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ABSTRACT 

Systems biology foundations in this post-genomic era broadly rely upon well performed gene 

functional annotations. However, the experimental determination of a protein function is a laborious 

and expensive process, being its application unfeasible for the growing amount of sequences 

annotated. Current methodologies are based on computational tools that predict protein function 

over sequence similarity, but neglect a significant part of the putative proteins, ignore structural 

features and propagate annotation errors. 

The present thesis focuses in the improvement of predictions in metabolic engineering problems by 

incorporating enzyme structural information. The uncertainty on the usage of NADP(H) or NAD(H) 

as co-factors was addressed due to the major impact in metabolic engineering applications these 

molecules have, severely affecting both predictions and strain design results. The molecular 

determinants for cofactor specificity were unveiled, using enzyme structural information from a 

representative dataset of enzymes present in Protein DataBank with NAD(P)(H) as cofactors, and 

support vector machines. The integration of homology modelling tools and a support vector machine 

predictive model allowed a process automation for predicting cofactor specificity. The resulting 

software was made available online in the form of a webserver. Cofactor prediction of a curated 

dataset of structurally uncharacterized enzymes was performed with success, validating the 

developed method. 

The analysis and curation of the use of these cofactors in genome-scale metabolic models (GEM) 

was also performed through the cofactor prediction of sequences from 59 GEMs associated to 

reactions using NAD(P)(H). Results show some inconsistencies in GEM curation that can impair the 

correct simulation of the models, with an overall estimate of 28% of the genes implemented in the 

model being misclassified for cofactor specificity. The most recent GEM from Saccharomyces 

cerevisiae, Yeast 7.6, was corrected following the predictions performed and generally showed 

considerably improved results compared with the original version in the central metabolism, 

particularly for the flux in the pentose phosphate pathway. With the information on NAD(P)(H) 

cofactor specificity generated, a method was also developed and implemented to automatically 

predict the set of optimal gene mutations necessary for changing the NAD(P)(H) cofactor specificity 

of enzymes with unknown structure. Preliminary data shows promising results for the development 

of a tool for the automatic prediction of cofactor changing mutations, but experimental validation and 

further development are still a requirement. 
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RESUMO 

A fundação da biologia de sistemas depende amplamente numa correta anotação de genes por 

homologia. Contudo, a determinação experimental da função de uma proteína é um processo 

moroso e dispendioso, sendo a sua aplicação inexequível para o crescente número de sequências 

anotadas. Metodologias atuais são baseadas em ferramentas computacionais que preveem a função 

de uma proteína de acordo com a similaridade da sua sequência com outras sequências 

caracterizadas, mas negligenciam uma parte significativa das proteínas putativas, assim como 

ignoram características estruturais e propagam erros de anotação. 

A presente tese foca-se no melhoramento de previsões em problemas de engenharia metabólica 

através da incorporação de informação sobre estrutura enzimática. A incerteza da utilização de 

NAD(H) ou NADP(H) como cofatores foi abordada, devido ao enorme impacto em aplicações de 

engenharia metabólica que estas moléculas possuem. Os determinantes moleculares da 

especificidade de cofator foram desvendados através da utilização de informação estrutural presente 

numa base de dados representativa de enzimas com cofatores NAD(P)(H) presentes na PDBe da 

aplicação de support vector machines (SVM). A integração de ferramentas de modelação por 

homologia e um modelo preditivo de SVM permitiram a automatização do processo de previsão da 

especificidade de cofator. O software resultante foi disponibilizado online na forma de um webserver. 

A previsão dos cofatores de uma base de dados curada de enzimas sem informação estrutural foi 

efetuada com sucesso, validando o método desenvolvido. 

A análise e curação do uso deste cofatores em modelos metabólicos à escala genómica (GEM) foi 

efetuada através da previsão de cofator das sequências associadas a NAD(P)(H) de 59 GEM. Os 

resultados mostraram algumas inconsistências na curação destes modelos que podem impedir a 

sua correta simulação, com cerca de 28% dos genes estando tendo o cofator mal classificado. O 

modelo mais recente de S. cerevisiae, Yeast 7.6, foi corrigido e simulado tendo mostrado resultados 

gerais melhorados no metabolismo central, particularmente na via da pentose fosfato, quando 

comparados com o modelo original. Com a informação sobre especificidade de cofatores gerada, 

um método foi desenvolvido e implementado para a previsão do conjunto ótimo de mutações 

necessárias para a alteração do cofator de enzimas sem informação estrutural. Os dados 

preliminares indicam resultados promissores para o desenvolvimento de uma ferramenta para a 

previsão automática de mutações para alteração de cofatores, embora seja ainda necessária 

validação experimental das hipóteses geradas. 
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CHAPTER 1 

Introduction 

_____________________________________________________________ 

For millennia, human beings used the catalytic capabilities of microorganisms for their own 

advantage, unaware of the underlying biological principles and, therefore, unable to comprehend or 

control them. Within the past century a truly astonishing genomic revolution has befallen. With the 

discovery of the genome and genetic tools, we are now not only able to accurately describe biological 

processes, but also to manipulate genomes and metabolisms at our own will and desire. Nowadays, 

with metabolic engineering, bioinformatics and systems biology still rapidly evolving, our information 

processing proficiency has finally been bested by our data retrieving capacity. Nonetheless, hurdles 

are still to be surpassed. 

In this post-genomic era, it has become expensive and timewise inefficient to experimentally 

characterize the functions of proteins, with current methodologies being based on computational 

tools that attribute protein function over sequence similarity. However, these methodologies (based 

on algorithms performing sequence homology searches) neglect a significant part of the putative 

proteins, ignore structural features and propagate annotation errors. There is therefore an urgent 

need for the development of new methodologies for predicting and identifying protein functions with 

a higher level of accuracy and using a broader approach. The work developed on this thesis focuses 

on the unveiling of molecular determinants for cofactor specificity and in the development of tools 

for more accurate predictions of protein functions and identification of cofactor specificities. Several 

approaches were undertaken, including the use of structure-based information, big-data and 

machine learning. The achieved results were applied in the correct identification of enzyme specificity 

for the seemingly equivalent cofactors nicotinamide adenine dinucleotide (NAD(H)) or nicotinamide 

adenine dinucleotide phosphate (NADP(H)) and in the analysis and curation of the use of these 

cofactors in genome-scale metabolic models. A method was also developed and implemented to 

automatically predict the set of optimal gene mutation necessary for achieving NAD(P)(H) cofactor 

specificity change. 
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1.1 Context and motivation 

Advances in genome sequencing have allowed the number of sequenced organisms to dramatically 

increase in the last decade. In this post-genomic era, functional annotation has become a major 

concern of bioinformatics and systems biology, as the information required for the deployment of all 

metabolic processes taking place in cellular metabolism are encoded in the genome [1], [2]. 

As metabolic model reconstructions are becoming relevant tools for performing fundamental studies 

and for aiding drug discovery and bioprocess design, the impact of an accurate enzymatic function 

assignment from a genome sequence becomes evident [3]. Metabolic engineering and strain design 

endeavors also greatly benefit from well performed function annotations [4]. 

The experimental determination of a protein function is a laborious and expensive process, being its 

application unfeasible for the growing amount of sequences annotated [2], [5], [6]. The most 

common approach to function annotation, therefore, is based on the assumption that proteins with 

similar sequences perform similar functions [1], [2], [5]. This approach relies on algorithms using 

sequence alignment tools to analyze such similarities [6], [7]. However, errors spread easily when 

functional annotation is not done carefully due to overly unconstrained homology metrics [1], [7]. 

Also, there are many protein sequences without any previously characterized homologue, preventing 

function inference through similarity search [2]. Another problem of current functional annotation 

methodologies is the identification of the metabolic reactions that an enzyme catalyzes. 

Catalytic activity of enzymes is classified by assigning an EC (Enzyme Commission) number, and for 

each EC number, there is a list of possible metabolic reactions. However, this reaction association 

might not be realistic, once there is insufficient curated information to confirm the catalytic activity 

of an enzyme in every possible reaction within an organism. This problem particularly affects 

Genome-scale metabolic model reconstruction due to the potential insertion and association of 

multiple misleading reactions [1], [2], [8]. In fact, it has been observed [9] that models reconstructed 

using the described methodologies may have limited use for metabolic engineering applications. 

Besides the existence of many gaps, the insertion of all the reactions associated to each EC number 

originates a metabolic model that has too many (artificial) degrees of freedom and that cannot be 

used for optimization [10]. Extensively curated models such as the ones reconstructed for 

Escherichia coli [11] and Saccharomyces cerevisiae [12] are not so affected by this problem, as 

available experimental characterization allows for an extensive refinement of predictions. 



4 
 

 
 

Although current technology in model development for biotechnology applications relies on the 

methodology described, tools have been developed that could be used to refine model building 

through existing methods that can be independent from similarity search [1], [2], [13]. Several 

computational approaches have been designed to improve the prediction of protein function, EC 

number classification and reaction association, using methods based on machine learning and 

training sets from databases with sequence/reaction profiling information [3], [6], [14]–[17]. 

Moreover, as the coverage of protein with structural characterization increases, this information can 

be used to generate homology models for many of these enzymes based on experimentally 

characterized templates, by analyzing and comparing them with the structural and functional data 

[18]–[21]. 

Further development of novel structure-based methods and the integration of machine learning 

methods in a practical platform might overcome existing flaws. Such platform shall represent a 

breakthrough in systems biology by largely increasing the accuracy of functional annotation and 

reducing annotation errors, being also potentially applied in the curation of genome-scale model 

reconstructions and in the process of developing new metabolic engineering strategies for strain 

design. 

1.2 Research aims 

The present PhD thesis focused on the study and comprehension of how protein function can be 

determined based on information other than relying solely on sequence similarity search in order to 

assist in the resolution of metabolic engineering problems. It was aimed to: 

 Integrate information from different sources including: 

o  Protein structural characterization; 

o Curated data on reaction cofactor specificity, 

o Experimental data; 

o Methods and datasets for the prediction of protein functions and structure. 

 Develop new methods for understanding and predicting cofactor specificity of enzymes using 

NAD(P)(H); 

 Develop a tool for performing cofactor predictions; 

 Perform the curation of genome-scale metabolic models, using the developed tool; 

 Develop a method for automatically predict mutants with reversed cofactor specificity. 
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1.3 Outline of the thesis 

The research performed for this thesis is comprehended in six chapters. In the first chapter, an 

introduction and contextualization of the problems addressed in this thesis are presented. Chapters 

2 to 5 further explore the problems and try several approaches for their solution. Chapter 6 

encompasses the final research conclusions and recommends future approaches to be performed. 

The four chapters exploring the research aims were organized as follows: 

 In chapter 2, a comprehensive review on the state of the art of the extensive areas of 

expertise addressed in this thesis was performed. Literature and computational methods on 

genome functional annotation, metabolic engineering, enzyme structural characterization, 

machine learning and genome-scale metabolic models reconstruction and applications were 

analyzed. 

 In chapter 3, the molecular determinants for NAD(P)(H) cofactor specificity were unveiled, 

using enzyme structural information. A comprehensive dataset of structures from enzymes 

using NAD(P)(H) as cofactors was built and processed using machine learning algorithms. 

The ensuing results were further analyzed to identify the responsible molecular factors for 

cofactor specificity. These findings where successfully applied to enzymes not structurally 

characterized, using comparative modelling and a protocol was developed to automatically 

predict cofactor specificity. 

 In chapter 4, the developments aforementioned achieved were applied in the curation of 

genome-scale metabolic models from a wide range of microorganisms, through the correct 

characterization of reactions using the cofactors NAD(P)(H). Furthermore, the corrections 

suggested by the implemented curation were performed in the most recent model of 

Saccharomyces cerevisiae. Simulation results were then compared with the original model 

and in vivo experimental data for a performance assessment. 

 In chapter 5, a method was developed for the automatic and high-throughput prediction of 

the optimal set of gene mutations required to obtain an efficient NAD(P)(H) cofactor 

specificity alteration. This was achieved through the analysis of the data outputted in the 

application of the machine learning algorithms used to predict cofactor specificity. The 

generated hypotheses were analyzed and applied in silico and the resulting enzyme mutants’ 

cofactor specificity was predicted using the protocol developed in chapter 3. 
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CHAPTER 2 

State of the art 

-------------------------------------------------------------------------------------------------------------------------------------- 

 

2.1 Systems biology concepts 

The use of microorganisms by humans for their catalytic capabilities in the preservation and 

enhancement of raw products dates back thousands of years, to the beginning of civilization itself. 

Countless products were created by altering their composition through the process of fermentation, 

despite the unconscious, and unknown, biological principles applied. It was not until the 

characterization of these organisms and their connection to food spoilage and alcoholic fermentation, 

by Pasteur, almost two centuries ago, that it was realized the importance and immense potential of 

their metabolism. 

Upon realizing the potential application of their fermentative capabilities, efforts began to be made 

to understand and control such capacity. With a broader knowledge of the underlying mechanisms 

of microorganism metabolism, other fields of application also started thriving, with the development 

of food preservatives, antibiotics and synthetic compounds. Nonetheless, it was with the advent of 

DNA discovery [1], and its functional characterization [2], that the metabolism manipulation of 

microorganisms was finally unlocked, allowing the creation of the field of metabolic engineering [3], 

[4].  

The main purpose of metabolic engineering is the highly efficient biosynthesis of added-value 

compounds, through the mutation of genes for the diversion of metabolic routes [5]. These mutations 

oblige the cell to redirect metabolic fluxes in the desired direction, generating microorganisms that 

are used as biocatalysts of biochemicals, biofuels and biopharmaceuticals, culminating in the 

secretion, or accumulation, of these target compounds [6]. 

In a first phase, this field operated using random mutagenesis, with experiments not depicting a 

clear view of the altered metabolic mechanisms [7]. This was due to the still very limited range of 

metabolic engineering resources and the concentrated efforts for gene modification, ignoring the 

overall metabolic portrait. However, the continuous development of mathematical and computational 
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tools and sequencing technologies gave rise to a more rational metabolic engineering, combining 

modifications such as gene knockout, or overexpression, with predicted phenotype, allowing for a 

broader observation of the metabolic panorama [8]. The development of whole-genome sequencing, 

and consequent faster access to the information stored within the genome, promoted an easier 

introduction of targeted modifications in various organisms [9]. With the overwhelming and 

exponential amount of data being generated, new ways to handle the produced information were 

developed. 

Using informatics and computational power, scientists developed new areas of expertise condensing 

knowledge from multiple fields and creating the field of bioinformatics and computational biology, 

pushing the beginning of the post-genomic era. 

Along with the increase in the available information from genome sequencing, other types of 

experimental data also increased, supported by the development of novel high-throughput 

techniques. This allowed the combination of data from different sources in an attempt to produce a 

biological model accurately representing the strict relationship between phenotype and genotype. 

Systems biology comprehends the study of these complex systems, allowed by connecting genomic 

data with the biochemical reactions present in the metabolism of an organism [10]. Through the 

usage of computational and mathematical modeling, a quantitative description of the biological 

entities present in a cell is performed, predicting how the internal metabolism of the cells react to 

different input variables [11]–[13]. 

The genome of every organism stores all the information required for the correct deployment of every 

biochemical reaction and metabolic process taking place inside the cell, along with the interactions 

of the cell with the surrounding environment [14]. Information on gene expression, protein synthesis 

and regulatory and metabolic events are all coded in the genome, easily available due to the 

sequencing developments aforementioned. However, despite the abundance and accessibility of 

genomic sequence information, gene function characterization is not so trivial. 

Genome annotation is the process of attributing a function to each putative gene in the genome. 

Gene function is regularly attributed through gene sequence similarity with a previously characterized 

gene. This process is performed using sequence alignment algorithms such us BLAST [15] and 

HMMER [16] that align the query sequence with characterized sequences from diverse databases, 

being the most popular, NCBI [17]. When two genes have a high sequence similarity they are called 



11 
 

 
 

homologues, being the characterized function of one attributed to the other. When a homologue of 

a functionally uncharacterized gene is not found, the gene is annotated as a probable or hypothetical 

protein. 

With the increasing amount of functional annotations being almost completely performed using 

homologue sequence similarity searches, an important issue arises. Since new genes are being 

functionally characterized with functions of genes that have gone through the same annotation 

process, there is little to no experimental evidence supporting new annotations, which leads to an 

increment in the introduction of errors and inconsistencies in the genome functional annotation [18], 

[19]. Moreover, with the increasing amount of automatic annotation pipelines being developed to 

cope with the exponential growth of sequenced genomes, this process becomes even more 

standardized, which largely expands the risks of poorly performed functional annotations [20]. The 

usage of sequence homology search in such pipelines, when not performed with extreme care, 

endlessly propagates annotation errors across all sequenced organisms, attributing outdated 

functions to new annotations and impairing the discovery of new gene functions [21]. 

Besides the information on gene functions retrieved from genome functional annotation, several 

other approaches and techniques are available to characterize the metabolism of an organism. 

Transcriptomics, proteomics, and metabolomics represent the follow up of genetic information in 

the central dogma of molecular biology and are among the most used and reliable approaches to 

characterize the metabolism of an organism. As the name suggests, transcriptomics performs the 

characterization of gene transcription, the genetic information being transcribed from the genome 

that will lead to the formation of proteins [22]. This characterization is performed by measuring 

mRNA expression and allows the identification of which genetic information is being used from the 

total amount of genomic information for any environmental condition. It also gives an exceptional 

insight of regulatory events occurring in the cell. Following gene transcription and translation, 

proteomics is used to study the expressed proteins in the organism. Using diverse experimental 

techniques, functional and structural analysis can be are performed, being the specific parameters 

of each protein function analyzed retrieved [23]. Metabolomics characterize, mainly using 

chromatographic techniques, the concentration of metabolites resulting from internal metabolic 

reactions, along with the metabolites secreted and consumed, depicting the organisms’ metabolic 

panorama [11], [24]. 
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The combination of these approaches allow for a detailed understanding of the events occurring in 

an organism, from genotype to phenotype. Nonetheless, these methodologies are very expensive 

and laborious, being also relatively slow when compared to gene homology search, thus being only 

applied to specific cases and not inputted in a semiautomatic pipeline. For this reason, despite being 

precise, these approaches are considered inefficient processes. 

2.2 Enzymes and cofactors 

The metabolic reactions occurring in the metabolism of an organism, and encoded in its genome, 

are catalyzed by enzymes. This type of proteins possess catalytic properties, which accelerate 

biochemical reactions in the metabolism, being the responsible for the unique metabolic network 

present in each organism, allowing for a rapid and energy demanding metabolic event to occur [25]. 

Due to their outstanding qualities, enzymes are increasingly being used outside of the cellular 

environment, functioning as biocatalysts in the substitution of petroleum based synthetic chemistry 

for biofuel production and in the food and pharmaceutical industry [26], [27], to quote a few 

examples. Nonetheless, despite their importance, the molecular mechanisms of catalysis remain 

regularly quite elusive, demanding extensive analytic work for their full characterization and 

comprehension [28]. 

Being molecular recognition the principle responsible for the interactions occurring between enzyme 

and substrate, the accurate prediction and characterization of such interaction is of utmost 

importance for the correct determination of the set of reactions catalyzed by a given enzyme. The 

inaccurate prediction of these events impairs the correct depictions of an organism's metabolism, 

jeopardizing its use in metabolic engineering applications [29]. 

The association between annotated genes, enzymes and reactions is not a trivial task. In genomic 

functional annotation, the percentage of sequence identity and statistical score, are broadly used 

and established methods for assessing sequence similarity. Nonetheless, such methodology is not 

perfectly compatible when evaluating enzymatic function and the range of reactions catalyzed due 

to the fact that enzymatic function starts diverging early on in response to a small sequence similarity 

reduction [30]. 

In response to this, and to create a standardized process of enzyme function classification, the 

Nomenclature Committee of the International Union of Biochemistry and Molecular Biology created 
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the Enzyme Commission (EC) number as a hierarchical codification of enzyme classes. EC numbers 

represent a numerical code composed by 4 distinct elements. The first represents the main catabolic 

activity encoded, being divided in six categories: oxidoreductases (1); transferases (2); hydrolases 

(3); lyases (4); isomerases (5); and ligases (6). The remaining three elements detail the information 

on the reaction catalyzed, refining the classification to type of substrate accepted. 

Being EC numbers the most used and accepted scheme for functional classification, such scheme 

is used as a mark in the process of binding gene sequence identity to precise function identification. 

However, this reaction association might not be realistic, once there is insufficient curated 

information to confirm the catalytic activity of an enzyme in every possible reaction within an 

organism, with often multiple reactions being attributed to a single EC number, leading to believe 

that an enzyme with such EC number would be capable of catabolizing all the reactions associated. 

Also, enzymes from different organisms, with the same EC number, can accept different types of 

substrates, depending on the molecular recognition set they have incorporated [14], [30], [31]. 

Enzyme function information can be retrieved from several databases with varying degrees of detail. 

Besides information based solely on sequence similarity and EC number, some databases also 

contain curated information on enzymes from individual organisms and characterized in diverse 

conditions. Uniprot (Universal Protein Resource Knowledgebase – www.uniprot.com) is one of the 

largest and most used databases covering protein functional information. It encompasses generally 

accurate and insightful information of protein function and is divided in two sections: swiss-prot, 

where curated information is stored; and TrEMBL, a database with automatic annotated records 

[32]. Brenda (braunschweig enzyme database – www.brenda-enzymes.org), is a database containing 

specifically and exclusively curated information on enzyme function. Its information is retrieved by 

dedicated curators from literature and contains various types of information, including kinetic 

parameters and enzyme interactions [33]. KEGG (Kyoto Encyclopedia of Genes and Genomes – 

www.kegg.jp) is one of the major containers of information on genes, enzymes, metabolites, 

reactions and pathways. Despite its importance and comprehensive repository on reaction/enzyme 

information, this database is not fully curated and should be inspected with care to avoid the 

implementation of inconsistencies in enzyme information [34]. 

Although current technology on enzyme functional characterization for biotechnology applications 

mainly relies on the described methodologies, several computational approaches have been 

designed to improve the prediction of protein function, EC number classification and reaction 
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association, using methods based on Machine Learning and training sets from databases with 

sequence/reaction profiling information [29], [35]–[38]. 

One of the major contributions for enzyme reaction complexity, other than enzyme structural and 

molecular conformation, lies in the fact that, besides the catabolized substrate and consequent 

product release, enzymatic reactions encompass other reaction components that contribute to a well 

performed catalysis. Among the most prominent reaction participants are cofactors; metabolic 

intermediaries that transfer chemical groups between different metabolites, allowing for the reaction 

to occur. Cofactors are organic compounds or metal ions, and are often required for enzyme activity. 

Some of these low molecular weight entities are responsible for energy transfer in the cell, having 

the role of redox carriers for catabolic reactions, being essential in many reactions [39]. 

Some cofactors are closely bound to the enzyme and are usually self-regenerating, such as pyridoxal 

phosphate, biotin or flavins; while other cofactors, such us pyridine dinucleotides: nicotinamide 

adenine dinucleotide (NAD(H)) and nicotinamide adenine dinucleotide phosphate (NADP(H)), act as 

functional group transfer agents, being therefore consumed at the same rate of substrate 

consumption [40]. 

The essential cofactors for a correct cell metabolism are NAD(H), NADP(H) , S-adenosyl-methionine, 

flavin adenine dinucleotide, pyridoxal 5-phosphate, coenzyme A, thiamin diphosphate and flavin 

mononucleotide [41]. Of these, cofactors NAD(H) and NADP(H), are the most widely used and of 

great importance, being extensively examined for chemical processing applications [42]. 

An example of their scope is the fact that NAD(P)(H) are the cofactors responsible for catalyzing the 

transfer of electrons between molecules in the vast majority of Oxidoreductases, the largest group of 

enzymes in metabolism. In fact, according to Swissprot, the curated branch of Uniprot, from the 

total amount of ~556.000 reviewed protein sequences deposited in March 2018, approximately 

35.000 (6.3%) are annotated as enzymes having NAD(H) or NADP(H) as ligands. A thorough 

comprehension of the molecular events taking place between enzymes and these cofactors is, thus, 

essential to a complete and accurate metabolic rebuilding of the individual reaction network 

belonging to every organism. 

Due to the heavy regulation, by cells, of the levels of reduced and oxidized metabolic pools of 

NAD(P)(H), understanding cofactor specificity is of great value, in order to evaluate the routes 

available for the metabolic engineering of biological pathways and systems that involve these 
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enzymes [39]. This regulation is required in order to maintain cofactor balance and availability, with 

some examples of common metabolic engineering hurdles including: butanol conversion yield in the 

production of biofuels [43]; xylose to ethanol fermentation yield, due to the formation of xylitol in a 

pathway using both cofactors [44]–[50]; cofactor regeneration requirement when used in oxidation 

reactions catalyzed by cytochrome P450 [51]–[53] and in the production of chiral chemical 

intermediates with pharmaceutical application, such us 4-hydroxy-2-butanone, that also require 

cofactor regeneration [54], [55]. 

Despite their resemblance, the role of each cofactor in metabolism is distinct, with the general 

conception that NAD(H) participates in the cell's catabolic processes, releasing energy from molecule 

breakdown, while NADP(H) participates in the anabolic processes, where large molecules are 

synthesized [56], [57]. In fact, NADP(H) is the reducing cofactor in many pathways, being 

regenerated in pentose phosphate pathway (PPP), as well as in isocitrate dehydrogenease and malic 

enzyme reactions. To increase the availability of this cofactor, efforts have been made to increase 

the consumption of NAD+ while producing NADP+, with the overexpression of NAD+ Kinase, an enzyme 

that consumes ATP to convert NAD+ in NADP+. These efforts were successful in the increase of 

NADPH concentration in the cytosol, with NADH concentration decreasing. This change in cofactor 

pools had a positive effect in ethanol and acetate production in yeast during anaerobic growth on 

glucose, while xylitol production increased during anaerobic growth on xylose [58]–[60]. 

These studies showed the intrinsic relation between NAD(H) and NADP(H), and highlighted the 

importance of extensively characterizing the enzymes using these cofactors, as well as the molecular 

and structural determinants behind cofactor specificity. 

Nonetheless the increasingly fast development of systems biology and metabolic engineering, 

cofactor specificity determination is still a hurdle, with elusive principles and molecular mechanisms 

that impair a common strategy, transversal to all enzymes using these cofactors. Despite the 

participation in a wide range of reactions, turning them in great metabolic targets, the fact that 

NAD(H) and NADP(H) are two very similar cofactors also turns their utilization in a challenging task, 

as NAD(P)(H) using enzymes often do not share significant sequence identity and cannot be easily 

detected by sequence homology [61]. 
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The only difference in these cofactors, as their name suggests, is the presence of a phosphate group 

in the vicinity of the 2’ hydroxyl of the adenosine ribose, in NADP(H) as depicted in figure 2.1. 

 

Figure 2.1 - Representation of the nicotinamide adenine dinucleotide cofactors with NAD (left) and NADP (right). The 
only molecular difference between these two molecules is the phosphate in NADP, here shown in color. 

 

Along with their similarity, despite their distinctive existences, oxidation and reduction processes of 

these molecules are carried in the exact same location, in the nicotinamide moiety. This trait puts 

the only difference between both cofactors almost in the opposite side of the structure, relatively to 

where the chemical transition is occurring. This fact indicates that their difference has no effect in 

the type of reactions catalyzed, nonetheless, most enzymes exhibits a strict specificity for one of the 

cofactor [62]. This specificity allows the cell to regulate different metabolic pathways only by 

managing the concentration of these cofactors. 

Despite efforts in predicting cofactor specificity, recent advances mainly focus in small protein family 

groups or specific traits, such us structural motifs [63], lacking approaches able to accurately 

perform prediction with a large portion of NAD(P)(H) binding enzymes. Also, few methods exist to try 

to determine the molecular determinants responsible for cofactor specificity and, when these exist, 

are specific for certain enzyme families, such as Ketol-acid reductoisomerases (KARI) [64]. 
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Several efforts have also investigated the nucleotide binding domain of NAD(P)(H) binding enzymes, 

in search for differentiating traits in structural motifs [65]. The most common structural motif found 

in NAD(P)(H) binding enzymes is the Rossmann fold [66], but there are also less common and not 

specific motifs, such us TIM-barrel [67], the dihydroquinoate synthase-like and the FAD/NAD+ binding 

folds [68]. 

The Rossmann fold is a common structural motif found in many nucleotide-binding proteins. At its 

core are two parallel β-strands separated by an α-helix (βαβ motif) as depicted in figure 2.2. A tight 

loop at the end of the first β-strand makes direct contact with the cofactor. Some consensus 

sequences have been proposed for this fold, with the first being the phosphate-binding sequence 

Gly-X1–2-Gly-X-X-Gly. However, its short sequence was not reliable as a search motif. Later, with the 

input of other research [69], an extended Gly-X1–2-Gly-X-X-Gly-X-X-X-[Gly/Ala] motif was proposed as 

an indicator of Rossmann folds that bind FAD or NAD(P), nonetheless some inconsistencies were 

also detected in the last residue, being considered variable [61]. 

 

 

 

 

 

 

 

Figure 2.2 – Depiction of the core of Rossmann fold, composed by two parallel β-strands separated by an α-helix. 

