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SYSTEMS BIOLOGY

Systems Biology does not investigate individual cellular 

components at a time, but the behaviour and relationships of 

all of the elements in a particular biological system while it is 

functioning

Metabolic Engineering can gain major benefits from the

systems biology approach

Systems biology 
involves the use of computer 

simulations of cellular 

subsystems (such as the networks 

of metabolites and enzymes which 

comprise metabolism, signal 

transduction pathways and gene 

regulatory networks) to both 

analyze and visualize the 

complex connections of these 

cellular processes.
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SYSTEMS BIOLOGY

Systems Biology approaches for modelling, 

optimization, and control of microbial cell factories

Cellular Models for Metabolic Engineering: gene 

networks

Inference of Biological Networks

From Genome-scale metabolic models

From experimental data

From literature data mining

In Silico Metabolic Engineering Platforms: 

Optimization of Microbial strains – OptFlux tool
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Metabolic engineering - introduction of directed genetic 

modifications leading to desirable metabolic phenotypes

Cell factory Genome

Metabolism / Phenotype
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Metabolic Engineering Strategies:

Gene Deletion

Gene Addition

Gene Overexpression

Manipulation of environmental conditions
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Bioprocess
Engineering

Metabolic
Engineering

http://www.infochembio.ethz.ch/links/en/biotech_bioverfahrenstech.html
http://www.infochembio.ethz.ch/links/en/biotech_bioverfahrenstech.html


-Genome
-Environment

Phenotype
Metabolic Eng. Objective
Bioprocess Eng. Objective
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Optimization,

Control strategies

Simulation

A view of the Metabolic Engineering / Bioprocess 

Engineering Problem
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In metabolic engineering problems, it is often difficult 

to identify a priori which genetic manipulations will 

originate a given desired phenotype

In order to rationally design production strains with 

enhanced capabilities, it is essential to have:

ACCURATE 

MATHEMATICAL 

MODELS 

ROBUST AND 

FLEXIBLE 

OPTIMIZATION 

TOOLS

GOOD SIMULATION 

METHODS
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METABOLIC MODELS
LEVELS OF INFORMATION
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Models should comprise different levels of information:

Reactions stoichiometry

Reactions kinetics 

Regulatory information

Metabolome
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Stoichiometric Regulatory Kinetic

Genome-scale ** *** *

Simul. Accuracy * ** ***

Gene Deletions *** *** ***

Gene Over/ 

under express.
- - ***

METABOLIC MODELS
EXISTING MODEL TYPES

Different model types are at different development 

stages...
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0  v-v-v 321 

Mass balance over intra-

cellular metabolites 

Assumption of (pseudo) 

steady state

Framework for calculation of intracellular metabolic 

(net) fluxes is based on:

Ty3H
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AttY

L-DOPA
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321 vvv
dt
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METABOLIC MODELS
STOICHIOMETRIC MODELS

0  vS 

jjj αvβ 

For all metabolites:
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This procedure is repeated for 

all considered metabolites and 

will originate the so-called 

stoichiometric model

The result is a Linear Equations

system described by 

stoichiometric matrix S.



For an identified reaction set:
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A : -v - v + v = 0

B : v - v - v = 0

C : 2v + v - v = 0

D : v + v - v - v = 0

E : v - v = 0
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METABOLIC MODELS
GENE REGULATORY NETWORKS

Gene Regulatory Networks represent regulatory elements 

and their interactions 

A regulatory network will direct the activation or repression 

of a set of genes in response to a specific environmental 

stimulus, like O2 or pH

In the figure, ArcA and FNR are transcription factors
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If for condition Z, reaction 5 

does not occur

00 5  v
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METABOLIC MODELS
RECONSTRUCTION

Rocha et al (2008) Methods in Molecular Biology, Vol. 416, Ch. 29, 409
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METABOLIC MODELS
GENOME-SCALE MODELS
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Microorganism On-line availability

Haemophilus

influenzae

http://gcrg.ucsd.edu/organisms/hinfluenzae.html

Escherichia coli http://gcrg.ucsd.edu/organisms/ecoli_reactions.html

Helicobacter

pylori

http://gcrg.ucsd.edu/organisms/hpylori.html

Saccharomyces

cerevisiae

http://www.cpb.dtu.dk/models/yeastmodel.html

http://systemsbiology.ucsd.edu/organisms/yeast.html

Aspergillus niger http://blackwellpublishing.com/products/journals/sup

pmat/EJB/EJB3798/EJB3798sm.htm

Plasmodium

falciparum

http://plasmocyc.stanford.edu

...

Applications of Genome-scale metabolic models:
Design of industrial strains for industrial biotechnology

Growth medium design

Discovery of new gene functions

Better understanding of microbial physiology

Identification of potential drug targets in pathogens

...



METABOLIC MODELS
GENOME ANNOTATION IN RECONSTRUCTION

Annotation available usually after sequencing

However, it can be old or incomplete!

