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1 INTRODUCTION

In classical complex function theory conformal mappings are closely linked with complex
differentiable functions. Indeed, every conformal mapping is realized either by a holomorphic
or an anti-holomorphic functionf . Moreover, due to Riemanns’s mapping theorem any two
simply connected regions (exceptR2, the Euclidean plane) can be mapped conformally onto
each other.

In contrast to the planar case, inRn, with n ≥ 3, the set of conformal mappings is only
the set of M̈obius transformations (due to Liouville’s theorem, proved in [10] in 1850 under the
condition off being at least aC3 homeomorphism). Only in 1958, in [7], P. Hartman succeeded
to prove this assertion forC1 homeomorphisms.

The difficulties in characterizing those M̈obius transformations inR4 by some differentiabil-
ity property have been studied in detail in [9]. In the case ofR4 the application of quaternions
is natural, a fact that has already been noticed in [16] and [4], for instance. But the theory of
generalized holomorphic functions (by historical reasons they are also calledmonogenic func-
tions, cf. [3]) as it has been developed on the basis of Clifford algebras (with quaternions as
a special case, cf. [4]) doesnot cover the set of M̈obius transformations inRn, since M̈obius
transformations arenot monogenicand thereforemonogenic functionsare not directly related to
conformal mappings inRn, n ≥ 3. Here one can only expect that monogenic functions realize
quasi-conformal mappings.

It is evident that such a situation has originated many questions concerning the extension
of theoretical and practical conformal mapping methods inC to the higher dimensional case,
particularly in the setting of Clifford Analysis (see [13] for a special approach). Notice that,
in this setting, contrary to the case of several complex variables there are no restrictions on
the real dimension of being even or odd. This implies that the real 3-dimensional Euclidean
space, the most important space for concrete applications, can be subject to a treatment similar
to the complex one. Some of those practical mapping methods have been discussed in [1] on
the occasion of the 16th IKM in Weimar 2003 . That article was mainly concerned with meth-
ods based on the application of Bergman’s reproducing kernel approach (BKM) tonumerical
conformal mapping problems. Whereas up to then almost all authors working with BKM in the
Clifford setting (cf. the references in [1]) had only been concerned with the general algebraic
and functional analytic background which allowed the explicit determination of the kernel in
special situations, the main goal of [1] was the numerical experiment by using a Maple software
specially developed for that purpose. The article [2] is a continuation of that work.

But since BKM isonly oneof a great variety of concrete numerical methods developed for
mapping problems, our goal is to present in this case study a completely different approach.
In fact, it is an extension of ideas of L. V. Kantorovich (c.f. [8]) to the 3-dimensional case
by using quaternions and a suitable series of powers of a small real parameter. Whereas until
now in the Clifford case of BKM the recovering of the mapping function itself and its relation
to the monogenic kernel function is still not completely solved, the generalized approach of
Kantorovich avoids such difficulties and leads to a monogenic mapping function depending on
the small power series parameter.

Therefore, like usual (see [3]), let {1, e1, e2, e3} be an orthonormal basis of the Euclidean
vector spaceR4 with the (quaternionic) product given according to the multiplication rules

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3.
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Considering the subset
A := spanR{1, e1, e2}

of the quaternion algebraH (isomorphic to the special Clifford algebraC`0,2), the real vector
spaceR3 can be embedded inA by the identification of each elementx = (x0, x1, x2) ∈ R3

with theparavector (sometimes also calledreduced quaternion)

z = x0 + x1e1 + x2e2 ∈ A.

ForC1(Ω,A) define the (reduced) quaternionic Cauchy-Riemann operator

D =
∂

∂x0

+ e1
∂

∂x1

+ e2
∂

∂x2

.

Solutions of the differential equationsDf = 0 (resp.fD = 0) are called left-monogenic (resp.
right-monogenic) functions in the domainΩ.

Let us remind that the differential operatorD is not only a formal linear combination of the
real partial derivatives∂

∂xk
but, when applied to a given functionf : Ω → H, is nothing else

than an areolar derivative in the sense of Pompeiu (cf. [15] and, in the hypercomplex case,
[14]). The same is true for the conjugate quaternionic Cauchy-Riemann operator

D =
∂

∂x0

− e1
∂

∂x1

− e2
∂

∂x2

.

