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A B S T R A C T

Motivation: Single cells often show stochastic behaviour and variations in the physiological state of individual
cells affect the behaviour observed in cell populations. This may be partially explained by variations in the
concentration and spatial location of molecules within and in the vicinity of each cell.
Methods: This paper introduces an agent-based model that represents single-molecule transport through the
cellular envelope of Escherichia coli at the micrometre scale. This model enables broader observation of mole-
cular transport throughout the different membrane layers and the study of the effect of molecular concentration
in cellular noise. Simulations considered various low molecular weight molecules, i.e. ampicillin, bosentan,
coumarin, saquinavir, and terbutaline, and a gradient of molecular concentrations. The model ensured sto-
chasticity in the location of the agents, using diffusing spherical particles with physical dimensions.
Results: Simulation results were validated against theoretical and experimental data. For example, theoretically,
ampicillin molecules take 0.6 s to cross the entire cell envelope, and computational simulations took 0.68 s,
0.68 s, 0.70 s, and 0.69 s, for concentrations of 1.44 μM, 13.21 μM, 26.4 μM and 105.61 μM, respectively.
Replicate standard deviation decreased with growing initial concentrations of the molecules. In turn, no clear
relationship could be observed between molecular size and variability.
Conclusions: This work presented a novel agent-based model to study the effect of the initial concentration of low
molecular weight molecules on cellular noise. Cellular noise during molecule diffusion was found to be con-
centration-dependent and size-independent. The new model holds considerable potential for future, more
complex analyses, when emerging experimental data may enable modelling of membrane transport mechanisms.

1. Introduction

Biological processes in the cell envelope are hard to replicate in vitro
because the native protein-lipid architectures and dynamics in the
membrane environment are poorly characterized [1,2], and the com-
plex protein network, which is fundamental for molecule exchange, is
hard to mimic in laboratory conditions [3]. Furthermore, the use of
molecular fluorescent labels for single particle tracking revealed that
the biological processes occurring within the cell are often stochastic
[4,5], resulting in differences between in vivo and in vitro experiments
[6]. These differences may be caused by cellular noise, which is gen-
erally described as an irregular temporal fluctuation (noise process) on

the physiological state of the cells of a population with no genetic
variability and exposed to a similar microenvironment [7,8].

As an alternative, the construction and simulation of in silico mo-
lecular models can help understand cell envelope processes and cellular
behaviour [9]. Specifically, agent-based models (ABM) have shown
great potential to simulate biological events [10–14]. Typically, these
models represent the cell as a complex environment, where single
molecules are described as individual agents that are influenced by
their surroundings. As such, the behaviour of each molecule can be
understood by conducting simulations that (as far as possible) mimic
the conditions of in vivo systems. Notably, the computational simulation
of the spatial location, diffusion and interaction of molecules (included
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in the definition of the agents and agent events) in three-dimensional,
continuous environments enables the reproduction of the cellular noise
related to spatiotemporal variation [15].

Therefore, this work proposes the application of agent-based mod-
elling to the realistic, three-dimensional simulation of the diffusion of
small molecules throughout the different layers of the cellular envelope
of Escherichia coli. Arguably, the diffusion or transport of low molecular
weight (LMW) molecules is one of the most important biological pro-
cesses involving the cell envelope of bacteria. Processes involving
LMWs transport are not only essential for the survival of the micro-
organisms [16] but also crucial to develop antibiotics that must cross
the cellular envelope in order to be effective [17].

Therefore, the new model includes strategies to adjust and validate
simulation parameters against experimental data or, in their absence,
theoretical values (e.g. the classical theoretical calculus of molecule-
specific diffusion coefficients for each layer of the cell). The main goal
of this work was to study the effect of the initial concentration of LMW
molecules on cellular noise. The molecules ampicillin, bosentan, cou-
marin, saquinavir, and terbutaline were selected as case studies based
on the availability of experimental data and differences in molecular
weight.

2. Methods

The following sections describe the computational modelling of
single-molecule transport through the E. coli cell envelope and, most
notably, the experimental data and biological assumptions that sup-
ported the construction of such model.

