

 José Pedro Silva Lopes

Ontology-Driven Metamodeling

Towards Hypervisor Design Automation:

Runtime Security and Data Integrity

Dezembro de 2017

 José Pedro Silva Lopes

Ontology-Driven Metamodeling

 Towards Hypervisor Design Automation:

 Runtime Security and Data Integrity

 Dissertação de Mestrado em Engenharia Eletrónica Industrial
 e Computadores

 Trabalho efectuado sob a orientação do

 Professor Doutor Adriano Tavares

 Professor Doutor Sandro Pinto

Dezembro de 2017

DECLARAÇÃO

Nome: José Pedro Silva Lopes

Endereço Eletrónico: lopes.joseps@gmail.com

Telefone: +351910162580

Bilhete de Identidade/Cartão do Cidadão: 14349380

Título da dissertação: Ontology-Driven Metamodeling Towards Hypervisor Design

Automation: Runtime Security and Data Integrity

Ano de conclusão: 2017

Orientador:

Professor Doutor Adriano Tavares

Designação do Mestrado: Ciclo de Estudos Integrados Conducentes ao Grau de Mestre

em Engenharia Eletrónica Industrial e Computadores

Área de Especialização: Sistemas Embebidos e Computadores

Escola de Engenharia

Departamento de Eletrónica Industrial

DE ACORDO COM A LEGISLAÇÃO EM VIGOR, NÃO É PERMITIDA A

REPRODUÇÃO DE QUALQUER PARTE DESTA TESE/TRABALHO.

Universidade do Minho, _____/_____/_________

Assinatura:

Abstract

One of the most popular cyber-attack vectors to compromise computer systems is related to mem-
ory corruption. Memory corruption is one of the most prevalent and devastating vulnerabilities.
The widespread adoption of virtualization technology in embedded systems generally and naively
accepts Virtual Machine Manager (VMM) or hypervisor software as the Trusted Computing Base
(TCB). As a software component, vulnerabilities can still be present, allowing attackers to subvert
it alike Operating Systems (OSs). Virtualization empowers mixed-criticality embedded systems
by executing critical and non-critical tasks under the same hardware. Therefore, security and
safety are critical in their design as attacks on real-time embedded systems software can put lives
in danger and/or cause enormous financial losses.

Disregarding code-injection attacks, memory corruption exploits consist of: control- and non-
control-data attacks. In practice, code-injection attacks are prevented with a W⊕E policy which
defines memory regions either as writable or executable, as Memory Protection Unit (MMU)
hardware is now commonly available. Throughout this work, the focus is mainly on non-control-
data attacks. Nevertheless, control-data attacks are also tackledwithControl-Flow Integrity (CFI)
enforcement.

This thesis uncovers a tailor-made security solution enforcing data integrity in the μRTZVisor
VMM, according to a specification devised by the developer. The Zynq-7000 System on Chip
(SoC) was leveraged to isolate a remote integrity monitor from the hypervisor, in a separate core.
Through compile-time instrumentation, execution traces are collected, recording updates to criti-
cal static variables on μRTZVisor. The monitor audits these traces by searching for violations of
data integrity rules, concurrently to hypervisor’s execution.

Automating the deployment of the devised security mechanism is required to facilitate its
adoption. Using ontologies for knowledge representation, information related to the security
mechanism and the data aspect of the μRTZVisor software is modeled into a specifically designed
meta-model. Ontologies uniformize knowledge representation and aid maintainability. By insert-
ing the modeling efforts into the SeML modeling infrastructure, code generation capabilities are
leveraged to generate implementation-specific files.

Keywords— Security, Data Integrity, Ontologies, Remote Monitor, Embedded, Memory Vul-
nerabilities, ARM, Meta-model, hypervisor, SeML, μRTZVisor, CFI

vii

Resumo

Um dos mais populares vetores de ataque a comprometer os sistemas computacionais é a explo-
ração de vulnerabilidades de corrupção de memória. Estas vulnerabilidades, além de bastante
comuns, podem ter efeitos devastadores. A difusão da tecnologia de virtualização em sistemas
embebidos assume, ingenuamente, o software VMM como pertencendo à TCB. No entanto, po-
dem ainda existir vulnerabilidades, permitindo aos atacantes subverter os mecanismos de segu-
rança. A virtualização permite a criação de sistemas embebidos de criticidade mista, executando
funções criticas e não criticas na mesma plataforma. Por esta razão, a segurança é essencial na
conceção dos mesmos. Ataques a sistemas embebidos críticos podem ter efeitos devastadores
como a perda de vidas humanas e/ou enormes perdas económicas.

Não considerando ataques que injetam código novo no programa, existem duas maneiras de
explorar vulnerabilidades de corrupção de memória: ataques a dados de controlo e aos restantes
dados do programa. Na prática, ataques que inserem código novo são prevenidos com uma
política deW⊕E, em que segmentos da memória são classificados como executáveis ou passiveis
de serem escritos. Essa política é aplicada pelo hardwareMMU que se encontra atualmente pre-
sente numa vasta gama de sistemas. O foco deste trabalho inside principalmente em ataques não
direcionados aos dados de controlo. No entanto, estes ataques também são considerados através
da implementação de um mecanismo de CFI.

Esta tese propõe uma solução de segurança, especialmente concebida para o μRTZVisor, que
providencia integridade de dados de acordo com uma especificação concebida pelo desenvolve-
dor. Utilizando o SoC Zynq-7000, o monitor é isolado num core diferente do utilizado pelo
software de virtualização. Através da inserção de instrumentação em tempo de compilação, é efe-
tuado um registo das operações de escrita em variáveis criticas do μRTZVisor. O monitor remoto
audita o registo à procura de violações na especificação de integridade de dados providenciada.

A automação da aplicação do mecanismo de segurança proposto é necessária para facilitar
a sua adoção. Utilizando ontologias como linguagem de representação de conhecimento, infor-
mação relacionada com os mecanismos de segurança e o plano de dados do software de virtual-
ização são modelados num meta-modelo desenvolvido neste trabalho. A utilização de ontologias
uniformiza a representação de conhecimento e a manutenção do mesmo. Através da inserção dos
esforços de modelação na infraestrutura de modelação SeML, são ainda utilizados mecanismos
de geração de código para gerar ficheiros de implementação.

Palavras-chave — Segurança, Integridade de Dados, Ontologias, Monitor, Sistemas Embe-
bidos, Vulnerabilidades de Memória, ARM, Meta-modelo, hypervisor, SeML, μRTZVisor, CFI

ix

ContentsAbstract vii
Resumo ix
List of Figures xv
List of Listings xvii
Acronyms xix
1. 1

1.1 Thesis Contributions . 3
1.2 Contextualization . 4
1.3 Thesis Outline . 5

2. 7
2.1 Virtualization . 7
2.2 ARM Architecture . 8

2.2.1 Processing Modes . 9
2.2.2 TrustZone . 10

2.3 GNU Compiler Collection Overview . 11
2.4 GIMPLE . 12
2.5 Semantic Technology: Ontologies . 13

2.5.1 Essential Features of an Ontology 14
2.6 Ontologies Languages and Tools . 16

2.6.1 OWL Properties . 16
2.6.2 SWRL . 18

3. 19
3.1 Memory Errors . 19

3.1.1 Evolution of memory related attacks throughout history 20
3.2 Countermeasure Design . 21

3.2.1 C and C++ Dialects . 21
3.2.2 Bound Checkers . 22
3.2.3 Control Flow Integrity . 23

3.2.3.1 Enforcing CFI with HyperSafe 24
3.2.4 Data Flow Integrity . 25
3.2.5 Write Integrity Testing . 26
3.2.6 Enforcing Data Flow Integrity on the Kernel 27
3.2.7 Dynamic Information Flow Tracking 28
3.2.8 Specification-based Approaches 29

xi

3.2.9 Concurrent Security Monitoring 30
3.3 Expressiveness of Non-Control Data Attacks 32

3.3.1 Data Oriented Programming . 33
3.3.2 Data Stitching . 35

3.4 MELT . 36
4. 39

4.1 The μRTZVisor VMM . 39
4.1.1 μRTZVisor Data-Plane Analysis 41

4.2 The SeML Framework . 42
4.2.1 Code Generation . 43

5. : 47
5.1 Design Goals . 47
5.2 Platform . 48
5.3 Threat Model . 48
5.4 Proposed Approach . 49
5.5 Implementation . 50
5.6 Structure of the Log Data Structure . 51
5.7 Hypervisor’s Instrumentation . 53

5.7.1 Detecting Store Operations in GIMPLE 54
5.7.2 Identifying Writes to Critical Variables 57
5.7.3 Instrumentation Metadata . 58
5.7.4 Protecting the Logs using the MMU 59

5.8 Extracting Target Program’s Memory Layout 60
5.8.1 Retrieving Static Variable Addresses 61

5.9 Abstract rules . 62
5.10 Mapping Abstract to Run-Time Verifiable Rules 63

5.10.1 An Overview over the Code Generation Process 64
5.10.2 The Remote Monitor . 68

5.11 Preparing the Final Executable . 69
5.11.1 Starting the Remote Monitor . 70

5.12 Completing Data Integrity with CFI . 71
5.13 Limitations . 73
5.14 Summary . 74

6. 77
6.1 Introduction . 77
6.2 Variable Declaration . 78

xii

6.3 Type Declaration . 79
6.4 References . 80
6.5 Abstract Rules . 82
6.6 Code Generation . 83

7. 85
7.1 Security Analysis . 85

7.1.1 Facing State of the Art Attacks 86
7.2 Performance and Code Size . 87
7.3 Use Case Scenario . 89

7.3.1 Performing a Control Flow Attack 90
8. 93

8.1 Summary . 93
8.2 Future Work . 94
8.3 Closing Remarks . 95

Appendices 109
. ++ 111
. ’ 115

.1 Astract Rules File . 115

.2 Instrumentation Input File . 115

.3 Memory Layout File . 116

xiii

List of Figures

1 MILS architecture. 4
2 Reference architecture of a microkernel-based hypervisor using paravirtualization. . 9
3 ARM core with Security Extensions (Adapted from [1]). 11
4 Gnu Compiler Collection (GCC) internals overview (Reproduced from [2]). 12
5 An example of ontology modeling to represent digital components. 14
6 Comparing Cyclone perfomance overhead with other programming languages (Re-

produced from [3]) . 22
7 Using polymorphism to create an indirect branch instructions inside a function. . . 24
8 Dynamic Information Flow Tracking (DIFT) Architecture (Reproduced from [4]). . 29
9 Architecture of a concurrent security monitor architecture for virtualized environ-

ments (Adapted from [5]). 32
10 The two-dimensional data-flow graph (2D-DFG) from the code in Listing 3.3. . . . 36
11 Architecture of the μRTZVisor hypervisor. 40
12 Simplified UML Class diagram for μRTZVisor. 41
13 SeML infrastructure architecture. 43
14 External hierarchy of ontologies. 44
15 Table denoting OWL annotation properties used for code generation. 44
16 Annotating ontologies to generate execute Implementation Artifacts. 45
17 Generic memory map for Digilent ZYBO. 48
18 Architecture of the Data Integrity security mechanism. 50
19 Implementation steps followed to generate the Remote Monitor for data integrity. . 51
20 Structure of the Log Data Structure. 52
21 Instrumentation Pass meta-data for the critical static variables depicted in Listing 5.9. 59
22 UML class diagram depicting rule’s architecture in the Rule Mapper software. . . . 67
23 Remote Monitor’s polling process. 69
24 Example of memory map for a hypothetical system. 70
25 Example code instrumented for CFI. 72
26 Control-Flow Graph (CFG), in graphical form, for the code in Fig. 25. 73
27 Log address map updated with CFI Log. 73
28 Structure of the modeling efforts. 78
29 Semantic network with a partial conceptualization of C++ variable declarations. . . 79
30 Semantic rules created using Protégé. 79

xv

31 Semantic network with a partial conceptualization of C++ type definitions. 80
32 Semantic network with a partial conceptualization of C++ references. 81
33 Semantic network with the conceptualization for the abstract data integrity rules. . 82
34 Comparison between the number of lines of code inserted by the Data Integrity and

CFI mechanisms . 88
35 Instrumented code and its equivalent in assembly. 89
36 Remote Monitor output for the code in Listing 7.2. 91
37 Memory vulnerability being exploited to perform a control-hijack attack. 91
38 Remote Monitor output for the code in Fig. 37. 92

xvi

List of Listings

3.1 Vulnerable code executing operations on connection-related data. 34
3.2 Exemplifying the arbitrary computations that can be performed in the vulnerable

code in listing 3.1, using Data Oriented Programming (DOP). 34
3.3 Example of vulnerable code. 36
3.4 Example code programmed with MELT. 37
5.1 Example of the assembly logging procedure for the Value Log. 53
5.2 Direct write example extracted from μRTZVisor’s source code. 54
5.3 Snippet of GIMPLE code equivalent to lines 8,9 and 10 of Listing 5.2. 55
5.4 Assembly code generated to insert a word-sized value in the Value Log. 55
5.5 Example of a Partially Indirect Write from μRTZVisor’s source code. 56
5.6 Snippet of GIMPLE code equivalent to line 5 of Listing 5.5. 56
5.7 C++ code performing a Totally Indirect Write (extracted from μRTZVisor). 57
5.8 Snippet of GIMPLE code equivalent to lines 5 and 7 of Listing 5.7. 57
5.9 Example of an Input File for the Instrumentation Pass. 58
5.10 A partial points-to analysis file for μRTZVisor. 58
5.11 Disabling and re-enabling the MMU . 60
5.12 Partial memory layout file for μRTZVisor. 60
5.13 Manually extended Memory Layout file contemplating static variables. 61
5.14 Using the GNU Names (NM) utility to discover addresses of static variables. 62
5.15 Abstract rules for μRTZVisor. 63
5.16 Preamble code generated to enforce data integrity rules in a Direct Write. 65
5.17 Preamble code generated to enforce rules in Partially Indirect Writes. 65
5.18 Preamble code for Partially Indirect Accesses with two indirections. 66
5.19 Preamble code generated for Totally Indirect Writes. 66
5.20 Preamble code for a Totally Indirect Write without vector unrolling. 67
5.21 CFI meta-data file for the scenario presented in Fig. 25. 72
5.22 CFG, in textual form, for the code in Fig. 25. 72
6.1 SWRL rule enforcing that only references to internal class members exist. 82
6.2 SWRL code to ensure a reference only belongs to an abstract rule. 83
7.1 Example denoting the insuficiency of the proposed CFI scheme. 87
7.2 Non-vulnerable code. 90
7.3 Vulnerable code. 90
A.1 verifyIndirect function body. 111

xvii

B.1 Automatically generated file with the data integrity rules for μRTZVisor. 115
B.2 Automatically generated file used as input for the Instrumentation Pass. 115
B.3 Automatically generated file for μRTZVisor memory layout. 116

xviii

Acronyms

2D-DFG two-dimensional data-flow graph.

API Application Programming Interface.
ASLR Address Space Layout Randomization.

BE Back End.

CFG Control-Flow Graph.
CFI Control-Flow Integrity.
COTS Commercial Of The Shelf.

DFG Data-Flow Graph.
DFI Data-flow Integrity.
DIFT Dynamic Information Flow Tracking.
DL Description Logic.
DOP Data Oriented Programming.
DoS Denial of Service.
DSL Domain Specific Language.

FE Front End.
FIQ Fast Interrupt Request.

GCC Gnu Compiler Collection.

HASK-PP High Assurance Security Kernels Protection Pro-
file.

IDE Integrated Development Environment.
IL Intermediate Language.
IPC Inter-Process Communication.
IRQ Interrupt Request.

JOP Jump Oriented Programming.

KB Knowledge Base.

LHS Left-Hand Side.
LOC Lines of Code.

xix

ME Middle End.
MILS Multiple Independent Levels of Security.
MMU Memory Protection Unit.

NS Non-Secure.
NX non-executable.

OCM On-chip Memory.
OS Operating System.
OWL Web Ontology Language.

PIE Position Independent Executable.

RHS Right-Hand Side.
ROP Return Oriented Programming.
RTL Register Transfer Language.
RTOS Real-Time Operating System.

SCR System Control Register.
SMC Secure Monitor Call.
SMI System Management Mode.
SoC System on Chip.
SWRL Sematic Web Rule Language.

TCB Trusted Computing Base.
TOE Target of Evaluation.
TSF TOE Security Functionality.

VM Virtual Machine.
VMI Virtual Machine Introspection.
VMM Virtual Machine Manager.

WIT Write Integrity Testing.
WP Write Protect.

xx

C 1

Introduction

Nowadays, safety critical functions are being increasingly performed by embedded systems, rang-
ing from automotive controlling systems to IoT-enabled devices. Failures in applications in
safety- and security-critical environments can often be disastrous, either from an economic or
individual point-of-view. With embedded systems becoming pervasive in our key infrastructures
(e.g., in creating smart homes and cars) there is a demand for devices to provide multiple func-
tionalities and abilities to users [6]. With added features, there are new risks and threats that must
be tackled. Typically, faults are caused by software errors and can be exploited by an intelligent
adversary. Designing certified secure, industrial products is a demanding task. For example, re-
garding the Common Criteria standard [7], high assurance levels translate to increased design and
verification costs and architectural adjustments. The highest assurance levels (i.e., Evaluation As-
surance Level (EAL) 6 and EAL 7) enforce formal verification, most valuable for highly critical
systems. For example, seL4 [8] depicts a formally verified OS that uses a formal specification
to ensure implementation’s correctness. Mixed-criticality systems - not demanding of such as-
surance levels - can relax formal verification, introducing a runtime monitor to audit potentially
security-critical events.

Multiple Independent Levels of Security (MILS) is an evolving component-based architecture
intended for high-assurance environments, fully reliant in a separation kernel (e.g., VMMs) [9].
It considers a product the Target of Evaluation (TOE) and the separation kernel the TOE Security
Functionality (TSF). TSF is defined as the hardware or software that implements the security func-
tional requirements for a system. The TSF is the only controlling entity aMILS-compliant system.
A Common Criteria profile (e.g., Euro-MILS and High Assurance Security Kernels Protection
Profile (HASK-PP)) specifies guidelines for the design of secure and trustworthy applications for
critical environments. For example, HASK-PP states that the security kernel must be capable of
generating information to verify its integrity (evidence of integrity), which can be provided by
a runtime monitor. High-assurance systems may require formal and static verification for these
components to achieve higher assurance levels (EAL 7); however, some system classes can af-
ford to be less compliant to these standards, acquiring increased flexibility and higher security
with an isolated runtime integrity monitor.

1

2

Attacks towards all internet-connected computer systems are often performed by exploiting
memory corruption vulnerabilities in software (e.g., buffer overflow, double free). Aiming to
control program’s execution, attackers ambition is to modify program’s control-related structures
(e.g., stack return address) with spurious data. Several countermeasures, tackling this type of
attacks, have already been proposed due to their high expressiveness. When control-flow protec-
tion techniques shut attackers down, they will be incentivized to pursuit and employ non-control-
data attacks [12]. These attacks, although less expressive, cannot be neglected, as demonstrated
in [13] with the creation of Turing-complete attacks. Frequently, countermeasures designed for
general-purpose systems do not shift well to the embedded domain, since these systems have
stricter requirements (e.g., determinism) and present limited or constrained hardware resources.

The widespread adoption of virtualization technology, in embedded systems, prompted a new
wave of research [14, 15, 16, 17, 18, 19], due to its unique security advantages in isolating com-
modity OSs as virtual machines. The fundamental assumption is that the hypervisor is a trustwor-
thy component, included in the TCB. Security engineers cannot assume there are no mechanisms
by which system’s security and integrity can be compromised, even in the present of correctly
written software [8]. Recursive security mechanisms create successive protection levels, limiting
an attacker in its malicious actions. A hypervisor must adopt these mechanisms to provide its
expected trustworthiness.

Altogether, security must be seen as a new dimension that embedded system designers should
consider throughout the design process [20]. Cyber-security must be integrated into systems as it
is impractical and too expressive to secure a system after design, as advised by the USDepartment
of Defense [21]. A paradigm-shift from reactive to proactive security is fundamental. Engineers
must tackle security throughout system development, specially due to increasing systems’ com-
plexity and connectivity. Considering that all employed security countermeasures can be made
ineffective against one simple security flaw, nothing can be overlooked. This work is embodied
in a ”secure by design” approach to secure the μRTZVisor hypervisor [22]. Even with a small
codebase, VMM software can contain vulnerabilities which can be detected statically or, when
static analysis does not suffice, at runtime.

This work proposes a Data Integrity mechanism for real-time embedded systems. The main
efforts are towards securing the virtualization layer software, namely, the in-house developed
μRTZVisor hypervisor, deployed on a TrustZone-based platform. Common wisdom dictates that
to secure an application, monitoring software must run a layer below the application. The VMM
provides the lowest level in the software stack thus, this principle is not applicable here. This
thesis introduces a monitor, executing with the same privilege as the hypervisor, that enforces in-
tegrity to its sensitive data structures. While the ideal solution would be complete memory safety
[23], which prevents memory errors in the first place, existing solutions are not adequate for em-

Thesis Contributions 3

bedded systems. For example, Cyclone [3] and CCured [24] are C type-safe dialects that provide
memory safety but endure in high performance overhead and nondeterminism. Furthermore, this
work automates, to a certain extent, the deployment of the Data Integrity countermeasure using
semantic technology.

Nowadays, design automation is pivotal to reduce time-to-market. Evermore, creating new
embedded systems - specially IoT-based - requires a consistent and increasing effort from a de-
velopment team, ranging from hardware to cloud-based designs [25]. Model-based design is rec-
ognized has a key technology to improve productivity as it highlights important information and
helps to manage complexity. Semantic technology, particularly ontologies, provides a modeling
framework extended with Description Logic (DL), allowing to create an artificial intelligence-
assisted system design platform, performing adequate design choices according to specific met-
rics and requirements.

1.1 Thesis Contributions

In summary, this thesis makes the following technical contributions:

• Novel Threats Highlighting – State of the art data-oriented attacks are described as a
method to identify vulnerable software and the adequacy of the proposed security mecha-
nism.

• Specialized Monitoring Techniques – This thesis presents a runtime monitor to ensure
data-plane integrity of the μRTZVisor VMM. This work is tailored to the specific require-
ments of this VMM.

• Isolation Techniques - Several isolation techniques are enforced to effectively protect crit-
ical memory content of the security mechanism.

• New Program Analysis and Instrumentation Techniques – At compile-time, the pro-
gram is analyzed for possible sources of data-oriented attacks. Then, instrumentation is
inserted to provide data for the runtime monitor.

• Automation Techniques – A meta-model and respective model is devised to facilitate the
deployment of the security mechanism. The key idea is to automate through model-driven
software programming.

4

1.2 Contextualization

Introducing secure engineering practices earlier in the product development cycle can reduce
costs, as found in [26], [27] and [28]. Until recently, vendor’s response to attacks was to provide
patches to fix the most recent vulnerabilities. Nevertheless, patches are not the ideal solution
[29] and a different paradigm towards security must be embraced. The solution is to develop
secure software from the beginning, enforcing security during the whole product’s life cycle.
Developers’ paradigmmust shift from implementing the highest number of functionalities before
the deadline to a ”secure by design” paradigm [30].

Real-time high-assurance systems promote four properties: security, safety, real-time and
fault-tolerance. This work aims to increase the security level of the μRTZVisor VMM, which
seeks to be compliant with the Common Criteria standard. This thesis focus on ensuring the
integrity of μRTZVisor (MILS Separation Kernel in Fig. 1) which, in turn, provides system’s
spacial and temporal resource separation supporting the aforementioned properties. Promoting
both data and execution flow integrity in μRTZVisor increases its assurance, which brings the
hypervisor closer to the desired EAL, according to the Common Criteria standard: EAL 4.

Guest OS

User
Partition 1

Guest OS

User
Partition X

Guest OS

System
Partition 1

µRTZVisor Micro-kernel (MILS Separation Kernel)
Monitor mode

Inter-process communication,
interrupts, MMU

Processor

Fig. 1: MILS architecture. MILS architecture with μRTZVisor acting as the Separation Kernel and
executing in the ARM’s Monitor mode.

This thesis is part of a major project to design a secure hypervisor. The project comprises
of several small projects aiming to satisfy hypervior’s strict security requirements. In this ”se-
curity by design” approach, the VMM software is being designed following a security-oriented
architecture and coding guidelines. Another thesis is focusing on providing a secure boot mech-
anism. As this thesis focuses on runtime defenses for the data-plane of the VMM code, a similar
thesis focuses on protecting the control-plane. The latter work will be integrated with this work

Thesis Outline 5

to provide complete data- and control-plane protection to the software. Ultimately, all works
are integrated using Model-driven software development [31], using ontologies for knowledge
representation. A modeling framework, SeML, is also being designed as part of this project. Us-
ing ontologies, models can be reasoned upon to verify if required security properties are met by
design and checked for consistency [32].

1.3 Thesis Outline

The remaining of this thesis is structured as follows. Chapter 2 provides background information
about virtualization technology, the ARM architecture, GCC and semantic technology. Chapter
3 discusses the evolution of attack and countermeasure design. This chapter provides a special
focus on non-control-data attacks. Chapter 4 introduces the work, from other projects, that is
used by this thesis. Chapter 5 describes the proposed implementation to provide data integrity
to the μRTZVisor hypervisor, against exploitations of memory corruption vulnerabilities. Chap-
ter 6 delves into the ontological modeling efforts. Chapter 7 denotes the security analysis and
performance evaluation performed on the proposed countermeasure. Primarily, it discusses the
effectiveness of the proposed solution in terms of security, evaluating its own security and re-
silience facing state of the art attacks. Chapter 8 summarizes the contributions of this thesis,
discussing open problems for future work.

C 2
Background

Four pivotal concepts are introduced in this chapter. Firstly, virtualization is dis-
cussed as it is one of the pillars of this work. In chapter 5, the Data Integrity se-
curity mechanism is introduced, which aims to protect the μRTZVisor virtualization
software against the exploitation of memory-related vulnerabilities. An overview of
the ARM architecture and TrustZone is provided since μRTZVisor is implemented by
leveraging specific ARM technologies. Next, the internals of the GCC compiler are
discussed since this thesis takes advantage of GCC to insert instrumentation. Finally,
ontologies are examined as they provide the backbone for the modeling part of this
work.

2.1 Virtualization

At the end of the 1960s, virtualization emerged as a software-abstraction layer [33]. Platform vir-
tualization partitions a hardware platform into one or more Virtual Machines (VMs), supporting
the execution of multiple OSs. Advances in computer architecture now enable the transposition
of virtualization technology, from its commonplace in server computing, onto the embedded do-
main [34]. Embedded systems are highly heterogeneous and commonly combine different OS
categories. In mixed-criticality systems, a Real-Time Operating System (RTOS) is usually used
for real-time execution of critical tasks, while a feature-rich OS carries the execution of complex
applications (e.g., user interfaces). Nowadays, the automotive industry is using virtualization to
integrate real-time control with infotainment environments [35, 36, 37]. Likewise, the aeronau-
tics and aerospace industries are also using virtualization to provide isolation for safety-critical
components [38, 39].

Embedded virtualization solutions follow two different approaches: full-virtualization and
paravirtualization. The former presents a higher performance cost, while the later presents a
higher design cost [40]. Using full-virtualization, guest OSs are unaware of the underlying hy-
pervisor. Without an interface for VM-VMM communication, the implicit guest privilege reduc-
tion works by trapping the execution of sensitive instructions to the hypervisor thus, guest VMs

7

8

can execute unaltered. In paravirtualization the running guest is modified to be VMM-aware and
operate in the virtualized environment [41]. With this technology, the VMM is rather simple,
closing the performance gap between virtualized and non-virtualized hardware. Here, the cre-
ated virtual environment communicates with the underlying hardware via high-level hypercalls
(similar to an OS system call), enabling non-virtualizable instructions to be executed directly,
achieving near native performance [42]. Furthermore, hypercalls are a communication channel
between a hypervisor and the respective guests, allowing the VMM software to provide higher-
level functionalities to its guests. Alike OSs’ system calls, hypercalls can possess vulnerabilities,
allowing well-known attacks such as privilege escalation.

One of the main drivers to implement the VMM as a microkernel is to minimize the TCB.
Generally, microkernel implementations obey to the Liedtke’s Minimality Principle: A concept
is tolerated inside the microkernel only if moving it outside the kernel (i.e., permitting competing
implementations) would prevent implementation of the system’s required functionality [43]. A
reduced TCB is desired when advocating for safe and secure systems, as a smaller program is
easier to be assured or verified for correctness [44]. To reduce the TCB, components not affect-
ing system’s functionality are extracted from the VMM and considered untrusted. Usually, such
components are moved into high privileged VMs, which then interact with untrusted system com-
ponents via memory sharing or Inter-Process Communication (IPC) mechanisms. A reference
architecture of a microkernel-like VMM is depicted in Fig. 2, where the fundamental components
of a system belong to the VMM while hardware drivers are positioned in the dedicated Driver
Server.

Scheduler Memory
Manager

Device
Manager

Guest
Manager

Hardware

Hypercall API

Driver
Server

Guest
OS

Guest
OS

IPC

Core Modules

Fig. 2: Reference architecture of a microkernel-based hypervisor. A microkernel reference archi-
tecture using Liedtke’s Minimality Principle. Drivers are considered another VM, being non-
essential. VMs communicate with the hypervisor via the Hypercall Application Programming
Interface (API) and between themselves using an IPC mechanism.

ARM Architecture 9

2.2 ARM Architecture

An understanding of the ARM architecture is essential to this work. The proposed Data Integrity
security mechanismwas specifically designed to be deployed in an ARM processor. Furthermore,
by understanding part of the ARM Security Extensions, namely, TrustZone technology, the rea-
sons behind certain design decisions can become clearer. μRTZVisor is also a TrustZone-enabled
VMM. The focus of this chapter is to understand the implications of an ARM processor equipped
with TrustZone technology.

2.2.1 Processing Modes

Before introducing the Security Extensions, which include TrustZone, and the Virtualization Ex-
tensions, the ARM architecture [45] contemplated seven processor modes: User, System, Super-
visor, Interrupt Request (IRQ), Fast Interrupt Request (FIQ), Abort, and Undefined. User mode
is the only non-privileged user mode. Privileged processor modes grant the ability to perform
tasks unavailable to User mode (e.g. MMU configuration). With TrustZone, two security states
were introduced, for the processor, that work independently of the mode. Also, this technology
introduced a new processor mode calledMonitor - discussed below - to interface between a secure
and non-secure processor state. This distinction between the two states is completely orthogonal
to the privilege level of the execution mode.

The ARM architecture specifies sixteen 32-bit general-purpose registers (R0-R15), among
other status registers. From these set, some registers have special purposes. R13 is the stack
pointer, R14 the link register and R15 the program counter. R15 is available to the programmer,
and an explicit write to this register will alter program flow. ARM implements register banking
between processor modes. With this technique the same register points to a different physical
storage location, depending on the current processor mode. For example, there is a copy of the
stack pointer and link register for most processor modes. As stated in [46], processor modes refer
to the various ways that the processor creates an operating environment for itself.

After reset and with the Security Extensions, the processor always boots in the privileged
Supervisor mode in the Secure world. The start-up sequence must perform the required initializa-
tion operations for the system such as stack initialization for each processor mode and definition
of secure and non-secure system resources.

10

2.2.2 TrustZone

This work presents a security mechanism that provides data integrity to a TrustZone-assisted
hypervisor. TrustZone hardware architecture aims to provide resources that enable a system
designer to build secure systems [47]. This technology divides device’s hard and software re-
sources into two different execution domains: the secure world for the security subsystem and
the non-secure world for everything else. A secure system design is expected to place all sensitive
resources in the secure world, while also executing robust software.

TrustZone adds an additional Non-Secure (NS) bit to every memory transaction. Considering
this as an extra bit in a 32-bit processor, effectively, two distinct secure and non-secure 32-bit
address spaces are created for each world. To switch context between both domains a special core
mode called Monitor mode was introduced, as depicted in Fig. 3. When the processor executes
in this mode, it is always in the secure state. The software in this mode is implementation specific.
Normally, it saves the state of a world and restores the state of the next world to be executed. The
separation of these domains creates two virtual cores when, in reality, both worlds are executing
in the same core in a time-sliced manner. Entering Monitor mode, from the non-secure world,
is only possible through the dedicated instruction, the Secure Monitor Call (SMC), or hardware
exception mechanisms [47]. Further, exception sources, such as interrupts, can be configured to
be handled in monitor mode.

