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Abstract

FastGraph - Unsupervised Location and Mapping in Wireless Networks:

Wi-Fi Based Indoor Positioning solutions normally require complex and time-consuming

deployment processes or have limited accuracy. Fingerprinting Matching is one of most used

techniques for indoor positioning, which relies on a radio map that is normally created offline in a

calibration phase by manual site survey. Wi-Fi Fingerprint can be used to locate regular mobile

devices, such as smartphones, using only software and can be used in any indoor environment

without being necessary to deploy additional infrastructure, relying only on the existing Wi-Fi

infrastructure. However, in most cases the manual site survey is unpractical and involves a

significant effort, even for small scale spaces. Moreover, due to the dynamic nature of radio

environments, to maintain the system performance, the site survey has to be repeated often to

keep the radio map updated. This process is not feasible in large spaces, and compromises the

scalability of this type of approach.

Solutions have been proposed to reduce the calibration effort, using collaborative site survey

to create and maintain the radio maps, or by using Model-Based methods to approximate a

radio map. However, the reduced calibration effort usually implies a lower positioning accuracy

and higher computational requirements.

In this context, FastGraph is proposed as a new solution able to provide unsupervised

positioning using different devices, such as smartphones or autonomous machines, while au-

tomatically creating and maintaining a Radio Map. A 3D Force-Directed Graph is used to

rapidly model the radio environment. The 3D Graph is iteratively constructed with data col-

laboratively collected by several devices. Orientation and motion information, obtained from

different sensors, can be used to improve the Graph constrains.

FastGraph is able to operate shortly after its deployment, without previous knowledge

about the environment. The proposed solution uses a novel algorithm to automatically provide

location while simultaneously updating the radio map; and estimate the position of the Access

Points (APs) and location-specific radio propagation parameters. In addition, FastGraph does

not rely on expensive hardware or requires high computational effort.

The FastGraph approach may be used in different contexts. In addition to the indoor
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positioning, the radio maps created by FastGraph include supplementary information that can

be used to automatically map the interference in Wi-Fi networks and even to automatically

map the physical space.

The described solution was deployed and evaluated in two very distinct real world spaces,

an industrial environment and a regular office building. The experiments, in these two spaces,

evaluated the several aspects of FastGraph, and considered scenarios where only Wi-Fi data is

available and when the Wi-Fi can be combined with data from other sensors. The results suggest

that the proposed solution has potential to provide interference information in wireless networks

and provide positioning in different indoor scenarios, from regular buildings, to autonomous

vehicles in industrial environments, with the possibility of being also extended to outdoor spaces

using data from cellular networks, especially considering the characteristics of the upcoming

5G networks.
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Resumo

FastGraph - Localização e Mapeamento Automáticos em Redes sem Fios:

Os sistemas de posicionamento indoor baseados em Wi-Fi normalmente implicam processos

de implementação complexos e longos, ou são limitados em termos de exactidão. Fingerprinting

Matching é uma das técnicas mais utilizadas para posicionamento indoor, utilizando mapas de

rádio normalmente criados offline, numa fase de calibração, através de mapeamento manual

do ambiente rádio. O Wi-Fi fingerprinting dispensa a instalação de uma infra-estrutura (usa a

infra-estrutura Wi-Fi existente) e pode ser utilizado para localizar dispositivos móveis comuns

só com recurso a software. No entanto, na maioria dos casos o mapeamento rádio manual não

é prático e envolve um esforço significativo, mesmo em espaços pequenos. Além disso, devido

à natureza dinâmica dos ambientes rádio, para manter a desempenho do sistema, a fase de

calibração tem de ser repetida frequentemente para manter o mapa de rádio atualizado. Por

estes motivos, este processo não é praticável em espaços de grandes dimensões, comprometendo

a escalabilidade deste tipo de abordagem.

Por este motivo têm vindo a ser propostas soluções para reduzir o esforço de calibração,

recorrendo a mapeamento colaborativo do ambiente rádio para criar e manter os mapas de

rádio, ou utilizando métodos baseados em modelos para obter um mapa de rádio aproximado.

Contudo, a redução do esforço de calibração normalmente traduz-se numa redução da precisão

no posicionamento, ou no aumento dos requisitos computacionais.

Neste contexto é proposto o FastGraph, um novo sistema capaz de fornecer automaticamente

posicionamento utilizando diferentes dispositivos, como por exemplo smartphones ou veículos

autónomos, e capaz de em simultâneo criar e manter um mapa de rádio. É utilizado um Grafo

3D (3D Force-Directed Graph) para rapidamente modular o ambiente de rádio. O Grafo 3D

é criado iterativamente com os dados recolhidos colaborativamente por múltiplos dispositivos.

Dados de orientação e movimento, obtidos através de diferentes sensores, podem ser usados

para melhorar as restrições espaciais do Grafo.

O sistema FastGraph é capaz de operar rapidamente após ser instalado, sem necessitar de

qualquer informação prévia sobre o ambiente rádio ou espaço. A solução proposta implementa

um algoritmo original para fornecer posicionamento enquanto automaticamente mantêm o mapa
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de rádio atualizado; estima a posição dos Pontos de Acesso Wi-Fi e parâmetros de propagação

específicos para cada local do espaço. Além disso, a solução FastGraph não se baseia em

hardware dispendioso e não implica elevado esforço computacional.

A solução FastGraph pode ser utilizada em diferentes contextos. Além do posicionamento

indoor, os mapas de rádio criados pelo FastGraph incluem informação suplementar que pode

ser utilizada para mapear automaticamente a interferência em redes Wi-Fi, e até para mapear

automaticamente o espaço físico.

A solução descrita foi instalada e testada em dois espaços reais com características muito

distintas, um espaço industrial e um edifício de escritórios. As experiências nestes dois espaços

avaliaram os diferentes aspetos da solução e consideraram cenários onde apenas é possível

utilizar dados Wi-Fi, e cenários onde os dados Wi-Fi podem ser combinados com dados de

outros sensores. Os resultados sugerem que a solução proposta tem potencial para fornecer

informação relativa à interferência em redes sem fios assim como posicionamento em diferentes

ambientes indoor, com aplicações desde do posicionamento em edifícios comuns à navegação

de veículos autónomos em ambientes industriais, podendo também ser possível a extensão da

solução para ambientes exteriores utilizando dados das redes celulares, em especial considerando

as características das novas redes 5G.
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Chapter 1

Introduction

The research presented in this thesis is focus on the creation of a method to automatically

create and maintain radio maps, that can be used in different contexts, such as indoor po-

sitioning or radio environment analysis. A radio map can be seen as a database containing

fingerprints collected at several locations of a space. A fingerprint or radio signature consists in

a sample collected at a specific position containing information about the APs detected. Each

fingerprint includes for each AP detected, the AP identification (Media Access Control (MAC)

Address) and the Received Signal Strength (RSS), between other information.

This chapter provides the research context and describes the motivation. The main objec-

tives and most relevant contributions are also detailed, and the main hypothesis is presented.

Finally, is outlined the structure of this thesis.
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1 Research Context and Motivation

Wireless Local Area Network (WLAN) and cellular networks infrastructures are spread

across most areas, providing constant access to digital services to millions of users. The

widespread of WLANs, leaded to the research of different Wi-Fi based positioning systems,

mainly in indoor environments, where Global Navigation Satellite System (GNSS) systems

can’t be used or are unreliable.

Wi-Fi based positioning in indoor spaces has associated several challenges, and different

approach have been proposed in the recent years. These approaches normally rely on complex

and time consuming deployment processes and requirements, or impose significant limitations in

scalability, space heterogeneity and location accuracy. However, areas such as Internet of Things

(IoT) [2], Augmented Reality (AR) [3], monitoring of patients with degenerative dementia [4] or

autonomous vehicles and drones indoor navigation [5], are only a few examples of the increasing

number of applications requiring an accurate and easily scalable indoor positioning system.

Wi-Fi Fingerprinting Matching is a well known and one of most used techniques for in-

door positioning, which relies on a previous site survey. Other approaches rely on propagation

models or on geometric relations between the transmitters and the receivers. Some Simulta-

neous Localization and Mapping (SLAM) solutions explore the techniques used in robotics,

to provide positioning while mapping the space, taking advantage from sensors’ data, such as

orientation and displacement. This type of data is also frequently combined with the Wi-Fi

RSS measurements to increase the positioning accuracy.

In addition, the technologies that are expected to integrate the upcoming 5G cellular stan-

dard provide interesting prospects for positioning. The 5G characteristics such as the small

cells, the millimeter wave, massive Multiple-Input Multiple-Output (MIMO) [6], and the device-

to-device communication, may contribute to new positioning systems as well as benefit from

it [7]. As example, an accurate awareness of the mobile stations positions could be used by

cellular networks to significantly increase the spectrum efficiency, as the frequency slots may

be re-used for the mobile stations that are distant from each other [8].

Another relevant topic related to WLAN networks is the interference, that degrades the

quality of service. In contrast to cellular networks that operate in regulated spectrum bands,

and where the deployment is controlled and planned, the deployment of Wireless LAN networks

infrastructures is unregulated and uncontrolled. The reason is the unlicensed nature of the

bands used by Wi-Fi. This uncontrolled and most of the times unplanned deployment leads
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to competition for resources among a large number of access points, hotspots, and other types

of devices, such as laptops and smartphones, which transmit on the same unlicensed band.

All of these devices contribute to high levels of interference, which dramatically decreases the

throughputs [9]. The wireless interference is in fact one of the major cause of degradation of

capacity in Wi-Fi wireless networks, and has been well-documented in literature [9–12].

The energy consumption in large WLAN networks is also a problem. Modern access points

already include dynamic transmit-power control. In addition, strategies to intelligent optimiz-

ing of the energy consumption, independent from manufactures, are also being investigated [13].

However, the problem begins with the inefficient planing and deployment of Wi-Fi access points,

which in addition to interference, also results in unnecessary energy consumption. These prob-

lems are frequent, even in large institutions such as universities campus, where the deployment

of Wi-Fi is expected to be planned. Methods to easily identify the areas with hight levels of

interference are therefore essential to more efficient Wi-Fi networks, specially in large scale and

Wi-Fi dense environments.

2 Proposed Hypothesis

This research work intend to assess if it is possible to automatically create and maintain

radio maps, using an approach based on organic Force-Directed 3D Graphs.

The main idea is that a 3D Graph can be used to represent a radio environment, where

the access points and the fingerprints (samples unsupervisedly collected) are the nodes of the

Graph, and the edges represent the communications channels between the devices collecting

samples and the access points, and can be described by a propagation model. In addition,

the samples can be connected by edges, established based on motion information. Using a

Force-Directed approach, the Graph is able to evolve, and the position of the samples and the

access points can be automatically estimated. With more samples being added, the Graph

can improve, and can dynamically adjust to changes in the radio environment, automatically

maintaining a radio map updated.

The main hypothesis formulated for this research was therefore the following: A dynamic

3D Graph that is built iteratively and adjusted by a Force-Directed approach, that

can be used to model radio environments and to automatically create and maintain

Radio Maps, and that can be used in different contexts.
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3 Research Strategy and Objectives

The research work presented here followed a deductive approach and the engineering design

process. As expected, the research and development was an iterative process, with recursive

testing and modification. Controlled tests, using synthetic data, allowed to find and isolate

the problems, by making sure that only one factor or condition was changed at each time. A

radio environment simulator, that was developed and will be detailed on this document, was

essential during this process.