Notwithstanding these findings, structural studies have found that the number and spacing of 

conserved Glycine residues varies. In fact, it was concluded that in nearly three-quarters of the 

analyzed dataset at least twelve distinct locally conserved structural motifs for binding NAD(P)(H) 

were represented, having the remaining dataset no distinguishable motifs [70]. 

Some studies involving ketol-acid reductoisomerases have also shown that the presence of acidic 

residues at normally conserved phosphate binding positions are potential candidates of enzymes 

preferring NAD(H) [64]. Moreover, an early study concluded that the only conserved structural 
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feature in NADP(H) complexes is an Arginine residue present near the adenine moiety, interacting 

with the phosphomonoester through hydrogen bonds. For NAD(H) it was determined that the only 

clue for specificity identification was the presence of an Aspartate (or Glutamate) residue able to 

chelate the diol group of the ribose near the adenine. However, frequently these structural features 

are not present in structures bound to NAD(H) or NADP(H), hindering their correct characterization, 

and besides, structural information on the subject enzyme is required, which regularly is not the 

case [62]. 

Regardless of the difficulties in correctly characterizing enzyme cofactor specificity from sequence or 

structure, many cases have been accomplished in metabolic engineering, concerning the alteration 

of NAD(P)(H) cofactor specificity. These efforts have, nonetheless, been accomplished with partial 

structural data to guide mutagenesis strategies. Table 2.1 depicts the most recent list of enzyme 

redesigns for altered NAD(P)(H) cofactor specificity using site-directed mutagenesis, as presented by 

Cui and coworkers [31] and extending from previous compilations [71], [72]. 

Table 2.1 - Summary of NAD(P)(H) cofactor engineering studies. Mutations are represented by the original aminoacid 
residue, in single letter code, followed by the residue position in the sequence and the mutant residue, also in a single 
letter coding format. Multiple mutations occurring in a single mutant are separated by a slash ('/’), while commas are 
used to separate individual mutants. 

Source Enzyme Specificity Mutation(s) Ref 

Thermus flavus Malate dehydrogenase NADH -> NADPH E41-K47 loop [73] 
Bacillus 
stearothermophilus 

L-lactate dehydrogenase NADH -> NADPH I51K/D52S [74] 

Rattus norvegicus Cytochrome b5 reductase NADH -> NADPH D239T [71] 

Thermus 
thermophilus 

β-isopropylmalate 

dehydrogenase 
NADH -> NADPH 

D236R/D289K/ 
I290A/A296V/G337Y 

[75] 

Drosophila 
melanogaster 

Alcohol dehydrogenase NAD+ -> NADP+ D38Q [76] 

Lactobacillus 
delbrueckii subsp. 
bulgaricus 

D-lactate dehydrogenase NAD+ -> NADP+ D175A [77] 

Bacillus 
stearothermophilus 

Glyceraldehyde-3-phosphate 
dehydrogenase 

NAD+ -> NADP+ D32A/L187A/P188S [78] 

Gluconobacter 
oxydans 

Xylitol dehydrogenase NAD+ -> NADP+ D38S/M39R [79] 

Homo sapiens 
Human mitochondrial 

NAD(P)-dependent malic 
enzyme 

NAD+ -> NADP+ Q362K [80] 

Pichia stipitis Xylitol dehydrogenase NAD+ -> NADP+ 
D207A/I208R/F209S

/N211R 
[81] 

Pseudomonas 
stutzeri 

Phosphite dehydrogenase NAD+ -> NADP+ E175A/A176R [82] 

Saccharomyces 
cerevisiae 

Formate dehydrogenase NAD+ -> NADP+ D196A/Y197R [83] 

Thermus 
thermophilus 

Isopropylmalate 
dehydrogenase 

NAD+ -> NADP+ 
S226R/D278K/I279Y

/A285V/P324T/ 
[84] 
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P325Y/G328E/ 
G329R/S330L 

Tramitichromis 
intermedius 

Leucine dehydrogenase NAD+ -> NADP+ 
D203A/I204R/ 

D210R 
[85] 

Pseudomonas 
mevalonii 

HMG-CoA reductase NADPH -> NADH D146A + L148R [86] 

Candida tenuis Xylose reductase NADPH -> NADH 

K274R, K274G, 
K274M, S275A, 
N276D, R280H, 
K274R/N276D 

[87], 
[88] 

Corynebacterium 2,5-diketo-D-gluconic acid NADPH -> NADH 

K232G, R235G, 
R238H, 

F22Y/RS233T/ 
R235E/A272G 

[89], 
[90] 

Escherichia coli Glutathione reductase NADPH -> NADH 
A179G/A183G/V197

E/R198M/K199F 
/H200D/R204P 

[91] 

Escherichia coli Ketol acid reductoisomerase NADPH -> NADH 
R68D, K69L, K75V, 

R76D 
[92] 

Neurospora crassa Nitrate reductase NADPH -> NADH S920D/R932S [93] 

Pichia stipitis Xylose reductase NADPH -> NADH 
K270M,K270S/S271

G/N272P/R276F 
[94], 
[95] 

Pseudomonas 
fluorescens 

p-hydroxybenzoate 
hydroxylase 

NADPH -> NADH 
R33S/Q34R/P35R/D

36A/Y37E 
[96] 

Rattus norvegicus Cytochrome p450 reductase NADPH -> NADH S596D [97] 
Saccharomyces 
cerevisiae 

17b-hydroxysteroid 
dehydrogenase 

NADPH -> NADH Y49D [98] 

Sinorhizobium 
Morelense 

1,5-anhydro-D-fructose 
Reductase 

NADPH -> NADH A13G/S33D [99] 

Anabaena. sp. (strain 
PCC 7119) 

Ferredoxin: NADP+ reductase NADP+ -> NAD+ S223D [100] 

Escherichia coli Isocitrate dehydrogenase NADP+ -> NAD+ 

C201I/C332Y/ 
K344D/Y345I/ 
V351A/Y391K/ 

R395S 

[101] 

Thermus 
thermophilus 

Isocitrate dehydrogenase NADP+ -> NAD+ 
K283D/Y284I/ 
N287G/V288I/ 

I290A 
[102] 

Vibrio harveyi Aldehyde dehydrogenase NADP+ -> NAD+ 
T175D, T175E, 

T175S, 
T175N,T175Q 

[103] 

 

The implemented studies show that cofactor specificity change can balance cofactor availability, 

increasing pathway yields for multiple products. However, the fact that multiple simultaneous 

mutations had to be performed in order to effectively change cofactor specificity shows that there is 

a non-additive effect in the mutations performed, possibly due to the difference in the cofactor’s 

structure [104], hindering even more an already challenging task. 

The precise order of each amino acid residue position determines how a protein structure folds into 

its final conformation. The folded state of a protein reveals its native optimal conformation, and 
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despite being the result of a natural and almost instantaneous process, protein folding is an 

extremely complex process to model, due to its large conformational search space [105]. In fact, 

Levinthal’s paradox speculated that finding the native folded state of a protein by random search 

should take more time than the age of the universe [106]. This intricate folding conformation is the 

main responsible for enzymes biocatalytic capabilities, facilitating the interactions between different 

substrates and cofactors and promoting biochemical reactions. An enzyme’s structural conformation 

not only determines the spatial environment for the reaction to occur, but also defines the molecular 

recognition apparatus responsible for molecular binding. 

With substrate and cofactor specificity elusively imprinted in the structural conformation of each 

enzyme, the need to accurately and consistently predict these interactions is vital, with obvious direct 

application in genome functional annotation, systems biology and metabolic engineering [29]. 

The structural characterization process is performed by determining the exact localization of each 

atom in the protein’s molecular structure relatively to every other atom in the molecule. The most 

widely used experimental methods to accomplish this characterization are X-ray crystallography and 

Nuclear Magnetic Ressonance (NMR). In X-ray crystallography, the protein molecule is purified and 

crystallised. An intense X-ray bean is them directed to it and diffracted into specific patterns that are 

posteriorly interpreted to generate a structure. In NMR, the subject protein is also purified and a 

solution of it is placed in a strong magnetic field, where it is probed with radio waves. The resulting 

resonances can be deconvoluted into structural data that allows the determination of the structure. 

Once characterized, the spatial coordinates of each atom composing the protein’s molecular 

structure are stored in a file along with coordinates of other types of molecules, such us cofactors, 

ions and water. These files can then be transferred to online repositories, such us Protein Data Bank 

(PDB – www.rcsb.org), the largest online database of protein structural information, with over 138 

thousand available structures in March 2018 [107]. Despite their utility and accuracy, these 

experimental methods are expensive and time consuming, becoming inefficient with the increasing 

amount of genomic information generated. To overcome this hurdle, several protein structure 

modelling approaches are available, allowing the prediction of a protein’s structure without direct 

experimental characterization. 

Protein structure prediction methods are mainly divided in three different approaches, depending on 

the existence, and similarity, of template proteins with known structure. When the target aminoacid 
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sequence does not have any available sequence homologue with known structure, protein structure 

can be modelled using ab initio (latin for: from the beginning) prediction methods. These methods 

attempt to predict the native state of the protein structure from its amino acid residue sequence, 

without templates [105]. 

With the general assumption that proteins fold to a state of minimal energy conformation, ab initio 

approaches can use molecular dynamics simulation (MD) to simulate the conformational behavior 

of proteins. However, the application of these methods, even for small residue proteins, is 

computationally very expensive, with the normal limit of simulations being microseconds, which is 

still far from the timescale of folding of many proteins [108]. 

When a template structure is identified, template-based methods, such us comparative modelling, 

are implemented. 

In comparative modelling, the tridimensional structure of the target protein is modelled based on the 

structure of the template protein(s). For that, proteins with known structure and high sequence 

homology to the target sequence are sought to be used as templates. The sequence of both target 

and template are aligned, and the target structure is modelled from the coordinates of the template 

residues through, for example, the satisfaction of spatial restraints [109]. These restrains are 

retrieved from the assumed similar special information between aligned residues in the template 

and the target structures. An optimization process for minimizing all restrain violations is afterwards 

applied. Structural similarity is assume when two proteins share a sequence identity equal or above 

30% [110]. 

If, on the other hand, sequence homology is not found, threading algorithms can be applied. These 

methods perform pairwise comparison between the target sequence and structural template folds, 

aiming at discovering if any of the folds can be adopted by the target. The target sequence is therefore 

threaded through the tertiary structure of protein structure templates. A function measuring the 

fitness between target and template fold is then calculated and evaluated, with the process being 

repeated for each template fold. The lowest energy functions are then adopted and modelled in the 

target structure. In the end, comparative modelling techniques are also applied to access structure 

integrity [111]. 

From the overall approaches analyzed, the most successfully implemented methods for structure 

prediction are homology-based comparative modelling, being Modeller [109], one of the most used 



22 
 

 
 

and reliable software for performing this task. Table 2.2 summarizes the main available methods 

and tools for structural prediction in the three discussed methodologies. 

Table 2.2 – Depiction of the most important and available tools for protein structural prediction encompassing the 
three main methodologies, homology modelling, threading and ab initio as well as the format in which these tools are 
available. 

Name Methodology Format Reference 

Modeller Homology modelling Software [109] 

ESyPred3D Homology modelling Web-Server [112] 

Swiss-model Homology modelling Web-Server [113]  

FoldX Homology modelling Software [114] 

WhatIf Homology modelling Web-Server [115] 

HHpred Homology modelling / Threading Web-Server [116] 

RaptorX Homology modelling / Threading Web-Server [117] 

Phyre2 Homology modelling / Threading Web-Server [118] 

Robetta Homology modelling/ ab initio Web-Server [119] 

i-tasser Threading/ ab initio Web-Server [120] 

falcon Threading/ ab initio Web-Server [121] 

Rosetta@home ab initio Software [122] 

Evfold ab initio Web-Server [123] 

 

Once characterized, either experimentally or modelled, the protein conformation can be observed 

using protein visualization software. These software showcase the protein structure in a spatial 3D 

format, often allowing the user to rotate and zoom in specific details of the structure. Several 

structure representations are also regularly available, from backbone structure to surface display, 

also allowing secondary structure and van der Waals interaction representation. PyMOL [124], 

written in the Python programming language, is one of the most used software due to its user-friendly 

interface and simplicity. This free molecular graphics system not only allows molecular visualization, 

but also animation and editing. It can also be programmed and extended using Python. 

2.3 Machine learning 

By making use of the referred methodologies and databases, large amounts of data on enzyme’s 

structural information are possible to be retrieved. This allows for exhaustive analysis of the 

molecular recognition processes responsible, for example, for the molecular binding of different 

substrates and cofactors, making way for the elucidation of their specificity mechanisms. However, 

the analysis of large quantities of protein structures is unmanageable by hand. Due to the inherent 

characteristics of protein structural data, composed by thousands of atom coordinates for each 

protein, such analysis requires the input of methodologies for big data analysis. One other hurdle is 
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the fact that important data characteristics and patterns might be missed due to the sheer amount 

of information available, rendering methodologies capable of learning and interpreting such data an 

important asset. 

Among the most efficient approaches for retrieving seemingly undetectable patterns and 

characteristics from big data are methods implemented using Machine learning. 

Machine learning, a key concept of Artificial Intelligence, is devoted to the development of algorithms 

that are able to interpret, deduce and generalize new settings of information from data samples, 

without being explicitly programmed. These algorithms automatically learn and self-improve through 

experience, resembling the basic concepts of human learning process. They are capable of 

successfully interpreting unprecedent data by using statistical theory to make inferences from a 

sample, effectively learning by training. 

These methods can also be applied in the automatic mining of large amounts of data in order to 

extract useful and unknown correlations, creating models able to relate molecular descriptors to 

biological attributes [125]. 

The process of machine learning can be divided in two types: supervised and unsupervised learning. 

For supervised learning, the prediction model is trained using data with known labels, and it can be 

used to solve classification and regression problems. Classification problems try to identify to which 

category an object belongs to, while regression tries to predict a continuous-value attribute associated 

with an object. For unsupervised learning, unlabeled data is used as the input and can be used in 

clustering, for automatically grouping similar objects into sets [126], [127]. Table 2.3 depicts the 

referred types of problems and problem characterization along with examples of possible 

applications and used algorithms. 

Table 2.3 – Display of the different type of problems address in machine learning with the corresponding category. 
Applications and algorithms referent to these problems are also displayed. 

Problem Category Applications Algorithms 

Classification Supervised 

Classifying two indistinct 

groups of biological data, 

Spam detection, Image 

recognition 

Support Vector Machines, 

nearest neighbors, Naïve 

bayes, Artificial Neural 

Network 

Regression Supervised 
Drug response, Stock 

prices 

Support vector regression, 

ridge regression, Lasso 

Clustering Unsupervised 

Customer segmentation, 

Grouping experiment 

outcomes 

k-Means, spectral 

clustering, mean-shift 
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Despite the different approaches possible, machine learning algorithms tend to follow the same 

procedure. First, the data to be analyzed must be prepared for integration and formatted to meet 

the specificities of the algorithm, being the quality and quantity of the used features an important 

factor for the success of the method. Afterwards the scoring function of the algorithm is evaluated 

and optimized. When the model is outputted, statistical and biological interpretations should be 

performed and, if required, a new optimization iteration should be executed [125]. 

Support Vector Machines (SVM) are machine learning algorithms based on supervised learning, 

capable of solving classification problems. These algorithms are among the most used methods in 

machine learning for addressing biological problems, such us drug discovery [128]–[130] or 

compound specific activity distinction [131] and accessibility [132]. 

They work by projecting the integrated data into a high-dimensional space, called hyperspace, and 

pursuing to find the optimal linear separation state between the features, represented as descriptor 

vectors, in the hyperplane. As there are an infinite number of possible hyperplane configurations, 

the algorithm optimizes the separation margin size between classes assuming that larger margins 

reduce the error of the classifier. Feature points located in both margins are called the "support 

vectors" [133]. As an example, if given n samples, with each having a m-dimensional feature vector 

and one of two classes, such as NAD(H) binding and NADP(H) binding; depending on the quality of 

the input data, the SVM should be capable of producing a classifier distinguishing different cofactor 

specificity structures, as depicted in figure 2.3. 

 

 

 

 

 

 

 

Figure 2.3 – Graphical representation of a SVM. Composing the hyperplane representation are the features (blue for 
NAD(H) and white for NADP(H), along with the hyperplane separating both groups of features. 
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With the predictive models generated using the mentioned machine learning algorithms, predicting 

tools can be developed in order to classify newly collected and unclassified data. The development 

of such tools can bring great advantages for the fields of systems biology and metabolic engineering 

as they can be used to guide and predict the outcome of metabolic engineering endeavors and also 

in the curation process of genome-scale metabolic model (GEM) reconstruction. 

In fact, GEM lack the application of such tools in their reconstruction process, as curation steps are 

performed mainly by literature analysis or experimental characterization. Despite more complete 

GEMs showing the flow of reducing equivalents and their correlation with the overall metabolism, 

pointing to possible metabolic engineering targets, the often inaccurate and incorrect cofactor 

specificity attribution during reconstruction renders the application of these models regularly 

worthless [39]. 

2.4 Genome-scale metabolic models 

As genomes encode all the information required for the synthesis of enzymes present in cellular 

metabolism, GEM reconstruction uses this information, along with the attributed metabolic functions 

of each encoded gene, and corresponds it with the enzymatic reactions catalyzed. 

Having become a major tool in systems biology for representing, in silico, the set of biochemical 

events occurring inside an organism's metabolism and respective association of genetic information 

to these events, GEM reconstruction is nowadays a common practice, with several organisms having 

their GEM reconstructed. The reconstruction of these models, therefore, is subjected to information 

on substrates, cofactors and products, as well as stoichiometry and reversibility, from each reaction 

in the metabolism [134]. Furthermore, information on biomass composition and metabolic energetic 

requirements are also present. 

GEMs are generally used to perform prediction on the phenotype of an organism in response to a 

set of environmental conditions. Moreover, genomic mutations can also be object of simulation, with 

phenotypic behavior and flux distribution changes, resulting from gene knockout or overexpression, 

being analyzed [135], [136].  These capabilities have allowed the usage of these models in the in 

silico optimization and enhancement of several strains for the production of desired compounds 

[137]. In fact, several metabolic engineering strategies were derived from the simulation of GEMs. A 

very interesting approach to strain design using GEM was developed by King and Feist [138]. In their 
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work, a method for optimizing in silico the cofactor specificity of oxidoreductases was implemented 

in Escherichia coli’s GEM iJO1366 [139]. The objective was to modulate cofactor binding specificities 

in the model in order to enhance bioprocessing strain design predictions. The output was a series of 

target knockouts and also enzymes for NAD(P)(H) specificity reversal. This type of approach helps 

evidencing the importance of the machine learning methodologies discussed above for the 

development of cofactor specificity predicting methods. 

GEM reconstruction is nowadays a well-documented process, and several protocols describing the 

reconstruction process are available [134], [140], [141]. In order to accomplish a correct GEM 

reconstruction, information on genes, enzyme activity and metabolite transporters must be gathered 

from genome annotation, being afterwards, the corresponding metabolic and transporting reactions 

identified and implemented in a reaction network. 

Several tool have been developed to aid researchers in this laborious process. Table 2.4 encompass 

a list of important software used in GEM reconstruction. 

Table 2.4 – Display of the most important tools available to perform genome-scale metabolic model reconstruction. A 
general description of the tool is also depicted. 

Software Description Reference 

merlin Reconstruction of metabolic networks. Identification of transporter reactions, 

compartmentalization and organelle localization. 

[142] 

Biocyc Repository of Genome Databases containing gene information, transport systems and 

gap fillers. 

[143] 

Kbase Suite of analysis tools and data to support the reconstruction and prediction of 

metabolic models in microbes and plants. 

[144] 

Glamm Reconstruction of metabolic networks from genomic data. Network visualization. [145] 

Raven 

toolbox 

GEM semi-automated reconstruction. Simulation results visualization. [146] 

 

Tools such as merlin, are an important asset in this process. This user-friendly software performs 

genome annotations as well as GEM reconstruction. It is able to identify gene metabolic and 

transporter functions, build the metabolic reaction network, perform model compartmentalization 

and output a GEM, with the incorporation of a biomass equation [142]. 

When reconstructed, the model is curated with experimental or literature retrieved data. For 

validation, GEMs are simulated and their in silico biomass growth is compared with experimentally 

performed growths. 
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The large majority of developed GEMs use stoichiometric reactions, being their application limited to 

steady-state modelling of intracellular fluxes [147], [148]. Despite their limitations, these models, 

also known as constraint-based models, have been applied in many different areas of expertise, such 

us strain engineering, elucidation of symbiotic relations, pathogenesis and cancer research [148]. 

Flux balance analysis (FBA) [149] is one of the most used methods for simulating these type of 

models. This method works by representing the metabolic reactions present in the model as a matrix 

of stoichiometric coefficients. It then uses linear programming for optimizing the distribution of fluxes 

in the direction of an objective function, usually biomass growth [150]. This optimization process 

optimizes the reactions fluxes, which are constrained by upper and lower bounds. In these GEMs 

the system is assumed as being is steady-state, meaning that the consumption of compounds is 

equal to their production [149]. 

Parsimonious FBA (pFBA) [151] is used when a finer refinement of the flux distributions is required. 

This is achieved by removing futile loops from the network with the minimization of the total sum of 

fluxes in the network, increasing flux objectivity. 

GEMs can be analyzed and simulated using software packages such us OptFlux [152], a very intuitive 

software, ideal for experimentalist researchers trying to design and develop new applications for their 

experimental data. 

Despite all the efforts and advances made in enhancing GEM reconstruction, as discussed above, 

several design drawbacks still exist, proving that a much further and precise curation is still in need 

to achieve a robust and consistent GEM reconstruction capable of reliably predict experimental data 

using  in silico methods. Besides the extremely well curated and experimentally characterized GEM 

reconstruction of Eschericia coli [139] and Saccharomyces cerevisiae [153], most GEM 

reconstructions from other organisms contain inconsistencies in their metabolic network composition 

that impair their application in metabolic engineering and experimental strain design endeavors  

[154]. 
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3.1 Introduction 

Systems biology foundations broadly rely upon well performed gene annotations [1]. In this post-

genomic era, given the large and exponentially growing amount of sequences being characterized, 

experimental determination of a protein’s function is becoming unfeasible, due to its cost and time 

consumption [2]–[4]. Current methodologies are based on pairwise sequence alignment and search 

for sequence homology to perform protein function annotation [5], [6]. However, the usage of such 

approaches in annotation pipelines tend to continuously propagate annotation errors across all 

sequenced organisms due to the attribution of outdated and unspecific functions to new annotated 

genes, impairing the discovery of new gene functions [7]. Despite their usefulness and relevance, 

such methodologies fail in capturing essential information hidden in dissimilar areas of different 

sequences, such as cofactor specificity, which gravely impairs the understanding of an organism’s 

metabolism. 

Notwithstanding the utterly massive increment of protein sequences available in public databases, 

only a residual amount have information on their biological functions reviewed. The Uniprot database 

[8] release from October 25th, 2017, has indexed approximately 93 million protein sequences, with 

less than 0.6% manually annotated and reviewed, being the vast majority automatically annotated. 

Brenda-enzymes [9], an on-line database containing curated experimental information on enzymes 

and enzyme activity, only encompassed data on a total of 7270 different enzymes in October 30th, 

2017. This vast gap between protein sequence and biological processes prejudices the assignment 

of protein function, with particular effects on the accurate identification of cofactor and substrate 

usage in metabolic reactions. 

Cofactors act in enzymatic reactions as redox carries and are important mediators for energy transfer 

in the cell. The lack of accuracy in determining cofactor usage in numerous genes severely affects, 

for example, genome-scale metabolic model reconstruction, as well as metabolic engineering and 

strain design endeavors, due to the potential identification of misleading reactions [10]. Nicotinamide 

adenine dinucleotide (NAD(H)) and nicotinamide adenine dinucleotide phosphate (NADP(H)), are the 

most wildly used cofactors in cell metabolism, being extensively examined for chemical processing 

applications [11]. These structurally similar molecules act as functional group transfer agents, being 

therefore consumed at the same rate of substrate consumption [12]. Moreover, the uncertainty of 

their usage in metabolic reactions has a major impact in metabolic engineering applications, 

affecting both predictions and strain design results [10]. When correctly characterized, enzyme 
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modification by thorough structure redesign for cofactor specificity change can be undertaken, 

enabling the efficient processing of multiple desired biocatalytic transformations [13]. 

NAD(H) and NADP(H) are functionally equivalent cofactors used for storage and exchange of 

electrons in catalytic reactions. These cofactors are used by the majority of oxidoreductases, the 

largest class in Enzyme Commission. The only difference between these two molecules is a 

phosphate group in the adenine moiety, located on the opposite side from the chemically active 

nicotinamide moiety. Despite their apparent similarity, enzymes that use these cofactors tend to be 

specific for only one of them, enabling pathway regulation and chemical driving force maintenance 

by the cells, through heavy regulation of the levels of oxidized and reduced metabolic pools of 

NAD(P)(H) [14]. 

Strategies using sequence alignment and analysis of specific structural motifs such us Rossmann-

folds, first identified by Rao and Rossmann in 1973 [15], have found limited success in identifying 

the responsible residues for NAD(H) / NADP(H) specificity based in these motifs, due to the variability 

of the residues present [16]. The Rossmann fold is a common structural motif found in many 

NAD(P)(H)-binding proteins, however, its short sequence and some inconsistencies found in the 

motif sequence question its reliability as a motif [17]. An approach using machine learning on protein 

sequences was able to correctly identify Rossmann-folds in sequence motifs, but still lacked accuracy 

in differentiating NAD(H) and NADP(H) specificity [18]. Also, a study using a dataset of NAD(P)(H)-

binding enzymes has found that in nearly three-quarters of the analyzed dataset were represented 

at least twelve distinct locally conserved structural motifs for binding NAD(P)(H), having the 

remaining dataset no distinguishable motifs [16]. 

Carugo, et al. [19], in 1997, concluded that the only conserved structural feature in NADP(H) 

complexes is an Arginine residue present near the adenine moiety, interacting with the 

phosphomonoester through hydrogen bonds. For NAD(H) it was determined that the only clue for 

specificity identification was the presence of an Aspartate (or Glutamate) residue able to chelate the 

diol group of the ribose near the adenine. However, often these structural features are not present 

in structures bound to NAD(H) or NADP(H), hindering their correct characterization, and besides, 

structural information on the subject enzyme is required, which regularly is not the case. 

Despite the efforts in identifying the cofactor specificity, very few studies go beyond pinpointing the 

specific residues Arginine and Aspartate and only for the phosphate moiety area. The best example 
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is a study performed using ketol-acid reductoisomerases that showed that the presence of acidic 

residues at conserved phosphate binding positions are potential candidates of enzymes preferring 

NAD(H) [20]. Another problem is the fact that most studies are based on data often composed by 

small datasets or specific enzyme sub-classes, which can bias the results due to their sequence 

similarity, and are regularly characterized using visual interpretation or selection of positive cofactor 

change mutations [20]–[23]. This hurdle might also be explained by the fact that both NAD(H) and 

NADP(H) specific enzymes tend to share analogous sequence and structural motifs, due to their 

molecular similarity. To this day, metabolic engineering problems requiring cofactor specificity 

change, heavily rely on laborious and high cost approaches such us in vivo random mutagenesis 

and activity essays, which are not accurate nor efficient, wasting precious resources on multiple and 

undirected gene mutations that often do not produce the desired result.  Previous studies have 

compiled extensive lists of such approaches [13], [24], [25]. 

Given this information, it becomes clear that the development of a transversal method for the 

accurate prediction of NAD(P)(H) cofactor specificity in uncharacterized enzymes is missing in this 

field. As the number of available protein structures increases in the Protein Data Bank (PDB) [26] 

(the October 24th, 2017, release has 134656 available structures, with 42572 being directly linked 

to Uniprot, being approximately 3000 bound to NAD(P)(H)), new approaches on this subject can be 

developed in order to enhance the accuracy of cofactor prediction while unveiling the responsible 

molecular determinants for cofactor specificity. 

One of the most efficient approaches for performing such task is through the use of Machine learning, 

as these methods apply algorithms for mining large amounts of data in order to extract useful and 

unknown correlations, creating models able to predict and relate molecular descriptors to biological 

attributes [27]. 

Multiple successful approaches using machine learning and structural information have been 

implemented in the field of pharmacology, namely in pharmacokinetics and drug-discovery [28]–

[32], suggesting that these methodologies may be adequate for cofactor specificity prediction. 

In the present study the molecular determinants for NAD(P)(H) cofactor specificity were unveiled, 

using enzyme structural information. A comprehensive dataset of structures from enzymes using 

NAD(P)(H) as cofactors was build and processed using machine learning algorithms. The ensuing 

results were further analyzed to identify the responsible molecular factors for cofactor specificity. 
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These findings where successfully applied to enzymes not structurally characterized, using 

comparative modelling and a protocol was developed to automatically predict cofactor specificity. A 

webserver was also developed to allow a fast and easy-to-use access to the automatic prediction of 

NAD(P)(H) cofactor specificity of functionally uncharacterized enzyme sequences. Submissions can 

be performed for one or more aminoacid sequences in the FASTA format at 

http://services.itqb.unl.pt/cofactor-prediction/. 

