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Abstract: A practical one-pot procedure for the preparation of diverse thieno[3,2-d]pyrimidines is
reported here for the first time. This two-step process via C–H activation in position C-2 of thiophene
led to the development of an improved methodology for the synthesis of numerous compounds. This
new methodology is an efficient alternative to the conventional methods currently applied. The C–H
activation of the thiophene C-3 position was also achieved and can be selective. The optimized
conditions can also be applied to thienopyridines and thienopyrazines.
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1. Introduction

The direct functionalization of C–H bonds in catalytic coupling reactions is considered to be a
significant step to achieve molecular diversity and great progress has already been made in this field.
Furthermore, environmentally benign, operationally simple, and robust reactions, particularly those
employing heterogeneous catalysts, are of significant interest to the chemical industry. The direct
palladium-catalyzed C–H activation of heteroaromatic compounds has recently been extensively
studied. The main challenge of this approach is the control of regioselectivity with heterocyclic
substrates containing multiple C–H bonds that may have similar reactivities [1–6]. Thienopyridines,
thienopyrimidines, and thienopyrazines are sulfur-containing heterocyclic molecules that, when
functionalized, are often incorporated into important molecular scaffolds used in materials science
and in particular in biology and medicine [7]. To the best of our knowledge, however, no studies
have yet been reported on the C–H activation of the thiophene ring in thieno[3,2-b]pyridines,
thieno[3,2-d]pyrimidines, and thieno[2,3-b]pyrazines. The present study explores this topic.

A study of the literature revealed that only three teams have worked on the C–H activation of
thieno[3,4-b]pyrazine, 2,3-thienoisoquinolines, and 3,4-thienoisoquinolines (Schemes 1–3).

McNamara et al. [8] presented the synthesis of a series of thieno[3,4-b]pyrazine derivatives
as fluorescent compounds through the direct palladium-catalyzed activation of the C–H bonds of
thiophene using Pd(OAc)2 with X-Phos or PtBu3 as ligands. Moderate yields were achieved, with
some variation depending on the reagents (Scheme 1).

In 2014, Chen et al. [9] developed a synthetic route on 2,3-thienoisoquinoline-phenylsulfamide
which was successfully functionalized with phenyl, 3-EtO2CC6H4, 4-EtO2CC6H4, 3-CH3OC6H4,
and 4-CH3OC6H4 bromides employing a C–H activation reaction on position 5 of the thiophene
moiety. Yields ranged from 25% to 86% (Scheme 2).

Catalysts 2018, 8, 137; doi:10.3390/catal8040137 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0001-7346-3143
https://orcid.org/0000-0002-4577-4988
http://www.mdpi.com/journal/catalysts
http://www.mdpi.com/2073-4344/8/4/137?type=check_update&version=1
http://dx.doi.org/10.3390/catal8040137


Catalysts 2018, 8, 137 2 of 14

Scheme 1. McNamara et al.’s work (2016).

Scheme 2. Chen et al.’s work (2014).

Wong and Forngione [10] reported the synthesis of a unique class of highly functionalized
3,4-thienoisoquinolines via an efficient double C-H palladium-catalyzed one-pot activation using
Pd(OAc)2, PCy3 HBF4, PivOH, and K2CO3 in DMF at 100 ◦C for 6 h in good yields (Scheme 3).

Scheme 3. Wong and Forngione’s work (2012).

2. Results and Discussion

Pursuing our previous work [11] on various annelated sulfur-containing heterocycles, where we
investigated the functionalization of the C3 position of the thiophene ring in several thieno-pyridines,
-pyrimidines, and -pyrazines (Figure 1) using C3-bromoderivatives and various boronic acids in
optimized Suzuki conditions, we worked on a Pd-catalyzed direct arylation to generate diversity.

Herein we report our investigation of the development of efficient Pd-catalyzed direct arylation on
position C-3 of the thiophene ring from the thieno-pyridines, -pyrimidines, and -pyrazines presented
in Figure 1. In a first attempt, the thienoderivatives 1 and 4 were reacted using the conditions
already described by our team for the Pd-catalyzed direct arylation of pyrazolo[1,5-a]pyrimidine [12].
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Unfortunately, these conditions did not yield the expected products (Table 1). The thienoderivatives
1 and 4 in presence of 1.5 equivalent of 1-iodo-4-methoxybenzene, Pd(OAc)2 (10% mol), P(tBu)3 (20%
mol), and cesium carbonate (2 equiv.) in toluene after 48 h at 110 ◦C led only to recovery of the starting
material and no trace of the expected product was detected. The use of P(Cy)3HBF4 as ligand did not
lead to any improvement even when the reaction time was increased up to 70 h (Scheme 4).