But if f is a function monogenic inΩ, its areolar derivativeDf is vanishing and this is equiva-
lent with the fact that the areolar derivative1

2
Df can be considered as the hypercomplex deriv-

ative of the functionf . This has been discussed to some extend in [6]. In [13] details about
the corresponding integral representation of the hypercomplex derivative and related mapping
properties are given. Finally, similar to what happens inC where, for a complex differentiable
functionf ′ = df

dz
= 1

2
(∂f

∂x
− i∂f

∂y
) = ∂f

∂x
, in our case also

1

2
Df =

∂f

∂x0

. (1)

Obviously, formula (1) guarantees that the (hypercomplex) derivative of a monogenic function
is again a monogenic function.

In general, due to the algebraic properties ofH, we have to assume that a monogenic function
f has values inH, i.e., it is of the form

f(x) = f0(x) + f1(x)e1 + f2(x)e2 + f3(x)e3,

wherefk, k = 0, 1, 2, 3 are real valued functions inΩ.
But if we are dealing with mappings from one 3-dimensional domain to another 3-dimensional

domain we have to restrict the range off to a quaternion-valued function with one identically
zero component. Of course, this can be done by different choices. Here we consider a function
f, defined inΩ and being also a paravector (or reduced quaternion), i.e.

f : Ω → A

with
f(x) = f0(x) + f1(x)e1 + f2(x)e2.
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In this case a monogenic function is bi-monogenic, i.e.Df = fD = 0 and in terms of the
real partial derivatives both equations are equivalent with the so called Riesz system

∂f0

∂x0

− ∂f1

∂x1

− ∂f2

∂x2

= 0

∂f0

∂x1

+
∂f1

∂x0

= 0

∂f0

∂x2

+
∂f2

∂x0

= 0

∂f1

∂x2

− ∂f2

∂x1

= 0. (2)

After these basic requisites about monogenic functions in domains of real dimension three,
the following sections are dealing with their power series development and their application to
3D-mappings.

2 MONOGENIC FUNCTIONS AS MAPPING FUNCTIONS

2.1 Paravector-valued monogenic functions of a paravector inR3

The description of the series development of monogenic functions will be made here in
terms of two hypercomplex monogenic variableszk = xk − x0ek, k = 1, 2. Indeed, using the
general approach for Clifford algebra valued monogenic functions ([12], [5]) restricted to our
case ofn = 2, a second hypercomplex structure ofR2+1 different from that given by the set of
paravectorsA consists in the following isomorphism:

R2+1 ∼= H2 = {~z : zk = xk − x0ek; x0, xk ∈ R}.
wherek = 1, 2. More detailed, this corresponds to taking two copiesCk of C and identifying
i ∼= ek, (k = 1, 2); x0

∼= <z; xk
∼= =z; wherez ∈ C, and letCk := −ekC. Then

H2 is the cartesian productH2 := C1 × C2 andC`0,2-valued functions of the formf(z) =
f0(z) + f1(z)e1 + f2(z)e2 + f12(z)e1e2 are considered as mappings

f : Ω ⊂ R3 ∼= H2 7−→ C`0,2.

For the next step we apply

Definition 1 LetV+,· be a commutative or non-commutative ring,ak ∈ V (k = 1, . . . , n), then
the symmetric “×”-product is defined by

a1 × a2 × · · · × an =
1

n!

∑

π(i1,...,in)

ai1ai2 · · · ain (3)

where the sum runs overall permutations of all(i1, . . . , in)

together with the
Convention:

If the factoraj occursµj-times in (3), we briefly write

a1 × · · · × a1︸ ︷︷ ︸
µ1

× · · · × an × · · · × an︸ ︷︷ ︸
µn

(4)

= a1
µ1 × a2

µ2 × · · · × an
µn = ~a µ
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whereµ = (µ1, . . . , µn, ) and set parentheses if the powers are understood in the ordinary way
(see [14]).