Generally, the new ABM is composed of a set of agents that re-
present the cell membranes and a population of agents, which re-
presents the molecules under study. Agent characterisation comprises a
geometric shape, dimensions (including thickness), diffusion rates (in-
cluding permeability coefficients), and behavioural logic. Biomolecular
events unfold on an explicit and specific environment (i.e. representing
the cell and some of the surrounding extracellular space) where agents
act autonomously, executing individual paths (i.e. molecular diffusion).
Agents interact with one another following common biochemical and
biophysical assumptions, and their behaviour is influenced by the im-
mediate surroundings (e.g. transport through a layer).

Table 1 describes the representation of the environment and the
agents in the ABM according to the experimental data currently avail-
able about the transport of LMW molecules through the cell envelope of
E. coli. When available, experimental data was applied. Otherwise,
theoretical approximations based on well-established biological as-
sumptions were used.

The model simulations were conducted in the Multi-Agent
Simulator Of Neighborhoods (MASON) framework [18]. The rate of
conversion from simulation time (i.e. timesteps) to biological time was
2.05×109 timesteps/s, as previously described in other work from our
group [11]. For simplicity, all results are presented in biological time.
See Supplementary material 1 for more detailed information about the
experimental and mathematical assumptions applied to model para-
metrisation.

2.1. Environment: dimensions and structure of E. coli

The proposed ABM considers the passive transport of small mole-
cules in the cellular envelope of E. coli, i.e. a model organism that has
available a comprehensive set of experimental data. The rod-shaped E.
coli cell was implemented as a spherocylinder with a radius (r) of
380 nm and a height (h) of 1940 nm. Moreover, the different layers of
the cell envelope of this Gram-negative bacterium (including the pep-
tidoglycan layer) were individually characterized (Table 2).

Cell dimensions are highly dependent on the growth conditions, as
observed by the wide range of experimental values retrieved from the
scientific literature. Simulations used the lowest values of cell radius Ta
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and height as these were considered to better reflect the nutrient-lim-
itation that E. coli finds in most situations. The thickness of each layer
was set based on the average of available experimental values. In
theory, a lipid bilayer has a thickness of around 4 nm [26]. However,
and most likely due to the extra constituents of the outer membrane,
such as proteins and lipopolysaccharides [27], the outer membrane is
generally considered to be thicker than the cytoplasmic membrane.

The model also considers the extracellular volume from where the
molecules would approach the cell. To avoid unnecessary computation,
the model represented a sub-volume of the E. coli cell and extracellular
space of 0.23 μm3. For this volume, the number of agents never ex-
ceeded 25,000, a number that allows computation time to take less than
a day. Table 3 describes the dimensions of the simulated environment.
Furthermore, the representation of obstacles, i.e. mobile but non-re-
active agents, was implemented to approximate the volumetric com-
position of the E. coli cytoplasm and thus, be able to evaluate the impact
of molecular crowding [28–30].

2.2. Molecular agents and behavioural rules

Experimental data on the molecules ampicillin, bosentan, coumarin,
saquinavir and terbutaline were used to validate the proposed ABM. All
these molecules are aromatic organic chemical compounds for which
molecular formula and chemical structures are known. For most of
them, there is no evidence of active or facilitated transport mechanisms
through the E. coli cell envelope. Bosentan, coumarin, saquinavir and
terbutaline are known to permeate directly through lipid bilayers [31].
Ampicillin is known to permeate through a porin (OmpF), apparently
by a spontaneous passive diffusion process [32].

Due to the lack of information about the permeability coefficients in
the literature, the main factor for the selection of these molecules was
the availability of experimentally-calculated values for the permeability
coefficients through lipid bilayers (i.e. the values for bosentan, cou-
marin, saquinavir and terbutaline were obtained for Caco-2 cells) and
the porin that crosses the external lipid bilayer (i.e. the value for am-
picillin was obtained for E. coli). These data enabled the realistic
characterisation of each molecular volume, the diffusion rates in the
exterior of the cell (Do) and the periplasm (Dperi), as well as the per-
meability in lipid membranes (Table 4). The theoretical hydrodynamic
radii and the diffusion coefficient of the molecules were calculated
based on classical theories, as described in a previous work [33] (see

