0, 0.5]: u
(ε)
1 (0.1) ≤ 0.1 and u

(ε)
1 (0.19) ≤ 0.19. As a

A BRANCH-AND-PRICE-AND-CUT ALGORITHM FOR THE PMP 445

consequence, the dual feasible function u
(ε)
1 cannot generate any cut stronger than

0.1x1 + 0.19x2 ≤ 1, i.e., the original inequality. �

The third dual feasible function in [5] is denoted by u
(ε)
2 , with ε in [0, 1

2 (:

u
(ε)
2 : [0, 1] → [0, 1]

x 	→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for x < ε,
1

�ε−1� , for ε ≤ x < 1
2 ,

1
2 , for x = 1

2 ,

1 − �(1−x)ε−1�
�ε−1� , for x > 1

2 .

The following example shows that u
(ε)
2 is not superadditive for all the values of ε

in [0, 1
2 (. However, u

(ε)
2 is superadditive for a smaller interval for ε, as we show in

the next proposition.

Example 2.2. Let ε in u
(ε)
2 be equal to 0.1. For x = 0.15 and y = 0.15, we have

u
(ε)
2 (x)+u

(ε)
2 (y) = 0.2 > u

(ε)
2 (x+y) = 0.1, which clearly violates the superadditivity

condition. �

Proposition 2.4. For ε ∈)1
4 , 1

2 (, u
(ε)
2 is superadditive over [0, 1].

Proof: Consider the following four cases:

1. x + y < ε : then x < ε, y < ε and u
(ε)
2 (x) + u

(ε)
2 (y) = 0 = u

(ε)
2 (x + y);

2. ε ≤ x + y < 1
2 : then x < 1

2 and y < 1
4 (or vice versa). We have

u
(ε)
2 (x) ≤ 1

�ε−1� , u
(ε)
2 (y) = 0, since ε > 1

4 , and hence u
(ε)
2 (x) + u

(ε)
2 (y) ≤

1
�ε−1� = u

(ε)
2 (x + y);

3. x + y = 1
2 : if x = 1

2 , then y = 0 (or vice versa), and u
(ε)
2 (x) + u

(ε)
2 (y) =

1
2 = u

(ε)
2 (x+ y). If x < 1

2 , then y ≤ 1
4 , (or vice versa); u

(ε)
2 (x) ≤ 1

�ε−1� ≤ 1
2 ,

u
(ε)
2 (y) = 0, and hence u

(ε)
2 (x) + u

(ε)
2 (y) ≤ 1

2 = u
(ε)
2 (x + y);

4. x + y > 1
2 : with ε ∈)1

4 , 1
2 (, we have 2

�ε−1� ≤ 1 − �(1−(x+y))ε−1�
�ε−1� =

u
(ε)
2 (x + y) ≤ 1, and hence, superadditivity is proven for the cases where

x and y are both strictly less than 1
2 . If x and y are both equal to 1

2 , we
have u

(ε)
2 (x) + u

(ε)
2 (y) = 1 = u

(ε)
2 (x + y). For x > 1

2 and y < ε, we have

u
(ε)
2 (x)+u

(ε)
2 (y) = 1− �(1−x)ε−1�

�ε−1� ≤ 1− �(1−(x+y))ε−1�
�ε−1� = u

(ε)
2 (x+y). The re-

maining case is when x > 1
2 and ε ≤ y < 1

2 . We have �(1− (x + y))ε−1� =
�(1 − x)ε−1 − yε−1� ≤ �(1 − x)ε−1 − 1� = �(1 − x)ε−1� − 1, and hence
u

(ε)
2 (x) + u

(ε)
2 (y) = 1 − �(1−x)ε−1�

�ε−1� + 1
�ε−1� ≤ 1 − �(1−(x+y))ε−1�

�ε−1� . �

Once more, u
(ε)
2 is clearly nondecreasing and, for ε ∈)1

4 , 1
2 (, the following inequal-

ities it generates for S = {x ∈ N
n :
∑

i aixi ≤ b, a ∈ N
n, b ∈ N, ai ≤ b, ∀i} can

446 CLÁUDIO ALVES AND J.M. VALÉRIO DE CARVALHO

dominate or be dominated by (24), as it is shown in Example 2.3:

∑
i

u
(ε)
2

(ai

b

)
xi ≤ 1. (27)

Example 2.3. For S = {x ∈ N
2 : 10x1+19x2 ≤ 100}, u

(ε)
2 with ε ∈)1

4 , 1
2 (produces

no useful valid inequality, since u
(ε)
2 (0.1) = 0 and u

(ε)
2 (0.19) = 0, ∀ε ∈)1

4 , 1
2 (.