Since the symmetric products ofµ1 factorsz1 andµ2 factorsz2 are monogenic functions of
homogeneous degreeµ1 + µ2 which form a basis for the Taylor series of a monogenic function
in R3 (see [14]) they are calledgeneralized powers. Using~x = (x1, x2) and the multi-indices
µ = (µ1, µ2) as well asν = (ν1, ν2) it is easy to verify that the partial derivatives of(~z − ~a)µ

with respect tox1 andx2 result in

∂|ν|

∂~x ν
(~z − ~a)µ|~z=~a =

{
µ! if ν = µ
0 if ν 6= µ

This implies (cf. [12])

Theorem 1 Every convergentR-power series (L-power series) generates in the interior of its
domain of convergence a monogenic functionf(~z) and coincides there with the Taylor series of
f(~z), i. e. in a neighborhood of~z = ~a we have

f(~z) =
∑

µ

1

µ!

∂|µ|f(~a)

∂~xµ (~z − ~a)µ resp. f(~z) =
∑

µ

1

µ!
(~z − ~a)µ ∂|µ|f(~a)

∂~xµ .

It is usual to consider instead of these general multiple power series the corresponding series
ordered by powers of the same homogeneous degree (with a different domain of convergence,
in general, cf. [3]). If |µ| = n then it holds

1

µ!
=

1

n!

(
n

µ

)

and by settingµ1 = (n − k), µ2 = k; k = 0, 1, . . . n, the corresponding form of theL - Taylor
series can be written as

f(z1, z2) =
∞∑

n=0

1

n!

n∑

k=0

(
n

k

)
(z1 − a1)

n−k × (z2 − a2)
k ∂nf(a1, a2)

∂x1
n−k∂x2

k
(5)

(analogously forR-series, with the coefficients on the left side of the powers.) In the following
we shall only consider the case ofL-monogenic functions.

Obviously, in the neighborhood of the origin the series reduces to

f(z1, z2) =
∞∑

n=0

1

n!

n∑

k=0

(
n

k

)
z1

n−k × z2
k ∂nf(0, 0)

∂x1
n−k∂x2

k
=

∞∑
n=0

n∑

k=0

(
n

k

)
z1

n−k × z2
kα(n−k, k)

with

α(n−k, k) :=
1

n!

∂nf(0, 0)

∂xn−k
1 ∂xk

2

. (6)

Being obtained by the partial derivatives of a functionf : Ω → A it is evident that the
coefficientsα(n−k, k) should have the form of a reduced quaternion (or paravector):
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α(n−k, k) = α0
(n−k, k) + α1

(n−k, k) e1 + α2
(n−k, k) e2, n = 0, 1, 2 . . . ; k = 0, . . . , n, (7)

if explicitly written with their real and imaginary parts. As we now prove, the last equation of the
Riesz system (2) implies a special relationship between adjacent coefficients which guarantees
that the sum is a paravector-valued polynomial.

Theorem 2 A homogeneous monogenic polynomial of degreen given by

u(z1, z2) :=
n∑

k=0

(
n

k

)
z1

n−k × z2
kα(n−k, k) (8)

with arbitrary paravector-valued coefficients is paravector-valued if and only if

α2
(n−k, k) = α1

(n−k−1, k+1) n = 0, 1, 2 . . . ; k = 0, . . . , n. (9)

Sketch of proof:To see that (9) is necessary we start from the last equation of (2) with f = u,
i.e.

∂u2

∂x1

=
∂u1

∂x2

. (10)

Since monogenic functions are infinitely hypercomplex differentiable and therefore also real
differentiable of arbitrary order we can differentiate both sides of (10) (n− k − 1)-times byx1

andk-times byx2 to end up with

∂nu2

∂xn−k
1 ∂xk

2

=
∂nu1

∂xn−k−1
1 ∂xk+1

2

. (11)

Formula (11), together with (6), (7), leads to the assertion (9). The fact that (9) is also a
sufficient condition can be shown by induction overk. ¤

Note, that anL−monogenic paravector-valued function of a paravector of arbitrary dimen-
sion is alsoR−monogenic, i.e. bi-monogenic. This was proved in [11] by simple arguments
relying on hypercomplex differentiability.

