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Abstract. Conformal mappings in the plane are closely linked with holomorphic functions and
their property of complex differentiability. In contrast to the planar case, in higher dimensions
the set of conformal mappings consists only d@fMis transformations which are not mono-
genic and therefore also not hypercomplex differentiable. But due to the equivalence between
being hypercomplex differentiable and being monogenic the question arises if from this point
of view monogenic functions can still play a special role for other types of 3D-mappings, for
instance, for quasi-conformal ones. Our goal is to present a case study of an approach to 3D-
mappings which is an extension of ideas of L. V. Kantorovich to the 3-dimensional case by using
para-vectors and a suitable series of powers of a small parameter. In the case of the application
of Bergman'’s reproducing kernel approach (BKM) to 3D- mapping problems the recovering of
the mapping function itself and its relation to the kernel function is still an open problem. The
approach that we present here avoids such difficulties and leads directly to an approximation
by monogenic polynomials depending on that small parameter.
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1 INTRODUCTION

In classical complex function theory conformal mappings are closely linked with complex
differentiable functions. Indeed, every conformal mapping is realized either by a holomorphic
or an anti-holomorphic functiorf. Moreover, due to Riemanns’s mapping theorem any two
simply connected regions (exceRt, the Euclidean plane) can be mapped conformally onto
each other.

In contrast to the planar case, k¥, with n > 3, the set of conformal mappings is only
the set of Mbbius transformations (due to Liouville’s theorem, provedl@] jn 1850 under the
condition of f being at least & homeomorphism). Only in 1958, iff], P. Hartman succeeded
to prove this assertion far'' homeomorphisms.

The difficulties in characterizing thosedWius transformations iR* by some differentiabil-
ity property have been studied in detail 8].[ In the case ofR* the application of quaternions
is natural, a fact that has already been noticedL) §nd [4], for instance. But the theory of
generalized holomorphic functions (by historical reasons they are also oatledgenic func-
tions cf. [3]) as it has been developed on the basis of Clifford algebras (with quaternions as
a special case, cf4]) doesnot cover the set of Mbius transformations iR, since Mobius
transformations areot monogeniand thereforenonogenic functionare not directly related to
conformal mappings iR™, n > 3. Here one can only expect that monogenic functions realize
guasi-conformal mappings.

It is evident that such a situation has originated many questions concerning the extension
of theoretical and practical conformal mapping method€ ito the higher dimensional case,
particularly in the setting of Clifford Analysis (se&J] for a special approach). Notice that,
in this setting, contrary to the case of several complex variables there are no restrictions on
the real dimension of being even or odd. This implies that the real 3-dimensional Euclidean
space, the most important space for concrete applications, can be subject to a treatment similar
to the complex one. Some of those practical mapping methods have been discud$eshin [
the occasion of the 16th IKM in Weimar 2003 . That article was mainly concerned with meth-
ods based on the application of Bergman’s reproducing kernel approach (BKiMirierical
conformal mapping problems. Whereas up to then almost all authors working with BKM in the
Clifford setting (cf. the references i4]) had only been concerned with the general algebraic
and functional analytic background which allowed the explicit determination of the kernel in
special situations, the main goal @] ias the numerical experiment by using a Maple software
specially developed for that purpose. The arti@e$ a continuation of that work.

But since BKM isonly oneof a great variety of concrete numerical methods developed for
mapping problems, our goal is to present in this case study a completely different approach.
In fact, it is an extension of ideas of L. V. Kantorovich (c.8B])[to the 3-dimensional case
by using quaternions and a suitable series of powers of a small real parameter. Whereas until
now in the Clifford case of BKM the recovering of the mapping function itself and its relation
to the monogenic kernel function is still not completely solved, the generalized approach of
Kantorovich avoids such difficulties and leads to a monogenic mapping function depending on
the small power series parameter.

Therefore, like usual (sed), let {1, e1, e, e3} be an orthonormal basis of the Euclidean
vector spac&®* with the (quaternionic) product given according to the multiplication rules

= e§ = —1, ejes = —eqgeq = e3.



Considering the subset
A = spang{1, ey, e}

of the quaternion algebr (isomorphic to the special Clifford algebéd, ), the real vector
spaceR? can be embedded iAd by the identification of each element= (x¢, z1,z,) € R?
with the paravector (sometimes also calleéduced quaternion

2 =g+ T1€1 + Toeg € A

ForC1(Q, A) define the (reduced) quaternionic Cauchy-Riemann operator

D= 0 +e 0 +e 0
_al’o 181’1 281‘2.