For S = {x ∈ N
2 : 270x1 + 745x2 ≤ 1000} and ε = 0.26, u

(ε)
2 yields 1

3x1 + x2 ≤
1, which is stronger than any inequality (24). The proof is similar to the one

given in Example 2.1. The value of γ×745
1000 �−1

γ−1 is 1 only when γ ∈ {2, 3}. In

those cases, γ×270
1000 �−1

γ−1 = 0, and hence for γ ∈ {2, 3}, (24) yields a cut that is

weaker than 1
3x1 + x2 ≤ 1. For all the other values of γ, we have γ×745

1000 �−1

γ−1 < 1.

Furthermore, γ×270
1000 �−1

γ−1 ≤ 1
3 , ∀γ ∈ [2, 1000], and hence, (24) never leads to an

inequality stronger than 1
3x1 + x2 ≤ 1. �

3. The branch-and-price-and-cut algorithm

In this section, we describe the main features of our branch-and-price-and-cut
algorithm. The whole procedure can be summarized as follows. At each node of
the branching tree, we solve the LP relaxation of (8)–(11) with the maximum waste
constraint described above. A cutting plane procedure is then invoked to generate
the cuts presented in the previous section (and others described below) to improve
the LP bound. The resulting LP optimal solution is then converted in an arc
flow representation, branching constraints are defined on these flow variables and
converted back into constraints in (8)–(11). No sophisticated rounding scheme is
used along the solution process. A depth-first strategy is used to privilege a faster
improvement of the incumbent.

The first restricted LP master related to (8)–(11) is initialized with an artificial
column with high cost, and the patterns that are in the optimal basis of the
corresponding CSP. The master problem is solved using column generation. To
correctly account for the dual values of the branching constraints in the pricing
subproblems, we have to know the exact position of the items in the knapsack.
For this purpose, we used a dynamic programming algorithm to solve the pricing
subproblems. Before describing the cutting plane procedure, we introduce first the
details of our branching scheme, because cutting planes are not only derived from
the constraints of (8)–(11), but also from branching constraints. Whenever cutting
planes are not enough to close the integrality gap, we resort to branch-and-bound.

A desirable requirement for a branching scheme is to be compatible with the
subproblem. A branching scheme should also guarantee that all the fractional so-
lutions are eliminated in order for the algorithm to end up with an optimal integer
solution. In [18], Vanderbeck proposed a list of branching rules based on hyper-
planes that did not satisfy this latter condition. Hence, with his algorithm, the

A BRANCH-AND-PRICE-AND-CUT ALGORITHM FOR THE PMP 447

integrality gap may not be closed. Here, we consider branching on the original arc
flow variables of (19)–(23). Our branching scheme does not induce any intractable
modification to the pricing subproblem, and it guarantees that the algorithm finds
an optimal integer solution after a finite number of steps.

When the solution of the LP master is fractional and the corresponding node
cannot be pruned by bounding, we convert the fractional solution into a set of
arc flows using the mapping rules described in Section 1.4. If the mapping yields
no fractional arc flow variables, then, by the flow decomposition property, we can
recover an integer solution to (8)–(11) with a cost equal to the LP bound. In
those cases, obviously, we do not branch. Branching is necessary only if there is
at least one fractional arc flow variable. The variable xn

rs with a fractional value
and largest multiplicity (with a larger n) corresponding to the leftmost arc (with
a smaller r) is the one selected for branching (ties are broken by choosing the
arc associated to the largest item). Two nodes are created with the following
branching constraints: xn

