
Scheduling Algorithms to support QoS and Service
Integration in Sensor and Actuator Networks

J.M.Cabral1, J.G.Rocha1, J.E.Neves1 and J.Ruela2

1 Industrial Electronics Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
2 School of Engineering, University of Porto (FEUP-DEEC) / INESC Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

jose.cabral@dei.uminho.pt

Abstract - In this paper we analyse and evaluate several

Scheduling Algorithms that are candidates to support Quality of
Service and Service Integration in Sensor and Actuator Networks.
They should satisfy two main goals: to guarantee committed
delays for time sensitive services, and to improve the network
transmission efficiency. The algorithms are described and some
results, obtained by simulation, are presented. The proposed
Traffic Class Oriented Algorithm proved to be a good solution to
meet the proposed objectives as well as to integrate traffic
generated by Fieldbus devices and control applications in real
communication networks.

I. INTRODUCTION

Usually, a sensor network is composed of a large number of
small devices, whose main objective is to detect and transmit
some physical characteristic of the environment [1]. These
components or nodes can be used in an efficient way to fulfil a
single common objective, even when their number is in the
order of thousands. A control system may integrate a large
number of sensors, actuators and respective control entities.
Therefore, even when the communication between each pair of
devices is characterised by a low bit rate and requires moderate
or small transmission delays, the aggregate bit rate to be
supported by the network can reach very high values and time
delays may become unacceptable, if not properly controlled.

This kind of traffic is usually supported by specific networks
usually called Fieldbuses; CAN and Profibus are examples of
Fieldbus technologies. They have many limitations, mainly in
aspects related with the integration of services and systems,
bandwidth and coverage area.

On the other hand, until recently, communications networks
have been optimized to support specific services (e.g.
transmission of voice, video or data files), thus requiring some
form of adaptation to support other types of services. The
current trend towards integration of services in the same
network is usually associated with the need to support
differentiated Quality of Service (QoS). Moreover, adapting
low bit rate services in such networks is concomitant with the
control of time delay in assembling and scheduling packets;
these aspects have a significant impact on QoS.

To solve these problems a modular system architecture was
studied and specified [2]. Its main component is a Terminal
Adapter that allows multiplexing of individual flows generated
by low bit rate services into a single aggregate flow.

The specification of a scheduling algorithm is essential to
perform statistical multiplexing of different information flows,
while taking into account delay requirements as well as other
relevant QoS parameters.

The paper is organized as follows. Section II analyses the
problem of integrating low bit rate traffic in communication
networks. Section III presents some fundamentals of traffic
scheduling, while Section IV discusses several algorithms used
to perform traffic aggregation. Section V describes simulation
results and in Section VI some conclusions are presented.

II. INTEGRATION OF LOW BIT RATE TRAFFIC IN
COMMUNICATION NETWORKS

The main objective of this study is to propose and evaluate a
solution that aggregates low bit rate traffic, usually associated
to Fieldbuses, for transmission over an integrated services
communication network. ATM (Asynchronous Transfer Mode)
technology was selected due to its capability of multiplexing in
an efficient way a large number of data flows, while supporting
different delay requirements [3].

In order to specify the architecture of the Terminal Adapter,
which supports the interconnections of Fieldbus devices into
the communication network, it is first necessary to characterize
the way different flows, generated by different devices, will be
processed by a traffic aggregation system, as well as the time
required for data transmission along a network.

A. Traffic Classes
Each traffic class, which aggregates flows with similar QoS

requirements, will be treated by the scheduling algorithm such
that different target performance levels of the control system
are achieved. Three traffic classes were proposed:

• Maximum Delay (MD)
The flows associated with this class need a maximum and

well-defined time delay guarantee between the sensing device
and the control application, and between the control
application and the acting device.

• Data (D)
In this class, delivery of information has not critical delay

requirements. The only requirement is that all data must be
delivered without losses, which may require a reliable end-to-
end transport protocol to recover from network losses.

1-4244-0726-5/06/$20.00 '2006 IEEE 529

• Minimum Effort (ME)
This class can be used when occasional loss or high delay in

information delivery does not affect the control process.