Figure 1. Thienopyridines and thienopyrazines used in first attempts of Pd-catalyzed direct arylation.

Table 1. Optimization of direct C–H arylation in position 3 of the 2-phenylthieno[3,2-b]pyridine 2.

Entry Pd(OAc)2
(mol %)

Ligand
(mol %)

Cu
(equiv.)

Base
(equiv.) Solvent Br–X

(1 equiv.)
Time

(h)
T

(◦C)
Yield a

(%)

1 (10) - CuI
(20)

K2CO3
(2) Toluene Bromo

benzene 24 120 0

2 (10) - Cu(OAc)2
(20)

K2CO3
(2) Toluene Bromo

benzene 24 120 0

3 (10) - CuI
(20)

KOAc
(2) Toluene Bromo

benzene 24 120 0

4 (10) - Cu(OAc)2
(20)

KOAc
(2) Toluene Bromo

benzene 24 120 0

5 (5) P(t-Bu)2
MeHBF4 (10) - K2CO3

(1) DMA Bromo
benzene 24 120 7

6 (1) P(t-Bu)2
MeHBF4 (3) -

K2CO3 +
AgOTf

(0.2) + (0.1)
DMA Bromo

benzene 24 145 0

7 (5) P(t-Bu)2
MeHBF4 (10) - K2CO3

(1) DMA
1-bromo-
4-methyl
benzene

96 120 26

8 (5) P(t-Bu)2
MeHBF4 (10) - K2CO3

(1) DMA

1-bromo-
4-(trifluoro

methyl)
benzene

96 120 20

9 (1) - - KOAc
(2) DMA

Bromo
aceto

phenone
24 150 0

a Isolated yield after column chromatography.

Applying the conditions reported by Hull and Sanford [13] on thienoderivatives 3 and 5
was likewise unsuccessful. This methodology involves the direct oxidative coupling of two
arene C–H substrates with a very large excess of one of them. The use of Pd(OAc)2 in
presence of Ag2CO3 as base and benzoquinone Bzq as oxidant in DMSO at 130 ◦C with 100
equivalents of 1,2-dichlorobenzene did not yield the expected compound after 16 h, and once
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again only the starting material was recovered. After 24 h of reaction time 20% of the
expected compound was obtained from 2-(pyridin-2-yl)thieno[3,2-b]pyridine 3 and 10% from
6-(pyridin-2-yl)thieno[2,3-b]pyrazine 5. When 100 equivalents of 1,2-dimethoxybenzene, nitrobenzene,
methoxybenzene, or 1,3-dimethoxy-2-nitrobenzene were used in the same conditions, only the starting
material was recovered and no product was detected. Although the product was obtained with a
very low yield in two cases, given the large quantity of one of the reagents that had to be used in this
method, we made no further attempts to optimize the conditions in terms of time or other factors
(Scheme 5).

Scheme 4. Pd-catalyzed direct arylation on position C-3 of the thiophene ring from the thieno-pyridines
and -pyrazines.

Scheme 5. Results of conditions reported by Hull and Sanford on thienoderivatives.

The work by Wei et al. [14] and Yang et al. [15] reported procedures for Pd-catalyzed direct
arylation with aryl boronic acids which were applied to our thienoderivatives 2 and 3 using phenyl
boronic acid but yet again, the reaction was unsuccessful (Scheme 6).

One of the other possible options was to use aryl bromides [16,17]. The 2-phenylthieno[3,2-
b]pyridine 2 was chosen for these experiments and was reacted with various amounts of Pd(OAc)2,
K2CO3, or KOAc as base, with or without ligands in different solvents. The results are summarized in
Table 1. In entries 1 to 4 copper was added as co-catalyst without any improvement, while in entries
5 to 8 P(t-Bu)2MeHBF4 was used as ligand with which the best yield was obtained (Table 1, Entry 7,
yield 26%).

Despite several attempts, however, we did not manage to exceed a 26% yield. Using a different
strategy, with 4-chlorothieno[3,2-d]pyrimidine 6 as starting material in the conditions reported by Hull
and Sanford [13], also proved unsuccessful (Scheme 7).

To avoid a possible interaction of the chlorine atom in the Pd-catalyzed direct arylation (Scheme 7),
it was substituted by various amines, generating a new series of potentially biologically active
molecules. This new strategy is shown in Scheme 8. After adding one chain by SnAr, the scope
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of the reactivity and regioselectivity of Pd-catalyzed direct arylation in positions 2 or 3 of the thiophene
moiety was evaluated.