Non-Secure World Secure World

Monitor Mode

Secure Kernel
(Privileged)

Secure Services
(User mode)

Platform OS
(Privileged modes)

Applications
(User)

Privileged Mode

User Mode User Mode

Privileged Mode

SMC SMC

Fig. 3: ARMcorewith Security Extensions (Adapted from [1]). ARMSecurity Extensions insert a new
mode (Monitor mode) which transfers execution between the Normal and Secure World. Transi-
tions between both worlds are always interceded by the code executing in this mode. Processors
modes work independently of the Non-Secure and Secure worlds.

In TrustZone-enabled processors, there are two MMUs interfaces, one for each virtual core.
This ensures that secure page tables are made confidential and are protected from the non-secure

GNU Compiler Collection Overview 11

world. Essentially, page table entries, mapping to physical memory, include a NS-bit used to
determine if the access is made to the non-secure or secure physical memory. When in the non-
secure world, the value of this descriptor is forced, by hardware, to 1. This avoids secure accesses
in the non-secure world. On the other hand, the secure world can access either secure or non-
secure memory.

Processor’s state can bemodified by enabling the NS bit of the SystemControl Register (SCR),
using the system control co-processor interface (CP15). This interface consists of dedicated in-
structions to access the co-processor registers. As aforementioned, in Monitor mode, the core
always executes in the secure world, disregarding the NS-bit. When in Monitor mode, the pro-
cessor is highly-privileged as it can access and modify memory and registers of either world [47].

2.3 GNU Compiler Collection Overview

The GNU Compiler Collection is amongst the most popular compilers. It includes multiple front-
ends and support for C, C++, Fortran, Ada and other programming languages. Being a free and
open software, documentation on its inner-workings is highly available. GCC has three main
components: the Front End (FE), the Middle End (ME) and the Back End (BE). The internals
of GCC are depicted in Fig 4. Each component is characterized by its Intermediate Language
(IL), whose abstraction lowers as the program travels through the three previously mentioned
components. The Front End is characterized by its GENERIC IL. The purpose of GENERIC
is simply to provide a language-independent way to represent functions in tree data structures.
While some optimizations can be performed at this level, most are postponed to the next IL, due
to its restricted expressiveness and similarities to machine code (i.e., three-operand expressions).
The GENERIC IL is created by the respective programming language Front End. The Middle
End encompasses the GIMPLE IL. The compiler optimizer/pass which converts GENERIC into
GIMPLE is called the gimplifier. This unit recursively generates GIMPLE tuples fromGENERIC
expressions. Most optimizations are performed in this stage. The Back End comprises the Reg-
ister Transfer Language (RTL) IL. The last one before the code generation (i.e., translation to
assembly). RTL is almost human unreadable and some machine specific optimizations are per-
formed upon it (e.g., register allocation).

GCC manages its optimizers through the Pass Manager. This unit decides the position in the
pipeline where each pass runs. Calling GCC with different optimization flags essentially enables
and disables certain passes on the Pass Manager.

12

C++
Parser

Fortran
Parser

C
Parser

Generic

Java
Parser

RTL

RTL
Optimizer

Interprocedural
Optimizer

SSA
Optimizer

Assembly

GIMPLE

Back End (BE)

Pass
Manager

Inlining
Constant Propagation (IPCP)
Static variable analysis
Points-to alias analysis

Front End (FE)

Middle End (ME)
Flow sensitive and �ow insensitive alias analysis
Constant Propagation (CCP)
Full Redundancy Elimination (DCE)
Dead Code Elimination (DCE)
Forward Propagation
Jump Threading
Copy Propagation (COPY-PROP)
Value Range Propagation (VRP)
Scalar Repacement of Aggregates (SRA)
Dead Store Elimination (DSE)
Tail Call discovery
Partial Redundancy Elimination (PRE)
Loop Optimizations
 Loop Invariant Motion (LIM)
 Loop Unswitching
 Loop interchange
 Induction Variable Optimization
 If conversion
 Vectorization
 Loop Prefetching
 Loop Unrolling
 Empty Loop Elimination

Sibling/tail call optimization
Life and Data Flow Analysis
Common Subexpression Elimination (CSE)
Branch prediction
Instruction Combination
Mode Switching
Instruction Scheduling
Register Allocation
Register Renaming
Peephole Optimizations
Branch Shortening
Machine Speci�c Reorganizations

Fig. 4: GCC internals overview (Reproduced from [2]). A scheme depicting the pipelined structure
of GCC. Each square, after GIMPLE, performs a series of optimizations on the code. Most opti-
mizations are executed upon GIMPLE expressions in the SSA form [48]. The optimizations on
the right side of the figure can be manually enabled/disabled with the Pass Manager. RTL is used
to describe data flow at the register-transfer level of an architecture thus, certain optimizations can
only be applied upon it.

GIMPLE 13

2.4 GIMPLE

GIMPLE IL is a simplification and a less expressive subset of the GENERIC IL, mostly used
for optimizations. It is based on the SIMPLE IL used in the McCAT compiler project [49]. The
most conspicuous feature is its three-operand representation, while using temporary variables
to store intermediate values. This work focusses on GIMPLE’s load-store operations, albeit its
extensive instruction set. Specifically, indirect and direct store operations to static variables in
C++. Thus, for a more comprehensive view, the GCC Internals document shall be consulted [50].
GIMPLE was chosen since 1) it offers most flexibility for manipulation and 2) most significant
optimizations occur in this IL. The latter point is of uttermost importance because an abstract view
of all load-store operations, which will, in fact, be executed on the target is provided in GIMPLE.
GENERIC IL and C++ are far to abstract to detect load-store operations occurring directly on the
target platform.

Every GIMPLE instruction, in a block of instructions, which assigns an expression to the
Left-Hand Side (LHS) (creating an object that persists beyond a single expression) is called a
GIMPLE assign, and it is represented in GCC by a tree node of type GIMPLE_ASSIGN. Every
store operation follows this template:

LHS = RHS1 EXPRCODE RHS2
By scrutinizing the LHS operand of an assignment instruction it is possible to infer the des-

tination of the store operation. The type of the LHS operand allows to detect assignments to
C++ static variables, since these operands map to GENERIC IL nodes containing more high-
level information. In this work, the focus is on four LHS operand types: Variable declaration
(VAR_DECL), Memory Reference (MEM_REF), Component Reference (COMPONENT_REF)
and Array Reference (ARRAY_REF). As their name suggests, Component References refer to
references to class members. In the source code, a reference to a class member or structure field
creates a Component Reference type node, during compilation. Logically, accesses to arrays, be-
longing to classes and structures or not, generate Array References. These references are chained
interchangeably to represent complex accesses to variables (e.g., accessing members of classes
when themselves are members of other classes). Memory References are created to represent in-
direct accesses to variables. Inspecting the address used by a Memory Reference it is possible to
infer the type of variable being accessed and the variable itself. A Variable Declaration denotes an
access to a static variable. When accesses to static variables with a class type are performed, they
normally consist of a chain of Array and Component References ending in a Variable Declaration.
If the access is indirect, a Memory Reference is used.

14

2.5 Semantic Technology: Ontologies

A variety of computer science fields, information integration, and the semantic web recognize
ontologies as a promising technology for knowledge sharing and reuse [51]. An ontology is an
explicit specification of a conceptualization of a domain of interest [52]. A conceptualization
is an abstract, simplified view of the world that we wish to represent for some purpose. Ev-
ery knowledge base, knowledge-based system, or knowledge-level agent is committed to some
conceptualization, explicitly or implicitly [52]. A conceptualization must accurately capture the
world for the purpose of the knowledge representation. Ontologies seek to represent a reality, in
such a manner that different persons understand its terms; thus, learning about entities according
to concepts they represent as well as contexts in which they are used. They consist of concepts
connected with semantically rich and distinct relationships. The goal of this subchapter is to
provide a quick overview of several ontology-related concepts

Ontologies are mostly used for the purpose of reasoning. Reasoning is associated with the
process of reaching conclusions. The axioms, present in a Knowledge Base (KB), constitute ex-
plicit knowledge, but implicit knowledge can be derived through reasoning. Implicit knowledge
logically follows what was stated explicitly [53]. Axioms are assertions, in a logical form, that
define concepts on an ontology. Reasoning with ontologies is mainly divided in two categories:
the verification of an ontology and the deduction of new axioms. In the former, reasoning is used
to detect any contradicting information present in the ontology. Assuming an adequately defined
ontology, the process of deduction derives logically correct implicit conclusions or knowledge.

2.5.1 Essential Features of an Ontology

Generally, ontologies are visualized and thought of as semantic networks [54]. A semantic net-
work is a structure for representing knowledge as a pattern of interconnected nodes and arcs.
Nodes in the net represent concepts of entities while arcs describe relationships that hold between
concept nodes. Labels on the arcs specify relation types. A portion of a conceptual model about
digital components is depicted in Fig. 5. ”SoCs and memories are different digital components”
and ”Zynq-7000 is a SoC” is knowledge that can be intuitively inferred from this network.

There are several ontology languages with different semantics and constructs for ontology’s
formalizations. Nevertheless, some essential characteristics, extracted from [53], common to
many ontologies, can be identified using this semantic network. Further, the presented concepts
will be connected to theWeb Ontology Language (OWL) ontology language. By not delving into
formalities, this chapter yields enough ontology knowledge without overwhelming the reader.

Semantic Technology: Ontologies 15

SoCMemory

kindOf

Zynq-7000Samsung XYZ

is a

Digital Component

kindOf

hasPart
Processing System

hasPart Cortex A9 MPCore numberOfCores 2

is a is a

Fig. 5: An example of ontology modeling to represent digital components. In this conceptualization,
the Digital Component concept is specialized into two other concepts using the kindOf relation.
The ”is a” relationship constitutes instantiation and hasPart aggregation. The dashed rectangle
individuals represent a concrete reality captured by this conceptualization.

Some essential characteristics of ontologies are:

• Interrelation – Interconnecting semantic network’s concepts, through expressive relations
between them, enriches the network with extra knowledge essential to create the desired
conceptualization. Without relations, the network would be a loose collection of concepts,
not portraying all the required knowledge.

• Instantiation - Instantiation provides a distinction between concrete objects and abstract
categories (i.e., classes) that group akin objects. This mechanism is found across many
models (e.g., C++ Object Model [55]). Through this mechanism individual objects are
assigned to classes as instances. For example, ”Zynq-7000” is an instance of the SoC
class.

• Subsumption – It can be defined as a specific type of interrelation that reflects general-
ization/specialization. Taxonomies are a type of KB based on subsumption relationships
between terms [54]. In the above example,Memory and SoC are defined as a kindOf Dig-
ital Component thus, by being a specialization, they inherit all properties of this concept.

• Axiomatization – Usually, interrelated conceptual nodes do not include adequate expres-
siveness to express rich knowledge. While instantiation and subsumption are simple forms
of axiomatization, it is possible and often necessary to create complex statements about the
domain of interest [53]. These complex statements are often defined using logic equations
and they lack a visualization paradigm.

• Attribution – Ontology languages (e.g., OWL) commonly support the definition of state-
ments about datatypes and their values. An attribute is an inherent characteristic of a con-
cept, being defined as a string, integer or other datatypes. In the example, the Cortex-A9
MPCore processing system is attributed a number of cores: 2.

16

• Exclusion – Prevents two general conceptual nodes from overlapping. This sophisticated
knowledge representation presents itself in the form of class exclusion. In the example, a
Memory object cannot be a SoC and vice-versa.

2.6 Ontologies Languages and Tools

W3C standardization efforts resulted in the OWL. This language allows modelers to express
detailed constraints between classes, entities, and properties. OWL was adopted as a recommen-
dation by the W3C in 2003 [56]. OWL is a computational logic-based language. Knowledge
represented in OWL can be verified for consistency. Also, explicit knowledge can be leveraged
to deduce implicit insights, using computer programs.

As above-mentioned, classes are the main building blocks of an OWL ontology. An empty
ontology contains one class called Thing. OWL classes are interpreted as sets of individuals (or
abstract categories). The class Thing is the set of all individuals. Consequently, every OWL class
is a subclass of Thing [57]. Applying the exclusion feature in OWL is equivalent to defining
classes as disjoint, so that two classes have no individuals in common. Classes can be made
disjoint using the built-in OWL axiom owl:disjointWith between two class descriptions.

Protégé is the de facto Integrated Development Environment (IDE) for ontology editing. It is a
free, open-source and sophisticated Java ontology editor and knowledge-base framework [53]. It
has played an important role in the popularization of OWL. Protégé uses reasoning to support the
development and maintenance process of ontologies (e.g., checking for inconsistencies) inferring
new knowledge and answering queries [58]. Protégé supports multiple DL-based OWL reasoners
(e.g., Pellet [59]).

2.6.1 OWL Properties

OWL properties represent relationships and are of three main types: Object, Data and Annotation
properties. Object properties link two individuals through a relationship. Data properties describe
relationships between an individual and data values. The latter are used to add meta-information
to classes, individuals and object/data properties [60]. If the above semantic-network was trans-
lated to OWL, hasPart and numberOfCores would be an object and data property, respectively.
It is also possible to create sub-properties (i.e., inheritance of properties) of both object and data
properties. However, data and object properties cannot be mixed (i.e., a data property cannot be
a sub property of a object property).

Ontologies Languages and Tools 17

OWL Object Properties

OWL 2 supports two kinds of object property expressions. Each object property may have a
corresponding inverse property. If a property p links individual a to b then its inverse will link
individual b to a. In Fig. 5, isPartOf could be the inverse property of hasPart. Object properties
can also be enriched with properties (i.e. meta-properties):

• Functional – For a given individual, there can be at most one individual that is related to
the individual via the property (e.g., a car can only have one motor.). Likewise, an inverse
object property can be defined as functional.

• Transitive – If a property P relates individual a to individual b, and also individual b to
individual c, then individual a is related to individual c via property P.

• Symmetric – If a property P relates individual a to individual b then individual b is also
related to individual a via property P. An object property can also be defined as asymmetric,
meaning individual b cannot be related to individual a by property P.

• Reflexive – A property P is reflexive when it relates an individual a to itself. An object
property can also be irreflexive disallowing such a relation from an individual to itself.

Object properties link individuals from the domain to individuals from the range. If the do-
main and range are not specified, both point to the Thing class (i.e. the set containing all classes).
OWL domains and ranges should be seen as axioms used for reasoning to deduce new knowledge
and not as constraints that must be verified.

OWL Data Properties

As previously stated, data properties describe relationships between individuals and data val-
ues of an individual data type. Data types are entities that refer to a set of data values. Furthermore,
data types are comparable to classes. While classes contain individuals, the former contains data
values such as strings and numbers. Datatypes are a kind of data range, which allows them to
be used in restrictions [61]. The functional property, which assures that only one functional data
property links a single individual to a data value, is the only property translating from the previ-
ous property type. Data properties can also be specified as disjoint, assuring that an individual
does not possess two disjoint data properties.

18

OWL Annotation Properties

OWLallows classes, individuals, data/object properties and the ontology itself to be annotated
with information or meta-data. This information generally consists of comments or references
to resources such as websites, etc. As annotation properties are not used in property axioms,
sub-properties and domain/range constraints cannot be defined for them. Mostly, annotation
properties are filled with data literals (e.g., the string ”hello”). As stated in the OWL 2 Direct
Semantics [62]: OWL 2 allows ontologies, individuals and axioms to be annotated. However,
these types of annotation have no semantic meaning in OWL 2.

2.6.2 SWRL

SematicWeb Rule Language (SWRL) [63] provides a high-level abstract syntax enhancingOWL’s,
allowing to define axioms with an antecedent and a consequent. SWRL aims to be the standard
rule language of the Semantic Web. Whenever conditions in the antecedent hold, whatever is in
the consequent must hold true as well. These two fields consist of zero or more atoms. Multiple
atoms are considered conjunctions. SWRL provides many built-in atoms [64] to perform the
most basic logical assertions about ontological elements. The Protégé IDE also provides support
for editing and executing SWRL rules. In equation 1, the rule states that if a motorized vehicle
has two wheels it is, without doubt, a motorcycle as well. The ”?” symbol denotes variables and
the ”→” separates the antecedent from the consequent. The ”swrlb:equal” is a SWRL built-in to
check for equality while the other elements of the rule belong to the ontology.

MotorizedVehicle(?p) ∧ hasWheels(?p, ?wheelnumber)∧
swrlb : equal(?wheelnumber, 2) → Motorcycle(?p)

(1)

C 3

State of the art

This chapter begins examining the evolution of memory-related attacks and counter-
measure design, throughout history. Subsequently, more recent security techniques
are discussed, beginning with solutions aiming at complete memory safety (e.g., safe
programming languages). As these solutions show inadequacy for the embedded do-
main, other countermeasures providing partial memory safety are introduced. At the
end of this chapter, non-control data attacks are throughly discussed, providing pow-
erful examples to clarify their expressiveness.

3.1 Memory Errors

Memory errors in C and C++ programs are among the oldest classes of software vulnerabilities
[65]. Being designed with a performance over security rationale, C and C++ provide several
security debilities (e.g., weak type system, pointer arithmetic). While several more secure lan-
guages exist, they rarely are an option in the embedded system domain due to timing and resource
constrains. Poorly written code in unsafe languages is the main cause of memory errors. Writ-
ing unexploitable code, in the aforementioned languages, has performance implications, among
others, that must be considered.

Despite decades of research, memory errors still subvert system’s security and are prevalent
among newly discovered vulnerabilities. Several countermeasures have been developed which
either focus on a specific or generic attacks. While these solutions are effective in protecting
against some or all memory flaws, they usually are not widely adopted or not well suited for the
real-time and performance constraints of embedded systems. In search for the ideal solution to
protect the data plane of μRTZVisor, it is important to review countermeasure design on memory
errors and attack evolution. This chapter tries to depict the evolution and state of the art on
memory-oriented attacks and corresponding countermeasures.

19

20

3.1.1 Evolution of memory related attacks throughout history

In the end of the twentieth century, stack smashing and buffer overflow attacks were publicly
disclosed [66] [67], creating awareness for stack protection countermeasures by the security com-
munity. Stack-based buffer overflows are probably the best-known memory error vulnerabilities.
They occur when a stack buffer overflows and overwrites adjacent memory regions in the stack
[65] and can be used for extremely expressive attacks (e.g., arbitrary code-injection). The most
expressive kind of attack grants to the attacker control over the executing code. The original non-
executable (NX) stack countermeasure [68] proved efficient against initial stack-related attacks,
aiming to modify program’s control flow by inserting spurious data on the stack. Shortly after,
attackers discovered how to surpass NX stack protections by crafting spurious library function
calls. Basically, this allows a vulnerable function to divert from normal execution by returning to
any library function, an attack known as return-to-lib-c [69]. Stack canaries [70] were introduced
to work alongside NX stack protection, detecting when stack return addresses were altered. Stack
canaries can also mitigate return-oriented programming [71, 72] attacks which allow an attacker
to exploit memory errors in a programwithout injecting new code. In a return-oriented attack, the
attacker arranges short sequences of existing instructions, being able to induce arbitrary behavior
in the target program [71]. Canaries mitigate this kind of attack by detecting changes to return
addresses, stored in the stack. Further work went beyond NX stack protection, introducing the
W⊕X security feature, which separates data and executable segments to increase security over
just a NX stack. This feature mitigates the expressiveness of code-injection attacks as executable
segments are not writable and data segments cannot be executed. Stack smashing countermea-
sures were also added to the GNU GCC compiler [73]. Even with all these protections in place,
attacks which alter execution flow are still possible (e.g., by changing pointers used in indirect
branches), although more difficult to perform. Address Space Layout Randomization (ASLR) is
a technique used to thwart attacks which rely on target code or data location knowledge [74].
Customarily, ASLR implementations randomize memory segments at the start of the application
and vary from a coarse to a fine-grained type of randomization. Using Position Independent Exe-
cutable (PIE) with ASLR provides an extra layer of security since the code does not use constant
relative offsets to a base address, although possibly incurring in performance penalties by adding
indirections (e.g., by having to load the address of a function before jumping into it). PIE exe-
cutables can be positioned anywhere in memory as they do not possess absolute addresses. With
the security community focusing on stack-related defenses, attackers shifted their attention to the
HEAP. In the absence of a NX HEAP, it’s possible to redirect code execution to a HEAP memory
location. If desired, the HEAP can also benefit from some of the previously mentioned defenses

Countermeasure Design 21

(e.g., NX stack). As the focus of this work is not on dynamically allocated data, HEAP attacks
and defenses are not discussed any further.

3.2 Countermeasure Design

As the arms race between security countermeasures and attacks endures, several proposals try to
concede memory safety to unsafe languages like C and C++. Adopting other programming lan-
guages is often not an option in the embedded realm, mainly due to indeterminism caused by pow-
erful run-time environments and limited flexibility. Memory safety can mitigate novel attacks,
such as DOP [13], and any other attack relying on memory vulnerabilities to succeed. Providing
memory safety, with negligent performance overhead, is still an active field of research, especially
when considering an embedded environment. Several methods have been purposed ranging from
secure dialects of unsafe programming languages to bound checkers. Other methods trade off
complete memory safety for performance improvements. This duality endures on the design of
every security countermeasure. Furthermore, most security research aims at general computing
ignoring special constraints associated with embedded systems design (e.g., determinism) or lack
of supporting hardware (e.g., MMU), commonly available in those platforms.

Distinct security solutions, aiming at memory safety to various extents, are exposed in this
subchapter. Hopefully, it will provide context over the devised security solution, uncovered in
the next chapter, attained either by analyzing similar approaches or by considering the attacks
mitigated by such countermeasures.

3.2.1 C and C++ Dialects

C and C++ use a weak type system, granting flexibility in data representation and pointer usage,
which can often be exploited. The lack of memory-safety in C/C++ can lead to vulnerabilities.
CCured [24] is a C dialect introducing a safe type system utilizing both static analysis and run-
time checks. Cyclone [3] is another dialect also aiming to rule out all memory violations. Dialects
attempt to bring safety and security to unsafe programming languages, without transferring the
abstractions inherent to high-level languages. Furthermore, some of these dialects try to keep
memory management under the hands of the programmer as much as possible, instead of intro-
ducing garbage collectors with high performance cost. Therefore, they maintain the flexibility
of the corresponding languages. Increased security comes at a cost, as depicted in Fig. 6 for Cy-
clone. More often than not, dialects give place to alternative security solutions without complete

22

memory safety but with acceptable performance overhead. Furthermore, a disadvantage of these
approaches is the complexity of porting existing C or C++ code to these dialects.

Fig. 6: Comparing Cyclone performance overhead with other programming languages (Repro-
duced from [3]). A benchmark is performed executing different programs compiled with GCC
(optimization flag -O3), Cyclone and Java. Elapsed time is normalized to the C code, compiled
with GCC.

These dialects may not be adequate for some particular embedded systems, where total control
over the generated code and execution is necessary. In this case, a more specialized solution could
be deployed. These dialects aim at high security with the lowest possible performance overhead,
without a particular focus on determinism, a key design metric in many embedded systems.

Safer high-level languages, such as Java, also provide strong security guarantees. Unfortu-
nately, these languages only hold such guarantees at source level while their implementation may
not enforce them or may implement them naively [75]. Furthermore, many system and embed-
ded software rely on hand-written, optimized machine code which are not able to enjoy the full
benefits of such languages or dialects.

3.2.2 Bound Checkers

A major benefit of bound checkers [76, 77, 78] is not requiring source code modification. This
methodology consists of inspecting pointer operations, namely, arithmetic and dereference, to
safeguard that they remain within the bounds of the same objects, providing spatial safety. Bound
checkers can be divided into two categories: Object- and pointer-based approaches [77]. With
the first approach, disjoint metadata is stored in a separate data structure, allowing to map ad-
dresses, used in the above operations, to objects. Generally, this metadata consists of object’s
base addresses and bounds, being used to perform run-time out-of-bounds checks. AddressSan-
itizer [79], Dr. Memory [80] and Memchecker [79] are object-based approaches that rely on
a shadow memory to target which addresses can be accessed and which cannot. Pointer-based

Countermeasure Design 23

approaches use some sort of fat pointer representation, retaining base and bound information
with each pointer. This representation transforms some or all pointers to a multi-word structure,
containing both pointer value and the low and upper bounds of an object. The previously men-
tioned Cyclone and CCured dialects use this approach. PAriCheck [77], J&K [81], Baggy Bounds
Checking [78] and CRED [82] verify if pointer arithmetic operations do not result in addresses
out of object’s bounds. Both approaches have their respective strengths and weaknesses. Object-
based approaches do not change the memory layout and, in generality, cannot provide complete
spatial safety due to overflows inside complex data types (i.e., structures or classes). On the other
hand, pointer-based approaches change program’s memory layout, possibly causing source code
compatibility problems. Regardless of the approach, bound checkers must be complete and check
every vulnerable pointer operation, aiming at full memory safety. Primarily, bound checkers aim
at spatial safety with some disregard for temporal safety [76].

3.2.3 Control Flow Integrity

CFI aims at blocking attacks targeting programs’ control flow, ensuring that these follow a pre-
computed execution model: the CFG. CFI is not a complete memory safety scheme like, for
example, Data-flow Integrity (DFI) or bound checkers, as it only detects control-flow modifi-
cations disregarding non-control-data attacks. Thus, it decreases performance overhead by not
being a complete solution. CFI intents to detect incorrect values in indirect calls using runtime
checks. This scheme assumes a powerful attacker willing to do anything to subvert program’s
legal control flow, by modifying code pointers. A code pointer can be defined as any variable
whose value is used, at anytime, as the address for an indirect call. Subsequently, variables de-
fined as code pointers or stack stored values are included. CFI main concern is indirect calls
since the destination address for the call is calculated at runtime instead of compile-time. These
branches define the entire attack surface for CFI, assuming program’s code is stored in a memory
partition protected against writes and with permission to be executed. CFI implementations have
three main goals, as stated in [83]:

1. From the CFG, extract a labeling scheme for all indirect jump targets.

2. At each indirect jump target in the binary, insert a label.

3. At each indirect jump instruction, insert instrumentation that ensures the jump target con-
tains the expected label.

A CFG is a directed graph whose nodes represent basic blocks in a program, and the edges de-
pict legal control-flow transfers from one basic block to another, as defined in [83]. In a program,

24

most instructions capable of altering the control-flow are direct (i.e., their address are defined
statically). Nevertheless, indirect calls are present in almost anywhere and are the primary target
for attackers. With indirect calls whose value is calculated at runtime, it is critical to perform
some sanity checking over the possible destinations of those indirect calls. The CFG generation
algorithm intents to reduce possible destinations for an indirect jump while, at the same time,
labeling all destinations. For example, a function (Fig. 7) steps through a list, using a loop, to
calculate the shape with highest area and, due to C++ polymorphism, there are two area functions
- one for circles and another for squares - which create an indirect call to calculate the area de-
pending on the object being analyzed. A possible CFG is depicted on the left side of the Fig. 7.
The destination of the indirect call must match the labels associated to both area()methods. This
verification can vary between implementations. The original CFI scheme uses instrumentation to
insert label checks where indirect calls occur and label all destinations of indirect branches (e.g.,
function’s beginning or prologue).

Fig. 7: Using polymorphism to create an indirect branch instructions inside a C++ function.

Yet in the original implementation, the instrumentation tries to read a label from the branch
target address, offsetted by a constant value, comparing it to an hard-coded label. If a match
occurs, execution continues to the target address. Otherwise, the program can, for example, jump
to an error handler.

These initial efforts were complemented with a runtime protected call stack [84] [85] [86]
[87] [88]. This stack is required because CFI is limited by the nature of the CFG. The original
CFI implementation cannot ensure that a function call returns to its callsite [75] and a runtime
call stack can improve CFI enforcement. However, unlike the main stack, this stack must be
protected. The stack must be protected both against direct attacks or corruption resulting from
program’s execution [75].

3.2.3.1 Enforcing CFI with HyperSafe

Wang et al. introduced HyperSafe [89], an approach to ensure lifetime control-flow integrity
to a hypervisor. HyperSafe employs two key techniques to ensure control data’s integrity: 1)
non-bypassable memory lockdown and 2) restricted pointer indexing. Non-bypassable memory
lockdown consists of using the MMU to enforce W⊕E protection on pages containing legitimate

Countermeasure Design 25

code. However,W⊕E integrity enforcement relies heavily on the integrity of page tables. For this
purpose, page tables aremade read-only. Lockingwrites to page tables also disallows benign page
table updates, as the hypervisor can only access memory through virtual addresses, under pages’
access policies. To solve this problem, HyperSafe leverages theWrite Protect (WP) bit, available
in x86 CPUs. With this bit, write-protection is ignored and the page table can be updated. At
run-time, any attempt to modify page tables will be trapped into a page fault handler that verifies
and executes the page update - by disabling the WP bit -, in order to avoid violations of the W⊕E
property.

Restricted pointer indexing is a technique that substitutes indirect branches by ”index-based”
branches. This technique creates static tables with the real destination addresses for indirect
branches. This allows to substitute the addresses of indirect branches by indexes to tables, fol-
lowed by the branch. This limits the set of possible destinations for a branch. Control-flow related
instructions are divided into two categories. Source instructions generate the control-data used
by the hypervisor program (e.g., inserting the return address on the stack). These instructions are
instrumented to insert indexes in the program instead of addresses. Sink instructions consume
the data inserted by sink instructions (e.g., returning from a function). These instructions are
instrumented to map from indexes to actual function addresses to, then, perform the branch. In
practice, indirect instructions can only transfer control to the targets allowed by the CFG. The
CFG is computed offline, allowing to protect the tables, at run-time, with 1).

3.2.4 Data Flow Integrity

Castro et al. introduced DFI [90], a technique enforcing legal data-flow over the program, recur-
ring to instrumentation and static analysis. Essentially, it computes a Data-Flow Graph (DFG),
using static analysis, and instruments the program to ensure that the flow of data - at runtime
- follows the data-flow graph [90]. In more detail, it identifies every instruction that reads a
variable and uses static analysis to compute the set of instructions that are allowed to write the
variable. Afterwards, it instruments writes and reads to ensure that the variables read at runtime
were written by allowed instructions [91]. DFI can avoid attacks which cannot be prevented by
bound checkers. The latter checks for out-of-bounds accesses and only tries to provide spatial
safety. Attacks that overwrite data using pointers to dead objects whose memory was reused (i.e.,
dangling pointers) go undetected by bound checkers, but they can be detected by DFI. The main
goal of this approach is to enforce a safety property (data-flow integrity) that is automatically
derived from source code [90]. Furthermore, DFI prevents both control and non-control-data
attacks, while CFI only avoids the former type of attacks.

26

DFI relies on reaching definitions analysis to generate the static data-flow graph. Reaching
definition analysis is a static analysis technique, based on data-flow analysis. It concretely deals
with reaching the definition (i.e., assignment) and use (i.e., read) of variables. From another per-
spective, the DFG depicts which instructions may assign values to which variables. DFI employs
two types of static analysis to generate reaching definitions in order to diminish computing over-
head, as it’s easier to analyze definitions to variables inside the function they were declared at
than variable definitions outside that same function. After DFG generation, instrumentation is
inserted to perform a run-time program check before every variable use. The program gets ter-
minated if the data-flow integrity safety property does not hold. DFI uses a Runtime Definitions
Table (RDT) to store the last definition for each variable. This value is checked against the static
DFG before a variable use or read.

3.2.5 Write Integrity Testing

Write Integrity Testing (WIT) [91] provides another practical solution capable of defending against
exploitation of memory errors in vulnerable programs. Similarly to DFI, it uses static analysis
techniques and instrumentation to prevent instructions from illegally modifying variables and en-
sure that program’s execution doesn’t divert from the statically-defined control-flow graph. WIT
relies on points-to analysis [92] [93] to compute both the control-flow graph and an equivalent
graph for data accesses, containing the set of objects each instruction in the program can write
[91]. At runtime it enforces CFI, ensuring that programs do not divert from legal execution, that
is, follow the control-flow graph. Nevertheless, the focus of WIT is on impeding instructions
from modifying objects not included in the statically devised object set, by enforcing a security
property called write integrity.