Solutions of the differential equatiorisf = 0 (resp.fD = 0) are called left-monogenic (resp.
right-monogenic) functions in the domain

Let us remind that the differential operatbris not only a formal linear combination of the
real partial derivative%‘z—k but, when applied to a given functigh: 2 — H, is nothing else
than an areolar derivative in the sense of Pompeiu (8] &nd, in the hypercomplex case,
[14]). The same is true for the conjugate quaternionic Cauchy-Riemann operator

0 0 0

p-2 _ D
83:0 6181'1 628£E2

Butif f is a function monogenic if2, its areolar derivative) f is vanishing and this is equiva-
lent with the fact that the areolar derivatiy® f can be considered as the hypercomplex deriv-
ative of the functionf. This has been discussed to some exten@jin I [13] details about
the corresponding integral representation of the hypercomplex derivative and related mapping
properties are given. Finally, similar to what happen€iwhere, for a complex differentiable
function ' = & = $(9L —i3L) = 5L in our case also
1— of
—Df = —. 1
5Df Ire (1)
Obviously, formula'l) guarantees that the (hypercomplex) derivative of a monogenic function
is again a monogenic function.
In general, due to the algebraic propertie§lpfve have to assume that a monogenic function
f has values i, i.e., it is of the form

f(x) = folx) + fi(z)er + fa(z)es + f3(w)es,

wheref,, k=0,1,2,3 are real valued functions .

But if we are dealing with mappings from one 3-dimensional domain to another 3-dimensional
domain we have to restrict the range fofo a quaternion-valued function with one identically
zero component. Of course, this can be done by different choices. Here we consider a function
f, defined inQ2 and being also a paravector (or reduced quaternion), i.e.

f:Q9—-A

with
f(z) = fo(z) + fi(z)er + fao(z)es.
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In this case a monogenic function is bi-monogenic, i. = fD = 0 and in terms of the
real partial derivatives both equations are equivalent with the so called Riesz system

o _Oh _0f _
Org Ox;  Ox
oh O _ .

After these basic requisites about monogenic functions in domains of real dimension three,
the following sections are dealing with their power series development and their application to
3D-mappings.

2 MONOGENIC FUNCTIONS AS MAPPING FUNCTIONS

2.1 Paravector-valued monogenic functions of a paravector iik?

The description of the series development of monogenic functions will be made here in
terms of two hypercomplex monogenic variablgs= x, — zoer, kK = 1,2. Indeed, using the
general approach for Clifford algebra valued monogenic functiati,([5]) restricted to our
case ofn = 2, a second hypercomplex structureloft! different from that given by the set of
paravectors4 consists in the following isomorphism:

R > 12 = {Z: 2z = x, — zoeg; xg, T € R}

wherek = 1,2. More detailed, this corresponds to taking two cogigsof C and identifying
i Zoep, (k=1,2); 29 = RNz; xp = Yz; wherez € C, and letCy, := —e;C. Then
H? is the cartesian produ@{® := C, x C, andC/,,-valued functions of the fornf(z) =
fo(2) + fi(2)e1 + fa(2)ex + f12(2)eieq are considered as mappings

fiQCR*2H? — Clyo.

For the next step we apply

Definition 1 LetV, . be a commutative or non-commutative ring,c V (k = 1,...,n), then
the symmetric %”-product is defined by
1
alxa2><~~><an:m Z i Ay -+ G, 3)
(81, yin)
where the sum runs oveil permutations of alliy, . .., ,)
together with the

Convention:

If the factora; occursy;-times in @), we briefly write

Ay X« XAy X+ X Ay X+ X ay (4)
——— S———
M1 Hn
:al'ul Xa2ﬂ2 X,.‘Xaln/in:d’ﬂ
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wherep = (uq, ..., pn, ) @nd set parentheses if the powers are understood in the ordinary way
(seelL4)).