details in sections 2 to 6 of supplementary material 1).
At the start of the simulation, the concentration of molecule agents

are randomly distributed outside the cell, moving according to the
corresponding Do, with an initial random three-dimensional orienta-
tion. When these agents collide with the cell envelope, their diffusion
rate is adjusted according to the permeability in the outer membrane.
Likewise, while traversing the different membrane layers, the diffusion
rate of the agents is re-adjusted according to the characteristics of the
traversed layer. Specifically, such rate adjustment is applied when the
agent has already diffused through a volume corresponding to half of its
radius of interaction.

2.3. Statistical analysis

Each simulation included six replicates. The average first-passage
time of the molecules through the beginning of each layer was calcu-
lated. These results were analysed to observe if there were any statis-
tically significant differences between simulation results and the theo-
retical values for diffusion through each layer (deduced mathematically
using Eq. 2 to 5 in supplementary material 1). The one-sample
Wilcoxon test, a non-parametric alternative test to the one-sample t-
test, supported this analysis. The goal was to compare a measure of
central tendency of the population under observation (i.e. the median)
with a given theoretical value. This test was considered adequate be-
cause the sample size was small and this test does not require the po-
pulation to be normally distributed. The significance level was set to 5%
(P < 0.05).

3. Results

Fig. 1 summarises the main computational features of the proposed
agent-based model and the data supporting computational simulation.
The proposed model was specified in a JSON file compliant with the
MASON ABM framework, which enabled model simulation, including
real-time graphical visualisation and the generation of detailed results
about the position and velocity of the individual agents throughout the
simulation.

Initial simulations aimed to calibrate agent velocity in individual
layers. The average time taken by the agents to cross each individual
layer was calculated based on the simulation results, i.e. the position of
the individual agents in the simulation. Agent velocity was then

Table 2
Computational characterisation of the cell agents. Experimental data on E. coli cell size and the thickness of the membrane layers were retrieved from the literature
and further applied in model simulation.

Parameter Experimental value range (nm) Reference Simulation value (nm)

Cell radius [r] 380 ± 20 [19] 380
Cell height [h] 1,94 to 2,72 [20] 1940
Inner membrane thickness 3.75 ± 0.05 [21] 3.8
Outer membrane thickness 13 ± 1.0 [22] 13
Peptidoglycan thickness 6.35 ± 0.53 [23] 6.4
Periplasm thickness 11 to 15 [24] 13
Capsule thickness 2 to 8 [25] 0a

a Since not every bacterium has a capsule, and there is very little data regarding diffusion through it, the existence of the capsule was not considered.

Table 3
Dimensions of the simulated environment. The original environment was represented as a parallelepiped with a defined width, length and height. In the extended
environment, the height and length remained unchanged, but the width was extended to an extra 10% of the total cell diameter. In the scaled environment, in order
to maintain a proportion between the dimensions, the width was increased by the cell radius plus 10% of its value. Note that the scaled environment was used in
order to reduce computational time, and the scaling percentage was determined experimentally.

Dimension of simulation environment Original environment Extended width environment Scaled environment

WIDTH (ΜM) 2.752 2.827 0.414
HEIGHT (ΜM) 0.752 0.752 0.752
LENGTH (ΜM) 0.752 0.752 0.752
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adjusted iteratively until it was similar to the theoretical value. Table 5
displays the results of agent velocity calibration for membrane layers.
Noteworthy, the average time taken to transverse the membrane layers
is very similar to the values calculated previously using the theoretical
algebraic models.