B. Transmission delays
The time required for data transmission along a network

includes two components: the delay in processing data packets
in terminal and network devices (e.g. packetization and
queuing delays) and the propagation delay [4].

The value of 400ms was considered an acceptable limit for
network planning purposes, where speech transmission
performance was the focus [4].

C. Terminal Adapter
The Terminal Adapter is as a set of sending and receiving

state machines that work in an independent way. The sending
side must multiplex traffic flows from various sources (e.g.
sensors) with different delay requirements, into a single flow
for transmission over the network, while guaranteeing the
specified QoS and maximizing transmission efficiency. The
receiving side has to perform channel demultiplexing, in order
to deliver individual flows to the actuators of the control
system. Fig. 1 shows the Terminal Adapter architecture; it is
based on Type 2 ATM Adaptation Layer (AAL-2), which is
described in ITU-T Recommendation I.363.2 [5].

ATM

AAL2

ATM

PHY

AAL2

C
lock A

dapter

PHY

Network

Tx
M

od
ul

e

R
x

M
od

ul
e

Sensors / Actuators Interface

Configuration
and

Control

Fig. 1. Terminal Adapter architecture.

The proposed solution for the Terminal Adapter establishes
the interface between the network and sensors/actuators and
allows identification of devices by the control application. This
identification is based on ATM virtual channel and virtual path
identifiers (VCI/VPI) at the interface, and on the multiplexing
function provided by the adaptation layer. AAL-2 Common
Part Sublayer (CPS) packets carry a Channel Identifier (CID)
that identifies the channel that is being used. The channels are
numbered from 8 to 255, since the values between 0 and 7 are
reserved for other purposes. The LI field of CPS packets
carries the length of the information field (CPS-INFO) in
octets. For each channel, the LI value indicates how many
octets have been read from the FIFO (First In First Out) of the
corresponding input. This value can vary, for each channel, at
each reading process, since it depends on the number of octets

available in the input FIFO. Moreover, the User to User
Indication (UUI) field can serve two functions: to carry
specific information in a transparent way, through the CPS
sub-layer, and to distinguish between a Service Specific
Convergence Sublayer (SSCS) entity (in case its value is
between 0 and 27) and the management layer. In this work, the
UUI field is used to address the Terminal Adapter and to
implement a mechanism for identification of the traffic class
associated with the flow carried by the CPS packet.

As soon as they are created, CPS packets are placed in an
intermediate FIFO. Here, the scheduling of the input flows had
already been made. These packets have already defined the
channel identifier (CID), the identification of the Terminal
Adapter where they come from (UUI), and the priority
associated with the traffic class, which is assigned at the input
(UUI) by the configuration module. CPS packets, possibly of
different sizes, are concatenated and placed in blocks of 48
octets (ATM_SDUs), which are encapsulated in ATM cells.

In order to organize the transmission scheduling, each packet
has a time-stamp associated to allow controlling the delay in
the Terminal Adapter. Since some input traffic can have
stringent delay requirements, a packet cannot wait more than a
well-defined time interval. Thus, if the value of this time
interval is too low, the ATM cells will be only partially filled,
since the arrival ratio of CPS packets is low compared to the
multiplexing clock. Otherwise, ATM cells will be totally filled
but the packetization delay will increase.

III. TRAFFIC SCHEDULING

To organise the aggregation of information flows coming
from the different traffic sources that compete for the available
transmission capacity, a number of scheduling algorithms were
analysed and evaluated. A scheduler establishes the order in
which flows are served such that the QoS requirements of each
information source are satisfied.

The most basic algorithm consists in placing packets of the
different flows into a single FIFO memory structure, such that
packets are served in the order of arrival. This FCFS (First
Come First Served) algorithm is rather simple to implement
but does not allow isolation and differentiation among classes,
nor even fairness among flows of the same class, that is, it does
not provide QoS guarantees.

In order to overcome these limitations, other algorithms that
support scheduling of asynchronous traffic have been proposed
and are described in the literature. Many of them try to emulate
an ideal algorithm known as GPS (Generalized Processor
Sharing) or FFQ (Fluid Fair Queuing). In logical terms, this
algorithm assigns a queue to each information flow and on
each round simultaneously serves an infinitesimal amount of
information from each non empty queue. In this way, in a
given finite time interval each queue is visited at least once. A
different weight can be associated to each flow, thus allowing
the amount of data served to be proportional to its weight.