Although the hypothesis presented may be valid for different radio technologies, this re-

search focused mainly in Wi-Fi, for being an ubiquitous and well establish technology in the

indoor positioning field. The proposed hypothesis was validated by experimentation using real

world data. A prototype was developed to deploy the solution in real world scenarios. The

experiments were conducted in two very distinct spaces, in order to validate the solution in

environments with different characteristics.

Main Research Objectives:

• To assess if it is possible to create an easily deployable, and self maintained method, to

provide positioning and to automatically create and maintain radio maps in heterogeneous

indoor spaces.

• Discuss and evaluate how the radio maps created by this method can be used in other

applications, especially the analysis of interference in Wi-Fi networks.

• Discuss possible applications for the developed solution, and how it can be extended to

outdoor environments and to upcoming technologies such as 5G networks.

4 Contributions

The most relevant contribution of this research is the definition of a new method for unsu-

pervised indoor positioning and radio mapping.

In contrast with other approaches, the proposed solution don’t rely on manual site survey

or calibration to create radio maps, or require previous knowledge about the access points

positions. Moreover, no assumptions are made about the propagation characteristics being

4



INTRODUCTION

uniform for a given space, or that propagation parameters for an access point are equal in all

areas of the space.

The contributions in the positioning field may be valid to other wireless technologies, such

as Bluetooth or cellular networks, and possibly extended to outdoor environments, contributing

for a seamless indoor and outdoor positioning system.

The radio maps created by the proposed method may also be useful for analysis and planing

of Wi-Fi networks, contributing to reduce interference, improving the communication’s quality

and the energy efficiency. In addition, this research can contribute to positioning methods for

5G cellular networks, which can be used not only by users, but also by the network to improve

aspects such as spectrum efficiency or to analyze how the mobile networks services are been

used in outdoor and indoor environments.

This research work also resulted in scientific publications already published and others that

are being prepared to be published.

Publications:

• Cristiano Pendão, Adriano Moreira, “FastGraph - Unsupervised Location and Mapping”.

Journal Paper describing the FastGraph full solution and including the enhanced posi-

tioning results with motion information. Submitted to IEEE Transactions on Mobile

Computing (TMC) Journal

• Cristiano Pendão, Adriano Moreira, Regular Paper covering the interference mapping

and exploring the relation between the interference and the positioning performance. (In

Progress)

• Cristiano Pendão, Adriano Moreira, “FastGraph - Organic 3D Graph for Unsupervised

Location and Mapping” 2018 International Conference on Indoor Positioning and Indoor

Navigation (IPIN), Nates, 2018. (Accepted, Presented and Waiting to be Published in

IEEE Xplore)

• A. Moreira, I. Silva, F. Meneses, M. J. Nicolau, C. Pendão and J. Torres-Sospedra, “Mul-

tiple simultaneous Wi-Fi measurements in fingerprinting indoor positioning,” 2017 Inter-

national Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, 2017,

pp. 1-8. doi: 10.1109/IPIN.2017.8115914

• S. Conceição, C. Pendão, A. Moreira and M. Ricardo, “Evaluation of medium access and a

positioning system in wireless underground sensor networks”, 2016 Wireless Days (WD),

Toulouse, 2016, pp. 1-6. doi: 10.1109/WD.2016.7461482
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5 Thesis Structure

This chapter have defined the context and the research scope of this PhD thesis. The

motivation and the research objectives were presented.

The next chapter reviews the state of the art related to Wi-Fi networks and how they

have been used to provide indoor positioning. Relevant topics of related works are discussed,

including the algorithms and technologies explored for positioning in indoor and outdoor spaces.

Chapter three, describes the 3D RF Environment Simulator, that was designed and im-

plemented to generate controlled synthetic data. This data was essential to develop and test

different components of the FastGraph algorithm.

The fourth chapter, presents the FastGraph. The fundamental principles of the proposed

solution are explained, detailing the Graph based approach and the several challenges that had

to be overcome.

Chapter five, describe the two real world spaces, an industrial building and a regular Uni-

versity building, where the FastGraph prototype was deployed and evaluated. In this chapter

are also described the components and devices developed for the experiments, and the setup to

obtain ground truth data.

In chapter six the results obtained from the real world experiments are presented and

discussed. In addition, these results are compared with state of the art solutions.

Chapter seven, describes how the FastGraph approach can be used and extended to other

applications, especially for additional automatic mapping features.

Chapter eight, concludes this thesis, resuming the key aspects and providing topics for

future work. Some broader indicators for further research are also provided.
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State of the Art Review

This chapter presents a literature survey of the state of the art research exploring Wi-Fi

networks to create radio maps and to provide indoor positioning. The advantages and challenges

related to the different approaches are discussed.

The first section introduces the main characteristics of WLANs, regarding the radio spec-

trum usage, the deployment types and coverage.

Second section overviews the different positioning systems and the different type of location

that each system provides.

Section three focus on research related to Wi-Fi based positioning, discussing the different

approaches and relevant projects in this field.
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1 WLAN Radio Channel

Wireless LAN based on the IEEE 802.11 operate in 2.4 GHz and 5 GHz bands that are

allocated on unlicensed Industrial, Scientific, and Medical (ISM). The lower frequencies have

limited bandwidth resulting in lower transmission rates, but the range is superior to the higher

frequencies that are more attenuated by objects [14].

1.1 Wi-Fi Radio Spectrum

Wi-Fi connections can be dropped or the throughput lowered by having other devices oper-

ating in the same band in the same area. Many 2.4 GHz (802.11b and 802.11g) Access Points

are configured by default to operate in the same channel on initial startup, contributing to con-

gestion on certain channels. Other devices in the 2.4 GHz band, such as ZigBee and Bluetooth

devices or even microwave ovens, also contribute to the interference.

In addition, an excessive number of APs in the area, especially on neighboring channels, can

prevent access and interfere with other APs. Overlapping channels in the 802.11g/b spectrum

also decrease the Signal-to-Noise Ratio (SNR). This is becoming a problem in high-density

areas, such as large apartment complexes or office buildings with many Wi-Fi APs, and also

when municipalities or other large entities (such as universities) seek to provide coverage in a

large area.

The 802.11a physical layer operates in the 5GHz band, avoiding the interference from the

devices operating in the 2.4 GHz, but the different frequency range used leads to incompatibility

with the 802.11b or 802.11g standards [14].

Spectrum assignments and operational limitations are not consistent worldwide. Australia

and Europe allow for two additional channels beyond the 11 permitted in the United States for

the 2.4 GHz band (1 to 13), while Japan has three more (1 to 14). The 802.11a physical layer

uses the 5 GHz band, which, for much of the world, offers at least 23 non-overlapping channels

rather than the 2.4 GHz ISM frequency band, where adjacent channels overlap (Figure 2.1),

leading to channel interference.
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22 MHz

1 2 3 4 5 6 7 8 9 10 11Channels

2.412 2.437 2.462

12 13

Figure 2.1: Wi-Fi Channels 2.4 GHz (Europe)

The two technologies (802.11b/g and 802.11a) are complementary and will continue to be

used in enterprise environments [14]. When implementing these technologies it is necessary

to decide between deploying only one type or a combination of both. The 802.11a technology

cannot be deployed for an existing 802.11b network and obtain the same coverage in the same

areas as with the previous technology. The difference between the coverage of the two bands

do not allow this type of approach [14].

1.1.1 Spectrum Usage Techniques

Direct Sequence Spread Spectrum (DSSS) provides redundancy to the Radio Frequency

(RF) signal, allowing better chances for a successful pack reception when there is noise or

interference on the channel. The modulation used are Binary Phase-Shift Keying (BPSK) and

Quadrature Phase-Shift Keying (QPSK).

IEEE 802.11b uses Direct Sequence (DS) Channels, with 14 channels defined. A DS channel

has a bandwidth of 22 MHz, and the channels are separated by only 5 MHz, which can results

in interference between the signals from neighboring channels. In planned deployments the APs

are usually installed using the same approach of cellular deployments, allocating the adjacent

APs in non overlapping channels.

IEEE 802.11a uses Orthogonal Frequency Division Multiplexing (OFDM). The OFDM

multi-carrier provides high spectral efficiency by allowing sub-channels to overlap. In addi-

tion, in OFDM the modulation technique used is more efficient than the spread spectrum used

in the 802.11b [14].

The encoding techniques on the wireless link provide better data rates by allowing data to

be less affected by noise. However, the minimum required reliable data rate is influenced by

the number of APs, the power setting, the antenna gain, and the location. Also, when there

are multiple clients, the client with lower rate takes longer to transmit and this affects the data

throughput of the higher rate clients [14].
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1.2 Different Deployment Types of Overlapping WLAN Coverage

The overlapping in WLAN coverage depends on the services provided by the network.

Wireless networks can be deployed for different applications (location management, voice, data-

only networks, or a combination). The difference is the APs distribution pattern, and the RF

overlap level. The update of a WLAN deployment to support additional services may imply

additional site analysis and change the positions of the existing APs.

For a data-only deployment the overlap necessary is low and is defined by the required

WLAN data rate. Voice deployments require more overlap than data-only, therefore the APs

are closer, ensuring better alternative APs for voice clients. Cisco recommends that two APs

on non overlapping channels to be available at all times, for redundancy and load balancing

purposes. Is important to obtain a reasonably high energy density within the cell but also a low

noise background, being the 35–50 mW range a good power baseline for the AP, but usually

requiring around 15% more APs than at 100 mW [14].

Location-based services deployments requires excellent cell coverage and optimal location

of APs, and this is the most complex deployment. This type of deployment use the WLAN

infrastructure to track thousands of devices simultaneously, using for example Wi-Fi tags. The

AP separation estimation must take into account the objects that affect RF coverage, since

the coverage results vary depending on the RF environment. Space surveys help identifying

and characterizing problematic areas and potential sources of interference, for example existing

WLANs, or non-802.11 interference from other sources. Also, surveys after the deployment

should be considered to ensure that the coverage model was well planned [14].

2 Positioning Systems

Current positioning systems provide a wide range of services to the general population, to

the industry and to the governmental organizations.

In outdoor environments, most positioning services are based on GNSS, with a dedicated

satellites infrastructure called constellation. Examples of GNSS systems are the United States

Global Positioning System (GPS) and the Russian GLObalnaja NAvigatsionnaja Sputnikovaja

Sistema (GLONASS) and the European Galileo.

The general population uses GNSS services for daily routines and tasks, such as car travel

navigation. Professionals such as firefighters and rescuers rely on GNSS for their daily oper-
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ations, such as locating emergency scenarios. In large urban areas, the GNSS coverage and

accuracy are affected by the city geometry, with tall buildings blocking the GPS signals. This

effect is commonly known as urban canyons. In addition severe weather conditions also affect

the GNSS systems, attenuating the signals.

In indoor spaces, GNSS is very unreliable and most of the times unusable due to the week

signals, attenuated by the walls and ceiling and also due to multi-path. This lead to the research

and development of approaches for indoor spaces based on alternative technologies. Over the

past decade the research in indoor positioning enabled a new set of applications, ranging from

location-based services to indoor robot navigation. For each specific application, different

requirements prompted the development of different techniques, ranging from high-accuracy

laser based approaches to Radio-Frequency IDentification (RFID) solutions [15–17].