 

3.2 Methods 

3.2.1 Structure analysis and CNRPM generation 

The tool for generating the cofactor neighbor residue profile matrix (CNRPM) for each NAD(P)(H) 

bound enzyme structure was built using the python programming language. Each structure is 

automatically handled and the distances between each cofactor atom and the residue neighborhood 

are retrieved using the PDB module of the Biopython package [33]. 

Interactions between cofactor atom and neighbor residue are assembled in a matrix and outputted, 

in order to be processed by the machine learning algorithm. 

3.2.2 CNRPM dataset extraction 

All structures bound to one of the following ligand IDs: NAD/NAI/NAP/NDP, representatives of 

NAD+/NADH/NADP+/NADPH respectively, were sought after in the PDB and automatically retrieved 

and analyzed using the PDB module of the Biopython package. Entries whose enzyme or cofactor 

structure were incomplete or disrupted were discarded. In order to overcome the problem of 

overfitting/biasing the study with structure duplicates or point mutations of the same enzymes with 

different entry codes, a redundancy threshold was set and applied to the sequences coding the 

retrieved enzyme structures. The selected threshold was set to 95% similarity in 90% of the sequence 

length, allowing the removal of duplicates and point mutations of the same enzymes.   

3.2.3 Machine learning 

Machine learning was used for solving the classification problem in the form of supervised learning. 

Support vector machine, the selected method, was applied using the scikit-learn library for python 
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[34]. LIBSVM was the employed library and the radial basis function (RBF) was the chosen kernel 

function. 

The developed CNRPM dataset was used as a training set and handled with the NumPy library for 

python [35]. Model performance was evaluated by measurements including accuracy, precision, 

Matthew’s correlation coefficient (MCC) and area under curve of the receiver operating 

characteristics (AUC ROC). Accuracy refers to the closeness of a measured value to a standard or 

known value, precision refers to the closeness of two or more measurements to each other. MCC 

measures the prediction quality, taking into account over- and under- predictions and giving a 

complementary measure of the prediction performance[36]. MCC of 1 means a perfect prediction, 

and 0 denotes a completely random prediction. The receiver operating characteristic (ROC) curve 

[37], plots true positive rate on the y-axis against the false positive rate on the x-axis. The normalized 

area under curve of the receiver operating characteristics (AUC ROC) states a perfect prediction if 

the AUC value is 1, and a random guess if the value is 0.5. 

3.2.4 Comparative modeling for structure analysis 

Homology models were created using Modeller [38] and the modeller package for python, where 

sequence similarity search for template selection was performed using the Smith-Waterman local 

alignment [39], [40] in a local database composed by structures from PDB bound to one of the 

cofactors NAD(P)(H). Structural similarity evidencing a suitable template was assume when two 

proteins share a sequence identity above 25% 

The structure of the Cofactor was correctly allocated in the modelled structures by allowing Modeller 

to transfer these molecules from the template to the modelled structure. 

3.2.5 NiCofactor tool construction 

The created tool for allowing high throughput NAD(P)(H) cofactor specificity prediction was built using 

the python programming language. For each sequence in the FASTA format used as input, the tool 

initiates an individual project. The tools for generating CNRPMs and performing machine learning 

were also integrated in NiCofactor. Results are outputted by attributing to each analyzed sequence 

a cofactor prediction and subsequent prediction score. 
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3.2.6 NiCofactor result validation dataset 

Curated information on cofactor, cofactor specificity, EC number, organism, sequence, literature and 

source information on enzymes using NAD(P)(H) were retrieved automatically from brenda-enzymes 

using SOAPpy, a tool for building SOAP clients and servers, implemented in python [41]. 

 

3.3 Results and discussion 

In the present chapter we performed a comprehensive study, using big data on protein structural 

information and machine learning, in order to unveil the molecular determinants of cofactor 

specificity in enzymes using NAD(P)(H) as cofactors. Previous attempts pinpointed a sequence motifs 

and some prevalent residues near the 2’-phosphate, either by sequence analysis or successful 

mutations for cofactor specificity change, using random mutagenesis [13], [15], [19]–[25]. However, 

to this day, and our knowledge, there is still to be made a transversal structural study on the 

interactions between cofactor binding pocket residues and cofactor atoms, using a large dataset of 

enzyme structures. Such task required large amounts of data to be retrieved and analyzed, being 

such analysis unfeasible without the use of machine learning algorithms that can find seemingly 

undetectable patterns in big data for further use in the accurate prediction of cofactor specificity for 

less characterized enzymes. 

3.3.1 Cofactor neighbor residue profile matrix (CNRPM) development 

Characterizing structural information can be a challenging task due to the overwhelming amount of 

information associated with the structure of a protein. Our main focus was to retrieve all possible 

interactions between each cofactor atom and the nearest residues in the binding pocket. With that 

in mind we developed a tool that, given a characterized structure bound with NAD(P)(H) (in the PDB 

format), automatically returns a matrix of interactions between each cofactor atom and the 

surrounding amino-acid residues, at a distance of 6 Å. By ignoring the atoms related to the phosphate 

in the adenosine moiety of NADP(H), we were able to create similar cofactor neighbor residue profile 

matrices (CNRPM) for both NAD(H) and NADP(H) cofactors, which is crucial to a well performing 

machine learning method. Figure 3.1 depicts the cofactor neighbor residue profile matrix building 

process. 
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Figure 3.1 - Cofactor neighbor residue profile matrix generation. Starting with the whole structure, the tool 

pinpoints the location of the cofactor as a reference and proceeds to register the position of its atoms. For each cofactor 

atom, the tool investigates the surrounding residues and catalogues those within 6 Å. The complete process is performed 

automatically. The end result encompasses a matrix of interactions between each cofactor atom and neighboring 

residues. The presented enzyme structure depicts a Dihydropteridine Reductase bound to NAD+ from Rat liver, with the 

EC 1.5.1.34. PDB id: 1DIR. 

In these CNRPM, where each line refers to a cofactor atom (44 atoms) and each column refers to 

one of the twenty natural amino-acids, each value refers to the number of residues found. If, within 

the surroundings of an atom, a specific residue is not present, the value of that interaction is set to 

0 (zero) in the matrix. The final product of the developed tool, the CNRPM, is a 20x44 matrix 

encompassing 880 interaction values. 

3.3.1.1 Building a comprehensive and representative CNRPM dataset 

With the intent of applying the developed tool in the construction of an accurate and representative 

dataset of CNRPMs, for unveiling the molecular determinants of cofactor specificity, a database of 

enzyme structures bound to NAD(P)(H) was assembled. To do so, we retrieved (in January 13th 2016) 

all enzyme structures bound to one of the cofactors NAD(P)(H) from the PDB and analyzed them. 

The total amount of structures collected was 2742, from which 148 were discarded due to 

incompleteness. With the removal of protein sequence redundancy, the final dataset encompassed 

921 structures, being 491 structures bound to NAD(H) and 430 to NADP(H). Once the database 

was assembled and validated, the developed tool was applied to all structures and a CNRPM was 

retrieved for every entry. 

3.3.2 CNRPM dataset analysis and processing using Machine learning 

Having built a large representative dataset of 921 CNRPMs, we used support vector machine (SVM) 

algorithms to attribute cofactor preference based on the CNRPMs, while evaluating the performance 

of the method. The SVM training algorithm works by building a model, with categorized training 
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examples, such as the CNRPMs (which are categorized as belonging to NAD(H) or NADP(H)), and 

representing them as points in a high-dimensional hyperplane, separated by category and divided 

by a clear gap between them. This allows the algorithm to assign a category to uncategorized new 

examples, based on the side of the hyperplane they fall. Performance is assessed by measuring how 

fine the division of categories is achieved [42]. 

By applying this algorithm to our CNRPMs dataset as a training set, an SVM model was created 

whose evaluation and performance parameters can be found in table 3.1. The created model 

achieved an accuracy of 96.2%, being able to correctly classify 886 CNRPMs as corresponding to 

NAD(H) or NADP(H) cofactors, with a precision of 96.03% and a Matthews correlation coefficient 

(MCC) of 0.92. The computed area under the receiver operating characteristic curve (AUC ROC) 

coefficient is 0.96. The confusion matrix displayed in table 3.1 evidences the high sensitivity and 

specificity of the model, with similar misclassification values in both NAD(H) and NADP(H) CNRPM. 

Table 3.1 - Evaluation and performance parameters of the created SVM model. Accuracy, precision, MCC 
(Mathews correlation coefficient) and AUC ROC (area under the receiver operating characteristic curve) values (top) 
display the overall performance of the mode, indicating a well performing model. The Confusion matrix (bottom) evaluates 
sensitivity and specificity of the model. 

 

Real cofactor  

NAD(H) NADP(H) 

474 17 NAD(H) 
Predicted cofactor 

18 412 NADP(H) 

 

These results put in evidence that the type and number of residues present in the cofactor binding 

site have a crucial role in the specification of cofactor preference in the enzyme. Such results also 

demonstrate the possibility to predict/indicate cofactor preference in an enzyme by analyzing its 

cofactor neighbor residue profile using these methodologies. 

3.3.2.1 SVM feature weights extraction and interpretation 

The SVM model training works by attributing weights to features in the dataset (in this case a feature 

is a cofactor atom-residue interaction), allowing the correct separation of the instances in the 

 Accuracy Precision MCC AUC ROC 

SVM model 96.20% 96.03% 0.92 0.96 
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hyperplane. Such separation is what enables the algorithm to classify a CNRPM as originated from 

an enzyme bound to NAD(H) or NADP(H). The extraction and interpretation of such metrics are of 

great importance in the identification of the crucial interactions between residue and cofactor atoms, 

and should allow us to exactly pinpoint the set of relations in the CNRPM responsible for providing 

the cofactor preference to an enzyme. The extracted data, composed by 880 features and their 

respective weight in the SVM model, are presented in table A1 of the appendix. The highest extracted 

weight values correspond to 0.44991 for NADP(H) and 0.23609 for NAD(H). Despite the large 

amount of features, feature weight values from both NADP(H) and NAD(H) decrease rapidly from the 

heaviest values, leveling out in lighter features. This indicates that, despite the contribution of all 

features to the classification of the CNRPMs, some relations have a more significant role in classifying 

cofactor preference than others. 

When analyzing the results, it was possible to observe that atoms from all parts of the cofactor 

structure contribute to specificity, despite the only difference between both cofactors being the 

presence of a phosphate molecule in the ribose from the adenine moiety. In fact, the fifteen heaviest 

features for both cofactors encompass atoms from adenine, ribose from adenosine, phosphates, 

ribose from nicotinamide ribose and nicotinamide. The contributions of Aspartate and Arginine for 

NAD(H) and NADP(H) specificity, respectively, and already reported in several publications, are also 

observed in the retrieved data. The presence of these residues near the adenosine atoms represent 

some of the heaviest features. However, claims that attribute vital importance of these residues in 

cofactor specificity are probably simplistic, resulting from studies using small datasets or the manual 

(case-by-case) observation of data. Table 3.2 displays the fifty heaviest features for each cofactor 

along with the respective weight. A color scheme helps locating the area of the cofactor 

correspondent to each atom. 

Table 3.2 - SVM model feature weight distribution for NAD(H) (left) and NADP(H) (right). Feature weight is 
distributed in a decreasing order, starting from the heaviest. Columns depict the type of atom, residue (AA) and feature 
weight. Feature weights are divided into two sub columns for each cofactor. Colored cell in the atom columns represent 
the different areas composing the cofactor structure. 

NAD(H) NADP(H) 

Atom AA Weight Atom AA Weight Atom AA Weight Atom AA Weight 

C8A ASP 0.236 C4B ARG 0.144 O2B ARG 0.450 C4N LEU 0.145 

O4B SER 0.214 N3A ASP 0.143 O2B SER 0.265 C4A ASN 0.137 

C4B ASP 0.212 O2B LEU 0.142 O2B LYS 0.262 N9A TYR 0.137 

C5B ASP 0.212 O3B GLU 0.141 C2B ARG 0.229 O2D ALA 0.135 

O5B ASP 0.202 N9A LEU 0.139 O3 GLY 0.223 O2A ALA 0.134 
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C5A LYS 0.199 C1B ALA 0.137 O3B ALA 0.218 O5B SER 0.133 

O2D VAL 0.193 C4D TYR 0.135 C4D ASN 0.217 N1A PRO 0.132 

C2B GLU 0.179 O1N ARG 0.134 O1A ALA 0.186 N7N ASN 0.129 

N6A ALA 0.179 C3N GLU 0.128 O2B GLY 0.180 O1A LYS 0.127 

C5B TRP 0.177 O5D ALA 0.128 N1A SER 0.168 N7N ALA 0.127 

O1N LEU 0.176 N7N ILE 0.126 C5B LEU 0.164 O3B LYS 0.124 

C2B GLY 0.174 N9A GLU 0.125 C1B ARG 0.164 C5D ALA 0.123 

N7A PHE 0.165 O1A ARG 0.125 O3D TYR 0.161 C2B SER 0.123 

O2N LEU 0.162 O3B ILE 0.125 O7N CYS 0.159 C4N GLY 0.119 

N7N ASP 0.157 C8A MET 0.122 PN GLU 0.159 C8A TYR 0.117 

O2N PHE 0.157 O5D THR 0.122 C2N ILE 0.158 O3 ASN 0.116 

O3B PHE 0.155 O1N ASN 0.121 C5A TYR 0.157 O4D THR 0.115 

C5B ALA 0.153 O7N ARG 0.120 O2N ASP 0.153 C4A ALA 0.114 

O3B GLY 0.152 N3A LYS 0.120 C3N LYS 0.150 C4B LEU 0.114 

O2B GLU 0.152 N1A PHE 0.120 O5D ILE 0.149 N1N ASP 0.114 

O1N TYR 0.152 N9A ILE 0.120 C4D THR 0.148 C5B CYS 0.113 

N3A TYR 0.151 C3B ILE 0.118 N7A TYR 0.148 O4B GLY 0.112 

N9A ASP 0.150 C1B SER 0.118 C2B LYS 0.147 C2B THR 0.112 

O5D GLN 0.149 C5A PRO 0.117 O1A SER 0.146 O7N HIS 0.111 

C2B PRO 0.148 C3D HIS 0.117 C6A VAL 0.145 C8A SER 0.110 

 

 Adenine 

 Ribose (adenine) 

 Phosphates 

 Ribose (nicotinamide) 

 Nicotinamide 

 

 

In Table 3.2, not only cofactor atoms from the entire cofactor structure are present, but also a large 

majority of the 20 natural amino acids residues are present in features from both cofactors. In the 

case of NAD(H), besides Aspartate, also Glutamate, Alanine, Leucine, Phenylalanine, Arginine and 

Isoleucine residues are frequently present in the displayed features, dispersed in interactions with 

atoms from the entire NAD(H) structure, being Cysteine the only amino acid residue not present in 

the first fifty features. In the case of NADP(H), again the most important interactions occur in atoms 

belonging to the adenosine moiety, with Arginine residues near the atom O2B being the heaviest 

feature, possibly due to the presence of the phosphate connected to that atom in NADP(H). Serine, 

Lysine, Glycine, Alanine, Asparagine and Tyrosine residues are the most frequent aminoacid residues 
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present in the first features, being absent from this group Tryptophan, Phenylalanine, Glutamine and 

Methionine residues. 

3.3.3 NiCofactor cofactor specificity prediction tool development 

With the important intent of developing a robust and high throughput method for NAD(P)(H) cofactor 

specificity prediction for enzymes whose structure is yet to be characterized, we decided to use 

comparative modelling methods within our pipeline. These methods will not only allow processing 

newly sequenced enzymes or organisms, but also cope with the large existing gap between available 

sequences in Uniprot (93 million) and structures in PDB (almost 135 thousand, with only 42572 

being directly linked to Uniprot as of October, 2017). To do so, we developed a method that 

implements functions for comparative modelling of protein structures using Modeller [38], a software 

that performs modeling by satisfaction of spatial restrains, through sequence alignment of the target 

sequence and known related structure templates. Through the integration of the developed methods 

with the resulting SVM model, we created a tool that automatically performs cofactor preference 

prediction. With only the input of an amino acid sequence, a machine learning analysis of the 

modeled structural environment around the cofactor is performed. Figure 3.2 represents the pipeline 

developed within the built framework that enables the prediction of cofactor specificity. The 

developed framework is implemented in a computational tool and project submissions are enabled 

via the freely available online webserver http://services.itqb.unl.pt/cofactor-prediction/. 

Figure 3.2 - Developed framework pipeline. The displayed planes depict the sequence of events necessary for 
cofactor prediction. Starting from the left top, a Fasta file composed by the target aminoacid sequences is inputted in 
the system where they are structurally modelled, analyzed and classified. 
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3.3.3.1 Validation of NiCofactor cofactor specificity prediction tool using curated 

information 

After successfully developing an accurate SVM model using structural information as a training set 

and integrating it in a cofactor prediction tool, model and tool validation is still a requirement. In 

order to validate the developed method and the machine learning model, a dataset with curated 

information on enzyme specificity was constructed. For that, Brenda-enzymes [9] was used and 

curated information on cofactor, cofactor specificity, EC number, organism, sequence, literature and 

source were retrieved. Firstly, the database was filtered for enzyme entries with NAD+, NADH, NADP+ 

or NADPH as cofactor, subsequently the cofactor commentary field was filtered for expressions 

indicating high cofactor specificity, such us, “absolute specificity”, “specific”, “totally specific”, 

“dependent on”, “strict”, “no activity” or “required”. This step enabled us to create a dataset of 404 

distinct aminoacid residue sequences of different enzymes with high cofactor specificity 

experimentally determined, originated from a combination of 198 EC numbers and 180 organisms. 

From the total amount of enzyme aminoacid sequences, 189 are specific for NAD(H) and 215 for 

NADP(H). With the retrieved information present on the dataset, the aminoacid sequences 

encompassed in the dataset were arranged and displayed in Fasta format, in a single Fasta file. This 

file was then uploaded and processed in the developed tool NiCofactor and predictions of NAD(P)(H) 

cofactor specificity were performed. 

When analyzing the results obtained from the developed tool it was possible to observe that from the 

total 404 sequences analyzed, composing the dataset of curated information, the developed tool 

performed a cofactor prediction for 327 (81%) as around 11% (45) of the enzymes analyzed had 

their structure characterized and approximately 70% (282), despite not having their structure 

characterized, were found to have a suitable structural template, enabling structure inference by 

homology modeling. For 19% (77) of the enzymes analyzed, no structural template was found, 

impairing the possibility of a cofactor prediction being performed by the tool. The overall accuracy of 

the tool predictions was 83.5%, which is by itself an extremely exciting result when taking into account 

that only an aminoacid residue sequence is given as input, with the tool automatically performing 

the structural analysis. Nonetheless, by further analyzing the machine learning model prediction 

output, it is possible to retrieve the predictions probability, which is an estimate from the model on 

how probable the prediction is correct. When plotting the prediction probability results we observed 

that the accuracy of the model tends to increase with the prediction probability, which opens the 
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possibility of establishing a probability threshold that should improve the framework predictive 

capabilities. Figure 3.3 plots the values of prediction probability with the corresponding sequence 

distribution and prediction accuracy of the performed predictions. 

 

Figure 3.3 - SVM model validation graph. Plotted are all predictions performed (x axis) and the correspondent SVM 
model outputted prediction probability (y axis). Colors of the points refer correct (blue) and incorrect (red) predictions 
performed by the tool. Red lines delineate prediction probability of 80 and 95 percent, and evidence the amount of 
predictions encompassed in those probabilities. 

 

From figure 3.3 we can notice that the vast majority of predictions made by the SVM model, within 

the developed tool, have a very high probability score, with nearly 50% of the analyzed sequences 

having a cofactor prediction probability of at least 95%, according to the model. In fact, 73.4% (240) 

of the outputted predictions have a prediction probability above 80%. This results indicate that most 

of the prediction performed by the developed SVM model have a high probability of being correct. It 

is also possible to observe that the accuracy of the predictions made increases with the prediction 

probability score outputted by the model, which validates the prediction probability score. When the 

outputted prediction has a probability of at least 80%, the accuracy of the predictions increases to 

from 83.5% to 90%, and when the prediction probability surpasses 95%, model accuracy is 96%. The 

presented results validate the developed tool for performing NAD(P)(H) cofactor preference 

predictions on enzymes, using only the enzyme’s aminoacid residue sequence as input, which 

enables the prediction of cofactor preference in newly sequenced enzymes, or enzymes whose 

structures are yet to be characterized. To improve the prediction accuracy of the developed tool, a 

prediction probability threshold of 80% was set, which means that if the prediction probability of an 

analyzed sequence is, at least, 80%, the prediction is accepted as correct. 
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3.3.3.2 NiCofactor sensitivity analysis with case studies 

In order to demonstrate the performance sensitivity of the developed tool, two experimentally 

characterized case studies encompassing homologue enzymes using distinct cofactors, were further 

analyzed. First, the case of Azospirillum brasiliense’s α-Ketoglutaric Semialdehyde Dehydrogenase 

Isozymes (KGSADH) is presented. According to Watanabe et al. [43] in A. brasiliense, KGSADH is 

involved in the conversion of α-ketoglutaric Semialdehyde to α-Ketoglutarate in an alternative 

pathway of L-arabinose metabolism. In his study it is described that this bacterium encodes for two 

different KGSADH isozymes, D-glucarate/D-galactarate-inducible KGSADH-II and hydroxy-L-proline-

inducible KGSADH-III with significantly similar sequences. After physiological characterization, they 

revealed that KGSADH-II and KGSADH-III showed similar high substrate specificity for α-ketoglutaric 

semialdehyde and different cofactor specificity, being KGSADH-II, NAD+ dependent and KGSADH-III, 

NADP+ dependent. Figure 3.4 illustrates the sequence alignment between KGSADH-II and KGSADH-

III, where it is possible to observe the sequence similarity between these enzymes. KGSADH-II and 

KGSADH-III have a sequence identity of 62.41%, with 332 identical residues in an alignment length 

of 532. 

   

Figure 3.4 - KGSADH II and KGSADH III aminoacid sequence alignment. KGSADH III (top) and KGSADH II 
(bottom) aminoacid sequence alignment. 

The second case presented regards to two alkyl alcohol dehydrogenase (ADH) genes from the long-

chain alkane-degrading strain Geobacillus thermodenitrificans NG80-2 characterized by Liu, et al. 

[44]. Both ADH1 and ADH2 are able to oxidize a broad range of alkyl alcohols up to at least C30, as 

well as 1,3-propanediol and acetaldehyde, and share a sequence identity of 26%. For either enzyme, 

both NAD+ and NADP+ can be used as electron acceptor. However, NAD+ is the preferred cofactor for 

ADH1, while NADP+ is the preferred cofactor for ADH2. 

With the presented information we went on to perform cofactor prediction and assess the capability 

of the developed tool to predict the cofactor preference of such similar enzymes. With none of the 
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structures of the analyzed enzymes characterized, the framework applied structure modelling in 

order to perform a prediction. After processing all sequences using NiCofactor for performing 

cofactor predictions, the resulting output was analyzed. In it, we were able to verify that the tool 

correctly classified the analyzed enzymes, being KGSADH-II classified as NAD(H) binding with a 

prediction probability of 99.2% and KGSADH-III as NADP(H) with 64.7% probability, whereas for the 

ADH genes, ADH1 was classified as NAD(H) specific with a prediction probability of 80.6% and ADH2 

predicted as NADP(H) specific with 95.7% of probability. 

These results demonstrate the robustness of the developed tool in correctly attributing NADP(P)(H) 

cofactor preference to enzymes, using the aminoacid sequence as input. The results from the 

performed predictions are displayed in table 3.3. In the case of KGSADH, possibly due to their 

similarity, the selected structure template for both enzymes was the same, 1EZ0.pdb, a NADP+ 

dependent Aldehyde dehydrogenase from Vibrio harveyi, characterized by Ahvazi et al. [45]. This 

enzyme has a sequence similarity of 48% with KGSADH-II and 47% with KGSADH-III, being its 

structure characterized with NADP+ in the binding pocket. Regardless of the type of bound cofactor 

in the template enzyme structure, the developed method was still able to correctly classify cofactor 

preference in the subject enzymes, being the prediction with higher probability from the opposite 

cofactor. ADH1 structure was modelled using an alcohol dehydrogenase structure from Thermotoga 

maritima (PDB: 1O2D), with a sequence identity of 37%, while ADH2 model template was a butanol 

dehydrogenase also from Thermotoga maritma (PDB: 1VLJ), with 48% sequence identity. 

Table 3.3 - Cofactor specificity prediction. KGSADH II  and KGSADH III from Azospirillum brasiliense cofactor 
specificity prediction analysis show the predicted cofactor and associated probability. ADH1 and ADH2 from Geobacillus 
thermodenitrificans NG80-2 cofactor specificity prediction analysis show the predicted cofactor and associated 
probability. Template information is also displayed with PDB ID and crystalized cofactor, as well as subject and template 
aminoacid sequence alignment identity percentage. 

Fasta_ID Predicted cofactor Probability Selected template 
Alignment 

identity % 

KGSADH-II NAD(H) 0.992 1EZ0.PDB (NAP) 48 

KGSADH-III NADP(H) 0.647 1EZ0.PDB (NAP) 47 

ADH1 NAD(H) 0.806 1O2D.PDB (NAP) 37 

ADH2 NADP(H) 0.997 1VLJ.PDB (NAP) 45 
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The fact that homologue enzymes are usually specific for only one of the cofactors impairs a deeper 

analysis of case studies with homologues that use different cofactors. Nonetheless, the studied cases 

still present a good indicator of the performance sensitivity achieved. These case studies also help 

demonstrating that enzymes within the same environment, and with very similar functions and 

sequences, do not necessarily use the same cofactors for catalysis, which is a common assumption 

when annotating enzymes using sequence homology information. 

3.3.3.3 NiCofactor tool usage for assessing cofactor engineering mutations impact in 

specificity 

Another important application of the developed tool might reside in its ability of assessing the impact 

of point and combined mutations in cofactor specificity change strategies. We strongly believe that 

predicting the outcome of such strategies hugely improves the overall process efficiency and 

leverages the whole metabolic engineering field. In order to prove such capability a group of cofactor 

engineering studies published by Khoury and coworkers [13] and extending the work from Marohnic, 

et al. [25] was thoroughly analyzed. To perform such analysis, each enzyme was sought after in 

Uniprot and the corresponding aminoacid sequence retrieved, when available. The wild-type and 

mutant sequences were reproduced in silico and, subsequently, analyzed in the developed tool. Not 

all experiments were able to be reproduced due to the lack of sequence or mismatches between the 

retrieved sequence and mutations reported in the analyzed experiment. From a total of 27 cofactor 

engineering studies compiled, only for 18 was it possible to retrieve the aminoacid residue 

sequences, with a combined number of 35 mutations experimentally characterized. The subject 

studies and correspondent cofactor specificity analysis are displayed in table 3.4. 

Regarding the 18 wild-type sequences analyzed, it was possible to retrieve structural information for 

all, either due to it being already characterized or through homology modelling. As to cofactor 

predictions, NiCofactor performed a prediction above the probability threshold for 14 (~78%) with 

100% accuracy, being the cofactor specificity of all predictions correctly attributed. 
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Table 3.4 - Wild-type enzymes with cofactor predictions above the probability threshold. Displayed are the organism, 
enzyme name, number of mutations implemented in the analyzed studies, wild-type cofactor specificity, predicted 
cofactor specificity and probability score. 

Organism Enzyme 
Mutants 

constructed 

Wild-type 

specificity 

Predicted 

cofactor 

Cofactor 

probability 
Ref 

Candida tenuis Xylose reductase 7 NADPH NADP(H) 88.41 
[46], 

[47] 

Corynebacterium 
2,5-diketo-D-

gluconic acid 
4 NADPH NADP(H) 98.67 

[48], 

[49] 

Escherichia coli 
Ketol acid 

reductoisomerase 
4 NADPH NADP(H) 99.05 [50] 

Neurospora 

crassa 
Nitrate reductase 1 NADPH NADP(H) 95.76 [51] 

Pichia stipitis Xylose reductase 2 NADPH NADP(H) 87.18 
[52], 

[53] 

Pseudomonas 

fluorescens 

p-hydroxybenzoate 

hydroxylase 
1 NADPH NADP(H) 94.87 [54] 

rattus norvegicus 
Cytochrome p450 

reductase 
1 NADPH NADP(H) 97.39 [55] 

sinorhizobium 

morelense 

1,5-anhydro- 

d-fructose 
1 NADPH NADP(H) 97.83 [56] 

Escherichia coli 
Isocitrate 

dehydrogenase 
1 NADP+ NADP(H) 95.01 [57] 

Spinacia 

oleracea 
Nitrate reductase 1 NADH NAD(H) 84.69 [58] 

Gluconobacter 

oxydans 

Xylitol 

dehydrogenase 
1 NAD+ NAD(H) 96.55 [59] 

Pichia stipitis 
Xylitol 

dehydrogenase 
1 NAD+ NAD(H) 97.95 [60] 

Thermus 

thermophilus 

Isopropylmalate 

dehydrogenase 
1 NAD+ NAD(H) 98.26 [61] 

Tramitichromis 

intermedius 

Leucine 

dehydrogenase 
1 NAD+ NAD(H) 97.74 [62] 

. 