This algorithm can be implemented, in a simple form, by
means of a round-robin (RR) mechanism, where the several

530

queues are served sequentially and in the same way than in
GPS. However, this mechanism serves an information packet
at each time instead of an infinitesimal amount. This algorithm
is a good approach to GPS when the flows have the same
weight and the packets have the same length. WRR (Weighted
Round-Robin) is a variant of the basic RR mechanism, where
the flows are served in the ratio of their weights [6].

WFQ (Weighted Fair Queuing) emulates GPS in a more
precise way, especially when packets are of variable size [7],
but is more complex to implement than WRR. WFQ assigns a
time-stamp to each packet, which corresponds to the instant
when the packet would have completed service in GPS, and
serves packets in the order of their time-stamps. This algorithm
is adequate to real-time traffic, but the assigned bandwidth
varies inversely with the connection delay, thus becoming less
efficient when low delays and high bandwidth utilisation are
needed [8].

For scheduling of real-time traffic other algorithms have
been proposed, such as EDD (Earliest Due Date), also known
as EDF (Earliest Deadline First). It assigns a deadline to each
packet, which is used by the scheduler to define the order of
service. A packet whose deadline is more close to the arrival
instant has a smaller queuing delay than packets that have been
assigned a more distant deadline. Depending on the load, it
cannot be possible to serve all the packets before reaching their
assigned deadlines.

IV. SCHEDULING ALGORITHMS

A number of specific Scheduling Algorithms suitable for the
Terminal Adapter have been analysed. These algorithms must
satisfy two main goals, when performing traffic aggregation:
guarantee a bounded delay for services with time critical
requirements, and keep high transmission efficiency.

The scheduler is a functional block that belongs to the
sending module of the Terminal Adapter and is responsible for
scheduling the input information flows, taking into account the
delay requirements of each service.

Fig. 2 illustrates the traffic scheduling mechanism, where the
multiplexing structure of the AAL-2 CPS packets is used.

The parameters of each traffic class, which depend on the
service characteristics, allow the implementation of a priority
mechanism to efficiently serve the FIFOs associated with each
traffic source. According to the traffic class, the scheduling
algorithm must implement a priority mechanism in order to
satisfy the delay requirements of each service, and at the same
time optimize the efficiency when assembling CPS packets.

At each instant, the scheduler tries to read from the selected
FIFO the maximum possible number of octets (45, according
to the AAL-2 specification) in order to completely fill a CPS
packet, thus keeping the overhead at the minimum. In case all
FIFOs are empty, the scheduler will not assemble any CPS
packet and the algorithm returns to the starting point.

The guarantee of a maximum delay for a given service is
achieved by means of a Loopclock value. However, a low
Loopclock value means poor multiplexing efficiency, due to

the creation of a small CPS packet. In this way, the scheduling
mechanism must estimate the Loopclock value as function of
the traffic parameters of the input sources in order to guarantee
the maximum delay requirement of each source and to
maximize, at the same time, the multiplexing efficiency.

+

CPS_SDU Assembler

C
PS

 P
ac

ke
ts

C
PS

_S
D

U

Status
Queue 1

Status
Queue 2

Status
Queue n

Net_Clock

Loop_Clock

Algorithm

Clock
Adapter

Scheduler

Fig. 2. Terminal Adapter traffic scheduling mechanism.

Due to the fact that low bit rate flows of MD class may
produce small amounts of information compared to the flows
of other classes, and to the necessity of giving some priority to
these services, it might not be possible to fill the corresponding
CPS packets with the maximum allowed size. In these cases
loss of efficiency can occur, since the need to satisfy the delay
requirements of these services imposes the assembly of smaller
packets,

Taking into account these considerations, several algorithms
were specified and evaluated by means of simulation, in order
to select a solution that optimizes the QoS performance of all
services supported. The details of the simulator are presented
in [9].