Indoor positioning technologies can be based on dedicated infrastructures. Some of this

type of systems offers high accuracy, but the required dedicated hardware and infrastructure

increases the costs, limiting large scale applications [18,19]. Examples of technologies explored

in this context are Infrared Light (IR) [20], RFID [16], Acoustic Waves [21], Visual Analysis

[22], and Bluetooth [23, 24]. The solutions based on these technologies are usually based on

proximity algorithms, that provide symbolic relative location, normally relying on a grid with

a large number of antennas with known and fixed positions. The mobile device position can

be determined by a single antenna, or considering the strongest signal when multiple antennas

are detected. RFID and IR are perhaps the most common examples of systems that are based

on this approach [25]. These systems have been used for example to track assets and inventory

management [25] or for security purposes in commercial spaces.

In recent years, radio signals from existing wireless infrastructures has been also explored

for indoor positioning. For example, a system can leverage from the existing infrastructures

of mobile cellular networks to estimate the position for outdoor mobile clients. However, the

accuracy using cellular signals is generally low (50–200 m), also the accuracy is higher in densely

covered spaces such as urban areas and much lower in rural environments [25].

The ubiquity of Wi-Fi networks in indoor spaces attracted the attention of many research

teams around the world, seeking to explore the existing Wi-Fi infrastructures to provide low-cost

indoor location services [19, 25–27]. The majority of the previous works on this field explore

the RSS of Wi-Fi received from multiple APs, as a metric for location determination [28].

Positioning based on Wi-Fi signals for indoor spaces has a better accuracy than systems based

on cellular signals, due to the lower range of coverage and higher density of APs in indoor

spaces. Different approaches with different requirements and accuracy have been developed.
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Current positioning systems provide different types of location information, and each sys-

tem is often designed to be used for outdoor or for indoor spaces. A system that can provide

positioning seamlessly for indoor and outdoor spaces with high performance is still not avail-

able. This type of solution is important for example to provide seamless indoor and outdoor

navigation and location for emergency response teams.

The demand for this type of solution is therefore high, and the possible applications are

vast and will increase with the upcoming technologies. Internet of Things (IoT), Augmented

Reality (AR), and Autonomous Navigation are only a few examples of the areas being developed

that can benefit from a solution able to provide positioning with high accuracy in indoors and

outdoors.

2.1 Location Types and Performance Metrics

Positioning systems can provide different types of location, depending on the application

requirements and objectives. Four types of location are commonly established: physical, sym-

bolic, absolute or relative [15, 25].

Physical location identify a point on a 2D or 3D referential and is expressed by a set of

coordinates, as it is in the GPS system. Symbolic location represents a location as natural

language, such as: Building A, floor five, room two. The absolute location is based on a

reference grid for all located objects, and the relative location information is typically based on

the proximity to known references, for example base stations [25].

The type of location that a system provide also define the system requirements, such as

precision, accuracy, scalability, and robustness. Other important parameters for a positioning

system are the complexity and cost [15, 25]. The accuracy can be represented as the average

Euclidean distance between the estimated location and the true location, and is considered the

most important requirement for a position system. Other frequently used metrics include the

75th percentile of the error, the max error, metrics that consider correct detection rate of the

building and floor (e.g. Indoor Positioning and Indoor Navigation (IPIN) conference competi-

tion), or even a metric that is not based on the Euclidean distance [1]. The precision measures

how consistently the positioning system works. The accuracy and precision are related. If the

system requirements allow less accuracy it is possible to trade it for more precision [15].

The complexity is related to the hardware, software and operation complexity required.

A system is robust if it can operate even when some of the requirements are unavailable, for

example if a satellite of GPS system fails, the system has other as replacement. The scalability

is related to the scope, if a system can be used in large scale scenarios and applications, and
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includes for example the number of concurrently clients or terminals that can obtain positioning

information simultaneously. The cost includes installation, deployment and also maintenance

and operational costs, related to infrastructures and hardware, time, space, weight, and energy

[15, 25].

3 Wi-Fi based Positioning

As mentioned before, the ubiquitousness of WLANs has been opening the opportunity for

many different positioning systems, especially for indoor environments. Generally, we can

separate Wi-Fi positioning techniques in two main groups: Wi-Fi Fingerprinting Matching and

Model-Based/Geometric. In order to achieve low positioning errors, several solutions propose

to combine odometry and orientation information with Wi-Fi RSS measurements. This type

of data is also explored in SLAM approaches.

3.1 Received Signal Strength (RSS) Based

In RSS-based approaches a position is estimated based on RSS measurements included in

samples obtained by scanning the available Access Points in the environment. In this context,

in a single samplei can be described as:

samplei = (deviceid, t, rs : ((ap1, rss1, ch1), ..., (apn, rssn, chn)) , p : (x, y, z), he) (2.1)

where, deviceid is the identification of the device that collects the sample (for example the

MAC address), t is the timestamp when the sample was collected, and rs is a list containing

information about the detected Access Points, including for each AP detected, the identification

(usually the AP MAC address), the measured RSS at the position where the sample was

collected, and other information such as the AP channel. In addition, a sample can also

include supplementary information such as the position (p) where it has been collected and the

device current orientation (he).

Different methods can be applied such as Approximate Perception, Trilateration or Finger-

printing Matching.
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3.1.1 Approximate Perception

Approximate Perception is a relative simple approach where the position of the AP with

the strongest signal is used as the user position [25]. In order to improve accuracy additional

methods such as Antenna cluster, and Cell-ID have been explored [29]. Since this method relies

on the AP position and coverage area, provides low accuracy positioning (around 100 meters).

3.1.2 Trilateration

Trilateration is a simple and well known method to estimate a position based on the distance

to transmitters with known positions. Trilateration is the fundamental principle of GNSS

systems to estimate position, using the spatial distances to the satellites, which are estimated

from the received signals.

To trilaterate a device, at least three transmitters are needed. Trilateration is also frequently

used to obtain an estimated position of a mobile station in cellular networks (Figure 2.2).

Mobile Position

Cell Range

Trilateration Concept
Cellular Tower

RSS 1
RSS 2

RSS 3

 © Cristiano Pendão FastGraph Cellular 3D Trilateration Concept

Figure 2.2: Cellular Trilateration in 3D

Similar trilateration methods can be used with Wi-Fi, applying the geometric properties of

triangles to the space relations between the target device and the APs to estimate a position.

The spatial distance to three or more APs can be estimate based on the RSS or based on the

Received Signal Attributes (RSA) at a specific position. Each AP position is the center of a

circle (or a sphere in 3D) with the radius defined by the estimated spacial distance (Figure 2.3).

The intersection of three or more circles define the possible position for the device. To obtain a
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good position estimation using a traditional trilateration solution it is necessary to previously

know the position of the transmitters. However, this is a problem in most Wi-Fi infrastructures,

since the deployment of Wi-Fi APs is uncoordinated and their position is unknown. Another

problem is how to estimate the distance between each AP and the position where the sample

has been collected.

In addition, the GNSS system is designed to work with unobstructed Line of Sight (LoS)

between the device and the satellites. In indoor environments it is impossible to ensure LoS,

therefore the propagation of RF signals is affected by different effects due to the indoor layout

and materials, that attenuate and create multi-path effects. Due to the indoor propagation

complexity, a traditional trilateration approach alone don’t provide satisfactory results, but

can be part of more advanced solutions.

AP1

AP2

AP3

r1(rss1)

r2 (rss2)

r3 (rss3)

intersection (device position)

Figure 2.3: Trilateration principle

3.1.3 Fingerprinting Matching

The Wi-Fi Fingerprinting Matching is based on the assumption that the Wi-Fi RSS mea-

surements can be used as an unique signature to identify a specific location in the environment,

and this unique signature is known as Wi-Fi fingerprint [30]. Therefore, fingerprinting solutions

rely on scene analysis, known as the offline/calibration phase, to map the Wi-Fi radio signa-

tures (fingerprints) at several locations and build a fingerprint database, commonly known as

Radio Map (Figure 2.4). In the online/location phase, the position of a device is estimated by

comparing the currently observed fingerprints against the radio map.

A fingerprint can be based on a single observation (sample) obtained from a single scan or,
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as has already been attempted [31–33], by combining multiple samples (RSS measurements)

collected at the same location to minimize the impact of RSS fluctuations. This can be done

simply by using the average of the RSS measurements of 10 samples collected at each 2 seconds

at the same position. An alternative is to combine multiple samples collected simultaneously

at the same position by multiple Wi-Fi interfaces, exploring the week correlation between the

RSS values obtained from independent interfaces [30]. Another approach is to generate virtual

fingerprints where the RSS are not measured but predicted using methods such as interpolation

or propagation modeling [34]. The RSS prediction attempts to reduce the offline calibration

effort to create the radio map.

Considering this, the format of a fingerprint fpi is therefore similar to the format defined

before for a sample (Eq. 2.1). The difference is that a sample represents a single observation

obtained by a scan (similar to a single screenshot of the radio environment), and a fingerprint

can be represent the information of one or multiple samples combined.

Fingerprinting Radio Map Concept

device fingerprint scan at the target position

similar fingerprints to the device scan that can be used to estimate the device position

device scan {rssAP1,rssAP2}

fp i {xi,yi}, {rssAP1i,rssAP2i}

fp i {xk,yk}, {rssAP1k,rssAP2k}

fp j {xj,yj}, {rssAP1j,rssAP2j}

fingerprints on the radio map (added in the calibration phase with annotated position)

 © Cristiano Pendão

FastGraph

Figure 2.4: Wi-Fi Fingerprinting Radio Map Concept

Radar [35] is a pioneer and well-known work in Wi-Fi Fingerprinting. Fingerprinting tech-

niques became popular because they can provide positioning without additional hardware,

knowledge about the APs’ positions, or the space layout. One advantage of this type of strat-

egy is that it can be applied to heterogeneous indoor spaces, including underground [36].

Different approaches have been proposed for the matching process, leading to different levels
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of accuracy [17]. There are fingerprinting positioning algorithms exploring pattern recognition

techniques such as Probabilistic Methods, k-Nearest-Neighbour (kNN), Smallest M-vertex Poly-

gon (SMP), Support Vector Machine (SVM), and Neural Networks.

• The k-Nearest-Neighbour averaging method rely on the online RSS to discover the k

closest matches known positions from the database previously built, according to the root

mean square errors principle. RADAR [35], adopts a similar technique (nearest neighbors

in signal-space).

• The Probabilistic Method considers positioning as a classification problem. In Ho-

rus [37] each RSS measurements (corresponding for a position and AP) are represented

as a probability distribution and using the maximum likelihood criterion for matching.

SurroundSense [38] extends this concept to build a map using other features found in in-

door spaces in addition to Wi-Fi RSS, such as ambient sound, light, color. Several other

improvements have been proposed to the basic RF fingerprinting, such as the incorpora-

tion of mobility constraints [39] and an extension to outdoor settings [40]. Nibble [41],

also uses a probabilistic approach. This approaches usually rely on the space analysis to

construct a training dataset with the RSS measurements at known positions [18].

• Neural Networks are also used. In the offline phase the Neural Network is trained,

using RSS measurements as inputs, and the sampling positions as targets. The weights

are obtained after the training phase. For this type of positioning approach, a MultiLayer

Perceptron (MLP) network is normally used. Battiti et al. [42] used a neural network

based classifier to provide a location determination method.

• The Bayesian Approach explores probabilistic modeling techniques and may need ac-

tive learning, calibration, error estimation, and tracking with history. Tracking-assisted

positioning based on Bayesian approaches has been proposed [43–46] .

