Universidade do Minho
Escola de Engenharia

Joao Carlos Ferreira Alves

Ontology-Driven Metamodeling
Towards Hypervisor Design Automation:
Secure Inter-Partition

Communication (IPC)

Guimaraes, January of 2018






! 77\
/7
>

Universidade do Minho
Escola de Engenharia

Joao Carlos Ferreira Alves

Ontology-Driven Metamodeling

Towards Hypervisor Design Automation:
Secure Inter-Partition

Communication (IPC)

Dissertacdo de Mestrado em Engenharia Eletronica Industrial
e Computadores

Trabalho efetuado sob a orientacao do

Professor Doutor Adriano Tavares
Professor Doutor Sandro Pinto

Guimaraes, January 2018






Declaracao do Autor

Nome: Jodao Carlos Ferreira Alves
Correio Eletréonico: a68515@alunos.uminho.pt
Cartao de Cidadao: 14614957

Titulo da dissertagao: Ontology-Driven Metamodeling towards Hypervisor De-
sign Automation: Secure Inter-Partition Communication
Ano de conclusao: 2018

Orientador: Professor Doutor Adriano Tavares

Designacao do Mestrado: Ciclo de Estudos Integrados Conducentes ao Grau
de Mestre em Engenharia Eletrénica Industrial e Computadores

Area de Especializacdo: Sistemas Embebidos

Escola de Engenharia

Departamento de Eletronica Industrial

De acordo com a legislagao em vigor, nao ¢ permitida a reproducao de qualquer

parte desta dissertagao.

Universidade do Minho, 23/01/2018

Assinatura: Joao Carlos Ferreira Alves






Acknowledgements

Firstly, I would to thank my advisor Dr. Adriano Tavares, for proposing me
a project for my thesis and for enlightening me throughout its development, with
his vast knowledge and expertise. Following, I would to thank Dr. Sandro Pinto
that also having made its contribution, by making me feel motivated when things
looked more complicated, by providing me the opportunity to make one of my firsts
scientific contribution, by being always available and by promoting companionship
within the research group.

To the embedded systems class of 2015/16, a huge "Thank You!" for being a
great group of work and for the great collaborative environment. Special note
to the "German Gang'" for being with me on my first experience abroad. Also,
a special "Thank you!" To the irreverent Dr. Tiago Gomes, for helping me in
achieving my first of all scientific contribution, and by being a great lab companion.
To my friend and peer of 4th year projects, David Cerdeira, with whom I've shared
moments of difficulty and despair, however always overcoming those things; for
the long hours of work, conversation and knowledge sharing, one massive "Thank
You!". Last, but certainly not the least, I would to massively thank my companion
José Martins, for sharing with me long hours of work throughout the development
of this dissertation, helping to overcome adversities that appeared, helping me feel
motivated and for always pushing me further.

I kindly thank my friends and family, for the patience and support, for the
time of companionship and relaxation, and for never ever giving up on me. I can
not name all of them, as would I need a lot more pages. However, there are a few
to whom I should leave the most dearest "Obrigado!", for having such a special
place in my heart. This goes to: Tindcos (Rita, Isa, Moreira, Teresa, Helena e
Bruno), Nuno, Octévio and Chuck.

Finally, the biggest "Obrigado!" goes to my parents and little brother, for
providing all that I needed, for being the highest reference of hard-work, for dealing
with me on the hardest moments, and for never letting me down. My biggest goal
is to make you feel proud! So for all this, and for what is yet to come "Obrigado,

gosto muito de vocés!!".

vii






Abstract

Embedded systems, which were by definition single-purpose, have evolved
rapidly and nowadays are capable of supporting applications that, priorly, would
be distributed between different hardware platforms. Virtualization proved its
value in other fields, providing a way to safely collocate different applications on
the same platform, enforcing security through isolation. Typical virtualization
solutions follow a monolithic architecture, which usually contain large Trust Com-
puting Base (TCB). Inherently, these are difficult to maintain, and could likely
hide buggy software. Microkernels advocate a minimal TCB, that is restricted to
an Inter-Partition Communication (IPC) infrastructure, a scheduler and memory
management. Other functionalities are implemented in user-space, isolated from
the system’s critical functionalities. Service provision is achieved by leveraging
Inter-Partition Communication (IPC) infrastructure, with well defined communi-
cation channels, and establishing trustworthy communication relations.

The inherent complexity of properly configuring such systems requires the use
of dedicated tools, aiming at easing the configuration process. Model-Driven Engi-
neering (MDE) advocates the conception of models towards software development,
which would provide a more abstract, simplified view of the final system. Model
description is often paired with Domain-Specific Languages (DSLs), that are fea-
tured with generative capacities. Thus, it becomes possible to transform a more
abstract system into implementation artifacts (e.g. C/C++ code). Semantic tech-
nology has also been combined to modeling technologies, providing an alternative
system representation, while enhancing modeling tools with: higher consistency,
interoperability, automated validation and reasoning support.

Under the light of the above, a collaborative effort was conducted towards the
enhancement of the in-house developed RTZVisor with microkernel-like principles,
that resulted on the yRTZVisor. This thesis focus on the implementation of a
secure IPC infrastructure, featured with a capability-based access-control facility,
to improve its overall reliability by imposing Information Control Flow (ICF).
Aiming at easing system’s configuration, a modeling infrastructure was conceived
that enabled the description of systems to be deployed on top of pRTZVisor. The
infrastructure also converts the model representation into final source code with

uRTZVisor resources configuration.

X






Resumo

Os Sistemas embebidos, que eram por defini¢ao de propésito tinico, tém evoluido
rapidamente, sendo hoje em dia sao capazes de suportar aplicagoes que, anterior-
mente, estariam distribuidas por diferentes plataformas. A virtualizacao provou
o seu valor em diferentes areas, possibilitando a consolidacao segura de difer-
entes aplicagdoes numa s6 plataforma, impondo seguranca por isolamento. Tipica-
mente, a virtualizagdo é implementada numa arquitetura monolitica, que requer
muitas linhas de codigo. Consequentemente, estas sao dificeis de manter e de val-
idar, e podem conter erros "escondidos". As arquiteturas Microkernel advogam o
principio da minimalidade, com o objetivo de minimizar o tamanho da sua im-
plementacao. Tipicamente, estas restringem-se a servigos de comunicagao entre
particoes, escalonamento e isolamento espacial. Outras funcionalidades devem
ser implementadas como aplicacoes, isolando-as assim, dos servicos criticos do
sistema. Devem-se, por isso, estabelecer canais de comunicagdo seguros para se
providenciarem servicos entre particoes.

A configuracao de tais sistemas pode ser complexa e morosa. Assim, requer-se
a utilizacdo de ferramentas dedicadas a automacao deste mesmo processo. Model-
Driven Engineering (MDE) coloca a concegao de modelos como objetivo primério
do desenvolvimento de software. Este paradigma é usalmente combinado com lin-
guagens de dominio especifico, que possuem capacidades generativas, tornando-se
possivel converter a representagao de um modelo em artefactos de implementacao
(nomeadamente cédigo C/C++). A tecnologia seméntica tem sido utilizada para
concecao de modelos, melhorando as ferramentas de modelacdo com: verificacao
de consisténcia do modelo, interoperabilidade e validacao automatizada.

No seguimento do que foi dito anteriormente, foi efetuado o melhoramento da
implementacao do hipervisor RTZVisor, conferindo-lhe principios de arquiteturas
Microkernel, concevendo-se o uRTZVisor. Esta tese focou-se na implementacao
de mecanismos seguros para comunicacao entre partigoes, complementados com
funcionalidades para controlo de acessos. De forma a facilitar o processo de con-
figuracao, foi desenvolvida uma ferramenta de modelacao, que converte a repre-

sentacao de um modelo em cédigo fonte para configuragao do uRTZVisor.

xi






Contents

Abstract
Resumo
Contents

List of Figures
List of Tables
Glossary
Listings

1 Introduction

1.1 Context . . . . . . . . s,
1.2 Goals. . . . . . s,

1.3 Document’s Structure . . . . . . . . .. ... ... ..

2 Theoretical Foundation and Background

2.1 Virtualization . . . . . ... ... ... ... ... ...
2.2 Microkernels vs Monolitic . . . . . ... ... ... ...
2.3 Inter-Partition Communication . . . .. ... ... ...
2.3.1 Policies and Mechanisms . . . . . ... ... ...
2.3.2 Review Of IPC security . . .. .. .. ... ...
2.4 Access-Control . . . . . . ...
2.4.1 Capability-based Access-Control . . . . . . . . ..
2.5 Microkernels Related Work . . . . . . .. ... ... ...
2.6 ARM Trustzone . . . . . . . .. ... ... L.
2.7 RTZVisor . . . . . . . . . . . .. . ...
2.7.1 Identified Limitations . . . . . . . ... ... ...
2.8 Model-Driven Engineering . . . . . .. .. .. ... ...
2.8.1 Domain-Specific Language . . . . . . . ... ...

2.8.2 Component-based Software Engineering

xiii

ix

xi

xiii

xvii

xix

xxiii

XXVi



2.8.2.1 Component-based Modeling Solutions . . . .. .. 29

2.9 Ontology-Driven Software Development . . . . . . . . .. ... ... 31
2.9.1 Example of an Ontology . . . . .. ... ... ... ... .. 33

2.10 SeML Infrastructure . . . . . . .. . ... oL 34
2.10.1 Upper Ontology . . . . . . . . . .. . ... 36
2.10.2 Simple Example . . . . . .. ..o 37

3 uRTZVisor Architecture 39
3.1 System Overview . . . . . . . . . .. .. ... 39
3.1.1 Partition Manager . . . . ... ... ... ... ... ... 44
3.1.2 Capability Manager . . . . . . . ... .. ... ... 45
3.1.3 Memory Manager . . . . . . . . ... ... ... A7
3.1.4 Device Manager . . . . . ... . ... 49
3.1.5 Interrupt Manager . . . . ... ... ... ... ... 50
3.1.6  Port Manager . . . . . .. ... ... L. ol
3.1.7 Lock Manager . . . . . . .. . .. ... 54
3.1.8 Event Manager . . . . . . .. ... ... ... ... 55
3.1.9 Scheduler . . .. .. ... ... 5}

3.2 Implementation . . . . . ... ... 29
3.2.1 Access-Control . . . . . .. ... 61
3211 SMCHandler . . .. ... ... ... ........ 62

3.2.1.2  Grant and Revoke . . . .. .. ... ... ... 63

322 IPC . . . 65
3.2.2.1 Message Passing . . ... ... ... ... ... .. 65

3.2.2.2  Synchromization. . . . . ... ... 69

323 Events . . . ... 70
3.24 Scheduler . . .. .. ... 72
3.2.5 Code Verification . . . . . . . ... ... L. 76

3.3 Ewvaluation . . . . . ... Lo 7
3.3.1 IPC performance . . .. ... ... ... ... ... ..... 7
3.3.2  Security Analysis . . . .. ... 80

4 Hypervisor’s Design Automation 83
4.1 Methodology and Context . . . . . . .. .. ... ... ... .... 83
4.2 TZ Description Language . . . . . . . .. . ... ... ... ... 84
4.2.1 Domain Ontology . . . . . . . . . .. ... ... ... . 87
4.2.2  Grammar . . ... 91
4.2.3 Code Generation . . . . . .. ... ... ... ... 93

Xiv



4.2.3.1 TZDL’s code generation . . . . . .. .. ... ... 94

4.2.3.2 TZDL Tool . . . . . . . . . . ... 96

4.3 Simple Use-Case . . . . . . . . . . . ... 97
4.3.1 TZDL Program . . . . . . . . . ... .. ... ... ... 98

4.3.2 Code Generation . . . . . . . . . . ... 101

4.4 DiIscussion . . . . ... 103
5 Conclusion 107
5.1 Future Work . . . . . . . . 109
Bibliography 120

XV






List of Figures

2.1 Common example of Security achieved by isolation [1]. . . . . . ..
2.2 Type of hypervisors architectures. . . . . . . . . ... ... .....
2.3 Monolitic vs Microkernel architectures . . . . .. . ... ... ...
2.4 Representation of the asymmetric trust model. . . . . . . . . . . ..
2.5 Representation of the asymmetric trust model. . . . . . . . . . . ..
2.6 Representation of the asymmetric trust model. . . . . . . . .. . ..
2.7 RTZVisor system architecture. . . . . . . . ... ... ... .....
2.8 RTZVisor system architecture. . . . . . . . ... ... ... .....
2.9 Overall DSL workflow [2]. . . . ... ... ... ... .......
2.10 Dummy example of a component-based architecture. . . . . . . ..
2.11 A simplified ontologies classification scheme [3]. . . . . . . ... ..
2.12 Simple example with a Pizza ontology. . . . . . . . .. .. .. ...
2.13 Individuals from Pizza ontology. . . . . . . . . . . . . ... ... ..
2.14 SeML infrastructure overall architecture. . . . . . . . . . ... ...
2.15 SeML upper Ontology. . . . . . . . .. .. ... ...
2.16 Using SeML with pizza ontology. . . . . . ... .. ... ... ...

3.1 wpRTZVisor architectural overview. . . . . ... .. ... ... ...
3.2 Capability-based access control system overview. . . . . . . . .. ..
3.3 Operations using a port group as endpoint. . . . . . . . ... . ...
3.4 Overview of the scheduling algorithm. . . . . . . .. ... ... ...
3.5 Example of an execution cycle, given a set of time domains with
their own partitions and respective configuration. . . . . . . . . ..
3.6 uRTZVisor UML diagram: overview of implemented architecture.
3.7 Classes that encapsulate access control functionality. . . . . .. ..
3.8 Classes that encapsulate message-passing functionality. . . . . . . .
3.9 Classes that encapsulate synchronization functionality. . . . . . . .
3.10 Classes that encapsulate events functionality. . . . . . . . . . . . ..

3.11 Classes that encapsulate scheduling functionality. . . . .. . .. ..

4.1 Overview of TZDL workflow. . . . . . . . . . .. ... .. ... ...

4.2 Taxonomy for domain ontology, namely Entity derived classes. . . .

Xvii



4.3

4.4

4.5

4.6

4.7

4.8

Other taxonomies derived from other upper ontology’s concepts. . .
Excerpt of kernel’s domain ontology. . . . . . ... ... ... ...
Excerpt of kernel’s domain ontology, focusing on communication
related objects. . . . . . . .o
Excerpt of kernel’s domain ontology, focusing on communication
related objects. . . . .. ..o
Source code organization/hierarchy of all generated configuration
files. . . . .

Component-based architecture for a Publisher-Subscriber scenario. .

xviii

89



List of Tables

3.1

3.2
3.3

3.4
3.5

4.1
4.2
4.3

Port operations characterization, i.e., if it is synchronous or asyn-
chronous and either blocking or non-blocking. . . . . .. ... ...
Asynchronous IPC primitives latency (us). . . . . . . . . . ... ..

Synchronous IPC communication latency (us), in a guest-guest sce-

Synchronous IPC communication latency (us), in a task-task scenario.

Synchronous IPC communication latency (us), in a guest-task sce-

Summary of all TZDL’s constructs. . . . . . . ... ... ... ...
Generation summary for each type of Interface. . . . . . . .. . ..

Generation summary for each type of Binding. . . . . . . . .. . ..

Xix

52
7

78
79

92






Listings

2.1
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
4.1
4.2
4.3
4.4
4.5
4.6
4.7

Code for binding pizza properties. . . . . . . . . .. ... ... ... 37
Main function with initialization of all managers. . . . . . .. . .. 60
Algorithm of the smc_handler. . . . . . . . . .. ... . ... ... 63
Algorithm of the Grant operation. . . . . . . ... ... . ... ... 64
Algorithm of the revoke operation. . . . . . ... ... .. ... .. 64
Algorithm of the recursive function from the revoke operation. . . . 65
uRTZVisor’s message structure. . . . . . . . ... ... ... 66
Algorithm of the Send operation. . . . . . . ... ... ... .... 67
Algorithm of the recursive function from the revoke operation. . . . 68
Algorithm of the recursive function from the revoke operation. . . . 69
Algorithm of the Lock operation. . . . . . ... ... ... ..... 70
Algorithm of the Free operation. . . . . . .. ... ... ... .... 70
uRTZVisor’s events and events entry structures . . . . . . . .. .. 72
Algorithm of the donation procedure. . . . . . . . .. ... ... .. 74
Algorithm for undoing a donation.. . . . . . . . ... ... ... .. 75
Algorithm for updating donations chain upon a new donation. . . . 75

Algorithm for updating donations chain upon giving back a donation. 75

Ports and Capabilities’ configuration structures. . . . . . . . . . .. 96
Elemental components code example in TZDL. . . . . . . .. .. .. 99
Interfaces code example in TZDL. . . . . . ... .. ... ... ... 99
Composite code example in TZDL. . . . . ... .. ... ... ... 100
Composite code example in TZDL. . . .. .. ... ... ... ... 101
Composite code example in TZDL. . . .. .. ... ... ... ... 101
Generated configuration files for the depicted example. . . . . . . . 102

xxi






Glossary

pwRTZVisor micro Real-Time TrustZone-assisted Hypervisor.

ABI Application Binary Interface.
ADL Architectural Description Language.

API Application Programmable Interface.

CBSE Component-based Software Engineering.
CC Common-Criteria.

CPU Central Processing Unit.

DAC Descritionary Access Control.

DMA Direct Memory Access.

DoS Denial-Of-Service.

DRAM Dynamic Random-Access Memory.

DSL Domain-Specific Language.
EAL Evaluated Assurance Level.
FIQ Fast Interrupt Request.

GIC Generic Interrupt Controller.
GPL General-Purpose Language.

GPOS General-Purpose Operating Sytem.

GUI Graphical User Interface.

ICF Information Control Flow.

IDL Interface Description Language.

xxiii



IPC Inter-Partition Communication.

IRQ Interrupt Request.

MAC Mandatory Access Control.

MDA Model-Driven Architecture.

MDE Model-Driven Engineering.

MDSD Model-Driven Software Development.
MILS Multiple Independent Levels of Security.

MMU Memory Management Unit.

OCM On-Chip Memory.

ODSD Ontology-Driven Software Development.
OMG Object Management Group.

OS operating system.

OS Operating Sytem.

OWL The Web Ontology Language.

PCB Partition Control Block.

PP Protection Profile.

ROM Read-Only Memory.

RPC Remote Procedure Calls.
RTOS Real-Time Operating Sytem.
RTTI Run-Time Type Information.

RTZVisor Real-Time TrustZone-assisted Hypervisor.

SeML Semantically-enriched Modeling Language.
SoC System on Chip.

SRAM Static Random-Access Memory.

XXiv



TCB Trust Computing Base.

TLB Translation Lookaside Buffer.

TOE Target Of Evaluation.

TZASC TrustZone Address Space Controller.
TZDL TrustZone Description Language.
TZMA TrustZone Memory Adapter.

TZPC TrustZone Protection Controller.
UML Unified Modeling Language.

VM Virtual Machine.
VMCB Virtual Machine Control Block.

VMM Virtual Machine Monitor.

W3C World Wide Web Consortium.

XXV






Chapter 1
Introduction

Embedded systems are widespread in modern society, due to their presence
at the technological base for different systems in a broad range of application
areas, including automotive, robotics, aerospace, IoT, and so on. Moreover, the
whopping evolution of silicon technologies is pushing embedded systems further,
making them suitable to integrate complex and powerful modern systems.

Nowadays, embedded devices are becoming increasingly complex, ranging from
strict real-time control applications, to rich GUIs on a single embedded computer.
Priorly, complex systems could encompass multiple embedded control units, which
can now be supported within one single embedded computer [4]. This performance
increase is favorable to systems cost reduction, by lowering the amount of hardware
required, however, this incurs into an increased software complexity. The evolu-
tion of cellphones towards smartphones is another great example of the embedded
systems evolution, as they used to be devices with extremely limited resources,
supporting only a few set of functionalities, but nowadays, such devices are ex-
tremely powerful and can support several tasks on a multitude of scenarios and
applications. A device that was provided with a single processor and limited in
terms of storage capacity, whose purpose was mainly to make audio calls and send
text messages, evolved into a mobile platform that completely surpassed its pre-
decessor. It now includes, on a single device, a set of functionalties that formerly
were separately available, such as audio player, high definition cameras, displays,
internet, localization capabilities, along with a generous storage capacity [5, 1].

However, consolidating a multitude of systems in one single platform raises
several security and safety concerns [1]. Virtualization urged key-enabling tech-
nology for addressing this problematic, since it enables the collocation of different
Operating Sytem (OS), while ensuring that they run separately, confined to their
physical space. This is achieved by providing an abstraction layer to those OSes,
that manages hardware resources [6]. This helps to enforce the system’s security,

as an existent vulnerability in one OS does not affect the others. This approach



2 Chapter 1. Introduction

has been widely used in servers, as a way to not only provide security but also to
achieve energy efficiency [5, 7].

The software that provides the desired abstraction and manages the isolation
complexity is called a Virtual Machine Monitor (VMM), or Hypervisor. Mono-
lithic hypervisors are usually software blocks whose implementations encompass
a large Trust Computing Base (TCB), which often leads to hidden software bugs
that may jeopardize system’s functioning, and that are usually hard to maintain
[8]. Microkernel architectural approach appeared as a solution to mitigate mono-
lithic implementation problems. Their design aimed at reducing the complexity of
kernel infrastructures by providing the bare minimum required functionalities to
support process concurrency [9, 4], complying with the principle of minimality [10].
Microkernel implementations solely encompass a scheduler, memory management
and Inter-Partition Communication (IPC). Moreover, the provided system calls
should not impose any kind of policy. Also, according to the principle of minimal-
ity, the remaining functionalities must be implemented in user space, with well
established IPC interfaces for service provisioning. This kind of implementation
drastically reduces the kernel’s size, and reduces the probability to have buggy
software in the system’s root of trust [8, 11]. Although these principles sound ap-
pealing, microkernel performance is poor compared to monolithic approaches due
to high dependence on IPC infrastructure. This mindset was broken by Liedtke
[12, 13] when he introduced a high-performance IPC in a microkernel implemen-
tation. Nowadays, microkernels are being widely used, and a few of them are even
aiming virtualiation [14, 15].

In microkernel-based systems, servers and applications are usually of mixed
criticality [16], and among them may be executing untrustworthy partitions. As a
result, IPC interactions may occur between critical servers and untrusted parties.
In these scenarios, the security provided by isolation is not enough. Communica-
tion relations are a concern, given that the IPC infrastructure constitute a means
for attacking sibling partitions [17, 16]. One major concern whenever implement-
ing IPC mechanisms is how to mitigate the chance of a Denial-Of-Service (DoS)
attack [18]. Also, if a component is entrusted with confidential data, leakage of
this data to the outside world should not be a possibility. Thus, isolation must
be complemented with confinement, usually achieved by providing access-control
facilities, in which access to system resources and interfaces must be explicitly
granted instead of being available by default [19, 20]. This is often referred to as
Information Control Flow (ICF).

One drawback of microkernel-based systems is that they required a high-level of



Chapter 1. Introduction 3

functionality segregation, which often pairs with a high-level of systems configura-
tion, namely for establishing communication relations and resource multiplexing.
In addition, most of such embedded systems are also characterized as real-time
systems, which means that the real-time properties, such as response time, time
quantum, among others, are also important design concerns. This increased com-
plexity of embedded real-time systems leads to increasing demands with respect to
requirements [21]. The use of model representation raises the level of abstraction
on systems architecture, enables seeing the system at lower granularity, which is
often useful for design validation and requirements verification [22]. Component-
based architectures promote model representation by splitting the system into
functional units, dubbed components, that interact through well defined inter-
faces. This kind of system design pairs well with functional segregation and IPC
reliance inherent to microkernel-based systems. Also, it provides great control over
granularity of representation, by advocating a componentised representations [9].
Pairing these concepts with a Domain-Specific Language (DSL) featuring code
generation, not only enables design validation, but also incurs into higher produc-
tivity, reliability, portability, and eases software testing [2].

Microkernel implementations provide a greater fit for certification, toward se-
curity critical systems, due to its compact implementation [23, 9]. This could be
achieved following the Common-Criteria (CC) standard and the Multiple Indepen-
dent Levels of Security (MILS) architecture. The CC [24, 25, 26] is an international
standard that targets computer security. It advocates the specification of a set
of requirements that must be fulfilled within a class of products, constituting a
Protection Profile (PP). In a PP assurance, requirements are tagged with a rep-
resentative security level, dubbed Evaluated Assurance Level (EAL). The use of
formal methods, mathematical models and proofs at the design stage is usually re-
quired for high security levels. Lower levels simply impose functional or structural
testing in addition to methodical development processes. The MILS [27, 28, 26]
architecture defines a conceptual framework towards system security, by using a
divide-and-conquer approach. This is achieved using separation, composition, and
layered assurance and it is implemented using four layers, namely: trusted hard-
ware, separation kernel, middleware, and applications. This reduces the amount
of code to be verified and, consequently, increases its scrutiny. According to the
layered assurance principle, the security level increases when going down the stack
[27], e.g. the applications can not be more secure than the separation kernel. The

separation kernel is built on fundamental security policy:



4 Chapter 1. Introduction

o Information Flow - Regards to the permitted communication channels

between partitions;

e Data Isolation - This ensures that a partition cannot access resources in

other partitions;

e Temporal Isolation - This ensures that applications within partitions are

executed for the specified duration in the system schedule;

e Fault Isolation - This postulates that failure is confined within a parti-

tion’s domain;

e Sanitization - To ensure the information flow requirement, the separation
kernel should clean any shared resources (microprocessor registers, system

buffers, etc.) before being used by another partition.

The exposed principles can constitute a PP based on MILS architecture, that
could be applied in the implementation of an embedded hypervisor. Thus, con-
tributing to the certification of, or at least part of, the Target Of Evaluation
(TOE).

1.1 Context

This thesis was conceived within a collaborative effort from students working
at Embedded Systems Research Group, the University of Minho. The ultimate
goal of the group’s work is to provide an embedded secure hypervisor, with great
focus on security, integrated with a design automation tool that allows the faster
development and configuration on the previous platform, while following a secure
software development approach. As such, some of the working members focus on
developing a meta-modeling infrastructure, while others will focus on developing
and modeling hypervisor artifacts. As the development of a embedded hypervisor
from scratch is an extensive task, the developed work will have on its roots the
in-house developed Real-Time TrustZone-assisted Hypervisor (RTZVisor), that
constitutes a monolithic implementation aimed at real-time applications. As such,
concurrently to this thesis, there will be elements focusing on the enhancement
of the aforementioned architecture with microkernel-like principles, with great fo-
cus on device sharing, spacial and temporal isolation. Other dissertations will be
focused on achieving a secure boot process, data and control flow integrity, an

ontology-driven DSL, dubbed Semantically-enriched Modeling Language (SeML).



Chapter 1. Introduction )

This thesis focus on enhancing the hypervisor kernel with a secure IPC infrastruc-
ture, as well as the modeling of developed artifacts. The IPC infrastructure should
conceived aiming at security, and should be complemented with access-control to

provide a way of achieving ICF.

1.2 Goals

This thesis focus on the enhancement of RTZVisor with microkernel-like princi-
ples, in addition to providing a means for easily configure the developed artifacts.
RTZVisor is a monolithic hypervisor, implemented using the C language, that
leverages ARM TrustZone technology towards virtualization, providing a close
to full-virtualized environment. However, as it is going to be discussed in fur-
ther sections, this comes with a set of limitations, namely the absence of IPC
and synchronization mechanisms, as well as the absence of a dedicated modeling
infrastructure towards system configuration.

Given this, the following set of goals were specified:

1. Perform a comprehensive survey on IPC and access-control facilities within

microkernels context, identifying common vulnerabilities;

2. Implement an IPC infrastructure, with both communication and synchro-
nization mechanisms. This should be achieved by following state-of-the-art

principles with respect to microkernels, placing special focus on security;

3. Implement a lightweight access-control facility, that enhances IPC mecha-
nisms with ICF;

4. Adopt a secure development process by recurring to C++ instead of C,
performing code certification recurring to the MISRA C++ standard, that

advocates a set of principles and rules towards a more secure development;

5. Conceive a meta-model towards hypervisors design automation, placing spe-

cial focus on IPC resources and communication channels;

6. Evaluate the hypervisor’s implemented artifacts, namely in terms of perfor-

mance and security;

7. Evaluate the conceived work regarding the design automation tool, namely

identifying the gains of the used approach, as well as the counter-parts.



6 Chapter 1. Introduction

1.3 Document’s Structure

This document is structured as follows:

e Chapter 2 provides the knowledge framework for understanding the de-
veloped work. It defines virtualization fundamental concepts, followed by
making the comparison between two different kernel architectures. Then,
it provides a review on IPC comprising elemental concepts, policies, ele-
mental mechanisms and security. Access-control general concepts are in-
troduced, to then support the description of capability-based access-control
facilities. Some microkernel implementations are described, emphasizing
on implemented Inter-Partition Communication (IPC) policies and access-
control approaches. The Arm TrustZone architecture is described to support
the architectural description of RTZVisor, which is the root for the developed
hypervisor artifacts. Model-Driven engineering is introduced, emphasizing
DSL, component-based approaches and ontologies. Lastly, SeML infrastruc-

ture is described.

e Chapter 3 describes the uRTZVisor architecture. It starts by presenting an
overview of the implemented work, starting by stating the advocated prin-
ciples and architectural goals, as well as a general functional description.
Then, each subsystem within the kernel is described, following an order that
enables to understand how each subsystem role, and which dependencies are
established with the remaining. It is then followed by a structural and behav-
ioral description of the developed work; however, confining to communication

mechanisms, access-control facilities and other correlated contributions.

e Chapter 4 describes our approach towards the hypervisor’s design automa-
tion. It starts by describing the goals for the design automation, specifying
SeML’s role in all this. Then, a DSL towards microkernel-like systems is
presented. It is described the developed ontology for integration with SeML
infrastructure, language constructs, and code generation process. An exam-
ple is then provided, and a discussion is conducted to evaluate the developed

work and achieved results.

e Chapter 5 concludes this thesis. It presents the conclusions obtained from
this research, highlighting the contributions, identifying the limitations, and

suggesting future work towards addressing pointed limitations.



Chapter 2

Theoretical Foundation and

Background

This chapter aims at providing the necessary background to understand and
contextualize the developed work. Virtualization is defined, followed by a compar-
ison between microkernels and monolithic architectures. Next, it is presented a
concise survey on IPC, approaching security, as well as applied policies and mech-
anisms. It is followed by the definition of access-control, and then presenting capa-
bilities as the de facto standard for access-control in microkernel-like architectures.
Then, it is introduced the key-enabling technology towards RTZVisor implemen-
tation, followed by the latter’s architectural description. Model-driven engineering
concepts are also presented, placing emphasis on ontologies and component-based

architectures. Lastly, the SeML infrastructure is described.