Since the symmetric products pf factorsz; andy, factorsz, are monogenic functions of
homogeneous degreg + 1> which form a basis for the Taylor series of a monogenic function
in R3 (see [L4]) they are calledyeneralized powersUsing# = (z;,x,) and the multi-indices
= (u1, pe) as wellasy = (v, 1) it is easy to verify that the partial derivatives @f — @)"
with respect tar; andz, result in

ol u! ifv=upu
I )
FEACE _{o if v £

This implies (cf. L2])

Theorem 1 Every convergenR-power series [-power series) generates in the interior of its
domain of convergence a monogenic functfgs) and coincides there with the Taylor series of
f(2),1. e. in aneighborhood of = @ we have

oW (@ oW £(a
10 =% 2 D - resp. f2) - > - iy

It is usual to consider instead of these general multiple power series the corresponding series
ordered by powers of the same homogeneous degree (with a different domain of convergence,
in general, cf.8]). If |u| = n then it holds

I 1/(n
w o onl\u

and by settingi; = (n — k), us = k; k = 0,1, ...n, the corresponding form of the - Taylor
series can be written as

0" f(ay,a
=353 (1) e Tl

(analogously forz-series, with the coefficients on the left side of the powers.) In the following
we shall only consider the case bfmonogenic functions.
Obviously, in the neighborhood of the origin the series reduces to

flan) =352 (1) gl ~ R (1) oo

n=0 k=0
with
1 0"f(0,0)

_| n—k k-
n! ox " 0xs

(6)

A(n—k, k) =

Being obtained by the partial derivatives of a functipn 2 — A it is evident that the
coefficientsa,—x, 1) should have the form of a reduced quaternion (or paravector):



Ot k) = C)é(()n_k7k) + Oé(ln_k’k) e+ a%n_k,k) e, n=0,1,2...;k=0,...,n, (7)

if explicitly written with their real and imaginary parts. As we now prove, the last equation of the
Riesz system2) implies a special relationship between adjacent coefficients which guarantees
that the sum is a paravector-valued polynomial.

Theorem 2 A homogeneous monogenic polynomial of degrgesen by

" /n
u(z1, 29) := Z (k) 2"k x zzka(n_kvk) (8)

k=0

with arbitrary paravector-valued coefficients is paravector-valued if and only if
Oy ) = Qpgr ey n=0,1,2..5k=0,...,n. (9)

Sketch of proofTo see that9) is necessary we start from the last equatiornipiith f = u,
i.e.

aUQ 8u1

z2 _ 7 10

8:61 81'2 ( )
Since monogenic functions are infinitely hypercomplex differentiable and therefore also real
differentiable of arbitrary order we can differentiate both sided6f (n — k& — 1)-times byx;

andk-times byz, to end up with
8”u2 . 8”u1
xkxk QxR 1kt

Formula (1), together with 6), (7), leads to the assertio®)( The fact that'9) is also a
sufficient condition can be shown by induction ower’]

(11)

Note, that an,.—monogenic paravector-valued function of a paravector of arbitrary dimen-
sion is alsoR—monogenic, i.e. bi-monogenic. This was provedid][by simple arguments
relying on hypercomplex differentiability.

Taking into account that the main goal of this paper is to realize approximations of 3D-
mappings by polynomials generated by partial sums of series of the &)rwé¢ discuss now
briefly further general aspects of these series inspired by the corresponding complex approach.
We are mainly interested in detecting problems by using the Maple software developed for the
work with quaternions by S. BocKJuatpackagesee b]). In this sense itis also an experiment to
certify the efficiency of this package. Although this package can have broader applications, here
we restrict ourselves only to a situation where the interior of a domain should be transformed
into the interior of a sphere.

As it is usual in the case of conformal transformations in the complex plane, the domain
Q1 c R? that we are going to transform should contain the origin. We suppose also, that the
domain into which we are mapping should be a it R? with the center at the origin.

Since the generalized powerg " x z*, for n=1,2,...; k=0,1,...,n, are vanishing
at the origin, the requirement that the origin is an invariant point under the considered mapping



[ : Q — B means that in§) the first coefficient should be equal to zero, bg., = 0 and each
monogenic approximation polynomial begins with an expression of the form

u = z10(1,0) + 22000, 1)- (12)

Clearly, the invariance of the origin guarantees in our settings that the interiomat be
mapped to the interior of the ball.

On the other hand;1€) represents the first order (linear) approximation of the mapping
function that we are looking for and, as such, is naturally related to its hypercomplex derivative
in the origin.