When objects are allocated or deallocated, WIT updates a color table. The color is devised
from the points-to analysis, which assigns a color to all objects and each write instruction such
that all objects that can be written by an instruction have the same color [91]. The instrumentation
allows to generate colors as objects are created and to check that instructions write to the right
color. In short, WIT stores a data structure with colors associated to allocated memory locations.
When a write occurs, it checks if the instructions write to the right color. WIT manages stack
allocated variables by allocating a color at function’s entry point. Deallocation is performed at
function exit. An attempt is performed to appoint different colors to all unsafe objects. Neverthe-
less, each instruction must have the same color as the objects it writes. WIT also tackles dynamic
allocated memory. A disadvantage of WIT is its field-insensitive points-to analysis which means
that fields inside structures are not distinguished which can make this approach unsuited for C++

Countermeasure Design 27

programs. Furthermore, WIT also assigns colors to indirect call instructions and function entry
points, so that all functions that can be called by the same indirect call have the same color [91].

WIT can be considered a solution with lower performance overhead when compared to the
aforementioned DFI method. Both solutions aim at blocking memory exploits in vulnerable pro-
grams. Unlike DFI, WIT only instruments writes to variables, making it far more superior in
terms of performance. Nevertheless, WIT does not ensure data confidentiality, allowing leaks of
private, critical information.

3.2.6 Enforcing Data Flow Integrity on the Kernel

Song et al. [94] leverages CFI and DFI to prevent spatial access errors on indirect memory
accesses. KENALI is designed to protect against privilege escalation attacks on the kernel. Sys-
tem software, such as operating systems and hypervisors, is typically implemented in unsafe
programming languages like C and assembly, making memory corruption exploits the most pop-
ular. Non-control-data attacks easily bypass CFI-only protection schemes. Thus, such protection
schemes must be complemented with other defense schemes, specifically designed to mitigate
non-control-data attacks. KENALI proposes a defense system both principled and practical, to
protect against future attacks while maintaining reasonable performance overhead [94]. While
this scheme can be used to enforce various security invariants, KENALI focuses on implementing
security invariants related to privilege escalation attacks and kernel access control mechanisms.
In particular, complete mediation and tamper proof are enforced. The former ensures that access
control checks are not bypassed, while the latter attests that attackers are not able to tamper with
the reference monitor. KENALI proposes a system employing two techniques: INFERDISTS
and PROTECTDISTS.

INFERDISTS is the process that automatically detects kernel-wide security-related data as-
sociated with the deployed access control mechanism. The resulting set of data is referred as
distinguishing regions. Note that all control-data must be included in these regions to enforce
CFI and, subsequently, the complete mediation security invariant. KENALI retrieves data be-
longing to distinguishing regions by analyzing function return codes related to the access control
mechanism (e.g., -EACCESS). INFERDISTS retrieves these error codes and, using dependency
analysis on conditional variables belonging to security checks, infers the distinguished regions
[95].

PROTECTDISTS employs DFI over distinguishing regions, using a two-layer protection
scheme. The first layer provides coarse-grained protection to prevent illegal data-flow from
non-distinguishing regions to distinguishing regions. The second layer arranges fine-grained
protection for data-flow between distinguishing regions. PROTECTDISTS coarse-grained im-

28

plementation is based on paging and virtual memory. For details on the MMU-based approach
for DFI enforcement, the original article should be consulted in [94]. PROTECTDISTS employs
a modified version of WIT [91] for fine-grained DFI, only instrumenting writes for data accesses
in distinguishing memory regions and using a field-sensitive points-to analysis instead of the
field-insensitive approach proposed in WIT.

In summary, KENALI makes two major contributions: the automatic inference of security-
related data to enforce the security invariants and a two-layer DFI protection scheme that reduces
performance overhead when compared to the original DFI [90] implementation.

3.2.7 Dynamic Information Flow Tracking

Suh et al. pioneered DIFT, an approach to protect against software attacks by identifying spurious
values, from I/O, and restricting their usage [4]. The method was devised from a rationale that,
due to the wide range of security vulnerabilities that overwrite memory locations, it is impossible
to detect them all. Thus, an alternative is to catch the unintended use of I/O inputs [4]. I/O inputs
can either be managed by the OS (e.g., files) or created by it (e.g., inter-process communication).

This approach relies on both software and hardware components. Namely, DIFT uses a soft-
ware module, in the OS, that marks inputs from untrusted sources as spurious, as depicted in Fig.
8. Using the processor, it checks every operation for spurious results based on both the inputs and
performed instruction. Any use of spurious values is automatically redirected to a software han-
dler that analyzes the alert based on a security policy. For example, checking if an instruction uses
a stored spurious value as address for an indirect write prevents changes to the data flow, from
potentially malicious inputs and data generated from them. DIFT is named so because it tracks
the usage of spurious values. Spurious inputs can propagate to instructions’ results depending on
the executed operations. Thus, these results are also marked as spurious, by the processor.

I/O Interface Trap Handler

Tag CheckerInformation Flow
Tracker

Execution Monitor

Operating SystemSecurity Policy

Processor

I/O to Tag

Flows to track

Checks on
Operations

I/O

I/O Traps

Fig. 8: DIFT Architecture (Reproduced from [4]).

Countermeasure Design 29

DIFT adds two mechanisms to the processor. On an instruction basis, the Information flow
tracker determines if the result is spurious depending on inputs and executed operation. The tag
checker looks at the input operands and instruction performed, and executes the software handler
if spurious values are used for the operations specified in the security policy, redirecting execution
to the monitor [4].

Defining an adequate security policy for an application is essential to capture illegal uses of
I/O values and avoid false positives. The security policy defines untrusted I/O channels, trap
conditions and software checks when traps are triggered. Traps indicate potential violations of
the security policy. With a more general policy, it’s natural to trap legitimate uses of spurious
values. The software handler exists to explicitly check traps (e.g. by performing bound check)
and eliminate false alarms while interrupting execution in case of a real attack.

DIFT requires several processor architectural changes that aren’t currently available in Com-
mercial Of The Shelf (COTS) solutions (e.g., ARM processors). Mainly, this creates a big setback
to its adoption, as it may not be easy to justify the extra cost for the added security, in most projects.
Nevertheless, the solution provides a very low performance overhead for certain applications. Pri-
marily, DIFT is only able to rival against the above software-based approaches by providing low
performance overhead due to hardware adaptations.

3.2.8 Specification-based Approaches

Specification-based detection relies on program specifications that describe the intended behavior
of security-critical programs [96]. Specification-based detection schemes [96, 97, 98, 99] attempt
to remove ad hoc approaches for codifying system behavior. They are based on the premise that
a program adheres to a benign behavior and any deviation from it is considered a security breach.
Generally, these approaches include an execution monitor that collects traces from program’s
execution and enforces security policies, derived from program’s semantics. The deployment
of the execution monitor varies between approaches. In [98] the monitor executes when system
calls are performed by programs and before they are deployed to the kernel thus, reacting before
any damage is caused to the system. However, in [99], Virtual Machine Introspection (VMI) [15]
is suggested, while on a virtualized environment .

The approach in [99] devises a specification for kernel data to detect attacks. It is of special
interest as it proposes a somewhat general specification architecture, consisting of five compo-
nents:

• The low-level monitor - The monitor corresponds to the entity that captures data from
kernel execution. For example, using VMI or other technique.

30

• The model builder - This entity uses raw data from the low-level monitor and maps it to
a model from where the constraints can be applied.

• The constraint verifier - This component corresponds to the runtime specification checker.

• Response mechanisms - If a security violation occurs this entity is responsible for an
adequate response. For example, correcting an error or logging.

• The specification compiler - This is an off-line component that translates an high-level
specification to a form that can be used by the constraint verifier.

The general ideas introduced above can be easily associated with this work. Namely, every
component except the model build and the response mechanisms can be directly mapped to the
implementation exposed forward. Response mechanism are not the focus of this work.

3.2.9 Concurrent Security Monitoring

A different approach to security, diverging from the aforementioned memory protection mecha-
nisms, is concurrent monitoring. Several schemes [14, 100, 101] have been devised to concur-
rently monitor critical programs, while isolating the security mechanism from the target program.
Co-Pilot [100] detects kernel integrity violations by running themonitoring software on a separate
PCI card. VMWatcher [14] performs VMI to gain semantic insight alike security tools deployed
in the OS. [101] uses both VMI and hooks inserted in critical code sections (e.g., system calls) to
analyze kernel integrity violations. These propositions aim at securing the kernel but many of the
techniques can be easily adopted or adjusted to protect hypervisors or other kinds of software.

Azab et al. proposed HyperSentry [89], a framework for runtime integrity measurements on
modern VMMs. This work differs from others as it tries to verify integrity of a VMM instead of
VMs, thus being extremely relevant for this thesis. Unfortunately, HyperSentry was designed to
run on Intel x86 architecture, depending highly on architectural aspects available only on Intel
processors. This thesis aims at providing Data Integrity to μRTZVisor, an hypervisor restricted
to execute on ARM processors with ARM’s Security Extensions, more specifically, TrustZone.

HyperSentry introduces an isolated and stealth software component to execute integrity mea-
surements. Conventional wisdom defends the introduction of a software a layer below the pro-
tected software. Defying this, HyperSentry inserts the integrity measurement agent in the same
layer as the VMM, since the VMM already executes in the lowest software layer. Leveraging
Intel’s architecture, the hidden measurement agent can securely perform any requested integrity
measures. HyperSentry’s TCB consists only of the hardware, firmware and the properly isolated
software component (i.e., the System Management Mode (SMI) interrupt). This method devises

Expressiveness of Non-Control Data Attacks 31

a technique to create an Out-of-band channel to stealthily trigger hypervisor’s integrity measure-
ment agent. The agent requires access to hypervisor’s code, data and CPU state. This channel
triggers the SMI interrupt which then puts the system in SystemManagementMode, where, using
novel techniques, in-context integrity measurements can be performed to the VMM. In terms of
security, HyperSentry lacks protection against transient attacks. This is a limitation of all periodic
invocation integrity verification tools. Transient attacks do not perform persistent changes code
and data. Thus, they can hide their traces and go undetected by these tools.

Donghai et al. presents a concurrent security monitoring method for virtualization environ-
ments [5]. To protect a VM, a security collector and analyzer are employed. These components
are characteristic of common security software and deployed under an OS. This method decou-
ples both components into two concurrent units, to avoid any attempt of tampering by attackers
and diminish performance overhead.

The security collector uses system call events as input to detect intrusions, under the Linux
OS. Firstly, a Linux system is modified to insert a trampoline, in every system call, on-the-fly,
using the VMM. As execution jumps from program to OS, a kernel module, interceptor, is called
to store data related to the system calls in a data structure. Furthermore, this kernel module is also
dynamically inserted. Other techniques are employed to ensure that this ”in-the-box” component
stays appropriately isolated from privilege escalation or other kernel related attacks.

The security analyzer is an ”out-of-the-box” component deployed in a different core and VM.
Data captured from the interceptor is analyzed within this component. Using different cores,
it’s possible to achieve concurrent execution between the monitored program or, in this case,
VM and the monitor software (i.e. security analyzer). The interceptor stores its data using the
Lamport’s ring buffer algorithm [102]. Furthermore, the security analyzer has two threads: the
event collector and event analyzer [5], as depicted in Fig. 9. The former creates a copy from
the ring buffer filled by the security analyzer. The latter analyzes previously copied data for
irregularities, performing logging operations whenever necessary. The event analyzer uses the
method exposed in [103] to detect abnormalities in system behavior from system calls. This
method creates a model using static analysis and compares the run-time behavior against this
model to detect irregularities. Basically, it can monitor any process of the DomU VM.

3.3 Expressiveness of Non-Control Data Attacks

Despite their general applicability, non-control-data attacks are not as straightforward to construct
as control-data attacks, mainly due to the required semantic knowledge about target applications
[12]. A survey on memory errors shows that most attacks aim at control data. Control-data
can be defined as a subset of program’s data which can control the execution flow of the same.

32

VMM (Xen)

App2Event Collector Event Analyzer

Log InterceptorBu�er

App1 App3

Memory Mapper

Dom0 VM DomU VM

Kernel Space

User Space

Fig. 9: Architecture of a concurrent security monitor architecture for virtualized environments
(Adapted from [5]).

Therefore, defenses have been designed to guarantee CFI. Challenged by these countermeasures,
attackers becamemotivated to search for new attack vectors. Non-control data attacks emerged as
an alternative to the previous ones since they are not based on rewriting control data or performing
inadmissible control transfers, which can be detected at runtime [19]. Non-control data attacks
are not recent [12], however, they are gaining attention as countermeasures against control-data
(e.g., stack return address) become available [13]. Non-control data attacks can vary on their
expressiveness.

These attacks still exploit memory errors, such as, buffer overflows, integer overflows or
heap corruption, among others, so, logically, any defense which guarantees total memory safety
(e.g., safe programming languages) can invalidate non-control data attacks as well. As we delve
into non-control data attacks, it is extremely important to categorize the different types of data
associated with a program. Extending the data categorization provided in [95], a small taxonomy
for program’s data is provided:

Non-control data

• Function arguments – Giving spurious arguments to certain system functions might com-
promise the system.

• Decision making variables – Stack allocated variables or global data that directly influ-
ences function behavior, without changing from the legal control flow.

• Configuration data – Files or non-volatile data can be compromised and, in turn, compro-
mise the system.

• User input data – Attackers can change user input data after a sanity check, by exploiting
a posterior memory vulnerability.

Expressiveness of Non-Control Data Attacks 33

• Security mechanisms data – Data associated with security mechanisms can be altered to
cover an attack, eluding in-place security mechanisms.

• Passwords and private keys. – Unintentionally revealing of system secret data can dam-
age the system as data confidentiality is lost.

Control data

• Data used for indirect branches– Changing data such as code pointers of tables which
posteriorly influence a change in program’s execution flow.

• Stack corruption – Corrupting the stack (e.g. return address) is one of the most well-
known kinds of data attacks.

3.3.1 Data Oriented Programming

Hu et al. [13] proposedDOP, amethod to perform arbitrary computations on a program’smemory,
via non-control data attacks. Using this method it is possible to build very expressive attacks such
as stealing of private information (e.g., private keys) or privilege escalation attacks. DOP has
similarities to both Return Oriented Programming (ROP) [72] and Jump Oriented Programming
(JOP) [71, 104], using gadgets to perform computations. However, in DOP, the structure of
gadgets slightly differs from the other two methods, as a program does not divert from the legal
execution flow.

DOP requires two gadget types: 1) data-oriented and 2) dispatcher gadgets. The first type
consists of sequences of instructions that perform specific computer operations (e.g., arithmetic,
assignments, dereferences). Subsequently, dispatcher gadgets are logic segments that chain dis-
joint data-oriented gadgets together. Using both, an attacker can make a program carry out com-
putation of its choice on program’s memory [13]. Data-oriented gadgets must use memory to
perform its operations. Hardware registers are not a viable alternative for storage, as the original
program uses registers for its normal operations. Furthermore, operations that modify hardware
registers and memory state outside attacker’s control are likely to occur between two gadgets.

Gadget dispatchers are sequences of instructions that allow an attacker to selectively and
repetitively invoke gadgets. A loop with a selector is a common sequence of instructions that
simulates a gadget dispatcher, where each iteration executes a subset of gadgets using outputs
from gadgets executed in the previous iteration [13]. The load and store addresses of both itera-
tions are controlled by the attacker, via the memory error, as data between gadgets is exchanged

34

in memory. Such an example is provided by Hu et al. in [13] and depicted in Listing 3.1 and 3.2.
Using an overflow vulnerability in the readData function, listed in 3.1, an attacker can control
loop iterations and the data used in the following selector to invoke specific gadgets. A data-
oriented gadget can be found in Line 12 and 13 of Listing 3.1, that corresponds to the operation
in Line 4 of Listing 3.2. To increment the list pointer in that same listing, the gadget in Line 10 of
Listing 3.1 is used. To control the number of times the cycle executes, one only needs to control
the connect_limit variable through the memory error.

Listing 3.1: Vulnerable code executing operations on connection-related data. To create a DOP at-
tack, the vulnerability in readData is exploited. The while cycle with the selector provide
the required dispatcher gadget. The remaining instructions are data-oriented gadgets.

1 s t r u c t s e r v e r { i n t *cur_max , t o t a l , t yp ; } * s r v ;2 i n t c o n n e c t _ l im i t = MAXCONN; i n t * s i z e , * t y p e ;3 cha r buf [MAXLEN] ;
4 s i z e = &buf [8] ; t yp e = &buf [1 2] ;
5 . . .
6 wh i l e (c o n n e c t _ l im i t −−) {
7 r e adDa t a (sockfd , buf) ; / / s t a c k bof
8 i f (* t y p e == NONE) b r eak ;
9 i f (* t y p e == STREAM) / / c o n d i t i o n
10 * s i z e = *(s rv−>cur_max) ; / / d e r e f e r e n c e
11 e l s e {
12 srv−>typ = * t y p e ; / / a s s i gnmen t
13 s rv−> t o t a l += * s i z e ; / / a d d i t i o n
14 }
15 . . . (f o l l ow i n g code sk i pp ed) . . .
16 }

Listing 3.2: Exemplifying the arbitrary computations that can be performed in the vulnerable code
in listing 3.1, using DOP.

1 s t r u c t Obj { s t r u c t Obj *nex t ; un s i gned i n t prop ; }
2 vo id u p d a t e L i s t (s t r u c t Obj * l i s t , i n t addend) {
3 f o r (; l i s t != NULL; l i s t = l i s t −>nex t)
4 l i s t −>prop += addend ;
5 }

By using a vulnerability to manipulate the values of local variables and not ever breaking the
legal execution control flow, an attacker can create a list and increment its values. This speaks
to the expressiveness of this kind of attacks. Depending on the available gadget set, critical
system variables can be modified or disclosed corrupting system integrity, confidentiality and
availability.

3.3.2 Data Stitching

Hu et al. [105] designed a systematical method to automatically create data-oriented exploits.
This scheme introduces the concept of a 2D-DFG to represent data flows in two dimensions:
memory addresses and execution time. A 2D-DFG represents data dependencies in a program

MELT 35

for a concrete input [95] and is represented by G = {V, E}, where V is a set of vertexes and E
a set of edges. A vertex is denoted as (a, t), where a corresponds to the address of the variable
and t the execution time. A vertex is created when an instruction writes to a memory location a.
In the 2D-DFG, an edge (v′, v) between two vertexes denotes a data dependency created during
the execution. A data edge (v′, v) is created for instructions that take v′ as input and take v as
destination operand. Address edges are created for instructions that use vertex v′ as the address
of one operand v, i.e. v is calculated from a dereference to v′.

A memory error is required to generate a non-control-data attack, and the set of memory
locations affected by it is called I. Data stitching attempts to connect a source vertex vs to a
target vertex vd. The new data-flow path, connecting both vertexes would have a new 2D-DFG
G′ = {V′, E′}, with a new set of vertexes and edges, generated by the memory error exploit.
The goal of data-flow stitching is to discover a new data-flow edge set E′, allowing new data-
flow paths from vs to vt.

Using the example provided in [105], attackers use a string vulnerability to overwrite the
security critical variable pw->pw_uid with the root user’s id. The setuid system call, that is
intended to drop process’ privileges, makes the program retain its root privileges instead. On
the left of Fig. 10, it is the 2D-DFG with benign inputs and on the right with spurious inputs.
Numbers on Listing 3.3 correspond to the time-axis on the 2D-DFG. The exploit inserts an edge
to write zero from the spurious input to the memory allocated to pw->pw_id. This exploits does
not subvert execution’s control-flow.

More complicated examples are provided in [105] although they are not as common as single-
edge stitches. This includes examples using multi-edge stitches, connecting two completely dif-
ferent data flows to achieve the connection between v′ and v.

Listing 3.3: Example of vulnerable code.
1 s t r u c t passwd { u i d _ t pw_uid ; . . . } *pw ;
2 . . .
3 i n t u i d = g e t u i d () ;
4 pw−>pw_uid = u id ;
5 . . . / / f o rma t s t r i n g e r r o r
6 vo id p a s s i v e (vo id) { . . .
7 s e t e u i d (0) ; / / s e t r o o t u i d
8 . . .
9 s e t e u i d (pw−>pw_uid) ; / / s e t normal u i d
10 . . . }

3.4 MELT

GCC MELT is a high-level domain specific language for extending or customizing the GNU
Compiler Collection [106]. MELT allows easier customization of the GCC compiler, providing

36

Fig. 10: The 2D-DFG from the code in Listing 3.3. On the fourth instruction, a non-control data attack
modifies the value of pw->pw_uid in such a way that the root privileged is never revoked.

abstraction over C/C++ coding and interfacing with GCC internal representations. Although be-
ing a powerful tool, it still requires an understanding of GCC ILs (e.g., GIMPLE and GENERIC).
MELT uses the GCC Plugin API, available since version 4.5, which allows to add custom code
to GCC. This allow a programmer to take advantage of the existing compiler processing power.
Listing 3.4 denotes the power of MELT via a code excerpt provided in [107]. The fifteen Lines of
Code (LOC) allow to identify functions prefixed with the bar string and to pinpoint function calls
to fflush with NULL argument. MELT was not used because it was not specifically designed for
what the developed application required from GCC. The choice was to program a plugin directly
in C/C++. From an academic point-of-view, this allowed an increase understanding of GCC’s
inner workings and its intermediate representations. It is believed that the chosen approach was
the most efficient, since the manually developed plugin had very specific requirements from the
compiler, which might not be easily available through the abstraction provided by MELT. Also,
to implement certain functionalities, analysis of GCC source code had to be performed.

Listing 3.4: Example code programmed in MELT.
1 (match c f u n c d e c l
2 (? (t r e e _ f u n c t i o n _ d e c l _ n amed
3 ? (c s t r i n g _ p r e f i x e d ”bar”) ?_)
4 (e a c h_bb_ cu r r e n t _ f u n () (: b a s i c _ b l o c k bb)
5 (e a c h g imp l e _ i n _ b a s i c b l o c k (bb)
6 (: g imple g)
7 (match g)
8 (? g imp l e _ c a l l _ 1 ?_
9 ? (t r e e _ f u n c t i o n _ d e c l _ n ame
10 ? (c s t r i n g _ s ame ”fflush”) ?_)
11 ? (t r e e _ i n t e g e r _ c s t 0))
12 (i n f o rm_a t _g imp l e g
13 ”found fflush(NULL)”))
14 (?_ ())))))
15 (?_ ()))

C 4

Associated Work

As aforestated, this thesis primarily proposes a security countermeasure to protect the
data plane of the μRTZVisor hypervisor. Before delving into implementation details,
it is imperative to understand the internals of μRTZVisor itself, specially the data
plane. Thus, a special focus will be on explaining its data structures and variables,
without forfeiting its implementation based on the ARM TrustZone technology.

The second part of this thesis dwells within ontology modeling. An effort was
undertaken to integrate the modeling efforts with the SeML modeling infrastructure.
SeML provides enhanced semantic and code generation capabilities that are lever-
aged to facilitate model representation and augment expressiveness. SeML will be
elucidated in its own subchapter. Both μRTZVisor and SeML are under development
at the time of writing.

4.1 The μRTZVisor VMM

μRTZVisor [22] is a TrustZone-based embedded hypervisor, programmed in C++. TrustZone al-
lows the deployment of two isolated execution environments, empowering hardware-based sys-
tem virtualization. By defining a secure and non-secure environment, complex applications (e.g.,
infotainment) can be deployed in the non-secure world alongside safety/security critical software
executing in the secure world. The processor’s Monitor mode, introduced in the ARM-v7A ar-
chitecture, is the hardware highest privilege execution mode, when virtualization extensions are
not present. This mode was introduced to perform context-switching between the non-secure
and secure worlds, in both directions. As stated by ARM, the monitor code is a security critical
component, as it provides the interface between the two worlds [1]. μRTZVisor leverages the
Monitor mode and other TrustZone capabilities for virtualization.

The architecture of μRTZVisor is depicted in Fig. 11. This architecture is similar to Fig. 2
since μRTZVisor follows a microkernel design approach. μRTZVisor relies on the SMC instruc-
tion to implement its Hypercall API. By executing a SMC instruction in a VM, the core enters

37

38

Scheduler Memory
Manager

Device
Manager

Guest
Manager

ARM TrustZone-based SoC

Hypercall API

Driver
Server

Guest
OS

Guest
OS

IPC

Core Modules

Non-Secure World

Secure World

SMC SMCSMC

Fig. 11: Architecture of the μRTZVisor hypervisor.

the Secure Monitor Mode to execute VMM code. Having processed the hypercall, execution can
be redirected to the requester VM. Amongst guests, the VMM grants spatial isolation through re-
source partition and multiplexing. Static permissions are defined for each guest, denoting avail-
able assets such as memory or hardware peripherals. At runtime, the VMM switches between
different hardware access configurations depending on the next VM to be executed. These con-
figurations define guest’s resources and what must be protected by TrustZone. In the non-secure
world, secure memory blocks and peripherals are protected by the TrustZone hardware. Thus,
a VM can only access allocated assets. μRTZVisor diverges from traditional microkernel-like
implementations, aiming to minimize modifications to guest OSs. At the same time, it lever-
ages the flexibility of microkernel architectures, providing an IPC mechanism. This ensures that
guest OSs only need to be modified to benefit from auxiliary services or shared resources on the
kernel’s IPC facilities.

Concerning security andmemory corruption vulnerabilities, μRTZVisor attack surface ismain-
ly composed by the Hypercall APIs as it’s the only source of communication between guests and
the VMM. This interface is similar to system calls of OSs, except for the usage of the SMC in-
struction that, in certain implementations, has already been violated [108, 109, 110, 111, 112].
By executing an hypercall, the core temporarily obtains the highest privileged execution mode,
having full access to all system resources. Therefore, VMM data and code can be tampered
with, resulting in attacks that could affect confidentiality, integrity and availability of the system.
Furthermore, other VMs can be attacked without ever interfering with the VMM. The hardware
is considered a trustworthy system component thus, the attack surface is entirely composed of
software-based attacks. The Threat Model is further discussed in chapter 5.3.

The μRTZVisor VMM 39

4.1.1 μRTZVisor Data-Plane Analysis

The main focus of this work is to protect μRTZVisor against non-control-data attacks. Under-
standings the inner workings of μRTZVisor, in terms of its data-plane, is vital for the remaining
of this thesis. μRTZVisor is architected using the singleton design pattern [113], as depicted in
Fig. 12. Using singleton, a class only has one instance which is a global point of access to it
[113]. The complete class hierarchy is not depicted here, as not all classes are relevant to this
work. Also, methods are hidden. Nevertheless, each class implementing the singleton design
pattern possesses the usual methods to access their unique static instance.

Fig. 12: Simplified UML Class diagram for μRTZVisor.

μRTZVisor has four classes that directly correspond to a component in Fig. 11. GuestMan-
ager stores allGuests in its guestList static array. The number of guests in the guestList is defined
by how many VMs the system designer specifies, at design-time. This manager also aggregates
the mCurrentGuest integer field, which specifies the currently executing VM. Each Guest indi-
vidual, in the guestList, stores information related to a specific VM such as an ID, a name and the
memory and interruptions configurations, in the memoryConfiguration and interruptConfigura-
tion fields, respectively. Configurations of peripherals are not yet implemented, neither is the De-
vice Manager. Both memoryConfiguration and interruptConfiguration inherit from the Bitmap
class. The latter class is a template with a variable-sized integer array field called mBitmap. For
bothMemoryConfiguration and InterruptConfiguration classes, the mBitmap has distinct seman-
tics. However, generally, it stores permissions to partitioned system resources (e.g., memory
blocks). FormemoryConfiguration, such array has three elements: the first partitions DDRmem-
ory into thirty-two individual blocks and the other two theOn-chip Memory (OCM)memory into
4KB memory chunks. OCM is used to share memory between guests. The PrivateTimer class

40

has the internally defined PrivateTimeRegs structure and a pointer (ptimer) of this type. This
pointer points to the memory mapped hardware registers corresponding to an hardware timer.
This hardware timer controls the Scheduler, which possesses a callback function to schedule
guest VMs. This data-plane analysis contemplates the μRTZVisor critical structures, which will
be consistently mentioned throughout this thesis.

4.2 The SeML Framework

The main goal of SeML is to support the design of a functional system compliant to a model,
created using aDomain Specific Language (DSL). To achieve that, domain experts and knowledge
engineers first describe system’s commonalities and variabilities. Then, system developers map
domain theoretical concepts to implementation artifacts. This activities are performed at the
metamodel layer using OWL as the knowledge representation language.

With an ontology-based metamodel, the user is capable of using the SeML IDE (Fig. 13) to
build a model of the system by interacting with the provided user interface and DSL. DSL key-
words for system concepts and relations between them are adopted from the metamodel, allowing
the user to immediately start a design-space exploration. Further, metamodels contain variabili-
ties which allow users to configure a system stack suited to their requirements. Note, metamodels
embed domain knowledge inserted by domain experts, which accelerates the whole process.

A model can be implemented (i.e., translated into a functional system) at any time, after a
coherency verification by the SeML IDE. The DSL engine will invoke methods of the implemen-
tation tools, described by the System Developer, since these tools are nothing more than Java
programs. The process of code generation is discussed below, with an example. In this work,
additional implementation tools are created to cope with the requirements of the developed appli-
cation. The SeML engine compiles and loads these tools, at runtime. The infrastructure supports
OWL and SWRL rules for knowledge description and semantic model verification. As SWRL
rules were not expressive enough, the user can also provide custom SWRL built-ins to create
more complex rules.

The hierarchy of ontologies introduced in Fig. 13 is detailed in Fig. 14. The Upper Ontology
is an abstract ontology containing common concepts for both system description and implemen-
tation layers. The Domain Expert creates a Domain Ontology with concepts to represent system
artifacts. In turn, the System Developer creates individuals and OWL annotation properties for
concrete artifacts, specifying the implementation tools to be executed. In fact, Implementation
Ontologies are based on OWL annotation properties used to provide code generation capabilities
to build the final functional system.

The SeML Framework 41

 SeML IDE

Reasoner

Execution
Tools

Compiler
and Loader

Ontology Manager API

User
Interface

User

 External hierarchy
 of ontologies

Internal Merged
Ontology

SeML Engine

Rule Extension
Templates

Rule Extensions

SystemImplementation
Artifacts

Domain Expert /
Knowledge Engineer

Fig. 13: SeML infrastructure architecture. Going from top to bottom, external ontologies are loaded
onto the SeML IDE (implemented in Eclipse). The SeML Engine receives user input through
a modeling DSL and uses reasoning capabilities to verify and complete models. At the imple-
mentation stage, SeML-related Implementation Artifacts (i.e., Java programs) are executed to
translate the model to a functional system.

4.2.1 Code Generation

Mainly, SeML leverages annotation properties, provided by OWL, to incorporate code generation
into models. The implementation stage is characterized by a strong relation between a model
and user-defined external tools. Annotations are properties that can be associated with every
element of an ontological model: individuals, object properties and data properties. SeML uses
this feature to strategically execute auxiliary Java programs that, in turn, generate the required
system files. Specifically, SeML uses reflection [114] for this purpose, automatically loading
and executing Java programs, classified as SeML-related implementation artifacts, as required.
Special annotations can be used to map model’s ontological elements to implementation artifacts:
ImpInd, ImpOP and ImpDP. According to Fig. 15, the first annotation triggers an Implementation
Artifact when an individual has a ImpInd annotation. The second one is prompted when an object
property or an individual possess the ImpOP annotation. However, if ImpOP is present on an
individual, the name of the object property must also be specified, in order to locate it. The same
applies to ImpDP, but for data properties. The annotation properties are defined in the upper

42

 Implementation layer

 System description layer

 E C B

 C B

Upper Ontology

Domain
Ontology A

Conditions
Ontology

Core Ontology A Core Ontology B
...

Domain
Ontology D

...