2.1 Virtualization

Virtualization enables the cooping of multiple OSes, in this context also called
Virtual Machine (VM)s, by providing an environment that abstract the underly-
ing hardware platform and enables the safe sharing of available resources. This
abstraction is provided by introducing another software layer, often called Virtual
Machine Monitor (VMM) or hypervisor [4, 29, 30, 5]. Its main applicability is to

VM

Buffer
Overflow

Figure 2.1: Common example of Security achieved by isolation [1].




8 Chapter 2. Theoretical Foundation and Background

improve system’s safety and security, by providing environment isolation, which is
expected to prevent that a given vulnerability or buggy behavior does not jeopar-
dize sibling VMs [26]. Figure 2.1 is a common example of the security provided by
isolation, in which a buffer overflow attack happens in a given VM. This is also a
necessary requirement for other incurring benefits, like application consolidation,
which helps in reducing production costs by lowering the amount of required hard-
ware to support all the desired functionality, and to reduce energy consumption by
load-balancing across clusters, creating VMs on slightly utilized hosts[29, 1, 31].
Other uses for applying virtualization techniques are: to enable hardware compat-
ibility with legacy software applications; to increase software portability making
it hardware-independent; and to provide an environment that support different
OSes [32, 4]. A typical example of a very-well known virtualized system is the
cell-phone, that usually requires a Real-Time Operating Sytem (RTOS) to in-
teract with the cell-phone’s sensors and to perform important real-time tasks,
in addition to a General-Purpose Operating Sytem (GPOS) that supports the
Graphical User Interface (GUI), functionality towards network connectivity, and
so on. Virtualization in this context prevents, for example, a remote attack on the
GPOS to have repercussions on the RTOS.

There are two types of hypervisors: type 1 (Figure 2.2a) that execute directly
above the hardware, being the only software executing in kernel mode; type 2
(Figure 2.2b) hypervisors run on top of an OS [29, 5, 30, 31]. In both cases, VMs
must behave exactly in the same matter within the virtualized system as they
would, by executing directly over the hardware platform. In addition, for tightly
coupled systems the IPC infrastructure must behave efficiently, i.e. with good
performance and considerable throughput [5, 6, 31]. Typical embedded virtual-
ization solutions belong to type 1 category, as type 2 would not be a good fit for
embedded systems. This is due to the overhead inherent to the existence of an
OS between the hypervisor and the hardware platform [30].

Regardless of their type, there are two different approaches towards a virtu-
alization solution. Full-virtualization solutions are characterized for providing an
environment that allows legacy VMs to execute without modifications, which is
achieved by trapping sensitive instructions of the guest OS and emulating them
on the actual hardware platform. In contrast, para-virtualization requires specific
changes at the OS level in order to make VMs suitable to run over a given hyper-
visor, replacing specific instructions with system calls to the hypervisor. In one
hand, full-virtualization require little engineering effort for VM’s deployment in a

given virtualized system and does not require code availability. Para-virtualized



Chapter 2. Theoretical Foundation and Background 9

Hypervisor

e

(a) Type 1 hypervisor

Platform

(b) Type 2 hypervisor

Figure 2.2: Type of hypervisors architectures.

solutions usually incur into better performance, as the performed changes may
also aim at removing unnecessary operations. However an obvious obstacle is the
OS code availability, necessary to perform the aforementioned changes [33, 5].
Although virtualization is a way to achieve many benefits, these come at ex-
pected costs. Typical virtualization solutions can be modified in order to make
them usable in embedded platforms, although they lack on fulfilling restrictions
and requirements specific of embedded systems, such as memory footprint or real-
time scheduling guarantees [6, 4, 29]. For critical systems the amount of code
constituting the Trust Computing Base (TCB) is relevant, as the number of buggy
behavior is directly proportional with the number of code lines. Thus, in addition
to being carefully written, these must be reduced to the strictly necessary, favoring
system’s safety and also for matching embedded systems’ memory requirements
[6, 30]. Regarding scheduling capabilities, real-time systems are often required to
quickly operate upon events, as well as to provide a meaningful time quantum for

hard-real-time systems to complete their work under established deadlines [4, 15].

2.2 Microkernels vs Monolitic

The kernel part of any OS is the software part that runs with the highest
privilege, executing with no access restrictions over the hardware resources, in
addition to being part of its TCB. TCB is defined by a set of assertions that
the complete system is built upon, which is intended to be secure and reliable.
Penetrating this systems’ layer corroborates all asserted security and safety that

characterizes the system [18]. In monolitic (Figure 2.3a) architectures, it is where



10 Chapter 2. Theoretical Foundation and Background

most OS functionalities are implemented, including interrupt handling, to mem-
ory management, device drivers, network stacks, IPC facilities and file systems.
[9, 10]. The functionality consolidation, hardware architecture heterogeneity and
support for different contexts (i.e. RTOS-based applications and GPOSes) con-
tribute to increased software complexity and, consequently, considerable growth
of kernel code size. Considerably large code implementations are usually difficult
to maintain, escalate and are often prone to hide bugs which, given the amount
of code, are hard to detect [9, 23, 34, 35]. It has been proved that, for the afore-
mentioned reasons, smaller TCBs are preferable for the development of criticality

computer systems [8, 36]. Microkernels (Figure 2.3b) constitute a paradigm shift

Virtual
Memory

e H'

Virtual
Memory

File System

Scheduler

Kernel

Device Drivers Scheduler

Platform

Kernel

(a) Monolitic kernel architecture

(b) Microkernel architecture

Figure 2.3: Monolitic vs Microkernel architectures

from monolitic architectures, which basically consist in moving kernel services to
userspace. The only acceptable services to provide within the kernel are those of
memory management, [PC, and scheduler, thus promoting a minimalistic imple-
mentation that aims at considerably reducing TCB’s code size [15, 14]. In addition,
primitives implemented within the microkernel must comply with the principle of
minimality [14, 10]. This advocates that system calls must be characterized with
policy absence, i.e., as simple as possible. However, these must comprise a vast
and rich number of services that make the implementation of meaningful systems
feasible [1]. In order to keep the kernel simple, device drivers and other services
(that regard with some type of service) are confined to a userspace server. Device
drivers are usually the least trusted code within a kernel, and are usually prone
to suffer remote attacks. The isolation in userspace limits the attack surface and

prevents them to access system’s critical information [8, 23].



Chapter 2. Theoretical Foundation and Background 11

The main handicap of microkernel approach is the obligatory reliance on IPC
infrastructure, which, for a long time, was the main reason for microkernels to
not be accepted as a valid solution [37]. By moving services within the kernel to
a userspace server, the way to access them is through Remote Procedure Calls
(RPC) interfaces or by client-server communication (more detail about this given
in Section 2.3). As such, IPC has to be of great performance, which was achieved
by Liedtke et al. [13, 12] by implementing L4 microkernel whose design primar-
ily goal was to provide fast IPC, proving that microkernels are a valid solution
for modern computing systems. However, IPC is not only used for client-server
communication: Hardware-generated interrupts or traps caused by user level pro-
cesses can be converted into IPC messages by the microkernel and are sent to a
responsible handler (a user level process) [4].

Security is also achieved by providing an environment that fosters function-
ality segregation, which results in higher level of fault containment, as a given
vulnerability is confined in a smaller domain. In virtualization contexts, guest
OSes’s kernel and all running applications are segregated in its own separated
thread, in its own address-space. So, applying microkernels into virtualization do-
main requires highly paravirtualized VMs , which may be a drawback considering
the required engineering effort. In opposition, functionality segregation, combined
with clear microkernel interfaces ease to achieve a modular design, which brings

benefits for testing, debugging and system scalability [11, 37].

2.3 Inter-Partition Communication

In virtualized environments VMs often need to communicate in order to ex-
change services. In non-virtualized machines communication happen through
TCP/IP network stack, which could also be achieved in VMs. However, when
communicating with co-resident machines, this entails unnecessary performance
burden, because the infrastructure does not differentiate between data coming
from the same machine and from outside the machine, processing it the same way,
i.e., through TCP/IP network stack [38]. This could easily be circumvented by
making the kernel aware of these scenarios while maintaining the abstraction, i.e.,
maintaining the interface for IPC mechanisms. This approach would traduce into
gains of performance and software portability, as it would these mechanisms trans-
parent to the user API, thus reducing the para-virtualization effort [38]. There

already exists some work in virtualization exploiting this kind of approach like in



12 Chapter 2. Theoretical Foundation and Background

(39, 40], where shared memory facilities were used to circumvent the stack’s soft-
ware whenever the recipient IP belongs to the same machine as the sender. Given
that embedded systems are highly cooperative systems, that often require synchro-
nization facilities and faster data transmission mechanisms, user API transparency
is often dropped in favor of performance.

Microkernels approaches heavily rely on IPC mechanisms for service provision
due to the high segregation of VMs into domains, which work in favor of security,
however, incurring into performance burden. Given the central role it possesses in
microkernels, and also other types of highly cooperative infrastructures, it must
be carefully designed as it could be exploited for possible attacks [41, 13, 9]. In

[16] some requirements that IPC infrastructure must usually fulfill are presented:

e Reliable delivery, which refers to guaranteeing that messages are successfully

delivered;
e Atomicity characterizes IPC operations as uninterruptible;
e Recipients endpoints must not be forgeable;

e The message’s integrity is maintained though out the communication pro-

cess;
e Multiple IPC calls must be independent from each other;

e Snooping traffic must also be impossible.

Also, when specifying system API, it should be taken into account that IPC
system calls must be general enough to be applied in a plethora of contexts;
however, ITPC system calls must be powerful enough to reduce the number of
system calls required, because the change between user and kernel modes usually

deteriorates performance [13, 42].

2.3.1 Policies and Mechanisms

There are two types of policies that are usually applied for message passing
IPC mechanisms: synchronous and asynchronous. In synchronous communication,
involved partitions meet at a given point in time to proceed the communication.
This means that both are in a known state, i.e., the sender is in a sending state
specifying the message to be transfered, while the receiver is prepared for the
acceptance of a new message specifying the incoming message’s buffer. Thus, at
least one of them must be blocked waiting for the other to perform the com-

plementary operation. Inherently there are some accruing benefits in terms of



Chapter 2. Theoretical Foundation and Background 13

performance and resource management. The data transfer can happen directly
between address spaces, which will reduce the message propagation latency, and
no buffering within the kernel is required [17, 16, 14]. Synchronous communica-
tion usually encompass a donation scheme, where in a client-server scenario the
requester may donate its time execution in order to quicker resolve its dependency
towards the server [43]. This is suitable for Remote Procedure Calls (RPC) ab-
stractions, which consists on providing a interface to access services from a given
server through the use of function calls. In this scenario, from the client’s per-
spective, a function call is solely happening. However, it abstracts a sequence of
IPC operations that sends the request and blocks waiting for the response. It also
performs parameter marshallings and unmarshallings upon message sending and
upon response arrival[10, 44, 16]. Apart from performance, a sound synchronous
IPC design encompass security considerations, as synchronous communication is
prone to DoS attacks, or even unintended deadlocks. One widely spoken problem
of synchronous communication is the asymmetric-trust problem, which happens
when multiple clients rely on the same server. In this relationship that works
based on trust, there could be one badly intended partition that jeopardizes the
execution of one of its siblings. Figure 2.4 depicts the different scenarios in which
the asymmetric trust model becomes a problem. The best case scenario (A),
both client and server perform their operations as supposed. Thus, the execution

happens without incurring into problems to the system.

Hostile
Client

Send() Recv() Send() Send() >cv()  Send()

Recv() Send() Recv() Send() Recv()

Hostile
Server

Hostile
Server

Normal
Server

A) B) Q) D)
A\ Thread Alive O 1pc Not Performed
Thread Dead . IPC Performed

Figure 2.4: Representation of the asymmetric trust model.

On scenario (B) one malicious client may block the server infinitely, causing

them to fail answering the requests from other clients. This problem can and



14 Chapter 2. Theoretical Foundation and Background

should be considered in the opposite way, where a malicious server may cause a
client to block, by failing to perform the desired operations at specific points in
time (scenarios C and D) [16, 17]. Timeouts could be used in order to overcome
these problems, however from L4 family experience [14] these are not effective,
due to inappropriate use from user perspective, and also because it is not a good
mensurable way to determine a given timeout value. Synchronous communication
pushes a given system towards a purely multi-threaded environment, which forces
functionality segregation, isolation and consequently enforces fault-containment.
Nonetheless, it does not pose a definite solution against DoS but it helps to reduce
the impacts of such an event [14, 16].

Regarding asynchronous communication, in contrast with the previous policy,
message sending and reception does not meet at a specific point in time. Conse-
quently, there is no blockage of any involved partition, therefore the asymmetric-
trust problem is avoided [17, 16]. However, buffering within the kernel and, con-
sequently, a double data copy are required. This makes partition execution more
secure, but with an inherent performance cost [14]. There is no risk of directly
causing a partition to fail; however, when not properly mediated, asynchronous
communication is prone to suffer attacks of resource exhaustion, so there’s the need
to provide ICF mechanisms. Also, asynchronous communication can be paired
with event mechanisms for interrupt execution upon message arrival [18], which

in turn can also provide the opportunity for tampering a partition’s execution.

Figure 2.5: Representation of the asymmetric trust model.

In both synchronous and asynchronous communication, one thing to have
in mind is the IPC destination. Original .4 microkernel’s implementation used
threads as the destination of a given IPC operation. This would create the oppor-
tunity for a malicious entity to gather information which could be used to create
an effective attack [18, 14]. Thus, the concept of endpoint was introduced and
it consists on providing an abstraction to communication, from where messages
could be read or write to. The most widely used concept is the notion of a port

that usually is used as being the endpoint for message passing. Figure 2.5 depicts



Chapter 2. Theoretical Foundation and Background 15

the simple scenario for using ports. These could likely have an owner, who is

intended to be the recipient for sent messages [14, 10, 19].

2.3.2 Review Of IPC security

In the literature there are some publications that aim at documenting IPC
vulnerabilities in multiserver systems, as well as the attacks [16, 18, 17, 42]. Mi-
crokernel’s principal of minimality, as explained in Section 2.2, aims at mitigating
these effects by moving policies to userspace, preventing malfunctions to spread.
Nonetheless, when designing an IPC infrastructure it must be considered where
vulnerabilities may be located to prevent or mitigate possible attacks [19].

In [18] attacks have been documented as direct and indirect. Direct DoS at-
tacks that aim at monopolizing a given resource, may cause another partition
relying at the resource, or even the whole system, to fail. For example, sending a
considerate amount of messages may cause a partition to spend most of its time
dealing with messages, forbidding it from performing another concurrent task. In-
direct attacks are those that aim at tampering the system’s manager, thus not
directly tampering a sibling partition, however jeopardizing its execution through
means of the manager. For example, sending a lot of spurious messages, with the
purpose of exhausting buffering resources. In [16, 17] these notions are extended
with categorizing attacks according to the means of exploit. One means of exploit
is the IPC subsystem by maliciously tampering the parameters of system calls,
which, for example, may include a pointer to an invalid memory region, prevent-
ing the communication to happen. Another way to attack the IPC subsystem
would be by exhausting memory resources, in the case they are dynamically al-
located. The message delivery process is another concern, where addressing for
IPC operations may also be secured, since partition A may not be intended to
access services from partition B, thus by performing any communication attempt
with partition B, could mean A was trying to tamper B. As such, there should
be prevented identity spoofing by maliciously party. Another message delivery
problem should be the payload size. There should exist prevention against mem-
ory overflows, in order to recipient’s memory not be overwritten. Finally, another
concern should be the established communication relationships and interactions
between groups, in which many partitions can be blocked along the process. As
previously explained in Section 2.3.1, synchronous communication requires mech-
anisms to prevent deadlocks and unwanted blocks to happen, as well as to avoid

the asymmetric trust problem. In addition, quantum donation combined with



16 Chapter 2. Theoretical Foundation and Background

priority inheritance may introduce problems like priority inversion and starvation
of low priority partitions [43].

Stated the problems that may occur whilst conceiving an IPC infrastructure,
some solutions for them must be pointed out [16, 17|. Regarding attacks through
the system call, parameter checking must be thoroughly deployed, namely to en-
sure that memory accesses are properly specified. To prevent deadlocks and un-
wanted blockage results, as aforementioned, there is no practical way of defining
timeout values, as such, has been dropped in some microkernel implementations
[14]. Asynchronous communication prevents these scenarios because partitions are
not required to block throughout the communication process. The level of func-
tional segregation inherent to microkernel-based systems also reduces the impact

of an unwanted blockage.

2.4 Access-Control

Although Hypervisors and OSes already confine processes to their own sand-
box, i.e., enforce separation between partitions preventing system failures and
vulnerabilities to spread across the entire system, kernel APIs can still be ex-
ploited to cause some unwanted effects on the overall system [45]. Namely, system
calls for message sending (among others) should be monitored to prevent malicious
communications attempts, that aim at tampering a sibling’s partition execution,
or even exhaust message buffering resources [16]. Or a malicious partition may ask
the system to erase page table entry that contain sensitive critical information.
Thus, critical systems must be featured with mechanisms to prevent actions which
are performed by unintended agents [19].

On OSes, access-control consists on creating mechanisms to restrict the way
partitions operate on system’s interfaces and resources, which usually requires the
existence of a reference monitor that mediates every activity accessed by a given
entity. These monitors must carry an authentication to prevent spoofing attacks,
where a given subject masquerades its identity [46]. An important goal of these
systems is to ensure that the principle of least-authority prevails. It states that
partitions uniquely possess permissions to perform what strictly necessary. [47, 19]
advocate that this is a requirement to have confinement within a system. There
are also concerns regarding access control mechanisms’ simplicity and granularity
over resources. A mechanism can not be too simple that is easily fooled or provide
more permissions than necessary, and at the same time should provide control

over granularity regarding resources within a system [26].



Chapter 2. Theoretical Foundation and Background 17

Inside kernels there are two types of applied access policies: Mandatory Ac-
cess Control (MAC) and Descritionary Access Control (DAC). The first refers to
more rigid policies, that determine permissions are configured based on subjects
and objects, in addition to being configured uniquely by a privilege entity, while
the later refers to more flexible approaches, like the distributed scenario where
permissions may be granted by more than one entity within a system [26, 46, 47/,

often by object owners [48].

2.4.1 Capability-based Access-Control

Capabilities are the de facto solution in distributed systems and microkernel-
like operating systems for access-control facilities [49]. In their simplest form, these
are a reference to an object that can be assigned to one or more partitions [19].
Capability ownership implies some access permission over the referenced object,
which in turn encapsulates functionality, accessible through a well-defined interface
[19, 44]. In systems that are completely based in capabilities, all operations require
the possession of one referencing the object which provides a given functionality,
which may include communication objects in operating systems, as well as memory
page-tables. The access monitor is the entity that manages the objects, which in
this facility may be either the kernel to manage kernel objects, or even applications.
An example of an application is a process that supports a file system may mediate
files read and write operations recurring to capabilities [44]. Figure 2.6 depicts
a general scenario of object access mediate through capabilities. Subject Y and
Subject Z aim at performing one operation each. In order to do so, they should

provide their capability to the Objects Monitor, that upon permissions verification

will perform the operation on the referenced object.

Subject Y Objects Monitor
e OpA( Permissions
GG Verification

Objects

@ operationa() €®> Operations()

Figure 2.6: Representation of the asymmetric trust model.

In capability-based access-control systems permissions are conveyable, meaning
the set of permissions a given subject possesses may change over time [44, 47]. In

order to do so, another subject within the system owning a capability, can ask the



18 Chapter 2. Theoretical Foundation and Background

objects monitor to perform a grant operation, thus transferring a subset of its-own
rights. The grant is, on itself, an operation whose permission must be set in the
respective capability. In addition, a revocation operation is also usually available
[20]. The existence of grant and revoke operations makes capabilities suitable to
provide DAC-like access-control facilities. However, their use must be restricted
to limit propagation towards intended subjects [19]. With these operations it is
possible to achieve more rigid scenarios, that do not even change over time, like
with MAC policies [26].

To make capabilities dependable there are a set of requirements that need to
be met: subjects should not be capable of tampering capabilities, to either forge
their identity nor possessing rights over an object; and, permission check must be
lightweight to avoid performance degradation. This type of access-control facilities
can be implemented in a centralized schema, in which protection is achieved by
hardware or provided by the OS. In distributed scenarios the capability possesses
owner’s identity, thus protection is provided by means of signatures, preventing
identity tamper towards unintended access [44, 50, 47].

Capabilities are also seen as the perfect fit to manage granularity and to sup-
port different types of objects for access-control, as it can be used to obliquely
mediate access to a plethora of different types of objects [26]. The most obvious
advantage in applying capabilities is for enhancing communication infrastructures
with ICF. Thus, enforcing isolation provided, possibly, by a microkernel with con-
tainment of subsystems. This means, permissions configuration will influence how
capabilities are granted over the time, thus aggregating and compartmentalizing

groups of subjects in subsystems [44, 48].

2.5 Microkernels Related Work

Microkernels were not always a viable solution, due to the architecture’s re-
liance on IPC, which constituted a bottleneck on system performance. The L4 mi-
crokernel, developed by Jochen Liedtke, appeared to break the stigma surrounding
microkernels, proving their utility when providing efficient IPC mechanisms. L4
is the root of a family tree of microkernels that have a proven record of efficient
performance and reliability, by following the core idea of kernel minimality and
policy-void mechanisms [14]. In this section, we briefly survey some members of
this family that served as the main source of inspiration for the ideas implemented

in uRTZVisor, emphasizing those which aim to support virtualization.



Chapter 2. Theoretical Foundation and Background 19

Fiasco is an open-source descendant of L4 implemented in C++ aimed at se-
curity and critical real-time systems. It implements protected address spaces, syn-
chronous IPC and a scheduler with multiple fixed-priority levels, whereby kernel
executes a round-robing algorithm on threads characterized with the same priority
[51, 52]. The latest version Fiasco.OC also includes capabilities for access-control,
which are propagated through IPC [53]. In addition, capabilities are protected
within the kernel memory, thus threads do not access directly to capabilities,
making the access-control infrastructure reliable. Each partition possess a capa-
bility table, that maps the partition’s access permissions into kernel resources.
Capabilities are propagated through message passing facilities, and mapped into
the capability table upon mapping request by the capability’s recipient [19].

The NOVA microhypervisor [54] proposes a solution that deallocates virtual-
ization to user space, which will inherently incur performance overhead and aug-
mented engineering effort due to the highly para-virtualized approach, although
augmenting security by significantly reducing TCB’s size. As such, the kernel
solely provides services for spacial and temporal isolation, in addition to message
passing and synchronization mechanisms. Also, kernel operations require capabil-
ities to access the kernel objects. Capabilities are immutable, and inaccessible in
user-space, thus permissions are statically assigned and prevail through out sys-
tem’s execution. Accessing them is done by an integral number that works as the
index for the domain’s capability space. This happens every time a system call is
performed. Destinations for IPC operations are endpoints designated by portals,
which represent an entry to the owner’s address space. In client-server commu-
nication, a reply capability can be granted to the server referencing a portal for
the response to be addressed. Also, semaphores objects are provided for synchro-
nization purposes. [55] presents Mini-NOVA | a simplified version of NOVA ported
the Arm cortex-A9 architecture from the original x86 implementation. It aims at
achieving lower overhead, smaller TCB size and higher security, thus making it
more flexible and portable for embedded-systems.

PikeOS is an early spin-off of the L.4 microkernel, whose purpose is to address
requirements of safety-critical real-time embedded systems. It features spacial and
temporal isolation, favoring minimum code size, in some cases to the detriment
of flexibility [4]. It aims at providing a system that enables the coexistence of
time-driven and event-driven partitions. The result is not the perfect fit for this
kind of system, although by properly configuring each partition, it is possible to
achieve a considerably good compromise [15]. It is also featured with access control

facilities based on the abilities concept. To each partition is assigned a table with



20 Chapter 2. Theoretical Foundation and Background

abilities that is not expandable over time, where each entry represents a system
call that the partition is allowed to perform. Given that partitions may be created
dynamically, a parent partition may further restrict child’s permissions, however
it can never extend them. In addition, there were efforts on verifying functional
correctness of PikeOS [56].

OKL4 adopts a microkernel approach completely directed at virtualization
and, thus, is dubbed a microvisor [8]. It features a fast and reliable IPC, which
is abstracted by channels and virtual interrupts for synchronization purposes. It
implements only asynchronous IPC, which maps better to the VM model, and is
less susceptible to DoS attacks. By the heritage of its sel.4 predecessor, it provides
access-control facilities based on capabilities, since any kernel operation requires
one. OKL4 has been augmented to take advantage of the Arm virtualization
extensions and support unmodified guest OSes [57].

EROS [47, 17] is a microkernel-based operating systems that was pioneer in
providing access-control facilities based on capabilities. All system provided func-
tionality is done by invoking a capability, providing the index from partition’s
capability list, referencing a kernel object. Regarding the IPC facility EROS pro-
vides three different primitives: send, call and return. The first performs a send
operation and continues partition’s normal flow, while the others block waiting
for new messages. The laters distinction resides on the type of used capability
to perform the operation. The call primitive will generate a reply capability for
the recipient to use with a return primitive. This imposed semantic aims at safe
client-server communication.

Finally, MINIX [58] is an open-source microkernel, firstly developed by Tan-
nenbaum trying to prove the worth of microkernel principles towards trustworthy
computer systems. Nowadays, the current available version is the MINIX3, that
supports IPC operations through the use of ports as the destination for these
operations. Most IPC primitives are synchronous, as this has been used for secu-
rity evaluations regarding IPC policies [16]. In addition to support synchronous,
it provides two asynchronous primitives, the asend that sends message without

blocking the sender, and notify that provides an event delivery mechanism.

2.6 ARM Trustzone

TrustZone technology is a set of hardware security extensions, which have been

available on Arm Cortex-A series processors for several years [59] and has recently



Chapter 2. Theoretical Foundation and Background 21

been extended to cover the new generation Cortex-M processor family. Trust-
Zone for Armv8-M has the same high-level features as TrustZone for applications
processors, but it is different in the sense that the design is optimized for micro-
controllers and low-power applications. In the remainder of this section, when
describing TrustZone, the focus will be on the specificities of this technology for

Cortex-A processors (Figure 2.7).

Non-Secure
(Rich) OS

Secure Monitor

ARMv7-A / ARMvS-A

Figure 2.7: RTZVisor system architecture.

The TrustZone hardware architecture virtualizes a physical core as two virtual
cores, providing two completely separated execution environments: the secure and
the non-secure worlds. A new 33rd processor bit, the Non-Secure (NS) bit, indi-
cates in which world the processor is currently executing. To preserve the processor
state during the world switch, TrustZone adds an extra processor mode: the mon-
itor mode. The monitor mode is completely different from other modes because,
when the processor runs in this privileged mode, the state is always considered
secure, independently of the NS bit state. Software stacks in the two worlds can be
bridged via a new privileged instruction-Secure Monitor Call (SMC'). The monitor
mode can also be entered by configuring it to handle interrupts and exceptions in
the secure side. To ensure a strong isolation between secure and non-secure states,
some special registers are banked, while others are either totally unavailable for
the non-secure side.

The TrustZone Address Space Controller (TZASC) and the TrustZone Mem-
ory Adapter (TZMA) extend TrustZone security to the memory infrastructure.
TZASC can partition the DRAM into different secure and non-secure memory
regions, by using a programming interface which is only accessible from the secure

side. By design, secure world applications can access normal world memory, but



22 Chapter 2. Theoretical Foundation and Background

the reverse is not possible. TZMA provides similar functionality but for off-chip
Read-Only Memory (ROM) or Static Random-Access Memory (SRAM). Both the
TZASC and TZMA are optional and implementation-specific components on the
TrustZone specification. In addition, the granularity of memory regions depends
on the System on Chip (SoC). The TrustZone-aware MMU provides two distinct
MMU interfaces, enabling each world to have a local set of virtual-to-physical
memory address translation tables. The isolation is still available at the cache-
level because processor’s caches have been extended with an additional tag that
signals in which state the processor accessed the memory.

System devices can be dynamically configured as secure or non-secure through
the TrustZone Protection Controller (TZPC). The TZPC is also an optional and
implementation-specific component on the TrustZone specification. To support
the robust management of secure and non-secure interrupts, the Generic Inter-
rupt Controller (GIC) provides both secure and non-secure prioritized interrupt
sources. The interrupt controller supports interrupt prioritization, allowing the
configuration of secure interrupts with a higher priority than the non-secure inter-
rupts. Such configurability prevents non-secure software from performing a Denial-
Of-Service (DoS) attack against the secure side. The GIC also supports several
interrupt models, allowing for the configuration of Interrupt Request (IRQ)s and

Fast Interrupt Request (FIQ) as secure or non-secure interrupt sources.

2.7 RTZVisor

Real-Time TrustZone-assisted Hypervisor (RTZVisor) [60] is a bare-metal em-
bedded hypervisor that relies on TrustZone hardware to provide the foundation
to implement strong spatial and temporal isolation between multiple guest OSes.
RTZVisor is implemented in the C language and follows a monolithic architecture
(Figure 2.8).

All hypervisor components, drivers and other critical parts of the virtualization
infrastructure run in the most privileged processor mode, i.e., the monitor mode.
The hypervisor follows a simple and static implementation approach. All data
structures and hardware resources are predefined and configured at design time,
avoiding the use of language dynamic features.

Guest OSes are multiplexed on the non-secure world side; this requires care-
ful handling of shared hardware resources, such as processor registers, memory,
caches, MMU, devices, and interrupts. Processor registers are preserved in a spe-
cific Virtual Machine Control Block (VMCB). This virtual processor state includes



Chapter 2. Theoretical Foundation and Background 23

Guest OS

(active)

RTZVisor

Figure 2.8: RTZVisor system architecture.

the core registers for all processor modes, the CP15 registers and some registers
of the GIC. RTZVisor offers as many vCPUs as the hardware provides, but only
a one-to-one mapping between vCPU, guest and real CPU is supported. RTZVi-
sor only offers the ability to create non-secure guest partitions, and no means of
executing software in secure supervisor or user modes.