• The Support Vector Machine can be explored for data classification and regression,

being used as a tool for machine learning and statistical analysis, with high performance

in several classification and regression applications [47].

• The Smallest M-vertex Polygon [25] rely on the online RSS values to discover locations

in signal space in relation to each signal transmitter separately.

In fingerprinting approaches, the fingerprints density and distribution on the space, as well

as the position annotation accuracy, all affect the radio map quality, which has direct impact
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in the positioning performance. In addition, near locations can have similar fingerprints which

typically results in accuracy within a few meters (about 1 to 10 m [25,48,49]). A fair comparison

is however difficult due to the heterogeneity of the testing environments.

For large buildings, manually collecting the thousands of samples required to build a good

radio map, is a demanding task that may take a long period of time, being a scalability constrain.

As a simple example let us consider that to create a good radio map it is necessary:

• Collected fingerprints in the positions defined by grid of points spaced by 1 meter;

• At each point are collected 10 samples (to minimize the impact of signal fluctuations);

• The samples are collected at intervals of 2 seconds;

In these realistic conditions, for a shopping mall with two floors of 100000 m2, and consid-

ering only the effective scan time to collect the 10 samples in each position, the time required

to build the radio map is around 1111 hours (≈ 46,2 days). To this time has to be added the

time required to create the referential grid and to move between positions. This illustrates how

unpractical this process can be in real world deployments.

Moreover, the radio map becomes outdated due to RSS variations [50,51] and due to main-

tenance and updates to the Wi-Fi infrastructure. The radio signature at a specific position can

change rapidly due to interference, obstacles being moved, or even due to open/closed doors

and different density of people inside the space. For this reasons, in addition to the initial

calibration, keeping the radio map updated requires frequent recalibration. More detail about

Wi-Fi Fingerprinting in general can be found in [51–53].

The calibration phase imposes significant limitations on the scalability of fingerprinting

solutions, as is one of the main challenges. Collaborative approaches have been proposed to

replace the required professional site survey for calibration.

3.1.4 Collaborative Radio Maps

In collaborative systems the radio map is built and maintained with the fingerprints collected

and explicit annotated by the users [17, 47, 53].

The devices used to build a radio map can be controlled or uncontrolled.

• Controlled: Devices where the movement can easily be predicted or controlled, in order

to cover a given area. The sensors on vehicles or robots inside a factory that keep the

same paths are examples of this type of devices.

18



STATE OF THE ART REVIEW

• Uncontrolled: Sensors carried by humans, where we can not predict its motion paths

can be defined as uncontrolled devices.

Despite the challenges, using uncontrolled devices such as personal smartphones has the

advantage of being easily available in most scenarios. In this context, several crowdsourced or

organic solutions have been proposed to build radio maps.

Herecast [54] is a pioneer collaborative solution to build radio maps based on users in-

puts. The system relies on users inputs to associate the unknown access points to symbolic

locations. The problems related to the environment changing are referred by the authors but

not addressed. Molé [17] improves the quality of the fingerprints collected by using the ac-

celerometer’s data. This solution aims to provide room level accuracy (symbolic location).

The accelerometer data allow a faster room detection by preventing some bad fingerprints to

be added to the radio map. Redpin [55] extends this type of approach to build radio maps

not only from Wi-Fi, but also to Cellular and Bluetooth. This solution also aims to provide

room-level symbolic location on smartphones. The users manually provide the names to the

places they visit. In [56], the authors propose an interpolation-based fingerprinting technique,

based on users’ feedback. Their system is built upon Bluetooth, and uses a feedback-weight

assigning model, which assigns relative weights to user feedbacks, fine-tuning an under-trained

positioning system, to achieve better accuracy. The authors refer the importance of users be

well-behaved, in order to construct good radio maps. Another proposed user feedback model is

presented in [47]. An important aspect brought up by the authors is the validation of this type

of solution using different mobile devices, with different Wi-Fi chips. The authors argue that

the system performance could be improved if the diversity of Wi-Fi chips in different mobile

devices is considered, and suggest that an RSS compensation mechanism can be integrated

to automatically adjust RSS patterns among different mobile devices. FreeLoc [57] is a solu-

tion that aims to be a calibration-free indoor localization scheme using Wi-Fi infrastructures

which facilitates the extraction of accurate fingerprint values from short RSS measurement

times, handle different devices, and keep a single fingerprint for each location in the radio map,

independent of the number of fingerprints uploaded.

Collaborative systems can be used to create radio maps using for example personal smart-

phones. This approach has the advantage of using a very large number of devices to contribute

to the same propose. However some strategies can be affected by the quality of the users’

feedback, resulting in poor position accuracy. In addition, requiring explicit user interaction is

inconvenient and unpractical leading to a low level of participation. For these reasons, some
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other approaches explore inertial sensors and interfaces integrated in mobile phones to take

advantage of the user motion patterns, in order to construct the radio map without explicit

user’ interaction [17, 18, 28, 58]. However, with this approach the system performance is also

affected by the inertial sensors’ noise and the users uniform motion pattern, which tend to

follow a routine, limiting the surveyed areas. Moreover, constant sampling of several interfaces

and sensors, which is required to track the users and to collect the fingerprints, result in high

energy consumption, which has to be addressed as discussed in [59].

3.2 Model Based Approaches

Model-Based techniques try to minimize or replace the calibration effort of scene analysis

by using, for example, radio propagation models.

Several indoor propagation models can be found in literature [60], where the propaga-

tion models are commonly classified as deterministic or empirical. Deterministic or semi-

deterministic models are based on physical principles (electromagnetic wave propagation the-

ory). Models based on geometrical optics are known as ray tracing, where the radio wave

propagation can be seen as optical rays. The outputs of deterministic models require detailed

description of the scenario (constitutive material parameters and 3D geometry) to obtain high

accuracy, which is not easy to obtain in detail. More sophisticated predictions are time con-

suming, which limit the real applicability of deterministic models.

The empirical and semi-empirical models are based on representative measurements pro-

cessed statistically. The prediction is usually based on simple closed expressions providing easy

and fast application of this type of models. However, the propagation loss can only be predicted

without high accuracy, but less specific description inputs of the environment are required.

The One-Slope and Multi-Wall are the most popular empirical models. The One-Slope

Model (1SM) [61] does not require detailed knowledge of the building to compute the average

signal level. The path loss in dB is a function of the distance between the antennas of the

transmitter and receiver. The prediction is controlled by the reference loss value and a power

decay factor as empirical parameters for a given environment.

The indoor environment structure type has high influence on the value of the power decay

factor. The 1SM provide a rough estimation and the selection of suitable power decay factor

is fundamental. Regardless of the 1SM dependence on used empirical parameters, it is useful

when no information about the indoor space is available or when is needed a fast draft.

A semi-empirical Multi-Wall Model (MWM) [61] provides better accuracy than 1SM. The

results are site-specific, but is also necessary a floor plan description as an input. This models
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considers the number of walls and floors between the transmitter and the receiver and the

attenuation factor for each wall and floor (considering a specific type). Despite the several

building materials, when considered the wall attenuation factors statistical nature, only a few

wall types are necessary to be define for MWM. The MWM is site-specific because during

the prediction particular walls are considered. A significant improvement of the site-specific

accuracy is observed when comparing to 1SM [62].

3.2.1 Log-Distance Path Loss Model (LDPL)

The Log-Distance Path Loss Model (LDPL) is well known and frequently used [18, 63–66]

to model signal propagation. The LDPL relates the RSS at a given position with the distance

to the transmitter, such as a Wi-Fi AP (Figure 2.5).
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Figure 2.5: RSS signal over distance LDPL

The RSS at a position p is given by:

RSSp = RSS0 −
(

10 × η × log10
(

d

d0

))
(2.2)

RSSp is dependent on the RSS0 (measured at d0, usually at 1 meter), the distance to the

transmitter (d) and the path loss exponent (η), that reflects the fall rate of the RSS signal from

an AP at a specific position.

The difference between the RSS measurements of the same AP at different known positions

can be used to approximate the AP’s position. Then the device’s position can be estimated for
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example based on the RSS-based weighted centroid, considering the approximated positions of

the observed APs. This type of technique is affected by the indoor propagation complexity.

For example severe multi-path effects, which vary with the space layout, objects displacement,

different reflective materials and due to low probability of Line of Sight.

The reduced calibration effort required by model-based approaches is typically translated

into worse positioning performance. In addition, the floor plans or the APs’ locations are needed

for most of these systems. However, it is unpractical and very difficult to know the access points

positions, the location of obstacles and even more how each type of obstacle affects a signal

from a specific access point at a given location.

Radar [35] has a model-based version, which uses knowledge about the AP locations, trans-

mit powers and floor map to estimate the RSS at several locations. EZ, a system described

in [63], uses the geometric spatial constrains of the Wi-Fi propagation, given by the LDPL, with

opportunistic GPS fixes of some devices, and estimate the location based on the RSS relative

signal measurements, without requiring previous knowledge of the RF environment, floor plan

or APs locations. A R variable is used to account the variations from noise and multi-path.

EZ treats the signal measurements RSSi, the 2D positions (of APs and target devices),

and a path loss exponent for each AP (etaAP ) as unknowns, resulting in a set of simultaneous

equations for each RSS observation.

The authors explain that the resulting set of LDPL equations are a system of simultaneous

non-linear equations, and they don’t found an analytical solution to analyze them. Instead, a

Genetic Algorithm (GA) and optimization technique are used to solve the system of equations

and find a solution that minimizes the least mean absolute error. This process requires high

computational effort, which can range from minutes to several hours, depending on the space

and the problem size. The time required to solve the equations is related to the number of

unknowns (locations and APs’ parameters), the nature of data (data that fits the model well is

solved faster), the number and placement of known locations, the distribution of the unknown

locations, and the choice and number of initial solutions that are randomly picked for the GA.

All of this increases the computational effort when computing the RF model due to the large

space of possibilities and the evaluation of solutions fitness. In order to reduce the search space

and compute a solution more efficiently, a set of empirical conditions and constrains are defined,

such as the possible values for the η of an AP. EZ only considers 2D positions and select a set

of APs. Estimating 3D positions for both user and APs adds more unknowns to the LDPL

equations and therefore increases the complexity of solving them, increasing the computational

effort. Considering all the APs heard, also has impact in the computational performance, and
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the authors suggest that the benefits are small.

In addition, this process has to be repeated periodically. The authors suggest that the

parameters of the RF model are likely to be subject to diurnal variations and may be need to

estimate them for different times of the day. The authors also define a set of rules and conditions

where the LDPL equations can be uniquely solved, reporting also a set of situations where it is

impossible to uniquely determine the RSS0 and n for an AP. EZ must also avoid measurements

that have almost the same RSS from the same AP. The authors refer that determining the

necessary conditions under which a set of LDPL equations has a unique solution is still an open

problem.

EZ considers that the path loss exponent η is the same for one AP in all areas of the space

while, in practice, η is different from location to location, due for example to different obstacles

between each location and the AP. The EZ reliance on GPS fixes to convert the obtained

positions into true positions can be a problem in indoor spaces.

Despite the challenges, EZ reports results close to conventional fingerprinting solutions,

without requiring extensive calibration. The AP’s position estimation error is not mentioned.