Dias et al. (2010) Computers

Application in Biotechnology

merlin: 

Metabolic Models Reconstruction

using Genome-Scale Information



METABOLIC MODELS
K. LACTIS RECONSTRUCTION

MOTIVATION
Growth on lactose as a sole carbon 

source

Various industrial applications, 

especially in the dairy industry but 

also host for recombinant proteins

Molecular tools that make it amenable 

to genetic manipulation

Evolutionary distance to S. cerevisiae

allows to perform comparative 

studies between these two species

Dias et al. (2011) (submitted)

# of K. lactis genes with: distinct total

Yeast metabolic homologues 1627 1725

K. lactis transporter

classfication (TC) annotation
6 6

Other metabolic homologues 62 70

8.40%

56.37%

17.34%

0.27%

0.00%

1.08%

16.53%

TC numbers

1: Channels/Pores

2: Electrochemical Potential-driven 
Transporters
3: Primary Active Transporters

4: Group Translocators

5: Transmembrane Electron Carriers

8: Accessory Factors Involved in 
Transport
9: Incompletely Characterized 
Transport Systems

20

2

30

13

36

4
2

16
2

Metabolism - new enzymes

1- Carbohydrate Metabolism

2- Energy Metabolism

3- Lipid Metabolism

4- Nucleotide Metabolism

5- Amino Acid Metabolism

6- Metabolism of Other Amino Acids

7- Glycan Biosynthesis and Metabolism

8- Metabolism of Cofactors and Vitamins

9- Metabolism of Terpenoids and 
Polyketides



Matching Problems for compounds in E. coli in different databases

Lourenço et al. (2011) Briefing in Bioinformatics

   

   
 

METABOLIC MODELS 
DATA INTEGRATION DURING RECONSTRUCTION



METABOLIC MODELS
TEXT MINING FOR AIDING RECONSTRUCTION

Lourenço et al. (2009), 

J Biomedical Informatics 

42, 710-720

Tools for automatically inferring metabolic and 

regulatory networks from literature data - @Note



Ways to reduce the cone of solutions given by the stoichiometric

model

Reduction of 

the solutions 

space

Particular 

Solution

By optimizing a given 

criterion – FBA, MOMA, 

ROOM…

By the introduction of 

regulatory information (ex: 

Gene Networks)
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FBA: Flux Balance Analysis

ROOM: Regulatory On/Off 

Minimization

MOMA: Minimization of  Metabolic 

Adjustment



SIMULATION
ALTERNATIVE WAYS TO REDUCE THE FLUX CONE

Often, we have kinetic information for parts of the 

network

What can we learn from the kinetics of those parts of 

the network that we know?

If reaction rates in the stoichiometric models are 

constrained by vmax, then the flux space given by the 

stoichiometry should be reachable by changing the 

kinetic parameters...

Or not?

vss

x’0

v’ss

vss v’ss

v’ss

v’ss

k’

k’
k’

vss

v’ss

v’max



Construction of a kinetically feasible flux cone:

a) Limiting the range of the kinetic constants results in a 

smaller feasible space. 

b) The flux cone can be adjusted to fit the feasible space. 

c) Simulation methods such as FBA can use the reduced flux 

cone to search for optimal solutions. 

Effect of constraining the range of variation of the kinetic 

constants of the dynamic model of the central carbon 

metabolism in the volume of the solution spaces 

SIMULATION
GAP BETWEEN DYNAMIC AND STOICHIOMETRIC MODELS

100-fold    10-fold  5-fold  2-fold 
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Tools and Algorithms for Optimization 

(OptGene Algorithms):

EAs – Evolutionary Algorithms

SA – Simulated Annealing algorithms 

Local Search

Patil et al (2005) BMC Bioinf 6

Rocha et al (2008) BMC Bioinf 9
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Rocha et al (2008) BMC Bioinf 9
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IN SILICO METABOLIC ENGINEERING
INCORPORATION OF REGULATORY MODELS

Optimization 

Type

Algorithm Yield Nr 

knock.

Reactions SA 0,348 17

Genes SA 0,293 12

Results showing the differences 

obtained by deleting genes or 

reactions for lactate production with E. 

coli

Vilaça et al., Biosystems (in press)



IN SILICO METABOLIC ENGINEERING
SUCCESSFUL APPLICATIONS OF THE ALGORITHMS

Production of Succinate with S. cerevisiae

Production of Succinate with E. coli

Production of Sesquiterpenes with S. cerevisiae

Production of aminoacids with E. coli (ongoing)
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OPTFLUX

Rocha et al., BMC Systems Biology, 2010
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Selection based on objective function:

J = RMSE + c1∙P + c2∙MS

weighted sum of 

squared errors

penalty for 

inefficiency of each 

elementary mode

penalty for model size

Soons et al, JPC, 2011

PROCESS ENGINEERING
LARGE-SCALE MODELS



Reduction of the original model from 2706 to 3 elementary

modes:

 EM1 : 0.21 GlcEX + 0.67 O2 → 0.015 Biomass + 0.67 CO2

 EM2 : 0.056 GlcEX + 0.22 O2 → 0.056 Acetate + 0.22 CO2

 EM3 : 0.040 GlcEX + 0.24 O2 → 0.024 CO2

Good match with measured data from literature
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Initially: 2706 elementary modes

Soons et al, JPC, 2011
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CONCLUSIONS

So far, rational metabolic engineering design has only 

been performed with stoichiometric models and 

indicate only knockout and gene additions

Nevertheless, it is already possible to improve in silico 

the production of targeted compounds

Predictions are enhanced if regulatory information is 

added to the models

Additional constrains maybe derived if kinetic 

information is available for part of the network

Model reconstruction is far away from being made in a 

standard way

The bridge between process engineering and 

optimization and large scale models is still not there...
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