The strong spatial isolation is ensured through the TZASC, by dynamically
changing the security state of the memory segments. Only the guest partition
currently running in the non-secure side has its own memory segment configured
as non-secure, while the remaining memory is configured as secure. The granu-
larity of the memory segments, which is platform-dependent, limits the number
of supported VMs. Moreover, since TrustZone-enabled processors only provide
MMU support for single-level address translation, it means that guests have to
know the physical memory segment they can use in the system, requiring reloca-
tion and consequent recompilation of the guest OS. Temporal isolation is achieved
through a cyclic scheduling policy, ensuring that one guest partition cannot use
the processor for longer than its defined CPU quantum. The time of each slot
can be different for each guest, depending on its criticality classification, and is
configured at design time. Time management is achieved by implementing two
levels of timing: there are timing units for managing the hypervisor’s time, as well
as for managing the partitions’ time. Whenever the active guest is executing, the
timers belonging to the guest are directly managed and updated by the guest on
each interrupt. For inactive guests, the hypervisor implements a virtual tickless
timekeeping mechanism, which ensures that when a guest is rescheduled, its in-
ternal clocks and related data structures are updated with the time elapsed since

its previous execution.



24 Chapter 2. Theoretical Foundation and Background

2.7.1 Identified Limitations

RTZVisor’s main goal was to prove it was possible to run multiple guest OSes
concurrently, completely isolated from each other, on TrustZone-enabled Arm pro-
cessors without VE support. Despite achieving such a goal, RTZVisor still pre-
sented some limitations and open-issues. A list of the main identified limitations

follow:

e Hypervisors are not magic bullets and they are also prone to incorrect expec-
tations in terms of security. Guaranteeing a system is secure just by relying
on a virtualization layer is not enough. These incorrect expectations probably
come from the fact that a hypervisor provides separation and isolation, which
positively impacts security. The problem is that security is much more than
separation. Security starts from the onset, and hypervisors must be comple-
mented with other security-oriented technologies for guaranteeing a complete
chain of trust. The secure boot process is responsible for establishing a chain
of trust that authenticates and validates all levels of secure software running
on the device. In this sense, the integrity of the hypervisor at boot time is

guaranteed.

e RTZVisor does not implement and enforce any existing coding standards. The
use of coding standards is becoming imperative in modern security and safety-
critical systems to reduce the number of programming errors and achieve

certification.

e Although RTZVisor provides real-time support mainly by implementing effi-
cient time services, these are still guest OS dependent and limited to a cyclic
scheduling algorithm. The implementation does not allow for event-driven

guests to preempt others, resulting in high interrupt latencies.

e The nature of embedded systems requires communication and interaction
among the various subsystems. RTZVisor fails in this aspect by not im-
plementing any kind of IPC facilities. All of its guests are completely isolated

and encapsulated, having no mechanism to cooperate.

e Finally, and taking into account the previous point, RTZVisor provides no
mechanisms for device sharing. Some kind of communication is needed for

guests to synchronize, when accessing the same peripheral.



Chapter 2. Theoretical Foundation and Background 25

2.8 Model-Driven Engineering

Model-Driven Engineering (MDE) bases the software development on models,
which are an abstract representation based on entities, and whose purpose is to
provide a simplified view of the final system [61, 62]. This paradigm towards soft-
ware development is also dubbed Model-Driven Software Development (MDSD).
Motivating the use of this development paradigm were a list of problems [63]: the
poor quality of developed software; difficulties in making software meeting specifi-
cations; projects going beyond schedule and budget; and high maintenance costs.
Thus, the main advantage of MDE is that we create models that are loosely cou-
pled with implemented software, starting with an approach that is closer to the
problem domain, while making them easier to understand and maintain [64]. In
[3, 65] it is advocated that by following this approach it is improved productivity,
enhanced software quality and manageability of the development process. Also,
that models become an integral part of the system description rather than just
simple sketches, with equal importance as the developed software.

Despite that, on its own, models are of great importance as documentation
artifacts; however, if they are just mere architectural representations, they do
not achieve their full potential. As such, models are being combined with au-
tomatic source code generating tools, for example DSLs, towards software reuse.
Therefore, MDE meets its full potential by being applied for automation purposes,
which includes automatic generation of a complete programs, as well as automatic
verification of models on a computer [65, 64].

Regarding the quality of models, in order to make them useful and effective,

they must possess all five characteristics [66]:

o Abstraction - a model is always a reduced rendering of the system it repre-

sents;

o Understandability - a model must be described with expressiveness, provid-
ing a shortcut for reducing the required intellectual effort towards systems

comprehension;

e Accuracy - a model most constitute a real representation of the modeled
system;

e Predictiveness - a model enable us to scrutinize the non-obvious properties of
a final system, by either executing the model or some type of formal analysis.

In order to ease software extendability, standards are often specified. As such,

the Object Management Group (OMG) specified a standard framework towards



26 Chapter 2. Theoretical Foundation and Background

model conception [3, 66]. The OMG proposes the Model-Driven Architecture
(MDA), which consists on set of directives following a four-layered approach, in
which each layer provides a certain level of abstraction: M0-layer regards to real
world objects, resulted of instantiation of M1 models; M1-layer constitutes a sim-
plified view of real world objects, i.e., featured with abstractions; M3-layer defines
meta-models, with rules and concepts applied to previous layers; and, lastly, M2-
layer, i.e. the root for every model-driven development, describing concepts for
the M2 layer.

Models can also be characterized as being prescriptive and descriptive. If they
control, they prescribe reality; that is, they dictate conditions for forming reality
and how reality should be like, once it has been constructed. It can also be said
that such models are templates or schemas of reality. For example, a language’s
meta-model is a prescriptive representation of what a program should be like.
On the other hand, the model is a mere representation of reality without any
implications on its creation, i.e. the model simply describes it, being characterized
as descriptive [67, 66].

2.8.1 Domain-Specific Language

A Domain-Specific Language (DSL) is a programming language that offers,
through appropriate notations and abstractions, expressive power for a particular
problem domain. Consequently, a DSL’s number of constructs is usually small,
however these tend to provide a good means for seamlessly describe solutions
within the associated problem domain. In addition, these are very descriptive and
easy to use, enabling domain experts, that do not even possess technical knowl-
edge, to read and understand the implemented solution [68, 69]. These notions
contrast with those regarded to a General-Purpose Language (GPL), that provides
elemental, yet general elements to describe and implement solution regardless of
their problem domain. However, to achieve the same result these usually require a
higher development effort, as DSL usually aim at reducing the amount of required
code to be written for a specific problem [69].

DSLs are usually declarative, and as such, these can be viewed as specifica-
tion languages. However, this constitutes half of their value, so they should be
supported by a DSL compiler that generates application code, often implemented
into a GPL. This creates the opportunity for software reuse, avoiding the need
for going through the implementation of template solutions, which is the main
goal of software development paradigms, such as MDE, or Generative Program-

ming [65, 70]. The latter is about modeling software systems belonging to the



Chapter 2. Theoretical Foundation and Background 27

same family recurring to software entities, and, given a set of requirements and
systems description, automatically manufacturing a customizable instance [70].
Thus, achieving an overall faster development process.

Notwithstanding, adopting DSLs to approach software engineering involves
both positive and negative considerations. In [68] it is stated that the use of
DSLs provides a level of abstractions, which enables system designers to clearly
understand, validate and modify a taken solution. Given the inherit level of ex-
pressiveness, these programs are self-documenting to a larger extent. Software
reuse helps achieved higher levels of productivity, reliability, portability, and even
software testing. On the other hand, it should taken into account the effort in-
herent to implementing and maintaining a DSL, as well as having to teach target
users about the tool. In addition, DSL developers struggle with finding a proper
scope, and balancing domain-specificity and GPL constructs. Finally, there is also
the risk of efficiency loss compared with hand-coded software. So, before jump-
ing into DSL development and use, it is necessary to have into consideration all
aforementioned points.

The development process for a DSL, former to appropriately specifying its

requirements and defining the scope, usually encompasses three steps [2, 71]:

e Creation of language model, that will result on the abstract syntax tree of
the DSL. This includes specifying the language’s elements as a class, defining

how these relate to each other, originating a meta-model.

e As concrete syntax, visual symbols must be defined for each one of the

languages element, which should be used by DSL’s users.

e Implementation of a generator that converts the DSL program into a exe-
cutable representation. This generator, must map the written concrete syn-
tax to the elements of a abstract syntax, validating the formal specification

of the DSL. If everything goes well, the executable code must be generated.

Semantic Model

’_[ Generate

DSL Script Target
Code

Figure 2.9: Overall DSL workflow [2].



28 Chapter 2. Theoretical Foundation and Background

The last bullet remits to the standard DSLs workflow, depicted in Figure 2.9.
Regardless of the DSL, the depicted overall architecture constitutes the standard

procedure, from a DSL script to the generated source code.

2.8.2 Component-based Software Engineering

Component-based Software Engineering (CBSE) advocates software systems
description based on system’s composition in well-defined building blocks. Inher-
ently, this approach will incur into higher flexibility by separating stable parts of
the system from each other. Components are seen as black-boxes that encapsulate
functionality, accessible through well defined interfaces. One main point is that
components are functional units, and they should be used according to a software
architecture that defines interfaces and composition rules [72, 73].

Also, CBSE facilitates software reusability, since components can be used in
varied forms, which inherently incurs into a better management of component
variability [74, 68]. In addition, it also provides a good means for extensibility, for
either application parts or even whole applications [73]. The provided separation
of concerns is a good means for substitutability [75], i.e., if respecting the specified
architecture, a given can be easily substituted, at least most of the system will
remain functional. Components can also be assembled into subsets creating a
new, broaden building block. However, there are compatibility concerns to be
addressed, which regards to the capability that two entities possess to interact in
a semantically meaningful way. Whenever assembling two components through
the same interface, where there is one providing a certain service and the other
referencing it, both should have the same understanding of the interface semantics

and operation [76]. Figure 2.10 depicts a "dummy" component-based architecture.

/Bi\ Composite

ComponentA%H z_ - 4<%c°mponentc
\\ /

Component Z— \
I
I
I

ComponentD

N
Service Service
[ o Croines DP“’W‘D [Elale

Bind — — Promote

Figure 2.10: Dummy example of a component-based architecture.



Chapter 2. Theoretical Foundation and Background 29

An Architectural Description Language (ADL) provides language constructs
that aim at system’s architectural description, analysis and reuse of software ar-
chitectures. ADL have been used to describe the structure of a system, which
comprises software components, their externally visible properties, and the depen-
dencies they have among them [77, 78]. To better describe the services provided
among components, and to help specifying interfaces semantics, ADLs are usually
paired with constructs specific of Interface Description Language (IDL). Interfaces
are often described as being a collection of methods, events and attributes. Pro-
vided interfaces are those that contain operations implemented by a component,
accessible to other components or to the component user, while required interfaces
are those that contain operations used by the component itself [78].

The potential benefits of component-based development are as attractive in the
domain of embedded systems as they are in other areas of the software industry.
When building new applications from existing components it is not only necessary
to ensure that they behave as expected, but also that properties with impact on
non-functional requirements are composed correctly. One important characteristic
of embedded systems is their characterization as real-time system, which means
real-time properties like response time, worst-case execution time, among others,
often need to be specified and validated prior to run-time [78, 21]. By leveraging
the aforementioned ADL is possible to validate and verify the correctness of all
these parameters, in addition to easily configure the final system. Components
are a great means for control over functionality granularity, which is extremely
desirable for describing embedded systems [9]. Also, IDL compilers translate a
generic interface specifications into stub code that implements the actual com-
munication, both for the provider and requirer components. This would incur
into convenience and faster development, because the system developer is spared
of the boring, yet bug-prone, development of communication code and custom

communication protocols [79)].

2.8.2.1 Component-based Modeling Solutions

Foremost, it is worth to mention that we consider that component-based archi-
tecture are a perfect fit for describing embedded systems architectures. This due to
their simplicity, however, providing great gains in component reuse, composability
and association through well define interfaces. Thus, this section approaches the
description of component-based solutions that were on the genesis of the taken

approach towards providing a means for microkernel-like systems modeling.



30 Chapter 2. Theoretical Foundation and Background

Research and engineering efforts that focus on establishing component-based
software engineering disciplines specialized at embedded systems can be roughly

divided into three categories [9]:

e The first category encompasses component-based architectures aimed at spe-
cific application domains such as field devices, consumer electronics, vehic-

ular systems, etc;

e The second category encompasses component-based operating systems, where
component modeling is applied to the operating system itself, or to provide

component architectures at application level,

e The third category consists of middleware-based component models tai-
lored for embedded and real-time systems with a particular focus on non-

functional attributes.

In [72] the Component Architectures for microkernel-based Embedded Systems
(CAmKES) project is described, and it falls into the second category, aiming at
being used for describing both application and microkernel components, namely
the L4 microkernel. The architecture provides a component model, standard inter-
faces and component definitions, component implementations, standard services,
and support for various architectural patterns suited to embedded systems. It
supports two types of components: active that maps towards a functional unit
with execution thread; and passive that just encapsulates functionality. Regard-
ing Interfaces, it provides means for describing interface with RPC semantics,
events to be emitted or consumed by referencing components, in a publish sub-
scribe fashion, and defines a Dataport that represent data to be transfered between
components, either in a shared memory area or endpoints messaging. As a result,
from established dependencies glue code, with communication functionality will
be generated. CAmkKES model encapsulates communication between components
in explicit architectural elements called connectors and connections. A connec-
tor has a name and a list of interface types that it connects, allowing for 1-to-1,
1-to-many, many-to-1 and many-to-many relationships between interfaces.

Koala [68] is designed by Philips, and consists on an ADL aiming at software
product-line development of consumer electronic devices, thus falling into the first
category. It focus on restricted resource constraints and provides a lightweight
component model. Components are units of design and reuse, that communicate
through interfaces. For describing interfaces, Koala is featured with a small IDL

supporting one type of interface with RPC semantics, in which procedure calls



Chapter 2. Theoretical Foundation and Background 31

are described recurring to C syntax. Interfaces are required and provided among
components, through the requires and provides constructs. One requires can only
be binded to provides, while one provides can be binded to zero or more requires.
Static binding of components is supported and all invocations are hard-coded into
components. Configurations within the component are also resolved recurring
to the interface mechanism, i.e., the property owner requires a given interface
through which the provider will configure the value on a binding. These are
called diversity interfaces. On generation, the property value will be hard-coded
within the requirer. There is also the concept of switch interface, that verifies
a given condition on compile time and decides between providers accordingly.
The Component construct is used to describe elemental components, as well as
composites elements. Connections between its subcomponents are defined within
it.

2.9 Ontology-Driven Software Development

An ontology defines the basic terms and relations comprising the vocabulary
of a topic area, as well as the rules for combining terms and relations to define
extensions to the vocabulary [80, 3]. Ontologies major purpose is not the creation
of a vocabulary and taxonomies; it is the creation of a knowledge base towards
knowledge sharing and reuse [66]. Within an ontology, there are three major

components that constitute the knowledge base [80, 3|:

e (lasses - Represent a group of entities with similar characteristics. Usually
they are grouped in taxonomies through which inheritance can be applied.
Inherently, this may result in stratified layers of classes within the ontology

they were defined, allowing for gradations of meaning.

e Relations/Properties - These provide a means for creating associations be-
tween concepts. Ontologies usually contain binary relations, also dubbed
as object properties, in which the first argument regards to the relation’s
domain, while the second argument is the range. Relations can also be
used to represent concept attributes, in which the range will be a datatype
(string, integer, etc...). The later type of relations are often dubbed as data

properties.

e Instances - These are used to represent elements or individuals in an on-

tology, belonging to a certain group of individuals. Class membership is



32 Chapter 2. Theoretical Foundation and Background

either asserted via the type property or inferred based on property values,

i.e., relationships with other individuals.

Upper Ontologies

4

Core Ontologies

4

Domain Ontologies

4

Application Ontologies

Figure 2.11: A simplified ontologies classification scheme [3].

In [3] is advocated a scheme for classifying ontologies that we also agree, and
that despite being simple, still provides a good background for the presented work.
Figure 2.11 depicts the referred framework, where each layer denotes a different
level of abstraction. The lower the layer the higher the specificity it regards to:
Upper ontologies define broad concepts, which belong to generic domains; Core
Ontologies define concepts shared by a considerate number of domains, e.g. one
to describe information systems; Domain Ontologies are confined to a specific
domain, e.g. to describe user interfaces; Application Ontologies that specialize
a domain-ontology with specific variants, e.g. the instance of buttons and text
boxes, with specified properties, like sizes and so on. According to [81], generic
ontologies suffice at fulfilling a specific purpose, however provide a good way for
knowledge extension towards more concrete ontologies.

Ontologies can be represented in different forms, with different levels of ab-
straction, recurring to different tools. In a computer, they can be represented
recurring to, for example, an XML-based file, or even some specific ontology rep-
resentation language [66]. To developed work of this dissertation it was stated that
it should be used The Web Ontology Language (OWL), from the Semantic Web
framework (some of them where listed by [66, 3]). The former is an initiative by
World Wide Web Consortium (W3C) that aims at facilitating data sharing, reuse
and integration, towards the unification of knowledge bases [82]. OWL allows to
specify classes based on property or cardinality restrictions, and supports boolean
combination of classes and permits to declare properties as transitive, unique or
the inverse of other properties [3]. One major benefit of knowledge representation
using Semantic Web languages is their reliance in logic. Reasoning and logical
inference facilitate integrity and consistency validation in a knowledge base, as

well as the entailment of new statements.



Chapter 2. Theoretical Foundation and Background 33

These type of system representations can be applied in a multitude of scenarios
in software engineering. Requirements engineering can benefit from ontologies for
knowledge representation and process support, in addition to component reuse.
Moreover, it can be integrated with software modeling tools, to facilitate software
development process. Some authors [83, 82] have been emphasizing the similari-
ties between MDA and semantic technologies. Both aim at providing an abstract
system representation, namely a model. However, MDA-based languages lack the
logic support existent in semantic technologies, as by semantic technologies lack
the code generation features that MDA-based languages are paired with. Some
approaches have been taken into combining both approaches, by performing a
mapping between constructs in order to achieve a "semantic overlap", thus en-
hancing software modeling tools with the logic and reasoning benefits, such as:
unambiguous domain models, higher consistency, interoperability enhancement,

automated validation, and the reasoning support [82].

2.9.1 Example of an Ontology

|— == hasBase — — — — Pizza — — — — hasTopping — — — —

v A 3

Base I I ]

Topping
Vegetarian Spicy Beef Mozzarella
Pizza Pizza Pizza
I I I I I h T' )
hasBase I | hasTopping | as ?T'n_g> Cheese
Regular Base € =  hasTopping | | | Topping
_,: haséase : hasBase T
Deep Dish € -——A-= A p| Tomato
| | Topping
Base €«————P———————=
- Vegetarian
Topping

Figure 2.12: Simple example with a Pizza ontology.

Figure 2.12 depicts an ontology describing pizzas. The aim of this example
is not to provide a sound ontology for describing this domain, is just to provide
a better understanding on how concepts relate to each other within an ontology.
The Pizza class has a base from class Base, and a topping from class Topping. By
defining that Pizza has a topping, it is also being defined that all its derived classes
also have a topping. For each different recipe it was limited the type of Topping
and Base, by establishing relations with specific derived classes of Topping and
Base. For example the Mozzarella Pizza has a Cheese Topping and a Regular

Base. The mapping between concepts should remain coherent through out the



34 Chapter 2. Theoretical Foundation and Background

ontology, otherwise the reasoner will point the inconsistencies as errors, and it is

important to have a consistent ontology in order to use it in a specific application.

Mozzarella
Pizza

v A v

instarl1ce0f Cheese
Regular Base Tazli

A Pizza ala +
instance Of r ESRG .: instance Of
hasl|3ase hasBase
1
I I ozzarella
Topping

Figure 2.13: Individuals from Pizza ontology.

= -hasBase — — — hasTopping

The established relations between classes should be transposed to the resulting
individuals. Figure 2.13 depicts an ontology resultant from the previous one, that
describes a specific recipe of a Mozzarella Pizza, mapping the resultant individuals

according to what defined for classes, thus maintaining the ontology consistent.

2.10 SeML Infrastructure

The Semantically-enriched Modeling Language (SeML) is a modeling infras-
tructure, that is composed of an upper ontology, and a semantically enriched
DSL. The overall architecture leverages the principles from ODSD towards its
main goal, that is the transformation of implementation artifacts into a functional
system that complies with a model description. The latter consists on require-
ments specification, and functional units performing some kind of behavior and
system’s properties.

Figure 2.14 depicts the overall architecture for the SeML infrastructure, and
how these external elements relate with its inner structure. Firstly, a Domain
Ezpert and a Knowledge Engineer are responsible for analyzing the system’s do-
main, and capturing its knowledge, while identifying domain commonalities and
variabilities. The captured knowledge should be translated into the domain on-
tology, written in OWL, basing its description on upper ontology’s concepts, i.e.,
the newly created concepts must be derived from upper ontology’s classes and
relations.

The aforementioned DSL has almost no fixed keywords and very little con-
structs. Also, it is not featured with all the necessary capabilities for system’s

description. The latter’s process consists, grossly, in two steps:

1. The instantiation of individuals from the domain ontology classes;



Chapter 2. Theoretical Foundation and Background 35

" External hierarchy
of ontologies

@) (" seML IDE \ 4 \ 4 \ 4 \ 4 D
w ¢—> Ontology Manager API
Reasoner I

Domain Expert / SeML Engine
Knowledge Engineer >

! f

Rule Extensions

Internal Merged
Ontology
Compiler

and Loader «—p User O
\/(_\ Interface v\‘@

h 4

Rule Extension |« l Vi
Templates

— T LEdern
4
Execution f User
E Implementation |, —— Tool ] System | [k
Artifacts D ool i

Figure 2.14: SeML infrastructure overall architecture.

A 4

2. Connecting the aforementioned individuals through object properties, and

asserting properties values.

The first step will originate an input ontology, to be used within the DSL.
The latter capture the input ontology’s concepts to draw its tokens, allowing for
a simplistic syntax in a triple statement (like in example from Section 2.10.2).
Despite being reliant on the input ontology’s concepts, the DSL does not provide
a means for instantiating individuals. Its purpose is restricted to be the means for
connecting input ontology’s concepts. Despite the fact that used individuals must
be instances of the component class deriving from the upper ontology, these might
be related via any object property the user might include his domain ontology.

The infrastructure will generate a system ontology, that can be executed at
any time as long as it is valid. The interpreter will scan the model and invoke
the methods of the execution tools. The implementation artifacts should be also
provided, in a manner that complies with the implementation ontologies. Some
tools are included within the infrastructure to perform basic operations, such
as checking the existence of specific data blocks or replacing textual tags with
parameter values, component references or user-defined data types. Additional
tools may also be developed to cope with the demands of each system specificity.

These can be compiled and loaded by the infrastructure at runtime. The called



36 Chapter 2. Theoretical Foundation and Background

tools can check the integrity of existing artifacts, modify them and create new
ones as demanded by the SeML interpreter.

The infrastructure supports both OWL and SWRL rules for knowledge de-
scription, that whenever verified can prompt some behavior. There are some
built-in behaviors, however, others can be implemented in java and provided to
the infrastructure. This useful to verify that the model complies with specified
requirements, that are difficult to characterize just by recurring to OWL axioms,

and inheritance from classes.

2.10.1 Upper Ontology

Thing
Requires 11 4
i A A [ |
L — Characteristic [isSolvedBy | Problem —hasProblem—— Component
I
4 ————————— demands——————— —A A
[ [ | [ | |
Feature Default Goal Property Entity Process

Figure 2.15: SeML upper Ontology.

Figure 2.15 depicts the Semantically-enriched Modeling Language (SeML) up-
per ontology, that provides the base concepts for domain descriptions. All direct
subclasses of Thing (owl class) are pairwise disjoint, which means that their sets
of individuals do not intersect. The most import concept is the Component, which
encompasses terms that allow the description of different viewpoints, and works as
the bridge that connects the infrastructure to any system description taxonomy,
acting as the root class, analogously to the role of Thing in OWL. It possesses
three derived classes, chosen to normalize the meta-models of different domain ex-
perts: Process that denotes a functional behavior, e.g., GPL functions, methods or
sequential instruction blocks; Entity represents structures such as programs, files,
modules, etc; and Property that stands for constants or variables of a system,
including primitive or composite data types. If a Component poses an obstacle to
the integrity of a domain, it has a Problem, for example a vulnerability.

Another important concept is the Characteristic, that denotes predefined ab-
stract terms that influence the whole model. It was divided into three terms Fea-
ture and Goal, which are functionally interchangeable but allow the normalization

of ontologies by comprising attributes and desired results of a model, respectively.



Chapter 2. Theoretical Foundation and Background 37

Finally, the Default concept covers the subset of system characteristics which are
not optional, but rather required. Thus, these provide a useful means for speci-
fying and validating non-functional, that can be used to trigger rules, prompting
some kind of behavior. Another thing to have in mind is that SeML models re-
quire the existence of static individuals. These are tagged with a SeML specific
OWL annotation, and represent fixed components in the model, working as entry

points for the model descriptions.

2.10.2 Simple Example

Entity
Base (€~ -hasBase — Pizza rhasTopping—¥»  Topping
Regular Base € -hasBase— Moz.zarella rhasTopping—p» Chegse
Pizza Topping
A A A
instance Of instanceOf instanceOf

Pizza ala ozzarella
ESRG Topping

Figure 2.16: Using SeML with pizza ontology.

To provide a better understanding on how modeling with SeML looks like,
a little example is presented, leveraging the pizza ontology from Section 2.9.1.
Firstly, the concepts from the pizza ontology must be aligned with those from
SeML’s upper ontology. Figure 2.16 depicts an excerpt of the resulting domain
ontology. The concepts depicted from the pizza ontology were all aligned with the
Entity class. Recurring to an ontology editor, the depicted individuals must be
created. Also, there should exist at least one static individual, that would be the
Pizza a la ESRG.

Listing 2.1: Code for binding pizza properties.

1 import "PizzaOntology.owl"

2

3 Pizza-a-la-esrg hasBase ThinCrust

4 Pizza-a-la-esrg hasTopping MozzarellaTopping

Listing 2.1 depicts the code for the binding between individuals. Once again,

it provides a simplistic scenario; however it serves its purpose, which is show how



38 Chapter 2. Theoretical Foundation and Background

a SeML program should look like. This result in the same ontology depicted in
Section 2.9.1. Once again, this code is provides a simplistic view of what should
be accomplished. There is one static individual, whose relations must be resolved
in order to achieve a valid SeML model. Thus, Pizza-a-la-esrg is binded with
ThinCrust and Mozzarella Topping to achieve a model representation compliant

with what specified in the domain ontology.



Chapter 3

uRTZVisor Architecture

The following section describes the uRTZVisor architecture, which was a col-
laborative effort by two students. The focus of this dissertation is on the IPC
infrastructure, that should be designed securely, advocating a secure-by-design
approach that is reflected on the deployment of access-control mechanisms. The
other student focus on the remaining core functionality, namely focusing on spa-
cial and temporal isolation. As such, the design goals are presented, followed
by development process overview, and architectural description, providing some
functional detail of each module within the kernel. There is also an implementa-
tion section, that solely provides a structural and behavioral view of the system,

however, confined to the artifacts that directly map to the scope of this thesis.

3.1 System Overview

uRTZVisor is based on a refactoring of RTZVisor, designed to achieve a higher
degree of safety and security. In this spirit, we start by anchoring our develop-
ment process in a set of measures that target security from the onset. First, we
made a complete refactoring of the original code from C to C++. The use of an
object-oriented language promotes a higher degree of structure, modularity and
clarity on the implementation itself, while leveraging separation of concerns and
minimizing code entanglement. Kernel modules have bounded responsibilities and
only interact through well-defined interfaces, each maintaining its internal state
while sharing the control structure of each partition. However, we apply only a
subset of C++ suitable to embedded systems, removing features such as multiple
inheritance, exception handling or Run-Time Type Information (RTTI), which
are error prone, difficult to understand and maintain, as well as unpredictable and
inefficient from a memory footprint and execution perspective. In addition to the

fact that C4++ already provides stronger type checking and linkage, we reinforce

39



40 Chapter 3. pnRTZVisor Architecture

its adoption by applying the MISRA (Motor Industry Software Reliability Asso-
ciation) C++ coding guidelines. Due to the various pitfalls of the C++ language,
which make it ill-advised for developing critical systems, the main objective of the
MISRA C++ guidelines is to define a safer subset of the C++ language suitable
for use in safety related embedded systems. These guidelines were enforced by the

use of a static code analyzer implementing the standard.

Guest OS Guest OS
(active) (inactive)

> <«
><
URTZVisor

ARM TrustZone-enabled SoC

Figure 3.1: pRTZVisor architectural overview.

The main feature of uRTZVisor is its microkernel-like architecture, depicted
in Figure 3.1. Nevertheless, we don’t strive to implement traditional microkernel
virtualization, which, given its para-virtualization nature, imposes heavy guest
source-code modification. We aim at gathering those ideas that benefit security
and design flexibility, while persevering the capability to run nearly unmodified
guest OSes. TrustZone-enabled processors have two virtual Central Processing
Units (CPUs), by providing a secure and non-secure view of the processor, and
extend this partitioning to other resources such interrupts and devices. Conse-
quently, guests can make full use of all originally intended privileged levels, being
allowed to directly configure assigned system resources, manage their own page
tables and directly receive their assigned interrupts. Thus, guest OSes only need
to be modified if they are required to use auxiliary services or shared resources
that rely on the kernel’s IPC facilities. Notwithstanding, the lack of a two-level ad-
dress translation mechanism imposes a segmented memory model for VMs. Hence,
guest OSes need to be compiled and cooperate to execute in the confinement of
their assigned segments. This limitation is augmented by the fact that segments
provided by the TZASC are typically large (in the order of several MB) and must



Chapter 3. pRTZVisor Architecture 41

be consecutively allocated to guests, which leads to high levels of internal fragmen-
tation. In addition, the maximum possible number of concurrent guests is limited
by the total number of available memory segments, which varies according to the
platform’s specific implementation. Nevertheless, despite the small the number
of segments, this memory model is likely to suffice for embedded use-cases that
usually require a small, fixed number of VMs according to deployed functionalities.