Following simulations assessed the diffusion of the studied mole-
cules for the entire cell envelope. Fig. 2 shows the simulation results for
the five molecules at each of the membrane layers, considering an in-
itial concentration of 26.4 μM (i.e. 3657 agents). As expected, the
smaller agents are the fastest, irrespective of the layer where the dif-
fusion is occurring, with the exception of terbutaline that has a slower
movement in the outer and inner membrane. This was expected, as the
permeability coefficient retrieved from the literature for this molecule
was smaller than the permeability coefficient for the other molecules
[31]. It is well known that permeability coefficients are affected not
only by the molecular size but also by the interactions established be-
tween the molecule and the components of the membrane. Statistical
results (Supplementary material 2) show that the difference between
the simulated and the theoretical results is statistically significant in
some of the cases, such as for the diffusion of bosentan in the periplasm
and the inner membrane (P < 0.05). Differences in these cases may be
explained by the fact that the calibration performed for each of the
individual layers is iterative and stops when the percentage of differ-
ence is below a pre-defined threshold. Nonetheless, all differences were
typically below 6%, meaning that the final results were unlikely to be
very affected by these deviations.

Fig. 3 details these simulation results for ampicillin. Overall, the
theoretical data fit well with the simulation data, with average differ-
ences ranging from 1.74% (for diffusion in the inner membrane) to
4.64% (for diffusion in the periplasm). Only the difference between the
theoretical and simulation values of periplasm diffusion was statisti-
cally significant (P < 0.05), and this was justified by the reasons
aforementioned. It was possible to observe that: (i) on average, an
ampicillin agent took 0.52 s to cross the outer membrane, the fastest
ampicillin molecule took only 0.2 s, and the slowest molecule took
7.91 s; (ii) the fastest molecule took 0.27 s to cross the entire cell en-
velope, whereas the slowest molecule took 8.07 s.

Moreover, the ratio obtained for the outer membrane and inner
membrane diffusion times of ampicillin was around 3.7, while the ratio
for these layers’ thickness is 3.4. This occurred because no physical
difference between the layers was considered (i.e. diffusional properties
were the same for both membranes), and the different diffusion times
were only related to their different thicknesses. Supplementary material
2 provides detailed data on the rest of simulations, supplementary
material 3 shows snapshots of these simulations, and supplementary
material 4 provides a video of the simulation of ampicillin diffusion
throughout the cell envelope.

Next, simulations were conducted to evaluate the impact of mole-
cule concentration and molecular weight in cellular noise. Fig. 4 and
supplementary material 5 illustrate the simulation results obtained for
the diffusion of the five molecules through all the layers of the cell
envelope, considering four different initial concentrations. Fig. 4 shows
the direct relationship between the standard deviation of the total time
that takes a given molecule (at a given concentration) to go through the

cellular envelope. On supplementary material 5, boxplots represent the
variability observed, and the dashed lines indicate the corresponding
theoretical value. As an example, one can observe that (i) for the stu-
died concentrations (1.44 μM, 13.21 μM, 26.4 μM and 105.61 μM),
ampicillin molecules took on average 0.68 s, 0.68 s, 0.70 s, and 0.69 s to
cross the entire cell envelope, respectively; (ii) the theoretical time for
the diffusion of ampicillin was approximately 0.6 s. Statistical results
(Supplementary material 6) show that the difference between the si-
mulated and the theoretical results is statistically significant in some of
the cases, and the percentage difference between the two situations is
below 20%. This difference was mainly due to the cumulative devia-
tions that were observed for each of the layers of the membrane.

Simulation results for lower concentrations were more variable.
Cellular noise, seen here as the standard deviation in diffusion time,
decreased as molecular concentration increased, i.e. standard deviation
decreased with growing concentrations. In particular, for any of the
observed molecules, it was smaller for the highest concentration (i.e.
105.61 μM) than for the lowest concentration (i.e. 1.44 μM). Moreover,
there was no clear relationship between molecule size and cellular
noise. For instance, for a concentration of 1.44 μM, the smallest mole-
cule, i.e. coumarin, showed a higher standard deviation than ampicillin,
which had a higher radius. On the other hand, saquinavir, which was
larger than both molecules, had a higher standard deviation than am-
picillin. The average total time that a molecule took to go through the
cellular envelope was very similar for all concentrations (supplemen-
tary material 5). That is, there was also no relationship between mo-
lecular concentration and size.