Taking into account that the main goal of this paper is to realize approximations of 3D-
mappings by polynomials generated by partial sums of series of the form (5), we discuss now
briefly further general aspects of these series inspired by the corresponding complex approach.
We are mainly interested in detecting problems by using the Maple software developed for the
work with quaternions by S. Bock (Quatpackagesee [5]). In this sense it is also an experiment to
certify the efficiency of this package. Although this package can have broader applications, here
we restrict ourselves only to a situation where the interior of a domain should be transformed
into the interior of a sphere.

As it is usual in the case of conformal transformations in the complex plane, the domain
Ω ⊂ R3 that we are going to transform should contain the origin. We suppose also, that the
domain into which we are mapping should be a ballB ⊂ R3 with the center at the origin.

Since the generalized powersz1
n−k×z2

k, for n = 1, 2, . . . ; k = 0, 1, . . . , n, are vanishing
at the origin, the requirement that the origin is an invariant point under the considered mapping
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f : Ω → B means that in (8) the first coefficient should be equal to zero, i.e.α0, 0 = 0 and each
monogenic approximation polynomial begins with an expression of the form

u = z1α(1, 0) + z2α(0, 1). (12)

Clearly, the invariance of the origin guarantees in our settings that the interior ofΩ will be
mapped to the interior of the ball.

On the other hand, (12) represents the first order (linear) approximation of the mapping
function that we are looking for and, as such, is naturally related to its hypercomplex derivative
in the origin.

What is the corresponding situation inC? In the complex case we know that the Riemann
mapping theorem still allows to prescribe, for example, the direction in which the real axis
should be mapped. Such behavior is simply related to a property of the complex derivative. For
instance, often the positivity or a special value of the argument of the derivative in the origin is
demanded. Or take for example the requirement thatf ′(0) = 1, where for the momentf :
Ω → B ⊂ C (cf. [8]). This means that the first (linear) approximation of the mapping function
f is given asw = f(z) = z, z ∈ C. In other words, in the first step of approximation nothing
else than the identity function is used. Moreover, this means also that in the first step the unit
ball in the image plane{w : |w| ≤ 1}, has as its pre-image the unit ball{z : |z| ≤ 1}. But
step by step the approximation by polynomials of higher degree changes the situation. In some
sense we could say that inC, from the geometric view point the conditionsf(0) = 0 as well as
f ′(0) = 1, arenormalizing the first stepin the approximation process of a domainΩ to a circle:
the simplest polynomial of degree1, namely the identityw = f(z) = z, is used and therefore
in this step aw−circle is obtained from the correspondingz−circle. This works independently
from the considered domainΩ and in so far we do not only have thew−circle as the canonical
”target” domain, but also thez−circle as the canonical ”starting” domain.

In the 3D-case (and, in general, for any real dimensionn > 2) the situation is different, due
to the nature of the used function class. Whereas inC the identityf(z) = z with f ′(z) ≡ 1 is a
holomorphic function, it is not the case thatf(z) = z = x0 + x1e1 + x2e2 ∈ A is a monogenic
function. Indeed, for a linear monogenic functionf with hypercomplex derivative1

2
Df(0) = 1

according to formula (12)we must have that

1

2
Df(0) = −e1α(1, 0) − e2α(0, 1) = 1. (13)

Applying (7) and (9) the formula (13) is equivalent to

1

2
Df(0) = −e1(α

0
(1, 0) + α1

(1, 0) e1)− e2(α
0
(0, 1) + α2

(0, 1) e2) = 1. (14)

This condition for a linear monogenic function with hypercomplex derivative equal to1 is
equivalent to

α0
(1, 0) = α0

(0, 1) = 0

as well as
α1

(1, 0) + α2
(0, 1) = 1. (15)

Thus, together with (9) in the formα2
(1, 0) = α1

(0, 1) = c, the linear approximation is obtained as

w = f(z) = z1(α
1
(1, 0) e1 + c e2) + z2(c e1 + α2

(0, 1) e2)

= α1
(1, 0)z1 e1 + α2

(0, 1)z2 e2 + c (z2 e1 + z1 e2) (16)

= x0 + α1
(1, 0)x1 e1 + α2

(0, 1)x2 e2 + c (x2 e1 + x1 e2)
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Whereas in the complex case the demand for a function with derivativef ′(0) = 1 immedi-
ately leads to a well defined linear approximation (the first step approximation with the above
explained relationship between two circles), we see that in dimension three one condition con-
cerning the hypercomplex derivative is not enough to normalize in the same sense the first step.
In fact, three (real) parameters are still left. To overcome this problem we impose one more
well motivated initial condition to the mapping function, namely that