Multi-guest support is achieved by multiplexing them on the non-secure side
of the processor, i.e., by dynamically configuring memory segments, devices or
interrupts of the active partition as non-secure. Inactive partition resources are
set as secure and by saving and restoring the context of CPU, co-processor and
system control registers, which are banked between the two worlds. An active
guest that attempts to access secure resources triggers an abort exception directly
to the hypervisor. As a security preventive measure, given that guests share cache
and Translation Lookaside Buffer (TLB) infrastructures, these must be flushed
when a new guest becomes active. Otherwise, the entries of the previous guest,
which are marked as non-secure, could be accessed without restriction by the
incoming one.

pRTZVisor privilege code runs in monitor mode, the most privileged level in
TrustZone-enabled processors, having complete access and configuration rights
over all system resources. This layer strives to be a minimal Trust Comput-
ing Base (TCB), implementing only essential infrastructure to provide the vir-
tual machine abstraction, spatial and temporal partitioning, and basic services
such as controlled communication channels. The kernel’s design aims for gener-
ality and flexibility so that new functionality can be added in a secure manner.
For this, it provides a heterogeneous partition environment. As described above,
coarse-grained partitions based on the memory segmentation model are used to
run guest OSes. In addition, partitions running in secure user mode are imple-
mented by managing page tables used by the MMU’s secure interface, which allows
for a greater degree of control over their address spaces. Secure user mode par-
titions are used to implement extra functionality, which would typically execute
in kernel mode in a monolithic system. They act as server tasks that can be ac-
cessed through RPC operations sitting on the IPC and scheduling infrastructure.
For example, shared device drivers or virtual network infrastructures can be en-
capsulated in these partitions. Herein lies the main inspiration from microkernel
ideas. Non-essential services are encapsulated in these partitions, preventing fault-
propagation to other components. Hence, they can be untrusted and developed

by third-parties, incorporating only the TCB of other partitions that depend on



42 Chapter 3. pnRTZVisor Architecture

them. Although these kind of services could be implemented in VMs running in
the non-secure world, rendering worthless the extra core complexity added to the
kernel, implementing them as secure world tasks provides several benefits. First,
running them on a secure virtual address space eliminates the need for the reloca-
tion and recompilation and reduces the fragmentation inherent to the segmented
memory model. This facilitates service addition, removal or swapping according
to guests’ needs and overall system requirements. At the same time, it enables
finer-grained functionality fault-encapsulation. Finally, both the hypervisor and
secure tasks always run with caches enabled, but, since caches are TrustZone-
aware, there is no need to flush them when switching from a guest partition to a
secure world task due to a service request via RPC, which significantly improves
performance.

A crucial design decision relates to the fact that partitions are allocated stati-
cally, at compile-time. Given the static nature of typical embedded systems, there
is no need for partitions to create other partitions or to possess parent-child re-
lations and some kind of control over one another. This greatly simplifies the
implementation of partition management, communication channel and resource
distribution, which are defined and fixed according to the system design and con-
figuration. This idea is further advanced in the next few paragraphs.

To achieve robust security, fault-encapsulation is not enough and the principle
of the least authority must be thoroughly enforced. This is done at a first level
by employing the aforementioned hardware mechanisms provided both by typical
hardware infrastructure (virtual address translation or multiple privilege levels)
and the TrustZone features that allow control over memory segments, devices and
interrupts. Those are complemented by a capability-based access control mecha-
nism. In this way, all the interactions with the kernel, i.e., hypercalls, become an
invocation of an object operation through a capability. This makes the referencing
of a resource by a non-authorized partition conceptually impossible if they do not
own a capability for it. Given that the use of capabilities provides fine-grained
control over resource distribution, system configuration almost fully reduces to
capability assignment, which shows to be a simple, yet flexible mechanism.

Built upon the capability system, this architecture provides a set of versa-
tile IPC primitives, a crucial aspect of the microkernel philosophy. These are
based on the notion of a port, constituting an endpoint to and from which parti-
tions read and write messages. Given that these operations are performed using
port capabilities, this enables system designers to accurately specify the existing

communication channels. Furthermore, the notion of reply capabilities, i.e., port



Chapter 3. pRTZVisor Architecture 43

capabilities with only the send rights set, which can only be used once, and that
are dynamically assigned between partitions through IPC, is leveraged to securely
perform client-server type communications, since they remove the need to grant
servers full-time access to client ports. Aiming at providing the maximum design
flexibility, our architecture provides both synchronous and asynchronous policies.
Synchronous primitives are also combined with scheduling functionalities for effi-
cient RPC communication. This service provision by means of RPC overlaps with
our approach, but it focuses only on providing a Trusted-Execution Environment
(TEE) and not on a flexible virtualized real-time environment.

This architecture categorically differs from classical TrustZone software archi-
tectures, which typically feature a small OS running in secure supervisor mode
that manages secure tasks providing services to non-secure partitions and that
only execute when triggered by non-secure requests or interrupts. This service
provision by means of RPC overlaps with our approach, but it focuses only on
providing a Trusted-Execution Environment (TEE) and not on a flexible virtu-
alized real-time environment. No such OS exists following this approach, since
the hypervisor directly manages these tasks, leaving the secure supervisor mode
vacant. This partial flattening of the scheduling infrastructure allows for the di-
rect switch between guest client and server partitions, reducing overhead, and for
secure tasks to be scheduled in their own right to perform background compu-
tations. At the same time, given that the same API is provided to both client
and server partitions, it homogenizes the semantics of communication primitives
and enables simple applications that show no need for a complete OS stack or
large memory requirements to execute directly as secure tasks. In addition, in
some microkernel-based virtualization implementations, the VMs abstraction is
provided by user-level components [54], which, in our system, would be equivalent
to the secure tasks. This encompasses high-levels of IPC traffic between the VMs
and the guest OS and a higher number of context-switches. Given the lightweight
nature of the VMs provided by our system, this abstraction directly provided at
the kernel level, which, despite slightly increasing TCB complexity, significantly
reduces such overhead.

Besides security, the architecture places strong emphasis on the real-time guar-
antees provided by the hypervisor. Inspired by ideas proposed in [4], the real-time
scheduler structure is based on the notion of time domains that execute in a round-
robin fashion and to which partitions are statically assigned. This model guaran-
tees an execution budget for each domain which is replenished after a complete

cycle of all domains. Independently of their domain, higher priority partitions may



44 Chapter 3. pnRTZVisor Architecture

preempt the currently executing one, so that event-driven partitions can handle
events such as interrupts as quickly as possible. However, the budget allocated to
these partitions must be chosen with care according to the frequency of the events,
to not be exhausted, delaying the handling of the event until the next cycle. We
enhance this algorithm with a time-slice donation scheme [43] in which a client
partition may explicitly donate its domain’s bandwidth to the target server until
it responds, following an RPC pattern. In doing so, we allow for the co-existence
of non-real time and real-time partitions, both time and event-driven, while pro-
viding fast and efficient communication interactions between them. All related
parameters such as the number of domains, their budgets, partition allocation
and their priorities are assigned at design time, providing once again a highly
flexible configuration mechanism. For the kernel’s internal structure, we opted
for a non-preemptable, event-driven execution model. This means that we use
a single kernel stack across execution contexts, which completely unwinds when
leaving the kernel, and, when inside the kernel, interrupts are always disabled.
Although this design may increase interrupt and preemption latencies, which af-
fect determinism by increasing jitter, the additional needed complexity to make
the kernel fully preemptable or support preemption points or continuations would
significantly increase the system’s TCB.

Finally, it is worth mentioning that the design and implementation of the
uRTZVisor was tailored for a Zyng-7000 SoC and is heavily dependent on the im-
plementation of TrustZone features on this platform. Although the Zynq provides
a dual-core Arm Cortex-A9, the hypervisor only supports a single-core configura-
tion. Support for other TrustZone-enabled platforms and multicore configurations

is out of the scope of this work.

3.1.1 Partition Manager

The main role of the partition manager is to guarantee consistency and integrity
of the partitions execution context, namely their CPU state. This module also
encapsulates the list of Partition Control Block (PCB), which encapsulate the state
of each partition and which partition is currently active. Other kernel modules
must use the partition manager interfaces to access the currently active partition
and entries of the PCB for which they are responsible.

As previously explained, two types of partitions are provided: non-secure
guest partitions and secure task partitions. While, for task partitions, state is

limited to user mode CPU registers, for guest partitions, the state encompasses



Chapter 3. pRTZVisor Architecture 45

banked registers for all execution modes, non-secure world banked system regis-
ters, and co-processor state (currently, only the system configuration co-processor,
CP15, is supported). The provided VM abstraction for guest OSes is comple-
mented by the virtualization structures of the GIC’s CPU interface and distribu-
tor as well as of a virtual timer. These are detailed further ahead in Sections 3.1.5
and 3.1.4.

The partition manager also acts as the dispatcher of the system. When the
scheduler decides on a different partition to execute, it informs the partition man-
ager which is responsible for performing the context-switch operation right before
leaving the kernel. In addition to saving and restoring context related to the afore-
mentioned processor state, it coordinates the context-switching process among the
different core modules, by explicitly invoking their methods. These methods save
and restore partition state that they supervise, such as a memory manager method
to switch between address spaces.

The partition manager also implements the delivery of asynchronous notifica-
tions to task partitions, analogous to Unix-style signals. This is done by saving
register state on the task’s stack and manipulating the program counter and link
registers to jump to a pre-agreed point in the partition’s executable memory. The
link register is set to a pre-defined, read-only piece of code in the task’s address
space that restores its register state and jumps to the preempted instruction. The

[PC manager uses this mechanism to implement the event gate abstraction (Sec-

tion 3.1.6).

3.1.2 Capability Manager

The Capability Manager is responsible for mediating partitions access to sys-
tem resources. It implements a capability-based access control system that enables
fine-grained and flexible supervising of resources. Partitions may own capabilities,
which represent a single object, that directly map to an abstract kernel concept or
a hardware resource. To serve its purpose, a capability is a data structure that ag-
gregates owner identification, object reference and permissions. The permissions
field identifies a set of operations that the owning partition is allowed to perform
on the referenced object. In this architecture, every hypercall is an operation
over a kernel object; thus, whenever invoking the kernel, a partition must always
provide the corresponding capability.

Figure 3.2 depicts, from a high-level perspective, the overall capability-based

access control system. Each partition has an associated virtual capability space,



46 Chapter 3. pnRTZVisor Architecture

Partition 1 Partition 2
(102(7)

1 2 3 45 6 7 8 1 2 3 45 6 7 8

(A0 [ (N[ [ [ [EMTEL [ [ [ (¥
Ml RS BN o
URTZVisor

Figure 3.2: Capability-based access control system overview.

i.e., an array of capabilities through which those are accessed. Whenever perform-
ing a hypercall, the partition must provide the identifier for the target capability
in the capability space, which is then translated to a capability on a global and
internal capability pool. This makes it conceptually impossible for a partition
to directly modify their capabilities or operate on objects for which it does not
possess a capability, as only the capabilities on its capability-space are indirectly
accessible. Moreover, for every hypercall operation, the partition must specify the
operation it wants to perform along with additional operation-specific parameters.
At the kernel’s hypercall entry point, the capability is checked to ensure the per-
mission for the intended operation is set. If so, the capability manager will redirect
the request to the module that implements the referenced object (e.g., for an IPC
port it will redirect to IPC manager), which will then identify the operation and
perform it.

At system initialization, capabilities are created and distributed according to
a design-time configuration. Some capabilities are fixed, meaning that they are
always in the same position of the capability space of all partitions, despite having
configurable permissions. These capabilities refer to objects such as the address
space, which are always created for each partition at a system’s initialization.
For capabilities associated with additional objects defined in the system’s config-
uration, a name must be provided such that it is unique in a given partition’s
capability space. During execution, partitions can use this name to fetch the
associated index in their capability space.

uRTZVisor also provides mechanisms to dynamically propagate access rights
by invoking Grant and Revoke operations on capabilities, which, as for any other

operation, must have the respective rights set in the permissions field. The Grant



Chapter 3. pRTZVisor Architecture 47

operation consists of creating a derived capability, which is a copy of the original
one, with only a subset of its permissions, and assigning it to another partition.
The operation’s recipient is notified about it, through an IPC message in one of
its ports, which contains the index for the new capability in its capability space.
To perform the Grant operation, the granter must specify the granting capability,
the subset of permissions to grant, which must be enclosed in the original ones,
and the port to which the notification will be delivered. This means that the
granter must possess a capability for a port owned by the recipient. A derived
capability may further be granted, giving rise to possible complex grant chains.
Each derived capability is marked with a grant id, which may later be used to
perform the revoke operation. In turn, the revoke operation withdraws a given
capability from its owner, and can only be performed by one of the partitions in
a preceding grant chain. The revocation process propagates through the donation
chain. A revoked capability is maintained in a zombie state in the capability space,
until it is used again. When the owning partition tries to use it, it will receive an
error and the position will be freed so that it can be used again. Finally, there
is a special type of capability, called a one-time capability, that can only be used
once. The first time a partition uses this capability it is erased from the partition’s
capability space. These are also referred to as reply capabilities in the context of
the IPC manager, and are leveraged to perform secure RPC communication. This
is further detailed in Section 3.1.6.

3.1.3 Memory Manager

At system initialization, the memory manager starts by building the address
spaces for all partitions from meta-data detailing the system image layout. For
guest partitions, this encompasses figuring out which consecutive memory seg-
ments must be set as non-secure when the guest is active, i.e., those for which
they were compiled to run on, and loading them to these segments. On Zyng-
based devices, memory segments have a granularity of 64 MB, which might lead
to high levels of internal fragmentation. For example, for a 1 MB or 65 MB
guest OS binary, 63 MB of memory is left unused. During this process, if it is
detected that two guests were built to run by sharing the same memory segment,
the manager will halt the system, since the spatial isolation requirement cannot
be guaranteed. From the remaining free memory, the memory manager will build
the virtual address spaces for secure tasks, which currently only use 1 MB pages
instead of the available 4 K pages. In addition, in the current implementation, no

more memory can be allocated by tasks after initialization, so partition binaries



48 Chapter 3. pnRTZVisor Architecture

must contemplate, at compile-time, memory areas to be used as stack and heap,
according to the expected system needs.

The hypervisor code and data are placed in the bottom 64 MB memory seg-
ment, which is always set as secure. Address spaces always contemplate this area
as kernel memory and may extend until the 1 GB limit. Since we manage tasks’
page tables, their virtual address space always starts immediately after kernel
memory, making the recompilation needed for guest partitions, which always have
a confined, but direct view of physical memory unnecessary. Above the 1 GB limit,
the address space is fixed for all partitions, contemplating a peripheral, CPU pri-
vate and system register area, and, at the top, an On-Chip Memory (OCM) region
of 4KB segments, which we call slices and use for guest shared memory as detailed
below.

This module manages two page tables used by the secure interface of the MMU.
The first implements an identity mapping and is used when a guest partition is
currently active. The second is used when a task partition is active and is updated
each time a new task is scheduled. Since it is expected that secure service partitions
do not need to occupy a large number of pages, only the individual page table
entries are saved in a list structure. The extra-overhead of updating the table at
each task context restore was preferred, instead of keeping a large and variable
number of page tables and only switching the page table pointer, reducing the
amount of memory used by the hypervisor.

Partition memory mappings are kept active while the kernel executes, in order
to avoid manual address translation for the kernel to access partition space when
reading information pointed to by hypercall arguments. At the same time, the
memory manager offers services to other system modules that enable them to verify
the validity of the hypercall arguments (i.e., if data pointed by these arguments is
indeed part of the partitions address space), read and write to and from address
spaces others than the currently active one, and perform address translations when
needed.

Upon address space creation, a capability is inserted in the partitions’ capa-
bility spaces that enables them to perform operations over it. These operations
are exclusively related to the creation and mapping of objects representing some
portion of physical memory and that support shared memory mechanisms. We
distinguish two different types of memory objects, page and slice objects, always
represented and manipulated through capabilities and shared among partitions
using grant and revoke mechanisms. Although both types of objects may be cre-

ated by guest and task partitions, only slice objects may be mapped by guests,



Chapter 3. pRTZVisor Architecture 49

since guest address space control is exclusively performed through TrustZone seg-
mentation mechanisms. For example, a guest that needs a task to process its data
may create a page object representing the pages containing that data using its ad-
dress space capability. It then grants the page object capability to the task. The
task uses this capability to map the memory region to its own address space and
processes the data. When the task is done, it signals the client partition, which
revokes the capability for the page object, automatically unmapping it from the
task’s address space. The same can be done among tasks, and among guests,
although, in the latter case, only using the slice memory region.
TrustZone-aware platforms extend secure and non-secure memory isolation to
both the cache and memory translation infrastructure. Nevertheless, a cache or
TLB marked as non-secure may be accessed by non-secure software, despite the
current state of memory segment configuration. Hence there is a need to flush all
non-secure cache lines when a new guest partition becomes active, so that they
cannot access each other cached data. This is also performed for non-secure TLB
entries since a translation performed by a different guest might be wrongly as-
sumed by the MMU. This operation is not needed when switching secure tasks
since TLB entries are tagged. Although it is impossible for non-secure software
to access secure cache entries, the contrary is possible by marking secure page
table entries as non-secure, which enables the kernel and secure tasks to access
non-secure cache lines when reading hypercall arguments or using shared memory.
This, however, puts forth coherency and isolation issues, which demands mainte-
nance that negatively impacts performance. First, it becomes imperative for guest
partition space to be accessed only through a memory manager’s services so that
it can keep track of possible guest lines pulled to the cache. When giving control
back to the guest, these lines must be flushed to keep coherency in case the guest
is running with caches disabled. This mechanism may be bypassed if, at con-
figuration time, the designer can guarantee that all guest arguments are cached.
Moreover, if a guest shares memory with a task, further maintenance is required,
in order to guarantee that a guest with no access permission for the shared region
cannot find it in the cache. This depends on the interleaved schedule of task and

guests as well as the current distribution of shared memory objects.

3.1.4 Device Manager

The job of the device manager is similar to that of the memory manager
since all peripherals are memory mapped. It encompasses managing a set of

page tables and configuring TZPC registers to enable peripheral access to task



20 Chapter 3. pnRTZVisor Architecture

and guest partitions, respectively. Each peripheral compromises a 4 KB aligned
memory segment, which enables mapping and unmapping of peripherals for tasks,
since this is the finest-grained page size allowed by the MMU. The peripheral
page tables have a transparent and fixed mapping, but, by default, bar access to
user mode. When a peripheral is assigned to a task, the entry for that device is
altered to allow user mode access at each context switch. For all non-attributed
devices, the reverse operation is performed. An analogous operation is carried out
for guests, but by setting and clearing the peripheral’s secure configuration bit
in a specific TrustZone register. If a peripheral is assigned to a partition, it can
be accessed directly, in a pass-through manner, without any intervention of the
hypervisor.

At initialization, the device manager also distributes device capabilities for
each assigned device according to system configuration. Here, when inserting the
capability in a partition’s capability space, the manager automatically maps the
peripheral for that partition, allowing the partition to directly interact with the
peripheral without ever using the capability. However, if partitions need to share
devices by granting their capabilities, the recipient must invoke a map operation on
the capability before accessing the device. The original owner of the capability may
later revoke it. This mechanism is analogous to the shared memory mechanism

implemented by the memory manager.

3.1.5 Interrupt Manager

The interrupt manager works on the assumption that only one handler per
interrupt exists in the system. These may reside in the kernel itself or in one of
the partitions. In the first and simplest case, kernel modules register the handler
with the manager at initialization time, which will be called when the interrupt
occurs. The only interrupt used by the kernel is the private timer interrupt that
is used by the scheduler to time-slice time domains. If the interrupt is assigned to
one partition in the configuration, the capability for the interrupt will be added
to its capability space with the grant permission cleared. Partition interrupts
are always initially configured as disabled and with the lowest priority possible.
The details on how a interrupt is configured and handled depends on the type of
partition it is assigned to.

Task partitions cannot be granted access to the GIC, since, if so, by running
on the secure world, they would have complete control over all interrupts. All
interactions with the GIC are thus mediated by the hypervisor by invoking capa-

bility operations, such as enable or disable. These partitions receive interrupts as



Chapter 3. pRTZVisor Architecture ol

an [PC message. Hence, before enabling them, they must inform the interrupt
manager on which port they want to receive it. The kernel will always keep task
interrupts as secure, and when the interrupt takes place, it will place a message
in the task’s port and disable it until the task signals its completion through a
hypercall. Since this process relies on IPC mechanisms, the moment in which the
task takes notice of the interrupt will completely depend on what and when it
uses the IPC primitives and on its scheduling priority and state. It is allowed for
a task to set a priority for an interrupt, but this is truncated by an upper-bound
established during system configuration and the partitions’ scheduling priority.
Guest partitions can directly interact with the GIC, but a virtual GIC is
maintained in the virtual machine. While a guest is inactive, its interrupts are
configured as secure but disabled. Before dispatching the guest, the hypervi-
sor will restore the guest’s last interrupt configurations as well as a number of
other GIC registers that are banked between worlds and may be fully controlled
by the guest. Active guests receive their interrupts transparently when they be-
come pending. Otherwise, as soon as the guest becomes active, the interrupts
that became pending during its inactive state are automatically triggered and
are received normally through the hardware exception facilities in the non-secure
world. As such, at first sight, a guest has no need to interact with the GIC or
the interrupt manager through capabilities as task partitions do. However, if the
capability has the right permission set, the guest can use it to signal the kernel
that this interrupt is critical. If so, the interrupt is kept active while the guest
is inactive, albeit with a modified priority, according to the partition’s scheduling
priority and a predefined configuration. Regardless of which partition is run-
ning, the kernel will receive this interrupt and manipulate the virtual GIC to
set the interrupt pending as would normally happen. In addition, it will request
for the scheduler to temporarily migrate the guest partition to time domain-0
(if not there already), so that it can be immediately considered for scheduling be-
fore its time domain becomes active and handle the interrupt as fast as possible.
Although the worst case interrupt latency persists as the execution cycle length
minus the length of the partition’s time domain, setting it as critical increases the

chance of it being handled earlier, depending on the partition’s priority.

3.1.6 Port Manager

Communication is central to a microkernel architecture, and as pRTZVisor
inherits microkernel-like principles this should be reliable. Our approach imple-

ments the notion of ports, which are kernel objects that act as endpoints through



52 Chapter 3. pnRTZVisor Architecture

which information is read from and sent to in the form of messages. Communi-
cation mechanisms are built around the capability-system, in order to have ICF
and enforce the principle of least authority. In order to perform an operation over
a port, a partition must own a capability referencing that same port, with the
permissions for the needed operations set.

Port operations may work in a synchronous or asynchronous style, and are
further classified as blocking or non-blocking. Despite our focus on security, we
also want to offer the flexibility provided by synchronous communication, which
enables fast RPC semantics for efficient service provision. As such, the yuRTZVisor
provides port operations for both scenarios, combining synchronous operations
with the scheduling infrastructure, explained in Section 3.1.9. The most elemental
port operations are Send and Receive, where the former is never blocking, but the
latter may be. Other operations are composed as a sequence of these elemental
operations, in addition to other services provided by the scheduler, for time-slice
donation, or by the capability manager for one-time capability propagation. Table
3.1 summarizes all IPC primitives over available ports. As shown in the table, there
are two types of receive operations, one blocking and the other non-blocking. In
the first case, the partition will stall and wait for a complementary send operation
to happen on the respective port to resume its execution. The second one will
check for messages in the port’s message queue, which stores them in first-in-first-
out (FIFO) arrival order. If the queue is empty, an error value is returned.

Table 3.1: Port operations characterization, i.e., if it is synchronous or
asynchronous and either blocking or non-blocking.

Port Operations Synchronous Asynchronous Blocking Non-Blocking

Send X X -

RecvNonBlock - X - X
RecvBlock X - b -
SendReply X/- X/x - X

SendReplyDonate x/x x/- X -

ReceiveDonate X - b -

If the Send operation follows a receive that is blocking on the recipient par-
tition, it will happen in a synchronous style, as both meet in a specific point in
time, with the latter being set to an active state. However, the copy procedure
does not happen directly between address spaces, because of the way memory
is managed. Otherwise, the communication will be asynchronous, which means

that a message will be pushed into the port’s message buffer. Both SendReply



Chapter 3. pRTZVisor Architecture 03

operations will perform an elemental send followed by an elemental receive. In
addition, they rely on services from the capability manager to grant a capability
to the recipient partition. These capabilities are erased after being used once, and
are dubbed reply-capabilities. When performing an operation with the -Donate
suffix, the partition is donating its execution time-slice to the recipient partition,
and it blocks its execution until receiving a response message from that same par-
tition. More details about the donation process will be given in Section 3.1.9. In
addition, when a given partition asynchronously sends a message, the recipient
partition may receive an event, if the port has been properly configured, to no-
tify it about the message arrival. In addition, we extended the port operations
to support a notify operation. This triggers an event at the recipient guest. As
event structures are more simple than messages, this enables a simpler way to
communicate in scenarios where messages are overkill. More details about events
in pRTZVisor provided in section 3.1.8.

All communication objects must be specified at design time, which means that
partitions are not allowed to dynamically create ports. In addition, the respec-
tive capabilities should be carefully distributed and configured, since, depending
on its permissions, it may be possible for a partition to dynamically create new
communication relations through the capability Grant operation, or by SendReply
operations. Therefore, all possible existing communication channels are, at least
implicitly, defined at configuration time. Although partitions may grant port capa-
bilities, if no relation for communication exists between partitions, they will never
be able to spread permissions. Thus, designers must take care to not unknow-
ingly create implicit channels, since isolation is reinforced by the impossibility of
partitions to communicate with each other, when they are not intended to.

We later extended the concept of port to create a port group, which is another
kernel object that also works as a destination for message passing operations. It
basically enables the aggregation of multiple ports under the same abstraction,
enabling messaging operations for all of them with only one system call. Figure
3.3 illustrates the idea behind portgroups. However, port group operations solely
encompass the send, notify and receive blocking and unblocking. All abstracted
ports must be owned by the portgroup owner, in order to both receive operations
to be valid, otherwise, an error will be prompted. This also means, that for these
ports there should exist a capability referencing it within the partition’s capability
space. Whenever performing a receive over a portgroup, the received message will
include the index of capability space, whose capability references the recipient port

for the received message. This incurs into flexibility whenever implementing server



54 Chapter 3. pnRTZVisor Architecture

VMs, as connection oriented information can be maintained within the kernel.

Guest OS Guest OS Guest OS Guest OS

>< > <« >< > «

> « > «
URTZVisor URTZVisor

(a) Receive operation. (b) Send operation.

Figure 3.3: Operations using a port group as endpoint.

The port abstraction hides the identity of partitions in the communication pro-
cess. Partitions only read and write messages to and from the endpoints but do
not know about the source or the recipient of those messages. This approach is
safer since it hides information about the overall system structure that might be
explored by malicious partitions. However, ports can be configured as privileged
and messages read from these ports will contain the ID of the source partition.
This enables servers to implement connection-oriented services, which might en-
compass several interactions, in order to distinguish amongst their clients and also

to associate their internal objects with each one.

3.1.7 Lock Manager

For synchronization purposes, there are also specific kernel objects called locks,
which functionally can work as a muter or spin-lock. A partition must try to
acquire it whenever accessing some shared resource, for example shared memory.
The other partition must verify the state of the lock, before proceeding with an
access to the resource that is being protected. If the lock has already been acquired,
the partition should wait. Otherwise, the lock becomes acquired to the partition
and it can proceed with the operation. The lock will be used as a mutex, it
partition’s state changes to blocked until the lock gets unlocked again.

A partition may try to acquire a lock by performing one of two versions of
a Acquire: AcquireBlocking and AcquireNonBlocking. The first changes partition
state to blocked in case the object has already been acquired by other partition,
originating a scheduling point. The latter will return the execution to the invoker,
thus working like a spin-lock. To release the object, there is an Unlock operation.
Additionally, there is the AcquireDonate, which will perform a donation to the

partition that acquired the lock. Thus, accelerating the chances to resolve this



Chapter 3. pRTZVisor Architecture 5}

dependency over the resource. As well as ports and portgroups, locks must be

specified at design time, with respective capabilities.

3.1.8 Event Manager

Events are asynchronous notifications that alter the partition’s execution flow.
For the secure tasks’ partitions, they are analogous to Unix signals and are imple-
mented by the partition manager described in Section 3.1.1. For guest partitions,
they resemble a normal interrupt, to not break the illusion provided by the virtual
machine. In addition, it would be extremely difficult to implement them as signals,
given that the hypervisor is OS-agnostic and has no detailed knowledge about the
internals of the guest. Hence, services from the interrupt manager (Section 3.1.5)
are used to inject a virtual interrupt in the virtual machine. To receive events,
guests must configure and enable the specified interrupt in their virtual IPC. In
this way, events are delivered in a model closer to the VM abstraction, and OS ag-
nosticism is maintained. Partitions interact with the event infrastructure through
a kernel object called event gate. To receive events, partitions must configure the
event gate and associate it with ports that will trigger an event upon message
arrival. To lower implementation complexity, each partition is assigned a single
event gate, which will handle events for all ports in a queued fashion. In addi-
tion, a capability with static permissions is assigned to each partition for its event
gate at system’s initialization. The aforementioned permissions encompass only
the Configure and Finish operations. The configure operation allows partitions to
enable events, and also to specify the memory address of a data structure where
event-related data will be written to upon event delivery, and that should be read

by the owning partition to contextualize the event.

3.1.9 Scheduler

The presented approach for the pRTZVisor scheduler merges the ideas of
[15, 43]. It provides a scheduling mechanism that enables fast interaction between
partitions, while enabling the coexistence of real-time and non-real-time appli-
cations without jeopardizing temporal isolation, by providing strong bandwidth
guarantees.

The scheduler architecture is based on the notion of a time domain, which is
an execution window with a constant and guaranteed bandwidth. Time domains
are scheduled in a round-robin fashion. At design time, each time domain is

assigned an execution budget and a single partition. The sum of all execution



56 Chapter 3. pnRTZVisor Architecture

budgets constitutes an execution cycle. A partition executes in a time domain,
consuming its budget until it is completely depleted, and the next time domain is
then scheduled. Whenever a complete execution cycle ends, all time budgets are
restored to their initial value. This guarantees that all partitions run for a specified
amount of time in every execution cycle, providing a safe execution environment

for time-driven real-time partitions.

p
Ordered by priority

Time domain 1 Time domain 2
time budget = 30 ms time budget = 20 ms
Partition X Partition Y
Priority = 4 Priority = 2
Partition W

Round Robin

Max Priority

Dispatch

Figure 3.4: Overview of the scheduling algorithm.

The scheduler allows that multiple partitions may be assigned to a special-
purpose time domain, called domain-0. Inside domain-0, partitions are scheduled
in a priority-based, time-sliced manner. Furthermore, domain-0’s partitions may
preempt those running in different domains. It is necessary to mention that any
partition is assigned a priority, which only has significance within the context
of domain-0. At every scheduling point, the priorities of the currently active
time domain’s partition and the domain-0’s highest priority ready partition are
compared. If the latter possesses a higher priority, it preempts the former, but
consuming its own domain’s (i.e., domain-0’s) time budget while executing. The
preemption does not happen, of course, if domain-0 itself is the currently active
domain. Figure 3.5 presents an example scenario containing two domains: time
domain 1, assigned with partition X; and time domain 2, assigned with Partition
Y, in addition to domain-0, assigned with partitions Z and W. Time domain 1 is

first in line, and since partition X has higher priority than the ones in domain-0, it



Chapter 3. pnRTZVisor Architecture o7

will start to execute. After its time budget expires, a scheduling point is triggered.
Time-domain 2 is next, but since domain-0’s partition Z possesses higher priority
than partition Y from time domain 2, Z is scheduled consuming domain-0’s budget.
At a certain point, partition Z blocks, and since no active partition in domain-0
has more priority than domain 2’s Y, the latter is finally scheduled and executes
for its time domain’s budget. The next scheduling point makes domain-0 the
active domain, and the only active partition, W, executes, depleting domain-0’s
budget. When this expires, a new execution cycle begins and domain 1’s partition
X is rescheduled.