Concerning the mutations performed in the cofactor reversal engineering studies for the 14 above 

displayed enzymes, a total of 27 mutants were constructed, with 3 enzyme from Candida tenuis, 

Corynebacterium and Escherichia coli being responsible for 15 of the mutants produced. 

After being analyzed with NiCofactor, a prediction above the probability threshold was made for 20 

out of the total 27 (74.1%) mutation experiments analyzed, corresponding to 10 different enzymes. 

The performed mutations and respective predictions are displayed in table 3.5, along with the 

organisms and enzyme identification. 
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Table 3.5 - Performed mutations and respective cofactor predictions. Displayed are also the organism and enzyme, 

along with mutant cofactor usage and the specification of the mutation performed. Mutations are represented by the 

original aminoacid, in single letter code, followed by the aminoacid position in the sequence and the mutant aminoacid, 

also in a single letter coding format. Multiple mutations occurring in a single mutant are separated by a slash ('/’). 

Organism Enzyme 
Mutant 

specificity 
Mutations 

Predicted 

cofactor 
Ref 

Candida tenuis Xylose reductase NADH K274R NADP(H) [46] 

Candida tenuis Xylose reductase NADH K274G NADP(H) [47] 

Candida tenuis Xylose reductase NADH N276D NADP(H) [47] 

Candida tenuis Xylose reductase NADH K274R/N276D NADP(H) [47] 

Corynebacterium 
2,5-diketo-D-

gluconic acid 
NADH K232G NADP(H) [48] 

Corynebacterium 
2,5-diketo-D-

gluconic acid 
NADH R235G NADP(H) [48] 

Corynebacterium 
2,5-diketo-D-

gluconic acid 
NADH R238H NADP(H) [48] 

Corynebacterium 
2,5-diketo-D-

gluconic acid 
NADH F22Y/RS233T/R235E/A272G NADP(H) [49] 

Escherichia coli 
Ketol acid 

reductoisomerase 
NADH R68D NADP(H) [50] 

Escherichia coli 
Ketol acid 

reductoisomerase 
NADH K69L NADP(H) [50] 

Escherichia coli 
Ketol acid 

reductoisomerase 
NADH K75V NADP(H) [50] 

Escherichia coli 
Ketol acid 

reductoisomerase 
NADH R76D NADP(H) [50] 

Pichia stipitis Xylose reductase NADH K270M NADP(H) [52] 

Pichia stipitis Xylose reductase NADH 
K270S/S271G/N272P/ 

R276F 
NAD(H) [53] 

Pseudomonas 

fluorescens 

p-hydroxybenzoate 

hydroxylase 
NADH 

R33S/Q34R/P36R/D37A/ 

Y38E 
NADP(H) [54] 

sinorhizobium 

morelense 

1,5-anhydro- 

d-fructose 
NADH A13G/S33D NADP(H) [56] 

Spinacia 

oleracea 
Nitrate reductase NADPH E864S/F876R NAD(H) [58] 

Gluconobacter 

oxydans 

xylitol 

dehydrogenase 
NADP+ D38S/M39R NADP(H) [59] 

Pichia stipitis 
Xylitol 

dehydrogenase 
NADP+ D207A/I208R/F209S/N211R NADP(H) [60] 

Tramitichromis 

intermedius 

Leucine 

dehydrogenase 
NADP+ D203A/I204R/D210R NADP(H) [62] 

 

In the displayed table we can observe that from the mutants obtained for the ten different enzymes 

analyzed, only for 4 enzymes was NiCofactor able to correctly predict cofactor specificity. However, 

when further exploring the results achieved in the analyzed studies, it became clear that in many 
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experiments a complete conversion of cofactor specificity was not achieved. In fact, from the 16 

mismatches between mutant cofactor specificity and the tool output predictions, only p-

hydroxybenzoate hydroxylase from Pseudomonas fluorescens was confirmed in the literature has 

having completely reverted cofactor specificity, due to the mutation of 5 aminoacids in the cofactor 

binding spot [54]. For all other mismatch cases, literature results showed that successful mutation 

reports were based on marginal decreases of Km values or increase in Kcat values for the desired 

cofactor, despite the fact that the native cofactor preference remained, or was not measured. This 

analysis showed that the reported mutations were only able to marginally enhance the desired 

cofactor acceptance, not disrupting native cofactor specificity, promoting, at the best, cofactor 

promiscuity. A reason for such minor changes observed in mutant cofactor specificity might be 

explained by the fact that the vast majority of the constructed mutants have only one residue 

mutated, as it has been shown that multiple simultaneous mutations have often to be performed in 

order to effectively change cofactor specificity, hindering this challenging task [63]. 

Correctly classified predictions were found to have completely reverted specificity or largely 

decreased affinity for one of the cofactors, increasing the affinity of the other. These were the cases 

of xylose reductase from Picchia stipitis [53], xylitol dehydrogenase from Gluconobacter oxydans 

[59], xylitol dehydrogenase from Pichia stipitis [60] and leucine dehydrogenase from Tramitichromis 

intermedius [62], all with multiple mutations implemented in the wild-type enzyme sequence. These 

results help emphasizing the utility of the developed framework in correctly predicting a clear, and 

substantial, specificity transfer from one cofactor to the other. 

3.4 Conclusions 

Molecular characterization of NAD(P)(H) cofactor specificity is, to this day, still regarded as a highly 

difficult and challenging task, being accountable for the development of many relevant works in the 

field of systems biology. Its importance in the field is notorious, especially in metabolic engineering, 

but also in protein engineering problems. 

In the presented work we move a step forward in unveiling the molecular determinants for cofactor 

specificity, using enzyme structural information. Making use of enzyme structural analysis tools and 

machine learning algorithms we were able to identify interacting couples of cofactor atoms and 

aminoacid residues in a large enzyme dataset. The proposed findings were successfully applied in 
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the prediction of cofactor specificity of enzymes not structurally characterized, using protein 

comparative modelling. 

To enable high throughput cofactor preference prediction, we developed, trained, implemented and 

evaluated a method to automatically attribute cofactor specificity preference, when given the 

aminoacid residue sequence. 

We believe that these results represent an important contribution for cofactor engineering problems, 

and enzyme engineering overall, with minimization of commonly laborious and expensive 

experimental characterizations. Rational metabolic engineering approaches and strain design 

endeavors also greatly benefit from these tools with the enhancement of the sensitivity and reliability 

of metabolic models, through the reduced input of erroneous or redundant reactions, improving the 

overall performance of metabolic simulations 

A webtool was developed to allow a faster and broader reach of the developed work. Through the 

use of a user friendly query format, researchers without previous skills in enzyme structural 

engineering can submit their subject enzyme’s aminoacid sequence and receive the prediction of its 

cofactor specificity. Submissions can be performed for one or more aminoacid sequences in the 

FASTA format at the freely available webserver: http://services.itqb.unl.pt/cofactor-prediction/ 
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4.1 Introduction 

Previously to the genetic revolution, strain design and improvement was performed naturally, with 

selective breeding and environmental pressure, or by the implementation of random genetic 

mutagenesis followed by positive phenotype selection. With the evolution of genetic and metabolic 

engineering, metabolism is now better understood and controlled, with more rational and precise 

approaches being implemented [1]–[5]. Currently, despite the vast knowledge on metabolism, 

issues still arise when designing engineered strains, as the complexity of metabolic pathways divert 

the metabolism, causing undesired phenotypes with unclear causes. 

Advances in genome sequencing allowed the number of sequenced organisms to increase 

dramatically in the last decade. In this post-genomic era, functional annotation became a main 

concern of bioinformatics and systems biology [6], [7]. Systems biology aims to comprehend the 

relations between genes, proteins and metabolites of an organism's metabolism through the 

computational modelling of these complex biological systems [8]. With the ever increasing amount 

of genomic functional information available, the reconstructions and simulation of genome-scale 

metabolic models (GEMs) is a prolific methodology to achieve such purpose. 

GEMs comprehend information on the complex network of biochemical reactions occurring inside 

an organism in the form of stoichiometric equations, representing a detailed depiction of the 

organism's metabolism. GEMs can predict the phenotype of the organism according to the set 

environmental conditions, allowing for a detailed analysis of the internal metabolite fluxes, as well as 

the genotype-phenotype associations. This methodology has been successfully implemented in 

multiple organisms, representing prokaryotic, eukaryotic and also archaea species [9]. 

Along with wild-type phenotype, gene knockout or overexpression is also feasible, modelling the 

redirection of fluxes trough the existing pathways for the optimization of specific compound 

production [10]–[16]. The correct representation of the metabolic reactions occurring in the 

metabolism of an organism is crucial for an accurate simulation of such organisms’ metabolism, 

making the process of GEM reconstructions a laborious and precise task, involving multiple curation 

steps. This process has been discussed and described by several authors, along with the 

development of several tools with the intent of semi-automatizing GEM reconstruction [9], [17]–[23]. 

Once reconstructed, GEMs can be simulated using multiple different approaches and algorithms, 

being Flux Balanced Analysis (FBA) [24] and parsimonious Flux Balanced Analysis (pFBA) [25] two 
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of the most used strategies. These methods use linear programming to maximize an objective 

function, usually Biomass growth, through the distribution of fluxes in the model. 

Despite all information available and developed methodologies, GEM reconstruction is still prone to 

the insertion of errors, forming misleading reactions and model inconsistencies that can render this 

effort ineffective. Experimental determination of a protein function is expensive and time-consuming, 

making it unfeasible for the growing amount of sequences [26]–[28]. By largely relying on function 

annotation from sequence homology, errors and inconsistencies spread easily when this process is 

not done carefully due to overly unconstrained homology search metrics [6], [29]. Also, despite all 

the important information stored in a gene, some characteristics, such us cofactor usage of the gene 

encoded reactions are very difficult to retrieve by gene sequence homology comparison. 

Cofactors are key elements in the overall metabolism regulation of an organism. Every pathway 

encompasses reactions that make use of different cofactors to allow the successful biochemical 

transitions within an enzyme. NAD(H) and NADP(H) are among the most used cofactors in cell 

metabolism, being the precise description of their availability utterly important for the correct 

simulation of catabolic and anabolic processes [30]. 

Despite a certain degree of promiscuity associated to enzymes using NAD(P)(H) as cofactors, the 

structure of an enzyme always fits better with one of them [31], [32]. Also, cofactor promiscuity 

representation in GEMs is a very dangerous procedure, once the natural representation of this 

phenomenon is to insert duplicated reactions, changing only the cofactor, which leads to an input of 

uncertain reactions, as well as the creation of possible futile cycles, where the regeneration of one 

of the cofactors occurs artificially. 

In this work we perform the curation of genome-scale metabolic models through the correct 

characterization of reactions using the cofactors NAD(P)(H). For that, we apply our in house 

developed software NiCofactor, which uses enzyme structural information and machine learning, to 

59 different reconstructed GEMs belonging to 47 different strains. Results help depicting the state 

of cofactor curation in GEM reconstruction, as well as the importance of accurate cofactor specificity 

attribution. Furthermore, the correction of the most recent model from S. cerevisiae is used in 

simulations and the resulting fluxes compared to the original and in vivo flux estimations for a 

performance assessment. 
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4.2 Methods 

4.2.1 GEM download and Aminoacid sequence retrieval 

Aminoacid sequences related to reactions using NAD(P)(H) were retrieved from an in-house 

developed framework used to integrate and curate all compound present in several models available 

in the literature. NAD(H) and NADP(H) compounds searched and the respective reactions retrieved. 

From the retrieved reactions, associated genes and aminoacid sequences were collected. 

To perform reaction corrections and model simulations, Yeast 7.6 model [33] was downloaded from 

the project’s website: http://sourceforge.net/projects/yeast/files/. 

4.2.2 NiCofactor aminoacid sequence processing 

NAD(P)(H) cofactor specificity prediction for each of the genes encoding reactions in all analyzed 

models using NAD(P)(H) was performed using NiCofactor. Genes were retrieved in their protein 

aminoacid sequence organized in the Fasta format prior to processing. Fasta files, containing the 

subject protein sequences were processed automatically in the software NiCofactor and the 

prediction results were outputted in text format containing the predicted cofactors, as well as the 

confidence score for each sequence. 

4.2.3 Simulations with GEMs 

GEM Yeast 7.6 was simulated using OptFlux 3.2.8 [34] set with the following in silico environmental 

conditions: glucose with an uptake rate of 1.15 mmol/gCDW·h, ammonia with unconstrained 

uptake, sulfate with unconstrained uptake, phosphate with unconstrained uptake and oxygen with 

unconstrained uptake. Parsimonius Flux Balanced Analysis (pFBA) [25] was used for the calculation 

of internal flux distributions and the set objective function was the maximization of biomass growth. 

Modifications in the reactions of the model were directly made in the original SBML file [35]. 

4.3 Results 

4.3.1 Characterization of the GEM dataset  

The analyzed GEMs represent and model the metabolism of multiple organisms, from different taxa. 

This dataset encompasses all GEMs published between 2005 and 2016 for which a functional model 

file could be retrieved. Some models for the same organism, as for example S. cerevisiae models, 
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were developed using previously existing models, and represent an updated version of the organism 

metabolism representations. This is due to the ongoing experimental validation of multiple 

parameters and also the ever increasing amount of available information in public databases. 

Many other organisms are represented in the returned GEMs. Table 4.1 depicts all organisms 

represented, as well as their correspondent GEM, year of GEM publication and taxonomic domain. 

Table 4.1 – Complete list of the retrieved and analyzed GEM, encompassing Model name, year of publication, 
organism name, taxa and reference. 

Model Year Organism Taxa Ref 

iAZ900 2010 Saccharomyces cerevisiae S288c Eukaryota [36] 

iIN800 2008 Saccharomyces cerevisiae S288c Eukaryota [37] 

iJO1366 2011 Escherichia coli str. K-12 substr. MG1655 Bacteria [38] 

iMM904 2009 Saccharomyces cerevisiae S288c Eukaryota [39] 

iNJ661m 2010 Mycobacterium tuberculosis H37Rv Bacteria [40] 

iTO977 2013 Saccharomyces cerevisiae S288c Eukaryota [41] 

Yeast 7.6 2015 Saccharomyces cerevisiae S288c Eukaryota [33] 

Yeast 6 2013 Saccharomyces cerevisiae S288c Eukaryota [42] 

iAbaylyiv4 2008 Acinetobacter sp. ADP1 Bacteria [43] 

iAI558 2015 Moorella thermoacetica ATCC 39073 Bacteria [44] 

iBT721 2012 Lactobacillus plantarum WCFS1 Bacteria [45] 

iCce806 2012 Cyanothece sp. ATCC 51142 Bacteria [46] 

iCG230 2012 Blattabacterium sp. str. BPLAN Bacteria [47] 

iCM925 2011 Clostridium beijerinckii NCIMB 8052 Bacteria [48] 

iCR744 2009 Rhodoferax ferrireducens T118 Bacteria [49] 

iCyc792 2013 Cyanothece sp. PCC 7424 Bacteria [50] 

iCyj826 2013 Cyanothece sp. PCC 7822 Bacteria [50] 

iCyn731 2013 Cyanothece sp. PCC 7425 Bacteria [50] 

iCyp752 2013 Cyanothece sp. PCC 8801 Bacteria [50] 

iJB785 2016 Synechococcus elongatus PCC 7942 Bacteria [51] 

iJL432 2008 Clostridium acetobutylicum ATCC 824 Bacteria [52] 

iJL480 2016 Streptococcus pyogenes NZ131 Bacteria [53] 

iJS747 2009 Geobacter metallireducens GS-15 Bacteria [54] 

iMF721 2014 Pseudoalteromonas haloplanktis TAC125 Bacteria [55] 

iMG746 2013 Methanosarcina barkeri str. Fusaro Archaea [56] 

iMP240 2013 Blattabacterium sp. (Blattella germanica) str. Bge Bacteria [57] 

iNF518 2013 Lactococcus lactis subsp. cremoris MG1363 Bacteria [58] 

iPS189 2009 Mycoplasma genitalium G37 Bacteria [59] 
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iRR1083 2009 Salmonella enterica subsp. serovar Typhimurium Bacteria [60] 

iWZ663 2012 Ketogulonicigenium vulgare WSH-001 Bacteria [61] 

iTM560 2011 Neisseria meningitidis MC58 Bacteria [62] 

iCAC490 2012 Clostridium acetobutylicum ATCC 824 Bacteria [63] 

iCac802 2014 Clostridium acetobutylicum ATCC 824 Bacteria [64] 

iCyt773 2012 Cyanothece sp. ATCC 51142 Bacteria [65] 

iEM439 2016 Zymomonas mobilis subsp. mobilis ATCC 10988 Bacteria [66] 

iJH728 2016 Synechococcus sp. PCC 7002 Bacteria [67] 

iJP815 2008 Pseudomonas putida KT2440 Bacteria [68] 

iJP962 2011 Pseudomonas putida KT2440 Bacteria [69] 

iPB890 2015 Pseudomonas stutzeri A1501 Bacteria [70] 

iSO783 2010 Shewanella oneidensis MR-1 Bacteria [71] 

iCG238 2012 Blattabacterium sp. (Blattella germanica) str. Bge Bacteria [47] 

iIB700 2005 Streptomyces coelicolor A3(2) Bacteria [72] 

iMK1208 2014 Streptomyces coelicolor A3(2) Bacteria [73] 

iMO1056 2008 Pseudomonas aeruginosa PAO1 Bacteria [74] 

iMP429 2009 Streptococcus thermophilus LMG 18311 Bacteria [75] 

iMZ1055 2013 Bacillus megaterium WSH-002 Bacteria [76] 

iNV706 2014 Enterococcus faecalis V583 Bacteria [77] 

iRM588 2006 Geobacter sulfurreducens PCA Bacteria [78] 

iRsp1095 2011 Rhodobacter sphaeroides 2.4.1 Bacteria [79] 

iRsp1140 2013 Rhodobacter sphaeroides 2.4.1 Bacteria [80] 

iJL846 2014 Lactobacillus casei LC2W Bacteria [81] 

iJSPpropionicus 2011 Pelobacter propionicus DSM 2379 Bacteria [82] 

iYLW1028 2015 Actinoplanes sp. SE50/110 Bacteria [83] 

iJSPcarbinolicus 2011 Pelobacter carbinolicus DSM 2380 Bacteria [82] 

iKY620 2015 Arthrospira platensis NIES-39 Bacteria [84] 

iAM388 2011 Campylobacter jejuni subsp. jejuni NCTC 11168 Bacteria [85] 

iMR539 2016 Methanococcus maripaludis S2 Archaea [86] 

iCyh755 2013 Cyanothece sp. PCC 8802 Bacteria [50] 

iYS432 2009 Corynebacterium glutamicum ATCC 13032 Bacteria [87] 

 

Although 59 GEMs were retrieved, only 47 organisms are represented, being 44 bacteria, 1 

eukaryota (S. cerevisiae) and 2 archaea (Methanosarcina barkeri str. Fusaro and Methanococcus 

maripaludis S2). Organisms with multiple GEMs are S. cerevisiae, with 6; Clostridium acetobutylicum 

ATCC 824, with three (iCac802, iCAC490 and iJL432); Cyanothece sp. ATCC 51142, with two 
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(iCyt773 and iCce806); Pseudomonas putida KT2440, with two (iJP962 and iJP815) 

Blattabacterium sp. (Blattella germanica) str. Bge, with two (iMP240 and iCG238); Streptomyces 

coelicolor A3, with two (iIB700 and iMK1208); Rhodobacter sphaeroides 2.4.1 with two (iRsp1140 

and iRsp1095). 

Despite the fact that reactions present in the GEM represent the metabolism encoded by the genome, 

GEMs do not compulsorily need gene information associated to their reactions, being often 

incorporated reactions that are not associated to any GPR in the process of gap-filling [88], [57], 

[89]. Albeit this fact, such reactions must have a lower level of confidence, and be treated as such 

during model simulation. 

Figure 4.1 depicts in a graph the total amount of reactions and genes and the number of reactions 

and genes associated with NAD(P)(H) and their ratio. 

The model with the highest amount of incorporated genes is E. coli’s iJO1366 with 1367 genes, 

being the amount of reactions in the model 2253. The fact that this bacterium is one of the most 

studied and industrially better suited organisms contributes for this high representation of genes 

[90]. The average amount of genes and reactions present in the analyzed models is 743 and 1005, 

respectively, while the average amount of genes related to NAD(P)(H) is 112 and the average amount 

of NAD(P)(H) related reactions, 122. 

Figure 4.1 – 1) Comparison between the total amount of genes included in each GEM (blue) with the number of 
genes in each GEM associated to reactions using NAD(P)(H) (red). 2) Comparison between the total amount of 
reactions included in each GEM (blue) with the number of reactions using NAD(P)(H) (red). 
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This analysis shows that, overall, the percentage of NAD(P)(H) related genes incorporated in the 

models attend to 15.1% of the total gene count, while reactions related to NAD(P)(H) account for 

12.1% of the total amount of reactions. Given the fact that GEM reconstruction integrates a 

comprehensive number of reactions present in the organism, through multiple pathways, capturing 

several aspects of its metabolism, such high percentage of genes and reactions associated with 

NAD(P)(H) reinforce the important contribution of these cofactors in the overall metabolism of 

organisms. 

Despite being the model with the highest amount of genes, iJO1366 does not have the highest 

amount of reactions. Yeast 7.6 has 3334 included reactions, while having only 910 included genes. 

The model with the highest amount of genes related to NAD(P)(H), is iYLW1028, a GEM from 

Actinoplanes sp. SE50/110, with 213 (20.7%) of the total 1028 genes related to NAD(P)(H), while 

it has 1219 reactions, being 196 (16.1%) of which associated to NAD(P)(H). 

The model with the highest amount of NAD(P)(H) associated reactions is iMK1208, a GEM for 

Streptomyces coelicolor, with 269 (16.4%), from a total of 1643, reactions related to NAD(P)(H). 

The model with the lowest amount (and percentage) of reactions and genes is iPS189, from 

Mycoplasma genitalium G37, with only 189 included genes and 262 reactions, being 9 (4.8%) genes 

and 10 (3.8%) reactions related to NAD(P)(H). 

Despite not being the model with the highest amount of NAD(P)(H) associated reactions, model 

iRM588 from Geobacter sulfurreducens PCA has the highest percentage, in the analyzed GEMs, of 

NAD(P)(H) reactions, with 22.7% of NAD(P)(H) related reactions. In the case of the genes, iPB890 

from Pseudomonas stutzeri A1501 has the highest percentage of NAD(P)(H) related genes, with 

18.6% of NAD(P)(H) genes. 

4.3.2 Model NAD(P)(H) cofactor usage analysis 

Despite being an updated version, or a complete new version, depending on the author, GEMs from 

the same organism naturally tend to share most of their reactions and GPRs. In order to prevent de 

duplications of results, and the incorrect representation of the performed GEM analysis, using 

NiCofactor, only the most recent model versions of each organism was analyzed. This reduced the 

amount of GEMs from 59 to 47, being 12 GEMs removed. 
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Being this analysis specific for NAD(P)(H) related reactions, only reactions containing NAD(P)(H) and 

a GPR association were analyzed. Biomass and NAD(P) transhydrogenase (THD) reactions, 

accounting for 110 reactions across all 47 models, were also discarded, as the NAD(P)(H) specificity 

problem does not apply here. 

The final dataset was composed by 5081 different genes associated to 5472 reactions from the 47 

GEMs. 

 

Figure 4.2 depicts the number of genes and reactions associated to NAD(P)(H) in the analyzed 47 

GEMs. With the reduction in the amount of analyzed models, due to the exclusion of models from 

the same organism, and also the exclusion of biomass and THD reactions, the above displayed data 

contains the number of genes and reactions that, in each model, are linked to the utilization of one 

of the cofactors NAD(P)(H). When analyzing the exposed data, one can observe that there is a great 

variation in the number of reactions and genes associated to NAD(P)(H) dispersed through the 

analyzed models. However, such differences are attenuated when considering the number of genes 

and reactions included in the respective models. Such variation in total amount of gene and reaction 

incorporation is linked to several aspects of GEM reconstruction, being the total genome size one of 

the main contributors. GEM author curation methodology, available genomic information or 

experimental data also play a crucial role in the overall representation of the organism’s metabolism 

Figure 4.2 – Total amount of reactions using NAD(P)(H) (blue) and genes associated to reactions using NAD(P)(H) 
(red) in the selected 47 GEM, excluding the biomass equation and THD reactions (when occurring). 
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by the GEM [17], [18]. Given the set of genes and reactions displayed above, it is observable that 

the GEM encompassing more reactions is iKM1208 with 267, while iYLW1028 is the GEM with most 

genes included, with 213. 

A single gene is often responsible for the transcription and subsequent translation of an enzyme 

capable of catabolizing multiple different substrates into several products. It is also truth that, 

regularly, several genes in an organism’s genome encode for the same enzyme [91]. In order to 

correctly reconstruct a GEM, transcribing, in silico, a real depiction of the reality, reactions are 

associated to Gene-Protein-Reactions (GPRs) that depict events such as enzyme complexes, multiple 

reactions encoded by the same gene or multiple genes associated to one reaction only [18]. 

In the presented models, the NAD(P)(H) related gene associated with most reactions is the gene 

Sco1814, from GEM iMK1208, associated to 92 different reactions in the model. This gene encodes 

for an Enoyl-[acyl-carrier-protein] reductase, part of the fatty acid biosynthesis. 

With respect to GPRs, the biggest GPR present in the models belong to iJSPpropionicus, a GEM from 

Pelobacter propionicus DSM 2379, composed by a total of 50 different genes. The encoded reaction 

represents the transformation of menaquinone 7 into menaquinol 7 by NADH Dehydrogenase. 

Notwithstanding the large size of the biggest GPR present in the models, the average GPR size 

corresponds to combinations of 2 genes. 

With respect to the cofactor used in the presented reactions, the amount of reactions using NAD(H) 

is 2729, while NADP(H) is used in 2743 reactions. As for gene-cofactor association in models, from 

the total 5081 genes present in the model’s reactions GPRs, 2539 genes are present in GPRs from 

reactions using NAD(H), while 1975 genes are in GPRs from reactions using NADP(H). There are 

also 567 genes that compose GPRs linked to different reactions using both NAD(H) or NADP(H), 

which enhances the importance of this study for a better GEM curation. 

4.3.3 NiCofactor cofactor prediction results 

The developed software NiCofactor, which predicts NAD(P)(H) cofactor specificity, was applied in the 

analysis of the genes associated to NAD(P)(H) using reactions, present in the retrieved reactions 

dataset from the gathered 47 GEMs. In the first step, NiCofactor works by searching, for a given 

gene, protein sequence homologues having their tridimensional structure characterized. Only 



80 
 

 
 

structures from NAD(P)(H) using enzymes, and bound to one of the cofactors, are allowed as 

structural templates for performing  the structure modeling of the target gene. 

Figure 4.3 depicts the results from the analyzed genes. From the total 5081 different genes encoding 

reactions using NAD(P)(H) in the 47 retrieved GEM, 3232 were found to have a suitable structure 

template to perform structure comparative modeling, and having their cofactor specificity prediction 

performed. Once the tridimensional structure of a protein is modelled, NiCofactor makes use of a 

machine learning algorithm to perform a prediction on its cofactor specificity, outputting also a 

confidence score. For exceptional prediction accuracy (>90%) from NiCofactor, a score threshold is 

applied, being only accepted predictions with a prediction score equal to or greater than 0.8, from 

now on called predicted genes. 

The total amount of predicted genes is 2334, representing 72.2% of the genes with a suitable 

structural template. From these, 1659 genes are associated with reactions using the matching 

predicted cofactor, while 436 correspond to mismatches. The remaining 239 genes are associated 

to reactions using both NAD(H) and NADP(H). 

The 2334 predicted genes are present in GPRs encoding for 3763 metabolic reactions. From these, 

2621 reactions (69.7%) match the predicted cofactor of the genes represented in their GPR, while 

1142 (30.3%) have in their GPR genes that are predicted as using a different cofactor. 
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Figure 4.3 - Left top: Amount of Genes found to have a suitable structural template. In red are displayed the genes that 
have their structure characterized, or have a suitable structure template. In blue, the genes that do not have structural 
template. Left Bottom: From the total amount of genes with template, the amount of genes that had a prediction score 
equal or above 0.8 are called predicted genes. From the total amount of predicted genes, the amount that match with 
encoded reactions, the mismatches and the genes that encode reactions with both cofactors. Right top: reactions using 
NAD(P)(H) as cofactors that have genes with template in their GPR. Green is the amount of reactions whose genes have 
structure template. Right bottom: in purple is amount of reactions encoded by the predicted genes. In red are the 
reactions that match the gene cofactor and in green those that do not. 

The below displayed table 4.2 shows the distribution of the genes and reactions in the analyzed set, 

across all models. 

Table 4.2 – GEM distribution of the amount of genes with template and predicted genes, along with the reactions 
from genes with template and the reactions from the predicted genes. 