The next four sections (A, B, C and D) describe some basic
algorithms that help understanding the global functioning of
the blocks responsible for scheduling the various information
flows. These algorithms do not use QoS parameters to schedule
the information. On the other hand, Section E specifies a new
algorithm that uses QoS parameters as an input to the
scheduler, with the aim of optimizing the multiplexing
efficiency and minimizing the delay associated with time
critical service flows. This algorithm is called Traffic Class
Oriented Algorithm (TCOA) and, as will be shown in section

531

V, is an efficient solution to guarantee QoS to individual
service flows as well as to promote service integration; in this
way, it allows optimizing the use of bandwidth and thus
reducing the associated transmission costs.

A. FIFO Level Criterion Algorithm (FLCA)
At each instant, it calculates the length of each FIFO. The

priority is given to the FIFO with the highest occupation level.
The scheduler tries to assemble a packet with a maximum size
(45 bytes) in order to maximize the multiplexing efficiency.
However, it is not always possible to reach this packet length
due to the fact the FIFOs may not contain this amount of
information. This method does not take into account the
deadlines associated with time critical service flows, which
may degrade the QoS guarantees required by these services.
Despite these characteristics and due to its implementation
simplicity, this algorithm may be adequate in many
applications.

B. Oldest Byte Criterion Algorithm (OBCA)
This algorithm is an approximation of WFQ introduced in

section III. At each instant, it reads the time-stamp of the first
byte of each FIFO (byte at the head of the FIFO). It serves the
FIFO whose time-stamp is the oldest. Like the previous
method, the scheduler tries to read the maximum number of
bytes in order to achieve maximum efficiency. Although this
algorithm does not take into account the deadlines of each
information flow, the scheduler mechanism is based on a time
criterion. Due to the fact that the oldest byte does not always
belong to a time sensitive flow, this algorithm does not
minimize the delays associated with these services.

C. Sequential Criterion Algorithm (SCA)
This is a simple algorithm that is a variant of FFQ

introduced in section III. It serves each FIFO in a round-robin
fashion and, once again, it tries to read the maximum number
of bytes in order to attain maximum efficiency. This method is
not suitable for the majority of applications since it does not
take into account any QoS related parameter. Nevertheless, it
may be adequate for some applications where time related
parameters are not relevant for scheduling purposes.

D. Random Criterion Algorithm (RCA)
This algorithm is identical to SCA previously described, but

the scheduler is random instead of being sequential. As will be
showed in section V, the performance of this algorithm is
identical to SCA.

E. Traffic Class Oriented Algorithm (TCOA)
Unlike the previous algorithms, the proposed TCOA uses

QoS parameters as an input to the scheduler. Thus, associated
with each information flow there is a FIFO and a state table
that keeps the following parameters:

• FIFO sizes in octets,
• Traffic class of each flow,
• Time-stamp of the FIFO oldest octet (octet at the head of

the FIFO),

• For the MD class - maximum delay that guarantees in time
delivery of the information.

Taking into account these parameters, the scheduler
performs the following algorithm:

1. It calculates the service instants (deadlines) of MD class
FIFOs, as a function of their maximum delays,

2. While the deadlines are not reached, it sequentially serves
the largest FIFO (it can be of either class MD or D),

3. When the deadline of one of the MD class FIFOs is
reached, it must be served,

4. If there is no information in the MD or D class FIFOs, it
transmits the packets of the largest ME class FIFO.

Thus, while the service instants of the MD class packets are
not reached, the priority criterion is based on the selection of
the FIFO that has, in a given instant, the largest number of
octets. The ME class FIFOs are served only when there is no
information in the FIFOs of the remaining classes.

V. PERFORMANCE ANALISYS

The system evaluation was based on a simplified test-bed
developed for this purpose. It consists of a set of simulation
programs [2] written in C Language, which include models of
artificial sources that allowed the creation of specific test
scenarios, difficult to obtain with real sources. Performance
was evaluated in terms of:

• Multiplexing efficiency,
• Maximum delays and queue sizes of the different flows,
• Maximum bandwidth of the output aggregate flow.
The tests carried out for the Terminal Adapter were based on

two concrete scenarios that were used to evaluate, respectively,
the capability of integrating flows associated with services with
different delay requirements (Scenario-1), and the capability to
support a high number of low bit rate flows in an efficient way
(Scenario-2).