Partition X Partition Y Partition W
Priority = 4 Priority = 2 Priority = 1

Execution Cycle

Figure 3.5: Example of an execution cycle, given a set of time domains
with their own partitions and respective configuration.

Aiming at providing fast interaction between partitions, some IPC operations
are tightly coupled with specific scheduling functionalities. Section 3.1.6 highlights
a number of IPC operations that rely on the scheduler: the ReceiveBlocking , and
the ones with -donate suffix (i.e., SendReplyDonate and ReceiveDonate). The Re-
ceiveBlocking operation results in changing the partitions state to blocked, and
then scheduling the next ready partition from domain-0 to perform some back-
ground work. Nevertheless, it keeps consuming the former domain’s time budget,
since it prevails as the active time domain. Hence, by blocking, a partition im-
plicitly donates its execution time to domain-0. The following scheduling point
will be triggered according to one of three scenarios: (a) domain-0’s internal time
slice expires, which results in scheduling the next highest priority partition from
domain-0; (b) the active time domain’s budget expires, and the next time domain
becomes active; (¢) the executing partition sends a message to the active time
domain’s partition, which would change its state to ready and result in scheduling
it right away. In summary, upon blocking, a partition remains in this state until it

is unblocked by receiving a message on the port it is hanging. If an execution cycle



o8 Chapter 3. pnRTZVisor Architecture

is completed without a change in the partition’s state, partitions from domain-0
are scheduled once more in its place.

The -donate suffixed operations require a more intricate operation from the
scheduler, and by invoking them, a partition is explicitly donating its time bud-
get to the recipient port’s owner. Hence, it will block until it has the created
dependency resolved, i.e., it blocks waiting for the message’s recipient to send its
response. In case the donator has a higher priority than the donatee server, the
latter will inherit the former’s priority, augmenting the chances of it to execute
and to resolve the dependency sooner. Considering a scenario where two partitions
donated their time to low-priority servers running in domain-0, the server that in-
herits the higher priority will execute first when domain-0’s becomes active, or even
preempt another time domain’s partition, which it previously wouldn’t preempt.
This enables services to be provided in a priority-based manner, i.e., maintain-
ing the priority semantics of the requesting partitions. This priority inheritance
mechanism also mitigates possible priority inversion scenarios. A partition rely-
ing on another one, and donating its time domain without any other intervener,
constitutes the simplest form of a donation chain. However, a donate operation
may be performed to or from a partition that is already part of a donation chain
in a transitive manner, constituting a more intricate scenario. Whatever parti-
tion is at the tail of the chain, it will be the one to execute whenever one of the
preceding partitions is picked by the scheduler. Notwithstanding, only the one
following a given partition at the donation chain is able to restore its state to
ready, by sending a message to the port on which the donator is waiting for the
response to its request. This synchronous, donation-based mechanism is prone to
deadlock scenarios, which in our approach is synonymous with a cycle in the do-
nation chain. As such, a mechanism to detect deadlocks is provided, which aimed
at being as lightweight as possible, considering its pervasive execution in every
donation procedure.

Although not imposed by the implementation, this design was devised so that
guest partitions are placed in common time-domains and secure task partitions
are placed in domain-0. Since the idea of secure tasks is to encapsulate extended
kernel services or shared drivers, these can be configured with lower priorities,
executing according to guest needs and based on the latter’s priority semantics.
In addition, this models allows for the coexistence of event-driven and background
partitions in domain-0, while supporting guests with real-time needs and that re-

quire a guaranteed execution bandwidth. For example, a driver with the need for



Chapter 3. pRTZVisor Architecture 29

a speedy reaction to interrupts could be split in two cooperating tasks: a high pri-
ority task acting as the interrupt handler, which upon interrupt-triggering would
message the second lowest priority task that interfaces other partitions, execut-
ing only upon a guest request. Even though a mid-priority client guest could be
interrupted by the interrupt handler, its execution time within the cycle is guaran-
teed. Due to possible starvation, only the tasks that act as pure servers should be
configured with the lowest possible priorities in domain-0. Other partitions that
may be acting as applications on their own right or may have the need to perform
continuous background work should be configured with a middle range priority.
It is worth mentioning that the correctness of a real-time schedule will depend on
time domain budgets, partition priorities and on how partitions use communica-
tion primitives. Thus, while the hypervisor tries to provide flexible and efficient
mechanisms for different real-time constraints to be met, their effectiveness will

depend on the design and configuration of the system.

3.2 Implementation

Scheduler
P T T T T T TTTTTTTTTTTTN
R vV
I
| A InterruptManager
MemoryManager : fm——————————— -
T e P
I
_________________________________________ <_J:b_,*__________PortManager |
7 T
! I
: vV s E—— v L
I N | I
L — — — >f PartitionManager <~ LA EventManager I
—— e hedem e !
I B - I
I [ e - — - [T Pe——————
] K Vo :
I
I

Figure 3.6: uRTZVisor UML diagram: overview of implemented archi-
tecture.

Figure 3.6 depicts an UML diagram presenting the main component managers
uRTZVisor, and existing dependencies between them. All depicted classes are
implemented as singletons. The diagram presents an high-level view where some

kernel objects and utility classes are omitted for simplifying the view, however



60 Chapter 3. pnRTZVisor Architecture

some of them may be unveil through out this section. At the center of diagram
are the Partition Manager and Capability Manager. The first handles PCBs which
may its change state according to operations that might happen on kernel objects
related to them in some way, while the latter manages capability objects.

Every system call happens through the same interface, by invoking the SMC
instruction. Priorly, general purpose registers (r0 to r2) are used to pass arguments
to inside the system call according to ARMv7 ABI. As aforementioned, partitions
must specify the capability referencing the kernel object that implements the in-
terface they intend to access, in addition to operation-specific parameters. We
developed user-level APIs that ease this process.

The handler that attends an SMC interrupt (dubbed smc__handler) is tightly
coupled with the CapabilityManager, given capabilities importance in performing
system calls. In this sense, the smc_handler is "friend" of the CapabilityManager
in order to access private properties within the manager. Every manager operat-
ing on kernel objects registers a callback that is invoked upon an operation in one
of its responsibility, for which the execution is redirected after permissions checks
are effectuated. To enhance security, all parameters passed inside the kernel go
through a sanity verification, to ensure the value makes sense considering the pur-
pose and meaning for the variable, in addition to verifying that every data pointer
passed are indeed pointing to a valid address. These classes are implemented using
templates, and are used In order to store kernel resources, we implemented two
utility classes TzPool and TzList. These classes are implemented using templates,
and are used to store objects within the kernel, like port messages, capabilities,
page tables... Every time one of these cells of memory within these structure is not
used anymore, it is cleaned to avoid leaks. Lastly, all managers have associated
configuration files, that are a pair of .c and .h files. At pRTZVisor main function
(Listing 3.1), each manager initialization function is invoked, traversing configura-
tion structures and creating kernel objects and respective capabilities accordingly.
In addition, each manager registers one callback at a table, to which execution

flow should be redirected to attend services of its respective objects.

Listing 3.1: Main function with initialization of all managers.

int32_t main(){
/*Managers initializationx*/
tzvisor::TzListBase::nodePool.Init ();
tzvisor::PartitionManager::GetInstance () .Init();
tzvisor::TzCapabilityManager::GetInstance () .Init();
tzvisor::MemoryManager::GetInstance () .Init ();
tzvisor::TzEventManager::GetInstance () .Init ();
tzvisor::TzPortManager::GetInstance () .Init ();
tzvisor::InterruptManager::GetInstance () .Init();

O 00O Ui WwN —



Chapter 3. pRTZVisor Architecture

61

10 tzvisor::
11 tzvisor:
12 tzvisor::

14 tzvisor::
15 tzvisor::assembly::ns_world_invoke () ;
16 /* Should never return here */

17  while (1) ;

DeviceManager::GetInstance () .Init () ;
: TzMutexManager ::GetInstance () .Init ();
Scheduler::GetInstance () .Init ();

Scheduler::GetInstance () .Schedule();

3.2.1 Access-Control

The access-control functionalities, in addition to the capability manager, are
implemented in the classes depicted in Figure 3.7. The Object class encapsulates
information used to reference an object instance to which the access is being medi-
ated and will have its address stored in a 32-bit integer, which is used to fetch the

object within its respective pool. The remaining property (dubbed managerInfo)

stores the information regarding object type and manager, concatenated in one

variable. The manager information is extracted within the smc__handler function,
in order to figure which manager callback should be invoked, while the object type
info is used within the callback to differentiate objects operated within the same

manager. This is useful, for example, in the case of the PortManager to differ-

entiate from a port and a port group object, as both of them support namesake

operations, however, with different behaviors. All public methods Object class

help to extract these informations whenever necessary.

CapabilityManager

Capability

-managersSmcSr : ManagerSmcSr_t
-mCapPool : Pool<Capability, SIZE>
-minstance : static CapabilityManager

-CapabilityManager()

-CapabilityAttribute(cap : Capability&, guest : id_t, atOp : enum AttributeOperation, ) : int32_t
+CapabilitySmcSr(cap : Capability&, operation : uint32_t, userParStruct : uint32_t*) : int32_t
+RegistManager(manld : enum Managers, callback : ManagerSmcSr_t) : int32_t

+CreateCapability(rigths : uint32_t, obj : Object&, owner :id_t, name : const char*) : int32_t
+GetCapByName(partitionld : id_t, name : char*) : int32_t

+CapabilityGrantOneTime(toGrant : Capability&, rightsToGrant : uint32_t, recipient : int32_t) : int32_t
+CapabilityGrant(toGrant : Capability&, rightsToGrant : uint32_t, recipient : Port*, grantld : uint32_t) : int32_t
+CapabillityRevoke(toRevoke : Capability&, revkCtr : uint32_t) : int32_t

+CapabilityDelete(toDelete : Capability&) : int32_t

-mObject:Object

-mOwner: id_t

-mRights: uint32_t
-mName[CAPNAME_SIZE]: char
-mGrantld : id_t

-mBase : TzCapability*
-mOneTime : bool

-mDerived : List<Capability>

CapabilitySpace

-mRecentlyRevoked : Bitmap <CAPSPACE_SIZE>

+CapabilitySpace()

+CheckReboked(extCap : id_t) : bool

+SetRevoked(index : id_t) : void

+GetCapability(extCap : id_t, cap : TzCapability*) : int32_t
+AddCapability(cap : TzCapability*)
+RemoveCapability(extCap :id_t) : bool
+GetCapByObj(obj : const Object&) : TzCapability*
+GetCapByName(name : char*) :int32_t

+TzCapability()

+GetOwner() :id_t

+CheckMask(mask: uint32_t) : bool
+CheckOperation(operation : uint32_t) : bool
+CheckBaseTree(cap: TzCapability&) : bool
+Derive(newCap : TzCapability&, rights :
uint32_t, oneTime = 0:bool) : bool

Object

-reference : uint32_t
-managerinfo
+Object()

+GetManager() : int32_t
+GetObjType() : int32_t
+GetManlnfo() :int32_t
+GetRef() : uint32_t

Figure 3.7: Classes that encapsulate access control functionality.




62 Chapter 3. pnRTZVisor Architecture

The CapabilitySpace class is responsible for managing capabilities owned by the
same partition, storing their references in an array. Thus, it encompasses functions
to add and remove capabilities, as well as to search them within the capability
space, based on name and reference. This is useful, for example, to figure the
port that which triggered an event in an event gate. Whenever it runs out of
capability slots, a message is sent to the owning partition’s kernel port, enabling
the recovery either by removing one capability that is not needed, or by using
a one-time capability from a client-server communication. Lastly, the Capability
class encapsulates all elemental operations regarding access control. Permissions
are stored in a 32-bit integer, that is used as a bitmap, where each bit represents an
operation over the referenced object. These bits have different meanings within
a given object type context, however, the grant and revoke operations can also
be mapped in this bitmap, occupying the same position regardless of the object
type. In addition, Capability class provides functionality to check permissions on
a mask, to validate a set of operations, and on a single operation. It provides
methods for deriving the capability, as well as properties to support the proper

grant and revoke of a capability.

3.2.1.1 SMC Handler

As aforementioned, smc__handler method is configured as being the handler for
SMC exception. Thus, this is the entry point for every single operation to happen
inside the kernel. As such, its mode of operation is completely transversal to every
type of object and manager. Listing 3.2 presents this function’s algorithm.

Firstly, the arguments passed from the user-space are fetched: the capability
reference from the partition’s capability space, the operation to be performed and
lastly, a pointer used to pass operation-specific parameters. As previously ex-
plained, this process is made according to ARMv7 ABI. Following, the capability
in use is fetched from the owner capability space, and then checked for permis-
sions regarding the operation to be performed. If the permission is set within the
capability, is checked if it is a grant or a revoke. This because both operations
are transversal to all objects and managers, and should approached as a special
case within the flow of the smc__handler. When the operation is a grant, some ad-
ditional verifications are performed regarding owner permissions to communicate
with the recipient partitions, given that it will receive a message informing about
the grant occurrence. If the operation is not a grant nor a revoke, from the in-use
capability is fetched the manager identification. This identification should be used

within the manager initialization, for registering a specific callback, to which the



Chapter 3. pRTZVisor Architecture 63

execution should be redirect in case of an operation over one of the manager’s

objects, on a callback table.

Extract function parameters from registers (capability
reference, operation, other paramenters);
Fetch Capability;
Get operation;
if operation in capability/is valid then
if operation is a grant then
if are parameters valid then
| Perform grant();
else
| return error;
end
else if operation is a revoke then
| Perform revoke();
else
Get manager from capability;
Call manager callback’
end
else
| return error;
end
if is a one-time capability then
| Erase capability;
end

Listing 3.2: Algorithm of the smc__handler.

3.2.1.2 Grant and Revoke

A grant operation, whose algorithm is presented in Listing 3.3, consists on the
propagation of permissions over an object. A partition can only provide access
to a subset of permissions it has over an object, whose capability has the grant
bit set. In doing so, the kernel will create another capability and insert it on
the recipient’s capability space, after ensuring the operation is indeed valid. In
addition, it adds the new capability to the list of derived capabilities within the
original one, and it sets the pointer for the base capability within the derived one.
Whenever invoking the grant operations, the running partition specifies a grant
ID, that is going assigned to the derived capability, filling mGrantID field (check
field on Figure 3.7). Each Capability class possesses a list to store its derived
capabilities. The mGrantID is used to identify this capability in case of a revoke
operation. The ID is not unique, thus the same can be assigned to more than

one derived capability. Lastly, there is a type of message (section 3.2.2.1) used to



64 Chapter 3. pnRTZVisor Architecture

communicate the recipient’s about the grant, and what is the index of the new

capability within its capability space.

Get capability to recipient port;

if Has permissions to send then

if Permissions to grant contained in original capability then
Update new capability;
Fill base capability in derived one;
Extend derived list;
Invoke manager callback;
Send message with capability;

else

| return error;

end

else

| return error;

end

Listing 3.3: Algorithm of the Grant operation.

The revoke occurs always after a performed grant. Listing 3.4 and 3.5 presents
the algorithm for the operation for a capability to be revoked. Listing 3.4 presents
the algorithm for searching capabilities to be revoked in the derived list of the
original capability. This is done recurring to the referred ID, and once there is
a match, the function the actually does the revoke is executed Listing 3.5. It
removes the capability from its respective capability space, and then from the
global capability pool. Whenever revoking a capability all its derived capabilities
will be also revoked. This is achieved by invoking the revoke using recursivity over

that same function.

Get grantID from parameters;
Set iterator to the beginning of derived capabilities list;
while [lterator is different from the end of derived list do
while Current grantID different from received as paramenter do
| Iterate;
end
Invoke recursive function for revoke;
end

Listing 3.4: Algorithm of the revoke operation.

A change of access over a kernel object may require the respective manager to
perform additional operations. For example, upon grant or revoke of capability
referencing a memory object requires the MemoryManager to execute a mapping

or unmapping functionality, or even to interrupt the operation for sanity-check.



Chapter 3. pRTZVisor Architecture

65

Thus, every manager must also register a callback for grant and revoke operations,

being able to maintain the overall infrastructure coherent and safe.

Set iterator to the beggining of derived list from current

capability;
while iterator is from the end of derived list do
Invoke recursive call;
Pop next element from list ;
end
Invoke manager’s revoke callback ;
Remove capability from capability space;
Erase capability ;

Listing 3.5: Algorithm of the recursive function from the revoke

operation.

3.2.2 1IPC

As explained in Section 3.1.6, pRTZVisor implements IPC mechanisms for

synchronization and message passing. For both mechanisms there are different

types of kernel objects, managed by different subsystems within the kernel: the

PortManager for message passing functionalities, and the LockManager for syn-

chronization purposes.

3.2.2.1 Message Passing

PortManager

Port

-mPortPool : Pool<Port, SIZE>

-mPorts : List<Port>

-mPortGroupPool : Pool<PortGroup, SIZE>
-minstance: static PortManager

-InitKernelPorts() : void

-InitPorts() : void

-InitPortGroups() : void

-InitPortCaps() : void

-InitPortGroupsCaps() : void

-FindPort(portld : id_t) : Port*

-FindPortGroup(portGrouplD : id_t) : PortGroup*

-InitPortGroup(owner : id_t, groupld : id_t, ports : id_t*, nrOfPorts : uint32_t) : int32_t
//Operations over ports:

+PortManSmcSr(cap : TzCapability&, operation : uint32_t, userParStrut : uint32_t*) : static int32_t
+PortSmcSr(cap : TzCapability&, operation : uint32_t, userParStrut : uint32_t*) : int32_t
+ConfigPort(port : Port&, conf : uint32_t) : int32_t

+SendMsg(port : Port&, msg : TzMsg&) : int32_t

+RecvMsg(port : Port&, msg: TzMsg&) :int32_t

+RecvBlocking(port : Port&, msg : TzMsg&) : int32_t

+SendReply(port : Port&, msg : TzMsg&, replyCap : id_t) : int32_t
+SendReplyDonate(port : Port&, msg : TzMsg&, toDonate : Port&) : int32_t
+RecvDonate(port : Port&, msg : TzMsg&, toDonate : Port&) : int32_t

+Notify(port : Port&, word : uint32_t) : int32_t

//Operations over ports groups:

+PortGroupSmcSr(cap : TzCapability&, operation : uint32_t, userParStrut : uint32_t*) : int32_t
+RecvMsgGroup(portGroup: PortGroup&, msg : TzMsg&) : int32_t
+SendMsgGroup(portGroup : PortGroup&, msg : TzMsg&) : int32_t
+RecvBlockingGroup(portGroup : PortGroup& : msg : TzMsg&) : int32_t
+NotifyGroup(portGroup : PortGroup&, word : uint32_t) : int32_t

-mMsgList : List<TzMsg>
-mMsgPool : TzMsgPool
-mPortld : id_t

-mOwner: id_t
-mConfiguration : uint32_t
-mSyncEntry : TzMsg*
-mlsMsgPending : bool

+Port()

+AsyncMsgSend(msg : TzMsg&) : int32_t
+SyncMsgSend(msg : TzMsg&) : int32_t
+AsyncRecvMsg(msg : TzMsg&) : int32_t
+SyncRecvMsg(msg : TzMsg&) : void
+CheckConfig(conf : uint32_t) : bool
+SetPrivinfo(sender : id_t, msg : TzMsg_t)
+Notify(word : uint32_t) : int32_t
+ContextRestore() : void

PortGroup

-mOwner: id_t
-mGroupld : id_t
-mPorts : List<Port>

+PortGroup()

+Add(port: Port&) : int32_t
+AsyncSendMsg(msg : TzMsg&) : int32_t
+AsyncRecvMsg(msg : TzMsg&) : int32_t
+SyncRecvMsg(msg: TzMsgP*) : void
+SyncSendMsg(msg : TzMsg&) : int32_t
+Notify(word : uint32_t) : int32_t

Figure 3.8: Classes that encapsulate message-passing functionality.



66 Chapter 3. pnRTZVisor Architecture

Figure 3.8 depicts all classes that deal with message passing functionality.
Port and PortGroup are the kernel objects used for message passing, over which
partitions perform their system calls, and whose access is mediated through Port-
Manager. All operations of this type will go through method PortManSmcSr,
which, according to the object type, will redirect to a callback that handles the
respective object type.

Following, it is explained how each operation over Ports and PortGroups is

implemented, starting with a brief description of message’s structure.

Listing 3.6: uRTZVisor’s message structure.

1 struct TzMsg_t {

2 enum TzMsgType {

3 NORMAL=0, NORMAL_REPLY, CAP_GRANT, KERNEL
4 } mType;

5

6 int32_t mPayloadSize;

7

8 struct PropCap_t {

9 int32_t mObjectType;

10 int32_t mExtCap;

11 } mPropCap;

12

13  union payload_t {

14 uint32_t mWords [PAYLOAD_SIZE / sizeof (uint32_t)];
15 uint8_t mBytes [PAYLOAD_SIZE];
16 uint32_t interrupt;

17 } uPayload;

18

19 struct PrivInfo_t {

20 id_t sender;

21 } mPrivInfo;

22 };

Listing 3.6 shows pRTZVisor’s message structure. The implemented struc-
ture encompasses fields to propagate all needed information, which takes into
accounts every use-case scenario. Messages may be propagated under differ-
ent circumstances, as such, we specified a field to identify the messages pur-
pose and context on the T2MsgType enumeration. The supported message types
are: NORMAL that specifies a simple message propagated between partitions;
NORMAL REPLY which extends a simple message with a one-time capability;
CAP_GRANT intended to notify a recipient of a grant operation, providing the
respective index within the capability space; and KERNEL in case a message
comes from the kernel, e.g., to notify about a full capability space. In order to
check the index of a propagated capability in both of the aforementioned scenar-
ios, the recipient should check the struct PropCap t typed field, that provides

not only the capability position within the respective capability space, but also



Chapter 3. pRTZVisor Architecture 67

the type of object it refers to. For the server to maintain information about the
state of a given communication, it can use the struct Privinfo_t type field, which
is undefined by default; however, at initialization a port may be configured to
provide client’s specific information. Lastly, the union_t payload is intended to

be filled by the sender entity with the information to be sent.

Message Sending The following described implementation, whose algorithm is
presented in Listing 3.7, presents the flow of an elemental send operation described
in Section 3.1.6. This operation is also invoked whenever performing a compound

operation that includes a message sending, over a port object.

Extract parameters;
Set message type;
Sanity check on message size;
if Recipient’s state is active then
Invoke port’s asynchronous send;
else if Recipient’s state is blocked then
Invoke port’s synchronous send;
Unblock recipient;
Invoke schedule;
Ise if Recipient’s state is donated then
if Donated to current sender then
Invoke port’s synchronous send;
Give back donation;
else
‘ Invoke port’s asynchronous send;
end

@

else
‘ return error;
end

Listing 3.7: Algorithm of the Send operation.

Firstly, all the necessary information is decoded, like the message pointer, type
and recipient port reference. Then, the recipient’s execution state is verified, and
it can be ACTIVE when executing the normal behavior, BLOCKED when wait-
ing for any message in a given port or port group, or DONATED when waiting
for a specific partition to send a message in a specified port. After this verifica-
tion, the message can be inserted in the port’s message queue if the recipient’s
is both ACTIVE, or DONATED and the receiver did not donate to the current



68 Chapter 3. pnRTZVisor Architecture

sender. Otherwise, the message will be cached within the port, if the recipient is
BLOCKED, or DONATED to the current sender. Then, the recipient will have
its state changed to active, and in the latter scenario, it will invoke services from
the scheduler to give back the donation.

There is also a send operation specific for port groups, that will invoke the
described procedure for the elemental send over every port within it. In addition,
both SendReply and SendReplyDonate operations, described in Section 3.1.6 also
invoke the aforementioned send routine. Both also rely on services from the Ca-
pability Manager to grant a capability, however, with the one-time feature. The
SendReplyDonate uses services from the Scheduler to perform a time-slice donation
to the message’s recipient towards reducing the latency of achieving a response.

More details about donation schema will be given in further Section 3.2.4.

Message Receiving There are two implementations for an elemental receive.
One is completely non-blocking, while the other is blocking. The former (Listing
3.8) leads the kernel to check if there’s some message pending within the port’s
queue. If so, it pops the one on top and copies it to the specified address within

the system call parameters.

if Queue has messages then
Pop message;
Copy it to buffer;
Remove from message pool;
end

Listing 3.8: Algorithm of the recursive function from the revoke
operation.

The blocking (Listing 3.9) will check for a message on the queue, and if it is
not empty, it will behave in the exact same way as the previous call. However, if
the queue is empty, it will register an address to be the destination for the next
message to be sent over that port, in addition, it will change the partition state to
blocked. The PartitionManager invokes a routine for the context restore, where
a message passing callback is invoked. It checks if there is a message pending to
a blocked partition, and if so, as aforementioned, there’s a message cached within
the port, which is going to be copied for the stored address.

In a non-blocking receive over a PortGroup, the operation will occur until a
port successfully pops a message, while in blocking one it will invoke the described
method for every port encompassed by the PortGroup. The latter, will have the

partition’s state changed to blocked. Thus, whenever receiving a message in one of



Chapter 3. pRTZVisor Architecture 69

the ports encompassed by the PortGroup, the partition will become active again.
In both operations, the message will also contain the index from the partition’s
capability space, whose capability is referencing the port to which message was

directed.

Invoke port unblocking receive;

if Have not received any message then
Register address for receiveing message;
Block partition execution;
Invoke schedule;

end

Listing 3.9: Algorithm of the recursive function from the revoke
operation.

Donations and grant one-time The remainder operations encompass a com-
bination of the already described operations with functionalities from both the
Scheduler and CapabilityManager classes. For donations, the kernel changes re-
cipient partition’s station and creates a chain of donations, given that a donatee
may also donate its time-budget. This will be explained in more detail in Section
3.2.4. Furthermore, -Donate suffixed operations, as well as SendReply, encompass
the granting of a capability. This is a one-time grant, meaning that upon recipients

response, the capability will be removed from its address space.

3.2.2.2 Synchronization

LockManager Lock

-mLockld : id_t
-mValue : uint32_t
-mOwner : id_t
+Lock()

+Acquire()

+Free()

-minstance : static LockManager

-mLockPool : Pool<Lock, SIZE>

-minUselock : List<Lock>

-LockManager()

+Getlnstance() : static LockManager&

+Init() : void

+LockSmcSr(cap : Capability&, operation : uint32_t, userParStruct : uint32_t*)
+LockAcquireB(lock : Lock&)

+LockAcquireNB(lock : Lock&)

+LockFree(lock : Lock&)

Figure 3.9: Classes that encapsulate synchronization functionality.

For synchronization purposes the Lock class was implemented, and is managed
by LockManager (Figure 3.9). It basically can be used as spin-lock or a mutex.
The difference between these mechanisms is on how the failure of trying to acquire
the Lock will be handled. The failure on acquiring the lock happens whenever
another partition already owns the lock, which means the currently executing

should wait until it frees the lock. As aforementioned in Section 3.1.7, the lock



70 Chapter 3. pnRTZVisor Architecture

works as a mutex if the AcquireBlock operations is used, or as spin-lock if using

the AcquireNonBlocking.

while Lock/Store has not succeeded do
Invoke instruction LDREX ;

if Previous state was acquired then
| return error;

else

| Invoke instruction STREX;
end

end

Set owner information;

Listing 3.10: Algorithm of the Lock operation.

if Is current partition the owner then
‘ Reset state and owner;

else

| Return error;

end

Listing 3.11: Algorithm of the Free operation.

Listing 3.10 and listing 3.11 present the algorithm for acquiring and freeing
operations over a lock, respectively. The first sets the value of lock’s state, while
the other clears it. If the memory position is set means the lock has already been
acquired by another partition. The owning partition’s ID is stored within the
Lock class, in addition to the value and lock ID used for configuration purposes.
Trying to acquire a lock is done by requiring to ARMwv7 load and store exclusive
instructions. The first is for loading the value state to verify it is set or unset.
The store is used to set the value, thus acquiring the lock. This process should
happen atomically as no other access to the value’s memory address should happen
between the LDREX and the STREX. In case other memory access happens
between them, the STREX will fail. In case the STREX fails, the execution of
the acquiring procedure should return the LDREX. The Free operation just checks

the ID of the running partition, and if it matching owner’s ID, the value is cleared.

3.2.3 Events

Events are delivered to partitions through an instance of an EventGate class,
which in turn is managed by the EventManager (Figure 3.10). As aforementioned,
depending on the partition type we have different mechanisms to deliver and alter

partition’s execution flow. In case of a guest partition, a virtual interrupt is sent,



Chapter 3. pRTZVisor Architecture 71

EventManager EventGate

-minstance : EventManager -mEvtList : List<Event>
-EventManager() -mEvtEntry : EventEntry_t
+Init() : void -mOwner:id_t

+EvtSmcSr(cap : Capability&, operation : uint32_t, userParStruct : uint32_t*) : int32_t -mState : bool

-mConfig : uint32_t

-mEvtPool : TzPool<Event, SIZE>

+Getlnstance() : static EventManager

+ConfigEventGate(evtGate : EventGate&, config : uint32_t) : int32_t
+FinishEvent() +EventGate()

+Configevt(evtEntry : EventEntry_t*, config : uint32_t)

+SendEvt(evt : Event&) : int32_t

+SendEvt(origin : uint32, word : uint32_t, type : TzEventType) : int32_t
+ContextRestore() : void

Figure 3.10: Classes that encapsulate events functionality.

while for secure tasks events are delivery as unix-like signals. To implement signals
as a virtual interrupt, services from InterruptManager class are going to be used.
While services from PartitionManager are used for the unix-like signals.

FEventGates are assigned one per partition during initialization, in addition to
the respective capability with no grant or revoke rights set. Thus, each FventGate
is confined to the owner partition. Notwithstanding, sibling partitions may trigger
an event through asynchronous communication, either by sending a message or
through the notify operation, over a port. In order to events preempt partition’s
execution, the respective partition should configure their FventGate properly, en-
abling events and providing an event handler, through means of the TzFvtEntry_t
structure. Listing 3.12 shows the structure used as an entry point to partitions’
space, which holds the information for the last occurred event towards the owning
partition and the callback to be invoked. The system call for event gates con-
figuration receives the capability referencing the event gate, in addition to the
address of a dedicated structure, where, upon the last event occurrence, its data is
written to. The event structure encompasses: a miscellaneous word, whose mean-
ing relates with the event’s scope; its origin, which will contain the index of the
capability, within owner’s capability space, referencing the port that triggered the
event; and the type of event, which will be notification or a message arrival in the
origin referred port. The type for event handlers is also presented in the Listing
3.12. There is a field within TzFEvtEntry t structure to be assigned with the ad-
dress of the signal’s handler. This is going to be used to redirect task’s execution
to that address. Guests partitions the interrupt specified for the purpose should
be properly configured.