Scheme 6. Results of conditions reported by Wei et al. and Yang et al. on thienoderivatives.

Scheme 7. C–H activation from 4-chlorothieno[3,2-d]pyrimidine using conditions reported by Hull
and Sanford.

Scheme 8. New synthesis strategy.

Several strategies to conduct an SnAr reaction of 4-chlorothieno[3,2-d]pyrimidine using amino
derivatives are reported in the literature [18–22]. With a view to developing procedures with the
lowest possible environmental impact, we tested the use of PEG 400 as solvent. This compound, like
the other heterocyclic scaffolds, underwent the SnAr reaction using amines and produced good yields
in only 5 min [23], but our goal was to diversify our core structure by C–H activation which tried
using Polyethylene glycol 400 as solvent without success in a one-pot process. We therefore decided,
in the present work, to use toluene with various amines to generate precursors of C–H catalyzed
cross-coupling. In these conditions all the expected substituted 4-amino-thieno[3,2-d]pyrimidine
compounds were successfully synthesized in good yields of 60% to 96%. The lowest yield was
obtained for the deactivated aniline substituted in the ortho position by the electro-withdrawing
trifluoromethyl group (Table 2).
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Table 2. SnAr substitution of chlorine on the six-membered ring by various amines.

Entry Amine Reagent Product Yield a

1 7, 86%

2 8, 96%

3 9, 82%

4 10, 60%

5 11, 86%

6 12, 67%

7 13, 68%

a Isolated yield after column chromatography.
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Optimization of the Pd-catalyzed direct arylation and its regioselectivity in position C-2 was
achieved starting from 4-(thieno[3,2-d]pyrimidin-4-yl)morpholine 7 using bromobenzene and by
varying the amount of Pd(OAc)2 with or without ligand, and the type and amount of K2CO3 or KOAc
as base. Various solvents and temperatures were also tested, as summarized in Table 3.

Table 3. Optimization of the C–H activation with regioselectivity in position C-2 of 4-(thieno[3,2-d]
pyrimidin-4-yl)morpholine 7.

Entry Pd Catalyst
(equiv.)

Ligand
(mol %)

Base (equiv.) Solvent
Time

(h) T (◦C)
Yield a (%)

14 15

1 Pd(OAc)2
(20%) - K2CO3

(4) Toluene 46 140 64 31

2 Pd(OAc)2
(10%)

PCy3
(20)

K2CO3
(2) Dioxane 46 130 50 44

3 Pd(OAc)2
(10%)

TTBP · HBF4
(20)

K2CO3
(2) Toluene 46 130 81 9

4 Pd(OAc)2
(10%)

Phenantroline
(20)

K3PO4/K2CO3
(1)/(1) DMA 46 140 22 0

5
Pd(OAc)2/

Bu4NBr
(20%)/(2)

- KOAc
(6) DMF 24 80 26 0

6
Pd(OAc)2/

Bu4NBr
(20%)/(2)

- KOAc
(6) Water 24 80 0 0

7 Pd(OAc)2
(10%)

TTBP · HBF4
(20)

K2CO3
(2) Toluene 46 100 72 0

a Isolated yield after column chromatography.

The desired compound was obtained in moderate to good yields in presence of Pd(OAc)2 with
K2CO3 in toluene (Table 3, Entries 1 and 3) and the presence of ligand increased the regioselectivity
(Table 3, Entries 3–4). When the reaction was performed in water no results were obtained and only
the starting material was recovered (Table 3, entry 6). The temperature had a pronounced effect
on regioselectivity: when 4-(thieno[3,2-d]pyrimidin-4-yl)morpholine was stirred using Pd(OAc)2,
TTBP · HBF4 as ligand, K2CO3 in toluene at 100 ◦C, complete regioselectivity was obtained.

This process proved to be a good alternative to the most commonly used synthetic routes [24–29]
(Figure 2).

Based on our results (Table 3, Entry 7) the scope and limitations of the one pot SnAr–Pd-catalyzed
direct arylation on 4-chlorothieno[3,2-d]pyrimidine 6 were assessed using several bromo-benzenes
(Table 4).
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Figure 2. Literature and previous work.

Table 4. Scope and limitations of the one pot SnAr-Pd-catalyzed direct arylation from 4-chlorothieno
[3,2-d]pyrimidine 6.

Entry Amine Reagent R2-Br Product Yield a

1 14, 70%

2 16, 58%

3 17, 63%
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Table 4. Cont.