• Path Loss Exponent (η)

The practical values usually considered for the path loss exponent in indoor environments

range between 1.5 and 6.0 [63]. As mentioned before some approaches [63,64] also assume that

the parameters of an AP (RSS0 and η) are homogeneous across a space. In fact the RSS0 of

and AP is a fixed characteristic, and can only be different from AP to AP. The η is however

more difficult to define. As explained before the path loss factor (η) reflects the fall rate of the

RSS signal from an AP at a specific area. In free space we may say that the η is always the

same for a given AP. However, this is not true in a real world space, even in open spaces the η

will vary from location to location, due for example to reflections in the floor and celling. Even

the radiation diagram may be different from AP to AP, due to AP installation position or the

AP antennas design, which can lead to different RSS measures at the same distance from the

AP. To obtain the correct distance to an AP using the LDPL it is necessary to use an η, that

compensates the loss introduced by all of this effects.

The communication channel between an AP and a device at a given position has therefore

singular propagation characteristics, and in addition that propagation characteristics may even

change over time. Even thought some aspects that affect the signals propagation are fixed for a

space, such as the attenuation introduced by the walls, some other aspects can change, such as

density of people in a given area, increasing the complexity of applying the correct η. Moreover,

23



Chapter - 2

a small difference on the used η may result in a significant error in the estimated distance. The

Figure 2.6 represents the distance obtained, using the LDPL (Eq. 4.8), for the same RSS

measurement applying a η=2 and a η=1.5. As we can see in the next figure, decreasing the η

in 0.5 results in 10 meters of difference for the same RSS value.

-20 dBm at 1m -40 dBm = 10m

with η = 2

-40 dBm = 20m

with η = 1.5
AP

Figure 2.6: Free Space Path Loss

When an obstacles such as a wall (with 26 dB of attenuation) is added between the AP and

the target position (Figure 2.7), the attenuation (AdB) is given by:

AdB = 10 × log10

(
Pb

Pa

)
(2.3)

where, Pb and Pa is the power with and without the obstacle, respectively.

With the additional attenuation of 26 dB the RSS measurement at the same position (10

meters) will now be -66 dBm instead of -40 dBm.

When applying the same η from the previous scenario (η = 2) the calculated distance is now

199 meters (p1′). In this case a new value of η has to compensate the obstacles’s attenuation,

in order to obtain the correct 10 meters distance (p1).

-20 dBm at 1m

-66 dBm = 10m

with η = 2

-66 dBm = 199m

AP

-40 dBm = 10m

η = 2 

-20 dBm at 1m

wall attenuation

η = 4.6 

the η needs to be increased 
to keep the correct distance

p1

p2

p1’

Figure 2.7: Free Space Path Loss with Obstacle Attenuation
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This simple example illustrates the importance of finding the correct η value, which is crucial

to accurately estimate the distance between a device and an AP. In order to obtain the correct

distance when we have an obstacle attenuating the signal, the η value has to be adjusted (in this

case increased). This also explains why assuming the same value of path loss (η) for an AP in

all positions of a space is not realistic. In this case although we have two positions at the same

distance from the AP (p1 and p2), the propagation is different due to the obstacle, therefore a

different η has to be used since the received RSS at the same distance will be different. However,

considering all the variables and effects that influence the fall rate of a signal in indoor spaces,

estimating the correct η for a specific area, in a total unsupervised and automatic way, is a

very complex challenge. The space layout, the build material, furniture, and temperature, all

influence how the signals propagate. The difference in materials and dimension of obstacles

will introduce different attenuations to a signal. All this attenuations have to be reflected in

the path loss exponent, that has high impact in the LDPL model.

Despite the fact that indoor propagation modeling is one of the most complicated tasks

in this field, it is highly relevant as it may be used to replace or complement the site survey

techniques [62].

3.3 Received Signal Attributes (RSA) Based (Time And Space)

RSA-based methods estimate a position using the attributes of the received signals, such as

the signal’s propagation time from the sender to the receiver, or the angle at which the signal

is received [28]. In most of these methods the position of the transmitters must be known a

priori. In WLANs this requirement is difficult to ensure due to the uncoordinated deployment

of APs. The propagation effects, due to obstacles, signal fluctuations, and interference also

affects this type of solutions.

3.3.1 Lateration Techniques:

• Approaches based on Time of Arrival (ToA), such as PinPoint [67], explore the relation

between the distance from the receiver (mobile target) to the transmitter, which is directly

proportional to the propagation time. This approach requires that all transmitters and

the receiver be perfectly synchronized, and a timestamp must be used in order to measure

the distance traveled by the signal.

• Instead of estimating the absolute arrival time, as in the ToA, the Time Difference of

Arrival (TDoA) analyses the difference between the signal’s arriving time at multiple

measuring units to estimate the relative position of the mobile transmitter. With this
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approach there are no requirements on the mobile device, however all measuring units

must be synchronized by a precise time reference and reference signals. Cricket [68] and

NearMe [69] are two examples of systems based on TDoA.

• Roundtrip Time of Flight (RToF) approaches [70] measure the time of flight of the signal

from the transmitter to the receiver and back. The synchronization precision required for

RToF is lighter that for ToA.

3.3.2 Angulation Techniques:

• In Angle of Arrival (AoA) approaches [71, 72] the angle of arrival of the signals is used

to obtain a location estimation by intersecting multiple pairs of direction angle lines,

each represented by a circular radius from a emitting station to the mobile devices. The

position may be determined with only two or three measuring units for 2D or 3D posi-

tioning respectively, and the measuring units don’t need to be synchronized. However,

this method has complex hardware requirements, and as the mobile target moves away

from the measuring unit the location estimation performance degrades [25].

With these methods a spatial relationship between the transmitters and the receivers can

be obtained. Then trilateration is usually used to estimate a position, which requires three

or more transmitters with known positions to perform well. Some of this techniques also

require specific hardware or modified transmitters (such as APs), which is unpractical in most

applications with already existing infrastructures, involving additional costs. In addition, this

approaches are affected by the same indoor propagation complexity, such as multi-path effects

and interference, that affect the RSS-based Geometric and Model methods.

3.4 Wi-Fi SLAM

In robotics, the Simultaneous Localization and Mapping (SLAM) approach is used to con-

struct the space map while locating the robot in the space. Some works have been done to apply

this approach to Wi-Fi. WiFi-SLAM [73] uses the Gaussian Process Latent Variable Model

(GP-LVM) to build Wi-Fi RSS Maps without requiring Inertial Measurements Unit (IMU) data.

The limitations of the WiFi-SLAM are the computational efficiency, and relying on assump-

tions on a signature uniqueness and human walking patterns. Wi-Fi GraphSLAM [74] improves

the techniques based on GP-LVM, in terms of computational efficiency and the assumption on

signature uniqueness. In robotics, the GraphSLAM technique is used for building the space

map while estimating the trajectory. Wi-Fi GraphSLAM uses gyroscope and pedometer data,

26



STATE OF THE ART REVIEW

and similar Wi-Fi RSS observations to detect that the user has returned to a previously sur-

veyed physical location. In WiSLAM [75] data from a foot mounted IMU is combined with the

Wi-Fi RSS. The RSS measurements are translated into distance using a log-distance propaga-

tion model. The application scenarios are limited by the required foot-mounted sensor and also

by fixing the path loss exponent to 2. However, for indoor spaces it is not realistic to assume

a fixed and homogenous path loss exponent value for all areas of the space.

3.5 Dimension Reduction and Multi-Dimensional Scaling

A problem of dimensionality reduction arrises from large volumes of high-dimensional data,

such as Wi-Fi fingerprints for a 3D space. For this reason, finding meaningful low-dimensional

structures hidden in the high-dimensional data is important.

As mentioned before, the need associating fingerprints to real-world coordinates is probably

one of major challenges when building radio maps. Non-linear dimension reduction techniques

started to be explored in this context [27]. This technique try to represent the radio map using

a low-dimensional, non-linear manifold, enabling this way better statistical modeling of the

signal properties in complex multi-path environments.

Manifold learning methods are applied to high-dimensional data sets to reduce the dimen-

sions or number of features of the data to a lower level. This is done by finding the defining

features in the data, and relies in the assumption that the low-dimensional manifold embedded

in the high-dimensional space contains most of the variability. After the manifold is constructed

the observation points attached to the manifold are mapped into the geographical coordinates.

Multi-Dimensional Scaling (MDS) is used to explore similarities or dissimilarities in data

using a set of related statistical techniques. An MDS algorithm begins with a matrix of item

to item dissimilarities, then assigns a location to each item in D-dimensional space, where

D is specified a priori. The resulting locations may be displayed in a 2D or 3D structure.

Considering a WLAN network, the proximity is the simplest measure of dissimilarity, describing

if two devices are in communication range. Is known that according to the radio propagation

the distance has an exponentially relation to the RSS. [76]

LiFS [28] use MDS to create a high dimension space according to the inter-fingerprint

distances, in which fingerprints are represented by points, and their mutual distances are pre-

served. LiFS measures walking steps to help estimate the distance between two locations in a

floor plan. The authors propose a stress-free floor plan, which maps real locations into a high

dimension space by MDS, such that the geometrical distances between the points in the high

dimension space reflect their real walking distances.
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In traditional approaches, fingerprints are geographically unrelated, losing the possibility

of building a fingerprint space. Zee [18] leverages from inertial sensors and MDS to resolve

ambiguity in location during crowdsourcing.

The knowledge about the position of the Wi-Fi Access Points can be used to estimate or to

improve the position for a target device based on the RSS measurements.

In [76] the authors use MDS techniques to determine a geographic configuration of Wi-Fi

APs, without ground truth information. The authors are able to distinguish APs on different

floors. In this approach, AP to AP distances are estimated by a radio attenuation model. Other

works also adopt MDS to estimate the locations of wireless devices [28,77,78]. Serendipity [66],

aims to locate Wi-Fi APs using radio observations from users smartphones in an unsupervised

process. A MDS technique is used to estimate the relative positions of the APs based on the

dissimilarities between all pairs of Wi-Fi APs. Absolute positions are obtained using additional

observations at known positions. The AP’s positions estimated are used to positioning the

smartphones. The authors quantize the received signal strength into several levels to avoid the

conversion of the received signal strength to a real distance and the estimation of propagation

model parameters. They statically determine the quantization thresholds based on domain

knowledge practical values, as example the authors define a normal maximum value of an

RSS around −20 dBm, and the minimum around −90 dBm. They also propose a dynamic

quantization method, in order to automatically decided thresholds for a place.

Pulkkinen et al. [27] presented a WLAN positioning approach where high-dimensional signal

fingerprints are represented as points on a two-dimensional manifold, using a semi-supervised

manifold learning technique for building accurate radio maps. The authors used the Isomap

algorithm for the manifold learning phase. The Isomap algorithm [79] is based on the same

principles of MDS. It tries to find a lower dimensional representation of the data with the mini-

mum distortion possible between the points. The Isomap algorithm constructs a neighborhood

graph where each point xi is connected to K nearest neighbors. The distance dX(i, j) between

two points is calculated as the sum of edge lengths along the shortest path connecting them.

The manifold learning phase presented by the authors is based on observing plain RSS vectors

without their geographical coordinates. To fix the mapping to geographical coordinates from

the coordinate system of the manifold are used a sample of key points whose location is known.

In this case it is assumed that the signal characteristics are determined by the location of the

receiver. Is referred that if the possible locations are constrained to a flat two-dimensional

surface, the resulting manifold is then two-dimensional as well. The authors say that when

mapping the fingerprints from the high-dimensional signal space to the low-dimensional mani-
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fold is important to maintaining the pairwise distances between the fingerprints.