Besides estimating the average deviation for various simulation re-
plicas, the level of variability related to diffusion was inspected based
on the estimation of the maximum total time difference (tmax) for each
molecule and concentration. For example, in the case of ampicillin, tmax

was lowest for the highest concentration (i.e. 2.17E-03 s for 105.61 μM)
and highest for a concentration of 1.44 μM (i.e. 2.32E-02 s). In general,
a decrease in the concentration leads to an increase in the tmax, which is
in agreement with the results found for ABM modelling in enzymatic
reactions. These results can be generalized to any other molecules with
low molecular size to diffuse freely through the periplasm and cross the
peptidoglycan layer (see supplementary material 6).

4. Discussion

This work introduced a novel ABM to study the effect of the initial
concentration of LMW molecules on cellular noise. First, the simula-
tions were validated against experimental values, which indicated the
average first-passage time that specific molecules take to cross the in-
dividual layers of the envelope, from the outer membrane till the inner
membrane. In general, the simulation results agreed well with the
theoretical values, but some deviations were to be expected as the
conditions of the calibration were not the same as those of the simu-
lations. Also, some variation between simulations was to be expected,
because diffusion is a stochastic process, and there are various inter-
actions of the surrounding particles and the medium in each simulation,
leading to each particle going a different path. Besides, the initial,
random position of the particles in different simulations may lead to

Table 4
Characterisation of the agents representing the molecules. The molecular radii, the diffusion rates in the exterior of the cell (Do) and in the periplasm (Dperi) were
calculated as described in Eq. 1, Eq. 2 and Eq. 4 in Supplementary Material 1, respectively. Values for membrane permeability were retrieved from the literature.

Moleculesa Molecular weight (Da) Radius (nm) Do(× E−10 m2/s) Dperi(× E−10 m2/s) Membrane permeability (μm/s)

Ampicillin 349.41 0.423 7.75 3.13 0.028 [32]
Bosentan 551.62 0.485 6.77 2.56 1.05× 10−2 [31]
Coumarin 146.14 0.307 10.07 4.96 0.776 [31]
Saquinavir 670.85 0.537 6.11 2.19 5.50× 10−3 [31]
Terbutaline 222.31 0.376 8.73 3.73 3.80× 10−3 [31]

a The initial agent concentration on the exterior of the cell was 26.4 mM.
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different diffusion times.
In order to conduct the proposed simulations, it was necessary to

make some assumptions, because our experimental knowledge about
diffusional processes in the cellular envelope is still limited, and the
computational costs inherent to the simulation of such complex biolo-
gical scenarios are high [9,34]. For instance, the permeability

coefficient for ampicillin was obtained for the passive diffusion of small
hydrophobic antibiotics through non-specific porins [32]. While porins
were not explicitly included in the proposed model, the agent trajectory
was adjusted in order to be quite similar to diffusion through a porin. In
addition, the diffusion in the inner and outer membranes of Gram-ne-
gative cells was considered similar. This is, of course, a simplification,

Fig. 1. Main computational aspects of the proposed agent-based model. The simulation environment is defined. Then, the size, shape, thickness, diffusion and
permeability of the agents (i.e. E. coli cell, its membrane layers, and the molecules) are specified. After that, the behaviour of the agents is characterized, namely
membrane transport and molecule collision. These data are stored in a JSON file that it is used by the MASON framework to simulate the proposed ABM.
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as it is well-known that the presence of different molecules at different
concentrations in the different membranes, such as membrane proteins,
lipids and polysaccharides, will affect molecular permeability. Also, due
to its composition, it is known that the outer membrane is less sus-
ceptible to antibiotic permeation than the inner membrane [35].

Therefore, the absolute times that individual molecules take to cross
individual barriers, as calculated here, should be looked at cautiously,
as they may be affected by a more realistic representation of the
membrane. Nonetheless, the overall conclusion that lower concentra-
tions lead to increased cellular noise is robust, as it is expected that the

Table 5
Results of agent velocity calibration for membrane layers. Rows in bold depict theoretical time while the rows immediately above present the average time taken to
cross the membrane layers in the simulations.