Model Genes with 

template 

Predicted 

genes 

Reactions from genes 

w/ template 

Reactions from 

Predicted genes 

iJO1366 108 82 176 152 

iNJ661m 83 61 113 100 

Yeast 7.6 98 77 148 126 

iAbaylyiv4 93 73 124 107 

iAI558 54 39 70 56 

iBT721 79 54 69 46 

iCG230 29 20 37 28 

iCM925 94 54 119 81 

iCR744 78 57 104 84 

iCyc792 77 60 154 136 
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iCyj826 82 53 155 126 

iCyn731 67 46 159 124 

iCyp752 66 46 116 88 

iJB785 52 35 79 59 

iJL480 31 23 41 32 

iJS747 65 48 78 65 

iMF721 85 65 159 141 

iMG746 48 31 65 49 

iMP240 28 21 47 28 

iNF518 55 40 73 58 

iPS189 7 7 9 9 

iRR1083 102 79 115 97 

iWZ663 52 39 72 59 

iTM560 50 38 98 82 

iCac802 60 40 107 81 

iCyt773 66 45 96 71 

iEM439 37 24 82 67 

iJH728 54 40 77 59 

iJP962 109 80 138 116 

iPB890 99 79 186 174 

iSO783 75 54 97 83 

iMK1208 126 91 248 232 

iMO1056 106 79 104 82 

iMP429 34 26 42 35 

iMZ1055 127 101 119 106 

iNV706 67 39 63 43 

iRM588 65 46 81 67 

iRsp1140 106 79 131 104 

iJL846 83 53 77 49 

iJSPpropionicus 9 4 8 5 

iYLW1028 133 97 165 147 

iJSPcarbinolicus 82 62 93 71 

iKY620 53 38 86 69 

iAM388 32 23 42 33 

iMR539 34 26 46 37 

iCyh755 65 43 113 81 

iYS432 27 17 29 18 
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In the presented table are displayed, for each model individually, the number of genes from the 

model that have a suitable structure template, as well as the number of predicted genes. The average 

amount of genes with a template for each model, taking into account the total amount of genes in 

the model is 66.08%, while the average percentage of predicted genes, from the pool of genes in 

each model, is 47%, which, despite appearing to be a small percentage, when compared with the 

percentage of genes that have a template (66.08%), reveals itself as a good result. The model with 

the lowest percentage of predicted genes is iJSPpropionicus, with only 2.92% of the genes in the 

model having a cofactor specificity prediction. The GEM with highest amount of genes predicted in 

the model is iPS189, with 77.8%. 

When thoroughly analyzing the reactions encoded by the analyzed genes, present in their 

correspondent GPRs, it is possible to observe that the overall reach of the predictions performed 

goes much further, having a substantially higher percentage of reactions with their cofactor usage 

scrutinized. This is due to the fact that several genes are present in the GPR of multiple reactions, 

enlarging this way the percentage of reactions analyzed. 

When analyzing the above displayed results we can observe that an average of 67.9% of the reactions 

present in each model have predicted genes in their GPR. A total of 76% of NAD(P)(H) reactions 

present in E. coli’s iJO1366 have, in their GPR, predicted genes, while 67.4% had the same for S. 

cerevisiae’s Yeast 7.6. 

These results show that the developed method is able to reach a large portion of the genes and 

reactions present in several GEMs, being able to analyze the cofactor specificity of several genes and 

the cofactor usage of a significant amount of reactions. 

In table 4.3 it is possible to observe the amount of reactions matching cofactor usage with gene 

cofactor prediction. 

Table 4.3 – GEM distribution of the amount of predicted genes matching and mismatching reaction cofactor usage, 
as well as the amount of genes that encode reactions using both cofactors. 

Model Match genes % Mismatch genes % Both genes % 

iJO1366 65 79.27 9 10.98 8 9.76 

iNJ661m 40 65.57 15 24.59 6 9.84 

Yeast 7.6 60 77.92 14 18.18 3 3.90 

iAbaylyiv4 57 78.08 16 21.92 0 0.00 

iAI558 24 61.54 10 25.64 5 12.82 
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iBT721 37 68.52 17 31.48 0 0.00 

iCG230 17 85.00 3 15.00 0 0.00 

iCM925 33 61.11 11 20.37 10 18.52 

iCR744 37 64.91 18 31.58 2 3.51 

iCyc792 35 58.33 7 11.67 18 30.00 

iCyj826 33 62.26 5 9.43 15 28.30 

iCyn731 28 60.87 6 13.04 12 26.09 

iCyp752 31 67.39 6 13.04 9 19.57 

iJB785 26 74.29 8 22.86 1 2.86 

iJL480 19 82.61 3 13.04 1 4.35 

iJS747 33 68.75 14 29.17 1 2.08 

iMF721 44 67.69 10 15.38 11 16.92 

iMG746 19 61.29 2 6.45 10 32.26 

iMP240 17 80.95 4 19.05 0 0.00 

iNF518 32 80.00 8 20.00 0 0.00 

iPS189 6 85.71 1 14.29 0 0.00 

iRR1083 60 75.95 17 21.52 2 2.53 

iWZ663 28 71.79 7 17.95 4 10.26 

iTM560 28 73.68 5 13.16 5 13.16 

iCac802 24 60.00 8 20.00 8 20.00 

iCyt773 27 60.00 8 17.78 10 22.22 

iEM439 17 70.83 4 16.67 3 12.50 

iJH728 26 65.00 11 27.50 3 7.50 

iJP962 61 76.25 11 13.75 8 10.00 

iPB890 48 60.76 9 11.39 22 27.85 

iSO783 46 85.19 8 14.81 0 0.00 

iMK1208 73 80.22 12 13.19 6 6.59 

iMO1056 67 84.81 10 12.66 2 2.53 

iMP429 19 73.08 6 23.08 1 3.85 

iMZ1055 64 63.37 23 22.77 14 13.86 

iNV706 31 79.49 8 20.51 0 0.00 

iRM588 30 65.22 14 30.43 2 4.35 

iRsp1140 63 79.75 15 18.99 1 1.27 

iJL846 35 66.04 14 26.42 4 7.55 

iJSPpropionicus 3 75.00 1 25.00 0 0.00 

iYLW1028 66 68.04 22 22.68 9 9.28 

iJSPcarbinolicus 39 62.90 14 22.58 9 14.52 
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iKY620 27 71.05 8 21.05 3 7.89 

iAM388 20 86.96 3 13.04 0 0.00 

iMR539 19 73.08 5 19.23 2 7.69 

iCyh755 30 69.77 4 9.30 9 20.93 

iYS432 15 88.24 2 11.76 0 0.00 

 

The above displayed results show the amount of predicted genes that match the cofactor used in 

their reactions. It is also displayed the amount of genes that are associated to reactions using NAD(H) 

but also to reactions that use NADP(H). In average, across all models, 71.9% of the predicted genes 

match the cofactor used in their encoded reactions. GEM iYS432 is the model with the highest 

percentage of matching genes, with 88.24%, while iCyc792 is the lowest, with 58.33% of the 

predicted genes mismatching cofactor usage. 

As to predicted genes mismatching cofactor usage in all encoded reactions, iCR744 is the GEM with 

the highest percentage of mismatches with 31.6%, while iMG746 has the lowest, with 6.45%. When 

analyzing the distribution of genes in GPRs of reactions using NAD(H) and also reactions using 

NADP(H), we encounter iMG746 with the highest percentage, with 32.26%. From the analyzed 47 

GEMs, 11 models do not possess any predicted gene encoding reactions using both cofactors 

separately. 

Being E. coli and S. cerevisiae generally regarded as the best characterized microorganisms, an 

effort was made to further analyze the cases where the predicted gene cofactor specificity 

mismatched the gene’s reaction cofactor usage in the models, or cases where reactions associated 

to a gene used both cofactors. To do that, experimental evidence was sought in the literature in an 

attempt to prove the correct cofactor specificity of the analyzed genes from the latest model updates 

of each organism, iJO1366 and Yeast 7.6. 

A total of 65 E. coli’s iJO1366 predicted genes matched reaction cofactor usage, while 9 did not and 

8 encoded for reactions using both cofactors. Yeast 7.6 had 60 predicted genes matching reaction 

cofactor usage, while 14 did not. Also, 3 of the predicted genes encoded reactions using NAD(H) 

and NADP(H). 

Despite being two of the best characterized organisms, several references in the literature attribute 

a different cofactor specificity or state an unclear cofactor usage, in some of the genes predicted 

with a mismatching cofactor. In the case of E. coli, evidence supporting the cofactor specificity 
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indicated by our tool was found for two of the mismatching genes and for all genes associated to 

reactions using both cofactors. Gene b1288, FabI, was characterized as NAD(H) dependent [92], 

despite being associated to 26 different reactions in iJO1366, 14 of which using NADP(H). Other 

cases, where dual specificity is claimed, were found to have a very strong preference for one of the 

cofactors; a feature that is not depicted in the model, and might indicate that in normal conditions, 

the enzyme would prefer the cofactor for which it has a higher affinity. Genes b1300 [93], b1525 

[94], b0312 [95], b4267 [96] and b2552 [97] are associated in the model with reactions using both 

cofactor. However, literature reports a much higher affinity of their encoding enzymes for NAD(H) 

than for NADP(H). On the other hand, b1033 [98] and b3553 [99] are reported as highly preferring 

NADP(H) over NAD(H). Other cases of mismatching genes, associated to reactions using only the 

opposite cofactor are also unclear. For example b2040 [100] and b3608 [101], which encode in 

the model to NADP(H) specific reactions, were characterized as accepting both cofactors and 

predicted by our tool as NAD(H) specific. Gene b4266’s enzyme is claimed to reduce 5-ketogluconate 

to D-gluconate using either NADH or NADPH. Nonetheless, the enzyme can only oxidize D-gluconate 

using NAD(H), with the use of NADP(H) resulting in lower specificity [96]. Despite the model 

assuming NADP(H) in this reaction, our prediction indicates NAD(H) specificity for this enzyme. 

When analyzing the prediction mismatches on the genes corresponding to model Yeast 7.6, search 

in the literature supported the prediction for 6 of the genes with reactions using the opposite cofactor 

and the three genes associated to reactions using both cofactors. Gene YDR376W, associated to a 

reaction using NAD(H) in Yeast 7.6 has been found to have NADP-dependent reductase activity 

[102]. Concerning gene YER0773W, which is associated to two reactions using NADP(H), it has been 

claimed to use both cofactors- Nonetheless, Wang and coworkers found that, in the presence of 

potassium, NAD(H) reaction is favored in a much higher fold [103]. Gene YBR006W, associated to 

NADP(H) in the model, is claimed as having 2.5 fold higher activity using NAD(H) [104]. There are 

also some genes that, despite not proven in the literature, are characterized in Uniprot as NAD(H) 

specific, while associated to reactions using NADP(H) in the model. Gene YDR127W, YPL023C and 

YGL125W are all stated as binding to NAD(H) in this database. As to the genes associated to 

reactions using both cofactors, YJR139C was proven to use NAD(H) [105]. Gene YOR374W, which 

also catalyzes the reactions associated to YER073W, using NADP(H), is also associated to reactions 

using NAD(H) and considered NAD(H) dependent [103]. Gene YGL001C that is also associated to 

reactions using both cofactors has been experimentally determined as using NAD(H) [106]. In table 

4.4 the number of reactions affected with cofactor misusage, by model are displayed. 
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Table 4.4 – GEM distribution of the total amount of reactions with cofactor usage matching the predicted genes, as 
well as reactions mismatching the predicted genes cofactor and reactions with GPR composed of predicted genes with 
both cofactors. 

Model 
Mismatching 

reactions 
% 

Matching 

reactions 
% 

Reactions with GPR 

with both cofactors 

iJO1366 34 22.37 118 77.63 0 

iNJ661m 50 50.00 50 50.00 8 

Yeast 7.6 18 14.29 108 85.71 0 

iAbaylyiv4 13 12.15 94 87.85 5 

iAI558 24 42.86 32 57.14 7 

iBT721 14 30.43 32 69.57 4 

iCG230 9 32.14 19 67.86 6 

iCM925 24 29.63 57 70.37 1 

iCR744 27 32.14 57 67.86 4 

iCyc792 54 39.71 82 60.29 22 

iCyj826 44 34.92 82 65.08 17 

iCyn731 39 31.45 85 68.55 0 

iCyp752 19 21.59 69 78.41 0 

iJB785 18 30.51 41 69.49 0 

iJL480 4 12.50 28 87.50 0 

iJS747 16 24.62 49 75.38 1 

iMF721 69 48.94 72 51.06 28 

iMG746 13 26.53 36 73.47 0 

iMP240 4 14.29 24 85.71 0 

iNF518 9 15.52 49 84.48 1 

iPS189 1 11.11 8 88.89 0 

iRR1083 26 26.80 71 73.20 10 

iWZ663 19 32.20 40 67.80 7 

iTM560 23 28.05 59 71.95 2 

iCac802 14 17.28 67 82.72 3 

iCyt773 18 25.35 53 74.65 1 

iEM439 20 29.85 47 70.15 0 

iJH728 14 23.73 45 76.27 1 

iJP962 24 20.69 92 79.31 15 

iPB890 48 27.59 126 72.41 24 

iSO783 25 30.12 58 69.88 19 

iMK1208 116 50.00 116 50.00 58 

iMO1056 12 14.63 70 85.37 7 
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iMP429 8 22.86 27 77.14 2 

iMZ1055 36 33.96 70 66.04 18 

iNV706 16 37.21 27 62.79 12 

iRM588 21 31.34 46 68.66 7 

iRsp1140 24 23.08 80 76.92 12 

iJL846 19 38.78 30 61.22 6 

iJSPpropionicus 1 20.00 4 80.00 0 

iYLW1028 73 49.66 74 50.34 38 

iJSPcarbinolicus 16 22.54 55 77.46 1 

iKY620 35 50.72 34 49.28 12 

iAM388 7 21.21 26 78.79 5 

iMR539 8 21.62 29 78.38 1 

iCyh755 14 17.28 67 82.72 0 

iYS432 2 11.11 16 88.89 0 

 

In the displayed data the number of reactions are shown, in each model, using the incorrect cofactor, 

according to our tool. In average, 72.2% of the reactions analyzed, using NAD(P)(H), across all 

models are in agreement with the cofactor prediction of their encoding genes; nonetheless, these 

values vary quite substantially when analyzing each model individually. 

GEM iMK1208 is the model most affected by reactions with wrongly attributed cofactor specificity, 

with 116 of the analyzed reactions having genes with a different cofactor specificity predicted. 

However, by percentage of analyzed genes, iKY620 is the GEM with the highest percentage of 

affected reactions, with 50.7% (35) of the 69 reactions analyzed having genes with a different 

cofactor specificity. GEM iPS189, in the other hand, is the model with the highest agreement between 

predicted cofactor and the reaction cofactor usage, with 88.9% (9) matching reactions. 

GEMs iJO1366 and Yeast 7.6 respectively have 22.4% (34) and 14.3% (18) of their reactions using 

a different cofactor than the one predicted. The fact that these values are below the average 27.8% 

of affected reactions might possibly be due to being two of the best studied organisms, hence having 

their genome information well curated. Several models also have reactions that have in their GPR 

genes with different cofactor specificity, indicating erroneous GPR reconstructions, once genes that 

are specific for one cofactor are associated to reactions using the other cofactor. A possible solution 

for such cases is to split the reaction in two different reactions, one with NAD(H) as cofactor and the 

other with NAD(P)(H), and separate the genes in the GPR by cofactor specificity However, such task 
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should be performed only when reliable information is available in order to prevent the potential 

formation of futile cycles. 

4.3.4 Comparison of genome-scale metabolic models from Saccharomyces cerevisiae 

S. cerevisiae is one of the best known and most widely studied microorganisms in science and was 

naturally among the first organisms having their metabolism mathematically represented through 

the reconstructions of its genome scale metabolic model [107]. This fact, associated with the ever 

developing amount of tools and techniques for genome analysis and metabolic characterization [5], 

[108], gave origin to multiple GEMs reconstructions [109]. Here, six S. cerevisiae GEMs were 

analyzed, having their origin and inspiration associated to two original GEM reconstructions, GEM 

iFF708, published in 2003 [107], and the Yeast consensus model, first published in 2008 [110]. 

GEM iIN800, the oldest GEM analyzed in this study, published in 2008 [37], was developed as an 

updated version of the three previously existing models iFF708, iND750 [111] and iLL672 [112]. 

GEM iMM904 [39], developed in 2009, also updates iND750, while iAZ900 [36], published in 2010 

is itself an updated version of iMM904. GEM iTO977 [41], published in 2013, is based on iIN800 

and the consensus model, and then improved and expanded using gap-filling methods and by 

introducing new reactions and pathways based on studies of the literature and databases. Yeast 6 

[42] was published in 2013 and is a continuous revision of the original yeast consensus model, while 

Yeast 7.6 [33], the most recent and best curated model, started as Yeast 7.00, with a revision of 

the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism having Yeast 6 as 

the basis, but has been frequently updated since, with the most recent version (Yeast 7.6) being 

released in 2015. Among all models, there is a total of169 different genes related to reactions using 

NAD(P)(H). Figure 4.4 displays the gene distribution among the analyzed models, with information 

on model’s total gene and reaction count, as well as total amount of genes and reactions associated 

to NAD(P)(H). 
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In the displayed figure it is possible to see the distribution of the number of genes and reactions 

among the six GEMs analyzed. GEM iIN800, the earliest developed GEM, has the lowest amount of 

genes and also the least amount of genes associated to NAD(P)(H). The amount of total genes 

present remains relatively similar across the developed models with an average of 899 genes, while 

the amount of total reactions ranges from 1240 reactions, for iAZ900, to 3334 reactions for Yeast 

7.6. The justification for this discrepancy lies in the inclusion of membrane compartments in the 

model, to enhance more resolution on reaction localization, thus requiring the addition of transport 

reactions, heavily increasing the number of added reactions in the model [33]. As to the number of 

genes and reactions related to NAD(P)(H), model updates do not appear to influence gene or reaction 

number, with the latest models developed having a smaller gene count when compared with the 

others, with the exception of iIN800. GEM iIN800 and iTO977 have the lowest amount of reactions 

related to NAD(P)(H), with 165 reactions each, while the remaining models have a reactions count 

ranging from 184 to 189.  

In order to acquire a better insight on the evolution of model curation of reactions and genes related 

to the usage of NAD(P)(H), along the years, a comparison between the presented models was 

performed. Firstly, GEMs iIN800, iAZ900, iMM904 and iTO977 were compared between them and 

the differences analyzed, while Yeast 6 and Yeast 7.6 were compared against each other. In the end, 

iTO977 and Yeast 7.6, the last developed models were also compared.  

Figure 4.4 – In the left is depicted a comparison between the total amount of genes and reactions included in each 
GEM. On the right, a comparison between the total amount of genes and reactions using NAD(P)(H) included in each 
GEM. 
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The diagrams presented in Figure 4.5 display the number of genes related to NAD(P)(H) that each 

model contains. In brackets is displayed the amount of predicted genes. When analyzing the 

displayed data in the diagram correspondent to the four models we can see that these models share 

99 genes related to NAD(P)(H), from which 66 had their cofactor specificity predicted. GEM iTO977 

is the only model with genes that are not shared with any of the previously developed models, with 

5 genes. GEM iMM904 and iAZ900, that were developed as updates of iMM904, share 23 genes 

that are not present in the other two models, having only 4 of these been predicted for cofactor 

specificity. When analyzing the yeast consensus models, Yeast 6 and Yeast 7.6, we can see that 

these models share 138 genes, being 75 predicted. Despite Yeast 6 having 15 genes that are not 

present in Yeast 7.6, none of them have their cofactor predicted, while two of the three genes in 

Yeast 7.6 that are not present in Yeast 6 have a prediction made. When comparing the genes shared 

by the two latest models, iTO977 and Yeast 7.6, we can see that these models share 122 genes, 

with 72 having a prediction performed. GEM iTO977 incorporates 15 genes that are not present in 

Yeast 7.6, being 5 predicted, while Yeast 7.6 possesses 19 genes that are not present in iTO977, 

being 4 predicted. 

Figure 4.5 – Veen diagrams with the intersection of the common genes related to NAD(P)(H) contained in each 
model and also, in brackets, the intersection of the common predicted genes related to NAD(P)(H) contained in 
each model. 
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The results achieved by the developed software are displayed in Figure 4.6. Gene cofactor prediction 

affects directly the information on the gene, but also the information on the reactions that have those 

genes present in the respective GPR. The displayed figures show the amount of predicted genes, for 

each model, that match or mismatch cofactor utilization. Situations where a specific gene is 

associated to GPRs from reactions using both cofactors are also highlighted. Also shown is the 

amount of reactions, per model, whose cofactor utilization matches, or mismatches, the cofactor 

predictions of the genes represented in its GPR. 

When analyzing the displayed figures we can see that the vast majority of the predicted genes match 

the cofactor usage by the reactions. Between 74.4% and 78.5% of the predicted genes match cofactor 

utilization of their related reactions, being iMM904 the GEM with the highest percentage of matching 

genes, with 62, while iIN800 has the lowest percentage of matching genes, with 50%. As to the 

predicted genes mismatching reaction cofactor, Yeast 6 has the highest percentage with 20% (15 

genes), while iAZ900 has the lowest, with 10 genes. There are also genes that are present in GPR 

from reactions using NAD(H) and NAD(P)(H). GEM iAZ900 is the model with the highest percentage 

of genes, with 10.3% (8 genes), which helps justifying the lower amount of mismatching genes. The 

lowest percentage of these genes are present in Yeast 6, with 2.7% (2 genes) of genes being present 

in GPR of reactions using both cofactors. 

Figure 4.6 – Comparison between the six analyzed S. cerevisiae GEM. Left: Gene prediction comparison, with displayed 
data showing the amount of matching and mismatching predicted genes with reaction cofactor usage as well as genes 
present in reactions using both cofactors. Right: Reaction matches comparison displaying the amount of reactions, in 
each model, that match or mismatch the cofactor predicted. 
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An interesting show case on the applicability of the developed methodology is the cofactor prediction 

of the gene YHR037W. Gene YHR037W, which encodes the mitochondrial enzyme Delta-1-pyrroline-

5-carboxylate dehydrogenase and is responsible for three different reactions, L-1-pyrroline-3-hydroxy-

5-carboxylate dehydrogenase, L-4-hydroxyglutamate semialdehyde dehydrogenase and 1-pyrroline-

5-carboxylate dehydrogenase, has been characterized as possessing specificity for NAD(H) usage as 

cofactor [113], [114]. This enzyme was also predicted as being specific for NAD(H) by our software, 

which is in accordance with the data found in the literature. Nonetheless, this fact is only true in the 

models from the consensus yeast model, Yeast 6.0 and Yeast 7.6. All other models analyzed use 

reactions associated to this enzyme with NADP(H) as cofactors. The fact that the consensus yeast 

models represent the most recent update versions of S. cerevisiae GEMs might explain the models 

better curation, in this case. This analysis shows once again the advantages and importance of the 

developed software in genome-scale metabolic model reconstruction. 

4.3.5 Analysis of S. cerevisiae Yeast 7.6 GEM  

In order to assess the applicability of the results achieved by NiCofactor, the latest S. cerevisiae 

model Yeast 7.6 was further investigated. Mismatching genes were individually inspected and also 

the corresponding reactions were corrected, according to the developed tool, and the model was 

used in simulations in order to attest the implication of the new set of curated reactions in the 

simulation results. As previously referred, Yeast 7.6 is the latest model developed for S. cerevisiae, 

and represents the metabolism of S. cerevisiae s288c. 

As previously mentioned for Yeast 7.6, approximately 18.2% of the cofactor predicted genes do not 

match the cofactor used by the reactions encoded by them, while 3.9% of the analyzed genes are 

present in GPRs of reactions using both cofactors separately. In table 4.5 the genes that do not 

match the reactions cofactor usage are displayed, as well as the corresponding reactions. 

Table 4.5 – Predicted genes with mismatching cofactor usage and the respective reactions. 

Gene name Mismatching reactions Reaction Cofactor Cofactor prediction 

YDL215C r_0470 NAD(H) NADP(H) 

YDR376W r_0530 NAD(H) NADP(H) 

YJR139C r_0547 NADP(H) NAD(H) 

YGL001C r_0234 NADP(H) NAD(H) 

YOR374W r_0175; r_0178 NADP(H)) NAD(H) 

YMR041C r_0320 NAD(H) NADP(H) 
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YER073W r_0175; r_0178 NADP(H) NAD(H) 

YBR115C r_0678 NADP(H) NAD(H) 

YPL061W r_0177; r_0173 NADP(H) NAD(H) 

YJR137C r_1027 NADP(H) NAD(H) 

YBR006W r_1023 NADP(H) NAD(H) 

YDR127W r_0996 NADP(H) NAD(H) 

YGR204W r_0732 NADP(H) NAD(H) 

YBR084W r_0733 NADP(H) NAD(H) 

YPL023C r_0080 NADP(H) NAD(H) 

YGL125W r_0080 NADP(H) NAD(H) 

YLR355C r_0669; r_0096 NADP(H) NAD(H) 

 

As it is possible to observe, a total of 17 genes are represented, which are included in GPRs of 18 

reactions. Three of the genes in the table encode for reactions using NAD(H) in the model but were 

predicted as NADP(H) specific, while 14 encode for reactions using NADP(H) but were predicted as 

NAD(H) specific. 

With the final set of genes predicted as specific for a different cofactor, the affected reactions present 

in model Yeast 7.6 were altered in their cofactor usage, giving origin to a new model: Yeast 

7.6_Corrected. Table 4.6 displays the reactions affected by the corrections implemented to the 

model, and the type of corrections implemented in order to match the predicted cofactor specificity 

of the encoding genes. The majority of the corrections implemented consisted in the alteration of the 

cofactor used from NADP(H) to NAD(H). In the cases of existing reactions already using the opposite 

cofactor in the model, these were indicated for deletion to prevent the creation of duplicated 

reactions. 

Table 4.6 – Yeast 7.6_ Corrected model with the description of the performed corrections along with reaction 
identification and reaction name. 

Reaction ID Reaction name Correction 

r_0320 D-arabinose 1-dehydrogenase (NAD) Delete reaction 

r_0530 Heme O monooxygenase NAD(H) -> NADP(H) 

r_0470 Glutamate dehydrogenase (NAD) NAD(H) -> NADP(H) 

r_0669 Ketol-acid reductoisomerase (2-aceto-2-hydroxybutanoate) NADP(H) -> NAD(H) 

r_0080 5,10-methylenetetrahydrofolate reductase (NADPH) NADP(H) -> NAD(H) 

r_0177 Aldehyde dehydrogenase (indole-3-acetaldehyde, NADP) NADP(H) -> NAD(H) 

r_0175 Aldehyde dehydrogenase (acetylaldehyde, NADP) Delete reaction 
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r_0178 Aldehyde dehydrogenase (indole-3-acetaldehyde, NADP) Delete reaction 

r_0547 Homoserine dehydrogenase (NADP) Delete reaction 

r_0173 Aldehyde dehydrogenase (acetaldehyde, NADP) NADP(H) -> NAD(H) 

r_0234 C-3 sterol dehydrogenase NADP(H) -> NAD(H) 

r_0096 Acetohydroxy acid isomeroreductase NADP(H) -> NAD(H) 

r_1027 Sulfite reductase (NADPH2) NADP(H) -> NAD(H) 

r_1023 Succinate-semialdehyde dehydrogenase (NADP) NADP(H) -> NAD(H) 

r_0678 L-aminoadipate-semialdehyde dehydrogenase (NADPH) NADP(H) -> NAD(H) 

r_0733 Methylenetetrahydrofolate dehydrogenase (NADP) NADP(H) -> NAD(H) 

r_0996 Shikimate dehydrogenase NADP(H) -> NAD(H) 

r_0732 Methylenetetrahydrofolate dehydrogenase (NADP) Delete reaction 

 

In order to assess the effect of these changes in cofactor usage on the overall performance of the 

model, a comparison between the original and corrected models was employed. Both models were 

set and simulated with the same environmental conditions, being their biomass growth 

representation, and flux distribution in key metabolic routes of the central metabolism, compared 

and evaluated. 