Table I shows the characteristics of the sources used in both
simulation scenarios.

TABLE I
SIMULATED TRAFFIC SOURCES.

Source Bit rate (average) Type Class

S1 - Sensor 800bit/s Constant MD

S2 - Data 16kbit/s Variable D

S3 - Actuator 80bit/s Random MD

S4 -Voice 16kbit/s Constant MD

S5 - Video 80kbit/s Variable ME

Total 112 880 bit/s

MD class is assigned to Sensor, Actuator and Voice sources,
D class to Data sources and ME class to Video sources. Each
MD class flow will have an associated target delay, which is a
function of its specific service characteristics. Voice sources
are the most sensitive to delay, while Video sources load the
system with the highest amount of data.

532

Scenario-1 uses all Sources listed in Table I and Scenario-2
only uses Sensor (S1) and Data (S2) sources, since it is
expected that these will be dominant in the control applications
addressed in this paper. The target delays defined for S1, S3
and S4 flows were, respectively, 200ms, 50ms and 15ms.

A. Simulation of Basic Algorithms
To evaluate these algorithms scenario-1 was considered,

since it is only important to focus on the basic functioning of
the mechanism responsible for scheduling the information.
Thus, in this scenario the system is loaded with a set of traffic
sources that exhibit a broad variety of characteristics in terms
of bit-rate and delay requirements.

For each algorithm, simulations with different Loopclock
values were carried through. As stated before and will be
confirmed later on, the value of this parameter influences the
multiplexing efficiency and the scheduling delay in such a way
that a compromise is required.

Figures 3 to 6 show the variation of the maximum delay as a
function of the Loopclock parameter for each basic algorithm.

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200
FLCA Algorithm

Loopclock (ms)

M
ax

im
um

 D
el

ay
 (m

s)

Fig. 3. FLCA simulation: Maximum Delay versus Loopclock.

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

800
OBCA Algorithm

Loopclock (ms)

M
ax

im
um

 D
el

ay
 (m

s)

Fig. 4. OBCA simulation: Maximum Delay versus Loopclock.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300
SCA Algorithm

Loopclock (ms)

M
ax

im
um

 D
el

ay
 (m

s)

Fig. 5. SCA simulation: Maximum Delay versus Loopclock.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300
RCA Algorithm

Loopclock (ms)

M
ax

im
um

 D
el

ay
 (m

s)

Fig. 6. RCA simulation: Maximum Delay versus Loopclock.

The first two algorithms show a better performance than the
other two. This fact was expected since they use, as input,
parameters that influence the delay. For Loopclock values
below 3ms, these two algorithms produce very small delays,
being FLCA slightly better.

Fig. 7 shows the variation of the Overhead versus Loopclock
for the four Basic Algorithms. Looking at the figure, it can be
observed that the multiplexing efficiency increases with the
value of the Loopclock. This fact was also expected as well as
the better performance of FLCA relatively to OBCA, for
values above 2ms.

FLCA has the better performance in terms of multiplexing
efficiency and delay. This fact was important for dimensioning
TCOA, since FIFO size is one of the key input parameters to
the scheduling mechanism.

533

0 0.5 1 1.5 2 2.5 3 3.5 4
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

Loopclock (ms)

O
ve

rh
ea

d
%

FLCA Algorithm
OBCA Algorithm
SLA Algorithm
RLA Algorithm

Fig. 7. Variation of the Overhead versus Loopclock - Basic Algorithms.

B. Simulation of TCOA
Table II shows some simulation results obtained with TCOA

tests in scenario-1.
TABLE II

PERFORMANCE OF THE TCOA ALGORITHM: SCENARIO-1.