Average time to cross the membrane layer (s) during simulation

Diffusion rate in the extracellular space (μmˆ2/s)a Outer membrane Periplasm Inner membrane

Ampicillin 6.9E+02 4.5E-01 ± 1.3E-02 9E-08 ± 2.5E-09 1.4E-01 ± 4.4E-03
6.7E + 02 4.6E-01 9E-08 7.4E + 00

Bosentan 5.7E+02 1.2E+00 ± 5.2E-02 1.2E+00 ± 3E-02 3.4E-01 ± 3.7E-03
5.7E + 02 1.2E + 00 1.2E + 00 3.6E-01

Coumarin 9.8E+02 1.7E-02 ± 5.0E-04 6.6E-08 ± 1.6E-09 4.9E-03 ± 2.9E-04
9.7E + 02 1.7E-02 6.1E-08 4.9E-03

Saquinavir 4.8E+02 2.4E+00 ± 7.5E-02 1.4E-07 ± 6.6E-09 6.7E-01 ± 1.3E-02
5E + 02 2.4 + E00 1.3E-07 6.9E-01

Terbutaline 8E+02 3.1E+00 ± 4.8E-02 7.9E-08 ± 4.1E-09 8.9E-01 ± 8.2E-03
8E + 02 3.4E + 00 7.5E-08 1E + 00

a The time taken by agents to reach the outer membrane depends on the initial localization of the agents and the diffusion rate.

Fig. 2. Simulation results for the five molecules and three layers, representing the experimental diffusion time through each layer, for all 5 molecules. The
colour of the disk identifies the molecule and the size of the disk is proportional to the molecular weight.

Fig. 3. Comparison of simulation and theoretical results
obtained for ampicillin. For the outer and inner membrane,
the theoretical diffusion time through each membrane is
calculated using Eq. 5 in Supplementary Material 1, while
Eq. 3 and 4 were applied to calculate the periplasm value.
Green coloured agents represent ampicillin molecules while
black coloured agents represent obstacles. The size of the
agents is inversely proportional to their distance to the plane
shown. The plots show the time taken to cross the entire
cellular envelope. Light and dark green bars and black lines
represent theoretical and the average of simulation results
and the standard deviation of 3 simulation replicates, re-
spectively.
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presence of membrane proteins will affect all simulations in a similar
manner, regardless of the initial agent concentration.

In order to describe a crowded environment, a simplified approach
considering that each molecule had an apparent viscosity was used.
Future work using a sdVRC built by adding non-specific interactions
may allow a more correct estimation of effective viscosity and diffusion
coefficient values in crowded environments [36]. Regarding particle
size and shape, it is noteworthy that the Stokes-Einstein equation (Eq. 2
in Supplementary Material 1) is only applicable to spherical molecules
[37], although there are corrections for the diffusion of prolate and
oblate molecules available [38]. Also important, the equation for
crowded diffusion is only valid for rp between 10−1 and 103 nm, and the
curve was built using the van der Waals’ radius for amino acids and
sugars, and did not include every type of metabolite, so there may be
some restrictions when using it for other types of molecules. Recently, it
has been shown that the levels of crowding in a cell are heterogeneous,
and this model considers the particles to be diffusing through homo-
geneous environments [39], which can also lead to wrong estimations
of diffusion times.

The differences noticed in the time that individual molecules take to
cross the cellular envelope can be due to several factors, such as the
obstacles that an individual molecule will find in its path – for instance,
the molecular crowding in the cytoplasm may delay significantly one
individual molecule, whereas another one may have a more straight-
forward path. Besides, the stochasticity of the diffusion process and the
interactions of each molecule with the surrounding environment may
also lead to variations in diffusion time. In any case, these differences
will arise from the original spatial location and direction of the mole-
cule in the extracellular space. We also observed this previously in ABM
studies of reaction kinetics and cellular communication [10,11].
Overall, the spatial location of the agents at the start of the simulation
affects, up to a certain extent, the overall process and helps explain why
cells have different phenotypes, even when they apparently grow in
similar conditions [40].