The starting point of any metabolic simulation analysis is the observation of the maximum biomass 

growth rate achieved under predetermined environmental conditions. Being the experimental S. 

cerevisiae biomass yield on glucose around 0.5gCDW/g Glucose [115] and the maximum glucose 

uptake rate on the model’s environmental conditions set to 1.15 mmol/(gCDW.h), the expected 

growth rate should be close to 0.10 h-1. Both model simulations predicted a maximum biomass 

growth rate similar to the expected value, with the original Yeast 7.6 achieving 0.1089 h -1, and the 

corrected version 0.1075 h-1. However, when analyzing the metabolic fluxes in the central 

metabolism, some inconsistencies were detected, most noticeably, in the Pentose Phosphate 

Pathway (PPP), where there was an almost absent flux, in both models. Flux in the oxidative phase 

of this pathway is required for the generation of NADPH in the cell, and its deficiency indicates that 

the model is artificially generating NADPH somewhere else. A similar problem was found in a recent 

study involving older S.cerevisiae models. In the performed analysis, Pereira and coworkers [116] 

simulated the GEMs iFF708, iMM904, iTO977 and Yeast 6 and found that the analyzed models were 

predicting erroneous fluxes in central carbon pathways, especially in the pentose phosphate 

pathway. Upon further investigation it was found that among the problems with the simulations were 

the consumption and production of NAD(P)(H). After intense literature review and manual curation 
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of these reactions, a set of reactions was forcibly constrained or inactivated, with more accurate flux 

distributions being simulated by the models. In the analyzed Yeast 7.6 model, upon further 

investigation it was detected that, in the original model, NADPH was being produced by the cytosolic 

Methylenetetrahydrofolate dehydrogenase (r_0732). Besides artificially generating NADPH, the high 

activity of this enzyme also originated a high flux in the Folate pathway, creating a circular flux of 

consumption and production of Tetrahydrofolate, while producing ATP in reaction r_0446. This 

inconsistency is solved in the corrected model with the cofactor change of r_0732 from NAD(P)(H) 

to NAD(H), dramatically decreasing its flux. Despite the undergone modifications, in the corrected 

model there were still some inconsistencies, as the flux was not yet restored in the PPP. The 

responsible for this was the cytosolic isocitrate dehydrogenase (r_0659), encoded by the gene 

YLR174W, first characterized by [117], which was now supplying the cell with NADPH, although with 

lesser flux. This gene, however, has been experimentally characterized as being repressed in the 

presence of glucose [118]. Also, the activity of this enzyme has been experimentally shown to be 

inhibited when the concentration of NADPH increases relatively to NADP+ [119]. This increase in 

concentration might also play a role in the redirection of Gibbs free energy in this reaction, facilitating 

NADP+ production in vivo. For all these reasons, a decision was taken to constrain the reversibility of 

r_0659 in the direction of NADPH consumption. With this small change in both models, we were 

able to observe a dramatic flux change in the corrected model with the total restoration of the PPP. 

Central carbon metabolism fluxes from both models, along with experimental flux determinations 

retrieved from the literature [120], [121] are displayed in Figure 4.7. 

A detailed analysis of the presented figure reveals the astonishing improvement in metabolic flux on 

the Pentose Phosphate Pathway, as well as in the citric acid cycle, in the corrected Yeast 7.6 model, 

when compared to the original model. Also, when comparing model flux and experimental data, 

Yeast 7.6_corrected reveals itself to be a very close approximation to the in vivo metabolic fluxes 

occurring inside the cell. 

The oxidative phase of PPP (oxPPP), represented in the figure by the Phosphogluconate 

dehydrogenase (reaction GND, r_0889), shows a rather slender flux in the original model, as it is 

regenerating NADPH using the Methylenetetrahydrofolate dehydrogenase (reaction r_0732). 
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In the corrected model, the oxPPP is completely restored, encompassing flux values very similar to 

the fluxes retrieved from experimental data. The non-oxidative phase is represented in the figure by 

the aggregation of reactions leading to the production of Fructose-6-phosphate, in reaction PP6, and 

Glyceraldehyde-3-phosphate, in reaction PP3. In these reactions, once again, the corrected model 

shows satisfactory results, although this time with fluxes smaller than in literature. Meanwhile, the 

Figure 4.7 - Comparison between the predictions of pFBA for the original and corrected models of Yeast 7.6 and also with 
experimental data. Original Yeast 7.6 (red), Corrected Yeast 7.6 (Green), Average of the 13C-MFA fully aerobic chemostat at a dilution 
rate of 0.1 h-1 (blue). Reactions: ACONT- aconitase, ACS- acetyl-CoA synthetase, ADH- alcohol dehydrogenase, AKGD- alpha-
ketoglutarate dehydrogenase, ALD- aldehyde dehydrogenase, CSm- citrate synthase, FBA- fructose 1,6-bisphosphate aldolase, FUM- 
fumarase, G3PD1ir- glycerol-3-phosphate dehydrogenase, G3PT- glycerol-1-phosphatase, GAPD- glyceraldehyde-3-phosphate 
dehydrogenase, GHMT2r- serine hydroxymethyltransferase, GND- 6-phosphogluconate dehydrogenase, HEX- hexokinase, ICD- 
mitochondrial isocitrate dehydrogenase, MDH- mitochondrial malate dehydrogenase, MEmitochondrial malic enzyme, PDC- pyruvate 
decarboxylase, PDH- pyruvate dehydrogenase, PFKphosphofructokinase, PGI- phosphoglucose isomerase, PGK- 3-phosphoglycerate 
kinase, PGMTphosphoglucomutase, PP3- sum of the non-oxidative reactions of the pentose phosphate pathway producing 
glyceraldehyde-3-phosphate, PP6- sum of the non-oxidative reactions of the pentose phosphate pathway producing fructose-6-
phosphate, PSP- phosphoserine phosphatase, PYC- pyruvate carboxylase, PYKpyruvate kinase, SUCD- succinate dehydrogenase, 
SUCOAS- succinyl-CoA ligase, THRS- threonine synthase, TPI- triose phosphate isomerase. Metabolites: 13dPG- 1,3-
diphosphoglycerate, 3PG- 3-phosphoglycerate, AcCoA- acetyl-CoA, Akg- 2-oxoglutarate, Cit- citrate, DHAP- dihydroxyacetonephosphate, 
Fum- fumarate, G3P- glyceraldehyde-3-phosphate, Icit- isocitrate, Mal - L-malate, Oaaoxaloacetate, Ser- L-serine, Succ- succinate, 
SucCoa- succinyl-CoA. 
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original model, not only is unable to complete the pathway, but actually reverts its fluxes. This 

happens due to the absence of flux in the oxPPP, as the intermediates in need for biomass production 

are produced from the products of glycolysis. Moving along in metabolism, fluxes from 

Phosphoserine phosphatase (reaction PSP, r_0917) producing L-serine and Glycine 

hydroxymethyltransferase producing L-glycine (reaction GHMT2r, r_0502), are presented with very 

high values in the original model. The reason behind these elevated fluxes is the artificial regeneration 

of NADPH occurring in the folate pathway, which requires the consumption of these two aminoacids. 

In the corrected model, these fluxes are according to the literature, which favor a higher flux in the 

Pyruvate kinase (reaction PYK, r_0962), as suggested in the experimental data. The higher flux of 

PYK, when compared to the original model, translates in a higher availability of pyruvate to enter 

mitochondria and help complete the TCA cycle. Fluxes from the TCA cycle in both models are also 

quite disparate, as the corrected model fluxes in this pathway show a complete cycle and are again 

very similar to the average values found in the literature. On the other hand, TCA cycle fluxes in the 

original model are overall smaller, and even absent in some reactions. 

When analyzing the fluxes in the altered cofactor reactions, in the corrected model, it is possible to 

observe that, overall, the implemented modifications had an effect in the increase of NAD+ availability, 

while decreasing NADP+ production. From the set of 18 reactions that had their cofactor modified to 

match the encoding genes cofactor specificity, 10 were found to have fluxes when simulated with 

the specified environmental conditions. From these, only r_0530 (heme O monooxygenase) had a 

modification that produce NADP+, with a flux close to zero. All other reactions with flux started 

producing NAD+ instead of NADP+, with the exception of r_0173 (Aldehyde dehydrogenase) and 

r_0996 (Shikimate dehydrogenase) that produced NADH, instead of NADPH. One other detail, in 

this set of reactions, is that all reactions with fluxes maintained a similar flux when the corresponding 

cofactor was modified. An example of this is the aldehyde dehydrogenase represented in figure 4.7 

by ALD that maintained the same flux, despite using a different cofactor. The only exception to this 

is again r_0732 (Methylenetetrahydrofolate dehydrogenase) that, due to the inversion of fluxes on 

PPP, saw its flux (in the equivalent reaction r_0731, that already used NAD(H)) decreasing almost 

40 fold. 

The analyzed results, from the fluxes in the central carbon metabolism, suggest a better depiction 

of reality from the corrected model, when directly compared with the original one. The changes in 

cofactor usage in the selected reactions have proven to provide the model with a far more accurate 
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result, when predicting metabolic fluxes. Experimental evidence on central carbon metabolic flux 

distribution and cofactor specificity also support the implemented corrections to the original model 

Yeast 7.6. The implementation of the used tool for automatically performing cofactor specificity 

prediction revealed of upmost utility in the achievement of the discussed results. 

4.4 Conclusions 

Genome-scale metabolic model reconstructions are a laborious and highly skill requiring tasks that 

demands a great effort in the curation process. Reaction cofactor prediction in GEM reconstruction 

has an immediate effect on reaction composition. With the usage of NAD(P)(H) being scrutinized, 

the association of a cofactor to a specific gene determines that the reactions associated to that gene 

should be using the gene associated cofactor. In the presented study, the cofactor specificity of 

several enzymes was assessed in order to analyze and state of NAD(P)(H) cofactor usage curation 

within several GEM. The aminoacid sequence of each enzyme associated to reactions using 

NAD(P)(H) was retrieved and processed using our developed tool, NiCofactor. Results evidence an 

overall satisfactory curation of NAD(P)(H) usage in the analyzed models, despite the occurrence of 

some mismatches that might impair an accurate GEM simulation. An emphasis was given to GEMs 

modeling S. cerevisiae metabolism due to their abundance and relevance. The most recent yeast 

GEM, Yeast 7.6 was further analyzed and its reactions corrected, according to our data. Both original 

and corrected models were simulated in identical conditions, with surprising results achieved by the 

corrected model when compared not only with the original one, but also with the literature. This work 

demonstrates the performance and applicability of the developed software in the curation of GEMs, 

exhibiting a great potential as a tool for aiding GEM reconstruction for a large group of researches. 
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CHAPTER 5 

 

Development of an in silico method for the conversion of NAD(P)(H) 

cofactor specificity in structurally uncharacterized enzymes 
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5.1 Introduction 

Since the establishment of the industrial revolution, fossil fuels such as crude, gas and coal, have 

played a decisive role in the rapid development of several industries responsible for the steady growth 

of world economies. However, as climate changes are becoming a real threat, and more prominently 

due to the rising fear shared by world leading economies concerning natural or human imposed 

fossil fuel scarcity, this reality is transforming. 

For many years now, the world has been making a huge effort in enhancing its fossil fuel supported 

economy with a safer, healthier and environmentally conscious biotechnological approach. These 

efforts supported the growth of multiple new biotechnology fields such as synthetic biology and 

metabolic engineering, with a clear focus on the development of biosynthetic chemicals, 

pharmaceutical drugs and in the production of efficient biocatalysts for replacing chemically driven 

reactions [1]–[4]. 

Despite great advances and breakthroughs achieved by the aforementioned biotechnological fields, 

the complex metabolic panorama of most organisms is still elusive, hindering an efficient and 

replicable tuning of their biosynthetic pathways for the optimization of desired by-products [5]. 

One of the most relevant challenges in designing biosynthetic pathways in an organism’s metabolism 

resides in the fragile balancing of reaction cofactors availability, such as the case of nicotinamide 

adenine dinucleotide (NAD(H)) and nicotinamide adenine dinucleotide phosphate (NADP(H)) [6]. 

Being the most widely used cofactors, cell metabolism heavily regulates the levels of reduced and 

oxidized metabolic pools of NAD(P)(H), which are often targets for the metabolic engineering of 

biological pathways and systems [7]. The fine balance between these seemingly equivalent cofactors 

has been the subject of multiple studies [8]–[10], with several approaches being undertaken in order 

to modify the related pathways in the process of engineering biosynthetic production [11]–[14]. 

Cyanobacteria, as an example, have been genetically modified to produce tangible amounts of 

added-value biochemicals, such us biofuels and lactate. However, their metabolic unbalance towards 

NADP(H) limits the synthesis of these products. Approaches for solving this problem include the 

usage of heterologous enzymes with a different cofactor usage, the over expression of cofactor 

synthesis and also metabolic engineering for cofactor specificity reversal [8]. 

This problem has also been addressed, in silico, using genome-scale metabolic models (GEMs) with 

approaches being developed in an attempt of simplifying and optimizing cofactor balancing for strain 
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design endeavors [15], [16]. The computational method OptSwap encompasses an optimization 

protocol developed specifically to address this problem. Using GEMs, this method predicts strain 

designs by identifying optimal modifications of NAD(P)(H) cofactor binding enzymes as well as 

complementary reaction knockouts [16]. However, despite its relevance and applicability, the 

mentioned method refrains to refer any approach on how to accomplish such cofactor binding 

alteration. 

Due to the structural similarity between NAD(H) and NADP(H), with their only difference residing in 

the presence of a phosphate group in the vicinity of the 2’ hydroxyl of the adenosine ribose in 

NADP(H), specificity mechanisms are difficult to characterize, hindering rational approaches for 

performing NAD(P)(H) cofactor specificity reversal. Nonetheless, reversing NAD(P)(H) cofactor 

specificity is a frequently addressed problem in metabolic engineering and strain design due to its 

implications in metabolic pathway flux redirection. Cui et al, [17] compiled a list of enzyme redesigns 

for altered NAD(P)(H) cofactor specificity using site-directed mutagenesis, showing that multiple 

simultaneous mutations have to be performed in order to effectively change cofactor specificity, due 

to their non-additive characteristics. 

In addition to their unpredictability, current methodologies for performing NAD(P)(H) cofactor 

specificity change require intensive experimental work, being performed primarily on a case-by-case 

workflow, with gained knowledge from previous experiments being often not able to be reproduced 

in new ones. 

One of the latest methods developed to aid in this arduous task works by targeting the residues 

contacting the 2’moiety directly, or through water mediated interactions, with a designed library of 

mutations[18]. Target residues are classified according to their relative position towards the 

nicotinamide moiety [19] and mutations are designed utilizing subsaturation degenerate codon 

libraries. However, this approach is subjective as library design is based in the inclusion of mutations 

previously described in the literature as valuable for cofactor specificity reversal [18]. Moreover, the 

amount of experimental work required for processing the designed libraries is still enormous and, 

also, a characterized enzyme’s structure, with the target cofactor bound, as well as information on 

cofactor specificity, are still required. 

In chapter 3, we set out to unveil the molecular determinants for NAD(P)(H) cofactor specificity, 

using enzyme structural information. Using support vector machines (SMV) we were able to identify 
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and categorize, by cofactor specificity, aminoacid residues positioned around different areas of the 

binding of cofactors in a large enzyme dataset. With the development of a specificity prediction tool, 

these findings were successfully applied in the prediction of cofactor specificity of enzymes not 

structurally characterized. 

In the present chapter we propose a new method for the in silico efficient conversion of NAD(P)(H) 

cofactor specificity in non structurally characterized enzymes. 

Firstly, a method for identifying and producing an ordered list containing the most influential residues 

for cofactor specificity in a given enzyme structure was developed, using the SVM predictive model 

and CNRPM (Cofactor Neighbor Residue Profile Matrix) protocol generated in chapter 3. The created 

list is assumed as containing the theoretical optimal set of residue positions suitable for point 

mutations conferring cofactor specificity reversal. 

Secondly, two methods were developed in order to identify the optimal set of point mutations required 

for achieving cofactor specificity change. For that, two distinct approaches were implemented, being 

one deterministic, using the gathered information on the most influential residues for both cofactor 

specificities; and the other stochastic, using evolutionary algorithms to locate the optimal set of 

mutations capable of reverting cofactor specificity. 

With the implementation of the developed methods, we were able to pinpoint theoretical optimal 

aminoacid residue mutations for an efficient alteration of cofactor specificity in case studies, and 

predict the resulting cofactor specificity using the developed tool for cofactor prediction. 

5.2 Methods 

5.2.1 Aminoacid residue sequences and protein structure templates 

The wild-type amino acid residue sequences from the selected case-study enzymes were retrieved 

from Uniprot, while mutant sequences were replicated in silico according to the specifications 

presented in the literature. Uniprot IDs from the four selected enzymes are as following: Pichia 

stipitis’s xylose reductase: P31867; Gluconobacter oxydans’s xylitol dehydrogenase: Q8GR61; Pichia 

stipitis’s xylitol dehydrogenase: P22144; Tramitichromis intermedius’s leucine dehydrogenase: 

Q60030. 

Gluconobacter oxydans’ xylitol dehydrogenase had its structure already experimentally characterized 

(PDB id: 1ZEM), being therefore used as a template for modeling the structure of the predicted 
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mutants. As for the remaining three enzymes, since their structures were not experimentally 

characterized, the structures of the wild-type and corresponding mutants were generated using 

comparative modeling. Pichia stipitis’ xylose reductase structure was modeled using the homologue 

structure of Arabidopsis thaliana’s aldo-keto reductase (PDB id: 3H7R) with 47% identity; Pichia 

stipitis’ xylitol dehydrogenase structure was modeled using the homologue structure of Homo 

sapiens’ sorbitol dehydrogenase (PDB id: 1PL6) with 44% identity and Tramitichromis intermedius’ 

leucine dehydrogenase structure was modeled using the homologue structure of Rhodococcus sp. 

M4’s phenylalanine dehydrogenase (PDB id: 1BW9) with 37% identity. 

5.2.2 Cofactor specificity prediction 

Predictions on cofactor specificity change were performed using NiCofactor, the developed tool 

described in chapter 3, for allowing the high throughput NAD(P)(H) cofactor specificity prediction. 

NiCofactor was built using the python programming language. Input sequences are required to be 

in FASTA format. For each sequence, the tool initiates an individual project. The tools for generating 

CNRPMs and performing machine learning were also integrated in NiCofactor. Results are outputted 

by attributing to each analyzed sequence a cofactor prediction and subsequent prediction score. The 

default probability score threshold used is 0.8. 

5.2.3 Evolutionary algorithm implementation 

The evolutionary algorithms used in the stochastic method for efficiently predict the optimal set of 

mutations to reverse cofactor specificity were implemented using inspyred [20], an open source 

framework for creating biologically-inspired computational intelligence algorithms in Python. 

Five evolutionary algorithms were implemented, with the only difference between them being the 

maximum candidate size allowed. Each algorithm was configured to run through 100 generations, 

being the initial population composed by 100 individuals. Each individual was randomly created 

according to the candidate maximum size, which varied between 1 and 5. This corresponds to the 

creation of mutant aminoacid residue sequences derived from the original target aminoacid residue 

sequence, containing between 1 and 5 mutations each. Elitism value was set to 2, keeping the best 

2 scoring individuals for the next generation. The next best scoring 50 individuals were recombined 

using mutation operators, with a crossover rate of 0.9 and a mutation rate of 0.1. The crossover 

operator uses the parameters of two individuals and combines them, generating two new individuals, 

while the mutation operator substitutes one element of the individual by another, randomly 
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generated. The remaining lowest scoring 48 individuals were discarded and newly generated 

individuals with random mutations in the available mutable positions were incorporated in the 

population. The optimization process is terminated when the maximum number of generations is 

achieved. 

5.2.4 Protein structure visualization 

Wild-type and mutant enzyme structures were visualized using PyMol [21] a free and user-friendly 

molecular graphics system for molecular visualization written in Python programming language. 

5.3 Results and discussion 

5.3.1 Identification of mutable residue positions for cofactor specificity reversal 

 As previously stated in chapter 3, the SVM model, trained with a large dataset of CNRPMs, 

performed the attribution of importance scores to the features in the dataset, allowing the correct 

separation of the instances in the hyperplane. In this case, the features are composed of relations 

between the atoms in each cofactor and the corresponding neighbor aminoacid residues. Then, the 

score attributed to each feature, reveals the impact of each interaction in the binding preference of 

the cofactors, with higher scoring features having a higher impact on cofactor specificity. Figure 5.1 

depicts a representation of the process undertaken for the selection of mutable residue positions for 

cofactor specificity reversal. Through the analysis of the CNRPM generated from a target enzyme’s 

structure, and by combining this information with the data stored in the SVM model, the sorting of 

the best features for cofactor specificity is performed. When the most influential features for cofactor 

specificity in a given protein structure are sorted, the corresponding residue position in the sequence 

is retrieved and stored for each feature. When features from ten distinct residues in the sequence 

are retrieved, the list is closed. 

The end result is an ordered list of the most influential residues in cofactor specificity for a given 

target enzyme, being assumed that, due to their influence in cofactor specificity, this list contains 

the optimal mutable residues for cofactor specificity reversal. 

Despite the developed method’s utility in precisely pinpointing suitable target residues for cofactor 

specificity reversal mutations, such endeavor is still greatly hindered by the combinatory amount of 

total mutant possibilities. In order to optimize this task, two distinct approaches were undertaken, 
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resulting in the development of two different methods for determining the optimal set of mutations 

necessary to achieve cofactor specificity reversal. 

 

5.3.2 Cofactor specificity reversal – Deterministic method 

With the intent of surpassing the overwhelming amount of combinatorial mutations necessary for the 

screening of all suitable mutable residue positions to achieve the optimal cofactor specificity reversal 

mutant, a deterministic method was developed. This deterministic approach is based on the 

Figure 5.1 – Process for the identification and selection of suitable mutable residue positions for cofactor 
specificity reversal. By combining the information on the target enzyme’s CNRPM with the data in the SVM model, the 
sorting of best features for a specific enzyme is possible. By returning the features residue position in the sequence, a list 
of optimal mutable residues for cofactor specificity change is able to be generated. 
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formulation of a hypothesis regarding both cofactor’s most influential features. With this in mind, the 

suggested hypothesis states that: if, for each atom composing a cofactor, there is a specific neighbor 

aminoacid residue with the highest impact in the cofactor specificity, then, if this interacting 

aminoacid residue is replaced by the aminoacid residue with the highest impact for the opposite 

cofactor, the binding specificity should be affected. Therefore, if enough aminoacid residues with 

high impact on cofactor specificity are changed, the cofactor specificity should be reverted. 

In order to implement the stated hypothesis, the extracted SVM feature weights present in appendix, 

in table A1, were further examined. For each cofactor atom, the strongest feature present for NAD(H) 

and NADP(H) specificity was selected, and the associated residue retrieved. The resulting chart, 

displayed in table 5.1, represents, for each cofactor atom, the aminoacid residue interaction with 

highest impact on cofactor specificity, and consequently the candidate for performing point-

mutations in that area of the binding spot. Figure 5.2 depicts the information present in table 5.1 by 

positioning each aminoacid residue according to the interaction with highest impact on cofactor 

specificity. 

Table 5.1. Point-mutation selecting chart. Each cofactor atom and corresponding molecular localization is 
represented in the column “cofactor atom”. For each atom, the corresponding NAD(H) and NADP(H) specificity is 
represented in columns “NAD(H) specific” and ”NADP(H) specific” respectively. 

Cofactor 
atom 

NAD(H) 
specific 

NADP(H) 
specific 

Cofactor 
atom 

NAD(H) 
specific 

NADP(H) 
specific 

PA GLY GLU O3 HIS GLY 

O1A ARG ALA PN ASN GLU 

O2A GLU ALA O1N LEU TRP 

O5B ASP SER O2N LEU ASP 

C5B ASP LEU O5D GLN ILE 

C4B ASP LEU C5D SER ALA 

O4B SER GLY C4D TYR ASN 

C3B ILE CYS O4D ILE THR 

O3B PHE ALA C3D HIS TYR 

C2B GLU ARG O3D THR TYR 

O2B GLU ARG C2D PRO GLU 

C1B ALA ARG O2D VAL ALA 

N9A ASP TYR C1D CYS THR 

C8A ASP TYR N1N PRO ASP 

N7A PHE TYR C2N MET ILE 

C5A LYS TYR C3N GLU LYS 

C6A ALA VAL C7N ASN GLN 

N6A ALA GLN O7N ARG CYS 

N1A PHE SER N7N ASP ASN 

C2A ASP ALA C4N ALA LEU 

N3A TYR ARG C5N ASN ILE 

C4A PHE ASN C6N GLU PHE 
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5.3.2.1 Implementation of the deterministic method for cofactor specificity conversion  

The implementation of the deterministic method for the conversion of NAD(P)(H) cofactor specificity, 

depicted in figure 5.3, starts with the structural analysis of the subject enzyme and respectively 

CNRPM assembly with NiCofactor, the developed tool for predicting cofactor specificity. If the subject 

enzyme’s structure is not characterized, homology modelling with a suitable structural template is 

performed automatically by NiCofactor. 

Once created, CNRPM features are sorted and the one with the highest impact is selected. The 

aminoacid residue sequence position from the residue present in the feature is retrieved, while the 

atom present in the feature is searched in the point-mutation selecting chart displayed in table 5.1, 

being the candidate aminoacid residue mutant selected. 

The wild-type aminoacid residue is replaced by the mutant candidate in the aminoacid residue 

sequence. The mutant sequence is retrieved and its cofactor specificity is predicted using NiCofactor. 

If a prediction is performed, with a probability score above the threshold, and the cofactor predicted 

for the mutant sequence is changed, the mutant sequence is accepted as having its cofactor 

specificity successfully altered. If, on the other hand, the cofactor prediction did not change, the 

conversion method continues with the mutant sequence and the second highest impact feature is 

used. This step is performed iteratively, with mutations being incremented in the sequence until the 

cofactor prediction is changed. If after 10 consecutive mutations the cofactor prediction remains 

unaltered, the mutation is regarded as unviable. 

Figure 5.2 - Cofactor atom-aminoacid interactions with highest impact on specificity. Each green circle 

represents an aminoacid, displayed in the single-letter format, which connects to each corresponding cofactor atom, 

forming the atom-aminoacid interaction with highest impact on specificity for each atom in both cofactors. 
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In the example depicted in figure 5.3, for the NAD(H) dependent target enzyme structure, the atom-

aminoacid residue interaction with highest impact on cofactor specificity is originated by the 

presence of a Phenylalanine (F) near the atom O3B, in the ribose from the adenine moiety. By 

consulting table 5.1 it is possible to observe that the residue originating the atom-aminoacid residue 

interaction, with atom O3B, with the highest impact on cofactor specificity for NADP(H) is an Alanine 

(A). Being the sequence position of the selected Phenylalanine, position 42, a point mutation is 

performed and the Phenylalanine is substituted by an Alanine. Despite this mutation, the cofactor 

specificity prediction of the target enzyme was not altered, being therefore selected the second 

highest impact interaction, the Aspartate (D) near the atom O5B. With the substitution of Aspartate 

by a Serine (S) not rendering an altered cofactor specificity prediction, the third highest impact 

interaction was selected. This time, the Aspartate near atom C8A was mutated into a Tyrosine (Y) 

and the resulting mutant F42A/D23S/D71Y was successfully predicted as having reverted its 

original cofactor specificity. 

The presented deterministic method is a fast and precise approach for the complex problem of 

selecting the optimal set of mutations capable of reverting cofactor specificity in a target enzyme. 

Despite its overall efficacy, robustness and time efficiency, the deterministic characteristics of this 

approach mean that there are multiple mutation combinations that are not taken into consideration, 

with the possibility of better results for a set of cofactor specificity reverting mutations being 

overlooked. Due to these constraints, and in order to analyze the highest number of mutation 

combinations possible, a stochastic method was developed, with the incorporation of an evolutionary 

algorithm. 

 

 

 

 

 

 



 
 

Figure 5.3 Exemplification of the deterministic method implementation for cofactor specificity conversion. Given the ordered list of most influential residues for cofactor 
specificity and by consulting the point-mutation selection chart, the method selects and accumulates different mutations until the reverted cofactor specificity prediction is achieved. 



 
 

5.3.3 Cofactor specificity reversal – Stochastic method 

With the selection of the ten most suitable mutable residue positions for cofactor specificity reversal, 

and given the possibility of each residue position being mutated by the remaining 19 aminoacids 

residues, it becomes clear the impossibility of predicting the cofactor specificity of every mutant 

combination. To overcome this issue, a stochastic method was developed through the 

implementation of an evolutionary algorithm. These optimization algorithms perform the evolution of 

a population by mimicking biologic events such as natural selection. Each individual in a population 

is evaluated through a fitness function and compared with newly generated individuals created by 

the application of reproduction operators to selected parents. As in nature, only the fittest individuals 

are allowed to continue in the population and reproduce [22]. 

Figure 5.4 is depicts a representation of the implemented evolutionary algorithms. Given the target 

aminoacid residue sequence and the list of 10 mutable positions, an initial population of 100 mutant 

aminoacid residue sequences (individuals) was generated, with random mutations in the available 

mutable positions. In this work, 5 evolutionary algorithms were implemented, with the only difference 

being the maximum candidate size allowed, varying between 1 and 5 mutations per individual. The 

optimization process was run for 100 generations. During each generation, the cofactor specificity 

of each individual was predicted using NiCofactor. After evaluating the entire population, the two best 

scoring individuals were maintained for the next generation, while the next best 50 undertook a 

recombination process, being 90% by crossover, where two individuals are crossed over to generate 

two new individuals, and 10% by mutation, where an individual’s suitable aminoacid residue is 

randomly mutated. The remaining lowest scoring 48 individuals were discarded and newly generated 

individuals with random mutations in the available mutable positions were incorporated in the 

population. In the end of the optimization process, the five mutant sequences, containing 1 to 5 

mutations, with the highest cofactor prediction score for the opposite cofactor were retrieved and 

outputted as result. 
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5.3.4 Case studies 

With the intent of assessing the performance of the developed methods for cofactor specificity 

reversal, four case studies were replicated in silico and their cofactor specificity reverted, using the 

developed methods. From the group of cofactor engineering studies published by Khoury and 

coworkers [23], analyzed in chapter 3, the four enzymes that were found to have completely reverted 

specificity or largely decreased affinity for one of the cofactors, increasing the affinity of the other, 

were selected as case studies. These were the cases of xylose reductase from Picchia stipitis (PsXR) 

[24], xylitol dehydrogenase from Gluconobacter oxydans (GoXD) [25], xylitol dehydrogenase from 

Pichia stipitis (PsXD) [26] and leucine dehydrogenase from Tramitichromis intermedius (TiLD) [27]. 