 Maximum Delay (ms)

Loopclock (ms) S1 S2 S3 S4 S5 Overhead

0.2 0.2 1.6 0.2 0.8 3.4 18.73%

1.0 1.0 9.0 1.0 4.2 21.9 18.54%

2.4 2.4 21.4 2.4 9.8 151.7 18.44%

3.0 3.0 29.9 3.0 14.8 632.4 18.39%

Each row of the table depicts simulation results for a specific
Loopclock value, represented in the first column. Columns S1
to S5 indicate the maximum delays of the corresponding
service flows of Table I. This table shows three important
features of the TCOA behaviour:

• MD target delays were not overtaken,
• High multiplexing efficiency (overhead),
• Capability to integrate services.

Table III shows results obtained in scenario-2. The first
column indicates the ratio between S1 and S2 sources. Since
S2 sources (D class) do not impose time constraints to the
scheduler, the multiplexing efficiency will increase with the
S2/S1 ratio.

TABLE III
PERFORMANCE OF TCOA ALGORITHM: SCENARIO-2.

 Maximum Delay

S2/S1 Loopclock (ms) S1 (ms) S2 (ms) Overhead

5 / 5 4.1 20.5 2054 25.73%

10 / 5 2.0 10.5 1047 14.35%

15 / 5 1.4 7.0 691 9,02%

20 / 5 1.1 5.5 964 5.9%

On the other hand, the delay associated with S1 sources
decreases when the number of S2 sources increases. This
feature is important since the number of S2 sources is usually
dominant in these types of applications, helping the scheduling
mechanism to improve its performance.

Two of the described basic algorithms (FLCA and OBCA)
could be used in some control applications that require the
integration of different types of services. However, they are not
capable of controlling the delay of flows that will be
aggregated for transmission over a network. On the other hand,
TCOA not only retains the main qualities of these, but also
implements an efficient scheduling mechanism that, at the
same time, controls the delay of the services with time
constraints and keeps the multiplexing efficiency high.

VI. CONCLUSIONS

In this paper we have analysed and evaluated several
Scheduling Algorithms to support QoS and Service Integration
in Sensor and Actuator Networks. The Scheduling Algorithm
is the core of the statistical multiplexing mechanism that
aggregates information flows, exchanged among Fieldbus
devices, based on delay requirements and other QoS
parameters.

The simulation results showed good performance of the
proposed TCOA (Traffic Class Oriented Algorithm), both in
terms of meeting the target delays of the input sources and
multiplexing efficiency.

As a final conclusion, it can be stated that this mechanism is
appropriate to aggregate different kinds of traffic. In particular,
it allows the integration of low bit rate flows produced by
control applications in actual communication networks, such as
ATM.

REFERENCES
[1] C. Lu, B. Blum, T. Abdelzaher, J. Stankovic, and T. He, RAP; “A Real-

Time Communication Architecture for Large-Scale Wireless Sensor
Networks”; Real-Time Technology and Applications Symposium; 2002.

[2] Cabral, J.M.; “A System Architecture for Low Bit Rate Traffic Aggregation
in Control Applications”, PhD Thesis (http://hdl.handle.net/1822/3325),
University of Minho, 2005.

[3] McDysan, D. E., Spohn, D. L., “ATM Theory and Application”,
McGraw-Hill Series on Computer Communications, 1995.

[4] ITU-T, Rec. G.114, “One-way transmission time”, May, 2000.
[5] ITU-T, Rec. I.363.2 – “B-ISDN ATM Adaptation Layer Specification:

Type 2 AAL”, September 1997.
[6] Keshav, S.; “An Engineering Approach to Computer Networking”, pp.

209-246 Addison-Wesley, 1997.
[7] Demers, A., Keshav, S., Shenker, S.; “Design and Analysis of a Fair

Queuing Algorithm”, Proceedings of ACM SIGCOMM’89, 1989.
[8] Parekh, A., Gallager, R.; “A Generalized Processor Sharing Approach to

Flow Control in Integrated Services Networks – The Multiple Node
Case”, IEEE/ACM Transactions on Networking, pp. 137-150, 1994.

[9] J.M.Cabral, J.G.Rocha, J.E.Neves and J.Ruela; “ATM Terminal Adapter
and Concentrator implemented in PC with Linux”, Technical Report
(http://hdl.handle.net/1822/2830), R&D Centre Algoritmi, University of
Minho, 2005.

534

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