For both partition types, whenever an event is handled the Finish operation
must be performed, to inform the kernel that the partition is ready for receiving
another one, otherwise events will be pending on EventGate’s events queue. Upon
the Finish event operation, another event is prompted if there is some pending.
Moreover, there is a callback to be invoked at every context restore, that will

prompt available events.



72 Chapter 3. pnRTZVisor Architecture

Listing 3.12: pRTZVisor’s events and events entry structures

typedef void TzEventHandler_t (void) ;

struct TzEvtEntry_t {
struct TzEvent {
uint32_t mWord;
uint32_t mOrigin;
enum TzEventType {
NEW_MSG = O,
NOTIFICATION
10 } mType;
11 } curEvt;
12 TzEventHandler_t* eventHandler;
13 };

O© 0 JO T WN

3.2.4 Scheduler

Synchronous IPC implementation is tightly coupled with scheduling function-
alities, namely for blocking on a receive, or donate the respective time quantum to
a server. As aforementioned, scheduling functionalities that do not directly aim at
providing IPC support fall out of the scope of this dissertation, and, consequently,

will not be described with higher detail in this section.

Scheduler ExecutionContext
-mDomains : Domain [NUM_DOMAINS] +mPriority : prio_t
-mDomain0 : Domain0 +minheritedPriority : prio_t
-mCurrentDomainindex : uint32_t +mTail : Partition*
-mCurrentDomain : BaseDomain* +mNext : Partition*®
-mCurrentDiscountDomain : BaseDomain* +mDonators : PrioOrdList
-mCurrentExecDomain : BaseDomain* +donatees : Bitmap<PARTITION_NUM>
-mCurrentTick : uint32_t +tempDomainO : bool
-minstance : Scheduler +IsinDomain0 : bool
-isDomainZero(context : BaseDomain*) : bool +CheckDonationChain(donatee : ExecutionContext&, result : Bitmap<PARTITION_NUM>&) : bool

-SchedHandler() : static void

-UpdateChainDonating(root : Partition*) : void

-UpdateChainGivingBack(root : Partition*, toClear : Bitmap<PARTITIO_NUM>&) : void
-TimeKeeping() : uint32_t

+Getlnstance() : static Scheduler&

BaseDomain

+mPeriod : uint32_t
+mTick :uint32_t

+Init() : void
+Schedule() : void +mRemainingPeriod : uint32_t
+bool DonateFromTo(id_t from, id_t to) +IsRunnable() : bool
+GiveBackDonation(id_t from, id_t to)

+AddInterimDom0(id_t) [P

+Unblock(part : Partition&) : void [ |

+Block(part : Partition&) : void

Domain0 Domain

+partitions : PrioOrdPartList +partition : Partition*

+GetMaxActivePartition() : Partition*

Figure 3.11: Classes that encapsulate scheduling functionality.

Figure 3.11 depicts all classes with scheduling functionality. The Scheduler
class provides the set of functions referenced by PortManager. In addition, it
aggregates all necessary structures to support the described scheduling algorithm
(section 3.1.9). BaseDomain class and its derived ones describe what we call a
time domain, which is assigned with a time quantum. The main difference is
that Domain supports one partition, while Domain(0 supports more than one.

In Domain(0 partitions are stored in a prioritized manner, and requires the tick



Chapter 3. pRTZVisor Architecture 73

configuration, which will be the time a given partition within domain0 will execute,
and that once expired will incur into a scheduling point. The EzecutionContext
structure is part of the PCB, and it features a partition with a priority, and data
used to support donations and priority inheritance.

To keep track of all donations, we leverage EzecutionContext to grow a chain.
The tail partition is the one which execute, and that will inherent the highest
priority on the chain. Tail and priority information is cached to avoid traversing
the chain every time a partition in a donated state is scheduled. Every time a
donation operation is issued, it is necessary to traverse the chain to update this
information. If the donatee of the operation is inserted at the tail of the execution
chain, the traversing procedure should happen backwards, i.e., from tail to head.
Another scenario for the chain to grow happens when placing a partition at the
chain’s head. This happens if a partition donates its execution to a partition that
is in DONATED stated, which means it already is in a donation chain. If from
the newly inserted element onwards, the following partitions have lower priority,
they should inherit the new head’s priority. Consequently, in this case, the chain
must be traversed forwardly. Sometimes, a chain may even become a tree if a given
partition is the recipient of more than one donation. If so, every possible tree path
should be traversed to update necessary information. Also, to make this feasible
and to keep track of the highest donator for a given donatee, FxecutionContext is
featured with a priority-based list, whose partition on top is the one from which
priority is inherited.

Donations should be carefully implemented to avoid possible deadlocks. Dead-
locks are created when performing a donation results in a cycle within the donation
chain. In this sense, the EzecutionContext structure possesses a bitmap, where
each bit represents a system’s partition. A set bit means that the respective parti-
tion has position within the chain between the node it belongs to and the tail. This
is means, it is included in the donation chain. Whenever donating, both donator’s
and donatee’s bitmaps are crossed, and in case of match, a cycle is detected. As
prevention mechanisms, all partitions within the chain between donator and do-
natee are awaken, i.e., are passed to active state. Every time traversing a chain
for updating tail and priority, this bitmap is also updated.

The algorithm for the donation procedure is presented in listing 3.13. Firstly,
the ExecutionContext from both donatee and donator are fetched, and checked for
matches on the donatees bitmap. In case of a match, a cycle was detected, and,
consequently, the recovery procedure is executed. This encompasses iterating over

each FrxecutionContert within the chain and give back the donation, waking all



74 Chapter 3. pnRTZVisor Architecture

partitions. In case of a mismatch, the donation can proceed accordingly.

Fetch donatee and donator execution contexts;
Invoke method for verifying donation chain;
if Clycles are detected then
Set iterator equal to donatee;
Set previous(auxiliar variable) to null;
while donator different from donator do
Give back donation from iterator to previous;
Set previous equal to iterator;
Set iterator equal to next;
end
Return error;
else
Set donator next to donatee;
Set donator’s donatees bitmap;
Insert donator into donatee’s donators list;
if The highest priority donator changed then
‘ Update priority from donatee’s on, in domation chain;
else
Set donator’s tail to donatee execution context;
Set donator’s state to donated;
Update donation chain;
end
end

Listing 3.13: Algorithm of the donation procedure.

As such, in the donatee is going to be inserted at the tail of the chain, and the
donator’s bitmap for cycle detection is set with the donatee’s bitmap. The donator
is also inserted in donatee’s list of donators. This is an ordered list, that is used to
track the highest priority donator. Every time this changes, the donatee’s priority
is compared to it, and priority inheritance can happen accordingly. Lastly, the
donator’s state is changed to DONATED, and the tail information is changed.
Lastly, chain is updated for a donation scenario, whose procedure is going to be
explained further.

Whenever a full cycle of an RPC-like communication happens, the donation
should end, which means all aforementioned changes should be undone. The
procedure of giving back donation is presented in Listing 3.14. Once again, both
execution contexts are fetched, then the donator is removed from donatee’s list
of donators, its tail’s value is reset, and its state is set to ACTIVE. Following,
the changes are propagated through out the chain. If to the donatee remains no
donator on its list, its priority is also reset, otherwise it is verified if the highest
priority donator has changed, and if it has higher priority than the donatee. If so,
the inherited priority is updated.



Chapter 3. pRTZVisor Architecture 75

Fetch donatee and donator execution context;
Remove donator from donatee’s donators list;
Set donator’s tail pointing to him;
Change donator’s state to active;
Update donateion chain;
if Donatee’s donators list Is empty then
| Reset donatee’s priority;
else
if There is new high priority donator on top of the list then
‘ Update inherited priority;
end
end

Listing 3.14: Algorithm for undoing a donation.

Listing 3.15 presents the algorithm for updating the donation chain upon a new
donation. It consists on traversing the donations chain from the current donator

towards partitions donating to it, i.e., traversing the chain backwards.

Set an iterator for traversing donators list;
while Iterator different from donators list end do
Update tail;
Set bit in donatees bitmap;
Update donation chain;
end

Listing 3.15: Algorithm for updating donations chain upon a new
donation.

This is achieved, by recurring to recursivity, and then iterating the donatee’s
list of donators and updating tail’s value and setting the donatee’s, at each node
of the chain. For giving back the donation from a donatee (listing 3.16), the
procedure is similar, with the slightly difference that every bit set in the cycle
detection bitmap of the current donatee is unset from the donator’s one, as well

as all other iterated ExecutionContexts.

Clear every bit set in donatee’s bitmap of donatees, in
donator’s one;
Set an iterator for traversing donators list of donatee;
while [Iterator different from list’s end do

Update tail;

Clear bit in donatees bitmap;

Update donation chain;
end

Listing 3.16: Algorithm for updating donations chain upon giving back
a donation.



76 Chapter 3. pnRTZVisor Architecture

3.2.5 Code Verification

The use of C++ for safety critical systems should be thoroughly considered.
While C++ provides features that are, on its own, more secure compared with
those available in the C language, the interpretation of the language constructs are
often ambiguous, since compilers perform some default operations like type casts.
Moreover, due to the extension of C++ internals, programmers do not possess
the proper knowledge about all C++ constructs, frequently achieving different
results from what expected. Also, there are some features that are implementation
dependent, which usually compromises software portability [84, 26].

In this sense, the use of coding standards is highly advisable towards the devel-
opment of safety critical systems, improving code safety, security, maintainability,
and portability. Throughout the implementation of uRTZVisor we adopted the
MISRA C++ standard, recurring even to code statical analysis. MISRA C++
[85, 84] advocates a set of rules and directives that enforce the proper use of C++
constructs. Herein are listed a set of followed rules, and directives, to provide and
idea of those followed through the development of pRTZVisor:

e The use of keyword const whenever a given parameter is not changed within
the body of a function, or when a method did not alter the properties’ state

of its object;

e Attributions should be explicitly typed, for example, when attributing a
constant value to an unsigned int variable, the left-side operand should be

explicitly casted accordingly;

e The preprocessor was only used for defining header files, avoiding the use of
macros for defining constants. These were defined recurring to const static

constructs and global variables;

e Every function definition should be paired with the declaration of its signa-

ture somewhere in the code;

e The use of conditional operands should explicitly define the order in which

the operations should occur by using parenthesis, thus avoid unambiguity;

e Every if ... else if ... statement should finish with an else, towards a more

defensive programming;

e For every function with a return type, there should exist only one return

statement.



Chapter 3. pRTZVisor Architecture 7

Experienced programmers can use a lot of them as good practice; however,
when developing extensive implementations, it is common to have a few code lines
unintentionally forgotten in the middle of the code that do not comply with these
directives and rules. The use of static code analysis tools allows programmers
to identify these points in code, notwithstanding this is a time consuming task,
which is often seen as a drawback. Thus, to reduce the verification effort, code
should be submitted to analysis throughout the development process. In current
uRTZVisor implementation, the code is not verified in its full extension, however

this should be conducted in a near future.

3.3 Evaluation

3.3.1 IPC performance

Table 3.2: Asynchronous IPC primitives latency (us).

g/’fsesjs(abg;tes) Send | Receive | SendReply
64 4.36 | 4,17 5,49
128 5.17 | 4.75 6.31
192 6.00 | 5.16 7.13
256 6.82 | 5.72 7.98
320 7.69 | 6.21 8.80

To evaluate the performance of communication mechanisms, we devised sce-
narios for both asynchronous and synchronous communication. Table 3.2 shows
the times needed to perform the asynchronous Send, Receive and SendReply opera-
tions. Despite the performance varying slightly depending on whether the running
partition is a guest or a secure task, this variation is not considered to be signif-
icant in the case of asynchronous communication. As such, the performed mea-
surements only reflect the time that it takes to perform the respective hypercalls
from a guest partition. For a 64 byte message size, the hypercall execution time
is of 4.36, 4.17 and 5.49 us for each operation, respectively. These times increased
by about 1 us for each additional 64 bytes in the message. In all cases, there is
one copy to be made. In the Send and SendReply hypercalls, from the guest’s
address space into the port’s message buffer, and the opposite for the Receive hy-
percall. There is a slight difference between the Send and SendReply execution
times, depending on the recipients’ state when the operations are performed. In
our implementation, this dictates whether the communication is synchronous or

asynchronous. The SendReply operation behaves similarly to the Send operation,



78 Chapter 3. pnRTZVisor Architecture

with the addition of granting a one-time capability to the recipient guest, which
only degrades performance by around 1 us.

To infer about synchronous communication performance, we have prepared
three tests, performed under three different scenarios. The first test consists on
measuring an elemental Send operation, ensuring that the recipient is blocked,
resulting in a synchronous operation. The second (One Way test) and the third
(Two Way test) tests encompass time-slice donations procedures. In the latter, a
full RPC communication cycle is measured, where the client partition waits for the
server’s response, while the former is used to measure only half of that cycle, i.e.,
the time that takes for a request to get the a blocked server. Each test scenario
was performed between two guests (a) (Table 3.3); two tasks (b) (Table 3.4); and
between one guest and one task (c) (Table 3.5). In each scenario, we kept the
scheduling configurations simple, with only two partitions running concurrently,

in this way reducing scheduling operations to the bare minimum.

Table 3.3: Synchronous IPC communication latency (us), in a guest-
guest scenario.

Message
Send | One Way | Two Way

Size (bytes)

64 15.21 | 195.14 385.73
128 16.24 | 197.23 389.45
192 16.78 | 199.76 394.18
256 18.58 | 202.65 398.10
320 18.88 | 204.66 402.39

We note that the performance of synchronous IPC, as mentioned in Section
3.1.6, heavily relies on the performance of time-slice donation services provided
by Scheduler and data transfer services provided by the Memory Manager, which
is reflected in the achieved results. The first test evaluates the time that it takes
to deliver a message to a blocked recipient, without scheduling involved. In this
way, we can measure the latency introduced only by the data transfer. By com-
paring this value with the other two, we can measure the overhead introduced by
our approach to build the donation chain and consequent scheduling operation.
Whenever donating, there’s a context-switch involved, and as such, the overhead
imposed by this operation also applies in this context. Since guest and task par-
titions are represented in different kernel structures, the needed save and restore
operations performed during a context-switch depend on whether the preempted

partition or the incoming one are guests or tasks. All of the possible combinations



Chapter 3. pRTZVisor Architecture 79

give rise to four scenarios: guest—guest, task—task, guest—task and task—guest. The
last scenario subdivides into two: when switching between a guest, to a task, back
to the same guest, as in the case of RPC communication, there is no need for
cache and TLB maintenance. However, when a guest is scheduled after a task,
and the last active guest was not the same, cache flushing and TLB invalidation
need to be performed.

Table 3.4: Synchronous IPC communication latency (us), in a task-task
scenario.

g/'fzezs(abg;tes) Send | One Way | Two Way
64 5.46 | 20.17 42.90
128 6.18 | 20.96 44.35
192 6.88 | 21.74 45.87
256 7.57 | 22.50 47.31
320 8.28 | 23.42 48.83

Thus, in scenario (a); in which there are two guests communicating, results in
the largest overhead in every performed test. Consequently, donation scenarios (b)
and (c) involve tasks that are far more efficient. Regarding message size variation,
we see that with the increase of 64 bytes in message size, the latency increases in
just 1 to 2 s, which is not too significant.

Table 3.5: Synchronous IPC communication latency (us), in a guest-
task scenario.

lg/'fszs?bg;tes) Send | One Way | Two Way
64 6.01 | 28.97 63.50
128 7.15 | 30.30 66.60
192 8.37 | 30.89 68.63
256 9.48 | 32.32 71.49
320 10.68 | 33.25 73.77

Synchronous communication encompasses an increased overhead, regarding,
donation and scheduling operations and resulting context-switches. On the other
hand, it reduces latency in service provision. As for asynchronous communication,
the time involved to perform each elemental operation is smaller. Nevertheless, it
should be taken into account that in client—server scenarios, the respective response
could take more time than with synchronous communication, since partitions other
than the server might be scheduled in the meantime. As such, the more partitions

there are in a system, the bigger the latency for the response would be.



80 Chapter 3. pnRTZVisor Architecture

3.3.2 Security Analysis

The implemented artifacts rely on the assumption that the separation provided

by the kernel is totally reliable:

e A sound management of Arm TrustZone configuration registers is provided,
imposing that a non-secure running software can not access, by any means,
the data existent on the secure-world. Thus, guest partitions cannot access

any kernel internal information, nor secure world tasks’ address spaces;

e Secure world tasks are properly confined to each respective address space
leveraging the existent MMU. Thus, insuring that the tasks cannot access

kernel nor guests’ data.

Throughout the development of the hypervisor, a secure-by-design approach
was adopted, that aimed at complimenting the provided isolation with supple-
mentary policies and mechanisms. Thus, constraining the use of system calls,
namely those supporting IPC functionality. In the remainder of this section, a
security discussion is conducted, explaining how the developed work complies or
not with the three fundamental elements of CIA [26]: confidentiality, integrity,

and availability:

e Confidentiality regards to the ability to restrict data to only those with
authorized access. In our implementation messages are directed to ports,
and can only be accessed by the port’s owner. This principle is enforced by
restricting capabilities of others than the port’s owner to not have the right
to perform a receive operation. This is achieved either during initialization
as well as by blocking a grant operation of a capability referencing a port
that violates this premise. Synchronous primitives, in which the partition
will block waiting for a message, only an address can be specified within the
caller address space, otherwise an error will be prompted. In asynchronous
communication primitives, messages are buffered in kernel space, and the
only way to access them is through a receive operation, whose access is
constrained as explained. Identity spoofing is also impossible towards unau-
thorized access, as partition’s information is managed within the kernel, as
well as all capabilities, that also possess the owner’s identity. Moreover, par-
titions access to capabilities is mediated by the kernel. The index that parti-
tions provide whenever performing an operation is used to fetch capabilities
within its capability space. Given the isolation and indirect access, parti-

tions are forbidden of tampering capabilities for either forging their identity



Chapter 3. pRTZVisor Architecture 81

or maliciously change permissions. Also, all used memory is sanitized after

fulfilling its purpose, to prevent the possibility of data leakage.

e Integrity regards to the consistency, accuracy, and trustworthiness of data
and of the system over its entire life cycle. Given the nature of our system,
a given message is only considered trustworthy as long as it is provided by
an intended sender, and its content complies with what was accorded by all
explicitly authorized parties. Isolation ensures that the content of the mes-
sage remains unchanged while cached within the kernel, while access-control
ensures that the content is provided by intended parties. Thus, integrity is
only partially achieved, given that message’s content is never verified. This
would be particularly useful in a client-server scenario, in which to perform
its regular operation the server is expected to receive requests following a
certain structure and content. If the message is not compliant with what
is expected by the server, it should be discarded as soon as possible, avoid-
ing unintended operations to be performed within the server. System calls’
parameters should also be addressed to ensure integrity, thus all of them
are submitted to sanity-check. Messages are also limited in size, and the
maximum allowed size for a message is specified at design time, and every
message copy does not surpass that size. This could be quite limiting in
terms of throughput; however, this does not allow for memory to be over-

written.

e Availability emphasizes that authorized parties are able to access the infor-
mation when needed. In our implementation this element must be analyzed
under the light of time quantum donation, and its impact on the overall
systems. Partitions’ availability can be jeopardized if it blocks indefinitely.
In Section 3.1.9 it was stated that a partition running on top of uRTZVisor
is assigned with a priority and a time quantum. By performing IPC op-
eration with the suffix -donate, a partition is explicitly donating its time
quantum to the recipient of the message. In addition, if the recipient has
lower priority than the sender, the former will inherit the latter’s priority.
Our scheduling algorithm does not allow for priority inversion to be a prob-
lem. Therefore, for every execution cycle, every time domain executes at
least once. This is done according to priority, so high priority partitions
will execute first, and lower priority partitions will always execute once the
formers have their time quantum expired. The risk of a deadlock is also
mitigated through the mechanism implemented to detect cycles within a

donation chain (as described in Section 3.2.4). Notwithstanding, great care



82

Chapter 3. pnRTZVisor Architecture

should be taken when specifying communication relations with donation fea-
tures. Capabilities should be leveraged to ensure that critical partitions only
rely on trustworthy servers. This is because our system does not prevent a
partition to monopolize a donated time quantum, which could be achieved
recurring to timeouts. Timeouts were not included in our implementation,
given that (as explained in Section 2.3) there is no precise way of specifying
them. Availability can also be compromised by resource exhaustion, which
could be achieved in the message, and capabilities pools. In case of attack,
new messages are prevented to be sent, prompting an error on the sender’s
side. Regarding capabilities, if an attack occurs by intensively performing
spurious grants, at some point capability spaces will get filled. In case this
happens, the kernel will send a message for the capability space’s owner, di-
rected to his kernel port. Thus, it creates the possibility for a recovery, even
that probably not so effective. However, the overall system functionality is
assured since for every object, there is one specified pool of memory, that
never gets surpassed. Thus, the overall system remains functional, enabling
some control to be performed towards system’s safe recovery, e.g., a simple

reboot.

Throughout the discussion, locks, EvtGates and PortGroups were not men-

tioned, however, much of what aforementioned does also apply for them.



Chapter 4
Hypervisor’s Design Automation

In this section, it will be presented the followed approach on the hypervisor’s
design automation. We combine the SeML (described in Section 2.10) infrastruc-
ture with a newly implemented DSL to be used as the front-end. The referred
DSL is entitled TrustZone Description Language (TZDL), and aims at describ-
ing microkernel-like systems. Having SeML’s workflow in mind, firstly it will be
explained the first thoughts towards our methodology. Then, the TZDL infras-
tructure is detailed, namely workflow, language constructs and purpose, as well

as the final code generation.

4.1 Methodology and Context

First and foremost, it must be defined what is going to be modeled. pRTZVisor
aims at relocating variability from within the kernel to user-space, presuming that
the kernel possesses a static and trustworthy implementation. Thus, preventing
untrustworthy software from executing with the highest level of privilege. There-
fore, we aim at providing a modeling infrastructure towards systems based on
uRTZVisor, namely configuring the necessary kernel resources, as well as provid-
ing a means for describing user-level applications and servers. Also, we intend
to provide a way for describing interfaces, namely services provided among parti-
tions. As result, code generation must consist on generating source code files for
the configuration of uRTZVisor infrastructure, which should encompass devices at-
tribution, allocation of communication resources, address-space configuration, and
capability distribution and permissions configuration. In addition, the ultimate
goal is the generation of user-space code that automate partitions initialization, re-
garding resources configuration and capability fetching, as well as communication
glue code for service provision.

SeML is a semantically enriched meta-modeling framework. It is featured with

an upper ontology, that is required to be used as the base for every prescriptive

83



84 Chapter 4. Hypervisor’s Design Automation

domain-ontology, to make it compatible with the necessary reasoning within the
framework. Its workflow was described in Section 2.10. Basically, the modeling
procedure consists on instantiating individuals from the domain ontology, origi-
nating the DSL’s input ontology, and then connecting those individuals through
object properties, using the DSL. For this, firstly it would be needed to use the
Protégé tool, to extend the SeML owl file with the new entities and individuals, and
then save it. Then, it would be used a text editor to resolve variabilities and con-
nect individuals using SeML DSL. The resulted SeML file would be quite verbose,
requiring a lot of typing that with time becomes tedious and error prone, taking a
lot of time to type it. In addition, not being able to instantiate domain-ontology
concepts within the editor divides user’s attention between the editor and Protégé
(the tool we used to conceived ontologies), which on top of aforementioned issues
makes the framework not as user friendly as desirable. Notwithstanding, SeML
provides a great common-ground, enabling knowledge extendability by aligning
different domain ontologies, and also functionality extension through its external
tools engine.

Under the light of the above issues, and the short experience we were having
in using SeML on its own, we decided to focus a collaborative effort to mitigate
the identified drawbacks. The followed approached had to be based on SeML
infrastructure to still provide a good means for extendability, leveraging as much
as possible of the already implemented engines. Also, it should not hinder the
use of SeML as it is, it should, however, provide a simpler dedicated means for

describing pRTZVisor-based systems in a user-friendly, effective way.

4.2 'TZ Description Language

TrustZone Description Language (TZDL) consist on a semantically enriched
DSL, that provides a means for describing uRTZVisor-based systems, aiming at
easing the modeling process based on the SeML infrastructure. Figure 4.1 depicts
the overall architecture for TZDL, and how it relates to the SeML framework. As
can be seen, TZDL is a front-end for SeML modeling framework, given that the
artifacts of the former are used as an input for the latter framework. Both aim
at providing faster pRTZVisor-based systems configuration, and without SeML,
TZDL work is incomplete. We advocate that the CBSE towards embedded sys-
tems modeling is the best approach, leveraging components composability and
functionality containment. Also, IDL proved to be a plus on defining a interface

semantics, and glue code generation.



Chapter 4. Hypervisor’s Design Automation 85

Other Other Artifacts
Implementation (e.g. Bootloader)
Upper Ontology -
I I Tools

TZDL Compiler Compatible ¢

Ontologies

Code

SeML
Ontology R Generator -
TZDL Ontology ¥ Reader Engine _— Model Validation
I owL R
Generator Y System Ontology

Syn. & Sem. Analysis 9

Y
Internal
—y Ontoloey
Seml J Seml File I ——
Generator .
Composite HVlso.r Source
Validaton TZDL Tool Files
Ontology ¥/_\
Query Engine
T
Template Replacer/ Component
O Code Generator Glue Code

w %ﬁw

User =

Platform
Ontology

Tavisor Source

Templates Component Code

Figure 4.1: Overview of TZDL workflow.

Firstly, it was conceived a domain ontology that contains knowledge for de-
scribing microkernel-like systems, namely, with concepts that were deployed within
uRTZVisor architecture. This ontology is derived from SeML’s upper ontology,
and, as such, can be used with this framework on its own. On the TZDL archi-
tecture the ontology is used for mapping its DSL constructs to ontology concepts,
instantiating individuals, originating the system ontology. In addition, it is gener-
ated a SeML file that performs the binding of instantiated individuals. Both the
SeML file and system ontology are used as input for SeML framework, that can
also be extended with external knowledge to support other functionalities. For the
final source code generation, was developed the TZDL Tool, which is an external
tool for the SeML framework. This queries the final ontology for fetching the
necessary individuals, bindings and configuration informations, necessary during
final source code generation.

TZDL is composed of an ADL featured with IDL-like constructs, that imposes
a system’s description in a component-based architecture. The existing elemen-
tal components are described as partitions, namely, guests or tasks, according to
uRTZVisor architecture. For composition, most abstract elementals components,
called composites, are also available. Elemental components are required to be
instantiated within a composite for being deployed in the final system. Also,
elemental components provide services to each other. In this sense, a given com-
ponent requires a certain type of interface, that another one provides. Both the
requirer and the provider must be instantiated within the same composite, in

which both can be binded. So far, only static bindings are supported for a matter



86 Chapter 4. Hypervisor’s Design Automation

of simplicity. This means that dependencies across partitions would not change,
neither during compile time nor at run time.

The elemental components are thought to be easily reusable, which means
their features must be defined outside the component’s body. We specified that
components would only possess properties to specify devices it needs and prop-
erties related to scheduling functionality, namely period and priority, according
to uRTZVisor’s scheduling algorithm. Devices should be binded, the same way
as interfaces. Scheduling properties should be specified at instantiation, within
the respective composite. According to components description, the binding of
interfaces, devices and properties configuration, ontology concepts will be instan-
tiated and binded through object properties, in both aforementioned SeML input
artifacts.

As it will be explained in detail in sections bellow, in both DSL constructs
and domain ontology, IDL interfaces can be typed with prefixes RPC, Data and
Notification. For RPC typed interfaces it was specified a scenario in which, for
every communication attempt, the client is going to block waiting for the server’s
response, and, as the server does not always possess permissions to communicate
with the client, a one-time capability should be provided solely for the reply (as
in a normal RPC scenario). For this, the respective construct allows for the
procedure calls description, similar to C syntax. The Notification typed interfaces
regards to a scenario where the server uses the notify primitives to send events
to the client. Data typed interfaces approach to more open scenarios, in which a
message is going to be sent by either recurring to blocking or non-blocking calls.
In the latter, it is intended that on the client side there is the possibility to use
uRTZVisor’s -donate suffixed primitives that include a grant-one time, or either
an elemental send to the server.

All the aforementioned procedures are mediated by the represented user, which
is someone that aims to develop a system based on pRTZVisor. He/She may be
someone with no expertise on ontologies, and if so, he has to use the design au-
tomation infrastructure according to policies imposed by TZDL’s grammar, which
on its own provides enough capacities to describe meaningful systems. Nonethe-
less, if he is someone with knowledge on how to operate ontologies and SeML
files, he will be able to extent its modeled architecture, with a more fine-grained
control; however, having also to ensure the source code generating tool is able to

support the performed changes.



Chapter 4. Hypervisor’s Design Automation 87

4.2.1 Domain Ontology

Every time creating an ontology, it is necessary to clearly have in mind its
scope, purpose, applicability, and possible use-cases. The ontology we intend
to conceive must possess enough concepts to clearly describe a system based on
uRTZVisor. Encompassing the terms that were stated previously, to describe
partitions and interfaces they provide to each other, as well as, to assign kernel
resources to partitions. Moreover, it enables code generation towards design au-
tomation, for either resource configuration and communication between partitions
running on pRTZVisor. Therefore, the architectural concepts within uRTZVisor
must be described in the ontology, as well as other abstract concepts like interfaces
which are related with functionality and how it is provided. Also, this ontology
must be aligned to SeML’s upper ontology to make it compliant with its inner
engine, which will be responsible to perform the ultimate code generation. It is
also worth to have in mind the approach that is going to be taken for the design
automation, i.e., the conception of a DSL to abstract SeML required workflow.

The following competency questions were formulated to help into conceiving a
taxonomy, which would be used to create our ontology, where relations between

taxonomy’s concepts were created:
e What objects does the kernel provide?
e Which platforms will the kernels target?
e Which partitions should be implemented?
e Which resources should be assigned to which partitions?
e What type of objects exists, and which operations they support?
e Which permissions do partitions have over a certain kernel object?
e Which priority should be assigned to each partition?
e How are partitions assigned to time domains?
e Which services do a partitions provide, following which interface?
e Which type of interfaces exists?
e Which services do partitions require from its siblings?

e How are the described interfaces?