The described contributions of this work include a method for mapping points on the Isomap

manifold to a geographical coordinate system using a relatively small subset of the fingerprints

with precise known location. The authors mentioned that a urgent topic for investigation is

the balance between the accuracy and the number of labelled examples (deployment cost).

Other methods use Laplacian regularized least squares regression [80–82], without explic-

itly constructing a low-dimensional manifold, with some drawback related to highly sensitive

outcomes.

3.6 Wi-Fi Positioning Performance, Problems and Challenges

In this chapter different Wi-Fi positioning solutions were discussed, each of them with

different performance, requirements and limitations. As mentioned before, the positioning

performance comparison between solutions is difficult due to the heterogeneity of the testing

environments. Considering the IPIN conference competition as example, where the solutions

are compared in the same conditions, in the same environment, and considering the same

accuracy metric (75th percentile of error), the position performance of state of the art indoor

positioning solutions can range between about 9 meters to 30 meters, when tested online and

on-site in real world spaces, and between about 3.5 to 4.5 meters when evaluated offline and

out-site. [1].

Most of the Wi-Fi-based positioning systems are affected by the RF propagation complexity

inside indoor spaces, where RF signals are affected by different types of interference. Sources

of performance degradation are: complex environment characteristics, dynamics inside indoor

spaces, changes in Wi-Fi infrastructure and devices heterogeneity.

• Complex Environment Characteristics: Wi-Fi Based positioning systems suffer from

multi-path, fading and shadowing effects in indoor spaces. Radio propagation in such en-

vironments is affected by all physical elements, such as walls and furniture. In addition,

different types of materials will introduce different attenuation to the RF signals, and

will produce different multi-path effects. Each space has different propagation character-

istics, even if considering only the static element of the space. Therefore, modeling the

propagation in indoor environments is difficult.

• Environment Dynamics: Static characteristics are only one part of the complexity.

Indoor spaces are highly dynamic environments, adding complexity to the RF propaga-

tion. The elements of the space can also change with open/closed doors, furniture being
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moved or people moving around.

• Wi-Fi Infrastructure: Scene Analysis techniques rely on the radio environment analysis

to map physical positions with radio signatures observed at that position. The radio

signatures observed at a given position are strongly linked to the wireless infrastructure

configuration, number of APs and their position. In addition, the radio infrastructure

maintenance and update, where APs are replaced or even changed to another location,

degrades the performance of the positioning system.

The number of APs also affect several approaches. A low number of APs may result

in poor results. However, some researcher found that with a large number of APs the

accuracy of some positioning systems also decreases, suggesting that a different number

of APs must be selected in different environments in order to obtain the better results. In

addition, selecting the right set of APs can also impact the system performance, when for

example considering also APs from nearby buildings. Another problem is the mobile Wi-

Fi Hotspots that can be observed at different locations. In fingerprinting approaches this

type of APs can be associated to a given location in the radio map during the calibration

phase, and later in the positioning phase that same Hotspot can be observed at a different

location, introducing error to the estimated position.

• Devices Heterogeneity: RSS-based methods such as fingerprinting approaches are also

affected by the heterogeneity of Wi-Fi devices. Different smartphones have different Wi-Fi

chips, operating systems, and wireless networks handling processes. All of this influence

the signals strength measurements, introducing variations in the fingerprints collected by

different terminals at the same position, reducing the positioning performance [39,83,84].

Also when a collaborative approach is adopted to build the radio maps, if the data

provided by users is not controlled, it can also compromise the system performance,

mainly when these data is collected using different devices and the position annotated

manually.

• System Complexity: Some approaches require dedicated hardware or infrastructures,

such as the deployment of modified APs. The requirements of the target devices are also

different for each approach. Some solutions require dedicated sensors to track the motion,

but in some cases this can be replaced by the internal sensors of a smartphone, at the cost

of some accuracy. Other approaches require more complex hardware to capture specific

parameters such as the received signal attributes.
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3D RF Environment Simulator

This chapter describes the 3D RF Environment Simulator that was designed primarily to

simulate Wi-Fi radio environments, but that can be easily extended to other types of Wireless

technologies such as Bluetooth or Zigbee.

This simulator was used to generate synthetic data, that was essential during the Fast-

Graph’s development process. Developing this simulator from scratch allowed flexibility and

full control over all aspects of the simulation and over the generated data.

A 3D virtual space can be created, and 3D objects such as walls can be added to create a

layout. Multiple virtual devices can also be configured and added to the space. These devices

collect samples with Wi-Fi Fingerprints and can also collect motion and orientation data.

Several parameters of the simulation session can be configured, allowing generating controlled

synthetic datasets in different conditions.

Section I describes the available configurations for a simulation, which includes defining

the space, objects and devices. Section II explains the simulation session and the available

configurations.
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1 Simulation Configuration

To run a simulation session a 3D virtual space (vsi) must be configured. First the space

dimensions vsd : (w, l, h) are defined:

vsi = (vsd : (w, l, h)) (3.1)

After defined the space 3D dimensions, different elements can be added to the virtual space

(Figure 3.1).

Access Points

Moving Devices
Human Motion Models 

Moving Devices
Machine Motion Models 

Anchors

3D Objects
Walls and other obstacles 

3D RF Environment Simulator: Elements

 © Cristiano Pendão FastGraph (3D RF Environment Simulator Concept)

Figure 3.1: Elements available in the Simulator

1.1 3D Objects

A specific layout can be created by adding 3D objects as walls. These objects can also be

used to represent furniture or other type of obstacles. A 3D object oi is defined by:

oi = (p : (x, y, z), od : (w, l, h), α) (3.2)

where, p is the position of the object in the space, od is the object dimensions (width,length,height)

and α is the attenuation factor for the signals crossing the object. The attenuation can be con-

figured to match the attenuation of a given material, such as metal, concrete, glass.
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At this point the obstacles can be added to the virtual space vsi:

vsi = (vsd : (w, l, h), o : (o1, ..., on)) (3.3)

1.2 Wi-Fi Access Points

With the virtual space dimensions set, the layout defined and obstacles added, virtual

transmitters can be added, in order to simulate radio emitters, such as Wi-Fi Access Points. A

virtual AP api can be described as:

api = (ssid, bssid, rss0, p : (x, y, z)) (3.4)

where, ssid is the name of the WLAN, bssid is the mac address of the AP, rss0 is the transmit

power at 1 meter and the p is the position of the AP in the space.

After adding the APs, the virtual space vsi is defined as:

vsi = (d : (w, l, h), o : (o1, ..., on), ap : (ap1, ..., apn)) (3.5)

1.3 Anchors

Anchors are fixed devices that can be used to measure the radio signals transmitted by

emitters, therefore the samples from these devices can be used as references. An Anchor can

be defined as:

ai = (aID, p : (x, y, z), ts) (3.6)

where aID is the unique identifier of the Anchor, p is the Anchor position in the space, ts is

the sampling period.

The Anchors only collect Wi-Fi fingerprints. Each sample collected by an Anchor is therefore

defined as:

si = (aID, t, fp : ((ap1, rss1, ch1), ..., (apn, rssn, chn)) , p : (x, y, z)) (3.7)

where aID is the unique identifier of the Anchor that collected the sample, t is the timestamp

when the sample was collected, fp is a fingerprint with the rss measurement, channel ch and

identification of each AP in range. The p is the position where the sample was collected, in

this case is the position of the Anchor.

33



Chapter - 3

1.4 Moving Devices

Moving devices travel through the virtual space, and can be used to simulate smartphones

carried by humans or to simulate autonomous machines. Moving devices follow a configurable

motion model and respect the space configuration.

The random walk motion is commonly used to simulate human walking, however at indoor

spaces, a random model doesn’t characterize well the human walking patterns. Therefore,

different motion models, which will be explained in more detail later, where implemented and

are available in the simulator.

A moving device mdi is described by:

mdi = (mdID, p : (x, y, z), ts, motion) (3.8)

where mdID is the unique identifier of the device, p is the current position of the device in the

space, ts is the sampling period, motion defines the motion model to be used.

The samples collected by moving devices can have additional information regarding the

travelled path, such as the orientation and displacement since the last sample. A sample si

collected from a moving device, can be described as:

si = (mdID, t, fp : ((ap1, rss1, ch1), ..., (apn, rssn, chn)) , dis, he, sp : (x, y, z), n) (3.9)

where mdID is the identifier of the virtual device that collected the sample, t is the timestamp

when the sample was collected, fp is a fingerprint with the rss measurement, channel ch and

identification of each AP in range. The dis is the linear displacement since the previous sample,

he is the current heading and sp is the position where the sample was collected. The n is the

path loss exponent (η) for the sampling position.

The difference between the sp in the samples from moving devices, and the p in the samples

collected by the Anchors, is that in real world applications, a sample from moving devices has

no information about the exact position where it was collected. Therefore, the sp and n are

used only as ground truth for testing and evaluation purposes.

1.4.1 Motion Models

A moving device can use different motion models, which are suitable to simulate human

and machine motion patterns (Figure 3.2).
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Machine Smooth (Free) Motion

Figure 3.2: Moving Devices Motion Models

To simulate human motion patterns, the Random Walk or the Smooth Walk models can be

used. These motion models are useful to simulate a scenario where a smartphone collects data

while carried by a person.

The Defined motion model, where the moving device follows a specific path, and the Smooth

motion model, where the device moves freely in the space, are useful to simulate for example

an autonomous machine moving in an industrial environments.

The Mapping motion model allows to collect data across the entire space.

Random Motion Model: The device will move in a random way.

Each new position (pi+1) for the device will be:

pxi+1 = pxi + (vel × t) × cos(he) (3.10)

pyi+1 = pyi + (vel × t) × sin(he) (3.11)

pzi+1 = pzi (3.12)

where, (pxi, pyi, zi) defined the current position, vel = random(0, maxV ) gives the device
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moving velocity, which is a random value between 0 and maxV , t is the elapsed time from the

previous sample, and he = random(0, 360) is the moving orientation. In this motion model the

pz does not change (Figure 3.3).

Random Model
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Figure 3.3: Samples generated using the Random Model

Smooth Motion Model: With this motion model (Figure 3.4) a device motion is more

realistic, with smoother direction changes. Each new position is defined by the same equation

of the Random model, however the new orientation is defined by:

hei+1 = hei + random(−20, 20) (3.13)
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Figure 3.4: Samples generated using the Smooth Model
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This means that the moving orientation is defined by the current orientation with a variation

between -20 and 20 degrees, and not a random value between 0 and 360 degrees.

Mapping Motion Model: In this configuration the device will map the space by moving

in a matrix of positions (Figure 3.5). Samples will be collect in a grid of positions spaced by 1

meter in x and y, and restricted by the space dimensions. The result is a grid of samples for

the entire space.
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Figure 3.5: Samples generated using the Mapping Model

This model is useful to create, for example, a dense radio map for the entire space.

Defined Motion Model: When using this configuration, the device will follow pre-defined

paths for the simulation session (Figure 3.6). The device will sequentially visit each position of

each defined path.

With this motion model is possible to simulate a human or a machine traveling in fixed

and controlled paths, allowing for example to define a specific trajectory and sharp or smooth

turns.

A path based on this model can be described as:

pathi = (pathID, p : (p1 : (x, y, z), ..., pn : (x, y, z))) (3.14)

where, pathID is the path identifier, and p is a list of positions in the space to be visited in

sequence. A list of paths (paths : (path1, ..., pathn)) can be passed to a moving device before

a simulation session, and the device will follow these paths if the motion model Defined is
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selected. The time interval between the positions of the path can also be configured.
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Figure 3.6: Samples generated using the Defined Model

2 Simulation Session

After the initial configurations, simulation sessions can be run to generate synthetic data.