What is the corresponding situation @ In the complex case we know that the Riemann
mapping theorem still allows to prescribe, for example, the direction in which the real axis
should be mapped. Such behavior is simply related to a property of the complex derivative. For
instance, often the positivity or a special value of the argument of the derivative in the origin is
demanded. Or take for example the requirement fh@) = 1, where for the momentf :

Q — B C C (cf. [8]). This means that the first (linear) approximation of the mapping function
fisgiven asw = f(z) = 2,z € C. In other words, in the first step of approximation nothing
else than the identity function is used. Moreover, this means also that in the first step the unit
ball in the image plandw : |w| < 1}, has as its pre-image the unit balt : |z| < 1}. But

step by step the approximation by polynomials of higher degree changes the situation. In some
sense we could say that@ from the geometric view point the conditioris0) = 0 as well as

f'(0) = 1, arenormalizing the first stem the approximation process of a dom&iro a circle:

the simplest polynomial of degrde namely the identityv = f(z) = z, is used and therefore

in this step av—circle is obtained from the correspondingcircle. This works independently

from the considered domain and in so far we do not only have the-circle as the canonical
"target” domain, but also the—circle as the canonical "starting” domain.

In the 3D-case (and, in general, for any real dimensicn 2) the situation is different, due
to the nature of the used function class. Whered&s the identityf(z) = z with f'(z) = lisa
holomorphic function, it is not the case thét:) = z = x¢ + 161 + x2¢5 € A IS a monogenic
function. Indeed, for a linear monogenic functipmvith hypercomplex derivativéﬁf(o) =1
according to formulaX2)we must have that

1—
éDf(O) = —610[(170) — 620[(071) = 1. (13)
Applying (7) and ©) the formulalL3) is equivalent to

1—
in(O) = —61(06?1,0) + 04%1,0) e1) — 62(04?0,1) + 04?0,1) eg) = 1. (14)

This condition for a linear monogenic function with hypercomplex derivative equaliso
equivalent to
01,0 = @fo,1y = 0

as well as
04%1,0) + 04%0,1) =1 (15)
Thus, together withg) in the forma?lvo) = 0‘%071) = ¢, the linear approximation is obtained as
w=f(z) = 21(04%1,0) e1+ceg)+ zm(cer + oz%o’l) es)
= 04%170)21 ey + Oé?071)22 ea+c (2 61+ 2 €2) (16)

= X+ 04(11’0)261 e+ Oé%o,l)m es + ¢ (xg €1 + 1 €3)
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Whereas in the complex case the demand for a function with derivétide = 1 immedi-

ately leads to a well defined linear approximation (the first step approximation with the above
explained relationship between two circles), we see that in dimension three one condition con-
cerning the hypercomplex derivative is not enough to normalize in the same sense the first step.
In fact, three (real) parameters are still left. To overcome this problem we impose one more
well motivated initial condition to the mapping function, namely that

Y IR R

Df(0) := (&Uo + 618131 - €2a$2)f(0) =1 (17)
Since we already requireD f(0) = ;2 f(0) = 1 this implies that
0 0
(618_901 - 628_:702>f(0) =0

which, by direct calculation carried out ob6) results in the following relationship between the
three until now not fixed real parameters:

—a%m) + 04?0,1) + 2ceieq = 0;

hencec = 0 and by (L5)

1
a0 = Aoy = 5 (18)
Using these values ii16) we finally obtain for the initial ("first step”) approximation the linear
polynomial

1

w = f(Z) = 5(2161 + 2262)

1
= X + §(ZE1 €1 + T 62). (19)
From the geometrical point of view the result seems not to be a surprise. Indeed, fotSjula (
means nothing else than that, in the first step of approximation, the interior of the-ubdll

B=Aw:|w| <1}

is obtained from the interior of a unitlate ellipsoidor oblate spheroidjiven by

1 1
O = {(zg, 21, 72) : 20> + 215512 + 13722 =1}. (20)
From the analytical point of view the additional conditidrY)Y which led to this situation is also
not very surprising. Besides others, we mention only two arguments:

(1) Due to the real dimension three, the use of thdinear hypercomplex differential
operators is necessary for describing the three real partial derivatives in terms of hypercomplex
differential expressions.

(2) The hypercomplex derivative of a monogenic function given by
of of _ of

81‘2 8270

reflects several essential qualitative properties of a monogenic function, but from the quantita-
tive point of view does not allow to describe the influence of the partial derivatives with respect

1—
§Df =€
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to z; andz, separately. As we saw, the use of the operatatefined by/17) solved this prob-
lem. Needless to note that b{4) the number of initial conditions has been increased by one,
exactly the same as the real dimension increased by one compared with the complex case.