rs ≤ �xn
rs� and xn

rs ≥ xn
rs�. These constraints are easily

enforced back in the LP master. All the columns with multiplicity n that map
into a path with an arc (r, s) have a + 1 coefficient in the branching constraint.
When certain of these branching constraints are imposed, the LP lower bound can
eventually be tightened. Consider, for example, the branching constraint xn

rs ≥ lb
with W − s < wi, for all i = 1, . . . , m, i.e., no item can be placed at position
s. That means that part of the total waste (precisely lb × n(W − s)) will surely
be concentrated on patterns with multiplicity n. Hence, among the patterns with
multiplicities n′ �= n, only those with a waste equal to or lower than

⌊
l−lb×n(W−s)

n′

⌋
need to be generated in this node and its descendants. The patterns that are in
the master and violate this condition can be just removed.

There is no symmetry in the branch-and-bound tree. By branching on the flow
variables of the original arc flow model, the resolution of (8)–(11) with branch-and-
price remains possible in practice since the complexity of the pricing subproblems
is unchanged. As happens with the Gilmore and Gomory model for the standard
CSP [8], model (8)–(11) has no symmetry. A setup associated to a specific pattern
of multiplicity n has a single representation, and hence, there is only one possible
representation for each complete solution to (8)–(11). Furthermore, a branching
constraint on a variable xn

rs converts into a unique constraint on the λpn variables
of the LP master problem. Consequently, the solution space of two disjoint nodes
is mutually exclusive.

Cutting planes of type (25), (26) and (27) are derived from different constraints:
the constraint on the maximum number of rolls (10), the demand constraints (9)
and the waste constraint. In fact, instead of using the exact constraint on the
number of rolls as defined in (10), we generate cuts based on the following linear
combination of constraints:

∑
p∈P

∑
n∈Np

(n − 1)λpn ≤ zCSP − LBq, where Np

stands for the set of multiplicities for pattern p and LBq is the lower bound on the
number of setups at a node q of the branch-and-bound tree (note that n− 1 ≥ 0).
This constraint results from the combination of (10) with

∑
p∈P

∑
n∈Np

λpn ≥
LBq. Note that LBq is always the best known lower bound for node q. As a

448 CLÁUDIO ALVES AND J.M. VALÉRIO DE CARVALHO

consequence, some of the cuts may be valid for that node q and its descendants,
but not for the other nodes, those with a smaller lower bound on the number of
setups. Applying dual feasible functions to linear combinations of constraints may
lead to stronger cuts. In the latter case, the coefficients of the left hand side of
(10) are decreased by only one unit, while its right hand side is decreased by a
greater value. The ratio between the coefficients of the constraint and its right
hand side increases. The following example shows that combining constraints may
yield stronger cuts.

Example 3.1. Consider the following two inequalities A1 : 7x1 + 8x2 + 5x3 ≤ 10
and A2 : x1 + x2 + x3 ≥ 2, and assume that all the variables are binary variables.
If both these inequalities are valid for a given integer linear program, then the
inequality A3 : 6x1 + 7x2 + 4x3 ≤ 8 is also valid. This inequality is obtained
by subtracting the coefficients of A2 from the coefficients of A1. The inequalities
A1 and A3 can be re-written respectively as follows: 7

10x1 + 4
5x2 + 1

2x3 ≤ 1 and
3
4x1 + 7

8x2 + 1
2x3 ≤ 1. Applying the dual feasible function u(k) with k = 3 to A1,

we would get 2
3x1 + x2 + 1

2x3 ≤ 1. Applying the same dual feasible function to A3
yields the following stronger inequality: 3

4x1 + x2 + 1
2x3 ≤ 1. �

Using the same principle, we combine the “greater than or equal to” branch-
ing constraints at a node q with the demand constraints (9) to derive the fol-
lowing constraints:

∑
p∈P

∑
n∈Np

(naip − ∑
(r,r+wi,n)∈Hq gr,r+wi

pn)λpn ≤ bi −∑
(r,r+wi,n)∈Hq lbn

r,r+wi
, i = 1, . . . , m. The set of “greater than or equal to” branch-

ing constraints at a node q is denoted by Hq, while grs
pn are binary coefficients equal

to 1 if column pn maps into a path with the arc (r, s) of An, and equal to 0 other-
wise. The right hand side of the “greater than or equal to” branching constraints
on an arc (r, s) with multiplicity n in Hq is equal to lbn

rs. The deeper a node is in
the tree, the stronger will be these cuts.