Implementation
Ontology A

Implementation
Ontology D

...

Domain Expert /
Knowledge Engineer

System
Developer

SeML IDE

Fig. 14: External hierarchy of ontologies.

ontology. In the implementation stage, the infrastructure will look for the aforementioned trigger
conditions to call a specific method of the specified Java program or tool. The order by which
Implementation Artifacts are executed is defined by the integer priority parameter. A higher
value means lower priority. If not specified, the parameter’s value is ten (10). By default, the
arguments sent to the tool accord to an infrastructure-defined type, ImplArg, and are treated as
strings, unless the user states otherwise when asserting the annotation. These arguments are taken
from predefined ontological elements and sent to the Java methods of the SeML implementation
tools or artifacts. Each behavior is asserted in a certain ontological element and contains a string
with the Java tool name and method to be invoked.

Annotation Property Trigger Condition Arguments Assertion (individual) Assertion (Property)

ImpInd

ImpOP

ImpDP

Instantiated
Individual

Instantiated
Individual &

OP
Instantiated
Individual &

DP

Individual

Individual1*,
individual 2*

Individual*,
literal

Tool,method,
(,priority(,Annotation Property)

Tool,method, property,
(,priority(,Annotation Property)

Tool,method, property,
(,priority(,Annotation Property)

Tool,method,
(,priority(,Annotation Property)

Tool,method,
(,priority(,Annotation Property)

*Source of arguments are ImpArg annotations (or user-de�ned) de�ned in individuals.

Fig. 15: Table denoting OWL annotation properties used for code generation.

Fig. 16 introduces an example with a non-annotated ontology, on the left, and the respective
annotated ontology, for implementation purposes, on the right. Existent object and data proper-
ties are annotated, in their definition, with their respective annotation properties (i.e., ImpOP or
ImpDP). In this example, individuals do not require annotations, releasing the developer from

The SeML Framework 43

annotating every newly created individual that would required an annotation. The only Imple-
mentation Artifact present, in this example, is the Generator Java program that merely translates
an argument from an individual, specified by the already existing ImpArg annotation, to text.
Then, it prints the name of the object or data property, finalizing with the name of the second
individual or data property value that the property connects to. Looking at the priorities, one can
expect a text output, for the existing model, of the following form:

pc_1 hasPart ram_1
ram_1 hasSpeed 1333 Mhz
ram_1 hasCapacity 8 Gb

PC

ram_1

RAM

1333 8

pc_1

hasPart

is a

is a

hasPart

hasSpeed hasCapacity

#ImpArg
ram_1

PC

ram_1

RAM

1333 8

pc_1

hasPart

is a

is a

hasPart

hasSpeed hasCapacity

#ImpOP
Generator,addPart,2

#ImpArg
pc_1

#ImpDP
Generator,addSpeedToRam,3

#ImpDP
Generator,addSizeToRam

#ImpArg
ram_1

Fig. 16: Annotating ontologies to generate execute Implementation Artifacts.

C 5

Data Integrity: Design and Implementation

This chapter encompasses the main contribution of this work: the design and imple-
mentation of the Data Integrity security mechanism. After the definition of the threat
model, an overview over the specifics of the Data Integrity monitor is provided. In-
strumentation is examined preceding a discussion of the data integrity rules. Finally,
the Remote Monitor implementation and deployment are detailed. Throughout this
chapter, the examples provided are strictly linked with μRTZVisor, as the security
mechanism was specifically designed taking into consideration its specificities.

5.1 Design Goals

Designing a hypervisor with tight security requirements for safety-critical and/or real-time ap-
plications can be a demanding task. Performance and resource utilization are important metrics
for embedded software. Although, due to real-time constraints, determinism is often paramount
in embedded systems, creating an extra challenge when designing any security countermeasure
oriented towards these systems. Modern defenses focus on protecting the legitimate control-flow
of a program, nevertheless they cannot withstand a more subtle type of attack, non-control-data
attacks, since they follow the legitimate control flow, and thus leave no trace [13]. Control-flow
protection is considered in the holistic approach of securing the μRTZVisor hypervisor. This
implementation must be partially designed to work alongside a CFI security countermeasure,
providing both control- and data-plane protection.

Themain goal is to provide data integrity to μRTZVisor’s static critical data structures, follow-
ing a deterministic approach, while minimizing performance overhead and resource utilization.
Several restrictions regarding both hypervisor design and the supported platformwere considered
during the design and implementation of the proposed approach. Since the hyperviso is still under
development at the time of writing, some efforts towards generalization and automation had to
be undertaken to keep the security countermeasure up-to-date with newer μRTZVisor versions.

45

46 :

5.2 Platform

The system used in this work is the Digilent ZYBO [115] platform based on a Xilinx Zynq-7000
All Programmable SoC [116]. This SoC is equipped with dual-core ARM Cortex-A9 processors
which implement the ARMv7-A architecture [45]. TrustZone is also available, and being lever-
aged by μRTZVisor for virtualization. Primarily, the memory layout of this SoC contemplates: an
OCM, a volatile RAM and memory-mapped peripheral registers. The memory map, comprising
these regions, is partially depicted in Fig. 17.

0x0010 0000

0xFFFC 0000

0xFFFF FFFF

0x3FFF FFFF

0xE000 0000

0xF8F0 2FFF

Peripherals

OCM

RAM

...

...

0x0000 0000

Fig. 17: Generic memory address map for Digilent ZYBO. This memory map is not complete and can
be slightly modified according to system requirements. Only important memory section for this
work (i.e., OCM, RAM and Peripherals) are highlighted. For more information relate to [116].

The ZYBO is endowed with a 256KB OCM and a 512MB RAM, besides the peripheral al-
located memory. As these regions are encompassed in the same address space, an attacker can
exploit them with a memory corruption vulnerability to perform arbitrary read and write opera-
tions. For fine-grained memory permissions and virtual memory, the ARM Cortex-A provides a
MMU. In this platform, the MMU can use a two-level translation, granting granularity for 64KB
memory regions. TheMMU allows to define read, write and execute policies to physical memory
regions. This hardware is pivotal to this work to isolate sensitive components. Violations in the
MMU access policies results in a data or instruction abort exception, which allows the processor
to recover or reset.

5.3 Threat Model

In this work, the adversary model consists of attackers able to exploit memory corruption vulner-
abilities capable of reading and writing arbitrary locations in memory. To successfully launch an

Proposed Approach 47

attack, attackers can inject and execute their own code or misuse existing code. More importantly,
this threat model considers non-control-data attacks thus, an attacker can commence an attack,
without ever modifying the program’s control flow. Note this is a powerful threat model consid-
ering not only all types of control-flow hijacking attacks, but also sophisticated non-control-data
attacks such as Data-Oriented Programming [13].

Similarly to HyperSafe [89], the hardware is considered trustworthy, especially, the secure
boot mechanism of the Zynq-7000 SoC and the ARMMMU. Secure boot is essential to guarantee
the integrity of the μRTZVisor hypervisor and the proposed security mechanism, at boot-time.
The hypervisor code is assumed to be vulnerable, due to its implementation in C++. In this
model, it is assumed that the attacker, failing to compromise the hypervisor, will attempt to attack
the deployed security mechanisms. Hardware-related attacks are out of the scope of this thread
model.

5.4 Proposed Approach

The ascension of virtualization associated with the ever-growing complexity of today’s systems
makes it impossible, in practice, to determine every failure mode, security vulnerability or to
test all possible software behaviors. The following approach presents a runtime defense mecha-
nism against data-plane oriented attacks. Executing at the same privilege level as the hypervisor,
a Remote Monitor, as depicted in Fig. 18, is introduced to intermittently verify data integrity
rules, provided - at design time - by the μRTZVisor’s development team. The specification aims
to ensure the correct state of all critical static variables at any given time which, in turn, safe-
guard μRTZVisor’s runtime data. The Remote Monitor is isolated from μRTZVisor leveraging
the MMU to write-protect sensitive data and enforce a W⊕E policy. Further, the introduction of
a CFI scheme ensures that the target program follows a statically-defined CFG.

The Remote Monitor’s Information Collector retrieves an execution trace, generated by the
instrumented μRTZVisor, containing information about write operations to critical static variables
to enforce data integrity rules. This execution trace consists of both values written to critical vari-
ables as well as addresses used for indirect write operations. This scheme follows a lazy approach,
as information is only collected when a write to a critical static variable occurs, in order to min-
imize performance overhead. The Ring Buffer is an intermediary, transferring information from
theHypervisor to the Remote Monitor. Through compile-time instrumentation, extra instructions
are injected into the Hypervisor, logging sensitive information in the Ring Buffer every time a
write to sensitive variables occurs.

48 :

Applications

OS

Applications

OS

Applications

OS

Instr A

Instr B

Instr C

Store A

Instrumentation

Instr D

Instr E

Rule 1

Rule 2

Rule 3

Rule 4

Information Collector

Hypervisor Log Data Structure Remote Monitor
Secure World

Non-Secure World

First core Second core

Ring Bu�er

 0 1 2 3 4 5

 6

 7

 8

 9 Write
 pointer

Read Pointer

Fig. 18: Architecture of the Data Integrity security mechanism.

5.5 Implementation

The implementation is divided in two parts. μRTZVisor is foremost instrumented, at compile-
time, by an extended GCC compiler. Then, the code for the Remote Monitor is automatically
generated, using developer-provided abstract data integrity rules. Delving into specifics, two ex-
tensions were added to the GCC compiler: the Type Analyzer and the Instrumentation Pass. The
former analyzes every developer-defined data type (e.g, any struct/class definition), essentially
creating the memory layout of the program. The layout, containing developer-defined data types
and offsets is then stored in a file (Memory Layout), as depicted in Fig. 19. This information
is subsequently used to translate abstract data integrity rules to C++ code, creating the Remote
Monitor (RM). Abstract rules will be discussed further down. The Instrumentation Pass ana-
lyzes code currently under compilation, in its intermediate GIMPLE IL representation, injecting
instrumentation as required. Likewise, the Instrumentation Pass logs its operations to a file (In-
strumentationMetadata), used by the Rule Mapper to create the aforementionedC++ Rules. The
Instrumentation Pass and Type Analyzer are independent entities.

The Rule Mappermaps abstract data rules to C++ using information provided by the previous
compilation process as well as the developer (i.e., the abstract rules). Rules need to be mapped
to C++ since they are developer-defined, in an abstract way, and must be inserted - in the Remote

Structure of the Log Data Structure 49

GCC Plugin
Rule Generation

Sem. Analysis

Source
Files

Lexer, preproc

Parser

Front-end Middle-end

Optimizations

Instrumentation
Pass

Back-end

RTL Optimizations,
Reg. Alloc &

Code gen

ASM & Link

Hypervisor

Instrumentation
Metadata

Plugin Input
File

Memory Layout

Variable ‘s
Addresses

Abstract Rules

C++ Rules
100100100010
100111001000
010100001011

100100100010
100111001000
010100001011

100100100010
100111001000

GIMPLE IL

Rule Mapper

File Parsing

Code gen

Pass Manager Type Analyzer
outputs

Memory Layout

Hypervisor
RM

Binary Modi�er Compiler

Fig. 19: Implementation steps to generate the Remote Monitor for data integrity. Source files are
provided to the compiler’s Front-end. During compilation, the Type Analyzer and Instrumenta-
tion Pass interpret and modify each source file, respectively. In the second step, Rule Generation,
the Remote Monitor (RM) is generated and inserted into the previously compiled Hypervisor
code.

Monitor - in the final executable, alongside the hypervisor. To create the Remote Monitor, the
C++ rules are compiled and a binary blob is inserted into the hypervisor, in the Binary Modifier.
This is the final step in the compilation chain. Fig. 19 also provides insight on current chapter’s
organization. Instrumentation will be discussed at the beginning, followed by the abstract rules
and the rule mapping (from abstract to C++). Finally, the generation of the final binary, with the
Remote Monitor, will be discussed.

5.6 Structure of the Log Data Structure

A log is a ring buffer data structure, filled by the instrumented hypervisor code, as depicted in Fig.
18. In the current implementation, two virtual logs are present: theValue Log and theAddress Log.
In practice, there is only one ring buffer but data flows to one or both virtual logs according to the
information being stored: the former logs the values written to critical static variables while the
latter logs data used in indirect writes. Note that only information related to data writes is relevant.
To fathom the Address Log, a glimpse of the data it stores is fundamental. An indirect write is any

50 :

memorywrite whose final address cannot be calculated statically (i.e., pointers and arrays indexed
with variables). An indirect write is any memory write operation whose final address cannot
be calculated statically (i.e., pointers and arrays indexed with variables). Since instrumentation
is inserted in a GCC’s intermediary representation (i.e., GIMPLE IL), information such as the
variables used to index arrays is available and can be used for logging purposes. The contents of
both logs are depicted in Fig. 20.

ID1

ID2

ID3

Word
ID

Addr

Addr

Idx

Word WordVariable Size

...

...

...

Value Log Address Log

Code1

Code2

Code3

Word

Idx

Word
Code

Fig. 20: Structure of the Log Data Structure. Each line represents a log entry.

On each new log entry, a word-sized ID is stored. This uniquely identifies a specific location
in the code where data is collected. The Value Log makes a copy of the written data immediately
after the Code. The Address Log stores an address and/or an index (e.g., when a variable is
used as an array index). An entry in the Value Log does not require an equivalent entry on the
Address Log and vice-versa. Nevertheless, both logs are indexed by the same pointer, effectively
creating one log. The Code field can have three values. If the value is zero or one, only the Value
Log or the Address Log was filled, respectively. If the value is two, both logs have a new entry.
In the implementation of the Value Log, variable-size variables were considered; however, only
instrumentation to log a single 32-bit word was implemented. This was enough to enforce the
data integrity constraints on the current version of the μRTZVisor hypervisor. The fields of both
logs will be made clear when considering the instrumentation, in the next section. The Value
Log requires 2KB of memory, encompassing sixteen log entries of 128 bytes each. The Address
Log requires 64 bytes, including, at most, three bytes per log entry and sixteen log entries. Both
logs are organized in memory as portrayed in Fig. 24. They are a continuous chunk of memory
with aWrite Pointer pointing to the next position to be written. The Log Data Structure memory
is configured as write-protected (enforced by the MMU), to disallow log tampering via attacks
aiming the security mechanism.

Hypervisor’s Instrumentation 51

5.7 Hypervisor’s Instrumentation

Instrumentation is unavoidable to record the execution trace of the hypervisor, at run-time, and
register it to the Log data structure to be further used for data integrity rule enforcement, as de-
picted in Fig. 18. With two options available, instrumentation at compile-timewas chosen instead
of binary patching. Compile-time instrumentation consists of extending the compiler with extra
functionalities to generate supplementary code. Several reasons support this decision. Firstly,
the full source code of μRTZVisor is available. Also, process automation is made simpler than
with binary patching. Using a compiler for instrumentation purposes provides an infrastructure
to insert code.

With a GCC plugin-based compiler pass, it is possible to provide custom code to GCC, fully
interoperable with the remaining compilation process. All internal processing in GCC is con-
trolled by its Pass Manager (Fig. 19), while a pass refers to a certain transformation applied to
the internal representation of the current compilation unit (i.e., file) [117]. The Instrumentation
Pass is a compiler pass registered in the Pass Manager.

The logging instrumentation is straightforward and inserted in assembly, thus being platform
specific. The algorithm begins by loading the value of the Log’s Write Pointer. After performing
arithmetic to calculate the address of the new log entry, the ID and Code are always stored. Then,
depending on the data to be logged, the respective logs are updated. In the end, the Write Pointer
is incremented to point to the next log entry. Listing 5.1 depicts a commented example of the
aforementioned procedure for a new entry on the Value Log. In the case of indirect writes, the
Address Log is also updated using a similar algorithm. However, the ID and Code will not be
inserted by the Address Log logging procedure if the Value Log is also updated.

Listing 5.1: Example of the assembly logging procedure for the Value Log.
1 push { r0−r5 }
2 mov r5 , r0 / / Copy t h e i n t e g e r t o be logged (r0) t o r5
3 movw r3 , #0 / / Load t h e a d d r e s s o f t h e Wr i t e P o i n t e r t o r3
4 movw r0 , #31833 / / S t o r e t h e ID i n r0
5 movt r3 , #65535
6 movt r0 , #0
7 l d r r2 , [r3] / / Load t h e c u r r e n t w r i t e i ndex va l u e t o r2
8 l s l r2 , r2 , #9 / / C a l c u l a t e o f f s e t from begg i n i n g of Value Log
9 movw r4 , #4 / / Add t h e o f f s e t t o t h e Value Log base a d d r e s s
10 movt r4 , #65535
11 add r4 , r2 , r4
12 s t r r0 , [r4] / / S t o r e t h e ID i n t h e l og e n t r y
13 add r4 , r4 , #4
14 mov r0 , #0 / / S t o r e t h e Code i n t h e l og e n t r y
15 s t r r0 , [r4]
16 add r4 , r4 , #4
17 s t r r5 , [r4] / / S t o r e t h e w r i t t e n v a l u e
18 l d r r2 , [r3]
19 add r2 , r2 , #1 / / I n c r emen t t h e w r i t e p o i n t e r and s t o r e i t
20 and r2 , r2 , #15
21 s t r r2 , [r3]
22 pop { r0−r5 }

52 :

After explaining how data is inserted into the logs, the following section discusses the Instru-
mentation Pass, focusing on explaining when and how instrumentation is inserted.

5.7.1 Detecting Store Operations in GIMPLE

The Instrumentation Pass works upon GIMPLE IL and after all GCC’s Middle-End optimiza-
tions. GIMPLE IL was chosen due to its suitable expressiveness, balancing an approximation
to machine code (e.g., three operand representation) and enough high-level source code infor-
mation for the purpose. Running the pass after all Middle-End optimizations results in working
with a program surprisingly close to the final. This guarantees that unnecessary instrumentation
is not inserted, as all present memory-related operations will translate into the final executable.
An empirical analysis on the GIMPLE-based intermediate representation of μRTZVisor led to a
categorization of all memory writes: Direct Writes, Partially Indirect Writes and Totally Indirect
Writes. This categorization is extensively used throughout this thesis.

Direct Write

A Direct Write is a memory write to a LHS operand, in a GIMPLE assign, whose address is
static. Since the location of the write operation is known beforehand, only the Value Log gets
filled when a direct write occurs. If the attributed value is a constant, there is no need to even
make a copy of the written value to the Value Log, for rule verification. In that case, no log
operation occurs whatsoever. Listing 5.2 exhibits a C++ code snippet demonstrating this write
type (please refer to line 9), extracted from the μRTZVisor hypervisor source code.

Listing 5.2: Direct write example extracted from μRTZVisor’s source code.
1 vo id Sch edu l e r : : Schedu l e () {
2
3 GuestManager& gm = GuestManager : : G e t I n s t a n c e () ;
4 i n t 3 2 _ t n ex t = gm . mCurren tGues t + 1 ;
5 . . .
6 /* Check i f i s a d i f e r e n t g u e s t * /7 i f (gm . mCurren tGues t != nex t) {
8 gm . Con tex tSave () ;
9 gm . mCurren tGues t = nex t ;
10 gm . Con t e x tR e s t o r e () ;
11 }
12 }

Analyzing the Right-Hand Side (RHS) on this attribution, a non-constant integer variable
(next) is found. Thus, its value must be stored in the Value Log to enforce any rule associated
with the gm.mCurrentGuest critical variable. On the other hand, the LHS gm.mCurrentGuest
operand’s address is constant – or statically known - because the C++ reference gm always points
to a GuestManager class static variable named instance of this same type, caused by the sin-

Hypervisor’s Instrumentation 53

gleton design pattern. mCurrentGuest is an integer member of the GuestManager class. This
can be concluded by analyzing the optimized version of this code, in GIMPLE IL, presented in
Listing 5.3. On line 3, the temporary variable _16 (equivalent to next in C++) is being assigned
to the instance.mCurrentGuest variable. Some insight on the instrumentation procedure can
now be provided. Firstly, the LHS operand of a GIMPLE assign is analyzed to detect the write
type. Secondly, the RHS is probed for constants. If constants are found they are not logged, since
their value will never be spurious and, therefore, harmful.

Listing 5.3: Snippet of GIMPLE code equivalent to lines 8,9 and 10 of listing 5.2.
1 <bb 6 >:
2 u r t z v i s o r : : GuestManager : : Con t ex tSave (& i n s t a n c e) ;
3 i n s t a n c e . mCur ren tGues t = _16 ;
4 u r t z v i s o r : : GuestManager : : Con t e x tR e s t o r e (& i n s t a n c e) ; [t a i l c a l l]

On the final assembly file, partially depicted in Listing 5.4, the inserted assembly instructions
to log the next variable into the Value Log are depicted. In fact, the value of the LHS operand
of the assignment in line 3, in Listing 5.3, is read and copied to the Value Log after its value gets
updated with _16.

Listing 5.4: Assembly code generated to insert a word-sized value in the Value Log.
1 . LVL22 :
2 . l o c 1 47 0
3 s t r r4 , [r5 , #1040]
4 . s y n t a x d i v i d e d
5 @ 47 ” s r c / c o r e / S ch edu l e r . cpp ” 1
6 push { r0−r5 }
7 mov r5 , r4
8 movw r3 , #0
9 movw r0 , #29204
10 movt r3 , #65535
11 movt r0 , #0
12 l d r r2 , [r3]
13 l s l r2 , r2 , #9
14 movw r4 , #4
15 movt r4 , #65535
16 add r4 , r2 , r4
17 s t r r0 , [r4]
18 add r4 , r4 , #0
19 mov r0 , #0
20 s t r r0 , [r4]
21 add r4 , r4 , #4
22 s t r r5 , [r4]
23 l d r r2 , [r3]
24 add r2 , r2 , #1
25 and r2 , r2 , #15
26 s t r r2 , [r3]
27 pop { r0−r5 }
28
29 @ 0 ”” 2
30 . l o c 1 48 0
31 . arm
32 . s y n t a x u n i f i e d

54 :

Partially Indirect Write

A Partially Indirect Write is a direct write with an indirection in the form of an offset. For
example, an access to a static array using a variable as an index can be defined as such. Of course,
accessing arrays with constant indexes or accessing non-array C++ class members does not create
a Partially Indirect Write. An access of this type can create entries on the Value Log and Address
Log. An entry, in the Address Log, will only contain the variable offsets. The statically known
base address, associated with a static variable, is used with the offset to determine the final write
destination. Listing 5.5 provides an example where the shared_interupts static object directly
affects its internal array of integers named mBitmap, by invoking the inline method SetBit.

By analyzing the optimized version of the intermediate representation of this code in GIMPLE
(Listing 5.6), it is relatively easy to infer that the integer variable _23 is being assigned to the
mBitmap array belonging to the shared_interrupts static object, using a variable index _15.
Thus, for logging purposes both _23 and _15 values will be logged to the Value and Address
Log, respectively. The logging code, in assembly, is similar to the one present in Listing 5.6 but
duplicated, one time for each log.

Listing 5.5: Example of a Partially Indirect Write extracted from μRTZVisor’s source code.
1 i n t 3 2 _ t I n t e r r u p tMan a g e r : : S e tSha r ed (c o n s t u i n t 3 2 _ t i d) {
2
3 . . .
4
5 s h a r e d _ i n t e r r u p t s . S e t B i t (i d) ;
6
7 . . .
8
9 }

Listing 5.6: Snippet of GIMPLE code equivalent to line 5 of Listing 5.5.
1 _22 = 1 << _9 ;
2 _23 = _11 | _22 ;
3 s h a r e d _ i n t e r r u p t s . mBitmap [_15] = _23 ;

Totally Indirect Write

Totally Indirect Writes encompass any write to a static variable whose address is not known at
compile-time. They can be as simple as a pointer containing multiple variable’ addresses or more
complicated and also contain offsets like in the above-mentioned case. Listing 5.7 denotes such an
example: a memory write to a statically unknown object using a variable to index an array. Line
7 demonstrates the usage of the dot operator on the rguest C++ reference whose value is deter-
mined at run-time, as it can be seen in its declaration in line 5. GuestManager::GuestCreate is

Hypervisor’s Instrumentation 55

a classmethod and following the C++ convention [118], it uses the “this” pointer to refer to any ob-
ject of the GuestManager class. Since the guestList array belongs to GuestManager, an indirect
access via the “this” pointer must occur to determine the object in question. Here, the guestList
array is indexed via the guest_num variable. Thus, to determine the GuestManager object and
respective field being accessed, the “this” pointer value and the guest_num variable must be an-
alyzed. Listing 5.8 exhibits the optimized code in the GIMPLE IL. In line 3 we can see the “this”
pointer (this_6(D)) and the guest_num variable in a temporary variable (prehitmp_81) being
used to calculate the write address. The values of both variables are logged in the Address Log
and the guest_num.0_19, an integer, goes to the Value Log.

Listing 5.7: C++ code performing a Totally Indirect Write (extracted from μRTZVisor).
1 vo id GuestManager : : Gue s tC r e a t e (Gues tConf ig c o n s t &con f i g) {
2
3 s t a t i c i n t 3 2 _ t guest_num = 0 ;
4
5 Gues t &r g u e s t = g u e s t L i s t [guest_num] ;
6
7 r g u e s t . i d = guest_num ;
8 . . .
9 r e t u r n ;
10 }

Listing 5.8: Snippet of GIMPLE code equivalent to lines 5 and 7 of Listing 5.7.
1 . . .
2 guest_num . 0 _19 = guest_num ;
3 MEM[(s t r u c t Gues t &) t h i s _ 6 (D)] . g u e s t L i s t [p reph i tmp_81] . i d = guest_num . 0 _19 ;
4 . . .

5.7.2 Identifying Writes to Critical Variables

Identifying all writes to static variables upon which rules must be enforced is a prerequisite. The
Instrumentation Pass requires a list of critical variables as an input file (Fig. 19), since these
variables vary according to the defined rules. Note, not all writes to static variables are to be in-
strumented since it would create an overwhelming performance overhead. Above all, hypervisor
developers should develop a minimal set of rules which guarantee complete integrity of the hy-
pervisor. Using this file, the Instrumentation Pass tries to match a human-readable C++ style file
- with the critical variables -, to the LHS operands of GIMPLE assignments. Listing 5.9 depicts
an input file for μRTZVisor. Critical static variables are uniquely identified by their scope (i.e.,
the ”::” operator) and name.

In order to analyze a program that involves pointers it is necessary to have (safe) information
about what each pointer points to [119]. Many compiler analyses and optimizations require in-

56 :

Listing 5.9: Example of an Input File for the Instrumentation Pass.
1 : : u r t z v i s o r : : GuestManager : : i n s t a n c e . g u e s t L i s t . memoryConfig . b i tmap
2 : : u r t z v i s o r : : GuestManager : : i n s t a n c e . g u e s t L i s t . i n t e r r u p t C o n f i g . b i tmap
3 : : u r t z v i s o r : : GuestManager : : i n s t a n c e . mCur ren tGues t
4 : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : h a n d l e r _ t a b l e
5 : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : s h a r e d _ i n t e r r u p t s . mBitmap
6 : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t s . mBitmap
7 : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t _ a t t r i b u t i o n
8 : : u r t z v i s o r : : Hy p e r c a l l s : : h y p e r c a l l _ t a b l e
9 from F8F00000 t o F9F00000

formation about which objects each pointer in a program may point to at run-time [120]. With
Totally Indirect Writes, the Instrumentation Pass needs to infer the objects a pointer can point-to
since rules are only applied to objects. Internally, GCC performs points-to and escape analysis
[30] but this data is not complete. To address this problem, a file containing the set of objects
pointed by every pointer is provided, as partially depicted in Listing 5.10. The manually created
points-to analysis allows the Instrumentation Pass to detect writes to critical static variables on
pointers (i.e., Totally Indirect Writes) to add the necessary instrumentation. In Listing 5.10, a file-
name and the line in the source code uniquely identify a Totally Indirect Write. Each line below
the identifier corresponds to an accessed static variable, by the pointer. The [UNK] corresponds
to an unknown array index (i.e., calculated at run-time) in the chain of references to class member
variables. Points-to analysis is not the focus of this thesis; however, it is crucial when evaluat-
ing Totally Indirect Writes on the Instrumentation Pass. Without this analysis, the pass could
not infer the objects pointed by each pointer and several modifications on critical data would go
undiscovered and unverified. To ensure completeness, if the Instrumentation Pass encounters
such an access, which is not present in the points-to file, it immediately interrupts compilation.

Listing 5.10: A partial points-to analysis file for μRTZVisor.
1 s r c / c o r e / I n t e r r u p tMan a g e r . cpp : 1 7 2 :
2 : : u r t z v i s o r : : GuestManager : : i n s t a n c e . g u e s t L i s t . vm . mVgic . vICDISPRx [UNK]
3 s r c / c o r e / S ch edu l e r . cpp : 4 7 :
4 : : u r t z v i s o r : : GuestManager : : i n s t a n c e . mCur ren tGues t
5 s r c / l i b / i n c / t y p e s . h : 9 4 :
6 : : u r t z v i s o r : : GuestManager : : i n s t a n c e . g u e s t L i s t [UNK] . memoryConfig . b i tmap [UNK]
7 : : u r t z v i s o r : : GuestManager : : i n s t a n c e . g u e s t L i s t [UNK] . i n t e r r u p t C o n f i g . b i tmap [UNK]

5.7.3 Instrumentation Metadata

As instrumentation code is inserted in the VMM software, the Instrumentation Pass creates a log
of all its operations (the Instrumentation Metadata file in Fig. 18). Each possible log entry com-
prises the filename and the line of the instrumented write in the C++ source code (Source Code
Location), a C++-similar grammar to identify the written static variable (Reference), an ID (ID)

Hypervisor’s Instrumentation 57

to uniquely identify the logging operation and the type of log performed by the instrumentation
(Log Type). Direct and Partially Indirect Writes are prefixed with STATIC, in the Log Type. To-
tally Indirect Writes are prefixed with INDIRECT. The VALmeans that the written value is being
copied to the Value Log and each INDEX, determines a word-sized entry on the Address Log ei-
ther with memory addresses or array indexes. Many of the Totally IndirectWrites only access one
static variable, due to non-controllable VMM design decisions. The information contained here
is used by the Rule Mapper entity, depicted in Fig. 18, to automatically create the C++ integrity
rules and the Remote Monitor.

src/core/InterruptManager.cpp:50: ::urtzvisor::InterruptManager::handler_table[UNK] 4888 STATIC_VAL_INDEX
src/lib/inc/types.h:94: ::urtzvisor::InterruptManager::private_interrupts.mBitmap[UNK] 6102 STATIC_VAL_INDEX
src/core/InterruptManager.cpp:77: ::urtzvisor::InterruptManager::private_interrupt_attribution[UNK] 23009 STATIC_VAL_INDEX
src/lib/inc/types.h:94: ::urtzvisor::GuestManager::instance.guestList[UNK].memoryConfig.bitmap[UNK]
 ::urtzvisor::GuestManager::instance.guestList[UNK].interruptConfig.bitmap[UNK] 31833 INDIRECT_VAL_INDEX
src/lib/inc/types.h:94: ::urtzvisor::InterruptManager::shared_interrupts.mBitmap[UNK] 6103 STATIC_VAL_INDEX
src/core/InterruptManager.cpp:124: ::urtzvisor::GuestManager::instance.guestList.vm.mVgic.vICDISPRx[UNK] 21246 INDIRECT_VAL_INDEX
src/core/InterruptManager.cpp:157: ::urtzvisor::GuestManager::instance.guestList[UNK].vm.mVgic.vICDISPRx[UNK] 29109 STATIC_VAL_INDEX_INDEX
src/core/InterruptManager.cpp:160: ::urtzvisor::GuestManager::instance.guestList[UNK].vm.mVgic.vICDISPRx[UNK] 18007 STATIC_VAL_INDEX_INDEX
src/core/InterruptManager.cpp:169: ::urtzvisor::GuestManager::instance.guestList.vm.mVgic.vICDISPRx[UNK] 31795 INDIRECT_VAL_INDEX
src/core/InterruptManager.cpp:172: ::urtzvisor::GuestManager::instance.guestList.vm.mVgic.vICDISPRx[UNK] 24051 INDIRECT_VAL_INDEX
src/core/Hypercalls.cpp:18: ::urtzvisor::Hypercalls::hypercall_table[UNK] 28345 STATIC_VAL_INDEX
src/core/GuestManager.cpp:21: ::urtzvisor::GuestManager::instance.mCurrentGuest 21306 INDIRECT_INDEX
src/core/GuestManager.cpp:31: ::urtzvisor::GuestManager::instance.guestList[0].id 9941 INDIRECT_INDEX
src/core/GuestManager.cpp:31: ::urtzvisor::GuestManager::instance.guestList[0].id 9941 INDIRECT_INDEX
src/core/GuestManager.cpp:56: ::urtzvisor::GuestManager::instance.guestList[UNK].id 3474 INDIRECT_VAL_INDEX_INDEX
src/core/GuestManager.cpp:56: ::urtzvisor::GuestManager::instance.guestList[UNK].id 3474 INDIRECT_VAL_INDEX_INDEX
src/core/Scheduler.cpp:47: ::urtzvisor::GuestManager::instance.mCurrentGuest 29204 STATIC_VAL
src/core/Scheduler.cpp:47: ::urtzvisor::GuestManager::instance.mCurrentGuest 29204 STATIC_VAL
src/.../cortexA9/PrivateTimer.cpp:44: PrivateTimerRegs::ANONYMOUS.pt_control_reg 29807 STATIC_VAL ADDR:f8f00600
src/.../cortexA9/PrivateTimer.cpp:53: PrivateTimerRegs::ANONYMOUS.pt_control_reg 30599 STATIC_VAL ADDR:f8f00600
src/.../cortexA9/PrivateTimer.cpp:63: PrivateTimerRegs::ANONYMOUS.pt_load_reg 19606 STATIC_VAL ADDR:f8f00600

Source Code Location References Log TypeID

Fig. 21: Instrumentation Pass meta-data for the critical variables depicted in Listing 5.9.