At this point, and after all the devices added, a virtual space vsi is described by:

vsi = (d : (w, l, h), o : (o1, ..., on), ap : (ap1, ..., apn), a : (a1, ..., an), md : (md1, ..., mdn)) (3.15)

where, a are the Anchors and the md are the moving devices added to the space.

Before starting a simulation session, a few more parameters can be defined:

• Simulation Duration: Defines the total number of samples to be collect in the simula-

tion session.

• Number of Samples per Group: Samples collected in intervals of less than 30 seconds

can be related by time or motion information. In real world scenarios, devices can go

offline or leave the space, appearing later in a different position. In order to simulate this

behavior, a number of samples to be collected by a moving device before it goes offline

can be configured.

• Number of Groups: This parameter defines the number of times that a device will go

offline and online, collecting each time the defined number of samples per group. When
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a device returns to online mode, it starts in a different and random position in the space.

After collecting the defined number of groups the device’s collection process ends.

• Wi-Fi Noise (γ): This parameter adds variations or noise to the RSS readings collected

by all Wi-Fi devices.

• Orientation Noise (ϕ): Adds noise to the orientation readings collected by the moving

device.

• Distance Noise (σ): This parameter adds noise to the displacement readings collected

by the moving device.

• Standard Path Loss Exponent (η): Defines a standard path loss exponent for the

LDPL model, which will be applied to the virtual space. If obstacles are added, this value

will be affected and vary across the space due to the obstacles attenuation.

The Groups of Samples are only applied to the Random and Smooth motion models. A

simulation session sessioni can be described as:

sessioni = (sid, ns, sgroup, groups, vsi) (3.16)

where, sid is the session identifier, ns is the number of samples to be collected (total), sgroup

is the number of samples per group, groups is the number of groups per session, and vsi is the

virtual space to simulate.

2.1 Sampling

As shown before a sample (si) collected by a device can contain Wi-Fi fingerprints and

motion information. The samples are collected at each position visited by the device.

2.1.1 Wi-Fi Fingerprints (fp)

As described before, each Wi-Fi fingerprint (fp) contains RSS measurements for the APs in

the range of the device. The range is defined by the device sensitivity, which can be configured.

The standard sensitivity is -92 dBm (RSS > −92). Each rss measurement can be affected by

noise and attenuation. The noise (rssNi) added to each RSS measurement is defined by:

rssNi = random(Gaussian) × γ (3.17)

where, a random gaussian value is multiplied by the Wi-Fi noise standard deviation (γ).
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The attenuation due to obstacles (rssOAi) between a device and an AP is given by:

rssOAi =
n∑

j=1
oIj (3.18)

where, oI are the obstacles between the AP and the device. A line between the device and the

AP is defined (Figure 3.7) and the attenuation of each obstacle (oIj) intersected by that line is

added to rssOAi.

Fingerprints: Signal Attenuation

Line of Sight AP

Non Line of Sight AP

Obstacle

Attenuated RSS 
Measurement

 © Cristiano Pendão

FastGraph (3D RF Environment Simulator Concept)

Figure 3.7: Fingerprints: RSS Obstacle Attenuation

Then the attenuation and noise parameters are used to affect the RSS measurement (rssi)

for an AP, using the Log-Distance Path-Loss (LDPL) propagation model (Page 21) such as:

rssi = rss0 −
(

10 × η × log10
(

d

d0

)
+ rssNi + rssOAi

)
(3.19)

2.1.2 Motion Data

When a device collects motion data, to each sample will be also added the current device

orientation (he), and the displacement (dis) in relation to the previous sample. In order to

better simulate the behavior of the sensors in real devices, such as smartphones, this two

parameters, can also be affected by a configurable amount of noise, that vary for each sample

collected (Figure 3.8).
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Figure 3.8: Motion Data: Orientation and Displacement

Therefore the orientation hei affected by noise is given by:

hei = hei + (random(Gaussian) × ϕ) (3.20)

where, ϕ is the orientation noise standard deviation.

The distance disi affected by noise is given by:

disi = disi + (random(Gaussian) × σ) (3.21)

where, σ is the displacement noise standard deviation.

2.2 Synthetic Dataset

When the simulation session ends, a new synthetic dataset has been generated, containing

the samples collected by the virtual devices, including the ground truth information for samples

and APs. Information about the simulation session is also available, such as the used noise

values and the obstacles added. Therefore, a synthetic dataset (dataseti) is defined by:

dataseti = (sessioninfo, samples : (si, ..., sn), aps : (api, ...apn), objects : (oi, ..., on)) (3.22)
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3 Implementation

This simulator was implemented in Java, and as a library can be easily extended or inte-

grated in other Java programs or applications. Since no additional libraries are used or required,

and the synthetic data is stored in SQLite databases, which is standard in Android, the sim-

ulator can even be integrated in mobile applications. This allows for example a direct feed of

synthetic data to test mobile positioning applications directly in the smartphone.

The generated dataset stored in the SQLite database, that can also be exported to Comma-

Separated Values (CSV) files, contains the following information:

• Info: ID, Space Dimensions, Motion Model, APs Count, Anchors Count, Wi-Fi Noise,

Direction Noise, Distance Noise, Sampling Period, Obstacles Count, Standard Path Loss

Exponent;

• Samples: Sample ID, Device ID, Timestamp, xPosition, yPosition, zPosition, Direction,

Distance;

• Detected APs: AP ID, Sample ID, AP MAC, SSID, RSS, Distance, xPosition, yPosi-

tion, zPosition;

• Objects (Obstacles): Attenuation Factor, xDimension, yDimension, zDimension, xPo-

sition, yPosition, zPosition;

• Path Loss: Sample ID, AP ID, Path Loss Exponent;

4 Summary and Discussion

In this chapter was described the developed RF environment simulator, which was used

to generate valuable synthetic data, to test the proposed solution during the research and

development process.

The simulator allows to create a 3D virtual space, with full control over the space charac-

teristics, such as dimensions, level of noise and propagation parameters. Multiple 3D objects

can be added to the virtual space, to define the space layout or to simulate different types of

objects. For each object, can be configured a tridimensional position, the dimensions and the

attenuation factor. The attenuation parameter allows to simulate different types of building
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materials, which will have a different effect in the signals crossing the obstacles. The signals

can be affect by multiple obstacles, creating realistic path loss variations across the space.

Multiple virtual radio transmitters can also be added to the space. These devices allow to

simulate for example Wi-Fi APs, with a configurable transmission power. The simulator can

easily be extended to support other radio technologies, such as Bluetooth and ZigBee beacons

or cellular base stations.

Different types of sampling devices can be used to collect data. Fixed devices can be added

to work as Anchors, collecting reference radio fingerprints at fixed and known positions. Moving

devices allow to collect radio fingerprints and also orientation and displacement information

about the travelled path.

Multiple motion models are available for the moving devices and can be used to simulate

distinct motion patterns for humans or machines. The paths followed during a simulation

session can be random or manually defined.

Different simulation sessions can be run in the defined virtual space. In each session, pa-

rameters regarding the devices behaviors, or the level of noise affecting the Wi-Fi and motion

readings can be configured.

A simulation session generates a synthetic dataset, that in addition to the collected sam-

ples, also includes ground truth data, such as APs positions and sampling positions as well as

information regarding obstacles, noise and propagation parameters.

The simulator was implemented in Java without using additional libraries, therefore can be

easily integrated in other programs and even in Android mobile applications, which is useful

for direct testing purposes.
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The FastGraph Approach

This chapter presents the approach behind the FastGraph solution. The base for FastGraph,

in a simplistic way, can be seen as a solution for a high-dimensional trilateration problem, where

RSS values are used to obtain the distances between the sample points and the detected APs

using the Log-Distance Path Loss Model (LDPL) model. The core algorithm implements a

method inspired in a Force-Directed 3D Graph to solve a set of equations in a way similar

to Multi-Dimensional Scaling (MDS), providing unsupervised positioning without relying in a

manual calibration, radio maps, or previous knowledge of the APs’ positions. The 3D graph

is continuously updated with the latest fingerprints, that can either come from crowdsourcing

(unlabelled) of from Anchor nodes (georeferenced). With the proposed approach one argue

that the more gathered data through the whole scenario the more consistent will be the graph

and by consequence the lower will be the positioning error. Motion and orientation data can

also be used to establish additional spacial constrains between the collected fingerprints in the

Graph.

In addition, the algorithm is not based on assumptions such as that the propagation pa-

rameters are uniform across the space or even for the same AP, or that RSS measurements are

unique for a specific area of the space. The only requirement in the FastGraph is the deploy-

ment of a limited number of Anchor nodes, that are based on the low-cost Raspberry Pi (RPi).

The effort of installing them is much lower than the effort and costs of generating a dense radio

map and keep it updated over a long period of time. In the absence of Anchors, the system

may use a few labelled fingerprints as reference points. Another key aspect of FastGraph is

that the system is ready to provide location estimations just a few minutes after installing the

anchors.

The proposed solution can be applied to different areas, some of them will be discussed and

evaluated in the subsequent chapters.
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1 The Fundamental Principles

The fundamental idea for FastGraph is that a dynamic 3D Graph can be used to represent

a physical and radio environment (Figure 4.1), that can be used for positioning and as an

enhanced radio map. In this Graph, nodes represent Access Points (APs), reference nodes such

as Anchors, or Samples from Moving Devices (see Figure 4.2).

Force-Directed 3D Graph

Figure 4.1: Example of a 3D Force-Directed Graph for a Radio Environment

Only the position of the reference nodes or Anchor nodes, is assumed to be known a priori.

After each new sample is added, the Graph is adjusted to a minimum energy state. Each sample

contains a fingerprint (Wi-Fi RSS measurements of the nearby APs) collected at a specific

position. In addition, these samples can also contain motion and orientation information. A

generic sample si is described as:

si = (deviceID, t, ((AP1, RSS1), (AP2, RSS2), ...) , dis, he) (4.1)

where deviceID is the unique identifier of the device that collected the sample, t is the times-

tamp when the sample was collected. The list of (APi, RSSi) pairs is the RSS measurements

for the visible APs, dis is the linear displacement since the previous sample from the same

device and he is the current heading.

1.1 The Graph Concept

Graphs can be used in different contexts and practical applications, for example to provide a

more understandable view about connected networks or to represent possible relations between
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different types of objects or data.

In a Graph there are nodes that are connected by edges, and can be undirected or directed

from one node to another. Information can be represented in a Graph, and it is this graphical

representation which helps us understand many of their properties.

In the proposed approach, the Graph can be seen as representation of a physical space

and the radio environment in that space, where the nodes are the Wi-Fi APs and the samples

collected by fixed or moving devices. This nodes are connected by edges that represent the

spatial relation between them, and that work as physical constrains for the Graph. The edges

length is estimated from the radio signal observed by a device at a given position, for example

from an Wi-Fi Access Point, or by other information such as odometry based on other sensors.

Therefore the Graph in the proposed approach has different types of nodes and different

types of edges that connect the nodes (see Figure 4.2).

ap node

sample node 
(from moving device)

anchor node

motion edge 
(given by displacement)

rss edge

relax sate
compression sate

tension state

Figure 4.2: FastGraph Approach: Graph Elements

A node on the Graph can be:

• AP node: nodei = (APi, p : (x, y, z)), represents an Access Pointi with unknown initial

position p.