88 Chapter 4. Hypervisor’s Design Automation

e Which resources are allocated to support a given communication, according

to their interfaces?
e What policies does an interface comply with?

Figures 4.2 and 4.3 depict the taxonomy created, already derived from SeML’s
upper ontology. From the later, most of the new concepts derive from Compo-
nent subclasses, namely Entity. In Figure 4.2 has some general concepts regarding
kernel /microkernels, in addition to some more specific to object oriented imple-

mentations, namely with those objects available in yuRTZVisor’s implementation.

Entity
I ! I
Kernel Object Interface Partition Event Hardware Platform Parameter Kernel
Z\ [ T T |
Data Task
I Memory Interface Device Capability TimeDomain Binding
U Device Notification Guest 4 12C [| Device Period Data
Interface Cap Domain Binding
RPC -
|| || | | Interrupt . Notification
Interrupt Interface SPI Cap Domain0 Binding
— Conector Conector M UART L Memory .RP.C
Cap Binding
L || Lock
Lock Memory Cap
L| Port
Cap

Figure 4.2: Taxonomy for domain ontology, namely FEntity derived
classes.

Partition class is subdivided into Guest and Task classes, that map into the
type of partitions supported by uRTZVisor. KernelObject class is subdivided into
kernel objects classes that translate into those available in pRTZVisor. Those that
can be used for IPC mechanisms are subclasses of Connector, namely a Lock, Port
and Memory for shared memory with capability grants. Capability derived classes
represent one aggregating access permissions over a respective object type. Time-
Domain class maps to the concept described in Section 3.1.9, both Domain0 and
a PeriodDomain, where the first can only be assigned to more than one partition,
while the latter can only be assigned to one. Interface class describes three types
of interfaces that will also be available in TZDL syntax: the RPCInterface that re-
gards to RPC-like communication; the Datalnterface that regards to a more open
communication scenario (as previously explained), and encompasses the descrip-

tion of a message structure, to be used on a send operation; and EventInterface



Chapter 4. Hypervisor’s Design Automation 89

that encompass a set of events that may be sent among partitions. The Bind-
ing class will aggregate informations for the provided interface, and capabilities

referencing objects allocated to fulfill the functioning of that interface.

Propert
Process Feature perty
Component
Method Feature Bool Int Right String
A N | W—
MISBA Port Lock Memory Cap Device
compliant Cap Cap Cap Right Right

Figure 4.3: Other taxonomies derived from other upper ontology’s con-
cepts.

Figure 4.3 depicts concepts that derive from other classes belonging to the
upper ontology, which are Process, Feature and Property. The first is used to
describe a Method, which will be related to RPClInterface classes, that will abstract
a given functionality with a function call, proper of RPC-like communication.
For the class Feature, it was derived one possible non-functional requirement to
characterize a partition. The derived classes of Property are used to describe type

values, for either method parameters, capabilities rights and others.

TimeDomain — hasQuantom— —p»  IntProp
A o A
spartof |~ hasPriority- — — —
|
Kernel ~ —hosts J»  Partition —owns- ¥ Capability
I I T hasRight
uses references |
targets g D
7 v v v
vy ) )
Hardware Kernel Object Right
Platform
I
|
|
- — “featuredWith~ — Device Interrupt
I A

hasinterrupt — —

Figure 4.4: Excerpt of kernel’s domain ontology.

Following, the exerpt of the resultant ontology is presented in Figure 4.4, de-
picting overall concepts and their relations. Kernel supports a set of Partitions,
and is implemented to be Platform-compliant. This last concept is added to TZDL
validation process that must check if the implementation devices required by par-

titions are part of the Platform. Partitions are also assigned to a TimeDomain,



90 Chapter 4. Hypervisor’s Design Automation

which is configured with a time quantum. Capabilities reference KernelObjects,

which are possessed by Partitions, and have rights according to the type of object,

as demonstrated in the previous taxonomy.

Data Binding ——————: hasinterface— — — — P Interface
Binding . <|—‘
L [F
r | RPC I 1 1
1
. hasServiceCap | Binding RPC Data Notification
Notification ! I Interface Interface Interface
Binding | hasRequestCap | I I I
¢ + | hasMethod hasValriabIe hasEvent
I \ 4 h 4 h 4
Capability € hasRequestCap
Method Variable Event
Port hasNumberOfAgs— I I - —hasRetType
hasParameter |
* | v A 4 A 4
references=—  PortCap Int Parameter Parameter

Figure 4.5: Excerpt of kernel’s domain ontology, focusing on communi-
cation related objects.

Figure 4.5 depicts the excerpt, that relates to communication and interfaces
concepts. Interface class is subdivided into three types, that are defined by a
set of properties. RPClInterface is characterized by an aggregation of methods,
whose signature is defined in a return type, a set of parameters and a name. A
Datalnteface aggregates a set of variables that should be part of the same struc-
ture, that consists on the message flowing within that communication relation.
The NotificationInterface is defined by a set of Event classes, that define the type
of events to be discriminated at the operation’s recipient. The Binding class rep-
resents a communication relation and maps it to the needed resources, depending
on the interface type. It is worth to point out that for each type of interface
we assume different communication policies, and, consequently, communication
primitives that will be used at the final code generation. Communication happens
through Ports, which are referenced by the capabilities used in each operation
within the communication relation. Regardless of the binding type, there should
exist two capabilities mapped into the binding through hasServiceCap and hasRe-
questCap. The first capability represents the one to be attributed to the server for
requests reception, while the latter should be attributed to the client for sending
the requests, both referencing the same port. Notwithstanding, their rights con-
figuration diverges according to the type upon Capability individuals creation in
the following section. For the RPCBinding there should exist a third capability
assigned to the client, referencing a port to be the target for a response message
within the communication relation, granted to the server using to the one-time

grant feature of uRTZVisor’s IPC primitives. Details about the configuration of



Chapter 4. Hypervisor’s Design Automation 91

the individuals originated from the bindings are going to be explained in the next
section.

The domain ontology also possesses some individuals, namely for the sub-
classes of Right to describe permissions available within pRTZVisor’s implemen-
tation, Platform and respective Dewvice individuals, to specify which platforms a
partition is compatible with, and which devices at the partition requires. The
PortRight individuals, are for later map Capability individuals with the respective

permissions.

4.2.2 Grammar

TZDL was implemented using the Xtext framework, that, through grammar
specification, builds a syntax and semantics analyzer, execution engine and Eclipse
IDE integration. The main purpose for TZDL DSL is to abstract individuals in-
stantiation within SeML workflow, based on domain ontology’s concepts. How-
ever, TZDL is not featured with constructs that directly map into all domain
ontology’s concepts, given a few imposed policies, which dictate how classes in-
stances are created. For example with IDL like constructs, Capability and Port
instances are created and configured according to the type of interface. For this
purpose some constructs are provided, while others are conceptually more closer
to the described ontology concepts.

As aforementioned, TZDL allows for systems description as component-based
architectures, where partitions are described as being components that encapsu-
late functionality accessible to its siblings through well defined interfaces. The
syntax allows component and interfaces description in a verbose manner, however
very intuitive, that makes the typing very simple and eases the architecture com-
prehension by reading the code without any prior knowledge about the language.
Table 4.1 presents all TZDL’s constructs pairing them with description of their
purpose within the language. For describing partitions to execute over uRTZVisor
there are the guest and task constructs, which are followed by an ID, and within
brackets its description and configuration. For both types it is required to point
out the source code location, the compatible platforms and the minimal amount
of memory required to allocate them, which is achieved by using the source at, is
compatible with, and alloc min constructs, respectively. In addition, by using the
provides and requires construct, also inside the brackets, it is possible to specify
which services it implements, allowing the access from external parties, and which

services from outside parties it depends on.



92

Chapter 4. Hypervisor’s Design Automation

Table 4.1: Summary of all TZDL’s constructs.

Language Constructs

Description

assemble ... for ...

Specifies the root composite for the model.

rpc ... { ... }

Declaration of RPC type interface.

data ... { ... }

Declaration of Data type interface.

event ... { ... }

Declaration of Event type interface.

guest ... { ... }

Declaration of Guest type component.

task ... { ... }

Declaration of Task type component.

composite ... { ... }

Declaration of Composite type component.

source at ...

Specifies the path towards the source of its component.

is compatible with ...

Lists all platforms that a given component is compatible
with.

contains ... Lists composite subcomponents separated by commas.

alloc min ... Specifies size of a Guest or Task.

provides ... Lists interface that a given component implements and
provide to others.

requires ... Lists interface dependencies that a given component

needs to resolve.

requires device ...

Lists the devices a given component needs.

promote provide ...

Specifies a provided interface by one subcomponent

within a composite, that is to be promoted.

promote require ...

To specify a required interface by one subcomponent

within a composite, that is to be promoted.

promote device ...

To specify a device required by one subcomponent within

a composite, that is to be promoted.

bind ... to ... Connects required and provived interfaces within a com-
posite, that belong to sibling subcomponents and have
the same type.

in Input parameter in a method description within a RPC
interface.

out Output parameter in a method description within a RPC

interface.

has priority ...

Specifies component priority upon its instantiation

within a composite.

with interrupt

State that a device’s respective interrupt is also needed.

Recurring to the composite construct it is possible to aggregate other com-

ponents, i.e., tasks, guests and composites. In every project, it should exist at

least a composite that is the top-level one, i.e., that will be the root for the code




Chapter 4. Hypervisor’s Design Automation 93

generation, specified by using the assemble for construct, which also specifies the
target for which the code generation will happen. In the case a task or guest is
being instantiated within a composite, its name definition must be followed by
priority configuration. Partitions’ period can also be added, however if absent
the partition will not be assigned its own time domain, and will be assigned to
Domain0 at the generation of SeML artifacts. Then, it is possible to connect
required and provided interfaces from the composite subcomponents by using the
bind to construct. By binding required and provided interfaces, it is created a
communication relation between the respective partitions, which will incur into
instantiating resources with proper configurations from the domain ontology. In
addition, regardless of being a provided or required, interfaces can be promoted
within a composite, which will result in having the interface available for later
binding upon composite instantiation. Required interfaces can only be used once,
either on a promote or bind operation, while provided interface can be used mul-
tiple times.

Interfaces have constructs that almost perfectly match to domain ontology’s
concepts. The rpc construct defines a type of interface for RPC-like communica-
tion, and within brackets, are defined the methods signatures for the procedure
call, which encompass the return type, method name, and parameters. Parame-
ters can be tagged with the constructs in and out to specify if it is used for input
or output respectively. For defining a structure to be sent in purely asynchronous
client-server communication, the data construct is used. Lastly, the event con-
struct is used to define interfaces that map to Notification class from the domain
ontology, and within brackets are defined the events that can flow from a com-
munication relation typed with the specified notification. Whenever describing a
composite, task, guest or any interface, it is attributed an ID for the type, that

will be referenced to create its respective instances.

4.2.3 Code Generation

There are two moments along the workflow that requires code generation en-
gines to operate. The first happens after compiling a TZDL program, generating
the system ontology (.owl file) and SeML files, with classes instances and object
properties for relations establishment respectively; the other happens by executing
TZDL Tool within SeML tools engine, that will fetch information from the resul-
tant ontology and translate it into source code generation. The following sections

explain these procedures respectively, however, as the generation of artifacts are



94 Chapter 4. Hypervisor’s Design Automation

more specific to each dissertation’s scope, it is given more focus on communication

resources.

4.2.3.1 TZDL’s code generation

This phase consists on, according to the TZDL file with system’s description,
instantiating individuals of classes from the domain ontology creating the system
ontology, as well as the SeML file that connects the latter individuals through
defined object properties. The purpose of each class individual, will be later
reflected in the final source code generation. For describing a communication
relationship on TZDL DSL, the programmer must first declare and describe an
interface, that should be provided by a partition and required by another, and
later these should be binded through the Binding construct. First of all, it will
be instantiated an individual from the interface class upon its declaration. In
addition, according to the interface’s type and definition there are a few individuals
to be created, which are summarized in Table 4.2. The interface resulting in
more individuals is the RPC interface type, that will require the instance of a
Method class, in addition to its respective parameters and return type. Following,
a Data typed interface results on instances of Variable class, to define the data
flowing through a communication relation defined with that type. Lastly, the
Notification constructed interface will generate instances of the Fvent class, where
each definition will provide an event type within the scope of the declared interface.
The SeML file will later contain the relation between interfaces individuals and

instances of its associated resources.

Table 4.2: Generation summary for each type of Interface.

Interface Type Instances
Method instance for each description within interface construct.
RPC Parameter instance for each parameter definition within a

method description.

Parameter instance for the return type of each Method.

Data Variable instance for each one defined within within Data con-
struct.
Notification Event instance, for each definition within Notification construct.

The Binding class is also subdivided into classes, that directly map to the
interfaces types. The one to be instantiated is identified by analyzing the Bind-
ing construct and verifying the used interface type. A Binding class is used to
map the resources that are allocated according to the policies imposed by the in-

terface type, i.e., communication resources, namely ports, referencing capabilities,



Chapter 4. Hypervisor’s Design Automation 95

and respective configurations. Table 4.3 summarizes all instantiated individuals
according to their types. The RPC| that requires two ports, one assigned to the
server for receiving requests, and another for the client for receiving responses. Ac-
cordingly, Capability individuals are created referencing the service port, one for
the server with permissions to perform the receive blocking, and another assigned
to the client for sending the requests. In addition, one capability assigned to a
client is created to be granted in a IPC primitive. For the Data typed binding,
a service port is created for the client to send messages to the server. Accord-
ing to what was described previously, two Capability individuals are created, one
assigned to server with permissions for receiving messages, and another assigned
to the client for message sending. Both permission description aims at fulfilling
the flexible scenario described previously. Lastly, the Notification typed binding,
encompass an instantiation from Port class for the server to send events to the
client, in addition to Capability classes instances, one for the server to send the
event, and another for the client to configure the service port. It is worth to
mention, that the described Capability individuals will be mapping the respective

PortRight individuals, through the hasRight object property.

Table 4.3: Generation summary for each type of Binding.

Binding Type Instances

Service Port, attributed to the server for receiving requests.

Service Capability owned by the server to perform receive opera-
RPC tions over the service port.

Request Capability owned by the client to send requests, refer-
encing the service port.

Reply Port, attributed to the client for receiving responses.

Reply Capability owned by the client to get responses, and to
grant it for the server to send responses.

Service Port attributed to the server for receiving requests.

Data Request Capability owned by the client to send requests.

Service Capability owned by the server to perform receive opera-
tions over the service port.

Service Port attributed to the client for receiving Events.

Notification Service Capability owned by the server to send events over the
service port.

Request Capability owned by the client to configure the port.

Lastly, it is worth to mention that every service provider will be featured with a
PortGroup instance, that will encompass all the ports created under each interface.
Thus allowing to a receive blocking call to be performed in all of them making

possible the attendance to incoming requests from every communication relation.



96 Chapter 4. Hypervisor’s Design Automation

4.2.3.2 TZDL Tool

This is a java tool that is going to be incorporated into SeML tools engine
through java reflection, and is responsible for the final source code generation.
Given the scope of this dissertation, it will only be described a part of this tool
that is related to communication resources. This consists on generating the con-
figuration to be deployed within pRTZVisor ports, port groups and locks, as well
as respective capabilities. Note that, so far, locks have not been mentioned, as
they are not included within TZDL constructs; however, they can be described
by the user in the middle of the depicted workflow, namely accessing generated
artifacts prior to SeML framework operation. The tool should be used, whether
TZDL has been used for the modeling process or not. That is, this tool works on
the SeML framework on its own.

In order to fulfill its purpose, this tool must access the system ontology to
access individuals, their relations and properties. To make this feasible the Pellet
API was used, which defines an interface for accessing a reasoner querying it
about specific individuals, individuals based on relations, object properties, data
properties and others. In addition, the developed code was written in Xtend,
which is, a language derived from java, aiming to provide a means for simpler
and faster typing. Xtend is featured with language constructs specific for code

generation, referred to as multi-line template expressions [86].

Listing 4.1: Ports and Capabilities’ configuration structures.

struct PortConfig {

const int32_t mConfigld;
const int32_t mOwner;
const uint32_t mConf;

struct PortGroupConfig {
const int32_t mConfigld;
const int32_t mOwner;
const int32_t nr0fPorts;
10 const uint32_t *mPorts;
11 };

12 struct CapabilityConfig {
13 const int32_t mConfigld;
14 const int32_t mOwner;

15 const uint32_t mRights;
16 char const * const mName;
17 };

1
2
3
4
5}
6
7
8
9

Listing 4.1 depicts the structures for both ports and capabilities configura-
tion. Figure 4.6 depicts the excerpt of ontology relevant for the port configuration
procedure. Using the aforementioned API, all Port instances are fetched. Given

the depicted relations, it is possible to fetch the remaining information. That is,



Chapter 4. Hypervisor’s Design Automation 97

the Capability instances referencing each Port, in addition to the respective Right
instances, and owning Partitions. A similar procedure is carried for PortGroup

instances.

Partition — -owns — ¥ Capability —hasRight P Right
I
*— — —hasOwner — 4

Port (€ references]  PortCap

I
—isReferencedBy —

Figure 4.6: Excerpt of kernel’s domain ontology, focusing on communi-
cation related objects.

As mentioned before, through the DSL it will be configured more than the
communication resources, which follows a similar process to what was described.
Figure 4.7 presents all generated configuration files for a pRTZVisor-based sys-
tem. The described generation procedure only encompass the PortConfig.cpp file.
The ultimate goal is to generate interfaces glue code, with the already specified
communication semantics, providing even higher increases in development pro-
ductivity. This was not achieved yet, but it will be implemented in a near future.
Notwithstanding, with the final code generation is possible to infer the benefits of
using TZDL.

v [ inc
[l CapabilityConfig.h
|=L DeviceConfig.h
|=L InterruptCenfig.h
|=L MemoeryConfig.h
|=L MutexConfig.h
[l PartitionConfig.h
[l PortConfig.h
gl SchedConfig.h
|El£ DeviceCenfig.cpp
|El£ InterruptConfig.cpp
|El£ MemoryCenfig.cpp

|El£ PertConfig.cpp
|El£ SchedConfig.cpp

Figure 4.7: Source code organization/hierarchy of all generated config-
uration files.

4.3 Simple Use-Case

To provide a better understanding on the language’s constructs and overall
functioning, the example depicted on Figure 4.8 was implemented. It consists on

the abstract modeling of a Publish-Subscriber scenario, encompassing Publisher1



98 Chapter 4. Hypervisor’s Design Automation

and Publisher2, that publish topics through a event-typed interface assigned to
each one of them. The aforementioned topics are delivered to the Mediator com-
posite, that is responsible for controlling subscriptions, and delivering the topic
accordingly. As such, the Mediator aggregates Control and Subscriptions com-
ponents. The latter should store the subscriptions information, which are done
through Data_ SubUnsub interface, while the former delivers the topics to sub-
scribers; however, it first checks subscriptions state with Subscriptions component
through and RPC-typed interface. Both Subscriber! and Subscriber? receive the
topic on a event-typed interface, but they should first specify to which topics they
subscribe through Data_ SubUnsub interface.

HH | " Mediator
Aelelof—

Not_Sub
Publisherl Not_Puinsh1—<z— -
Control <H
_ Not_Sub

( Subscriberl

AN

7

|

Eﬂ \ : RCP_ Ch eckSchr
|
|

Publisher2 Not_Pu blish2—<z/

Service <z Service

Provided Required I:l Property
\ ) Bind — — Promote
. %

Figure 4.8: Component-based architecture for a Publisher-Subscriber
scenario.

4.3.1 TZDL Program

Not all the code will be provided due to its extension, however, it will be
presented the code for describing one type of each interface, some elemental com-
ponents and a composite. Following, are the generated SeML artifacts and excerpt
of ports’ configuration file. Listing 4.2, presents the code for the description of
a partition to be deployed as secure world task Publisherl, and another as guest
Subscriberl. It is observable that both required interfaces from Subscriberi, in a
form of a list. Both should be binded to a provider, otherwise an error will be
prompted. The required amount of memory for each partition is the same, and
will be used for configuring each other’s address space. Publisherl provides one
interface for publishing topics, and requires one I2C' device. So far, these are just

descriptive as the glue code is not yet implemented.



Chapter 4. Hypervisor’s Design Automation 99

Listing 4.2: Elemental components code example in TZDL.

1 task Publisheri{

2 source at "<PATH>"

3 is compatible with zynqg, imx6
4 alloc min 4KB

5

6 provides Publishl pPubl

7 requires device I2C i2c

8}

9

10 guest Subscriberl {

11 source at "<PATH>"

12 is compatible with zynq
13 alloc min 4KB

15 requires Subscription rSub,
16 SubUnsub rSubUnsub

Listing 4.3 presents the code for describing one type of each interface. The
CheckSub interface is of type rpc and implements two procedure calls, to be ab-
stracted in a RPC-like communication scenario. The specified parameters for
procedure calls, need to be sent to the server in a specified protocol. This would
encompass the creation of a message format with a specified opcode representative
of each procedure call, that the server would interpret, operate accordingly and
return to the client with the response. This response, for the GetSub function,
might be solely an ack, while in the other should be the string sub parameter,
tagged with the out keyword. Publish2 interface defines the type of events, that
should flow within a communication relation of that type. To each one of them
should be assigned an opcode, interpreted within event handler on the client side.
Lastly, the SubUnsub interface defines the structure for the message to flow within
a communication relation of that type. It encompasses a set of variables that
permits the subscription of a subscriber to a topic. The subscriber would specify
its respective identification, the topic representative opcode, and the flag with
the meaning of subscription or unsubscription, that the Subscriptions component

would interpret and perform operations accordingly.

Listing 4.3: Interfaces code example in TZDL.

rpc CheckSub{
uint32_t GetSub(in int topic, out string sub);
uint32_t IsSub(in int topic, in string sub);
}
event Publish2{
topic_c;
topic_d;
}

event Subscription{

O OO U= WN



100 Chapter 4. Hypervisor’s Design Automation

10 topic_a;

11 topic_b;

12 topic_c;

13 topic_d;

14 }

15 data SubUnsub {

16 bool subUnsub; //true->subscribe, false -> Unsubscribe
17 int topicId;

18 string subId;

19 }

The Mediator composite is presented in Listing 4.4. It is possible to check
a section defining its contained components, followed by their properties config-
uration. By configuring this properties outside the respective component’s, it is
eased the components reuse. It is specified to which platform the composite aims,
which should be compliant with what described within its components, i.e., all
its contained components should be compliant to zyng platform. Within a com-
posite it is also possible to specify interfaces it requires and provides; however,
these definitions should be used to promote contained components’ interfaces of
the same type. As a result, these would become "visible" outside the composite
for a binding, upon its instantiation. From line 13 to 17, it is possible to see all
promote operations within mediator, and on line 19 it is possible verify the syntax

for a binding.

Listing 4.4: Composite code example in TZDL.

composite Mediator{
contains Control controller has priority 5 and period 60;
Subscriptions subscriptions has priority 4;

requires Publishl prom_rPubl,

1
2
3
4
5 is compatible with zynq
6
7
8 Publish2 prom_rPub2

Ne)

10 provides SubUnsub prom_pSubUnsub,

11 Subscription prom_pSub

12

13 promote require controller.rPubl as prom_rPubl

14 promote require controller.rPub2 as prom_rPub2

15

16 promote provide subscriptions.pSubUnsub as prom_pSubUnsub
17 promote provide controller.pSub as prom_pSub

18

19 bind controller.rCheckSub to subscriptions.pChechSub
20 ¥

Lastly, the system composite is presented in Listing 4.5. This encompasses the
elements from Figure 4.8 and binds them according the specified interfaces. Also,
the last line of code specifies the more abstract component, from which model

description starts, thus dictating the result of next stages.



Chapter 4. Hypervisor’s Design Automation 101

Listing 4.5: Composite code example in TZDL.

1 composite PublishSubscribe_example {

2 contains Publisherl publ has priority 4;

3 Publisher2 pub2 has priority 4;

4 Subscriberl subl has priority 5 and period 60;
) Subscriber2 sub2 has priority 6 and period 70;
6 Mediator med;

7

8

is compatible with zyngq

10 bind med.prom_rPubl to publ.pPubl
11 bind med.prom_rPub2 to pub2.pPub2

13 bind subl.rSub to med.prom_pSub
14  bind sub2.rSub to med.prom_pSub

16 bind subl.rSubUnsub to med.prom_pSubUnsub
17 bind sub2.rSubUnsub to med.prom_pSubUnsub

19 bind device publ.i2¢c to zynqg.i2cO
20 ¥

22 assemble PublishSubscribe_example for zynq

4.3.2 Code Generation

As explained in Section 4.2, SeML artifacts are generated from a TZDL pro-
gram. This means a system ontology would be generated, composed with all
individuals required, in addition to a SeML file connecting instances according to
the model. In Section 4.2.3, it was explained which ontology instances are cre-
ated for each type of Interface and each type of Binding. Due to the extension of
the SeML file, Listing 4.6 solely exposes the mapping between individuals created
for Controller component (from line 1 to 5), to provide Subscription interface of
event type. Following, the mapping between individuals for the binding between

the former and Subscriber! (from line 7 to 21).

Listing 4.6: Composite code example in TZDL.

// Server Objects Bindingx*/

med.controller ownsCapability med.controller.pSub.portgroupcap

med.controller.pSub.portgroupcap referencesObject
med.controller.pSub.portgroup

med.controller.pSub.portgroupcap hasRight send

med.controller.pSub.portgroup hasOwner med.controller

W N~

// Event Binding from subl.rSub to med.controller.pSub x*/
tzvisor hasBinding subl.rSub-bindsto-med.controller.pSub
subl.rSub-bindsto-med.controller.pSub hasInterface Subscription

— O © 000 Uk

—_

subl.rSub-bindsto-med.controller.pSub hasReplyCap
subl.rSub.replycap



102 Chapter 4. Hypervisor’s Design Automation

12 subl owns subl.rSub.replycap

13 subl.rSub.replycap referencesObject subl.rSub.port
14 subl.rSub.port hasOwner subl

15 subl.rSub.replycap hasRight config

17 subl.rSub-bindsto-med.controller.pSub hasServiceCap
med.controller.pSub.portgroupcap

18 med.controller owns subl.rSub.servcap

19 subl.rSub.servcap hasRight send

20 subl.rSub.servcap referencesObject subl.rSub.port

21 med.controller.pSub.portgroup hasPort subl.rSub.port

Providing both artifacts to the SeML infrastructure, this could invoke the im-
plemented TZDL tool that generates configuration files. Listing 4.7 contains the
excerpt from the PortConfig.cpp file exposing the configuration required for the
aforementioned scenario. As would be expected, the configuration follows the
structure explained in Section 4.2.3.2. Firstly, we see capability configuration for
the port over which communication will occur. To the server were given permis-
sions to perform the notify operation, as it is an event type interface, whilst to
the client was given the right to configure the port. Configuring the port usually
means enabling the reception of events, either by an asynchronous send or a notify
from the sender. So in this scenario, the client would be able to enable/disable
the events as needed, which is helpful for the client to perform some atomic op-
eration. Following the port configuration, where it is assigned to the client and
has its configuration reseted. The mConfigld helps to identify the port, and to

associate the aforementioned capabilities with it.

Listing 4.7: Generated configuration files for the depicted example.

1 //Ports----
2 const CapabilityConfig portsCapabilities [] = {

3 {//Server (Controller component) Capability

4 mConfigIld : 5,

5 mOwner : O,

6 mRights : (0x01 << TzPortOperations::NOTIFY) ,
7 mName : ¥,

8 {//Client (Subscriberl component) Capability

9 mConfigId : 5,

10 mOwner : 5,

11 mRights : (0x01 << TzPortOperations::CONFIG),
12 mName : }

13 ¥

14 const PortConfig portsConfigl] = {
15 {//Port configuration

16 mConfigId: 5,
17 mOwner : 5,
18 mConf : O %}
19 }

20 const PortGroupConfig portGroupConfigs[] = {
21 {//PortGroup configuration

22 mConfigIld : 3,

23 mOwner: O,



Chapter 4. Hypervisor’s Design Automation 103

24 nr0fPorts: 2,
25 mPorts : (uint32_tI[]) { 5, 7 } }
26 }

4.4 Discussion

Once finalized this part of the work, it is possible to make some remarks.
If confined to using SeML for the modeling procedure, the user would have to
create class individuals from the domain ontology, and then connect them through
object properties. This, on its own, is a more tedious procedure than modeling
from a normal DSL, which gets worse since the user’s attention has to be divided
between two different tools. Moreover, the SeML DSL solely allow for connecting
the instantiated individuals through a set of 3 consecutive words (like shown in the
previous example). By solely reading the code, it is difficult to capture the overall
architecture, and, as such, this becomes a poor documentation artifact. Even by
using the ontology to retrieve information is harder than read an architecture on a
DSL with specialized syntax. One point favoring SeML DSL is its shape-shifting
syntax, as keywords are the imported relations from the domain ontology. As
such, the more expressive these are, more expressive the DSL becomes.

TZDL adds a desirable abstraction, with considerate gains in expressiveness,
ease of conception and maintainability. The DSL’s constructs are more expressive
to hypervisor’s domain, and, as such, easier to understand. In addition, models are
described in a more centralized environment and a more structured fashion. Con-
sequently, the development process becomes more user friendly and therefore less
error prone. Leveraging component-based syntax, the overall program structure
gets easy to understand, read and maintain. As a result, the program becomes a
valuable piece of documentation. However, compared to similar tools TZDL still
has a lot to improve. For starters, only static bindings between components are
provided, i.e. these are specified at design time, and a powerful feature would be
to allow for bindings to happen at compile time according to parameters. In addi-
tion, bindings are also limited to providing a 1-to-1 mapping between components.
If within a composite a given component provides a service to more than a sibling
component, the user is forced to type more than one line of code. This limitation
could be bypassed by allowing to define a list of components that require the same
interface for latter bind to the same provider, reducing the number of code lines.
Also, no extra properties are allowed to be defined in a TZDL program, which

may be limiting. The supported properties are inherit to language syntax, but



104 Chapter 4. Hypervisor’s Design Automation

those that are not static, like priority and period, are configured upon compo-
nent instantiation within a composite. This is good for simplicity and component
reuse. The component-based semantics of TZDL eases the desired confinement
for a secure communication environment. That is, partitions that are critical and
trustworthy can be easily composed within the same composite, and others that
are not so secure nor critical can be composed separately. However, it should
not exist any linkage, through interface binding, between them. Thus, imposing
a proper capability configuration towards confinement between communication
domains.