An additional set of valid inequalities is derived from the following total waste
constraint:

∑
p∈P

∑
n∈Np

lpnλpn ≤ l, where lpn is the total amount of waste for n

copies of pattern p. This constraint is implicit in the master. It is induced by the
demand constraints and the constraint on the number of rolls. However, it helps
in deriving violated inequalities.

Violated inequalities are found by enumerating on the value of the parameters
of the dual feasible functions. For u(k), we generate valid inequalities for successive
values of k. For u

(ε)
1 and u

(ε)
2 , the values of ε depend on the list of item widths. The

dual feasible functions are applied to the normalized coefficients of the constraints
referred to above. If the current solution violates the generated inequality, we
compare the deviation with that of the most violated cutting plane found so far.
Only the most violated cut is added to the LP master in each iteration. The cutting
plane procedure repeats until there is no more inequalities violated in more than
0.0001. Further details concerning the separation procedures can be found in [1].

To accelerate branch-and-bound, the nodes are inspected to anticipate infea-
sibility or to prune them by computing lower bounds. Consider a node q of the

A BRANCH-AND-PRICE-AND-CUT ALGORITHM FOR THE PMP 449

branch-and-bound tree with a set Hq of “greater than or equal to” branching con-
straints, and let Hq

1 = {(r, s, n) ∈ Hq : W − s < wm}, with wm being the width
of the smallest item. If the following holds

∑
(r,s,n)∈Hq

1
n× lbn

rs×(W −s) > l, node
q can be pruned, since the branching constraints force a solution with more waste
than the maximum waste of the optimal CSP solution. Based on the branching
constraints at a node q, we can calculate a lower bound on the number of different
patterns in two different ways. Let Hq

2n be the set of “greater than or equal to”
branching constraints at node q, such that two triplets (r1, s1, n) and (r2, s2, n)
belong to Hq

2n if they both belong to Hq and s1−r1 +s2−r2 > W . The set Hq
2n is

composed by the triplets (r, s, n) ∈ Hq with s− r > W
2 (let w′ be the width of the

smallest of these arcs), and a triplet (r1, s1, n) of Hq with the greatest associated
lbn

rs at node q and such that W
2 ≥ s1 − r1 > W −w′. Clearly, the arcs in Hq

2n will
appear in different patterns. If

∑nmax

n=1

∑
(r,s,n)∈Hq

2n
lbn

rs ≥ zinc, with zinc being
the value of the current incumbent, node q can be pruned, since it surely leads to
a non-improving solution. On the other hand, if

∑nmax

n=1

∑
(r,s,n)∈Hq

2n
n × lbn

rs >

zCSP , node q will be infeasible, and it can therefore be pruned in anticipation.
A second lower bound can be computed as follows:

∑nmax

n=1 max
(r,s,n)∈Hq

lbn
rs, since

max
(r,s,n)∈Hq

lbn
rs is a lower bound on the number of patterns with multiplicity n.

The node can be pruned by comparing this bound with zinc, and by comparing∑nmax

n=1 max
(r,s,n)∈Hq

n × lbn
rs with zCSP .

4. Computational results

To evaluate the performance of our algorithm, we conducted two sets of compu-
tational experiments with a 3.0 GHz Pentium IV computer with 512 MB of RAM
and CPLEX 6.5 with default settings. The first set of instances was used by Van-
derbeck in [18]. Some of them come from real-life problems. The computational
results show that our approach improves in some aspects the exact method pro-
posed by Vanderbeck. Additionally, we performed some experiments on randomly
generated instances.