D̃f(0) := (
∂

∂x0

+ e1
∂

∂x1

− e2
∂

∂x2

)f(0) = 1. (17)

Since we already required1
2
Df(0) = ∂

∂x0
f(0) = 1 this implies that

(e1
∂

∂x1

− e2
∂

∂x2

)f(0) = 0

which, by direct calculation carried out on (16) results in the following relationship between the
three until now not fixed real parameters:

−α1
(1, 0) + α2

(0, 1) + 2ce1e2 = 0;

hencec = 0 and by (15)

α1
(1, 0) = α2

(0, 1) =
1

2
. (18)

Using these values in (16) we finally obtain for the initial (”first step”) approximation the linear
polynomial

w = f(z) =
1

2
(z1e1 + z2e2)

= x0 +
1

2
(x1 e1 + x2 e2). (19)

From the geometrical point of view the result seems not to be a surprise. Indeed, formula (19)
means nothing else than that, in the first step of approximation, the interior of the unitw−ball

B = {w : |w| ≤ 1}
is obtained from the interior of a unitoblate ellipsoidor oblate spheroidgiven by

O = {(x0, x1, x2) : x0
2 +

1

4
x1

2 +
1

4
x2

2 = 1}. (20)

From the analytical point of view the additional condition (17) which led to this situation is also
not very surprising. Besides others, we mention only two arguments:

(1) Due to the real dimension three, the use of threeH2-linear hypercomplex differential
operators is necessary for describing the three real partial derivatives in terms of hypercomplex
differential expressions.

(2) The hypercomplex derivative of a monogenic function given by

1

2
Df = −e1

∂f

∂x1

− e2
∂f

∂x2

=
∂f

∂x0

reflects several essential qualitative properties of a monogenic function, but from the quantita-
tive point of view does not allow to describe the influence of the partial derivatives with respect
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to x1 andx2 separately. As we saw, the use of the operatorD̃ defined by (17) solved this prob-
lem. Needless to note that by (17) the number of initial conditions has been increased by one,
exactly the same as the real dimension increased by one compared with the complex case.

Summarizing all the results that have been explained in this subsection, by including the
initial values of the unknown mapping function at the origin, we conclude that the general form
of the series that we have to study is

f(z1, z2) =
1

2
(z1e1 + z2e2) +

∞∑
n=2

n∑

k=0

(
n

k

)
z1

n−k × z2
kα(n−k, k) (21)

together with the compatibility condition (9), i.e.,

α2
(n−k, k) = α1

(n−k−1, k+1) n = 0, 1, 2 . . . ; k = 0, . . . , n.

2.2 The approximate solution of a special 3D-mapping problem by monogenic polyno-
mials involving a small parameter

In the previous subsection we deduced the form (21) of the series that we shall use for
approximating a mapping ofΩ ⊂ R3 into a ballB% ⊂ R3.

We suppose that the boundary ofΩ can be embedded with a sufficiently small real parameter
λ in a family of surfaces parameterized bys andt of the form

z = z(s, t, λ).

Suppose also that the family of surfaces includes the origin for allλ.
This idea follows Kantorovich’s method in the complex plane ([8], Ch. V, §5), where an

analogous family of curvesz = z(t, λ) is considered. The corresponding problem (mapping
into a circle) together with the usual standardization of the mapping function leads to a series
analogous to (21):

ϕ(z, λ) = z + α2(λ)z2 + α3(λ)z3 + . . . (22)

already written with indeterminate coefficientsαn(λ), n = 2, 3, . . . . The determination of those
αn(λ) by resolution of a non-linear system of algebraic equations depending on relationships
between the boundaries of the considered domains is the core of the method.

From the previous subsection it is clear that we are trying to generalize Kantorovich’s method
by considering the series

ϕ(z1, z2, λ) =
1

2
(z1e1 + z2e2) +

∞∑
n=2

n∑

k=0

(
n

k

)
z1

n−k × z2
kα(n−k, k)(λ) (23)

where the indeterminate coefficients are paravectors satisfying the compatibility property

α2
(n−k, k)(λ) = α1

(n−k−1, k+1)(λ) n = 0, 1, 2 . . . ; k = 0, . . . , n.