Some of the identified limitations of TZDL, can be overcame in the modeling
workflow (remember Figure 4.1), because the user still has access to the generated
SeML artifacts. The referred extra properties can be created at this point. In
addition, given the control over low granularity of elements inherit to modeling
using the ontology, the user is able to not follow or extend the imposed abstraction
on TZDL constructs. For example, for each binding resources it will be config-
ured according to the type of interface. However, the user may want to create
a completely custom communication relation between two partitions. Through
TZDL syntax this is not possible, however using SeML artifacts it is by creating
individuals of Port, Capability and Right class, and associate them in the DSL.
This possibility of extending what TZDL provides leveraged by experienced users,
will increase the overall modeling flexibility. Also, the SeML external tool engine
allows for this changes on the model to be noticed on the final source code.

The example provided in the previous section not only allow us to verify some
of the aforementioned points, as it provides a means to infer about the gains of the
code generation process. For instance, by comparing the amount of code written
on TZDL to the one deployed in the yRTZVisor. So far, this is only reflected in
configuration files, as the generation of interfaces and bindings respective glue is
not yet generated. This should be addressed in future work, leveraging the taken
steps towards this goal. Nonetheless, with what was implemented so far it is al-
ready possible to draw some conclusions. The architecture was described in one
file, with approximately 85 lines of TZDL code. This code was used to generate a
SeML file with approximately 190 lines of code, in addition to the individuals that
were instantiated within the ontology. At this point it is possible to concretely
state that TZDL development already incurs into productivity gains. However,
the ultimate goal of the modeling process and the combination of both tools is the
generation of the code to be deploy in pRTZVisor. This should constitute the real

gain. From those depicted in Figure 4.7 (from Section 4.2.3.2), there are 5 source



Chapter 4. Hypervisor’s Design Automation 105

code files that a developer should alter for properly configuring a pRTZVisor-
based system. In addition, the effort for synchronizing configurations according to
partitions should also be considered. For example, PartitionConfig.h is composed
by the configuration of each partition, while PortsConfig.cpp possesses informa-
tion for configuring communication resources. For ownership purposes, partitions
ID must be aligned with the owner ID within its respective ports’ configuration.
If solely considering the generated code for communication resources it encom-
passes 248 lines of code. In addition to PartitionConfig.h that included 30 lines
of code, the remaining did not contribute to the point we are trying to prove.
This because the example was very simple, with special emphasis on communi-
cation. Notwithstanding, it already proves that the providing infrastructure for
configuring systems to be deployed in pRTZVisor, provides great productivity re-
sults. These just will tend to increase, as meaningful and demanding the system

becomes.






Chapter 5
Conclusion

Virtualization technology, although becoming a game-changer in the embedded
space, on its own, cannot be seen as the solution for all security problems, which
is often mistaken due to the provided isolation. As such, virtualization solutions
must be conceived following a secure-by-design approach and relying on other se-
curity technologies. The in-house developed RTZVisor provides a virtualization
solution, leveraging the Arm TrustZone technology. RTZVisor conception placed
special focus on real-time systems, following a monolitic approach. Monolitic solu-
tions are prone to hide bugs, and to incorporate untrustworthy software modules,
namely device-drivers which often constitute a system’s single point of failure.
Moreover, the real-time features of RTZVisor are dependent on the guest OS
solely implementing a cyclic scheduling algorithm, and RTZVisor is not featured
with TPC mechanisms. Thus, a collaborative effort was conducted to enhance
RTZVisor architecture with microkernel-like principles, to enforce overall kernel’s
security, while extending its support for real-time. pRTZVisor was conceived, and,
as characteristic of microkernel-like architectures, following the principle of mini-
mality, for limiting TCB size and functionality, in addition to a secure-by-design
approach. This, while achieving a close to full-virtualization approach. The core
implementation only encompasses services for spacial and temporal isolation, in
addition to IPC mechanisms and a lightweight access-control facility. Leaving
other functionalities to be implemented in user-space, with well defined interfaces
for service provision.

The contribution of this thesis, towards the developed hypervisor artifacts, lays
on the implementation of the IPC infrastructure and the access-control facilities,
as well as some other complementary functionalities, like synchronization objects
and so on. Communication was implemented based on the notion of an end-
point, dubbed port, from which messages can be written to and read from. A vast
number of IPC are provided, to support as many scenarios as possible; however,

complying with the principle of minimality. The main limitation found regards to

107



108 Chapter 5. Conclusion

performance, since on other reliable microkernel implementations communication
operations can be performed in less than 1us. In Section 3.3.1 the performance
of the implemented IPC infrastructure is evaluated. The worst-case scenario is
achieved when using synchronous primitives to communicate between two guests.
Its poor performance is due to cache maintenance required when scheduling a new
guest. To prevent data leakages, cashes must be flushed upon the execution of
a new guest (as explained in Section 3.1.3). This procedure was noticed to be
costly in terms of performance. In addition to ports, portgroups objects where
implemented for aggregating ports under the same abstractions. Thus, making
possible to perform elemental operations over that group, for example, to send a
broadcast message. This feature was important to improve partitions communica-
tion, making it more flexible, which is useful when implementing servers, as these
could often be providing services to more than one partition. Thus, it can wait
for a message from all its clients, by aggregating the respective ports under the
same abstraction.

In Section 3.3.2 a security discussion was conducted, approaching how the
uRTZVisor implementation complied or not with each CIA (Confidentiality, In-
tegrity and Availability). Most of the security guarantees rely on the provided
spacial isolation being properly guaranteed. However, the former is properly com-
plimented with the capability-based access-control system, system calls’ param-
eters sanity-check, and memory pools sanitization. Still, great care should be
taken in capability configuration, which dictates how communication relations are
established. Partitions that implement critical functionality should only rely on
trustworthy servers, which in turn should not be related to any untrustworthy
client. In this sense, capability distribution should be thoroughly used to enforce
confinement according to criticality and trustworthiness. Thus, closing possible
bridges between partitions that are prone to external attacks, from those that im-
plement critical functionalities, towards mitigating the chance of some partition
having its availability jeopardized.

uRTZVisor architecture imposes functionality segregation towards a secure
environment, which pairs with high-level of systems configuration, namely for es-
tablishing communication relations, and resource multiplexing. MDE bases soft-
ware development on model representation, that provides a more abstract and,
therefore, simplified view of the system. This approach is often paired with DSL
development, that enhances models description with generative functionalities.

The SeML infrastructure was developed towards hypervisor’s design automation,



Chapter 5. Conclusion 109

by leveraging ontology representation. In this sense, an upper ontology was pro-
vided, used for creating the domain ontology, that, in turn, should be used for the
conception of a system’s model. The final system representation also required the
use of a DSL for mapping individuals within the system’s ontology. The inherent
workflow was still seen as tedious and error prone, providing few benefits as desir-
able when comparing its results to manually configuring uRTZVisor. However, the
SeML infrastructure was a great means for model and functionality extendability.
Thus, under the scope of this thesis a collaborative effort was conducted towards
conceiving a DSL, dubbed TZDL, used as the front-end for the SeML infrastruc-
ture. In addition, a SeML external tool was developed for final source code gener-
ation, that possessed uRTZVisor’s resources configuration. TZDL enabled model
conception following a component-based approach, in which the model is com-
posed of building-blocks with well defined interfaces between them. As explained
in Section 4.2.3, a TZDL program was used to generate SeML artifacts. The ul-
timate goal of the developed work, was to provide an efficient way to configure
uRTZVisor resources, in addition to generate interfaces glue code, with template
functionality according to the interface’s type. In Section 4.3 a simple use-case
scenario was presented was presented, in which both TZDL and SeML infrastruc-
ture were used according to the described workflow (Section 4.2). From the former
was possible to conclude that TZDL provided benefits into modeling conception,
compared with using SeML infrastructure on its own, namely understandability,
ease of use and maintainability. Notwithstanding, TZDL functionality was still
far from being completed. In Section 4.4 some limitations were identified, for
example, the impossibility of specifying other properties than priority and time
budget. Despite that the generation of interfaces glue code was not yet achieved,
the final source code generation results, regarding productivity gains, are quite
promising. Notwithstanding, in the near future a more thorough evaluation must

be conducted, by programming more complex architectures.

5.1 Future Work

Hypervisor Implementation The Inter-Partition Communication (IPC) per-
formance is clearly the point that focusing on would create the most benefits.
Firstly, hardware resources available on Arm’s architecture should be thoroughly
analyzed, namely DMA peripherals could be leveraged for faster messages’ trans-
missions. On its own, a more thorough exploration of the memory subsystem (i.e.

caches operation, MMU) could be conducted in order to improve the actual IPC’s



110 Chapter 5. Conclusion

implementation. Notwithstanding, for an efficient design of IPC mechanisms re-
liant on a DMA peripheral, it is required to have a sound comprehension on the
core memory architecture, placing focus on TrustZone separation and cache main-
tenance. Another possibility, would be to offload IPC functionalities to hardware
recurring to digital-hardware design. For every taken approach, tests should be
conducted to infer about the incurred benefits, comparing results with the actual
state of implementation.

In Section 4.4 a security discussion was conducted; however, this was merely
theoretical. In the near future the implemented artifacts should be submitted
to thorough testing, creating even attack scenarios. This would expose hidden
vulnerabilities, as well as to test in practice everything that was advocated. We
advocate that capabilities should be carefully distributed, confining communica-
tion relationships according to criticality and servers trustworthiness. However,
other than capabilities being manually configured, there is no practical technique
for ensuring that the desired security domains are not violated, i.e., that an un-
trustworthy party acquires permissions for communicating with partitions it is
not intended to. For this, a monitoring tool could implemented. It should be
prescribed with expected states for capabilities distribution over time. During
runtime the tool should be responsible for aborting grant operations if they vi-
olated the prescribed information. This is useful to help mitigate risk of a DoS
attack.

Throughout this work, part of the developed code was certified according to
MISRA C++ standard. However, due to its extension and time constraints, the
code has not been yet fully certified. In the future, an effort should be conducted

towards full certification.

Design Automation The most demanding feature that would incur in a greater
productivity improve is the extension of the TZDL tool to support the generation
of interfaces glue code. This would avoid programmers having to type exten-
sive repetitive code, namely for configuring the overall system according to the
specification. Focusing on communication resources, these should include the con-
figuration of endpoints (i.e. ports and portgroups), as well as the retrieval of
respective capabilities references within its capability space. In addition, it should
be automated as much as possible from the communication operations. For event
interfaces the generated code should encompass, on the requirer side, the template
code for identifying the event, and to redirect execution flow to the respective han-
dler. The handler should also be provided as a stub function, for the programmer

to fill as necessary. On the provider side, an API should be generated to send



Chapter 5. Conclusion 111

each one of the described events. For rpc and data interfaces should be automated
the marshaling and unmarshaling to generate a message structure, in addition to
the stub code for performing operations regarding to the intended semantics of an
interface. Namely, to implement the desired behavior for a procedure call defined
within a rpc interface.

Under the light of what was explained in the previous section, some other fea-
tures should be added to TZDL overall operation. Namely, allowing for bindings to
be resolved on compile time according to parameters configuration. Also, allowing
for extra component properties to be defined within TZDL syntax. As explained
previously, this problem can be circumvented by defining properties manually in
SeML artifacts. However, this requires ontology knowledge and having this on
TZDL syntax is much more convenient. In addition, removing the necessity of
manually altering SeML artifacts, in some other ways can be beneficial. Namely,
allowing for describing elemental constructs like ports and capabilities, in addi-
tion to associate them with partition. Thus, the programmer can expand system
functionality, beyond what was imposed by TZDL constructs.

Regarding the conceived domain ontology, in the future it could be expanded
for supporting different microkernel-like implementations, as well as different plat-
forms. In doing so, another source code generation tool should also be developed,
to generate code compliant with the new target platform. Thus, by leveraging
the already implemented infrastructure, the amount of effort needed to develop
another modeling tool is reduced. In addition, towards greater level of flexibility,
it provides a means for moving servers functionality to inside the kernel. Despite
that this raises security questions, and it could only be applied to trustworthy
servers, those that could also have been certified. This is due to the fact that
sometime performance can be critical in a certain service provision. For this,

server’s interfaces should be of RPC type.






Bibliography

1]

[10]

G. Heiser, “The role of virtualization in embedded systems,” in Proceedings of
the 1st workshop on Isolation and integration in embedded systems, pp. 11-16,
ACM, 2008.

M. Fowler, Domain-specific languages. Pearson Education, 2010.

M. Bruer, “Design of a semantic connector model for composition of meta-
models in the context of software variability,” PhD diss., Technische Univer-
sitat Dresden, 2007.

R. Kaiser, “Complex embedded systems-a case for virtualization,” in Intelli-
gent solutions in Embedded Systems, 2009 Seventh Workshop on, pp. 135—140,
IEEE, 2009.

J. Shuja, A. Gani, K. Bilal, A. U. R. Khan, S. A. Madani, S. U. Khan, and
A.Y. Zomaya, “A survey of mobile device virtualization: taxonomy and state
of the art,” ACM Computing Surveys (CSUR), vol. 49, no. 1, p. 1, 2016.

)

G. Heiser, “Hypervisors for consumer electronics,” in Consumer Communi-
cations and Networking Conference, 2009. CCNC 2009. 6th IEEE, pp. 1-5,

IEEE, 2009.

J. Shuja, K. Bilal, S. A. Madani, M. Othman, R. Ranjan, P. Balaji, and S. U.
Khan, “Survey of techniques and architectures for designing energy-efficient
data centers,” IEEE Systems Journal, vol. 10, no. 2, pp. 507-519, 2016.

G. Heiser and B. Leslie, “The okl4 microvisor: Convergence point of microker-
nels and hypervisors,” in Proceedings of the first ACM asia-pacific workshop
on Workshop on systems, pp. 19-24, ACM, 2010.

G. Heiser, K. Elphinstone, 1. Kuz, G. Klein, and S. M. Petters, “Towards
trustworthy computing systems: taking microkernels to the next level,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 4, pp. 3-11, 2007.

A. S. Tanenbaum and A. S. Woodhull, Operating systems: design and imple-
mentation, vol. 2. Prentice-Hall Englewood Cliffs, NJ, 1987.

113



114

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[17]

[18]

[19]

[22]

J. Liedtke, On micro-kernel construction, vol. 29. ACM, 1995.

J. Liedtke, K. Elphinstone, S. Schonberg, H. Hartig, G. Heiser, N. Islam, and
T. Jaeger, “Achieved ipc performance (still the foundation for extensibility),”
in Operating Systems, 1997., The Sixth Workshop on Hot Topics in, pp. 28—
31, IEEE, 1997.

J. Liedtke, “Improving ipc by kernel design,” ACM SIGOPS Operating Sys-
tems Review, vol. 27, no. 5, pp. 175-188, 1993.

K. Elphinstone and G. Heiser, “From 13 to sel4 what have we learnt in 20 years
of 14 microkernels?,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pp. 133-150, ACM, 2013.

R. Kaiser and S. Wagner, “Evolution of the pikeos microkernel,” in First
International Workshop on Microkernels for Embedded Systems, p. 50, 2007.

J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, “Counter-
ing ipc threats in multiserver operating systems (a fundamental requirement
for dependability),” in Dependable Computing, 2008. PRDC’08. 14th IEEE
Pacific Rim International Symposium on, pp. 112-121, IEEE, 2008.

J. S. Shapiro, “Vulnerabilities in synchronous ipc designs,” in Security and
Privacy, 2003. Proceedings. 2003 Symposium on, pp. 251-262, IEEE, 2003.

J. Liedtke, N. Islam, and T. Jaeger, “Preventing denial-of-service attacks
on a/spl mu/-kernel for weboses,” in Operating Systems, 1997., The Sixth
Workshop on Hot Topics in, pp. 7379, IEEE, 1997.

A. Lackorzynski and A. Warg, “Taming subsystems: capabilities as univer-
sal resource access control in 14,” in Proceedings of the second Workshop on
Isolation and Integration in Embedded Systems, pp. 25-30, ACM, 20009.

J. S. Shapiro and S. Weber, “Verifying the eros confinement mechanism,” in
Security and Privacy, 2000. SEP 2000. Proceedings. 2000 IEEE Symposium
on, pp. 166-176, IEEE, 2000.

I. Crnkovic, “Component-based software engineering for embedded systems,”
in Proceedings of the 27th international conference on Software engineering,
pp. 712-713, ACM, 2005.

T. A. Henzinger and J. Sifakis, “The embedded systems design challenge,” in
International Symposium on Formal Methods, pp. 1-15, Springer, 2006.



BIBLIOGRAPHY 115

[23]

[24]

[26]

28]

[29]

[30]

[31]

[32]

33]

T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “sel4: from general purpose to a proof
of information flow enforcement,” in Security and Privacy (SP), 2013 IEEE
Symposium on, pp. 415-429, IEEE, 2013.

D. Mellado, E. Fernandez-Medina, and M. Piattini, “A common criteria based
security requirements engineering process for the development of secure infor-
mation systems,” Computer standards & interfaces, vol. 29, no. 2, pp. 244—
253, 2007.

H. Lohr, A.-R. Sadeghi, C. Stiible, M. Weber, and M. Winandy, “Modeling
trusted computing support in a protection profile for high assurance security
kernels.,” in TRUST, pp. 45-62, Springer, 2009.

D. Kleidermacher and M. Kleidermacher, Embedded systems security: practi-
cal methods for safe and secure software and systems development. Elsevier,

2012.

J. Alves-Foss, P. W. Oman, C. Taylor, and W. S. Harrison, “The mils ar-
chitecture for high-assurance embedded systems,” International journal of
embedded systems, vol. 2, no. 3-4, pp. 239-247, 2006.

S. Tverdyshev, “Security by design: Introduction to mils,” in this workshop,
2017.

A. Aguiar and F. Hessel, “Embedded systems’ virtualization: The next chal-
lenge?,” in Rapid System prototyping (RSP), 2010 21st IEEE International
symposium on, pp. 1-7, IEEE, 2010.

Z. Gu and Q. Zhao, “A state-of-the-art survey on real-time issues in embedded
systems virtualization,” Journal of Software Engineering and Applications,
vol. 5, no. 04, p. 277, 2012.

F. Armand and M. Gien, “A practical look at micro-kernels and virtual ma-
chine monitors,” in Consumer Communications and Networking Conference,
2009. CCNC 2009. 6th IEEE, pp. 1-7, IEEE, 20009.

G. Heiser, “Virtualizing embedded systems: why bother?,” in Proceedings of
the 48th Design Automation Conference, pp. 901-905, ACM, 2011.

N. Penneman, D. Kudinskas, A. Rawsthorne, B. De Sutter, and K. De Boss-
chere, “Formal virtualization requirements for the arm architecture,” Journal
of Systems Architecture, vol. 59, no. 3, pp. 144-154, 2013.



116

BIBLIOGRAPHY

[34]

[35]

[36]

[40]

[42]

J. Smith and R. Nair, Virtual machines: versatile platforms for systems and

processes. Elsevier, 2005.

X. Wang, R. Habeeb, X. Ou, S. Amaravadi, J. Hatcliff, M. Mizuno,
M. Neilsen, S. R. Rajagopalan, and S. Varadarajan, “Enhanced security
of building automation systems through microkernel-based controller plat-
forms,” in Distributed Computing Systems Workshops (ICDCSW), 2017 IEEE
37th International Conference on, pp. 37-44, IEEE, 2017.

M. Hohmuth, M. Peter, H. Hartig, and J. S. Shapiro, “Reducing tcb size by
using untrusted components: small kernels versus virtual-machine monitors,”
in Proceedings of the 11th workshop on ACM SIGOPS FEuropean workshop,
p. 22, ACM, 2004.

J. Liedtke, “Toward real microkernels,” Communications of the ACM, vol. 39,
no. 9, pp. 70-77, 1996.

Y. Ren, L. Liu, Q. Zhang, Q. Wu, J. Guan, J. Kong, H. Dai, and L. Shao,
“Shared-memory optimizations for inter-virtual-machine communication,”
ACM Computing Surveys (CSUR), vol. 48, no. 4, p. 49, 2016.

K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S. Kim, “Inter-domain socket
communications supporting high performance and full binary compatibility
on xen,” in Proceedings of the fourth ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, pp. 11-20, ACM, 2008.

F. Diakhaté, M. Perache, R. Namyst, and H. Jourdren, “Efficient shared mem-
ory message passing for inter-vim communications.,” in Euro-Par Workshops,
pp. 53-62, Springer, 2008.

J. S. Shapiro, D. J. Farber, and J. M. Smith, “The measured performance of a
fast local ipc,” in Object-Orientation in Operating Systems, 1996., Proceedings
of the Fifth International Workshop on, pp. 89-94, IEEE, 1996.

C. Gebhardt and A. Tomlinson, “Challenges for inter virtual machine commu-
nication,” tech. rep., Technical Report RHUL-MA-2010-12. Royal Holloway,
University of London, Department of Mathematics, 2010.

U. Steinberg, J. Wolter, and H. Hartig, “Fast component interaction for real-
time systems,” in Real-Time Systems, 2005.(ECRTS 2005). Proceedings. 17th
Furomicro Conference on, pp. 89-97, IEEE, 2005.



BIBLIOGRAPHY 117

[44]

[45]

[46]

[47]

[49]

[51]

[52]

[53]

[54]

I. Kuz, G. Klein, C. Lewis, and A. Walker, “capdl: A language for describ-
ing capability-based systems,” in Proceedings of the first ACM asia-pacific
workshop on Workshop on systems, pp. 31-36, ACM, 2010.

X. Xiong and P. Liu, “Silver: Fine-grained and transparent protection domain
primitives in commodity os kernel,” in International Workshop on Recent

Advances in Intrusion Detection, pp. 103-122, Springer, 2013.

R. S. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE

communications magazine, vol. 32, no. 9, pp. 40-48, 1994.

J. S. Shapiro, J. M. Smith, and D. J. Farber, EROS: a fast capability system,
vol. 33. ACM, 1999.

L. I. Pesonen, D. M. Eyers, and J. Bacon, “A capability-based access con-
trol architecture for multi-domain publish /subscribe systems,” in Applications
and the Internet, 2006. SAINT 2006. International Symposium on, pp. 7-pp,
IEEE, 2006.

J. L. Hernandez-Ramos, A. J. Jara, L. Marin, and A. F. Skarmeta, “Dis-
tributed capability-based access control for the internet of things,” Journal
of Internet Services and Information Security (JISIS), vol. 3, no. 3/4, pp. 1-
16, 2013.

Y

L. Gong, “A secure identity-based capability system,” in Security and Pri-

vacy, 1989. Proceedings., 1989 IEEE Symposium on, pp. 5663, IEEE, 1989.

U. Steinberg, “Quality-assuring scheduling in the fiasco microkernel,” Mas-

ter’s thesis, Dresden University of Technology, 2004.

E. Schierboom, Verification of Fiasco’s IPC implementation. PhD thesis,
Master’s thesis, Radboud University, Computing Science Department, 2007.

T. Smejkal, A. Lackorzynski, B. Engel, and M. Volp, “Transactional ipc in
fiasco. oc,” OSPERT 2015, p. 19, 2015.

U. Steinberg and B. Kauer, “Nova: a microhypervisor-based secure virtualiza-
tion architecture,” in Proceedings of the 5th European conference on Computer

systems, pp. 209-222, ACM, 2010.

T. Xia, J.-C. Prévotet, and F. Nouvel, “Mini-nova: A lightweight arm-based

virtualization microkernel supporting dynamic partial reconfiguration,” in



118

BIBLIOGRAPHY

[56]

[57]

[58]

[61]

[62]

Parallel and Distributed Processing Symposium Workshop (IPDPSW), 2015
IEEFE International, pp. 71-80, IEEE, 2015.

C. Baumann, B. Beckert, H. Blasum, and T. Bormer, “Better avionics soft-
ware reliability by code verification,” in Proceedings, embedded world Confer-

ence, Nuremberg, Germany, 2009.

P. Varanasi and G. Heiser, “Hardware-supported virtualization on arm,” in
Proceedings of the Second Asia-Pacific Workshop on Systems, p. 11, ACM,
2011.

J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, “Minix 3:
A highly reliable, self-repairing operating system,” ACM SIGOPS Operating
Systems Review, vol. 40, no. 3, pp. 80-89, 2006.

T. Alves, “Trustzone: Integrated hardware and software security,” White
Paper, 2004.

S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares, “Towards
a trustzone-assisted hypervisor for real time embedded systems,” IEEE Com-
puter Architecture Letters, 2016.

A. Laarman and I. Kurtev, “Ontological metamodeling with explicit in-

stantiation,” in International Conference on Software Language Engineering,
pp. 174-183, Springer, 20009.

J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven engineering
practices in industry,” in Proceedings of the 33rd International Conference on
Software Engineering, pp. 633-642, ACM, 2011.

V. Garcia Diaz, N. Valdez, E. Rolando, J. P. Espada, P. G. Bustelo,
B. Cristina, J. M. Cueva Lovelle, and C. E. Montenegro Marin, “A brief

introduction to model-driven engineering,” Tecnura, vol. 18, no. 40, pp. 127—
142, 2014.

B. Selic, “The pragmatics of model-driven development,” [EEE software,
vol. 20, no. 5, pp. 19-25, 2003.

T. Stahl and M. Volter, Model-driven software development: technology, en-
gineering, management. J. Wiley & Sons, 2006.

D. Gasevic, D. Djuric, and V. Devedzic, Model driven architecture and ontol-

ogy development. Springer Science & Business Media, 2006.



BIBLIOGRAPHY 119

[67]

[69]

[73]

[74]

[76]

U. ABBmann, S. Zschaler, and G. Wagner, “Ontologies, meta-models, and the
model-driven paradigm,” in Ontologies for software engineering and software
technology, pp. 249-273, Springer, 2006.

A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An
annotated bibliography,” ACM Sigplan Notices, vol. 35, no. 6, pp. 26-36,
2000.

M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop domain-
specific languages,” ACM computing surveys (CSUR), vol. 37, no. 4, pp. 316—
344, 2005.

K. Czarnecki, U. Eisenecker, R. Gliick, D. Vandevoorde, and T. Veldhuizen,
“Generative programming and active libraries,” in Generic Programming,
pp. 25-39, Springer, 2000.

U. Zdun, “Concepts for model-driven design and evolution of domain-specific

languages,” 2005.

I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “Camkes: A component model
for secure microkernel-based embedded systems,” Journal of Systems and

Software, vol. 80, no. 5, pp. 687699, 2007.

J.-G. Schneider, Components, Scripts, and Glue: A conceptual framework for
software composition. PhD thesis, Ph. D. thesis, University of Bern, Institute
of Computer Science and Applied Mathematics, 1999.

O. Lobry, J. Navas, and J.-P. Babau, “Optimizing component-based em-
bedded software,” in Computer Software and Applications Conference, 2009.
COMPSAC’09. 33rd Annual IEEE International, vol. 2, pp. 491496, IEEE,
20009.

I. Crnkovic, J. Stafford, and C. Szyperski, “Software components beyond
programming: From routines to services,” leee software, vol. 28, no. 3, pp. 22—
26, 2011.

C. Atkinson, C. Bunse, C. Peper, and H.-G. Gross, “Component-based soft-
ware development for embedded systems—an introduction,” in Component-

Based Software Development for Embedded Systems, pp. 1-7, Springer, 2005.



120

BIBLIOGRAPHY

[77]

(78]

[79]

[83]

[84]

[85]

[36]

M. Pinto, L. Fuentes, and J. M. Troya, “Daop-adl: an architecture description
language for dynamic component and aspect-based development,” in Interna-
tional Conference on Generative Programming and Component Engineering,
pp. 118-137, Springer, 2003.

M. Nolin, J. Fredriksson, J. Hammarberg, J. Huselius, J. Hakansson, A. Karls-
son, O. Larses, M. Lindgren, G. Mustapic, A. Moeller, et al., “Component
based software engineering for embedded systems-a literature survey,” MRTC
Report, Maelardalen University, ISSN 1404, vol. 3041, 2003.

N. Feske, “A case study on the cost and benefit of dynamic rpc marshalling
for low-level system components,” ACM SIGOPS Operating Systems Review,
vol. 41, no. 4, pp. 4048, 2007.

O. Corcho, M. Fernandez-Lopez, and A. Gémez-Pérez, “Ontological engineer-
ing: principles, methods, tools and languages,” in Ontologies for software

engineering and software technology, pp. 1-48, Springer, 2006.

D. Oberle, Semantic management of middleware, vol. 1. Springer Science &
Business Media, 2006.

H.-J. Happel and S. Seedorf, “Applications of ontologies in software engi-
neering,” in Proc. of Workshop on Sematic Web Enabled Software Engineer-
ing"(SWESE) on the ISWC, pp. 5-9, 2006.

H. Knublauch, “Ontology-driven software development in the context of
the semantic web: An example scenario with protege/owl,” in st Interna-
tional workshop on the model-driven semantic web (MDSW2004), pp. 381—
401, Monterey, California, USA.[WWW document] http://www. knublauch.
com/publications/ MDSW2004. pdf, 2004.

M. I. S. R. Association et al., MISRA C++: 2008: quidelines for the use of
the C++ language in critical systems. MIRA, 2008.

S. Pinto, J. Martins, J. Lopes, M. Abreu, and A. Tavares, “Secssy hypervisor:

Security-safety synergy for aerospace,”

L. Bettini, Implementing domain-specific languages with Xtext and Xtend.
Packt Publishing Ltd, 2016.



	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Glossary
	Listings
	Introduction
	Context
	Goals
	Document's Structure

	Theoretical Foundation and Background
	Virtualization
	Microkernels vs Monolitic
	Inter-Partition Communication
	Policies and Mechanisms
	Review Of IPC security

	Access-Control
	Capability-based Access-Control

	Microkernels Related Work
	ARM Trustzone
	RTZVisor
	Identified Limitations

	Model-Driven Engineering
	Domain-Specific Language
	Component-based Software Engineering
	Component-based Modeling Solutions


	Ontology-Driven Software Development
	Example of an Ontology

	SeML Infrastructure
	Upper Ontology
	Simple Example


	RTZVisor Architecture
	System Overview
	Partition Manager
	Capability Manager
	Memory Manager
	Device Manager
	Interrupt Manager
	Port Manager
	Lock Manager
	Event Manager
	Scheduler

	Implementation
	Access-Control
	SMC Handler
	Grant and Revoke

	IPC
	Message Passing
	Synchronization

	Events
	Scheduler
	Code Verification

	Evaluation
	IPC performance
	Security Analysis


	Hypervisor's Design Automation
	Methodology and Context
	TZ Description Language
	Domain Ontology
	Grammar
	Code Generation
	TZDL's code generation
	TZDL Tool


	Simple Use-Case
	TZDL Program
	Code Generation

	Discussion

	Conclusion
	Future Work

	Bibliography