Table 2 summarizes the computational results obtained with the instances used
in [18]. The columns have the following meaning: Name identifies the instance;
m is the number of different items; spLP is the number of subproblems solved
at the root node; colsLP is the number of columns generated at the root node;
spBB is the total number of subproblems solved at the nodes of the branch-and-
bound tree, excluding the root node; colsBB is the number of columns generated
during branch-and-bound; nodBB is the number of nodes of the branch-and-bound
tree (excluding the root node); cuts is the total number of cutting planes added;
BBP is the initial lower bound obtained by solving the corresponding bin-packing
instance; zbc

LP is the LP optimum before any cut is added; zac
LP is the LP optimum

after cuts are applied; LB is the best lower bound obtained in the course of the
algorithm; UB is the value of the best incumbent; CSP is the number of different

450 CLÁUDIO ALVES AND J.M. VALÉRIO DE CARVALHO

patterns in the solution of the corresponding standard CSP; K is the number of
stocks rolls that minimizes trim loss; tLP is the total computing time spent at the
root node; tBB is the total time spent at the nodes of the branch-and-bound tree,
after the root node; tTOT is the total computing time. The maximum computing
time was limited to 2 h.

The algorithm solved successfully 13 of the 16 instances, while Vanderbeck only
closed the optimality gap for 12 of them. For these 12 instances, on average,
our algorithm needs much less branching nodes. If we exclude the root node,
Vanderbeck needed 98 nodes to solve these instances, while we only need 55.3
nodes. Remember that we do not use any rounding heuristic with which a better
incumbent may probably be found faster. The LP bounds obtained after adding
our cutting planes are better than the ones obtained with the cutting planes de-
scribed by Vanderbeck. For kT03, for example, we are able to close the integrality
at the root node. The lower bound of 5 units obtained by Vanderbeck is improved
by 10%. On average, at the root node, the values of the LP optima are improved
by 21.5%. For 11p4, this improvement reaches 26.1%.

Our algorithm was further tested on a broad range of randomly generated in-
stances. To generate them, we used CUTGEN1 [7]. A total of 3600 instances
divided in 36 groups of 100 instances were generated for different problem sizes
(m = 20, 30 and 40), different average demands (d = 10, 20 and 30), a single
stock length (W = 1000), and various relative widths of the items compared to
the stock lengths. The width of the smallest item (v1) varies between 1 and 30%
of the stock length (v1 ∈ {1, 10, 20, 30}), while the width of the largest item (v2)
is always at most 80% of the stock length. We used a seed equal to 1994, and
stopped the execution after 10 min of branch-and-bound. A complete list of the
results is available in [1].

All the instances with m = 20 and an average demand of 10 units per item
width are solved to optimality. For the other instances with m = 20, we are not
able to close the integrality gap for only 11% of the instances. The corresponding
average gap is not greater than 3%. The most difficult instances are those with
d = 30. In fact, the larger the demands, the larger will be the multiplicities, and the
larger will be the number of subproblems that will have to be solved. Computing
times increase naturally with the average demand, and other parameters like the
relative width of the smallest item, for example. Applying the cutting planes yields
an improvement of 17.5% of the LP bound. The average computing time is almost
2.5 min. The percentage of instances with m = 30 solved to optimality is 57.6%.
For these instances, the cutting planes improve the LP bound by 19.8%. The
optimality gap increases to 8.9%. The average computing time is slightly greater
than 6 min. Only 33.5% of the instances with m = 40 are optimally solved, which
amounts to nearly 400 instances. For these instances, the average optimality gap
is 12.1% and the average computing time is almost 9 min.

A BRANCH-AND-PRICE-AND-CUT ALGORITHM FOR THE PMP 451

T
a
b
l
e

2
.

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
in

st
an

ce
s

fr
om

th
e

lit
er

at
ur

e.