For these enzymes, NiCofactor was able to correctly predict the cofactor specificity of both wild-type 

Figure 5.4 – Evolutionary algorithm implemented in the development of the stochastic method for 
cofactor specificity reversal. During 100 generations, an optimization process is conducted, with multiple 
mutations being performed and analyzed with NiCofactor. Highest scoring mutants are retrieved and outputted as 
results. 
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and specificity reversed mutants. With that in mind, the four enzymes’ aminoacid residue sequence 

were retrieved and processed using the above described methods with the intent of showcasing the 

results achieved in silico, and comparing them to the experimentally determined data on cofactor 

specificity reversing mutations. 

From the four enzymes analyzed, three are part of the xylose metabolism, an extremely important 

pathway due to its great economical potential. Being a major component of hemicellulose and only 

second to glucose as the most abundant sugar in nature, D-xylose can be bioconverted from 

agricultural biomass wastes into biofuels, such as ethanol, through fermentation processes. 

However, Saccharomyces cerevisiae, the best adapted microorganism for producing ethanol, is not 

genetically equipped for metabolizing xylose. To solve this problem, xylose fermenting genes have 

been cloned in S. cereviseae from other organisms capable of metabolizing this sugar, such as Pichia 

spitipis [24], [26] and Gluconobacter oxidans [25]. Xylose reductase (EC 1.1.1.21) reduces xylose 

into xylitol using NADPH and xylitol dehydrogenase (EC 1.1.1.9) oxidizes, posteriorly, xylitol into 

xylulose, using NAD+. Nonetheless, this difference in cofactor specificity creates an intercellular redox 

unbalance, hindering ethanol production yields and promoting xylitol excretion. An elegant solution 

implemented to solve this problem is the cofactor specificity reversal of xylose reductase from 

NADPH to NADH [24] or, by alternative, the specificity reversal of xylitol dehydrogenase from NAD+ 

to NADP+, taking advantage of the often higher availability of NADP+ in the cell [25], [26]. 

The remaining enzyme, Leucine dehydrogenase from Thermoactinomyces intermedius uses NAD+ 

for catalyzing the reversible deamination of L-leucine to its 2-oxo analogue, 4-methyl-2-

oxopentanoate. As biosynthesis reactions generally use NADP+ as cofactor, leucine dehydrogenase 

cofactor specificity reversal might improve this reaction’s efficiency [27]. 

5.3.4.1 PsXR – Pichia stipitis xylose reductase 

Xylose reductase (PsXR), from Pichia stipitis, was the only enzyme in the analyzed group with 

cofactor specificity for NADP(H), with the remaining enzymes being specific for NAD(H). In table 5.2 

the results achieved for the in silico cofactor specificity change of PsXR are displayed. 

As previously stated, NiCofactor was able to correctly predict the cofactor specificity from both wild-

type and literature cofactor reversed mutant, being the results achieved by the deterministic and 

stochastic methods only outputted when the prediction score threshold is achieved. 
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Table 5.2. Mutations, cofactor predictions and prediction scores from literature experimental data, as well as from the 
implementation of both methods for reversing cofactor specificity in silico of PsXR. The deterministic method outputs 
only one mutant, while the stochastic method outputs five different mutants with the best found set of mutations for 
specificity reversal, according to the maximum candidate size allowed by the method, with the number on the gene 
name corresponding to the number of mutations selected. 

Gene name Mutation 
Predicted 
cofactor 

Prediction score 

PsXR Wild-type NADP 0.8764 
PsXR Literature K270S/S271G/N272P/R276F        NAD  0.8792 
PsXR Deterministic S271E/R276E NAD  0.9747 
PsXR Stochastic 1 R276D  NAD  0.8661 
PsXR Stochastic 2 K270D/S271D    NAD  0.9773 
PsXR Stochastic 3 K270D/S271D/R276D      NAD  0.9996 
PsXR Stochastic 4 S215R/K270D/S271D/R276D        NAD  0.9995 
PsXR Stochastic 5 G217D/I268R / K270D/S271D/R276D  NAD  0.9999 

 

When analyzing table 5.2 it is also possible to observe the amount and type of point mutations 

recommended by the developed methods in order to achieve cofactor specificity reversal. Being the 

literature mutant composed by four point-mutations, achieved through the implementation of a 

combinatorial active-site saturation mutagenesis method, we can observe that both deterministic 

and stochastic methods here implemented were able to predict mutants with fewer point-mutations 

and higher predicted reversed cofactor specificity. In this case, PsXR Deterministic is composed by 

only two point-mutations, with an Arginine (R) and a Serine (S) being substituted by a Glutamate (E). 

In the case of PsXR stochastic, the evolutionary algorithm was able to find a mutant with predicted 

reversed cofactor specificity with only one point-mutation, being this individual, due to its lower 

amount of point-mutations, considered the best hypothesis for performing in vivo cofactor specificity 

reversal. When analyzing the remaining stochastic mutants, it is observed that the mutants with 

higher amounts of point-mutations tend to incorporate the point-mutations predicted for the 

stochastic mutants with fewer point-mutations, indicating a strong effect of these mutations for the 

reversal of cofactor specificity. We can also see, in the stochastic mutants, that the cofactor 

prediction scores increase with the amount of point-mutations predicted, however, preference should 

be given to mutants with fewer mutations in order to preserve the structural stability of the enzyme. 

Figure 5.5 depicts the positions, on the cofactor binding spot of PsXR, of the ten optimal mutable 

residues for cofactor specificity reversal in the wild-type, the point-mutations of the literature data, 

as well as the point-mutations predicted as the most suitable for achieving cofactor specificity 

reversal from both deterministic and stochastic methods. 
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Figure 5.5 - Depiction of the structure of PsXR Wild-type, with emphasis on cofactor binding-pocket, showcasing the 
wild-type with optimal residues for specificity reversal (top-left), literature experimental data point-mutations position (top-
right), best prediction from stochastic method (bottom-left) and prediction from deterministic method (bottom-right). 
NAD+ is represented in blue, whereas selected residues are green. Labels indicate the original residue/sequence 
position/mutation. 

 

When analyzing figure 5.5 we can observe that residues selected as optimal for cofactor specificity 

reversal are dispersed in the cofactor binding-pocket, with greater incidence of Serine (S) and the 

negatively charged residues Arginine (R) and Lysine (K). By comparing the experimental data with 

the predictions performed, it is observed a close relation between in vivo and in silico results, with 

point-mutation predictions from both methods being in residues also targeted experimentally, as is 

the case of R276 and S271, both present near the adenine moiety of the cofactor. However, the 

type of residues selected as mutants in silico differ from the literature. The fact that the selected 

residues are the result of optimization methods using machine learning and evolutionary algorithms 

lead us to believe that these residues are better suited as specificity reversal point-mutations, which 

explains the lower amount of mutations required for specificity change. 
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5.3.4.2 GoXD –Gluconobacter oxydans xylitol dehydrogenase 

Xylitol dehydrogenase (GoXD), from Gluconobacter oxydans, oxidizes xylitol into xylulose and has 

been shown to use exclusively NAD+ as a reaction cofactor [25]. Table 5.3 displays the results 

achieved for the in silico cofactor specificity change of GoXD from NAD+ dependent to NADP+. 

Table 5.3. Mutations, cofactor predictions and prediction scores from literature experimental data, as well as from the 
implementation of both methods for reversing cofactor specificity in silico of GoXD. The deterministic method outputs 
only one mutant, while the stochastic method outputs five different mutants with the best found set of mutations for 
specificity reversal, according to the maximum candidate size allowed by the method, with the number on the gene 
name corresponding to the number of mutations selected. 

Gene name Mutation 
Predicted 
cofactor 

Prediction score 

GoXD Wild-type NAD  0.9678 
GoXD Literature D38S/M39R      NADP 0.9541 
GoXD Deterministic D38Y/A92Q/G93R        NADP 0.8822 
GoXD Stochastic 1 D38R   NADP 0.8668 
GoXD Stochastic 2 D38R/A92R NADP 0.9752 
GoXD Stochastic 3 D38R/D64R/A92R NADP 0.9944 
GoXD Stochastic 4 G16K/D38R/D64S/G93R    NADP 0.9957 
GoXD Stochastic 5 G14S/G16T/D38R/D64R/A92R NADP 0.9999 

 

The results displayed in table 5.3 show a high score for the prediction of cofactor specificity of wild-

type and literature experimental data, increasing the confidence level on the agreement between 

predicted and experimental results. In the analyzed case-study, the literature mutant was achieved 

with only two point-mutations, while the deterministic method required three mutations to achieve 

the same cofactor specificity prediction. As to GoXD stochastic results, the developed method was 

able to output a predicted reversed cofactor specificity mutant encompassing only one point-

mutation, being it considered the best hypothesis for performing in vivo cofactor specificity reversal 

with minimal interventions. When further analyzing the achieved results, it is possible to observe that 

both the literature mutant and the selected stochastic mutant share similar features despite being 

originated from different approaches. From these approaches, the one described in the literature is 

the most laborious, involving structure characterization and structural alignment with other enzymes, 

together with the multiple selection of conserved aminoacid residue positions. In the literature mutant 

an Aspartate residue in position 38 was deleted and an Arginine residue was incorporated in position 

39, whereas in the stochastic mutant, this event occurred in the same spot, position 38. A common 

characteristic that the predicted mutations appear to possess, in order to successfully reverting 

cofactor specificity in this case, is the promotion of Arginine (R) inclusion and the exclusion of 

Aspartate (D) in the analyzed sequences. This trait has been previously referred by Carugo and 
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coworkers [19], in an early study on the subject, when observing conserved structural features of 

NADP-dependent enzymes, and was found throughout the analyzed case-studies in this work. 

Figure 5.6 depicts the positions, on the cofactor binding spot of GoXD, of the ten optimal mutable 

residues for cofactor specificity reversal in the wild-type, the point-mutations of the literature data, 

as well as the point-mutations predicted as the most suitable for achieving cofactor specificity 

reversal from both deterministic and stochastic methods. 

Figure 5.6 - Depiction of the structure of GoXD Wild-type, with emphasis on cofactor binding-pocket, showcasing the 
wild-type with optimal residues for specificity reversal (top-left), literature experimental data point-mutations position (top-
right), best prediction from stochastic method (bottom-left) and prediction from deterministic method (bottom-right). 
NADP+ is represented in light green, whereas selected residues are green. Labels indicate the original residue/sequence 
position/mutation. 

When analyzing figure 5.6 we can again observe that residues selected as optimal for cofactor 

specificity reversal are dispersed in the cofactor binding-pocket; however, this time with greater 

incidence of Aspartate (D) near the adenine moiety, and Glycine (G). Point-mutations from both 

literature and selected stochastic mutants are located near the 2’-phosphate, while in the 

deterministic mutant, point-mutations are also present below the cofactor structure, near the adenine 

and the ribose in the adenine moiety.  
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5.3.4.3 PsXD –Pichia stipitis xylitol dehydrogenase 

Xylitol dehydrogenase (PsXD), from Pichia stipitis, was the second xylitol dehydrogenase analyzed in 

this study. In table 5.4 are displayed the literature and the in silico results achieved for the cofactor 

specificity reversal of PsXD. 

Table 5.4. Mutations, cofactor predictions and prediction scores from literature experimental data, as well as from the 
implementation of both methods for reversing cofactor specificity in silico of PsXD. The deterministic method outputs 
only one mutant, while the stochastic method outputs five different mutants with the best found set of mutations for 
specificity reversal, according to the maximum candidate size allowed by the method, with the number on the gene 
name corresponding to the number of mutations selected. 

Gene name Mutation 
Predicted 
cofactor 

Prediction score 

PsXD Wild-type NAD  0.9816 
PsXD Literature D207A/I208R/F209S/N211R        NADP 0.9906 
PsXD Deterministic G183R/G185R/V187A/D207Y/A254Q/V274A NADP 0.8806 
PsXD Stochastic 1 D207R  NADP 0.8198 
PsXD Stochastic 2 D207Y/I208R NADP 0.9890 
PsXD Stochastic 3 D207S/I208R/F209K NADP 0.9944 
PsXD Stochastic 4 D207S/I208R/F209Y/A254R      NADP 0.9999 
PsXD Stochastic 5 G183K/D207R/I208R/A254R/V274Y NADP 0.9999 

 

Once again, when analyzing the prediction scores displayed in table 5.4, both wild-type and the 

literature mutant show a high prediction score. This time, however, four point-mutations were 

required in order to perform the cofactor specificity change in the literature mutant, achieved by site 

directed mutagenesis. By comparing both xylitol dehydrogenases analyzed, we can observe that 

Pichia stipitis’ xylitol dehydrogenase requires twice as many mutations to perform the same 

specificity change as Gluconobacter oxydans’ xylitol dehydrogenase. Despite being able to catalyze 

the same reaction, these enzymes are different, being originated from two different organisms, which 

explains the different approaches needed to perform the same conversion. In this case study, the 

deterministic method required the mutation of six residues before being able to effectively predict 

cofactor specificity change in PsXD, also demonstrating the challenging task of performing cofactor 

specificity reversing PsXD. The stochastic method, on the other hand, and despite the large amount 

of point-mutations required in the previous two PsXD mutant results, was again able to predict 

cofactor specificity reversal with the implementation of only one point-mutation. However, when 

comparing its prediction score to the remaining stochastic mutants, and despite being above the 

prediction threshold, it is observed a significant increase in prediction scores in mutants with more 

point-mutations. 
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Figure 5.7 depicts the positions of the optimal mutable residues for cofactor specificity reversal, as 

well as the point-mutations from the literature data and both deterministic and stochastic methods, 

on the cofactor binding spot of PsXD. 

Figure 5.7 - Depiction of the structure of PsXD Wild-type, with emphasis on cofactor binding-pocket, showcasing the 
wild-type with optimal residues for specificity reversal (top-left), literature experimental data point-mutations position (top-
right), best prediction from stochastic method (bottom-left) and prediction from deterministic method (bottom-right). 
NADP+ is represented in light red, whereas selected residues are green. Labels indicate the original residue/sequence 
position/mutation. 

When comparing the results depicted in the figure, it is again possible to observe some similarities 

between the literature and the stochastic method. Despite the literature mutant requires more point-

mutations in order to achieve cofactor specificity reversal, the underlying mechanism is in some part 

shared with the results achieved by the stochastic method, with negatively charged residues being 

replaced by positive ones in the 2’-phosphate area, among other mutations. This serves to showcase 

the optimization and precision achieved by the developed methods. Instead of experimenting with a 

large amount of random mutations trying to almost blindly achieve cofactor specificity reversal as 

with some experimental methods, such us random or combinatorial mutagenesis, the developed 

methods optimize the search space in order to encounter the optimal set of mutations required to 

perform cofactor specificity. 
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5.3.4.4 TiLD –Thermoactinomyces intermedius leucine dehydrogenase 

Leucine dehydrogenase, from Thermoactinomyces intermedius, the only enzyme in this case study 

not involved in xylose metabolism, depends on NAD(H) to catalyze its reaction. Table 5.5 displays 

the results achieved for the in silico cofactor specificity reversal of TiLD, as well as the results of wild-

type and literature mutant cofactor specificity prediction. 

Table 5.5. Mutations, cofactor predictions and prediction scores from literature experimental data, as well as from the 
implementation of both methods for reversing cofactor specificity in silico of TiLD. The deterministic method outputs only 
one mutant, while the stochastic method outputs five different mutants with the best found set of mutations for specificity 
reversal, according to the maximum candidate size allowed by the method, with the number on the gene name 
corresponding to the number of mutations selected. 

Gene name Mutation 
Predicted 
cofactor 

Prediction score 

TiLD Wild-type NAD  0.9776 
TiLD Literature D203A/I204R/D210R      NADP 0.9546 
TiLD Deterministic D203Y/V116A/A238Q/G180R       NADP 0.8607 
TiLD Stochastic 1 D203R  NADP 0.8534 
TiLD Stochastic 2 D203R/I204R    NADP 0.9954 
TiLD Stochastic 3 A238R/D203S/I204R      NADP 0.9969 
TiLD Stochastic 4 I204R/D203S/G180R/A238Y        NADP 0.9999 
TiLD Stochastic 5 A185T/E114Q/D203R/I204R/A238R  NADP 0.9999 

 

The results displayed in table 5.5 for the prediction of experimental data on wild-type and mutant 

cofactor specificity show, once again, a very high prediction score. In fact, it is possible to observe 

that, from the four enzymes analyzed in this case study, all three enzymes originally binding to 

NAD(H) have a higher prediction score than Pichia stipitis xylose reductase, the only enzyme in the 

study originally binding to NADP(H). In this case, three point-mutations were required to achieve 

cofactor specificity reversal in the literature mutant using the systematic replacement of target 

aminoacid residues, with the deterministic approach’s mutant requiring four, according with the 

developed method. Concerning the stochastic approach, once again a mutant encompassing only 

one mutation was able to be predicted, with this approach having successfully identified single 

mutants with predicted reverse cofactor specificities for all cases presented. The behavior of the 

remaining stochastic mutants is similar to the previously analyzed case-studies, where mutants with 

a higher number of mutations have a higher cofactor specificity prediction score. 

Figure 5.8 depicts the optimal mutable residues for cofactor specificity reversal, as well as the point-

mutations from the literature data and both deterministic and stochastic methods, on the cofactor 

binding spot of TiLD. 
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Figure 5.8 - Depiction of the structure of TiLD Wild-type, with emphasis on cofactor binding-pocket, showcasing the 
wild-type with optimal residues for specificity reversal (top-left), literature experimental data point-mutations position (top-
right), best prediction from stochastic method (bottom-left) and prediction from deterministic method (bottom-right). 
NADP+ is represented in yellow, whereas selected residues are green. Labels indicate the original residue/sequence 
position/mutation. 

As it is possible to observe in figure 5.8, the residues identified as optimal for cofactor specificity 

change mutations, are dispersed in the cofactor binding site. From the three mutant residues 

undergone point-mutations reported in the literature, two were also predicted as capable of reverting 

cofactor specificity by the developed methods, Aspartate in position 203 (D203) and Isoleucine in 

position 204 (I204). However, in the resulting mutants outputted by the developed methods, only 

D203 was used for the selected best mutant, being its mutation by an Arginine residue (D203R), in 

the stochastic method, sufficient for predicting an altered cofactor specificity. In the mutant outputted 

by the deterministic method, besides the mutation of D203 by a tyrosine residue (D203Y), three 

other mutations were necessary in order to predict a mutant with reversed cofactor specificity 

(V116A/G180R/A238Q). 
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5.4 Conclusions 

The molecular determinants responsible for NAD(P)(H) cofactor specificity are still regarded as 

illusive and difficult to characterize. With metabolic engineering and strain design endeavors 

increasingly requiring more rational approaches to maximize efficiency and reduce costs, new 

methods for fast and accurate large scale data processing are in need. In a previous chapter, having 

moved a step forward in unveiling the molecular determinants for cofactor specificity, using enzyme 

structural information, we presented in this chapter in silico methods for the conversion of NAD(P)(H) 

cofactor specificity in structurally uncharacterized enzymes, with the identification of optimal 

residues for mutation and the set of mutations better suited for performing such conversion. Learning 

from the data generated in previous chapters, we were able to elaborate and test two methods for 

the automation of cofactor engineering reversal through computational experiments, drastically 

reducing the large combinatorial space of mutations available. Using the previously developed 

prediction tool NiCofactor, such mutation predictions were promptly tested and analyzed. In the first 

approach, by switching residues with a large impact on specificity, in a rational way, with residues 

with large impact on specificity for the opposite cofactor, we found a viable approach to suggest 

cofactor specificity changing mutations capable of disrupting the original cofactor specificity and 

revert it. On a second method, a stochastic approach was implemented in order to maximize the 

representation of the combinatorial space generated by the identification of optimal mutations for 

specificity reversal. Using evolutionary algorithms, several mutants were constructed and predicted, 

with the fittest feeding new generations of mutants in the optimization process. 

The results presented in this chapter were complemented by the analysis of four different case 

studies reported in previous chapters and successfully replicated in silico, through the prediction of 

cofactor specificity using NiCofactor. For each of the analyzed case-studies, both developed methods 

were able to predict optimal mutants with reversed cofactor specificities. Several of the mutant 

sequences outputted by the methods have fewer point-mutations than the ones observed in the 

experimental data. From the two developed methods, the stochastic approach was able to produce 

the best results for achieving cofactor specificity reversal, with the output of 5 different solutions for 

every case-study and always presenting the least amount of predicted point-mutations necessary to 

perform specificity change. In fact, for each of the four case-studies, the stochastic method was able 

to predict and output a mutant sequence, with reversed cofactor specificity prediction, containing 

only one point-mutation. In the case of the deterministic approach, this method was also able to 
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predict, for each case-study, a mutant sequence with reversed cofactor specificity, but with a higher 

amount of point-mutations, varying between two and six in order to revert specificity. 

As for the location of the cofactor specificity reverting point-mutations, both methods, as well as the 

experimental data, appear to prioritize the adenine moiety of the cofactor as the receiving area of 

mutations, in the binding pocket of both cofactors. In all cases, it is also recurrent the occurrence of 

mutations involving the alteration of positively charged residues (Arginine or Lysine) for negative 

(Aspartate or Glutamate) and vice-versa, as first reported by Carugo, et al. in 1997 [19], for 

conserved structures, in order to reverse cofactor specificity. 

The developed methods showed a good coverage of the addressed problem and combinatorial 

solution space available, being able to perform predictions and find optimal subjects for reversing 

cofactor specificity, optimizing, in silico, the arduous and expensive task of performing random 

mutagenesis, the most common approach taken on this problem. However, it is important to note 

that, despite the good confidence levels reported during the development of this work, the cofactor 

specificity reversal claims made here refer to in silico predictions and are subjected to the accuracy 

levels achieved. The fact that a 90% accuracy is claimed for the correct prediction of cofactor 

specificity means that there is a margin for inaccurate outputted results. Also, structural inference 

methods using comparative modeling are also not 100% representative of the natural enzyme’s 

structure, despite their usefulness and accuracy. These facts, together with inherent structural 

destabilization that a mutation might induce, lead us to believe that a thorough downstream 

enzymatic activity assession is required in order to validate the developed methods and obtain in 

vivo successful results. 

Nonetheless, the presented in silico results evidence a breakthrough, not only for NAD(P)(H) cofactor 

specificity problems, but also in the approach to be taken in new problems involving different types 

of substrates or cofactors, taking great advantage of the structural information stored  in an enzyme 

3D structure. We believe these results are of great utility and represent an important contribution for 

cofactor engineering problems, rational metabolic engineering and strain design endeavors. 
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CHAPTER 6 

General conclusions and future work 

_____________________________________________________________ 

The general purpose of the conducted research present in this thesis was the improvement of 

predictions in metabolic engineering problems by incorporating enzyme structural information. More 

specifically, this thesis focus in the problem of accurately identifying enzyme’s usage and specificity 

for the cofactors nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide 

phosphate (NADP). To achieve the proposed intention, specific research aims were elaborated in 

chapter 1. The main conclusions achieved with the pursuit of the specified research aims are 

presented below.  

In chapter 2, an extensive review of the literature, regarding the state-of-the-art on methodologies for 

performing genome and enzyme functional annotations, was performed. Multiple concepts across 

different fields of the biological sciences were described and analyzed, from genome sequencing to 

metabolic engineering and strain design approaches using systems biology. It became evident that 

further development of novel structure-based methods was in need to understand and overcome 

several hurdles still encountered in the reviewed processes. 

Being the molecular characterization of NAD(P)(H) cofactor specificity regarded as an extremely 

challenging task and due to its importance in metabolic and protein engineering problems, in chapter 

3, the molecular determinants for NAD(P)(H) cofactor specificity were unveiled. Using enzyme 

structural information and machine learning algorithms we were able to identify responsible 

molecular determinants for cofactor specificity and apply the proposed findings to enzymes not 

structurally characterized. Support vector machines were used to classify a formulated problem using 

information on cofactor neighbor aminoacid residues. A group of 921 protein structures 

correspondent to enzymes bound to NAD(H) or NADP(H) were correctly identified with an accuracy 

of 96.20% using the stated method. A prediction tool was further developed and allowed the correct 

identification of cofactor specificity in a curated dataset of structurally uncharacterized enzymes with 

an accuracy of 83.5%. When applied a prediction score threshold of 0.8, 73.4% of the predictions 

were included, with a prediction accuracy of 90%. When the score threshold was increased to 0.95, 

nearly 50% of the predictions were present, with a prediction accuracy of 96%. A webserver was 
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developed to allow a fast and user-friendly access to the automatic prediction of NAD(P)(H) cofactor 

specificity enzymes without structural characterization. 

In chapter 4 the curation of genome-scale metabolic models (GEM) through the characterization of 

reactions using the cofactors NAD(P)(H) was performed. Being GEM reconstruction curation process 

a laborious and skill requiring task, reaction cofactor usage prediction in GEM reconstruction has an 

immediate effect on reaction composition. Using the developed cofactor prediction tool, 59 different 

reconstructed GEMs belonging to 47 different strains were analyzed using the aminoacid sequence 

of enzymes associated to reactions using NAD(P)(H). Results help depicting the state of cofactor 

curation in GEM reconstruction, with an overall satisfactory curation of NAD(P)(H) usage but 

encompassing cofactor usage mismatches that can impair an accurate GEM simulation. NAD(P)(H) 

using reactions were corrected in the most recent Saccharomyces cerevisiae GEM, Yeast 7.6, and 

the model was used in simulations. The results achieved show that the corrections implemented, by 

cofactor curation, improve the simulation performance of the model, being in a higher agreement 

with experimental data found in literature. 

With the developments achieved for the prediction of cofactor specificity, in chapter 5 a new method 

for the in silico conversion of NAD(P)(H) cofactor specificity in enzymes not structurally characterized 

is proposed. With the data generated in previous chapters we elaborated and tested a hypothesis for 

the automation of cofactor specificity reversal, drastically reducing the large combinatorial space of 

mutations available. This was achieved by predicting the effect of switching aminoacid residues with 

large specificity impact. For that, two distinct approaches were implemented, being one 

deterministic, using the gathered information on the most influential residues for both cofactor 

specificities; and the other stochastic, using evolutionary algorithms to locate the optimal set of 

mutations capable of reverting cofactor specificity. Given the satisfactory results, new optimization 

steps are suggested to be implemented in the future in order to more accurately perform the 

proposed task. With metabolic engineering and strain design endeavors increasingly requiring more 

rational approaches and process automation, the presented developments are believed to be of great 

utility and represent an important contribution for cofactor engineering problems and metabolic 

engineering overall. 

Future perspectives of the conducted research focus on the continuous improvement of the 

developed methodologies presented, as well as the broader application of said methodologies. 

Concerning the cofactor specificity prediction tool, future work includes the continuous development 
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of the created tool through the integration of additional curated data on enzyme structures 

encompassing information on cofactor specificity. The integrated data shall be used to improve the 

existing prediction models, as well as in the optimization of the comparative modelling methods used 

to analyzed enzymes without structural characterization. Different machine learning methods should 

also be tested and implemented and their performance assessed. 

The general approach developed in this thesis to solve the NAD(P)(H) specificity problem using 

structural information and machine learning algorithms should also be applied in solving different 

metabolic engineering and systems biology problems concerning the specificity of other cofactors, 

as well as substrate affinity and inhibitor recognition. 

Regarding the application of the developed prediction tool in the curation of GEMs NAD(P)(H) using 

reactions, reaction correction and model simulations should also be performed in different GEMs 

and the resulting performance analyzed to assess their enhancement. Gene knock out and 

overexpression for the production of compounds of interest should be further simulated in the 

curated models and compared with experimental data also to evaluate model improvement. 

As to the proposed method for the in silico conversion of NAD(P)(H) cofactor specificity in enzymes 

not structurally characterized, the predicting capabilities of the method should be further developed 

with the integration of new approaches for assessing enzyme’s viability with the proposed mutations. 

The predicted cofactor reversed enzyme mutants resulting from the analyzed case studies in this 

thesis should be experimentally characterized and evaluated for their cofactor specificity. New 

candidate enzymes should be sought and their cofactor specificity conversion predicted. 
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APPENDIX 

_____________________________________________________________ 

Table A1 – The presented table encompasses all extracted feature weights from the developed SVM predictive model 

in chapter 3. 