Even though cellular noise is masked in vitro, because of the lim-
itations of current experimental methods, during in silico experiments
individual agents can be tracked throughout time and hence, the het-
erogeneous movement of particles (that ultimately leads to cellular
noise) can be studied [41]. Having this in mind, cellular noise was
expected to decrease as the agent concentration increased, and this was
indeed observed for all studied molecules. However, no correlation was
found between molecule size and cellular noise. Also, for very high drug
concentrations, it is possible that we would see differences in the mean
diffusion time, due to the increased amount of collisions between mo-
lecules. However, for the range of concentrations studied, no

differences could be observed.
Currently, the proposed ABM is able to effectively represent the

diffusion of small size molecules through the envelope of a Gram-ne-
gative, rod-shaped bacterial cell, with a thin peptidoglycan layer. It is
known that other properties of molecules, such as amphiphilic moment,
flexibility, globularity and amine steric hindrance affect molecule ac-
cumulation and diffusion [35]. These properties can be implemented in
future models, although they will likely lead to significant increased
computational costs. As more information about the diffusion processes
becomes available, the model may be extended to other scenarios
[42–44]: for example, to model Gram-positive bacterial cells, which has
a thicker peptidoglycan layer [27], or bacteria possessing a cell capsule.
This model can also be combined with our previous works [45,46] since
the rate of conversion from timestep to real-time is the same. It is also
becoming increasingly clear that new experimental technologies, such
as single particle tracking, will provide more accurate data and enable
model update/extension. Moreover, modelling an environment as
having heterogeneous crowding could improve the simulation of cel-
lular noise.

So, the present work may have broader applicability in the future,
since it is known that drug resistance is related to cellular noise [47,48].
For instance, new models may combine different ABMs to describe the
translation process that occurs inside the membrane along with the
drug metabolism. Surely these model will need to consider that the
crowding effects affect the reaction kinetics [49,50], which could be
incorporated using experimental results for the reaction time. By as-
sessing the cellular noise associated with drug uptake and metabolism
in an integrated way, these models may help to assess if the initial lo-
cation of drug molecules (for certain drug concentrations) cause vari-
able responses in seemingly isogenic cells in the same physiological
state.

Active and passive transport through ion channels or transporters
across the membranes was not modelled here because of the lack of
available experimental data. New single particle tracking experiments
could be designed to measure the experimental diffusion time, which
would give us the characteristics of diffusion of the ensemble of mo-
lecules. For modelling passive transport, we could give a specific ve-
locity to a given percentage of the particles undergoing diffusion from
the outside to the inside of the cell. For active transport, we could make
some particles have a negative velocity after reaching a certain layer of
the cell envelope, which would lead them to travel backwards.

5. Conclusions

Currently, computational models describing membrane transport

Fig. 4. Comparison of the standard deviation of the total
diffusion time of the molecules, considering 6 replicates
and increasing concentrations. The concentration referred
on the x-axis is the initial concentration on the exterior of the
cell, for each agent. In the surrounding layers, the con-
centration is 0 μM. On the y-axis, the standard deviation
against the theoretical time is given. Dashed lines indicate
the trend tendency values for each molecule. Each dot stands
for the average of the six replicates obtained for each mole-
cule and concentration.
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are either too simplistic or overly specialized [34,51]. Some models
represent the cell envelope as a simple space boundary (e.g. locate
molecules outside or inside the cell, but not detailing membrane in-
teractions) or provide simple representations of some membrane events
(e.g. individual membrane-bound and soluble proteins) [52,53]. In
contrast, other works represent very particular, atomically detailed
molecular dynamics (e.g. passive membrane permeability) [54–57].
Considering that experimental data on these processes is growing but is
still insufficient to produce a fully atomistic detailed model, it is im-
portant to create models that are able to characterise molecular trans-
port in the cell envelope at an intermediate scale, i.e. describing
membrane layers and molecular dynamics throughout these layers as
faithfully as possible.

Herein, a novel ABM was proposed to study the effect of the initial
concentration of LMW molecules on cellular noise. Cellular noise
during molecule diffusion was found to be concentration-dependent
and size-independent. The new model holds considerable potential for
future, more complex analyses, when emerging single particle tracking
data may enable further modelling of membrane transport mechanisms
[9,56]. As future work, the ABM could be refactored in order to account
for additional parameters, such as the crowding heterogeneity and
molecule shape.
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