N
a
m

e
m

sp
L

P
co

ls
L

P
sp

B
B

co
ls

B
B

n
od

B
B

cu
ts

L
B

0
z

b
c

L
P

z
a

c
L

P
L

B
U

B
C

S
P

z C
S

P
t L

P
t B

B
t T

O
T

k
T

0
3

7
7
0

6
4

0
0

0
4
6

3
4
.7

7
5
.5

0
6

6
6

6
6

0
.1

0
.0

0
.1

k
T

0
5

1
0

5
5

4
6

1
5
7

8
7

6
5

6
2

4
5
.6

5
8
.0

0
9

9
1
1

4
7

2
.8

8
.4

1
1
.2

k
T

0
1

5
3
6

3
5

1
4

1
4

1
5
7

1
2
.1

2
.6

1
3

3
6

1
4

0
.3

0
.1

0
.4

k
T

0
2

2
4

1
2
1

1
1
9

9
3

6
1

2
6

6
9

1
3

1
5
.9

3
1
8
.0

0
1
8

1
8

2
0

6
6

0
.6

1
.2

1
.8

k
T

0
4

1
6

2
0
1

1
6
6

3
5
6

2
8
1

8
8

1
1
3

6
6
.7

4
7
.8

8
9

9
1
6

3
8

2
.5

1
1
.2

1
3
.7

d
1
6
p
6

1
6

2
0
2

1
7
3

1
9
9

1
4
4

5
3

1
0
7

6
6
.7

4
7
.9

0
9

9
1
4

3
8

6
.0

6
.2

1
2
.2

7
p
1
8

7
6
5

5
3

5
8
7

4
3
7

1
9
3

1
7
0

2
3
.7

4
4
.9

0
6

6
8

9
1

2
.6

4
3
.3

4
5
.9

d
3
3
p
2
0

2
3

1
4
7

1
4
6

1
2
5
3

1
2
0
2

1
1
4

1
2
3

5
6
.1

8
6
.7

0
8

8
1
7

2
9

1
7
.1

2
0
9
.0

2
2
6
.1

1
2
p
1
9

1
2

9
8

9
6

1
0
3
5

1
0
0
4

6
3

1
6
7

2
2
.8

9
3
.9

0
5

5
1
5

2
3

1
5
.8

1
3
5
.6

1
5
1
.4

d
4
3
p
2
1

3
2

2
1
1

2
0
7

7
6
7

7
3
2

6
9

1
7
7

7
7
.8

6
8
.7

2
1
0

1
0

2
6

4
0

3
1
.3

1
9
4
.5

2
2
5
.9

k
T

0
6

9
1
6
0

1
3
1

6
4
5

6
0
2

1
1

3
0
9

1
1
.7

5
2
.7

8
4

4
1
5

5
1

1
4
4
.3

7
5
8
.8

9
0
3
.0

k
T

0
7

1
1

1
5
7

1
5
5

3
4
5
8

3
3
6
7

1
6
8

4
7
7

2
2
.8

6
3
.6

4
5

5
1
6

6
5

6
9
.2

3
3
9
3
.5

3
4
6
2
.7

1
4
p
1
2

1
4

1
4
0

1
1
9

1
1
2

1
1
0

5
1
7
8

2
3
.7

5
4
.2

2
5

5
1
8

5
6

4
0
.7

3
4
.3

7
5
.0

k
T

0
9

1
4

1
3
8

1
3
6

3
6
5
6

3
5
7
4

1
7
5

3
1
3

2
3
.6

5
4
.9

5
5

6
2
4

1
1
0

1
2
9
.0

7
0
7
1
.3

7
2
0
0
.3

1
1
p
4

1
1

2
2
5

2
2
3

2
1
3
5

2
0
6
8

6
5

3
7
2

1
2
.4

8
3
.9

1
4

5
2
4

1
0
1

1
9
7
.4

7
0
0
2
.9

7
2
0
2
.3

3
0
p
0

2
6

3
1
3

3
1
1

2
0
5
1

2
0
4
3

2
8

2
9
4

4
5
.5

1
6
.6

6
7

8
2
8

9
0

2
6
5
.9

6
9
3
5
.6

7
2
0
1
.5

a
v
g
.