5.7.4 Protecting the Logs using the MMU

Write-protecting Logs, with the MMU, requires auxiliary code to enable writes in benign situ-
ations (i.e., when a log gets legitimately updated). Thus, an extra piece of instrumentation is
inserted to both enable and disable the MMU, as required. Since instrumentation is always in-
serted after a write, the instructions present in Listing 5.11 are inserted after the write and before
any attempt to write into a log. The same set of instructions, with the second instruction in line
2, is used to re-enable the MMU after all log operations. These security sensitive instructions are
added for every log operation. With a disabled MMU the security mechanism itself is left unpro-
tected. This code also shows that the MMU cannot be disabled by accessing memory mapped
registers. Instead, a special interface is used (CP15).

58 :

Listing 5.11: Disabling and re-enabling the MMU In line 2, The ”bic” instruction disables the MMU
while the ”orr” enables it.

1 mrc p15 , 0 , r1 , c1 , c0 , 0
2 b i c r1 , r1 , #1 | o r r r1 , r1 , #1
3 mcr p15 , 0 , r1 , c1 , c0 , 0
4 dsb
5 i s b

5.8 Extracting Target Program’s Memory Layout

Alike the Instrumentation Pass, the TypeAnalyzer usesGCC’s PluginAPI to detect new developer-
defined data types, after program parsing. All developer-defined types are extracted from the tar-
get’s program and stored in a file (Memory Layout in Fig. 18), to be used afterwards by the Rule
Mapper. Classes and structures contain contiguous member fields - excluding padding for align-
ment purposes -, according to the C++ object model [55]. Furthermore, C++ classes are higher
level and feature-enriched versions of C structures. Thus, classes are considered equivalent to C
structures, for the purpose of displaying target’s program memory layout. The information por-
trayed in the Memory Layout file is used by the Rule Mapper software, aiding in rule semantic
validation and in performing arithmetic to detect specific locations in memory. A fragment of the
VMM’s developer-defined data types is depicted in Listing 5.12. Firstly, the keyword struct de-
fines a class or structure data type, followed by the name of the type and size. Secondly, struct’s
Fields are described by a 1) meta-type, a 2) type, a 3) name and optionally a 4) number of array
elements if the type is an array. The record_type meta-type includes all C++ structures and
classes, array_type all array types (a new array type is declare every time an array is declared)
and integer_type only defines the integer type. Lastly, the offset from the beginning of the
structure to a field is specified to calculate the final offset.

Listing 5.12: Partial memory layout file for μRTZVisor.
1 s t r u c t Gues t s i z e 508 [b y t e s]
2 F i e l d > i n t e g e r _ t y p e i n t i d
3 Bytes : 0 B i t s : 0
4 F i e l d > a r r a y _ t y p e i n t * name s i z e 32
5 Bytes : 0 B i t s : 32
6 F i e l d > r e c o r d _ t y p e MemoryConf igura t ion memoryConfig
7 Bytes : 32 B i t s : 32
8 F i e l d > r e c o r d _ t y p e I n t e r r u p t C o n f i g u r a t i o n i n t e r r u p t C o n f i g
9 Bytes : 48 B i t s : 0
10 F i e l d > r e c o r d _ t y p e V i r t u a lMach i n e vm
11 Bytes : 56 B i t s : 32
12 s t r u c t GuestManager s i z e 1020 [b y t e s]
13 F i e l d > a r r a y _ t y p e Gues t* g u e s t L i s t s i z e 2
14 Bytes : 0 B i t s : 0
15 F i e l d > i n t e g e r _ t y p e i n t mCur ren tGues t
16 Bytes : 1016 B i t s : 0
17 s t r u c t : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : s h a r e d _ i n t e r r u p t s s i z e 12 [b y t e s]
18 F i e l d > a r r a y _ t y p e i n t * mBitmap s i z e 12
19 Bytes : 0 B i t s : 0
20 s t r u c t : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t s s i z e 12 [b y t e s]
21 F i e l d > a r r a y _ t y p e i n t * mBitmap s i z e 12
22 Bytes : 0 B i t s : 0

Extracting Target Program’s Memory Layout 59

While the compiler can be programmed to generate this memory layout information every
time it compiles a target program (e.g., μRTZVisor), that is not required, unless source code
changes entail modifications on data types. Data type information is persistent between com-
pilations if nothing else is modified (e.g., target platform). Hence, the automatically generated
memory layout file is manually edited to add additional information about static variables defined
in the source code, which couldn’t be yet gathered by the Type Analyzer. This is a relatively easy
step compared to manually specifying data types. In fact, all VMM’s static variables are depicted
in Listing 5.13. The static keyword defines a static variable followed by its name. Then the
variable’s meta-type and type are specified. In the case of arrays, the number of elements is also
specified.

Listing 5.13: Manually extended memory Layout file to contemplate declarations of static vari-
ables.

1 s t a t i c ANONYMOUS r e c o r d _ t y p e P r i v a t eT ime rReg s
2 At 0 x f8 f00600
3
4 s t a t i c : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : s h a r e d _ i n t e r r u p t s r e c o r d _ t y p e TEMPLATE Bitmap
5
6 s t a t i c : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t s r e c o r d _ t y p e TEMPLATE Bitmap
7
8 s t a t i c : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : h a n d l e r _ t a b l e a r r a y _ t y p e i n t e g e r _ t y p e
9 e l emen t s 96
10
11 s t a t i c : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t _ a t t r i b u t i o n a r r a y _ t y p e i n t e g e r _ t y p e
12 e l emen t s 96
13
14 s t a t i c : : u r t z v i s o r : : GuestManager : : i n s t a n c e r e c o r d _ t y p e GuestManager
15
16 s t a t i c : : u r t z v i s o r : : Hy p e r c a l l s : : h y p e r c a l l _ t a b l e a r r a y _ t y p e i n t e g e r _ t y p e
17 e l emen t s 32

Every time a declared variable has a type resulting from a C++ template instantiation, a new
data type is also manually created. Variables with such types also possess the keyword TEMPLATE
in their definition. This keyword states that a static variable has a type with the same name
as the variable itself. Both ::urtzvisor::InterruptManager::shared_ interrupts and
::urtzvisor::InterruptManager::private_interrupts objects havemanually defined ty-
pes, in the Memory Layout file, with the same name as the variables, as depicted in Listing 5.12.
Automatically generating the complete file, from the compilation process, will be implemented
in future.

5.8.1 Retrieving Static Variable Addresses

The addresses of static variables are modified every time a program is compiled. The memory
location of these variables is necessary to enforce data integrity rules. The GNUNM [121] utility
allows to automatically obtain those addresses, by inspecting symbols in object files. By pro-
viding the target program to NM, this utility is configured to list static variables’ location while

60 :

also decoding (demangling) low-level symbol names into C++ high-level names. The Remote
Monitor uses these addresses to identify the accessed critical static variables in Totally Indirect
Writes. The NM utility becomes part of μRTZVisor’s compilation process so that, if the target
program’s source code is compiled, the addresses are updated and stored in a file. For a specific
compilation of μRTZVisor, the partial output of NM, depicted in Listing 5.14, highlights several
static variables with their respective addresses in bold.

Listing 5.14: Using the GNU NM utility to discover addresses of static variables.
1 . . .
2 001077e0 B urtzvisor::Gic::instance
3 001077e4 B urtzvisor::GuestManager::instance
4 00107 bf8 b u r t z v i s o r : : GuestManager : : Gue s tC r e a t e (u r t z v i s o r : : Gues tConf ig c o n s t &) : : guest_num
5 00107bfc B urtzvisor::Hypercalls::hypercall_table
6 00107c7c B urtzvisor::Hypercalls::instance
7 00107c80 B urtzvisor::InterruptManager::handler_table
8 00107e00 B urtzvisor::InterruptManager::private_interrupt_attribution
9 00107f80 B urtzvisor::InterruptManager::private_interrupts
10 00107f8c B urtzvisor::InterruptManager::shared_interrupts
11 00107f98 B urtzvisor::InterruptManager::instance
12 00107f9c B urtzvisor::MemoryImplementation::instance
13 00107fa0 B urtzvisor::MemoryManager::instance
14 00107fa4 B urtzvisor::PrivateTimer::instance
15 00107fa8 B urtzvisor::Scheduler::instance
16 00107fac B urtzvisor::TzMsgManager::mInstance
17 00109ef8 B urtzvisor::TzMutexManager::mInstance
18 0010a410 B urtzvisor::TzPortManager::mInstance
19 0010 a81c B __bss_end
20 0010 a81c T _ _ i n i t _ a r r a y _ s t a r t
21 0010 a820 B _ i n i t
22 0010 a820 B _ _ i n i t _ e n d
23 . . .

5.9 Abstract rules

Highly expressive data integrity rules can be created as a result of the sophisticated instrumenta-
tion process. The devised rules emerged from developer’s requirements to secure the μRTZVisor
VMM. Nevertheless, the rule set can be extended as required, considering the modularity of
the Rule Mapper software, detailed in Section 5.10.1. The rules applied to μRTZVisor, pro-
vided by the developers, are depicted in Listing 5.15. The first rule, Immutable Vector Element
(immutable_vec _element), write-protects a vector element. Particularly, the first value of an
integer array member named bitmap, associated with the GuestManager instance static vari-
able. This kind of granularity is troublesome to implement using currently available hardware
(e.g., MMUs commonly have page-level granularity). Write-protecting an internal part of a con-
tinuousmemory block [55] is complicatedwithout almost word-level granularitywrite-protection,
except by changing program’s memory layout which could induce new errors. The Immutable
(immutable) rule is a generalization of the former, creating read-only variables. As depicted in
line 2 and 3, class member fields can be write-protected. Entire objects with class or structure
types can also be protected. Thus, greater granularity over field insensitive methods, like WIT

Mapping Abstract to Run-Time Verifiable Rules 61

[91], is provided. Further, the Immutable rule works on basic-type arrays and variables as illus-
trated in line 4 and 5, as long as they are statically defined. Both variables, on those two lines,
are arrays containing function pointers.

Listing 5.15: Abstract rules for μRTZVisor.
1 immutab l e_vec_e l emen t ::urtzvisor::GuestManager::instance . g u e s t L i s t . memoryConfig . b i tmap [0]
2 immutable ::urtzvisor::InterruptManager::private_interrupt_attribution
3 immutable ::urtzvisor::InterruptManager::shared_interrupts . mBitmap
4 immutable ::urtzvisor::Hypercalls::hypercall_table
5 immutable ::urtzvisor::InterruptManager::handler_table
6 immutable ::urtzvisor::InterruptManager::private_interrupts . mBitmap
7 immutable ::urtzvisor::GuestManager::instance . g u e s t L i s t . i n t e r r u p t C o n f i g . b i tmap
8 r e g i s t e r _ v a l _ p a t t e r n ANONYMOUS. p t _ c o n t r o l _ r e g XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX1
9 r a n g e _ i n t ::urtzvisor::GuestManager::instance . mCur ren tGues t 0 1

References whereat rules are enforced have been constructed using a syntax similar to the C++
notation for navigating through class member fields, using the dot operator. These references
constitute the second argument of any rule. As rules are applied to references of static variables,
the ’->’ operator is not used. The ’::’ stands for scope as in C++. Static variables are uniquely
specified using scope and name. In Listing 5.15, static variables are highlighted in bold. The
Register Value Pattern (register_val_pattern) rule is a fundamental rule type for μRTZVisor,
which directly interacts with the hardware via memory mapped registers. This rule uses logged
update register operations whereupon it employs a bit-wise mask to verify individual bits values.
Line 8 presents a case where the first bit of the ANONYMOUS.pt_control_reg reference, mapped
to the a hardware timer control register, must always be one, while the remaining bits can take
any arbitrary value. Internally to μRTZVisor, this rule ensures that the hardware timer, crucial
for scheduling the VMs, is never disabled, counterposing, in such scenarios, possible Denial of
Service (DoS) attacks. The developer has yet to provide a complete set of rules for registers as the
VMM is currently being developed. The final rule type, range_int, is self explanatory, ensuring
that an integer variable stays between a specified range: 0 and 1.

Abstract rule definition is ongoing work, aiming to create a concrete DSL. The above-ment
ioned Instrumentation Pass uses an input file (Plugin Input File in Fig. 19), manually defined
using the references in this set of rules, to capture required write operations, as earlier stated.
Listing 5.9 has the direct mapping from this set of abstract rules to the Instrumentation Pass input
file. This reduces the required instrumentation inserted into the target program.

5.10 Mapping Abstract to Run-Time Verifiable Rules

Hypervisor developers are required to supply data integrity rules, ensuring the prerequisites for
VMM software safeguard. The former rule set is considered abstract considering it’s not con-
structed in C++, therefore it’s non-compilable. Instead, a primitive abstracter language is used

62 :

and then, rules are automatically translated to C++. Calling this language a DSL would be an
overstatement due to its simplicity. The mapping of abstract rules to C++ is performed by the
Rule Mapper entity, illustrated in Fig. 19. The C++ rules constitute the most important part of
the Remote Monitor. Besides the rules, this process demands a target program’s memory lay-
out containing data structures and existing static variables. In the Rule Mapper software, this
layout generates an in-memory data model of the current target program - here corresponding to
μRTZVisor’s structure and class definitions and static variables -, allowing to semantically vali-
date abstract rules, (e.g., check if a rule applies to an existing static variable). Another essential
part of this process is to retrieve static variables’ addresses after VMM compilation. These ad-
dresses are crucial to determine the static variable accessed by any Totally Indirect Write. GNU’s
NM utility is used for this purpose, as detailed in 5.8.1. At last, instrumentation meta-data is
paramount, as it provides information about captured data, originated from the compilation of
the target program.

5.10.1 An Overview over the Code Generation Process

In the Rule Mapper, code generation consists of two major steps: preamble creation and rule
content generation. The former can be further subdivided into rule attribution and preamble code
generation. Rule attribution consists of analyzing the instrumentation meta-data, generated by the
Instrumentation Pass (e.g., Listing 21), to infer which rules apply to each possible log entry. So far,
only one rule can be associated with a log entry. Preamble code generation consists of generating
auxiliary code that allows rules to be applied to Direct, Partially Indirect and Totally Indirect
Writes. Depending on the access type, different verifications must be performed to detect the
exact memory location where a write has occurred. For example, with Partially Indirect Writes,
each array element must be unrolled into individual locations for analysis by rules that work
upon vector elements (i.e., the Immutable Vector Element rule). Lastly, rule specific integrity
verifications can be added in the rule content generation step.

In the first stage, rule attribution, every developer-defined abstract rule is compared against
every log entry, listed in Fig. 21, to conclude where rules are applicable. Rules are compared
to log entries by matching references from rules to those on log entries (please refer to Listing
5.15 and Fig. 21). Essentially, every possible log entry is sequentially analyzed, to determine
what rules are applied to it. Ultimately, every rule will be related to a log occurrence, since the
instrumentation was inserted based on the abstract developer-defined rules and every possible
log entry corresponds to a write operation to a reference from one of those abstract rules or to
non-sensitive fields of critical static variables.

Mapping Abstract to Run-Time Verifiable Rules 63

Preamble code generation is possibly the most complex stage of this process. This is due
to the three write types, formerly defined in Section 5.7.1: Direct, Partially Indirect and Totally
Indirect write operations. References corresponding to Direct Writes (i.e., LogType is prefixed
by STATIC_ in Fig. 21) access a statically known memory address; thus, only the Value Log is
updated when a write occurs. The log entry itself is uniquely identified by the ID. The preamble
for any Direct Write will be similar to Listing 5.16. The generated preamble code is highlighted
in bold: a conditional statement identifying the Direct Write by the ID.

Listing 5.16: Preamble code generated to enforce data integrity rules in a Direct Write.
1 if(ID == 29204) {
2 / / Rule l o g i c below t h i s comment
3 i f (* ((i n t *) p t r _ v a l) >= 0 && * ((i n t *) p t r _ v a l) <= 1) {
4 r e t u r n t r u e ;
5 }
6 }

Partially Indirect Writes have a fixed base address for a static variable and an offset of one or
more integer indexes. The preamble code produced for a write to ::tzvizor::Hypercalls::
hypercall_table, a thirty-two element integer pointer array, is depicted in Listing 5.17. This
can be easily concluded by analyzing Fig. 21 and matching the IDs. By inspection of Fig. 21, it
can also be concluded that an unknown integer index is also stored to the Address Log when this
writes occurs. This value is used in preamble code generation to provide bound checking.

Considering that hypercall_table cannot be modified when the VMM is executing, if any
log occurs with an ID equal to 28345, the immutable rule defined in Listing 5.15 is enforced and
the Remote Monitor will signalize an error. Nevertheless, rules are only inserted in the next stage.
It’s important to notice that the size of the hypercall_table array is provided by the extended
memory layout file (please refer to Section 5.8) supplied to the Rule Mapper software, since this
variable is a C++ static array.

Listing 5.17: Preamble code generated to enforce rules in Partially Indirect Writes.
1 if(ID == 28345 && index1 >= 0 && index1 <= 32) {
2
3 r e t u r n f a l s e ;
4
5 }

As aforementioned, this implementation supports until two levels of unknown integer indexes,
being able to provide bound checking to an array inside an array. This can be seen in Listing
5.18, as the write operation, with an ID of 29109, corresponds to this exact scenario. No rules
are being applied to this write thus, the code on Listing 5.18 just performs bound checking by
default. Ideally all indirect accesses, partial or total, that can access critical variables must be
bound checked as they can be overflowed and modify critical variables with spurious values and

64 :

go unnoticed. Inside structures and classes this problem is specially dangerous due to the data
contiguous nature. This problem is further discussed in Section 5.13.

Listing 5.18: Preable code for Partially Indirect Accesses with two indirections in the form of inte-
ger indexes.

1 if(ID == 29109 && index1 >= 0 && index1 <= 2) {
2 if(index2 >= 0 && index2 <= 3) {
3 return true;
4 }
5 }

Totally Indirect Writes are similar to Partially Indirect Writes, differing only by not having a
fixed base address for a static object. This requires to actually verify memory addresses, instead
of just indexes, since the accessed static variable is unknown. Furthermore, this write type can
also contain integer indexes as above. In Listing 5.19, the preamble code for a Totally Indirect
Write, identified by an ID of 31833, is highlighted in bold.

Listing 5.19: Preamble code generated for Totally Indirect Writes. Unrolling two vectors due to lack
of information about the indexes.

1 if(ID == 31833 && index1 >= 0x1077e4 && index1 <= 0x107be0){
2 if(index1 >= 0x1077e4 && index1<= 0x1079e0){
3 int addr = 0x1077e4;
4 if(index1 >= addr + 0x24 && index1<= addr + 0x28){
5 r e t u r n f a l s e ;
6 }
7 if(index1 >= addr + 0x28 && index1<= addr + 0x2c){
8 r e t u r n t r u e ;
9 }
10 if(index1 >= addr + 0x2c && index1<= addr + 0x30){
11 r e t u r n t r u e ;
12 }
13 }
14 if(index1 >= 0x1079e0 && index1<= 0x107bdc){
15 int addr = 0x1079e0;
16 if(index1 >= addr + 0x24 && index1<= addr + 0x28){
17 r e t u r n f a l s e ;
18 }
19 if(index1 >= addr + 0x28 && index1<= addr + 0x2c){
20 r e t u r n t r u e ;
21 }
22 if(index1 >= addr + 0x2c && index1<= addr + 0x30){
23 r e t u r n t r u e ;
24 }
25 }
26 }

Although this access can write to two distinct static variables, as depicted in Fig. 21, only the
preamble for the first (::urtzvisor::GuestManager::instance.guestList[UNK].memory
Config.bitmap[UNK]) is depicted here, due to lack of space. This static variable (::urtzvisor
::GuestManager::instance) has a rule, available in line 1 of Listing 5.15, protecting the first
element of the bitmap array, associated with the static variable, against write operations. The
memory layout file is used to calculate the offsets which allow to unroll array elements into
individual code sections where rules can be applied with array element granularity. Two vectors,

Mapping Abstract to Run-Time Verifiable Rules 65

guestList and memoryConfig with 2 and 3 elements, respectively, are being decomposed to
individual elements so that the Immutable Vector Element rule can be applied to the first element
of bitmap. Without a complete memory layout of the target program this would not be possible.
The code in Listing 5.20 also presents a Totally Indirect Writes but, unlike the previous, an array
index is logged and used to avoid any vector element unrolling. In this case, memory addresses
are used just to detect the static variable.

A question arises as why not always log integer array indexes to avoid performing the opera-
tion depicted in Listing 5.19. Optimally, that would always the be case however, the Instrumenta-
tion Pass is restricted on the data it can log, since it workswith an intermediary code representation
of the target program.

Listing 5.20: Preamble code for a Totally Indirect Write without vector unrolling.
1 if(ID == 3474 && index1 >= 0x1077e4 && index1 <= 0x107be0){
2 if(index2 >= 0 && index2 <= 2){
3 return true;
4 }
5 }

The last step of code generation inserts the actual C++ code, equivalent to the abstract rules,
into the Remote Monitor program. In other words, it accordingly fills the conditional statements,
highlighted in bold in the previous listings, that denote locations where rules must be inserted.
In an abstract way the Rule Mapper tries to provide a modular architecture where every rule is
represented by its own class and provides its own code. Thus, rule’s logic is separated from the
remaining code. The inherited class Rule is used to verify if a rule must be enforced against log
entries in the Instrumentation Pass meta-data file (Fig. 21), in a generic way using the verifyAp-
plicability method (Fig. 22). This class does so by comparing references to variables, on each
log entry, with the references in the definition of abstract rules (Listing 5.15). As it can be seen
in the Fig. 22, every rule has its own logic aggregated in individual classes, making it easy to
extend when necessary.

Immutable Vector Element & Immutable Rule

The generated code for the Immutable Vector Element rule is as simple as a return false;
statement for vector elements that cannot be written. No code is generated for allowed writes
since, by default, the preamble code generation procedure allows any write to variables whose
boundaries are in check. This rule identifies where the square brackets are used in the defini-
tion of a rule of this type (see Listing 5.15), and where, in the references of each entry in the
Instrumentation Pass meta-data file (Fig. 21), it must block the access.

66 :

Fig. 22: UML class diagram depicting rule’s architecture in the Rule Mapper software. The veri-
fyApplicability method tests if a rule is to be applied to a specific reference. The apply method
contains the logic or code associated with each rule. RuleRegValPattern and RuleRangeInt have
internal members for their arguments.

The Immutable rule is a generalization and simplification of the previous rule. Likewise,
it introduces return false; statements in the preamble. However, since a declaration of an
Immutable rule cannot contain square brackets (i.e., references to array elements to be protected),
different array elements don’t need to be discriminated.

Register Value Pattern & Range Integer Rule

This rule is straightforward, it automatically generates a bit mask to ensure that the developer-
provided mask, provided in the abstract rule definition (see Listing 5.15), holds on every written
register value. It then applies that mask to an ”if” conditional statement, returning true if the
conditions are met or returning an error if not.

The Range Integer rule is similar to the previous one as it also provides a similar if statement
to verify if written integer values are inside a specific range. This range is also provided in the
abstract rule definition.

5.10.2 The Remote Monitor

The Remote Monitor is standalone bare-metal application, distinct from the hypervisor and exe-
cuting in a separate core from the VMM software. As formerly explained, this application reads
both the Address and Value Logs, extracting data for rule enforcement, as required. The Value
and Address Logs may not be written at the same time; however, they are synchronized since if
one of the logs is not written, an empty entry is inserted. The Remote Monitor uses polling to
detect unprocessed log entries, as depicted in Fig. 23. When the Write Pointer differs from the
Read Pointer a log entry is examined and, based on the value of the Code field, data from the

Preparing the Final Executable 67

Value Log, Address Log or both is analyzed. Yet, if desired, power efficiency can be enhanced by
using interrupt-driven software instead of polling or by applying other optimizations. As new log
entries are identified, a verification function - incorporating all data integrity rules - is executed.
As new log entries are identified - for either buffer - a verification function, incorporating all data
integrity rules, is executed:

bool verifyRules(int ID , uint32_t* ptr_add,void * ptr_val);
The first argument of the above function prototype is of uttermost significance. The ID iden-

tifies the log entry being analyzed, and triggers the execution of the individual rules. Subsequent
arguments are solely pointers to the Address Log and Value Log with an offset according to the
value of the Read Pointer. The results of the previous section allow to understand the bulk of this
function. The contents of this function are automatically generated by the Rule Mapper (Fig. 19)
from the abstract rules defined in Listing 5.15. The code is fully available in appendix A.

Value
&

Address Log

 0 1 2 3 4 5

6

 7

 8

 9 Write

 pointer

Read Pointer

 0 1 2 3 4 5

6

 7

 8

 9 Write

 pointer

Read Pointer

Write Pointer != Read Pointer

ID

Log Entry

Code ... Addr Addr Addr

Value Log Address Log

Value
&

Address Log

Fig. 23: Remote Monitor’s polling process.

5.11 Preparing the Final Executable

The Remote Monitor and the VMM executables must be linked into a single binary image. (Fig.
19). A new section, .myremote, is included in the μRTZVisor’s object file, using the GNU obj-
copy utility [122], at the address 0x03200000. The Remote Monitor code begins at the previous
address and can occupy as much as 1 MB. The platform’s memory resources are large enough to
include this new section, having a 512MB DDR3 memory. Presently, each VM occupies a max-
imum of 4 MB and, in a system configuration with two VMs, there is more than half a gigabyte
available; thus, memory constraints are close to none. However, the section for the Remote Mon-
itor can be shortened and/or reallocated with ease, by providing the desired size and address to
the objcopy utility. The filled rectangles, in Fig. 24, depict MMU write-protected memory slots:

68 :

the logs and the Remote Monitor code. Logs are stored in the top 64 KB section of the OCM and
write-protected with the MMU, which has a maximum granularity equal to the size of this section.
Regarding TrustZone, only the Secure MMU interface (pleaser refer to Section 2.2.2) is config-
ured to protect these memory regions, since an attacker must violate the VMM software to access
this sensitive memory regions and the VMM is protected by the proposed Data Integrity security
mechanism (complemented with a CFI implementation). This extra layer of protection tries to
mitigate attacks to the μRTZVisor VMM targeting the security mechanism, providing isolation.

0x03200000

0x04000000

0x08000000

0x0C000000

0x00100000

VMM

...

0xFFFF0000

VM_3

VM_2

VM_1

VM_3

VM_2

VM_1

VMM

...

0xFFFF8000

0xFFFF0004

.myremote

Value & Address
Log

Remote Agent

Value Log

Address Log

Write Ptr

Fig. 24: Example of memory map for a hypothetical system. A memory map without the security
mechanism is depicted on the left. On the right, the memory map is complemented with the code
of the Remote Monitor and the logs.

The structure of the Value & Address Log section consists of one pointer, whose value gets
updated when a new log entry is inserted, and the logs. Logs’ read pointers are internal to the
Remote Monitor, as the VMM does not check if the a log is full before writing. Until this point,
there have been no problems with log fullness but that can change with bigger code and more
critical variables to monitor. In that case, instrumentation or log sizes must be adjusted. The
Value Log starts after theWrite Pointer and ends at 32KB of the 64 KB available. The remaining
memory belongs to the Address Log. Depending on requirements, log size and position can be
easily adapted.

5.11.1 Starting the Remote Monitor

In the current application, the Remote Monitor runs in the second of a two core CPU. The VMM
software runs on the primary core, which must bootstrap the second one. μRTZVisor code was
edited for this purpose. This causes no security concerns when relying on secure boot, which is

Completing Data Integrity with CFI 69

being developed at the time of writing. As stated in the threat model, the secure boot is consid-
ered a trustworthy component. The Remote Monitor is also enabled only after all initializations
are performed and before executing any guest OSs, therefore ahead of interactions with exterior
entities. This process consists of clearing buffer pointers and using an interrupt-like instruction
to wake up the second core and start the enforcement of the data integrity rules.

5.12 Completing Data Integrity with CFI

Data Integrity provides protection over critical data, including code-pointers. However, by itself,
it is not sufficient to detect all control-hijacking attacks. At the present, every VMM indirect
branch uses code-pointers already protected, by this Data Integrity method. Due to strict pro-
gramming guidelines, C++ polymorphism is not allowed resulting in far less indirect branches.
The stack is the principal attack surface for control-hijack attacks, as it is left unprotected. For
this purpose, Data Integrity is complemented with the work carried out in another project, which
aims to detect illegal control-flow transfers (i.e., enforce CFI). By detailing its implementation,
the goal is to understand the close association and dynamics between these two approaches.

Alike Data Integrity, CFI uses compile-time instrumentation to trace control-flow transfers.
Using a GCC plug-in, unique labels are inserted on function invocations, prologues and epilogues.
At run-time, labels are logged in a circular buffer, when the processor traverses the instrumented
code. Note that only indirect function calls are labeled and logged. Instrumentation before func-
tion’s invocation grants coarse-grained protection against JOP [71]. Function’s epilogue is instru-
mented to avoid ROP [72]. To ensure that the invoked function executes from the beginning, a
label is inserted in the prologue. The different checkpoints where instrumentation is inserted are
all depicted in Fig. 25. While Data Integrity uses the GIMPLE IL to detect memory writes to
critical static variables, this CFI implementation detects sensitive control-transfers.

The CFI plugin also stores meta-data in an auxiliary file, mapping inserted labels to their
position in the code. A given position is defined by the name of the function it belongs to and
a number, creating an unique identifier. This identifier can correspond to function invocations,
prologue or epilogue. The auxiliary file, resulting from compiling the code in Fig. 25, is depicted
in Listing 5.21. Analyzing this file and FuncA instrumentation, a label with value 4 was inserted
in the prologue, characterized by the FuncA - 1 identifier (identifiers are highlighted in bold).
In the same way, the FuncA - 2 identifier states that the epilogue was instrumented with a label
with value 5. FunC is an alternative function for the indirect branch invoking FuncA. The main
- 2 identifier corresponds to this indirect branch instruction present in the main() function.

The CFG for this code is available in Fig. 26, and in textual form in Listing 5.22. The
CFG can be created before compilation as function’s identifiers <funtion_name> <integer>

70 :

...

Calle funcA

pop lr

[lr]

r0
funcA ...

mov r8, #label5
str r8, log_pos

funcA:

0x00012

Calle funcB

pop lr

[lr]

...

mov r8, #label7
str r8, log_pos

funcB:

0x00F0C

0x0F08: bl 0x1234
0x0F0C: ...

label1

label2

label4

...