NADP weight NADP weight NADP weight NADP weight 

O2B_ARG 0.449913142 O3B_MET 0.079733928 O1N_LYS 0.048374441 PN_PHE 0.020487316 

O2B_SER 0.265379606 C5A_LEU 0.079072527 C5D_ARG 0.048085877 PN_VAL 0.020312879 

O2B_LYS 0.261630434 O5D_HIS 0.078422943 O2N_PRO 0.048039874 C6A_ARG 0.020247682 

C2B_ARG 0.228622965 N3A_GLY 0.078126706 C1B_GLY 0.047830205 C5A_ASN 0.020164465 

O3_GLY 0.222471342 C2D_ILE 0.077926803 O4D_PHE 0.047278498 C2A_PHE 0.019981824 

O3B_ALA 0.217947335 O1A_ILE 0.07767809 O5B_GLY 0.047202217 C3D_THR 0.019211148 

C4D_ASN 0.21647244 C3N_GLY 0.077661844 C2N_TRP 0.046976252 O3_PRO 0.019170498 

O1A_ALA 0.186032894 PA_VAL 0.076984447 O3_TRP 0.046775668 C1D_TYR 0.01907725 

O2B_GLY 0.180156852 O4B_TYR 0.076807191 C4A_GLN 0.046168774 O4D_CYS 0.019057066 

N1A_SER 0.167953722 C8A_ALA 0.076797825 O2B_TYR 0.046021503 PN_GLN 0.018273416 

C5B_LEU 0.164328457 C1D_ASN 0.076774549 O5B_ILE 0.045863598 O2A_TYR 0.01808518 

C1B_ARG 0.163757278 C3N_SER 0.076468785 C1B_TYR 0.045550284 N1N_ARG 0.017754525 

O3D_TYR 0.161156286 O3D_ASP 0.076355444 N1A_ALA 0.045532792 N3A_HIS 0.017404048 

O7N_CYS 0.15867393 O1N_TRP 0.07594696 O2A_PHE 0.04545846 O5B_MET 0.016805257 

PN_GLU 0.158627537 O3B_ASN 0.07554993 C3D_MET 0.045343175 O4D_MET 0.016554396 

C2N_ILE 0.157813268 N3A_ASN 0.07451086 C2A_VAL 0.044915605 C2D_TYR 0.016524546 

C5A_TYR 0.157211897 N7N_LYS 0.074129083 C4B_THR 0.043327963 O2D_GLY 0.016109269 

O2N_ASP 0.152875829 C4D_LYS 0.07406761 C5N_HIS 0.043243281 O3_TYR 0.015763729 

C3N_LYS 0.149656203 C4B_TYR 0.073339554 N7A_ALA 0.04306512 N3A_VAL 0.01547717 

O5D_ILE 0.14931893 N6A_ILE 0.073237285 C1D_LYS 0.042897475 O4D_HIS 0.015401676 

C4D_THR 0.148308899 C5D_PRO 0.073147588 O5D_TRP 0.042875009 C3B_PHE 0.015107134 

N7A_TYR 0.148010431 C1B_THR 0.072608212 O3D_LEU 0.042203353 C4B_SER 0.015050321 

C2B_LYS 0.146967824 O2D_PRO 0.07220358 N9A_GLY 0.041931586 O5D_TYR 0.015017127 

O1A_SER 0.145495323 C2N_VAL 0.0718949 N1A_ILE 0.04163029 O1A_GLU 0.01475175 

C6A_VAL 0.145139302 C6N_ASN 0.071586964 PA_ASN 0.041202421 C8A_GLY 0.014641457 

C4N_LEU 0.144604686 O7N_MET 0.071435417 C5A_SER 0.041119304 C3B_LYS 0.014594822 

C4A_ASN 0.1366117 C5D_ASN 0.070929606 O7N_SER 0.040917906 C4D_MET 0.014577395 

N9A_TYR 0.136561537 C6A_GLY 0.070840069 C2A_MET 0.040509358 PN_PRO 0.014217951 

O2D_ALA 0.135126711 C4D_ILE 0.070215604 C6A_TYR 0.040119304 C2A_CYS 0.01413095 

O2A_ALA 0.134424506 O3_ALA 0.069690483 C5A_GLN 0.039823784 C5D_TRP 0.014000081 

O5B_SER 0.13329123 O1N_HIS 0.069401062 PA_ALA 0.039247128 O2A_VAL 0.013853835 

N1A_PRO 0.131819349 O3D_TRP 0.068758458 C6N_ARG 0.03923571 O2A_THR 0.013831904 

N7N_ASN 0.128466426 N9A_THR 0.068569727 C5N_MET 0.039171159 O3D_ARG 0.013697525 

O1A_LYS 0.127108198 C6N_ALA 0.068517968 N7A_ASN 0.039122243 O2D_PHE 0.013391022 

N7N_ALA 0.126482461 C7N_GLN 0.068492631 C5B_ILE 0.039102077 C5B_TYR 0.013353805 

O3B_LYS 0.123755873 PA_TYR 0.067210455 C6A_SER 0.038986334 C1D_TRP 0.013208285 

C5D_ALA 0.123037613 O2A_LEU 0.066556605 O2B_GLN 0.038486753 O5B_PHE 0.012902275 

C2B_SER 0.122966829 O4D_TYR 0.06595204 C5B_GLY 0.038076815 O3B_PRO 0.012638936 

C4N_GLY 0.11898915 O4B_ARG 0.065935256 O2B_ILE 0.037717059 N7N_SER 0.012619455 

C8A_TYR 0.116865395 C4N_ARG 0.065840612 O1A_CYS 0.037609135 C4N_ASP 0.012426783 

O3_ASN 0.115743489 C4N_SER 0.065697869 O3D_LYS 0.036670257 C4N_MET 0.012024085 

O4D_THR 0.11469516 O2N_GLN 0.065514055 C5D_TYR 0.036588347 O2B_TRP 0.011954468 

C4A_ALA 0.114322444 C1D_GLU 0.065489345 C2N_LYS 0.036131842 C2D_SER 0.011876911 

C4B_LEU 0.113631168 C4N_HIS 0.065426674 C2B_PHE 0.035967943 N3A_PRO 0.011724681 

N1N_ASP 0.113602654 O3D_HIS 0.064528665 C5D_ILE 0.035936608 C1D_ARG 0.011535813 

C5B_CYS 0.113187311 C5N_SER 0.064480807 O2D_ASP 0.035202961 C5B_PHE 0.01140188 

O4B_GLY 0.111937545 C3D_PRO 0.064476088 O4B_VAL 0.035068685 O2A_HIS 0.01126606 

C2B_THR 0.111749487 C1D_VAL 0.064134033 N7A_ASP 0.034717747 O5B_LYS 0.011256246 

O7N_HIS 0.110573667 N1A_ASP 0.064125337 C5N_THR 0.034520477 C2A_LYS 0.011124762 

C8A_SER 0.110288278 O7N_TYR 0.064086413 C3N_ASN 0.034431891 O2A_ARG 0.01061547 

O5B_VAL 0.109365284 PN_ASP 0.063669197 C7N_LYS 0.03412763 O3B_TRP 0.010596586 

O3_ASP 0.108192747 C2D_ALA 0.063214388 C2D_ARG 0.034126311 N1N_PHE 0.00998952 

C1B_LYS 0.108082034 O3_MET 0.062869632 N1N_TYR 0.033524849 C7N_ALA 0.00994264 

C4D_LEU 0.107729603 O1A_TRP 0.062853765 C5N_TRP 0.033375128 O2B_ASP 0.009908968 

C1D_THR 0.107220378 C4D_ASP 0.062836247 C1D_SER 0.032376306 N7N_TRP 0.009672741 
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N7N_GLN 0.107145492 O7N_PHE 0.06270243 C5B_MET 0.032376033 N9A_SER 0.009415228 

C2A_ALA 0.105908542 C5B_THR 0.062417335 C6A_GLN 0.031523082 N1A_LEU 0.009285992 

C3N_THR 0.105248594 C6N_MET 0.062197946 C2N_ARG 0.031276336 O5B_PRO 0.009048099 

C6A_ASN 0.104591342 PN_TRP 0.061994385 PN_HIS 0.030665142 C3D_ARG 0.00856326 

C5N_ILE 0.104010781 C2D_VAL 0.061925295 O2N_GLY 0.030550952 N1A_CYS 0.008427029 

N7N_PRO 0.102646095 PN_LYS 0.061636747 O7N_PRO 0.030053576 C6A_LEU 0.008178712 

C2N_PHE 0.10249854 C3B_CYS 0.061045003 O4D_TRP 0.029930128 C4N_GLN 0.008101571 

N3A_ARG 0.101773524 O1A_MET 0.060950449 C3B_GLY 0.029781147 C4A_VAL 0.008086476 

C2A_THR 0.101567253 C8A_ARG 0.060817792 N1A_ARG 0.029752999 O5D_GLY 0.007969447 

N6A_GLN 0.101434154 PA_CYS 0.060276098 C7N_GLY 0.029649647 C3B_ASN 0.007766154 

N1N_GLN 0.100911738 C6N_TRP 0.059803838 O2B_HIS 0.029521975 C2B_TRP 0.0072598 

C2D_GLU 0.100833855 O1A_ASN 0.059279603 C3N_ILE 0.028964874 N6A_ASN 0.007186107 

C2N_ASN 0.099646904 PA_PHE 0.058835203 O2N_TRP 0.028578168 C2A_ARG 0.006983245 

C2B_CYS 0.098308531 O5D_PRO 0.057889556 O7N_ASN 0.028227782 C1D_PHE 0.006853563 

C2N_THR 0.097889728 C4N_PRO 0.057582026 N6A_LYS 0.027873306 N7N_LEU 0.006283492 

N6A_ASP 0.097880648 O4B_CYS 0.05742591 O2N_LYS 0.027710043 C5D_GLN 0.00605615 

C3D_TYR 0.097789016 C4D_SER 0.057417109 C3D_LYS 0.027588124 C3N_PRO 0.005892243 

C3D_ASN 0.096020327 N9A_PRO 0.056977578 N1A_GLN 0.027196561 C7N_VAL 0.005799317 

N7N_ARG 0.095925003 O4B_LEU 0.056890567 N6A_VAL 0.027155871 O1A_GLY 0.00542776 

PA_GLU 0.095654393 C3N_VAL 0.056484245 C2N_GLY 0.027000196 O4B_ASN 0.005285506 

C2A_HIS 0.094314915 O7N_GLU 0.055914303 C7N_HIS 0.026998926 N1A_TRP 0.004883473 

O4D_VAL 0.093174086 O5D_ARG 0.055821931 O7N_LYS 0.026956111 C4D_GLN 0.004734092 

O3D_PRO 0.092015331 O3B_CYS 0.054819911 C3B_SER 0.026905237 N9A_ARG 0.004626553 

O7N_VAL 0.091513198 C2B_TYR 0.054126689 O3D_ILE 0.026902842 N3A_GLN 0.003542283 

C4N_CYS 0.089453556 C7N_MET 0.053802096 N1N_ALA 0.02674033 O3D_SER 0.003501124 

C5N_ALA 0.088879631 C1B_ASN 0.05365572 PN_ARG 0.026713488 C3D_GLY 0.003266954 

C1D_LEU 0.088099191 O3D_PHE 0.053469827 C3B_GLN 0.02669302 O5D_LYS 0.003223613 

O4D_GLY 0.086767653 C3D_LEU 0.053229595 C5N_CYS 0.026574053 C5A_CYS 0.003056985 

N7N_MET 0.086633406 N3A_MET 0.053096854 C4D_HIS 0.02642775 C6A_HIS 0.003020458 

O2N_VAL 0.085984478 C7N_GLU 0.05280589 O2B_CYS 0.025727259 C5D_GLU 0.00274718 

C4A_PRO 0.085348112 PA_LEU 0.0527438 C4B_CYS 0.025414997 O5B_ASN 0.002626459 

O7N_ILE 0.084973072 O5B_ALA 0.052622602 O3_SER 0.02531283 O2N_MET 0.00250402 

C6N_PHE 0.084854801 O3B_ARG 0.052168269 C4A_HIS 0.025217149 C2D_ASN 0.002268232 

O2A_MET 0.084659482 O5D_LEU 0.052144021 O2D_GLN 0.025168633 O3_LYS 0.002168882 

N7A_GLY 0.084155597 O3D_CYS 0.051815901 O1A_HIS 0.024616979 N1A_HIS 0.001854708 

O2D_GLU 0.084149479 C4A_SER 0.051093903 C4D_PRO 0.024612369 O1A_PHE 0.001652292 

C2A_ASN 0.083940647 PA_MET 0.051091304 C6N_HIS 0.024028726 N1N_THR 0.001652148 

N7N_TYR 0.083794294 C3D_VAL 0.05093086 C6N_ASP 0.023679437 C2N_TYR 0.001482017 

PA_ASP 0.083171344 N3A_PHE 0.050731905 N7N_PHE 0.023380668 O5B_CYS 0.001317108 

C4D_CYS 0.083049838 O2D_TRP 0.050600777 O5B_GLU 0.023362986 C5B_SER 0.001232059 

C1B_CYS 0.082678811 C2B_HIS 0.050513385 PN_MET 0.023060629 N9A_CYS 0.001219865 

O2B_THR 0.082490082 C6N_GLN 0.050409382 O1N_GLN 0.022780128 C5B_GLN 0.001179896 

C3N_LEU 0.081724665 N7A_SER 0.049681009 N6A_LEU 0.022696971 O2A_TRP 0.000815129 

N1N_HIS 0.081721236 C5N_ARG 0.04940221 C2B_GLN 0.022212051 C5A_ILE 0.000680242 

O3_VAL 0.080908382 C3B_LEU 0.049214786 C2N_SER 0.021588548 C5D_ASP 0.000586944 

C3N_GLN 0.080883263 C1D_PRO 0.049053943 N1N_TRP 0.021172989 C6N_GLY 0.000356168 

N1N_ILE 0.080273148 C4N_THR 0.0488634 C3B_ARG 0.021026055 PA_ILE 0.0000763 

  O1A_TYR 0.048695887 O2D_CYS 0.0206318   

        

NAD weight NAD weight NAD weight NAD weight 

C8A_ASP 0.236094258 C4B_VAL 0.084678643 C2A_GLY 0.04585673 PA_GLN 0.024167113 

O4B_SER 0.214267146 C4N_GLU 0.084495222 C8A_CYS 0.045674108 N9A_HIS 0.023710343 

C4B_ASP 0.211914031 C1B_PHE 0.082788143 C3D_ALA 0.045302776 N7A_LEU 0.023256866 

C5B_ASP 0.211619835 O2B_PHE 0.082187984 C3B_MET 0.045277989 C8A_ILE 0.023221567 

O5B_ASP 0.201497995 O3_ILE 0.081837268 PN_CYS 0.045070493 C3B_TYR 0.023129246 

C5A_LYS 0.199153626 O4D_GLU 0.081724154 C7N_TYR 0.044696847 C2B_VAL 0.02300447 

O2D_VAL 0.192728146 C4A_LYS 0.081269877 C4D_ARG 0.044656503 O2B_VAL 0.022694831 

C2B_GLU 0.1793113 C4D_GLY 0.080939478 C5A_TRP 0.044048925 C5N_TYR 0.022381938 

N6A_ALA 0.178674412 C6A_GLU 0.080923251 N6A_TRP 0.044048925 C4N_TRP 0.022043873 

C5B_TRP 0.177316428 C3N_TYR 0.080480348 C1D_ILE 0.043144806 O2N_ASN 0.021764038 

O1N_LEU 0.176228984 C1D_CYS 0.080016833 O2D_HIS 0.042941727 C2A_SER 0.021614551 

C2B_GLY 0.174419789 O4B_PHE 0.079708441 PA_ARG 0.042894018 N6A_GLY 0.02146111 

N7A_PHE 0.16528297 O2D_SER 0.07945322 C5A_VAL 0.042803352 C3D_CYS 0.02135515 

O2N_LEU 0.161914369 O1N_VAL 0.078945222 C2B_MET 0.042765752 O5D_GLU 0.021243463 

N7N_ASP 0.156998091 C5D_SER 0.078576218 C3B_ASP 0.042701922 N7A_VAL 0.021039061 

O2N_PHE 0.156590241 C6A_LYS 0.077817193 C4A_CYS 0.042634678 N1A_TYR 0.020921701 

O3B_PHE 0.155184371 C8A_ASN 0.077790099 PN_ALA 0.042627867 O1N_THR 0.020897222 

C5B_ALA 0.152835734 N3A_LEU 0.077742066 C5A_ASP 0.042546411 N6A_CYS 0.020775768 
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O3B_GLY 0.151913164 N6A_PRO 0.077616001 C2N_GLU 0.042497144 O3_GLU 0.020196977 

O2B_GLU 0.151898457 C2N_ALA 0.077249401 O5B_GLN 0.042340288 C5N_LEU 0.02009685 

O1N_TYR 0.151450549 C7N_CYS 0.076845666 C1D_ASP 0.041495819 C4B_GLN 0.019926272 

N3A_TYR 0.150626291 O3D_GLY 0.076306045 N9A_TRP 0.04128563 C1B_GLN 0.019633755 

N9A_ASP 0.149611431 C3D_GLN 0.075904853 C2A_TRP 0.041271331 N7N_GLY 0.019561879 

O5D_GLN 0.148609502 C5D_CYS 0.075202986 N3A_TRP 0.041271331 C4B_ILE 0.019405753 

C2B_PRO 0.147532603 C6N_GLU 0.074741328 C2B_ALA 0.041255388 C7N_ARG 0.019372093 

C4B_ARG 0.143967247 C5A_THR 0.074527957 N1A_THR 0.041026461 O1A_ASP 0.019244841 

N3A_ASP 0.14300716 C2N_ASP 0.074459978 C2N_LEU 0.040888207 O2D_LYS 0.019194013 

O2B_LEU 0.141964964 O2A_GLY 0.073382866 O5D_VAL 0.040156633 O1N_PHE 0.019158342 

O3B_GLU 0.141180163 O4B_HIS 0.073219477 O3B_GLN 0.039927468 C5D_THR 0.019113421 

N9A_LEU 0.139362426 C6N_LYS 0.072117998 O3D_ALA 0.039896181 C8A_GLN 0.018997788 

C1B_ALA 0.136457677 C1B_TRP 0.070639586 N1N_GLY 0.039653791 C3N_ARG 0.018983506 

C4D_TYR 0.13469436 C5A_ALA 0.069382114 O3B_HIS 0.039458724 O4D_SER 0.018702347 

O1N_ARG 0.133895846 O2D_THR 0.069185612 C3D_ILE 0.039401154 C3N_ASP 0.018453586 

C3N_GLU 0.127710335 C3B_VAL 0.069108754 N6A_ARG 0.039362501 C6A_CYS 0.018355811 

O5D_ALA 0.127675979 C5N_ASN 0.069004812 O1N_CYS 0.039281688 O3D_GLN 0.018256316 

N7N_ILE 0.126107558 C5N_GLY 0.068747065 N6A_SER 0.03921673 O2N_GLU 0.01817712 

N9A_GLU 0.125364201 C2B_ILE 0.0686374 C2D_MET 0.03895439 C1D_GLN 0.017972709 

O1A_ARG 0.124914545 O2D_LEU 0.068182443 C5D_VAL 0.038878843 C3B_HIS 0.017919884 

O3B_ILE 0.124643569 C6N_LEU 0.068135623 C5D_LEU 0.038872236 C4N_PHE 0.017696368 

C8A_MET 0.122164263 O1N_GLU 0.068107524 C1B_MET 0.038286853 C2D_TRP 0.01744367 

O5D_THR 0.122063447 C5B_ARG 0.068011606 O4D_PRO 0.038198556 C2D_CYS 0.016935276 

O1N_ASN 0.121086105 C4D_TRP 0.067954707 O1N_PRO 0.03813499 O4D_LYS 0.016476418 

O7N_ARG 0.119867381 O4D_ASP 0.066602311 N1N_SER 0.038079186 C4B_TRP 0.016383175 

N3A_LYS 0.119833863 C7N_THR 0.0658177 C6A_PHE 0.038067227 C7N_ASP 0.016178585 

N1A_PHE 0.119547183 C3N_HIS 0.065214102 C5D_GLY 0.038048449 PA_LYS 0.016159851 

N9A_ILE 0.119507247 C8A_THR 0.065129865 C5B_ASN 0.038045075 C2A_PRO 0.016101081 

C3B_ILE 0.117697785 O7N_LEU 0.064726578 C6A_ASP 0.037830366 C5N_VAL 0.016097103 

C1B_SER 0.117485882 C4D_PHE 0.064478493 N7A_LYS 0.037771646 N3A_SER 0.015498109 

C5A_PRO 0.116871565 C1D_ALA 0.064318425 O1A_THR 0.037593202 C3D_SER 0.015402666 

C3D_HIS 0.116540224 C5D_LYS 0.063959291 C4A_ARG 0.037365628 N1N_MET 0.015128158 

C8A_HIS 0.115036079 C4N_LYS 0.063207444 C6A_TRP 0.037202519 C5B_PRO 0.015098312 

C1B_GLU 0.114836695 O3D_MET 0.062607471 O7N_TRP 0.037119054 C2D_LEU 0.014951664 

O4B_PRO 0.114719939 O5B_LEU 0.061997954 O3D_VAL 0.036711513 O2A_CYS 0.014949863 

C5A_GLY 0.114416309 O2A_ASN 0.061732721 C8A_LEU 0.036654066 O3D_GLU 0.014843767 

C2A_ASP 0.113940715 N6A_THR 0.061577713 N1N_GLU 0.036633975 O2N_SER 0.014469964 

C3N_ALA 0.113621507 C7N_ILE 0.061382838 C4A_ILE 0.036210335 O2B_MET 0.014381374 

PN_ASN 0.113168012 O3_GLN 0.061367368 C4A_TRP 0.036192205 C3D_GLU 0.013753582 

N6A_HIS 0.113024505 C2N_HIS 0.061266738 C2N_GLN 0.035567033 O2A_PRO 0.013548182 

C5A_MET 0.112329829 C2N_PRO 0.060988083 C3B_TRP 0.034880319 N7A_GLN 0.012765498 

PA_GLY 0.11165329 C6N_THR 0.060959542 O5B_HIS 0.03477746 C3D_TRP 0.012640582 

O2A_GLU 0.111244424 PA_THR 0.060328547 C1D_MET 0.0347337 O1N_ALA 0.012390965 

O4B_GLU 0.109619937 C6N_TYR 0.060307835 C5N_ASP 0.034172545 O4B_THR 0.012108389 

C4D_ALA 0.108202492 N7N_VAL 0.060165214 O4B_ALA 0.034119062 O4D_GLN 0.012038157 

O2B_ASN 0.108147068 O5D_CYS 0.059410492 C4A_GLY 0.033689269 N1N_ASN 0.011838299 

O2D_ARG 0.108038157 C3N_PHE 0.059088755 O4D_ALA 0.033586427 N9A_LYS 0.011775881 

C7N_ASN 0.107213425 O2N_CYS 0.059056218 O1N_GLY 0.033556184 C2D_GLY 0.011721179 

O1N_ILE 0.106640874 N1A_ASN 0.058117727 C4B_GLY 0.033344892 O7N_GLN 0.011160851 

C2A_TYR 0.106180162 PN_GLY 0.057992715 O3_PHE 0.033049727 O1N_MET 0.011066817 

C8A_PHE 0.105426384 O5D_ASN 0.057907553 C3B_THR 0.032956614 C1B_HIS 0.010953044 

N3A_THR 0.104176435 O2N_ARG 0.057788184 C3B_PRO 0.032916451 C3B_ALA 0.010883357 

N1N_PRO 0.102629164 C4D_VAL 0.057773452 C5B_GLU 0.032826056 PN_TYR 0.010703707 

O5D_SER 0.10245746 C2N_CYS 0.057688219 C7N_TRP 0.032662711 N9A_ALA 0.010443668 

C4B_GLU 0.102381935 N9A_VAL 0.057370037 C5N_GLN 0.032605112 C4B_ASN 0.010442276 

O7N_ALA 0.102269399 C1B_ILE 0.05698411 O4B_TRP 0.032570682 N9A_GLN 0.009324513 

C5B_LYS 0.102210074 O2B_ALA 0.056981668 C4B_PHE 0.032417942 N7A_GLU 0.00883231 

C2A_GLN 0.101828872 C4N_TYR 0.056651445 C5B_HIS 0.03236729 C5A_PHE 0.008825354 

O1A_GLN 0.101685897 C3D_ASP 0.056555527 N1A_GLY 0.03232162 O3B_LEU 0.008819554 

C8A_GLU 0.100650034 C6A_PRO 0.056529942 N3A_CYS 0.032317815 C6N_PRO 0.008639054 

N7N_THR 0.099880328 C1D_HIS 0.056345666 C1B_PRO 0.031301457 N1N_LEU 0.008632498 

O7N_THR 0.099664754 O3D_ASN 0.056314177 O2B_PRO 0.03121384 C5D_HIS 0.007959814 

C4N_ALA 0.098701899 C4B_HIS 0.056175761 O4D_ASN 0.030787145 C2D_ASP 0.00768146 

O3D_THR 0.097248115 C4A_ASP 0.055724142 N7A_TRP 0.030680017 O1A_LEU 0.007670774 

O4B_ASP 0.096754876 C8A_TRP 0.055617695 PN_LEU 0.029719512 C5A_HIS 0.007650503 

C8A_LYS 0.095315866 C5N_PRO 0.055392821 O2A_GLN 0.029703758 O3B_TYR 0.007502293 

C1B_ASP 0.094624659 O3_CYS 0.055226603 O5D_MET 0.029487202 C2D_GLN 0.007488351 

N6A_GLU 0.094601341 N6A_PHE 0.054991735 PA_TRP 0.029056729 C2A_LEU 0.007471721 
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N7N_CYS 0.094435354 C4A_GLU 0.05479858 O3_THR 0.029037937 O3_ARG 0.006893838 

N3A_GLU 0.094044915 C2B_LEU 0.053824457 O2D_ILE 0.028969805 PN_THR 0.006589932 

C2N_MET 0.093635101 O5B_ARG 0.05370051 C2D_PHE 0.028951052 C6N_ILE 0.006317509 

C7N_SER 0.093273592 C3N_TRP 0.053645898 C2D_THR 0.028863737 O3B_SER 0.00628109 

N7A_PRO 0.092887422 C5N_LYS 0.053172349 C6A_THR 0.028566318 N1N_CYS 0.006183564 

C2A_GLU 0.092512112 O4B_GLN 0.053113516 C7N_PHE 0.0284569 O2N_HIS 0.006143172 

C8A_VAL 0.092039322 N1A_VAL 0.052949956 C2D_HIS 0.028138399 C4B_ALA 0.005844543 

C2D_PRO 0.091974416 N7A_ILE 0.052668712 O2A_SER 0.027907848 O2A_ASP 0.005816768 

C5A_ARG 0.091774884 C2B_ASN 0.052129331 C8A_PRO 0.027839496 O2N_ILE 0.00570703 

O7N_GLY 0.091607528 O2A_LYS 0.052029338 C2D_LYS 0.027755749 N3A_ILE 0.005557604 

C4A_PHE 0.091478957 O5B_TRP 0.051926206 C5B_VAL 0.027696387 C4D_GLU 0.005447283 

N7A_HIS 0.091434955 PN_ILE 0.051876557 C4N_VAL 0.027305555 O1N_ASP 0.005178466 

C3B_GLU 0.09139035 C3N_CYS 0.050868751 O2N_ALA 0.027160743 O3B_VAL 0.004899055 

C4A_LEU 0.090872072 C4B_MET 0.050634 C7N_LEU 0.027019403 C4N_ASN 0.003532887 

O3B_ASP 0.090720383 C6A_ILE 0.050325083 O2D_ASN 0.026645431 C3D_PHE 0.003504186 

C4B_PRO 0.09067722 O1N_SER 0.049049516 O3_LEU 0.026576686 C6N_VAL 0.003094678 

N7A_ARG 0.090528536 O7N_ASP 0.048624583 O5D_PHE 0.026565767 O5B_TYR 0.002555715 

N7A_MET 0.090306467 N6A_MET 0.048577237 PA_HIS 0.026455381 C3N_MET 0.002362533 

C1B_LEU 0.089465086 O4D_ARG 0.048423773 O5B_THR 0.026232191 C5N_GLU 0.002179866 

C5A_GLU 0.088046164 O2D_TYR 0.048363667 C6A_MET 0.026165631 O3B_THR 0.001955582 

N7A_THR 0.088005608 PA_PRO 0.048103131 C4B_LYS 0.026110914 O1A_PRO 0.001622565 

N7N_GLU 0.087465764 C6N_CYS 0.047847513 C5D_MET 0.025805668 C1D_GLY 0.001541014 

N3A_ALA 0.087417513 C6N_SER 0.047755285 N1A_LYS 0.025796286 C4A_TYR 0.001506384 

N9A_MET 0.087399922 O2D_MET 0.047508299 C5N_PHE 0.025618651 O4B_ILE 0.000794275 

N9A_ASN 0.08732569 O2A_ILE 0.047073498 N1A_MET 0.025546119 N7A_CYS 0.00025527 

O2N_TYR 0.087107984 PA_SER 0.046824837 C4A_THR 0.02553769 O5D_ASP 0.000240182 

N9A_PHE 0.086900914 N7N_HIS 0.04665957 N1A_GLU 0.025466655 O4D_LEU 0.000196388 

O3_HIS 0.08674575 C1B_VAL 0.04659479 C2A_ILE 0.025021287 C5D_PHE 0.000107303 

O4D_ILE 0.086687568 C7N_PRO 0.04631959 C4A_MET 0.024798013 PN_SER 0.000103847 

O2N_THR 0.086066019 O4B_MET 0.046008828 C4N_ILE 0.024773603 O1A_VAL 0.0000672 

C6A_ALA 0.085894582 N6A_TYR 0.045938949 O4B_LYS 0.024320924 N1N_VAL 0.0000641 

C2B_ASP 0.085308204       
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