1
4
.8

1
4
6
.2

1
3
6
.3

1
0
3
2
.4

9
8
2
.9

7
0
.3

1
8
9
.6

3
.8

5
.1

6
6
.2

7
7
.1

7
.3

1
6
.5

5
7
.8

5
7
.9

1
6
1
3
.0

1
6
7
0
.8

452 CLÁUDIO ALVES AND J.M. VALÉRIO DE CARVALHO

5. Conclusion

In this paper, we described a branch-and-price-and-cut algorithm for the Pat-
tern Minimization Problem. A new arc flow formulation was proposed, and new
valid inequalities for the integer knapsack polytope were presented. These in-
equalities were used to strengthen the continuous bound of the column generation
model. We used dual feasible functions for the first time to derive these cutting
planes. We gave various formal proofs showing that some of these functions dis-
cussed in the literature are superadditive, and hence, that valid inequalities can be
obtained with them. Stronger cuts were computed by using linear combinations of
constraints instead of the original ones. Various computational experiments were
performed on instances from the literature, and randomly generated instances.
Our algorithm improved the results obtained by other exact approaches.

Acknowledgements. We thank the anonymous referees for their constructive comments,
which led to a clearer presentation of the material.
This work was partially supported by the Portuguese Science and Technology Foundation
(POS C/57203/EIA/2004) and by the Algoritmi Research Center of the University of
Minho (Industrial and Systems Engineering Group).

References

[1] C. Alves, Cutting and packing: problems, models and exact algorithms. Ph.D. Thesis, Uni-
versidade do Minho (2005).

[2] J.M. Allwood and C.N. Goulimis. Reducing the number of patterns in one-dimensional cut-
ting stock problems. Technical report, Electrical Engineering Department, Imperial College,
London (1988).

[3] G. Belov. Problems, models and algorithms in one- and two- dimensional cutting. Ph.D.

Thesis, Dresden University (2003).
[4] C.-L.S. Chen, S.M. Hart, and W.M. Tham. A simulated annealing heuristic for the one-

dimensional cutting stock problem. Eur. J. Oper. Res. 93 (1996) 522–535.
[5] S. Fekete and J. Schepers. New classes of fast lower bounds for bin packing problems. Math.

Program. 91 (2001) 11–31.
[6] H. Foerster and G. Waescher. Pattern reduction in one-dimensional cutting stock problems.

Int. J. Prod. Res. 38 (2000) 1657–1676.
[7] T. Gau and G.Waescher. CUTGEN1: A problem generator for the standard one-dimensional

cutting stock problem. Eur. J. Oper. Res. 84 (1995) 572–579.
[8] P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting stock prob-

lem. Oper. Res. 9 (1961) 849–859.
[9] C. Goulimis, Optimal solutions for the cutting stock problem. Eur. J. Oper. Res. 44 (1990)

197–208.
[10] R.W. Haessler, A heuristic programming solution to a nonlinear cutting stock problem.

Manage. Sci. 17 (1971) 793–802.
[11] R.W. Haessler. Controlling cutting pattern changes in one-dimensional trim problems. Oper.

Res. 23 (1975) 483–493.
[12] R.E. Johnston, Rounding algorithms for cutting stock problems. Asia-Pac. Oper. Res. J. 3

(1986) 166–171.

A BRANCH-AND-PRICE-AND-CUT ALGORITHM FOR THE PMP 453

[13] R.E. Johnston. Cutting patterns and cutter schedules. Asia-Pac. Oper. Res. J. 4 (1987)
3–14.

[14] S. Martello and P. Toth, Knapsack Problems. Wiley, New York (1990).
[15] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization. Wiley, New

York (1988).
[16] J. Teghem, M. Pirlot, and C. Antoniadis, Embedding of linear programming in a simulated

annealing algorithm for solving a mixed integer production planning problem. J. Comput.
Appl. Math. 64 (1995) 91–102.

[17] S. Umetani, M. Yagiura, and T. Ibaraki, One-dimensional cutting stock problem to minimize
the number of different patterns. Eur. J. Oper. Res. 146 (2003) 388–402.

[18] F. Vanderbeck. Exact algorithm for minimising the number of setups in the one-dimensional
cutting stock problem. Oper. Res. 48 (2000) 915–926.

	Introduction
	Integer linear programming formulations
	A compact formulation
	Column generation reformulation
	Improving the column generation model of Vanderbeck
	An arc flow formulation

	New general cutting planes
	The branch-and-price-and-cut algorithm
	Computational results
	Conclusion
	References