CFI Log (Circular Bu�er)

mov r8, #label4
str r8, log_pos

mov r8, #label6
str r8, log_pos

0x0000: mov r8, #label2
0x0004: str r8, log_pos
0x0008: bl r0
0x000C: ...

main()

Fig. 25: Example code instrumented for CFI. Execution starts in main(). Then, it is transfered to funcA
in 0x0008, via an indirect branch. After a few instructions, funcB is executed. Meanwhile, on
the left, the CFI Log is being filled as the code executes.

Listing 5.21: CFI meta-data file for the scenario presented in Fig. 25.
1 main 1 − 1
2 main 2 − 2
3 main 3 − 3
4 FuncA 1 − 4
5 FuncA 2 − 5
6 FuncB 1 − 6
7 FuncB 1 − 7
8 FuncC 1 − 8
9 FuncC 2 − 9

follow a logic: the prologue has number 1, invocations follow incrementing the <integer> and
the last number corresponds to the epilogue. For the function currently being instrumented, the
<function_name> field in the identifier remains the same. The most important part of this CFG
is line 2, where the targets, FuncA and FuncC, for the indirect branch instruction in main() are
defined. The remaining of this CFG only states that function’s prologue must precede their re-
spective epilogue - ensuring that functions start executing from the very beginning - and that
FuncA must precede FuncB, while the latter must execute beforeMain’s epilogue.

Listing 5.22: CFG, in textual form, for the code in Fig. 25.
1 main 1 − main 2
2 main 2 − funcA 1 − funcC 1
3 funcA 1 − funcA 2
4 funcA 2 − funcB 1
5 funcB 1 − funcB 2
6 funcB 2 − main 3
7 funcC 1 − funcC 2
8 funcC 2 − funcB 1

Limitations 71

1 2 3
4 5

6 7
8 9

Fig. 26: CFG, in graphical form, for the code in Fig. 25.

CFI executes simultaneously and continuously with Data Integrity, in the second core. Using
the same log mechanism, CFI labels are written to the same MMU protected read-only memory
region, located in the same 64KB section where the Data Integrity logs are stored. Thus, the Value
& Address Log memory region, depicted in Fig. 24, is updated as portrayed in Fig. 27. Using
the MMU to restrict access policies, on log data, requires extra instrumentation to be inserted to
disable and re-enable the MMU every time a log update occurs, alike the proposed Data Integrity
method.

0xFFFF8000

0xFFFF0004
Write Ptr

Value Log

Address Log

0xFFFFB000
CFI Log

Fig. 27: Log address map updated with CFI Log.

Benefiting from the same protection mechanisms as Data Integrity, CFI postpones the control-
flow integrity verification, using the logging mechanism. Deferring the verification is only pos-
sible due to the W⊕E policy enforced upon the code of μRTZVisor. This policy ensures that all
executable code is instrumented, disabling code-injection attacks. Isolated in the second core,
CFI uses logged values to ensure that control-flow obeys the aforementioned CFG.

5.13 Limitations

While this section thoroughly describes the adopted technique, it is necessary to clarify some
limitations and provide guidance on how to outweigh them. Indirect Writes are, logically, the
most problematic type of access to monitor. Regarding Direct Writes, the only verification re-

72 :

quired is for the written value. For indirect writes, both addresses and value must be monitored
1) to detect the accessed memory location and 2) perform the data integrity check. The discussed
indirect write types can be over or under-flowed, granting illegal access to prohibited memory
regions. This is an acknowledged problem, which results from the weak C/C++ type system; how-
ever, these unsafe languages are still used, due to their benefits in terms of flexibility. Although,
while this problem grants viability to the suggested approach, it can also be its downfall. Envision
a non-monitored indirect access to a global negligible static variable, this could undermine all the
monitoring efforts. For instance, an ”indirect attack” corrupting this variable to modify other
critical monitored static variables could go unnoticed. To solve this question, two immediate so-
lutions arise. The first is to monitor all target program’s indirect accesses (partial and total) with
instrumentation and perform bound checking, in the Remote Monitor. This is a non-scalable ap-
proach since, depending of the coding paradigm and code size, the target program could become
bloated with instrumentation, creating significant performance overhead. The second solution
is to move all critical static variables to a hardware write-protected memory section and insert
instrumentation, allowing them only to be written by benign accesses. This solution also has a
drawback, since it requires all indirect accesses - to critical static variables - to be instrumented
for benign updates. Please note that when working with structures and classes, not all member
fields have to be critical, despite being in the same static variable. Notwithstanding, it limits the
amount of inserted instrumentation since only accesses that need to modify a critical static vari-
able need to be instrumented. To understand the inherent problem associated with this solution,
look at the following example. A static variable with type class A is monitored for writes to a
critical member variable B but not to variable C. In this case, any indirect access to variable C
would have to be monitored despite its non-criticality, since any memory corruption in that access
could compromise the other critical variable B. This is due to the continuous memory layout of
classes and structures in C/C++ and the lack of hardware to protect memory at the required level
of granularity. To provide field-sensitive data integrity, the second approach was implemented.

Alike many hypervisors, μRTZVisor in partially implemented in assembly. This code can-
not be instrumented using this mechanism. As of now, inline assembly code must be manually
instrumented, especially if it can create a security hole.

5.14 Summary

This chapter presented a method to instrument μRTZVisor in order to log writes performed upon
sensitive variables. The data is then used by the Remote Monitor which enforces data integrity
rules translated from an abstract specification to C++. This is a complex process involving lots

Summary 73

of auxiliary files whose generation can be, to a certain degree, even more automated. The next
chapter will focus on automation and modeling.

Despite being specifically designed for μRTZVisor, the proposed approach can be adopted
by other software. This countermeasure was designed for a software heavily reliant on static
data; thus, software using dynamic data might need to extent this protection scheme. Both the
design of the target application and the rules devised can impact performance. As a consequence
of the copy-based mechanism, data-intensive applications can be bottlenecked by this approach.
Special attention must be provided to the devised data integrity rule set, as it should only contain
the set of rules necessary to ensure target’s data-plane integrity.

C 6

Data Model and Code Generation

Another major part of this work is associated with ontologies and model-driven pro-
gramming. In this chapter, information related to the Data Integrity security mecha-
nism is translated to an ontological meta-model to uniform knowledge representation.
Following, integration with the SeML infrastructure is discussed to present how its
code generation capabilities are leveraged to automate the deployment of the security
mechanism.

6.1 Introduction

Ontologies used as knowledge bases provide a standard for data representation and sharing, eas-
ing maintainability. Data used in the method introduced in the previous chapter operates upon
data associated to μRTZVisor, mostly stored in implementation specific files using non-standard
representations. This limits the usage of information to the developed security mechanism.

The main goal of this chapter is to create a meta-model using ontologies to represent the data
plane ofmultiple programs, alongside information required for the Data Integrity security counter-
measure, introduced in the previous chapter. The devised meta-model is closely related to GCC’s
since this work is partly associated with it. GCC’s meta-model is complemented and adapted
to meet model’s requirements. Ultimately, conceived models, containing target program’s data
plane information, will be automatically translated to the text representations, required to add
Data Integrity to μRTZVisor. The ontological meta-model is inserted into the SeML model-
ing framework for this purpose, generating code from ontological models. At the same time,
ontology-based models are subject to semantic validations provided by meta-model axioms and
applied by the reasoner. SeML IDE (Front End) is not used as this information must be provided
by the developer for a specific implementation thus, it is non-modifiable by DSL users aiming to
create systems based on μRTZVisor.

Firstly, this chapter will focus on themodeling efforts. Informationwill be provided following
the structure depicted in Fig. 28. Parts of the meta-model (M2), and model (M1) of μRTZVisor

75

76

will be simultaneously scrutinized with some examples, starting with variable definition. Then,
declaration of types will be considered, followed by references. Lastly, abstract rules are ana-
lyzed, which will be an essential addition to the meta-model. References refer to the usage of
variables throughout the code and can be thought of, despite not being, as the last abstraction level,
M0, being instances of a model containing variable and type definitions. The chapter ends dis-
cussing the integration with the SeML infrastructure and code generation through model-driven
programming.

Fig. 28: Structure of the modeling efforts.

6.2 Variable Declaration

Variables declared in the source code can be translated into a model using the developed meta-
model. Although not complete, Fig. 29 depicts some parts of a model and the meta-model,
regarding variable definition. The kindOf and is-a relationships denote subsumption and instan-
tiation, respectively, as explained in Section 2.5.1. For instance, ”hypercall_table is a statically
defined array with integer type and scope ::urtzvisor::Hypercalls” and ”instance is an object of
type GuestManager” is knowledge that can be intuitively inferred from this network. Code vari-
ables are translated to the model as instances of StaticVariable, which is defined as a specific type
of Variable. StaticVariables must have a Type and scope. The latter can be inherited from the
RecordType a variable belongs to (i.e., when static variables are defined inside C++ classes), or
directly from aNamespace if variables are defined there instead. hypercall_table is defined inside
the Hypercalls class thus, inherits the scope of the class itself: the urtzvisor namespace. Type is
given by the staticHasType relationship that connects StaticVariable individuals to Type individ-
uals. The Integer concept obligatorily contains only one individual, being a C++ basic type alike
float or double. Arrays are distinguished from other objects by the arrayHasType relationships
and other distinct data properties.

Every static variable must have a type and scope. In Protégé, such restrictions are applied
as depicted in Fig. 31. While the reasoner does not present any errors, the infrastructure where

Type Declaration 77

StaticVariable

instance

Variable

RecordType

Type

kindOf kindOf

is a

Guestmanager

is a

varHasScope

staticHasType

staticHasType

hypercall_table shared_interrupts

is a
is a

integer

urtzvisor global Namespace

arrayHasType

Hypercalls

varHasScope
is a

hasScope

hasScope hasScope

is a

is a

varHasScope

integer

is a

Type

kindOf

BasicType kindOf

Fig. 29: Semantic network with a partial conceptualization of C++ variable declarations. The col-
ored dashed line separates the model (individuals) from the meta-model (concepts).

this ontology is inserted does. Another semantic rule is that a variable identifier is unique and
corresponds to a name plus scope. Unfortunately, this rule cannot be yet constructed due to the
nature of this ontology for scope definition.

Fig. 30: Semantic rules created using Protégé.

6.3 Type Declaration

Types are subdivided into three subtypes: BasicType, RecordType and TemplateInstantiatedType,
as depicted in Fig. 31. The first characterizes basic types from programming languages (e.g.,
string, float and double) while the second characterizes user-defined data types (e.g., classes and
structures). Individuals of TemplateInstantiatedType are instantiations of C++ templates [123].
User-defined classes (i.e., individuals of RecordType) connect to their member fields through the
hasField object property, a sub-property of isComposedOf. Therefore, FieldDeclaration aggre-
gates every field belonging to classes and structures. Furthermore, hasField possesses an inverse
property: isFromStruct. The GuestManager is a C++ class with, at least, mCurrentGuest and
guestList as members. These are individuals of FieldDeclaration. mCurrentGuest is an integer
and has an offset of 1016 bytes from the beginning of the GuestManager class, guestList has an

78

offset of zero (not depicted in Fig. 31) since it is the first field defined in theGuestManager class.
guestList is an array member with two Guest type elements. The element number is provided by
the arraySize data property and the type of the elements by the arrayFieldHasType object prop-
erty. shared_interrupts variable’s type is an instantiation of a C++ template: SharedInterrupts.
Every static variable whose type is a template instantiation is provided a new type. This occurs
as, usually, C++ templates modify the memory layout.

TemplateInstType

StaticVariable

RecordType

Type

GuestManager

integer

guestList

integer

kindOf

BasicType

mCurrentGuest

SharedInterrupts

FieldDeclaration

Guest

kindOf
kindOf

is a

kindOf

shared_interrupts

is a is a is a

is a
is a

is a

arrayFieldHasType staticHasTemplateType

�eldHasType

hasO�set

1016,0

hasField
hasField

isFromSruct

isFromSruct

2

arraySize

Fig. 31: Semantic network with a partial conceptualization of C++ type definitions.

In terms of semantics, individuals of FieldDeclarationsmust contain an offset as a data prop-
erty and have to belong a RecordType or TeamplateInstType, through the hasField object prop-
erty. Type’s individuals must always have a size and scope, similarly to a C++ program. Finally,
FieldDeclarations, corresponding to arrays and internal to structures or classes, must point to a
data property with the number of elements. At present, only static variables are considered so
dynamic-sized arrays are not supported.

6.4 References

References are mentions to variables, either for the purpose of updating or reading them. As
aforementioned, an alternative way to interpret references is as the conception of a new fictitious
model, using the two introduced above (Variable and Type declaration) as meta-models, which is
not the case. As of now, references are divided into component and array. The former comprises
of accesses to FieldDeclarations (i.e., class members) and StaticVariables. The latter consists
of accesses to array class members. Beyond the conceptual distinction, references to arrays can
possess a data property denoting an index. A special object property, references, is used by both

References 79

component and array references to connect them to a specific variable or class member. Further-
more, chains of multiple references can be created to portray complex accesses (e.g., accessing
fields of classes inside classes, and so on). There is a sequential order associated with references,
represented by the preceding object property. If a references precedes another, it comes first in
the modeled reference.

StaticVariable

instance

ComponentRef

references

guestList memoryCon�g

kindOf

FieldDeclaration

bitmap

cref2 cref2_2aref2_1 aref2_3

ArrayRef

Reference

references references references

precedes precedes precedes

is a

is ais a

is a

kindOf

is a is a is ais a

immutable_vec_element ::urtzvisor::GuestManager::instance.guestList.memoryCon�g.bitmap[0]

0

hasIndex

Fig. 32: Semantic network with a partial conceptualization of C++ references.

The reference of the immutable_vec_rule rule is translated into a model, as depicted in Fig.
32. Instance is associated with cref2 via the references object property. The remaining references
attach to fields of instance alike. This rule requires an array index in its reference, provided by the
hasIndex data property. The meta-model provides sequentiality to references with the precedes
object property.

References possess several semantic restrictions. Primarily, when a reference precedes an-
other, the latter must reference a member/field of the previous reference’s class/ structure. In
other words, references can only be created for class members, similarly to variable accesses in
C++. An SWRL rule was devised to enforce this restriction, as depicted in Listing 6.1. Firstly,
two OWL superproperties are defined, namely, referencesType and referencesFieldFrom.
The former connects a reference, on the LHS of a precedes object property, to the type of the indi-
vidual it points to (i.e., the type of a StaticVariable or FieldDeclaration). The latter, gets the type
of the class a field belongs to, on the RHS of a precedes object property. If both superproperties
point to the same individual (i.e., the same Type individual), it means that the reference on the
RHS of the precedes object property references to a field internal to the Type of the first reference.
If the Type is not the same, an error, associated with the second reference, is generated in SeML
with the following help text: ”referencing a field which does not belong to a structure”.

80

Listing 6.1: SWRL rule enforcing that only references to internal class members exist.
1 r e f e r e n c e s (? r1 , ? fd) ^ p r e c e d e s (? r1 , ? r2) ^ r e f e r e n c e s F i e l d F r om (? r2 , ? t a r g e t 2) ^ r e f e r e n c e s (? r2

, ? fd2) ^ r e f e r e n c e sTyp e (? r1 , ? t a r g e t) ^ d i f f e r e n t F r om (? t a r g e t , ? t a r g e t 2) −> au togen0 :
h a sE r r o r (? r2 , ” r e f e r e n c i n g a f i e l d which doesn ’ t be long t o s t r u c t u r e ”)

6.5 Abstract Rules

Abstract rules are elucidated in Section 5.9. Rule types are divided into specific concepts, in the
meta-model, deriving from an abstract Rule concept. Listing 5.15 contains the textual representa-
tion of the set of rules enforced on μRTZVisor, which are partially translated to the model in Fig.
33. Logically, individuals derived from Rule (e.g., RangeInt) are associated with a constraint that
must be enforced at run-time to grant data integrity to critical static variables. Wrapping up Fig.
32, rules are linked to references via specific object properties, derived from an abstract hasRefer-
ence property, as depicted in Fig. 33. Rule1, instantiated from RangeInt, has two data properties
denoting the maximum and minimum values an integer variable accepts. Similarly, the regval-
pattern1 rule, an instantiation of RuleRegPattern, has its own pattern, stored in the hasPattern
data property.

Rule

rule1

0

Immutable

ImmVecElement

RangeInt RegValPattern

imvec1

cref3

cref9

imm regvalpattern1

cref2 cref1 1 XXXXXXXXXXXX...1

kindOf
kindOf

kindOf

kindOf

is ais ais a

is a

ImmutableHasReference hasReferencehasMinVal hasMaxValImmVecEleHasReference hasPattern

regValPtrnHasReference

Fig. 33: Semantic network with the conceptualization for the abstract data integrity rules.

Semantically, rules cannot be applied to the same reference. Restricting rules to point to dif-
ferent references is a step towards having a rule per static variable or class member, as required
by the security countermeasure. Nevertheless, this is not ideal since two different chains of ref-
erences can point to the same spot. However, due to the meta-model organization and current
framework limitations, the SWRL code in Listing 6.2 is the closest approximation. The RangeInt
and RegValPattern rules possess data properties with attributes essential to them. In both cases,
restrictions are enforced to guarantee the existence of such properties.

Code Generation 81

Listing 6.2: SWRL code to ensure a reference only belongs to an abstract rule.
1 Ru l eRe f e r e n c e s (? d2 , ? r e f 2) ^ sameAs (? r e f 1 , ? r e f 2) ^ Rule (? d2) ^ Ru l eRe f e r e n c e s (? d , ? r e f 1) ^

Rule (? d) −> au togen0 : h a sE r r o r (? r e f 1 , ” one r e f e r e n c e can on ly have one r u l e ”)

6.6 Code Generation

Integrating the above depicted modeling efforts into the SeML infrastructure further allows to
leverage its code generation capabilities, translating ontological model elements to a textual rep-
resentation or implementation artifacts. As previously stated, the formerly introduced security
solution requires auxiliary files to perform its operations. Firstly, the Instrumentation Pass calls
for a list of critical variables (Listing 5.9), alongside a memory layout of the VMM, containing
both data structures and static variables (Section 5.8). A points-to file (Listing 5.10), contain-
ing information regarding indirect accesses, is also required. However, as of now, this file must
be manually created, as the information it contains is not yet modeled. At last, to create the C++
rules, a file with a set of abstract rules (Section 5.9) and the same memory layout file are required.

The main contribution of modeling dwells in automating, to some extent, the deployment of
the security countermeasure. Two separate external tools were developed to perform code gener-
ation. The procedure used to generate the code is detailed in Section 4.2.1. The first tool analyzes
references and translates abstract rules from the model representation to text while automatically
generating the input file to the instrumentation phase. Monitored critical variables can be in-
ferred from the abstract rules. The second tool generates the memory layout file. The generated
files from μRTZVisor’s ontological model can be visualized, in full, in appendix B. Knowledge
associated with the VMM is specified under the same language. At the moment, the model is
only being used to generate implementation files for the security countermeasure. Nevertheless,
using other external tools, different code can be generated. Constraining developers to a unique
language diminishes engineering efforts, easing re-usability of information.

C 7

Evaluation

A general approach to evaluate the effectiveness of a security countermeasure is to
analyze how to subvert it, from an attacker’s perspective. The first part of this chap-
ter corresponds to a security analysis where the instrumentation, logs, and Remote
Monitor are considered. Next, an artificial, expressive, vulnerability is used granting
total control over the stack to the attacker. Alike other security techniques, there is
a trade-off between performance and security. Apart from the security analysis, an
evaluation on the impact of the mechanism - on the target platform - is performed, re-
garding used resources and effects on determinism. During this chapter, the devised
security mechanism is complemented with a CFI implementation for a complete se-
curity evaluation.

7.1 Security Analysis

Performing a quantitative analysis of the security benefits provided by the Data Integrity and
CFI mechanisms is maybe impossible. Above all, this security evaluation must be complete, in
a manner that no attack vector can be disregarded. There are two security invariants that must be
enforced:

1. Tamper proof – attackers shouldn’t manipulate either the data or code of the Remote Mon-
itor. This includes the logs - shared between the target program (μRTZVisor) and the Re-
mote Monitor - and the instrumentation.

2. Non-bypassable – attackers cannot bypass the logging instrumentation.

μRTZVisor, using TrustZone technology, provides the first line of defense against attacks
originated in VMs, either aiming at the VMM or the Remote Agent. So, an attacker must exploit
a memory corruption vulnerability while the processor is in Monitor mode - VMM privilege
level - to be able to breach the security invariants. If such an exploit occurs, the devised security

83

84

mechanism has memory protections in place that ensure the first invariant. Namely, the ARM
MMU enforces access control policies on memory. Each core possesses its own MMU physical
interface and configuration. The core executing the Remote Monitor application completely dis-
regards the MMU, having full access to memory. This can be tolerated as the Remote Monitor
code is an isolated entity, in the sense that all interactions with external entities are performed
via the instrumented code and are statically known. However, the primary core, executing the
VMM, is unable to write to any memory (code and data) used by the Remote Monitor application.
Tampering with the Remote Monitor is only possible by disabling the MMU. To do so, it requires
special instructions that are inserted with the instrumentation and are not available as a function.
Furthermore, an attacker cannot disable the MMU without re-enabling it as the instrumentation
inserted in critical writes is an atomic basic block (i.e., does not possess any branch instructions).
Log data structures are read-only, also enforced by ARM MMU. Log write protections are dis-
abled by the inserted instrumentation and re-enabled shortly after the log update. While attackers
can target the page table, their efforts would be fruitless, as the physical addresses of the page
table are not mapped in the page table itself. Changing the base address for the page table also
requires specific assembly instructions.

By adding all instrumentation after the write operation and due to the aforementioned atom-
icity, invariant 2) is enforced. An attacker cannot perform a write and avoid instrumentation as
branch instructions are not present.

Although extremely unlikely, interrupt handlers can be used to subvert this Data Integrity
scheme. Having disabled the MMU, non-instrumented indirect accesses could be used to write
to illegal memory without ever being detected. Due to the unlikeliness of this event and attending
that interruptions are designed to be short and deterministic, interrupts are not disabled while a
log update occurs. Nevertheless, they could be disabled and re-enabled for extra security.

7.1.1 Facing State of the Art Attacks

Complementing Data Integrity with a CFI implementation allows to thwart attacks either to data-
or control-planes of the VMM. Using both approaches separately would augment the attack sur-
face of μRTZVisor. The proposed approach aims at mitigating non-control-data attacks. Con-
sidering code pointers as critical variables that must be protected, it also provides control-flow
protection to a certain extent. However, the stack is completely disregarded as it is not considered
a source of non-control-data attacks. CFI arises as a complement to further secure the control-
plane of μRTZVisor.

By exploiting a memory corruption vulnerability such as an integer overflow, format string or
buffer stack overflow, an attacker ismostly unable to stealthily update a critical static variablewith

Performance and Code Size 85

spurious values. By only allowing access to critical static variables to specific indirect accesses,
all other indirect accesses are useless when trying to modify such variables.

Non-control-data attacks such as DOP [105] are mitigated in their expressiveness as an at-
tacker is not able to arbitrarily change a critical static variable. However, due to the granularity
of the proposed approach these attacks are still possible. For example, the stack can be corrupted
to perform operations on spurious data without diverging from the legal control-flow. Although
that would go undetected, once an indirect access tried to access critical variables without permis-
sion it would most likely be stopped by the MMU. Furthermore, attacks aiming at data attributed
to critical variables are eliminated as that data is further analyzed by the Remote Monitor.

Additionally, the CFI implementation allows to detect further control-flow related attacks.
Firstly, the ARM MMU ensures that memory is either writable or executable, thwarting code-
injection attacks. CFI also detects more sophisticated attacks such as ROP and JOP. Essentially,
both attacks consist on identifying and chaining gadgets terminating on pop or branch instruc-
tions, respectively. By labeling critical control transfers, in the code, CFI can detect such attacks.
However, due to the CFI’s granularity, some very specific attacks can go undetected, as depicted
in Listing 7.1. As labels are only used in function’s prologue, epilogue and invocation, it is pos-
sible to return from function B() to any code existing between function B() and C() or directly
to the invocation of function C(). This is possible since there are no labels between the end of
B() and the beginning of C().

Listing 7.1: Example denoting the insuficiency of this CFI scheme.
1 vo id A() {
2 / / V a r i a b l e i n i t i a l i z a t i o n and code
3 B () ;
4 / / C r i t i c a l code
5 C () ;
6 }

A special characteristic of this log-based protection scheme is the detection of transient at-
tacks. In this type of attacks, the adversary may cause harm and then hide its traces. With this
scheme, this kind of attacks are not possible, as every write to critical variables and variation
in the control-flow are registered for further analysis. Periodic integrity verification tools can
only detect permanent integrity damage. For example, methods using introspection techniques
[14, 15, 99] are invoked periodically to analyze the memory of a monitored entity.

7.2 Performance and Code Size

It is extremely difficult to perform a quantitative evaluation on performance for this tailor-made
security solution. Performance overhead is directly related to the number of rules specified and

86

the respective instrumented writes, as well as their invocation at runtime. Furthermore, with
higher interactions between guests and the hypervisor, performance is generally worse as more
instrumented code is executed. Unfortunately, the hypervisor is still in development and, while
using an intermediary version sufficed to test the implementation, it is not adequate for a perfor-
mance benchmark. This is especially true since the hypercall API is yet to be implemented. Any
performance test would be deceiving as no guest-hypervisor interactions occur, which is the main
source of performance overhead.

However, code size can be measured for this intermediate implementation of μRTZVisor, for
the existing rule set (Listing 5.15). An executable with the hypervisor and theData Integritymech-
anism, compiled with all optimization levels, adds approximately a thousand lines of assembly
code to μRTZVisor. CFI inserts approximately eight times more since all functions’ prologues,
epilogues and indirect invocations are instrumented. In the case of Data Integrity, only critical
writes to static variables are instrumented.

VMM Only

Total

DI Only

ASM Lines of Code

CFI Only

-o0 -o1 -o2 -o3

89322

1032

8715

86495

962

8599

86979

922

8386

87866

991

7628

99069 96056 96287 96485

(approx. 1%)

(approx. 9%)

Fig. 34: Comparison between the number of lines of code inserted by the Data Integrity and CFI
mechanisms.

Despite no benchmarks results being provided, Fig. 35 provides an overview of the inserted
instrumentation. On the right, assembly code corresponds to line 6 of the C++ code on the left.
This example logs a value calculated from slot_id into the Value Log - as that value is used as
a new value for guestptr->memoryConfig(.Bitmap) - and the written memory address in the
Address Log. In Fig. 35, both inserted logging procedures are gray colored. The specific parts
where the log is actually updated are highlighted blue, as their size can vary in the case of the
Address Log. The green highlighted code can belong to either the Value Log or the Address Log
procedure. In case of a direct memory write, the Address Log code is not inserted as there are
no indirections. In that case, the green code is inserted in the Value Log code to update the Write
Pointer. Similarly, if a constant is written into a critical variable, also the Value Log code would
be removed, as constants do not need to be logged.

Use Case Scenario 87

1 vo id MemoryManager : : A t t r i b u t e S l o t (c o n s t
i n t 3 2 _ t g u e s t _ i d , c o n s t u i n t 3 2 _ t
s l o t _ i d) {

2 Gues t * c o n s t g u e s t p t r =
3 GuestManager : : G e t I n s t a n c e () .

Ge tGues t (g u e s t _ i d) ;
4
5 i f (g u e s t p t r && (s l o t _ i d <

MemoryImplementa t ion : : numSlot))
{

6 g u e s t p t r −>memoryConfig .
S e t B i t (s l o t _ i d) ;

7 }
8 }

...

...

 push {r0-r5}
 mov r5, r4
 movw r3, #0
 movw r0, #31833
 movt r3, #65535
 movt r0, #0
 ldr r2, [r3]
 lsl r2, r2, #9
 movw r4, #4
 movt r4, #65535
 add r4, r2, r4
 str r0, [r4]
 add r4, r4, #4
 movw r0,#2
 movt r0,#0
 str r0, [r4]
 add r4, r4, #4
 str r5, [r4]
 ldr r2, [r3]
 add r2, r2, #1
 and r2, r2, #15
 str r2, [r3]
 pop {r0-r5}
 mrc p15, 0, r1, c1, c0, 0
 orr r1, r1, #1
 mcr p15, 0, r1, c1, c0, 0
 dsb
 isb

 ldr r2, [r0, #36]
 orr r4, r2, r3, lsl r4
 str r4, [r0, #36]

@ 0 "" 2
@ 56 "src/core/MemoryManager.cpp" 1
 mrc p15, 0, r1, c1, c0, 0
 bic r1, r1, #1
 mcr p15, 0, r1, c1, c0, 0
 dsb
 isb
 push {r0-r5}
 mov r5, r0
 movw r3, #0
 movt r3, #65535
 ldr r2, [r3]
 lsl r2, r2, #2
 movw r4, #32768
 movt r4, #65535
 add r4, r2, r4
 str r0, [r4]
 add r4, r4, #4
 add r5, r5, #36
 str r5, [r4]
 pop {r0-r5}

A
ddress L

og

Value L
og

Fig. 35: Instrumented code and its equivalent in assembly. Line 6 is translated to the code on the right.
The instrumented code disables the MMU, logs the written value and address and re-enables the
MMU.

7.3 Use Case Scenario

To jointly validate the Data Integrity and CFI approach, an experiment was conducted to evaluate
the effectiveness of both mechanisms against several synthetic attacks. The set of attacks is
contextualized to a virtualized environment and aims at both data and control planes. Specifically,
μRTZVisor’s hypercall API is leveraged to implement vulnerable code.

The code in Listings 7.2 and 7.3 acts like a generic hypercall by providing services to guest
OSs, with small but significant differences. Particularly, it allows a guest to request a shared
memory slot with a driver/IO server, which is a higher privileged VM. To connect to a specific
IO server, a guest provides a command to the hypercall with the name of the server in the input
InputData structure. Then, the hypercall parses the server name (removeSpaces) and opens the
same memory slot to the IO server, via OpenServerSlot. Finally, the AttributeSlot method
is executed to change the memory permissions of the requester guest OS, to consider the new
shared memory slot. Listing 7.2 differs from 7.3 since the latter has 1) sanity check in line 7 and
2) a memory corruption vulnerability in line 11.

Listing 7.2 presents a case where input data is trusted to be correct, a somewhat common error.
The AttributeSlot function is instrumented to disable writes to the first element of an integer
array - of three elements - corresponding to the memory access permissions of the DDR memory.

88

DDR memory permissions cannot be changed after initialization as only OCM memory can be
shared (the other two array elements) between guests. In this case, when the attacker specifies a
slot corresponding to the first array element, the Remote Monitor logs the operation detecting an
attack to the integrity of the hypervisor.

Listing 7.2: Non-vulnerable code.
1 vo id h y p e r c a l l (I n pu tDa t a* buf) {
2 i n t s l o t ; i n t r e qu e s tType ;
3 s l o t = ((i n t *) buf−>d a t a) [0] ;
4 r e que s tType = buf−>type ;
5
6 i f (r e qu e s tType == IOREQ_SERVER) {
7 cha r serverName [1 6] ;
8
9 f o r (u i n t 3 2 _ t i =0 ; i <16; i ++) {
10 serverName [i] = ((ch a r *) buf−>d a t a) [i] ;
11 }
12 removeSpaces (serverName) ;
13
14 OpenSe rve rS l o t (s l o t , serverName) ;
15 MemoryManager : : G e t I n s t a n c e () .

A t t r i b u t e S l o t (
16 GuestManager : : G e t I n s t a n c e () .

mCurrentGues t , s l o t) ;
17 } e l s e { / / Update r e s p on s e
18 }
19 } / / e l s e . . .
20 }

Listing 7.3: Vulnerable code.
1 vo id h y p e r c a l l (I n pu tDa t a* buf) {
2 i n t s l o t ; i n t r e qu e s tType ;
3 s l o t = ((i n t *) buf−>d a t a) [0] ;
4 r e que s tType = buf−>type ;
5
6 i f (r e qu e s tType == IOREQ_SERVER) {
7 i f (s l o t >= 32 && s l o t <=95) {
8 cha r serverName [1 6] ;
9
10 f o r (u i n t 3 2 _ t i =0 ; i <buf−>l e n ; i ++) {
11 serverName [i] = ((ch a r *) buf−>d a t a) [i] ;
12 }
13 removeSpaces (serverName) ;
14
15 OpenSe rve rS l o t (s l o t , serverName) ;
16 MemoryManager : : G e t I n s t a n c e () .