Summarizing all the results that have been explained in this subsection, by including the
initial values of the unknown mapping function at the origin, we conclude that the general form
of the series that we have to study is

1 = (1
flz1,22) = S(z1er + zze2) + > (k> 2" X 2 gk (21)

n=2 k=0

together with the compatibility conditio®); i.e.,
Oé%n—kyk) = Oé:(Ln—k’—l,k’—i-l) n = 0, 1,2 .y k' = O, e .

2.2 The approximate solution of a special 3D-mapping problem by monogenic polyno-
mials involving a small parameter

In the previous subsection we deduced the fogt) (of the series that we shall use for
approximating a mapping ¢t C R? into a ballB, C R®.

We suppose that the boundary(otan be embedded with a sufficiently small real parameter
A in a family of surfaces parameterized band¢ of the form

z=z(s,t, ).

Suppose also that the family of surfaces includes the origin fox.all
This idea follows Kantorovich’s method in the complex plar@,(Ch. V, §5), where an
analogous family of curves = z(¢, \) is considered. The corresponding problem (mapping
into a circle) together with the usual standardization of the mapping function leads to a series
analogous taZ1):
0(z,\) = 2+ as(\) 22 + az(\) 2> + ... (22)

already written with indeterminate coefficients(\), n = 2, 3, . ... The determination of those
a,(\) by resolution of a non-linear system of algebraic equations depending on relationships
between the boundaries of the considered domains is the core of the method.

From the previous subsection itis clear that we are trying to generalize Kantorovich’s method
by considering the series

1 = [
©(21,22,\) = 5(2161 + z€9) + Z Z (k) 2" % sza(n_,@ K (A) (23)

n=2 k=0

where the indeterminate coefficients are paravectors satisfying the compatibility property

As a concrete example, our case study is concerned with the mapping of the interior of the
oblate ellipsoic€,, (0 < A < 1), defined by

xg=(1+A)coss, z1 =2(1 — N\)sinscost, xo = 2(1 — A)sinssint

with 0 < s < 7 and0 < t < 27, into the interior of a balB.
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Remark 1 We notice that, due t®0), we havef, = O, which means that we are studying a
small perturbation of theanonical oblate spheroi@ which is mapped into the unit sphere by
the linear monogenic functiom = (2161 + z9€9) = o+ 5 (x1 e1 + x5 e3) (cf 19). This can
also be seen from the hypercomplex equatiofi,pfvhich, in terms ofv = (2161 + z9€2), IS
given by

1+ Mww — ANww+ww) = (1 —\?)?

and where the choice of = 0 leads immediately toyw = 1.

The numerical efficiency of Kantorovich’s methods relies also on simplifications in the series
(22) by making use of symmetry properties of the considered doMaiRor instance, the
fact that, in some cases, one or both of the coordinate axes (or other symmetry axes) can be
considered as invariant under the mapping immediately implies a substantial reduction of the
indeterminate coefficients, (\), n = 2,3, ..., and therefore reduces the numerical costs.

Carrying out similar calculations and simplifications in the caséfof= &,, we arrived to

the following result, which we present here without the straightforward but rather cumbersome
proof.

Theorem 3 Let the serie (2, 22, A) be given by formula23) with the compatibility condition

Oé%n—la k)(>‘) = O‘%n—k—l,lc-&-l)()‘) n=23,...;k=0,...,n,

being fulfilled. (i) The hyperplane, = 0 is invariant (i.e.,xo = 0 implies thaty(zy, 22, A)
admits only pure imaginary values), if

af, k(X)) =0, for k=0,...,n, n=23,.... (24)
(ii) The hyperplaner, = 0 and the real axis:; = xo = 0 are invariant, if
21" F x 2% =0, foreveryevem, and k=0,...,n

and

a; =0, foreveryodd: andodd k,k=0,1,...,n

{ af, =0, foreveryoddr and everk,
(n—k,k)