As a concrete example, our case study is concerned with the mapping of the interior of the
oblate ellipsoidEλ, (0 ≤ λ < 1), defined by

x0 = (1 + λ) cos s, x1 = 2(1− λ) sin s cos t, x2 = 2(1− λ) sin s sin t

with 0 ≤ s ≤ π and0 ≤ t < 2π, into the interior of a ballB.
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Remark 1 We notice that, due to (20), we haveE0 = O, which means that we are studying a
small perturbation of thecanonical oblate spheroidO which is mapped into the unit sphere by
the linear monogenic functionw = 1

2
(z1e1 + z2e2) = x0 + 1

2
(x1 e1 + x2 e2) (cf. 19). This can

also be seen from the hypercomplex equation ofEλ, which, in terms ofw = 1
2
(z1e1 + z2e2), is

given by

(1 + λ2)w w − λ(w w + w w) = (1− λ2)2

and where the choice ofλ = 0 leads immediately tow w = 1.

The numerical efficiency of Kantorovich’s methods relies also on simplifications in the series
(22) by making use of symmetry properties of the considered domainΩ. For instance, the
fact that, in some cases, one or both of the coordinate axes (or other symmetry axes) can be
considered as invariant under the mapping immediately implies a substantial reduction of the
indeterminate coefficientsαn(λ), n = 2, 3, . . . , and therefore reduces the numerical costs.

Carrying out similar calculations and simplifications in the case of∂Ω = Eλ, we arrived to
the following result, which we present here without the straightforward but rather cumbersome
proof.

Theorem 3 Let the seriesϕ(z1, z2, λ) be given by formula (23) with the compatibility condition

α2
(n−k, k)(λ) = α1

(n−k−1, k+1)(λ) n = 2, 3, . . . ; k = 0, . . . , n,

being fulfilled. (i) The hyperplanex0 = 0 is invariant (i.e.,x0 = 0 implies thatϕ(z1, z2, λ)
admits only pure imaginary values), if

α0
(n−k,k)(λ) := 0, for k = 0, . . . , n, n=2,3,. . .. (24)

(ii) The hyperplanex0 = 0 and the real axisx1 = x2 = 0 are invariant, if

z1
n−k × z2

k = 0, for every evenn, and k = 0, . . . , n.

and {
α2

(n−k,k) = 0, for every oddn and evenk,

α1
(n−k,k) = 0, for every oddn and odd k, k = 0, 1, . . . , n.

These invariance properties immediately lead to the following

Corrolary 1 The mapping of domainsΩ ⊂ R3, which are axially symmetric with respect to the
real axis and admit a planar symmetry with respect to the imaginary hyperplanex0 = 0, into a
ball B ⊂ R3 centered in the origin can be realized by a monogenic series of the form

ϕ(z1, z2) =
1

2
(z1e1 + z2e2) +

+(α1
(3,0) z3

1e1 + 3α2
(2,1) z2

1 × z1
2e2 + 3α1

(1,2) z1
1 × z2

2e1 + α2
(0,3) z3

2e2) +

+(α1
(5,0) z5

1 e1 + 5α2
(4,1) z4

1 × z2 e2 + 10α1
(3,2) z3

1 × z2
2 e1 + 10α2

(2,3) z2
1 × z3

2 e2 +

+5α1
(1,4) z1 × z4

2 e1 + α2
(0,5) z5

2 e2) +

+ · · · (25)

with real coefficientsαl
(n−k,k); n = 3, 5, 7, . . . ; k = 0, 1, . . . , n; l = 1 for evenk, l = 2 for oddk.
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Implying further in (25) the compatibility conditions

α2
(n−k, k)(λ) = α1

(n−k−1, k+1)(λ) n = 2, 3 . . . ; k = 0, . . . , n,

writing as abbreviation for the inner coinciding coefficients

β31 := α2
(2,1) = α1

(1,2),

β51 := α2
(4,1) = α1

(3,2),

β53 := α2
(2,3) = α1

(1,4),

and so on forβnm in all the following polynomials of higher homogeneous degreen = 7, 9, . . . ; m =
1, 3, . . . , n− 2, the formula (25) reduces to