A t t r i b u t e S l o t (
17 GuestManager : : G e t I n s t a n c e () .

mCurrentGues t , s l o t) ;
18 } e l s e { / / Update r e s p on s e
19 }
20 } / / e l s e . . .
21 }

In the second case, a memory corruption vulnerability occurs in line 11 allowing to overflow
the buffer containing the server name (buf->data) by providing a buffer length bigger than the
serverName local variable. Sanity check on the slot variable is insufficient in this situation as
the memory vulnerability occurs afterwards. Alike the previous case, when the AttributeSlot
method tries to modify the guest memory permissions, an attack will be detected when trying to
give access to other DDR partitions, to a specific guest VM. In both cases, control-flow is not
altered but hypervisor’s integrity is attacked. For test purposes, the Remote Monitor logs all its
operations through a serial port for debugging purposes, as depicted in Fig. 36.

7.3.1 Performing a Control Flow Attack

The same code, with a slight variation, is used to perform a control-flow hijack attack. The mem-
ory vulnerability is removed from the hypercall and inserted into the ioreqServerParse func-
tion. This allows to change the return address on the stack when ioreqServerParse is invoked,
using the vulnerability. In turn, execution can change to any of the already existing code. Code
injection attacks are disabled by the W⊕E protection. The PrivateTimer::Disablemethod is
executed stopping the hardware timer used for scheduling, as depicted in Fig. 37.

Use Case Scenario 89

Fig. 36: Remote Monitor output for the code in Listing 7.2. On the left, no data integrity violation is
detected in the accessed performed at address 0x10c26c. However, on the right, when trying to
access the first array element at 0x10c268, the Remote Monitor emits an alert enforcing the first
rule in B.1. Note that no CFI violations are detected.

void ioreqServerParse(InputData& id,IoreqData& pd){

 for(int i=0;i<buf->len;i++){
 pd.serverName[i]=id.data[i];
 }
 removeSpaces(pd.serverName);

 return getID(pd.serverName);
}

void PrivateTimer::Disable(){

 uint32_t tim_ctrl;

 tim_ctrl = ptimer->pt_control_reg;
 tim_ctrl &= ~(TIMER_ENABLE);
 ptimer->pt_control_reg = tim_ctrl;

}

void hypercall_cfi(InputData* buf){
 int serverID;int slot; int requestType;
 slot = buf->data[0];
 requestType = buf->type;

 if(requestType == IOREQ_SERVER){
 serverID=ioreqServerParse(*buf);

 if(slot >= 32 && slot <=95) {
 OpenServerSlot(slot,serverID);
 ...

ID Code

Value & Address Log

Address Log

CFI Log : Label 9

CFI Log : Label 3

Value Log : tim_ctrl(0x06)

9

3
9

CFI Log
3

1

2

0x0630599 0

...
Value

CFI Log : Label 5CFI Log : Label 6

5

4

Fig. 37: Memory vulnerability being exploited to perform a control-hijack attack.

Beginning in the hypercall_cfi function, execution is legally transfered to ioreqServer
Parse. Following, the memory corruption vulnerability - highlighted in bold - corrupts the
stack’s return address, invoking the PrivateTimer::Disable method instead of returning to
hypercall_cfi, in the epilogue. Meanwhile, a new entry is added to the CFI Log. In Private
Timer::Disable, the value written to the register of the hardware timer is stored in the Value
Log and, before returning, another label is stored in the CFI log. Execution then returns to

90

ioreqServerParse and to the next instruction to be executed in the hypercall_cfi function.
The logged contents are available in the bottom right of the figure.

This example creates two alerts in the Remote Monitor since 1) the execution flow diverted
from the legal CFG and 2) the control register for the hardware timer took an illegal value ac-
cording to the data integrity rules. In this very specific case, the control-flow attack created a
non-control-data attack, resulting in two warnings being emitted from both Reference Monitors
(i.e., Data Integrity and CFI), as depicted in Fig. 38. For further understanding, compare the
logged values in Fig. 37 with the output provided below.

Fig. 38: RemoteMonitor output for the code in Fig. 37. On the left, no control-flow integrity violation
is detected. However, on the right, both CFI and data integrity violations are caught.

C 8

Conclusion and Future Research Directions

8.1 Summary

One of the most popular attack vectors to compromise computer systems is the exploitation of
memory corruption vulnerabilities. In this thesis, we described the implementation of the Data In-
tegrity security countermeasure, tailor-made for μRTZVisor. Moreover, an ontology-based meta-
model was devised to automate the deployment of the security mechanism. Recognizing future
developments in μRTZVisor, efforts went on providing a future-proof security solution.

Firstly, the Data Integrity security solution was uncovered to enforce correctness of μRTZ-
Visor’s data-plane, even in the present of state of the art attacks (i.e, non-control-data attacks).
The Zynq-7000 SoC was leveraged to isolate a remote integrity monitor from the hypervisor, in a
separate core. Through compile-time instrumentation, an execution trace is collected by record-
ing updates to critical static variables on μRTZVisor. The monitor audits this trace searching for
violations of developer-defined data integrity rules, concurrently to hypervisor’s execution. The
peculiarities of μRTZVisor grant feasibility to the proposed scheme, especially when considering
its disregard for dynamic data. μRTZVisor is designed with a security rationale, based on strict
security requirements, such as compliance with security-related coding guidelines, focus on static
data, heap non-use, amongst others.

Non-control-data attacks came into play as defenses against control-data attacks began being
widely adopted. The proposed solution does not suffice to effectively mitigate all attack vectors
aiming to divert program’s execution from its legal control-flow. Several rules were designed
by μRTZVisor developers to protect critical code-pointers. However, those rules demonstrated
insufficiency against stack-oriented attacks. The stack is completely disregarded as it is not a
source for non-control-data attacks, on critical static variables. The next logical step was to
integrate the Data Integrity mechanism with a CFI implementation, to reduce μRTZVisor’s attack
surface.

The proposed combined solution of Data Integrity and CFI is coarse-grained. The focus of
the former is on writes to critical static variables. The latter focuses only on function invocations.

91

92

This allows to reduce performance overhead over classical approaches such as DFI [90]. A com-
prehensive security evaluation was performed on both security mechanisms and to examine their
resilience facing state of the art attacks. Firstly, it was concluded that the security mechanism
itself is strongly protected against direct attacks, via the ARM MMU hardware. Secondly, the
combined scheme seems able to mitigate the most recent non-control and control-data attacks
with a relatively low performance overhead.

Integrating this work into the SeMLmodeling framework allowed to leverage 1) its generative
programming capabilities and 2) uniformize knowledge representation. The devised ontological
meta-model allows to automatically fit the security mechanism to future μRTZVisor releases,
reducing the demand for a domain expert. Meta-model’s capabilities were demonstrated by mod-
eling knowledge associated with the current μRTZVisor implementation. Using an uniformized
knowledge representation (i.e., ontologies) eases model’s maintainability.

8.2 Future Work

The proposed Data Integrity solution, complemented with CFI and W ⊕ X protection, can detect
control-flow hijack attacks combining stack and code-pointer protection, whilemaking promising
progress protecting against non-control-data-oriented attacks. By not striving for complete mem-
ory protection, attacks are still possible but very limited in their expressiveness. For example,
DOP attacks are possible as long as they do not change critical static variables.

Yet, logging instrumentation can be enhanced for performance. Inserting instrumentation via
inline assembly codemay not be the best route to achieve the lowest performance overhead. Inline
assembly also locks the security application to certain platforms which can become a problem in
the near future.

A second avenue of work are the response mechanisms. With an isolated and independent
monitor with full access to memory, system’s integrity can be restored when constraints or rules
are violated. A response mechanism could log suspicious occurrences, shutdown the system
or employ advanced system’s recovery strategies. Having policies for integrity (i.e., rules or
constraints) and for response mechanisms would increase system’s fault tolerance, improving
both security and safety.

Points-to analysis [124] is also being manually performed from source code analysis. This
process could be automated to a certain extent by leveraging the compiler [125]. Likewise, the
integrated CFI approach could automate CFG generation, due to the lack of indirect branch in-
structions in μRTZVisor. Having a good set of rules is paramount to the success of this security
solution. Another research direction could also delve into automatic rule inference to achieve
complete protection of critical static variables, alike KENALI [94].

Closing Remarks 93

Presently, dynamic variables are completely disregarded as μRTZVisor exclusively relies on
static data. Going forward, VMM developments might require dynamic data for increased flexi-
bility. This dynamic data could enjoy a similar protection scheme as the one proposed for static
data. Furthermore, considering dynamic data in this approach could ease its adoption by programs
reliant on dynamic data. As the hypervisor is being designed using security coding guidelines
(MISRAC++ [125]), an interesting research would be to analyze how adequate these dynamic
remote attestation mechanisms are when such code is present.

Modeling efforts are not yet fully integrated in SeML. The constructed meta-model must inter-
operate with aVMMmeta-model and others. This will allow to transparently create integrity rules
based on user-defined system configurations. For example, an user could define a system with
three or four VMs. Model inter-operation would allow to capture those application’s semantics,
which could then be used to automatically create particular integrity rules for a specific system
implementation.

8.3 Closing Remarks

This thesis documented the everlasting arms race between countermeasure design and attack ad-
vancement. Firstly, the key challenges to defend against data- and control-oriented attacks were
examined. Then, defenses to thwart novel attacks were proposed. Overall, this thesis is highly
specialized to the μRTZVisor VMM. But several improvements and adaptations, as stated above,
could be implemented to create a more generalized security mechanism, evolving state of the art
security countermeasure design. The special characteristics of μRTZVisor, such as its extremely
low code size and focus on static variables, required a specialized security solution that would be
both deterministic and with low performance overhead while effective in detecting violations to
its integrity. This is exactly what was proposed in this thesis.

Bibliography

[1] ARM, “Arm security technology - building a secure system using trustzone technology,”
Tech. Rep, 2009. [Online]. Available: http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.prd29-genc-009492c/CACJBHJA.html

[2] D. Novillo, “Gcc an architectural overview, current status, and future directions,” in Pro-
ceedings of the Linux Symposium, vol. 2, 2006.

[3] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang, “Cyclone:
A safe dialect of c.” in USENIX Annual Technical Conference, General Track, 2002, pp.
275–288.

[4] G. Suh, J. Lee, D. Zhang, and S. Devadas, “Secure program execution via dynamic in-
formation flow tracking,” 11th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XI, pp. 85–96, 2004, cited By 317.

[5] T. Donghai, J. Xiaoqi, C. Junhua, and H. Changzhen, “A concurrent security monitoring
method for virtualization environments,” China Communications, vol. 13, no. 1, pp. 113–
123, 2016.

[6] A. Arabo and B. Pranggono, “Mobile malware and smart device security: Trends, chal-
lenges and solutions,” Proceedings - 19th International Conference on Control Systems
and Computer Science, CSCS 2013, pp. 526–531, 2013.

[7] “Common criteria portal,” accessed: 14-11-2017. [Online]. Available: http://www.
commoncriteriaportal.org/

[8] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish et al., “sel4: Formal verification of an os kernel,” in Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. ACM,
2009, pp. 207–220.

[9] S. Tverdyshev, “Security by design: Introduction to mils,” 2017.

[10] I. Furgel and V. Saftig, “Euro-mils: Secure european virtualization for thrust-
worthy applications in critical domain,” http://www.euromils.eu/downloads/
EURO-MILS-Protection-Profile-V2.03.pdf, 2016, accessed: 25-11-2017.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/CACJBHJA.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/CACJBHJA.html
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://www.euromils.eu/downloads/EURO-MILS-Protection-Profile-V2.03.pdf
http://www.euromils.eu/downloads/EURO-MILS-Protection-Profile-V2.03.pdf

96 BIBLIOGRAPHY

[11] H. Löhr, A.-R. Sadeghi, C. Stüble, M. Weber, and M. Winandy, “Modeling trusted com-
puting support in a protection profile for high assurance security kernels.” in Trusted Com-
puting: Second International Conference, Trust 2009, Oxford, UK, April 6-8, 2009, Pro-
ceedings. Springer, 2009, pp. 45–62.

[12] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-data attacks are
realistic threats.” vol. 14, 2005.

[13] H. Hu, S. Shinde, S. Adrian, Z. Chua, P. Saxena, and Z. Liang, “Data-oriented program-
ming: On the expressiveness of non-control data attacks,” Proceedings - 2016 IEEE Sym-
posium on Security and Privacy, SP 2016, pp. 969–986, 2016.

[14] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through vmm-based out-of-
the-box semantic view reconstruction,” in Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 2007, pp. 128–138.

[15] T. Garfinkel, M. Rosenblum et al., “A virtual machine introspection based architecture for
intrusion detection.” in Ndss, vol. 3, no. 2003, 2003, pp. 191–206.

[16] A. Lanzi, M. I. Sharif, and W. Lee, “K-tracer: A system for extracting kernel malware
behavior.” in NDSS, 2009.

[17] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention of kernel rootkits with vmm-
based memory shadowing,” in International Workshop on Recent Advances in Intrusion
Detection. Springer, 2008, pp. 1–20.

[18] A. Seshadri, M. Luk, N. Qu, andA. Perrig, “Secvisor: A tiny hypervisor to provide lifetime
kernel code integrity for commodity oses,” in ACM SIGOPS Operating Systems Review,
vol. 41, no. 6. ACM, 2007, pp. 335–350.

[19] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering kernel rootkits with lightweight hook
protection,” inProceedings of the 16th ACM conference on Computer and communications
security. ACM, 2009, pp. 545–554.

[20] P. Kocher, R. Lee, G.McGraw, A. Raghunathan, and S. Ravi, “Security as a new dimension
in embedded system design,” Proceedings - Design Automation Conference, pp. 753–760,
2004.

[21] M. Vai, D. J. Whelihan, B. R. Nahill, D. M. Utin, S. R. O’Melia, and R. I. Khazan, “Secure
embedded systems,” LINCOLN LABORATORY JOURNAL, vol. 22, no. 1, 2016.

BIBLIOGRAPHY 97

[22] J. Martins, J. Alves, J. Cabral, A. Tavares, and S. Pinto, “µrtzvisor: A secure and safe
real-time hypervisor,” Electronics, vol. 6, no. 4, p. 93, 2017.

[23] M. S. Simpson and R. K. Barua, “Memsafe: ensuring the spatial and temporal memory
safety of c at runtime,” Software: Practice and Experience, vol. 43, no. 1, pp. 93–128,
2013.

[24] G. C. Necula, S. McPeak, andW.Weimer, “Ccured: Type-safe retrofitting of legacy code,”
in ACM SIGPLAN Notices, vol. 37, no. 1. ACM, 2002, pp. 128–139.

[25] V. Silva, A. Tavares, A. Gardel, S. Ivanov, F. Giunchiglia, M. Shalchian, and S. Pinto,
“Collaborative Design Automation for IoT Edge and Fog Devices : a perspective paper.”

[26] K. S. Hoo, A. W. Sudbury, and A. R. Jaquith, “Tangible roi through secure software engi-
neering,” Secure Business Quarterly, vol. 1, no. 2, p. Q4, 2001.

[27] A. Jaquith, “The security of applications: Not all are created equal,” At Stake Research.
http://www. atstake. com/research/reports/acrobat/atstake_app_unequal. pdf, 2002.

[28] V. Suma, B. Shubhamangala, and L. M. Rao, “Impact analysis of volatility and security on
requirement defects during software development process,” 2012.

[29] E. B. Fernandez, “A methodology for secure software design.” in Software Engineering
Research and Practice, 2004, pp. 130–136.

[30] P. H.Meland and J. Jensen, “Secure software design in practice,” inAvailability, Reliability
and Security, 2008. ARES 08. Third International Conference on. IEEE, 2008, pp. 1164–
1171.

[31] T. Stahl and M. Volter, Model-driven software development: technology, engineering,
management. J. Wiley & Sons, 2006.

[32] S. Beydeda, M. Book, V. Gruhn et al., Model-driven software development. Springer,
2005, vol. 15.

[33] R. P. Goldberg, “Survey of virtual machine research,” Computer, vol. 7, no. 6, pp. 34–45,
1974.

[34] G. Heiser, “Virtualizing embedded systems: why bother?” in Proceedings of the 48th
Design Automation Conference. ACM, 2011, pp. 901–905.

98 BIBLIOGRAPHY

[35] D. Reinhardt and G. Morgan, “An embedded hypervisor for safety-relevant automotive
e/e-systems,” in Industrial Embedded Systems (SIES), 2014 9th IEEE International Sym-
posium on. IEEE, 2014, pp. 189–198.

[36] S. Gansel, S. Schnitzer, F. Dürr, K. Rothermel, and C. Maihöfer, “Towards virtualization
concepts for novel automotive hmi systems,” in International Embedded Systems Sympo-
sium. Springer, 2013, pp. 193–204.

[37] N. Navet, B. Delord, M. Baumeister et al., “Virtualization in automotive embedded sys-
tems: an outlook,” in Seminar at RTS Embedded Systems, 2010.

[38] T. Gomes, P. Lopes, J. Alves, P. Mestre, J. Cabral, J. Monteiro, and A. Tavares, “A Mod-
eling Domain-Specific Language for IoT-enabled Operating Systems,” 2017.

[39] S. Pinto, A. Tavares, and S. Montenegro, “Hypervisor for Real Time Space Applications,”
2016.

[40] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “Ltzvisor: Trustzone is the key,”
in LIPIcs-Leibniz International Proceedings in Informatics, vol. 76. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[41] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on concepts, taxonomy and
associated security issues,” in Computer and Network Technology (ICCNT), 2010 Second
International Conference on. IEEE, 2010, pp. 222–226.

[42] S. Suresh and M. Kannan, “A study on system virtualization techniques,” International
Journal of Advanced Research in Computer Science and Technology, vol. 2, no. 1, pp.
134–139, 2014.

[43] J. Liedtke, “On micro-kernel construction,” 15th ACM Symposium on Operating System
Principles, p. 237–250, 1995.

[44] M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro, “Reducing tcb size by using untrusted
components: small kernels versus virtual-machine monitors,” in Proceedings of the 11th
workshop on ACM SIGOPS European workshop. ACM, 2004, p. 22.

[45] “Arm® architecture reference manual.” [Online]. Available: http://bits-please.blogspot.
pt/2015/08/android-linux-kernel-privilege.html

[46] “Processor modes.” [Online]. Available: http://flint.cs.yale.edu/feng/research/BIOS/
procModes.htm

https://www.researchgate.net/publication/320781530_A_Modeling_Domain-Specific_Language_for_IoT-enabled_Operating_Systems
https://www.researchgate.net/publication/320781530_A_Modeling_Domain-Specific_Language_for_IoT-enabled_Operating_Systems
https://www.researchgate.net/publication/303383240_Hypervisor_for_Real_Time_Space_Applications
http://bits-please.blogspot.pt/2015/08/android-linux-kernel-privilege.html
http://bits-please.blogspot.pt/2015/08/android-linux-kernel-privilege.html
http://flint.cs.yale.edu/feng/research/BIOS/procModes.htm
http://flint.cs.yale.edu/feng/research/BIOS/procModes.htm

BIBLIOGRAPHY 99

[47] ARM, “Arm® cortex™-a series: Programmer’s guide,” Tech. Rep, 2011.

[48] R. Cytron, J. Ferrante, B. K. Rosen, M. N.Wegman, and F. K. Zadeck, “Efficiently comput-
ing static single assignment form and the control dependence graph,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 13, no. 4, pp. 451–490, 1991.

[49] L. Hendren, C. Donawa, M. Emami, G. Gao, B. Sridharan et al., “Designing the mccat
compiler based on a family of structured intermediate representations,” in International
Workshop on Languages and Compilers for Parallel Computing. Springer, 1992, pp.
406–420.

[50] “Gcc internals document.” [Online]. Available: https://gcc.gnu.org/onlinedocs/gcc-4.5.4/
gccint.pdf

[51] J. Ye, G. Stevenson, and S. Dobson, “A top-level ontology for smart environments,” Per-
vasive and Mobile Computing, vol. 7, no. 3, pp. 359–378, 2011.

[52] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge sharing,”
International journal of human-computer studies, vol. 43, no. 5-6, pp. 907–928, 1995.

[53] J. Domingue, D. Fensel, and J. A. Hendler, Handbook of Semantic Web Technologies,
1st ed., ser. Springer Reference. Springer-Verlag Berlin Heidelberg, 2011.

[54] J. F. Sowa, Principles of Semantic Networks: Explorations in the Representation of Knowl-
edge. Morgan Kaufmann, 1991.

[55] S. B. Lippman, Inside the C++ Object Model. Addison-Wesley Professional, 1996.

[56] J. H. Dean Allemang, Semantic Web for the Working Ontologist: Effective Modeling in
RDFS and OWL. Morgan-Kaufmann, 2004.

[57] “Owl web ontology language reference,” 2004. [Online]. Available: https://www.w3.org/
TR/owl-ref/

[58] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, An Introduction to Description Logic, 2007.

[59] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical owl-dl
reasoner,” Web Semantics: science, services and agents on the World Wide Web, vol. 5,
no. 2, pp. 51–53, 2007.

[60] M. Horrgide, “A practical guide to building owl ontologies using protégé 4 and
co-ode tools.” [Online]. Available: http://mowl-power.cs.man.ac.uk/protegeowltutorial/
resources/ProtegeOWLTutorialP4_v1_3.pdf

https://gcc.gnu.org/onlinedocs/gcc-4.5.4/gccint.pdf
https://gcc.gnu.org/onlinedocs/gcc-4.5.4/gccint.pdf
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf

100 BIBLIOGRAPHY

[61] “Owl 2 web ontology language structural specification and functional-style syntax
(second edition).” [Online]. Available: https://www.w3.org/2007/OWL/wiki/Syntax

[62] “Owl 2 web ontology language direct semantics (second edition).” [Online]. Available:
https://www.w3.org/TR/owl-direct-semantics/

[63] I. Horrocks, P. PAtel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean, “Swrl: A
semantic web rule language combining owl and ruleml,”W3C Member Submission, 2014.
[Online]. Available: https://www.w3.org/Submission/2004/SUBM-SWRL-20040521/#1

[64] “Swrl built-ins.” [Online]. Available: http://www.daml.org/swrl/proposal/builtins.html

[65] V. Van der Veen, N. Dutt-Sharma, L. Cavallaro, and H. Bos, “Memory errors: the past, the
present, and the future,” Research in Attacks, Intrusions, and Defenses, pp. 86–106, 2012.

[66] P. Zatko, “How to write buffer overflows,” 1995.

[67] BugTraq, r00t, and Underground, “Smashing the stack for fun and profit.” [Online].
Available: http://www-inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf

[68] S. Designer. (1997) Linux kernel patch to remove stack exec permission. [Online].
Available: http://seclists.org/bugtraq/1997/Apr/31

[69] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning, “On the expressiveness
of return-into-libc attacks,” in Recent Advances in Intrusion Detection. Springer, 2011,
pp. 121–141.

[70] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang,
and H. Hinton, “Stackguard: automatic adaptive detection and prevention of buffer-
overflow attacks.” in USENIX Security Symposium, vol. 98. San Antonio, TX, 1998,
pp. 63–78.

[71] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy,
“Return-oriented programming without returns,” in Proceedings of the 17th ACM confer-
ence on Computer and communications security. ACM, 2010, pp. 559–572.

[72] M. Prandini and M. Ramilli, “Return-oriented programming,” IEEE Security & Privacy,
vol. 10, no. 6, pp. 84–87, 2012.

[73] P. Wagle, C. Cowan et al., “Stackguard: Simple stack smash protection for gcc,” in Pro-
ceedings of the GCC Developers Summit, 2003, pp. 243–255.

https://www.w3.org/2007/OWL/wiki/Syntax
https://www.w3.org/TR/owl-direct-semantics/
https://www.w3.org/Submission/2004/SUBM-SWRL-20040521/#1
http://www.daml.org/swrl/proposal/builtins.html
http://www-inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
http://seclists.org/bugtraq/1997/Apr/31

BIBLIOGRAPHY 101

[74] H. Marco-Gisbert and I. Ripoll, “On the effectiveness of full-aslr on 64-bit linux,” in In-
depth security conference, DeepSec, November, 2014.

[75] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow integrity principles, im-
plementations, and applications,” ACM Transactions on Information and System Security
(TISSEC), vol. 13, no. 1, p. 4, 2009.

[76] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly compatible
and complete spatial memory safety for c,” ACM Sigplan Notices, vol. 44, no. 6, pp. 245–
258, 2009.

[77] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and W. Joosen, “Paricheck:
an efficient pointer arithmetic checker for c programs,” in Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security. ACM, 2010, pp.
145–156.

[78] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking: An efficient and
backwards-compatible defense against out-of-bounds errors.” in USENIX Security Sympo-
sium, 2009, pp. 51–66.

[79] J. Seward and N. Nethercote, “Using valgrind to detect undefined value errors with bit-
precision.” in USENIX Annual Technical Conference, General Track, 2005, pp. 17–30.

[80] D. Bruening and Q. Zhao, “Practical memory checking with dr. memory,” in Proceedings
of the 9th Annual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion. IEEE Computer Society, 2011, pp. 213–223.

[81] R. W. Jones and P. H. Kelly, “Backwards-compatible bounds checking for arrays and
pointers in c programs,” in Proceedings of the 3rd International Workshop on Automatic
Debugging; 1997 (AADEBUG-97), no. 001. LinköpingUniversity Electronic Press, 1997,
pp. 13–26.

[82] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow detector.” in NDSS, vol.
2004, 2004, pp. 159–169.

[83] N. Brown, “Control-flow integrity for real-time embedded systems,” Ph.D. dissertation,
WORCESTER POLYTECHNIC INSTITUTE, 2017.

[84] T.-c. Chiueh and F.-H. Hsu, “Rad: A compile-time solution to buffer overflow attacks,”
in Distributed Computing Systems, 2001. 21st International Conference on. IEEE, 2001,
pp. 409–417.

102 BIBLIOGRAPHY

[85] M. Frantzen and M. Shuey, “Stackghost: Hardware facilitated stack protection.” in
USENIX Security Symposium, vol. 112, 2001.

[86] J. T. Giffin, S. Jha, and B. P. Miller, “Detecting manipulated remote call streams.” in
USENIX Security Symposium, 2002, pp. 61–79.

[87] D. Nebenzahl, M. Sagiv, and A. Wool, “Install-time vaccination of windows executables
to defend against stack smashing attacks,” IEEE Transactions on Dependable and Secure
Computing, vol. 3, no. 1, pp. 78–90, 2006.

[88] M. Prasad and T.-c. Chiueh, “A binary rewriting defense against stack based buffer over-
flow attacks.” in USENIX Annual Technical Conference, General Track, 2003, pp. 211–
224.

[89] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity,” in Security and Privacy (SP), 2010 IEEE Symposium on. IEEE,
2010, pp. 380–395.

[90] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing data-flow integrity,”
in Proceedings of the 7th symposium on Operating systems design and implementation.
USENIX Association, 2006, pp. 147–160.

[91] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing memory error
exploits with wit,” Proceedings - IEEE Symposium on Security and Privacy, pp. 263–277,
2008.

[92] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in Proceedings of the
2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering. ACM, 2001, pp. 54–61.

[93] N. Heintze and O. Tardieu, “Ultra-fast aliasing analysis using cla: Amillion lines of c code
in a second,” in ACM SIGPLAN Notices, vol. 36, no. 5. ACM, 2001, pp. 254–263.

[94] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing kernel security invari-
ants with data flow integrity.” in NDSS, 2016.

[95] I. Díez-Franco and I. Santos, “Data is flowing in the wind: A review of data-flow integrity
methods to overcome non-control-data attacks,” in International Conference on EUropean
Transnational Education. Springer, 2016, pp. 536–544.

BIBLIOGRAPHY 103

[96] C. Ko, G. Fink, and K. Levitt, “Automated detection of vulnerabilities in privileged pro-
grams by execution monitoring,” in Computer Security Applications Conference, 1994.
Proceedings., 10th Annual. IEEE, 1994, pp. 134–144.

[97] C. Ko, M. Ruschitzka, and K. Levitt, “Execution monitoring of security-critical programs
in distributed systems: A specification-based approach,” in Security and Privacy, 1997.
Proceedings., 1997 IEEE Symposium on. IEEE, 1997, pp. 175–187.

[98] R. Sekar and P. Uppuluri, “Synthesizingfastintru sion prevention/detectionsystemsfrom
high-levelspecifications,” in Proceedings of USENIX, vol. 99, 1999.

[99] N. L. Petroni Jr, T. Fraser, A. Walters, and W. A. Arbaugh, “An architecture for
specification-based detection of semantic integrity violations in kernel dynamic data.” in
USENIX Security Symposium, 2006.

[100] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot-a coprocessor-based
kernel runtime integrity monitor.” in USENIX Security Symposium. San Diego, USA,
2004, pp. 179–194.

[101] B. D. Payne, M. Carbone, M. Sharif, andW. Lee, “Lares: An architecture for secure active
monitoring using virtualization,” in Security and Privacy, 2008. SP 2008. IEEE Symposium
on. IEEE, 2008, pp. 233–247.

[102] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE transactions on
software engineering, no. 2, pp. 125–143, 1977.

[103] D. Wagner and R. Dean, “Intrusion detection via static analysis,” in Security and Privacy,
2001. S&P 2001. Proceedings. 2001 IEEE Symposium on. IEEE, 2001, pp. 156–168.

[104] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented programming: a new
class of code-reuse attack,” in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security. ACM, 2011, pp. 30–40.

[105] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic generation of data-
oriented exploits.” in USENIX Security Symposium, 2015, pp. 177–192.

[106] “Gcc melt website,” http://gcc-melt.org/, accessed: 25-09-2017.

[107] B. Starynkevitch. Customizing your gcc compiler with melt extensions. [Online].
Available: http://gcc-melt.org/gcc-melt-sheet.pdf

http://gcc-melt.org/
http://gcc-melt.org/gcc-melt-sheet.pdf

104 BIBLIOGRAPHY

[108] D. Rosenberg, “Qsee trustzone kernel integer over flow vulnerability,” in Black Hat con-
ference, 2014.

[109] G. Beniamini, “etting arbitrary code execution in trustzone’s kernel
from any context.” [Online]. Available: http://bits-please.blogspot.pt/2015/03/
getting-arbitrary-code-execution-in.html

[110] ——, “Exploring qualcomm’s trustzone implementation.” [Online]. Available: http:
//bits-please.blogspot.pt/2015/08/exploring-qualcomms-trustzone.html

[111] ——, “Full trustzone exploit for msm8974.” [Online]. Available: http://bits-please.
blogspot.pt/2015/08/full-trustzone-exploit-for-msm8974.html

[112] ——, “Android linux kernel privilege escalation vulnerability and ex-
ploit (cve-2014-4322).” [Online]. Available: http://bits-please.blogspot.pt/2015/08/
android-linux-kernel-privilege.html

[113] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design patterns: Elements of reusable
object-oriented software,” Reading: Addison-Wesley, vol. 49, no. 120, p. 11, 1995.

[114] “Reflection (computer programming),” https://en.wikipedia.org/wiki/Reflection_
(computer_programming), accessed: 25-09-2017.

[115] “Zybo™ fpga board reference manual.” [Online]. Available: https://reference.digilentinc.
com/_media/zybo:zybo_rm.pdf

[116] “Zynq-7000 all programmable soc technical reference manual.” [Online]. Available: https:
//www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[117] M. Vogt, G. Hempel, J. Castrillon, and C. Hochberger, “Gcc-plugin for automated accel-
erator generation and integration on hybrid fpga-socs,” arXiv preprint arXiv:1509.00025,
2015.