Entry Amine Reagent R2-Br Product Yield a

4 18, 61%

5 19, 54%

6 20, 43%

7 21, 84%

8 22, 55%

9 23, 67%

a Isolated yield after column chromatography.

Several 2-aryl-thieno[3,2-d]pyrimidine compounds amino-substituted in position 4 were
synthesized in moderate to excellent yields, demonstrating the generalizability of this method. From
these results, we started to develop the Pd-catalyzed direct C–H activation on position C-3 of the
thiophene moiety. This was studied from compound 14 using bromobenzene (2 equiv.), different
amounts of Pd(OAc)2 and K2CO3 with or without ligand, in toluene at different temperatures (Table 5).
The desired product was obtained in moderate yields (Table 5, Entries 1–3). A temperature between
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130–140 ◦C induced activation in the C-3 position, but when the reaction was performed at 100 ◦C,
direct C–H activation did not take place (Table 5, Entry 4).

Table 5. Optimization of the C–H activation at position C-3 of 4-(6-phenylthieno[3,2-d]pyrimidin-4-
yl)morpholine 14.

Entry Pd Catalyst (mol %) Ligand (mol %) Base (equiv.) T (◦C) Yield a (%)

1 Pd(OAc)2 (20) - K2CO3 (4) 140 55

2 Pd(OAc)2 (10) TTBP·HBF4 (20) K2CO3 (2) 130 49

3 Pd(OAc)2 (10) PCy3 (20) K2CO3 (2) 130 34

4 Pd(OAc)2 (10) TTBP ·HBF4 (20) K2CO3 (2) 100 0

a Isolated yield after column chromatography.

The scope and limitations of the one-pot reaction were then explored. We started with morpholine;
then bromobenzene was used for the Pd-catalyzed C–H activation on the C-2 position, and for the last
step, the Pd-catalyzed C–H activation on the C-3 position, bromobenzene and bromobenzonitrile were
tested. The conditions of entry 2 (Table 5) were chosen even though they required a ligand because
the reaction can be carried out with a smaller amount of base and at a lower temperature, which
may be important for some sensitive reagents. These conditions appeared to be a good compromise.
The results obtained for the one-pot three-step activation are summarized in Table 6.

For these two examples of one-pot three-step SnAr, C–H activation in C-2 then C–H activation
in C-3 positions, we were able to obtain the expected compounds with reasonable yields. This
method is also a valid alternative to standard synthetic strategies. To validate our Pd-catalyzed C–H
arylation conditions on a large panel of heterocycles possessing a thiophene moiety we chose two
compounds used at the beginning of this work, and investigated the scope and limitations first on the
2-phenylthieno[3,2-b]pyridine core structure (Table 7) and then on the 6-phenyl thieno[2,3-b]pyrazine,
a heterocycle known to have a particularly low reactivity (Table 8) [11].

Six different 3-aryl-2-phenylthienopyridines (25–29) were synthesized in moderate to good yields
(41 to 91%) by direct Pd-catalyzed C–H arylation in C-3 position.

Several 5-aryl-6-phenylthieno[2,3-b]pyrazines (30–32) were synthesized in moderate yields, which
demonstrated the generality and the feasibility of this method. As expected from the latest results of our
team, the pyrazine showed lower yields than the pyridine. These results (Tables 7 and 8) represented
an improvement and a good alternative to the most commonly used synthetic routes [11,24–29].
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Table 6. One pot three-step selective SnAr, Pd-catalyzed C–H activation on the C-2 then on the C-3
positions of the thiophene moiety.

Entry Amine R2-Br R3-Br Product Yield a

1 15, 48%

2 24, 36%

a Isolated yield after column chromatography.

Table 7. Pd-catalyzed C–H arylation in position C-3 of the 2-phenylthieno[3,2-b]pyridine 2.

Entry R-Br Product Yield a

1 25, 91%

2 26, 65%

3 27, 89%
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Table 7. Cont.

Entry R-Br Product Yield a

4 28, 41%

5 29, 84%

a Isolated yield after column chromatography.

Table 8. Pd-catalyzed C–H arylation in C-3 of the 6-phenyl thieno[2,3-b]pyrazine 4.

Entry R-Br Product Yield a

1 30, 47%

2 31, 31%

3 32, 38%

a Isolated yield after column chromatography.

3. Conclusions

In summary, we have disclosed a convenient one-pot synthesis of thieno-pyridine, -pyrimidine,
and -pyrazine scaffolds. The conditions reported make this methodology an interesting alternative to
conventional routes, as it avoids the bromination, iodination, or chlorination processes generally used
to synthesize various annelated sulfur-containing heterocycles.
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