ϕ(z1, z2) =
1

2
(z1e1 + z2e2) +

+(α(3,0) z3
1e1 + 3β(3,1) z2

1 × z1
2e2 + 3β(3,1) z1

1 × z2
2e1 + α(0,3) z3

2e2) +

+(α(5,0) z5
1 e1 + 5β(5,1) z4

1 × z2 e2 + 10β(5,1) z3
1 × z2

2 e1 + 10β(5,3) z2
1 × z3

2 e2 +

+5β(5,3) z1 × z4
2 e1 + α(0,5) z5

2 e2) +

+ · · · . (26)

Here also the upper indices on the outer term coefficients in every homogeneous degree are
omited since they are no longer relevant.

Remark 2 It is obvious that, under the mentioned geometric conditions of Theorem 3, the total
degree of freedomd in the choice of real coefficients in (26) corresponding to the homogeneous
degreen = 3, 5, . . . is d = 1

2
(n + 3). Similar calculations allow to estimate and compare the

number of numerical procedures which are needed with and without additional information
about symmetries of the considered domainΩ.

3 A NUMERICAL EXPERIMENT

We now apply Corollary 1 to the example mentioned before, i.e., to the mapping of the
interior of the oblate ellipsoidEλ, (0 ≤ λ < 1), defined by

x0 = (1 + λ) cos s, x1 = 2(1− λ) sin s cos t, x2 = 2(1− λ) sin s sin t (27)

with 0 ≤ s ≤ π and0 ≤ t < 2π, into the interior of a ballB.
In this case the coefficients in (25) depend on the (sufficiently small) parameterλ, i.e.

al
(n−k,k) = al

(n−k,k)(λ). Kantorovich’s method makes use of the approximation of the mapping
functionf through its approximation on the boundary surfaces, i.e., we define the coefficients
al

(n−k,k)(λ) of f = ϕ(z1, z2, λ) up to a certain degreen by considering the mapping ofEλ to
∂B% with some radius%.

Since we ask for the transformation into a ball, we have to look for the value of|ϕ(z1, z2, λ))|2
on the surfacez(s, t, λ) as described in the beginning of subsection 2.2.

It is evident that the multiplication ofϕ(z1, z2, λ) by its conjugate, together with (27), leads
to an expression of the general form:

|ϕ(z(s, t, λ))|2 = c0(λ) +
∑

i,j,k,l

c(i,j,k,l)(λ) sini s cosj s sink t cosl t.
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Due to the fact that on the sphere (i.e. on the boundary ofB), the value of|ϕ(z1, z2, λ))|2
should be constant and equal to%2, we see that this development of|ϕ(z(s, t, λ))|2 results in a
nonlinear system of algebraic equations, withal

(n−k,k)(λ) as unknowns, given by

c(i,j,k,l)(λ) = 0 (28)

and, consequently, we have
c0(λ) = %2. (29)

We illustrate now the considered approximation by a simple polynomial of degree 3, i.e.

ϕ3(z1, z2, λ)) =
1

2
(z1e1 + z2e2) +

+ (α(3,0) z3
1e1 + 3β(3,1) z2

1 × z1
2e2 + 3β(3,1) z1

1 × z2
2e1 + α(0,3) z3

2e2). (30)

Solving the corresponding system (28) by using the Maple-Quatpackage from [5], we get





α(3,0)(λ) = (59λ4−180λ3+290λ2−180λ+59)λ
12(λ3−3λ2+3λ−1)(λ−3)(1+λ)3

β(3,1)(λ) = − (7−2λ+7λ2)λ
12(1+λ)(λ4−6λ3+12λ2−10λ+3)

α(0,3)(λ) = (1+λ)λ
4(λ4−6λ3+12λ2−10λ+3)

and the radius% of the ballB% is obtained as

% =

√
9λ4 − 12λ3 + 22λ2 − 12λ + 9

(λ− 3)2
.

The approximations for different choices ofλ can be seen in the following figures
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0

0
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Figure 1: Image in the case ofλ = 0.1
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Figure 2: Image in the case ofλ = 0.01
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Figure 3: Image in the case ofλ = 0.001
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