[118] “C++ reference: The ”this” pointer.” [Online]. Available: http://en.cppreference.com/w/
cpp/language/this

[119] M. Shapiro and S. Horwitz, “Fast and accurate flow-insensitive points-to analysis,” in Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, 1997, pp. 1–14.

[120] O. Lhotak and L. Hendren, “Scaling java points-to analysis using s park,” in Compiler
Construction. Springer, 2003, pp. 153–169.

http://bits-please.blogspot.pt/2015/03/getting-arbitrary-code-execution-in.html
http://bits-please.blogspot.pt/2015/03/getting-arbitrary-code-execution-in.html
http://bits-please.blogspot.pt/2015/08/exploring-qualcomms-trustzone.html
http://bits-please.blogspot.pt/2015/08/exploring-qualcomms-trustzone.html
http://bits-please.blogspot.pt/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.pt/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.pt/2015/08/android-linux-kernel-privilege.html
http://bits-please.blogspot.pt/2015/08/android-linux-kernel-privilege.html
https://en.wikipedia.org/wiki/Reflection_(computer_programming)
https://en.wikipedia.org/wiki/Reflection_(computer_programming)
https://reference.digilentinc.com/_media/zybo:zybo_rm.pdf
https://reference.digilentinc.com/_media/zybo:zybo_rm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://en.cppreference.com/w/cpp/language/this
http://en.cppreference.com/w/cpp/language/this

BIBLIOGRAPHY 105

[121] “Gnu nm utility.” [Online]. Available: https://ftp.gnu.org/old-gnu/Manuals/binutils-2.12/
html_node/binutils_4.html

[122] “Gnu objcopy utility.” [Online]. Available: https://ftp.gnu.org/old-gnu/Manuals/binutils-2.
12/html_node/binutils_5.html

[123] “C++ templates,” http://en.cppreference.com/w/cpp/language/templates, accessed: 25-09-
2017.

[124] M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interprocedural points-to anal-
ysis in the presence of function pointers,” inACMSIGPLANNotices, vol. 29, no. 6. ACM,
1994, pp. 242–256.

[125] “Alias analysis by gcc.” [Online]. Available: https://gcc.gnu.org/onlinedocs/gccint/
Alias-analysis.html

https://ftp.gnu.org/old-gnu/Manuals/binutils-2.12/html_node/binutils_4.html
https://ftp.gnu.org/old-gnu/Manuals/binutils-2.12/html_node/binutils_4.html
https://ftp.gnu.org/old-gnu/Manuals/binutils-2.12/html_node/binutils_5.html
https://ftp.gnu.org/old-gnu/Manuals/binutils-2.12/html_node/binutils_5.html
http://en.cppreference.com/w/cpp/language/templates
https://gcc.gnu.org/onlinedocs/gccint/Alias-analysis.html
https://gcc.gnu.org/onlinedocs/gccint/Alias-analysis.html

Appendices

C A

Rule Enforcement in C++

The body of the verifyIndirect function (chapter 5.10.2) is available in Listing A.1. This code
was automatically generated from the Rule Mapper and it is associated with a single μRTZVisor
compilation, due to the static addresses used.

Listing A.1: verifyIndirect function body.
1 boo l v e r i f y I n d i r e c t (i n t ID , u i n t 3 2 _ t* p t r_add , vo id * p t r _ v a l) {
2 i n t i ndex1 = *(++ add_p t r) , i ndex2 = *(a d d_p t r +2) , i ndex3 = *(a d d_p t r +3) ;
3 i n t v a l _ v a l = * ((i n t *) p t r _ v a l) ;
4
5 i f (ID == 4888 && index1 >= 0 && index1 <= 96) {
6 r e t u r n f a l s e ;
7 }
8
9 i f (ID == 6102 && index1 >= 0 && index1 <= 12) {
10 r e t u r n f a l s e ;
11 }
12
13 i f (ID == 23009 && index1 >= 0 && index1 <= 96) {
14 r e t u r n f a l s e ;
15 }
16
17 i f (ID == 6103 && index1 >= 0 && index1 <= 12) {
18 r e t u r n f a l s e ;
19 }
20
21 i f (ID == 29109 && index1 >= 0 && index1 <= 2) {
22 i f (i ndex2 >= 0 && index2 <= 3) {
23 r e t u r n t r u e ;
24 }
25 }
26
27 i f (ID == 18007 && index1 >= 0 && index1 <= 2) {
28 i f (i ndex2 >= 0 && index2 <= 3) {
29 r e t u r n t r u e ;
30 }
31 }
32
33 i f (ID == 28345 && index1 >= 0 && index1 <= 32) {
34 r e t u r n f a l s e ;
35 }
36
37 i f (ID ==29204 && * ((i n t *) p t r _ v a l) >= 0 && * ((i n t *) p t r _ v a l) <= 1) {
38 r e t u r n t r u e ;
39 }
40
41 i f (ID ==29807 && (* ((i n t *) p t r _ v a l) & 0x1) == 0x1 && (~* ((i n t *) p t r _ v a l) & 0x0) == 0x0) {
42 r e t u r n t r u e ;
43 }
44
45 i f (ID ==30599 && (* ((i n t *) p t r _ v a l) & 0x1) == 0x1 && (~* ((i n t *) p t r _ v a l) & 0x0) == 0x0) {
46 r e t u r n t r u e ;
47 }

110 ++

48
49 i f (ID == 31833 && index1 >= 0x1077e4 && index1 <= 0x107be0) {
50 i f (i ndex1 >= 0x1077e4 && index1 <= 0x1079e0) {
51 i n t add r = 0x1077e4 ;
52 i f (i ndex1 >= add r + 0x30 && index1 <= add r + 0x34) {
53 i f (ID ==31833) {
54 r e t u r n f a l s e ;
55 }
56 }
57 i f (i ndex1 >= add r + 0x34 && index1 <= add r + 0x38) {
58 i f (ID ==31833) {
59 r e t u r n f a l s e ;
60 }
61 }
62 i f (i ndex1 >= add r + 0x38 && index1 <= add r + 0x3c) {
63 i f (ID ==31833) {
64 r e t u r n f a l s e ;
65 }
66 }
67 }
68
69 i f (i ndex1 >= 0x1079e0 && index1 <= 0x107bdc) {
70 i n t add r = 0x1079e0 ;
71 i f (i ndex1 >= add r + 0x30 && index1 <= add r + 0x34) {
72 i f (ID ==31833) {
73 r e t u r n f a l s e ;
74 }
75 }
76 i f (i ndex1 >= add r + 0x34 && index1 <= add r + 0x38) {
77 i f (ID ==31833) {
78 r e t u r n f a l s e ;
79 }
80 }
81 i f (i ndex1 >= add r + 0x38 && index1 <= add r + 0x3c) {
82 i f (ID ==31833) {
83 r e t u r n f a l s e ;
84 }
85 }
86 }
87 }
88
89 i f (ID == 31833 && index1 >= 0x1077e4 && index1 <= 0x107be0) {
90 i f (i ndex1 >= 0x1077e4 && index1 <= 0x1079e0) {
91 i n t add r = 0x1077e4 ;
92 i f (i ndex1 >= add r + 0x24 && index1 <= add r + 0x28) {
93 r e t u r n f a l s e ;
94 }
95 i f (i ndex1 >= add r + 0x28 && index1 <= add r + 0x2c) {
96 r e t u r n t r u e ;
97 }
98 i f (i ndex1 >= add r + 0x2c && index1 <= addr + 0x30) {
99 r e t u r n t r u e ;
100 }
101 }
102 i f (i ndex1 >= 0x1079e0 && index1 <= 0x107bdc) {
103 i n t add r = 0x1079e0 ;
104 i f (i ndex1 >= add r + 0x24 && index1 <= add r + 0x28) {
105 r e t u r n f a l s e ;
106 }
107 i f (i ndex1 >= add r + 0x28 && index1 <= add r + 0x2c) {
108 r e t u r n t r u e ;
109 }
110 i f (i ndex1 >= add r + 0x2c && index1 <= addr + 0x30) {
111 r e t u r n t r u e ;
112 }
113 }
114 }
115
116 i f (ID == 21246 && index1 >= 0x1077e4 && index1 <= 0x107be0) {
117 i f (i ndex1 >= 0x1079d4 && index1 <= 0x1079d8) {
118 i n t add r = 0x1079d4 ;
119 r e t u r n t r u e ;
120 }
121 i f (i ndex1 >= 0x1079d8 && index1 <= 0x1079dc) {

111

122 i n t add r = 0x1079d8 ;
123 r e t u r n t r u e ;
124 }
125 i f (i ndex1 >= 0x1079dc && index1 <= 0x1079e0) {
126 i n t add r = 0x1079dc ;
127 r e t u r n t r u e ;
128 }
129 }
130
131 i f (ID == 31795 && index1 >= 0x1077e4 && index1 <= 0x107be0) {
132 i f (i ndex1 >= 0x1079d4 && index1 <= 0x1079d8) {
133 i n t add r = 0x1079d4 ;
134 r e t u r n t r u e ;
135 }
136 i f (i ndex1 >= 0x1079d8 && index1 <= 0x1079dc) {
137 i n t add r = 0x1079d8 ;
138 r e t u r n t r u e ;
139 }
140 i f (i ndex1 >= 0x1079dc && index1 <= 0x1079e0) {
141 i n t add r = 0x1079dc ;
142 r e t u r n t r u e ;
143 }
144 }
145
146 i f (ID == 24051 && index1 >= 0x1077e4 && index1 <= 0x107be0) {
147 i f (i ndex1 >= 0x1079d4 && index1 <= 0x1079d8) {
148 i n t add r = 0x1079d4 ;
149 r e t u r n t r u e ;
150 }
151 i f (i ndex1 >= 0x1079d8 && index1 <= 0x1079dc) {
152 i n t add r = 0x1079d8 ;
153 r e t u r n t r u e ;
154 }
155 i f (i ndex1 >= 0x1079dc && index1 <= 0x1079e0) {
156 i n t add r = 0x1079dc ;
157 r e t u r n t r u e ;
158 }
159 }
160
161 i f (ID == 21306 && index1 >= 0x1077e4 && index1 <= 0x107be0) {
162 i f * ((i n t *) p t r _ v a l) >= 0 && * ((i n t *) p t r _ v a l) <= 1) {
163 r e t u r n t r u e ;
164 }
165 }
166
167 i f (ID == 9941 && index1 >= 0x1077e4 && index1 <= 0x107be0) {
168 i f (i ndex1 >= 0x1077e4 && index1 <= 0x1079e0) {
169 i n t add r = 0x1077e4 ;
170 r e t u r n t r u e ;
171 }
172 i f (i ndex1 >= 0x1079e0 && index1 <= 0x107bdc) {
173 i n t add r = 0x1079e0 ;
174 r e t u r n t r u e ;
175 }
176 }
177
178 i f (ID == 3474 && index1 >= 0x1077e4 && index1 <= 0x107be0) {
179 i f (i ndex2 >= 0 && index2 <= 2) {
180 r e t u r n t r u e ;
181 }
182 }
183 r e t u r n f a l s e ;
184 }

C B

Generated files from VMM’s Ontological Model

The implementation files, automatically generated from the devised μRTZVisor ontologicalmodel,
for the Data Integrity security countermeasure, are depicted below.

B.1 Astract Rules File

Listing B.1: Automatically generated file with the abstract data integrity rules for μRTZVisor.
1 immutab l e_vec_e l emen t : : u r t z v i s o r : : GuestManager : : i n s t a n c e . g u e s t L i s t . memoryConfig . b i tmap

[0]
2 immutab le : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t _ a t t r i b u t i o n
3 immutab le : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : s h a r e d _ i n t e r r u p t s . mBitmap
4 immutab le : : u r t z v i s o r : : Hy p e r c a l l s : : h y p e r c a l l _ t a b l e
5 immutab le : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : h a n d l e r _ t a b l e
6 immutab le : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t s . mBitmap
7 immutab le : : u r t z v i s o r : : GuestManager : : i n s t a n c e . g u e s t L i s t . i n t e r r u p t C o n f i g . b i tmap
8 r e g i s t e r _ v a l _ p a t t e r n ANONYMOUS. p t _ c o n t r o l _ r e g XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX1
9 r a n g e _ i n t : : u r t z v i s o r : : GuestManager : : i n s t a n c e . mCur ren tGues t 0 1

B.2 Instrumentation Input File

Listing B.2: Automatically generated file used as input for the Instrumentation Pass.
1 : : u r t z v i s o r : : GuestManager : : i n s t a n c e . g u e s t L i s t . memoryConfig . b i tmap
2 : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t _ a t t r i b u t i o n
3 : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : s h a r e d _ i n t e r r u p t s . mBitmap
4 : : u r t z v i s o r : : Hy p e r c a l l s : : h y p e r c a l l _ t a b l e
5 : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : h a n d l e r _ t a b l e
6 : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t s . mBitmap
7 : : u r t z v i s o r : : GuestManager : : i n s t a n c e . g u e s t L i s t . i n t e r r u p t C o n f i g . b i tmap
8 ANONYMOUS. p t _ c o n t r o l _ r e g
9 : : u r t z v i s o r : : GuestManager : : i n s t a n c e . mCur ren tGues t
10 from F8F00000 t o F9F00000

114 ’

B.3 Memory Layout File

Listing B.3: Automatically generated file for μRTZVisor memory layout.
1 s t r u c t Vcp15 s i z e 80 [b y t e s]
2 F i e l d > i n t e g e r _ t y p e i n t PRRR
3 Bytes : 48 B i t s : 0
4 F i e l d > i n t e g e r _ t y p e i n t NMRR
5 Bytes : 48 B i t s : 32
6 F i e l d > i n t e g e r _ t y p e i n t PAR
7 Bytes : 40 B i t s : 32
8 F i e l d > i n t e g e r _ t y p e i n t TTBR0
9 Bytes : 8 B i t s : 32
10 F i e l d > i n t e g e r _ t y p e i n t TTBR1
11 Bytes : 16 B i t s : 0
12 F i e l d > i n t e g e r _ t y p e i n t CSSELR
13 Bytes : 0 B i t s : 0
14 F i e l d > i n t e g e r _ t y p e i n t 56 ,0
15 Bytes : 56 B i t s : 0
16 F i e l d > i n t e g e r _ t y p e i n t SCTLR
17 Bytes : 0 B i t s : 32
18 F i e l d > i n t e g e r _ t y p e i n t DFSR
19 Bytes : 24 B i t s : 32
20 F i e l d > i n t e g e r _ t y p e i n t IFSR
21 Bytes : 32 B i t s : 0
22 F i e l d > i n t e g e r _ t y p e i n t FCSEIDR
23 Bytes : 56 B i t s : 32
24 F i e l d > i n t e g e r _ t y p e i n t CONTEXTIDR
25 Bytes : 64 B i t s : 0
26 F i e l d > i n t e g e r _ t y p e i n t TPIDRUR0
27 Bytes : 72 B i t s : 0
28 F i e l d > i n t e g e r _ t y p e i n t DACR
29 Bytes : 24 B i t s : 0
30 F i e l d > i n t e g e r _ t y p e i n t IFAR
31 Bytes : 40 B i t s : 0
32 F i e l d > i n t e g e r _ t y p e i n t TTBCR
33 Bytes : 16 B i t s : 32
34 F i e l d > i n t e g e r _ t y p e i n t TPIDRPRW
35 Bytes : 72 B i t s : 32
36 F i e l d > i n t e g e r _ t y p e i n t ACTLR
37 Bytes : 8 B i t s : 0
38 F i e l d > i n t e g e r _ t y p e i n t DFAR
39 Bytes : 32 B i t s : 32
40 F i e l d > i n t e g e r _ t y p e i n t TPIDRURW
41 Bytes : 64 B i t s : 32
42 s t r u c t CoreRegs s i z e 116 [b y t e s]
43 F i e l d > i n t e g e r _ t y p e i n t s p _ ab t
44 Bytes : 80 B i t s : 0
45 F i e l d > i n t e g e r _ t y p e i n t l r _ a b t
46 Bytes : 80 B i t s : 32
47 F i e l d > i n t e g e r _ t y p e i n t s p s r _ a b t
48 Bytes : 88 B i t s : 0
49 F i e l d > i n t e g e r _ t y p e i n t s p _ i r q
50 Bytes : 104 B i t s : 0
51 F i e l d > i n t e g e r _ t y p e i n t spsr_mon
52 Bytes : 48 B i t s : 32
53 F i e l d > i n t e g e r _ t y p e i n t s p_ sy s
54 Bytes : 72 B i t s : 0
55 F i e l d > i n t e g e r _ t y p e i n t l r _ u n d e f
56 Bytes : 96 B i t s : 0
57 F i e l d > i n t e g e r _ t y p e i n t sp_svc
58 Bytes : 56 B i t s : 32
59 F i e l d > a r r a y _ t y p e i n t * r e g s s i z e 13
60 Bytes : 0 B i t s : 0
61 F i e l d > i n t e g e r _ t y p e i n t s p s r _ i r q
62 Bytes : 112 B i t s : 0
63 F i e l d > i n t e g e r _ t y p e i n t l r _ s v c
64 Bytes : 64 B i t s : 0
65 F i e l d > i n t e g e r _ t y p e i n t l r_mon
66 Bytes : 56 B i t s : 0
67 F i e l d > i n t e g e r _ t y p e i n t l r _ s y s

Memory Layout File 115

68 Bytes : 72 B i t s : 32
69 F i e l d > i n t e g e r _ t y p e i n t l r _ i r q
70 Bytes : 104 B i t s : 32
71 F i e l d > i n t e g e r _ t y p e i n t s p s r _ u nd e f
72 Bytes : 96 B i t s : 32
73 F i e l d > i n t e g e r _ t y p e i n t sp_unde f
74 Bytes : 88 B i t s : 32
75 F i e l d > i n t e g e r _ t y p e i n t s p s r _ s v c
76 Bytes : 64 B i t s : 32
77 s t r u c t MemoryManager s i z e 1 [b y t e s]
78 s t r u c t Gic s i z e 1 [b y t e s]
79 s t r u c t Hyp e r c a l l s s i z e 1 [b y t e s]
80 s t r u c t MemoryConf igura t ion s i z e 0 [b y t e s]
81 F i e l d > a r r a y _ t y p e i n t * b i tmap s i z e 3
82 Bytes : 0 B i t s : 0
83 s t r u c t V i r t u a lMach i n e s i z e 448 [b y t e s]
84 F i e l d > r e c o r d _ t y p e Vcpu mVcpu
85 Bytes : 0 B i t s : 0
86 F i e l d > r e c o r d _ t y p e Vgic mVgic
87 Bytes : 192 B i t s : 32
88 s t r u c t Vcpu s i z e 196 [b y t e s]
89 F i e l d > r e c o r d _ t y p e CoreRegs mVcore
90 Bytes : 0 B i t s : 0
91 F i e l d > r e c o r d _ t y p e Vcp15 mVcp15
92 Bytes : 112 B i t s : 32
93 s t r u c t I n t e r r u p t D i s t r i b u t o r s i z e 4096 [b y t e s]
94 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 9 s i z e 232
95 Bytes : 2144 B i t s : 0
96 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 8 s i z e 232
97 Bytes : 1120 B i t s : 0
98 F i e l d > i n t e g e r _ t y p e i n t ICDIIDR
99 Bytes : 8 B i t s : 32
100 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 7 s i z e 61
101 Bytes : 776 B i t s : 32
102 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 6 s i z e 29
103 Bytes : 648 B i t s : 32
104 F i e l d > a r r a y _ t y p e i n t * ICPIDR_4_7 s i z e 4
105 Bytes : 4048 B i t s : 0
106 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 1 s i z e 29
107 Bytes : 8 B i t s : 32
108 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 5 s i z e 29
109 Bytes : 520 B i t s : 32
110 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 4 s i z e 29
111 Bytes : 392 B i t s : 32
112 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 3 s i z e 29
113 Bytes : 264 B i t s : 32
114 F i e l d > a r r a y _ t y p e i n t * SPI_STATUS s i z e 2
115 Bytes : 3328 B i t s : 32
116 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 2 s i z e 29
117 Bytes : 136 B i t s : 32
118 F i e l d > a r r a y _ t y p e i n t * ICPIDR_0_3 s i z e 4
119 Bytes : 4064 B i t s : 0
120 F i e l d > i n t e g e r _ t y p e i n t ICDDCR
121 Bytes : 0 B i t s : 0
122 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 11 s i z e 125
123 Bytes : 3336 B i t s : 32
124 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 12 s i z e 51
125 Bytes : 3840 B i t s : 32
126 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 10 s i z e 58
127 Bytes : 3096 B i t s : 0
128 F i e l d > a r r a y _ t y p e i n t * ICDIPTRx s i z e 24
129 Bytes : 2048 B i t s : 0
130 F i e l d > a r r a y _ t y p e i n t * ICCIDRx s i z e 4
131 Bytes : 4080 B i t s : 0
132 F i e l d > a r r a y _ t y p e i n t * ICDIPRx s i z e 24
133 Bytes : 1024 B i t s : 0
134 F i e l d > a r r a y _ t y p e i n t * ICDABRx s i z e 3
135 Bytes : 768 B i t s : 0
136 F i e l d > a r r a y _ t y p e i n t * ICDISRx s i z e 3
137 Bytes : 128 B i t s : 0
138 F i e l d > i n t e g e r _ t y p e i n t ICDICTR
139 Bytes : 0 B i t s : 32
140 F i e l d > a r r a y _ t y p e i n t * ICDICPRx s i z e 3
141 Bytes : 640 B i t s : 0

116 ’

142 F i e l d > i n t e g e r _ t y p e i n t PPI_STATUS
143 Bytes : 3328 B i t s : 0
144 F i e l d > a r r a y _ t y p e i n t * ICDISERx s i z e 0
145 Bytes : 256 B i t s : 0
146 F i e l d > i n t e g e r _ t y p e i n t ICDSGIR
147 Bytes : 3840 B i t s : 0
148 F i e l d > a r r a y _ t y p e i n t * ICDICERx s i z e 0
149 Bytes : 384 B i t s : 0
150 F i e l d > a r r a y _ t y p e i n t * ICDICFRx s i z e 6
151 Bytes : 3072 B i t s : 0
152 F i e l d > a r r a y _ t y p e i n t * ICDISPRx s i z e 3
153 Bytes : 512 B i t s : 0
154 s t r u c t MemorySlot s i z e 8 [b y t e s]
155 F i e l d > i n t e g e r _ t y p e i n t a d d r e s s
156 Bytes : 0 B i t s : 0
157 F i e l d > i n t e g e r _ t y p e i n t s i z e
158 Bytes : 0 B i t s : 32
159 s t r u c t Gues t s i z e 508 [b y t e s]
160 F i e l d > i n t e g e r _ t y p e i n t i d
161 Bytes : 0 B i t s : 0
162 F i e l d > r e c o r d _ t y p e V i r t u a lMach i n e vm
163 Bytes : 56 B i t s : 32
164 F i e l d > r e c o r d _ t y p e I n t e r r u p t C o n f i g u r a t i o n i n t e r r u p t C o n f i g
165 Bytes : 48 B i t s : 0
166 F i e l d > a r r a y _ t y p e i n t * name s i z e 32
167 Bytes : 0 B i t s : 32
168 F i e l d > r e c o r d _ t y p e MemoryConf igura t ion memoryConfig
169 Bytes : 32 B i t s : 32
170 s t r u c t Vgic s i z e 256 [b y t e s]
171 F i e l d > i n t e g e r _ t y p e i n t ICCICR
172 Bytes : 0 B i t s : 0
173 F i e l d > a r r a y _ t y p e i n t * vICDISERx s i z e 3
174 Bytes : 224 B i t s : 32
175 F i e l d > i n t e g e r _ t y p e i n t ICCPMR
176 Bytes : 0 B i t s : 32
177 F i e l d > a r r a y _ t y p e i n t * ICDICFRx s i z e 6
178 Bytes : 200 B i t s : 32
179 F i e l d > i n t e g e r _ t y p e i n t ICCBPR
180 Bytes : 8 B i t s : 0
181 F i e l d > a r r a y _ t y p e i n t * ICDIPRx s i z e 24
182 Bytes : 8 B i t s : 32
183 F i e l d > a r r a y _ t y p e i n t * vICDISPRx s i z e 3
184 Bytes : 240 B i t s : 0
185 F i e l d > a r r a y _ t y p e i n t * ICDIPTRx s i z e 24
186 Bytes : 104 B i t s : 32
187 s t r u c t P r i v a t eT ime r s i z e 1 [b y t e s]
188 s t r u c t MemoryImplementa t ion s i z e 1 [b y t e s]
189 s t r u c t GuestManager s i z e 1020 [b y t e s]
190 F i e l d > a r r a y _ t y p e Gues t* g u e s t L i s t s i z e 2
191 Bytes : 0 B i t s : 0
192 F i e l d > i n t e g e r _ t y p e i n t mCur ren tGues t
193 Bytes : 1016 B i t s : 0
194 s t r u c t I n t e r r u p tMan a g e r s i z e 1 [b y t e s]
195 s t r u c t C p u I n t e r f a c e s i z e 256 [b y t e s]
196 F i e l d > i n t e g e r _ t y p e i n t ICCIDR
197 Bytes : 248 B i t s : 32
198 F i e l d > i n t e g e r _ t y p e i n t ICCHPIR
199 Bytes : 24 B i t s : 0
200 F i e l d > i n t e g e r _ t y p e i n t ICCICR
201 Bytes : 0 B i t s : 0
202 F i e l d > i n t e g e r _ t y p e i n t ICCIAR
203 Bytes : 8 B i t s : 32
204 F i e l d > i n t e g e r _ t y p e i n t ICCEOIR
205 Bytes : 16 B i t s : 0
206 F i e l d > i n t e g e r _ t y p e i n t ICCABPR
207 Bytes : 24 B i t s : 32
208 F i e l d > a r r a y _ t y p e i n t * r e s e r v e d 1 s i z e 55
209 Bytes : 32 B i t s : 0
210 F i e l d > i n t e g e r _ t y p e i n t ICCBPR
211 Bytes : 8 B i t s : 0
212 F i e l d > i n t e g e r _ t y p e i n t ICCRPR
213 Bytes : 16 B i t s : 32
214 F i e l d > i n t e g e r _ t y p e i n t ICCPMR
215 Bytes : 0 B i t s : 32

Memory Layout File 117

216 s t r u c t : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t s s i z e 12 [b y t e s]
217 F i e l d > a r r a y _ t y p e i n t * mBitmap s i z e 3
218 Bytes : 0 B i t s : 0
219 s t r u c t Gues tConf ig s i z e 16 [b y t e s]
220 F i e l d > i n t e g e r _ t y p e i n t num_s lo t s
221 Bytes : 8 B i t s : 0
222 F i e l d > i n t e g e r _ t y p e i n t e n t r y _ p o i n t
223 Bytes : 0 B i t s : 32
224 s t r u c t I n t e r r u p t C o n f i g u r a t i o n s i z e 12 [b y t e s]
225 F i e l d > a r r a y _ t y p e i n t * b i tmap s i z e 3
226 Bytes : 0 B i t s : 0
227 s t r u c t P r i v a t eT ime rReg s s i z e 16 [b y t e s]
228 F i e l d > i n t e g e r _ t y p e i n t p t _ c o n t r o l _ r e g
229 Bytes : 8 B i t s : 0
230 F i e l d > i n t e g e r _ t y p e i n t p t _ i n t e r r u p t _ s t a t u s _ r e g
231 Bytes : 8 B i t s : 32
232 F i e l d > i n t e g e r _ t y p e i n t p t _ l o a d _ r e g
233 Bytes : 0 B i t s : 0
234 F i e l d > i n t e g e r _ t y p e i n t p t _ c o u n t e r _ r e g
235 Bytes : 0 B i t s : 32
236 s t r u c t : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : s h a r e d _ i n t e r r u p t s s i z e 12 [b y t e s]
237 F i e l d > a r r a y _ t y p e i n t * mBitmap s i z e 3
238 Bytes : 0 B i t s : 0
239 s t a t i c : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : s h a r e d _ i n t e r r u p t s r e c o r d _ t y p e TEMPLATE
240 s t a t i c : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t s r e c o r d _ t y p e TEMPLATE
241 s t a t i c : : u r t z v i s o r : : Hy p e r c a l l s : : h y p e r c a l l _ t a b l e a r r a y _ t y p e i n t e g e r _ t y p e
242 e l emen t s 32
243 s t a t i c : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : h a n d l e r _ t a b l e a r r a y _ t y p e i n t e g e r _ t y p e
244 e l emen t s 96
245 s t a t i c : : u r t z v i s o r : : I n t e r r u p tMan a g e r : : p r i v a t e _ i n t e r r u p t _ a t t r i b u t i o n a r r a y _ t y p e i n t e g e r _ t y p e
246 e l emen t s 96
247 s t a t i c : : u r t z v i s o r : : GuestManager : : i n s t a n c e r e c o r d _ t y p e GuestManager
248 s t a t i c ANONYMOUS r e c o r d _ t y p e P r i v a t eT ime rReg s
249 At f8 f00600

	Abstract
	Resumo
	List of Figures
	List of Listings
	Acronyms
	1. Introduction
	1.1 Thesis Contributions
	1.2 Contextualization
	1.3 Thesis Outline

	2. Background
	2.1 Virtualization
	2.2 ARM Architecture
	2.2.1 Processing Modes
	2.2.2 TrustZone

	2.3 GNU Compiler Collection Overview
	2.4 GIMPLE
	2.5 Semantic Technology: Ontologies
	2.5.1 Essential Features of an Ontology

	2.6 Ontologies Languages and Tools
	2.6.1 OWL Properties
	2.6.2 SWRL

	3. State of the art
	3.1 Memory Errors
	3.1.1 Evolution of memory related attacks throughout history

	3.2 Countermeasure Design
	3.2.1 C and C++ Dialects
	3.2.2 Bound Checkers
	3.2.3 Control Flow Integrity
	3.2.3.1 Enforcing CFI with HyperSafe

	3.2.4 Data Flow Integrity
	3.2.5 Write Integrity Testing
	3.2.6 Enforcing Data Flow Integrity on the Kernel
	3.2.7 Dynamic Information Flow Tracking
	3.2.8 Specification-based Approaches
	3.2.9 Concurrent Security Monitoring

	3.3 Expressiveness of Non-Control Data Attacks
	3.3.1 Data Oriented Programming
	3.3.2 Data Stitching

	3.4 MELT

	4. Associated Work
	4.1 The μRTZVisor VMM
	4.1.1 μRTZVisor Data-Plane Analysis

	4.2 The SeML Framework
	4.2.1 Code Generation

	5. Data Integrity: Design and Implementation
	5.1 Design Goals
	5.2 Platform
	5.3 Threat Model
	5.4 Proposed Approach
	5.5 Implementation
	5.6 Structure of the Log Data Structure
	5.7 Hypervisor's Instrumentation
	5.7.1 Detecting Store Operations in GIMPLE
	5.7.2 Identifying Writes to Critical Variables
	5.7.3 Instrumentation Metadata
	5.7.4 Protecting the Logs using the MMU

	5.8 Extracting Target Program's Memory Layout
	5.8.1 Retrieving Static Variable Addresses

	5.9 Abstract rules
	5.10 Mapping Abstract to Run-Time Verifiable Rules
	5.10.1 An Overview over the Code Generation Process
	5.10.2 The Remote Monitor

	5.11 Preparing the Final Executable
	5.11.1 Starting the Remote Monitor

	5.12 Completing Data Integrity with CFI
	5.13 Limitations
	5.14 Summary

	6. Data Model and Code Generation
	6.1 Introduction
	6.2 Variable Declaration
	6.3 Type Declaration
	6.4 References
	6.5 Abstract Rules
	6.6 Code Generation

	7. Evaluation
	7.1 Security Analysis
	7.1.1 Facing State of the Art Attacks

	7.2 Performance and Code Size
	7.3 Use Case Scenario
	7.3.1 Performing a Control Flow Attack

	8. Conclusion and Future Research Directions
	8.1 Summary
	8.2 Future Work
	8.3 Closing Remarks

	Appendices
	A. Rule Enforcement in C++
	B. Generated files from VMM's Ontological Model
	B.1 Astract Rules File
	B.2 Instrumentation Input File
	B.3 Memory Layout File