These invariance properties immediately lead to the following

Corrolary 1 The mapping of domairf C R?3, which are axially symmetric with respect to the
real axis and admit a planar symmetry with respect to the imaginary hyperpiare0, into a
ball B C R? centered in the origin can be realized by a monogenic series of the form

o(z1,22) = %(2161 + 29€9) +
+(oz%3 0) Zle) + 3a%271) 22 X zyeq + 3(1%172) 21 X Z2e) + O‘?O,B) Zoeq) +
+(a%50 20 el + 504%471) 2] X 2z e9 + 10a%3,2) 23 x 23 ey + 100(%273) 22 X 25 eq +
+501(,.4) 21 X 2y el + afys) 7 €2) +
L (25)
with real coeﬁicient&ﬁn_kvk); n=3,57...;k=0,1,...,n;l =1 for evenk, [ = 2 for odd £.
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Implying further in @5) the compatibility conditions
a%n—k,k)()‘) = a%n—k;—l,kﬂ)()\) n=23...;k=0,...,n,

writing as abbreviation for the inner coinciding coefficients

P31 := 04?2,1) = 0‘%1,2)a

Os1 = 04%4,1) = a(13,2)a

B3 := 04?2,3) = O‘%1,4)7
and so on for3,,,,, in all the following polynomials of higher homogeneous degree7,9,...;m =
1,3,...,n — 2, the formula25) reduces to

o(z1,22) = =(z11 + 29€9) +

N | —

+(as,0) Zle) + 306(3,1) 22 X zheq + 30631 21 X Z3e) + Q(0,3) Zoes) +

+(as0) 27 €1+ 581y 21 X 22 €2+ 10851y 23 X 25 €1 + 108(5.3) 25 X 25 ea +
+5ﬁ(5,3) 21 X Zg €1 + Qo5 zg es) +

L (26)

Here also the upper indices on the outer term coefficients in every homogeneous degree are
omited since they are no longer relevant.

Remark 2 Itis obvious that, under the mentioned geometric conditions of Theorem 3, the total
degree of freedoni in the choice of real coefficients i2€) corresponding to the homogeneous
degreen = 3,5,...isd = 3(n + 3). Similar calculations allow to estimate and compare the
number of numerical procedures which are needed with and without additional information
about symmetries of the considered donfain

3 A NUMERICAL EXPERIMENT

We now apply Corollary 1 to the example mentioned before, i.e., to the mapping of the
interior of the oblate ellipsoid,, (0 < A < 1), defined by

zo = (14 A)coss, r1 =2(1 — A)sinscost, x2 =2(1 — \)sinssint (27)

with 0 < s < 7 and0 <t < 2, into the interior of a bal3.

In this case the coefficients i12%) depend on the (sufficiently small) parameteri.e.
al(n_k,k) = al(n—k,k)(/\)' Kantorovich’s method makes use of the approximation of the mapping
function f through its approximation on the boundary surfaces, i.e., we define the coefficients
al(n_k,k)(k) of f = ¢(z1,29,A) up to a certain degree by considering the mapping @f, to
0B, with some radiug.

Since we ask for the transformation into a ball, we have to look for the valys of, 2., \))|?
on the surface(s, t, \) as described in the beginning of subsection 2.2.

It is evident that the multiplication ab(z;, 22, A) by its conjugate, together witl27), leads

to an expression of the general form:

lo(2(s, 8, \)* = co(A) + Z cijwny(N) sin’ s cos? ssin® ¢ cos' t.
gkl
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Due to the fact that on the sphere (i.e. on the boundar pfthe value of|p(z1, 22, \))|?
should be constant and equaldg we see that this development|gf{z(s, ¢, \))|? results in a
nonlinear system of algebraic equations, W’iﬁ)_k,k)(A) as unknowns, given by

C(i,j,k:,l)(/\) = 0 (28)

and, consequently, we have
co(\) = 0. (29)

We illustrate now the considered approximation by a simple polynomial of degree 3, i.e.

1
@s3(21, 22, ) = 5(2161 + z2€2) +
+ (01(370) 2%61 —+ 35(371) Z% X 2562 + 35(371) Z% X Z%el + 05(073) 2362). (30)
Solving the corresponding syste28] by using the Maple-Quatpackage frobj,[we get

a ()\) (5921 —=18023 429022 — 1807 +59) A
(3,0) T 1203322430 —1)(A=3)(1+))3

o (T=22+7A%)A
5(3,1)()‘) - _12(1—&-)\8()\4—6)\34-12/\2—10)\—1-3)
a(0,3) ( AOF—6X312X2—10A+3)

and the radiug of the ballB, is obtained as

o [OXE — 1223 4 2202 — 12X + 9
¢= (—3)? |

The approximations for different choices btan be seen in the following figures

Figure 1: Image in the case of = 0.1

|0
X 1

Figure 2: Image in the case of = 0.01
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Figure 3: Image in the case of = 0.001
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