• Anchor node: nodei = (Ai, p : (x, y, z)), represents Anchori with fixed and known

position p. A Graph built without reference nodes can be rotated or translated in relation

to the physical space. The reference samples from Anchors’ are used to adjust the graph

to the space configuration, in a process similar to Multi-Dimensional Scaling. In addition,
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since the Anchors are fixed devices, the length of the edges that connect then to APs can

be more accurately estimated, as will be explained later.

• Samples node: nodei = (Si, p : (x, y, z)), each sample collected by a moving device

originates a new sample node in the Graph, with unknown initial position. Each sample

collected by a moving device is added to the Graph as a new node. A new node repre-

senting a new sample from a moving device can be connected to previous nodes of the

same device by edges is the elapsed time is short. The length of these edges is establish

using dead reckoning information, if available, or using the time difference to estimate

displacement.

The position (pnode) of nodes on the Graph are subject to constrains:

• Anchor nodes: Known and fixed positions.

• AP nodes and Sample nodes: pnode must be within the 3D space and not complex

(e.g. pnode cannot be underground or APs positions cannot be above the celling, and xi,

yi, zi must be real numbers).

An edge in the Graph connects two nodes and can be seen as a spring with an elastic factor.

The Natural Length (NL) of an edge can be obtained based on different types of information,

depending on the two nodes that the edge connects. The edges can be:

• RSS-based edge: A RSS-based edge can be seen as representing the radio communica-

tion channel with an AP:

– Anchor ↔ AP: e = ((nodei, nodej), NL, CL, ke1, η)

– Sample ↔ AP: e = ((nodei, nodej), NL, CL, ke2, η)

where NL is the Natural Length of the edge estimated based on the measured RSS using

a propagation model, CL is the Current Length of the edge, ke1 and ke2 are the elastic

constants, and η is the path loss exponent (LDPL).

• Motion edge: Connects two consecutive Sample nodes from the same moving device.

The NL of this type of edge can be estimated through:

– Time-based: e = ((nodei, nodej), NL, CL, ke3), where the NL is the maximum

displacement based on the time difference between the two samples. The maximum

displacement is estimated considering a possible maximum velocity multiplied by
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the time difference. A value for the maximum velocity can be assumed for each type

of device, considering for example the motion characteristics of different vehicles or

smartphones carried by humans.

– Odometry/Inertial-based: e = ((nodei, nodej), NL, CL, ke4), where NL is based

on more accurate displacement measurements between consecutive samples.

The edges based on accurate motion data, such as odometry, can be used to improve the nat-

ural length estimations, as they provide significantly more accurate displacement information,

which results in better spatial constrains between samples.

An edge can be in one of three different states (like a spring):

• Relax state: CL = NL, means that the two nodes are at the correct distance.

• Compression state: CL < NL, means that the two nodes should be far from each

other.

• Tension state: CL > NL, means that the two nodes should be closer.

1.2 Building the Graph

The Graph is built iteratively, based on new samples, one sample at a time.

• If the new sample is from an Anchor:

1. Create an Anchor node to represent the Anchor (if not already exists).

2. Create a AP node for each new AP, visible in the sample.

3. Add or update the edges from the Anchor node to the APs visible in the sample.

• Otherwise if the new sample is from a moving device:

1. Create a new Sample node.

2. Create a AP node for each new AP, visible in the sample.

3. Create one edge from each AP visible in the sample.

4. Create an edge to previous Sample nodes of the same device (from time or odometry

information).
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1.3 Adjusting the Graph to a Minimum Energy State

The position of all nodes (except Anchor nodes) is updated, using a Force-Directed inspired

method. This means that each node is subject to a Combined Force vector c⃗F , resulting from

the individual forces applied by each edge connected to the node.

2 Building the Graph Iteratively

After deploying the anchors in the physical space, the system starts processing the samples

collected by the Anchors to initiate the 3D Graph, ignoring the samples from moving devices.

The Anchors’ data is used to automatically estimate an initial position of the AP nodes and to

adjust the graph to the real-world space configuration. When the algorithm detects that the

position of the APs has stabilized, which normally takes only a few minutes, then the system

begins to process also the samples of the moving devices, providing positioning. When the

system is already operating, the additional samples provided by the Anchor nodes and the

moving devices make the Graph to automatically evolve and keep the radio map updated for

the whole environment.

2.1 Adding Nodes

When a new node is created and added to the Graph, its initial position p must be defined.

This initial position is based on the type of the node, and based on the relations with the

nodes already on the Graph. The position can also be calculated using different approaches,

depending on the information available.

2.1.1 Anchor nodes

Anchor nodes are created at known positions when the first sample from the Anchor is

processed. Subsequent samples from the same Anchor are associated to the previously created

node.

2.1.2 AP nodes

AP nodes are created when they are observed for the first time, and they are initially placed

according to the first detected RSS measurements, that are used to obtain a set of distances.

This distance is used to define a sphere of possible positions for the AP. As at this point no other

information is available to define the direction1 or the hight of the AP. Therefore a random
1Direction as seen from the position where the sample was collected, relative to the X axis.
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direction and a 2 meters Z position, in relation to the current floor, are initially defined. Then

the initial XY coordinates are calculated (Figure 4.3). The initial position will be improved

when the Graph is adjusted. The floor detection has been addressed in multiple works [85, 86]

and can be achieved using air pressure readings obtained from barometric sensors. The Anchors

in multiple floors can also work as floor reference.

AP

sample
xyDistance

xyzDistance

zDifference

AP

sample

xyDistance

direction

xyz position

XZ Plan XY Plan

Figure 4.3: Access Point Initial Position Estimation

The initial position for an AP node is given by:

ap.x = xyDistance × cos(direction) + sample.x

ap.y = xyDistance × sin(direction) + sample.y

ap.z = apInitZ

(4.2)

where xyDistance =
√

∥xyzDistance2 − (zDifference)2∥, apInitZ = 2, zDifference =

apInitZ − sample.z, and xyzDistance given by the equation 4.9.

2.1.3 Sample nodes

Created for every new sample from moving devices. The node initial position on the Graph

is dependent on the information available on the samples:

• Independent sample: A new sample that has no relation to previous sample nodes from

the same device. When the elapsed time between a new sample and the device’s previous

sample on the Graph is high, the new sample is treated as an independent sample, as

there is no information to establish a spatial relationship between the two.
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• Group samples: When a sample is part of a sequence of samples from the same device,

and is collected within a short period of time in relation to the previous sample.

For independent samples, the initial position is estimated based on the APs referenced in

the sample that are already on the Graph, denominated shared APs.

The initial position of independent samples is defined by using one of the following methods:

• Computing an weighted centroid using the distances to the AP’s (weight given by the

RSS measurements) on the Graph and visible on the sample (Shared APs). The initial Z

position is considered to be 1 meter above the ground level of the current floor.

• The same approach used for placing APs (if only one single AP is represented in the

Graph).

• At the origin (0,0,1) if no other method can be applied.

In addition, when the Graph already contains a large number of samples and no Shared

APs exist, fingerprinting techniques can be used by using the sample nodes previously added

to the Graph as a radio map.

The weighted centroid method (Figure 4.4) is applied when two or more AP’s visible on the

sample are already on the Graph (Shared APs).

AP0AP1

AP2

dAP3

dAP0dAP1

AP3

dAP3

Weighted Centroid

Figure 4.4: Independent Samples Initial Position Estimation (2 or more Shared APs)

The weight is given by:

k = 1∑n
i=0

1
dAPi

(4.3)
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where n is the number of shared APs, dAPi
is the distance to APi given by eq. 4.9.

The initial position (x, y, z) for the sample node nodej is then given by:

nodej.x = k ×
n∑

i=0

1
dAPi

× APi.x

nodej.y = k ×
n∑

i=0

1
dAPi

× APi.y

nodej.z = k ×
n∑

i=0

1
dAPi

× APi.z

⃗nodej = {nodej.x, nodej.y, nodej.z}

(4.4)

Group Samples: Samples that are collected by the same device within a short interval of

time, can be related by displacement measurements or by the time difference.

When a sample has direction and displacement information, dead reckoning techniques can

be used to define the initial position of the sample, in relation to the previous sample collected

by the same device (Figure 4.5). This method can be applied if the time difference between

the two samples is small.

previous node (n-1)

current node (n)

orientation (he)

displacement (dis)

Dead Reckogning

Figure 4.5: Group sample node initial position

1. The initial position of a sample node (noden) with direction (he) and distance (dis) in

relation to the previous sample node noden−1 of the same device is given by:

noden.x = noden−1.x + noden.dis × cos(noden.he)

noden.y = noden−1.y + noden.dis × sin(noden.he)

noden.z = noden−1.z

⃗noden = {noden.x, noden.y, noden.z}

(4.5)
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2. When no motion information is available on a sample from a moving device, but that

sample was collected within a short interval of time, in relation to the previous sample

node (noden−1) from the same device, the displacement (dis) from the previous sample

can be defined based on the elapsed time (noden.t − noden−1.t). To obtain a distance

from the elapsed time, the device is considered to be moving at a velocity between zero

and the max velocity (maxV el), which depends on the moving device type:

dis = random(0, maxV el) × (noden.t − noden−1.t) (4.6)

The initial direction is a random value between -20 and 20 degrees in relation to the

previous sample node:

nodei.he = nodei−1.he + random(−20, 20) (4.7)

The [-20,20] interval gives an initial direction similar to the previous sample node, which

is then corrected by the Graph adjustment process.

The node initial position (x,y,z) is defined using the same approach that is used when the

distance and direction is known (Eq. 4.5).

2.2 Edges

With the exception of the Anchor nodes, the position of the nodes on the Graph will be

influenced by the spatial constrains defined by the Natural Length (NL) of the edges.

2.2.1 RSS Edges

Sample node to AP node edges: Created when a new sample from a moving device is

processed and the Sample node is created. These edges are RSS-based, therefore the Natural

Length (NL) is set to the distance estimated from the measured RSS value. To obtain a distance

from the RSS value the Log-Distance Path Loss Model (LDPL) propagation model is used. The

LDPL model is frequently used to model the propagation of Wi-Fi signals [18,28,63,64,87,88].

Using the LDPL model the RSS at a given position p at a distance d from an AP is given by:

RSSp = RSS0 −
(

10 × η × log10
(

d

d0

))
(4.8)

RSSp is dependent on the RSS0 (measured at d0, generally 1 meter), the distance to the

transmitter (d) and the path loss exponent (η) that reflects the fall rate of the RSS signal from
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an AP at a specific position.

Therefore, the NL of an edge e can be given by:

eNL = 10
(

RSS0−RSSp
10×η

)
(4.9)

In contrast to many works in the field, where the path loss exponent of each AP is empirically

set, the FastGraph approach considers that this parameters depends not only on the AP, but

also on the location of the sample. It is well-known that getting the exact sources of attenuation

in indoor radio propagation is not an easy task, as it involves many factors such obstacles or

building materials. For that reason, it is considered that the communication channel from

a given position to a specific AP, that is represented by an edge in the Graph, has singular

propagation characteristics, and therefore a particular path loss exponent (η).

The value of η has a strong influence in the estimated natural length of the edges, and by

consequence in the nodes’ positions. For this reason, after adding a new sample node to the

Graph, an initial estimation of the value of η is done for each RSS-based edge of the sample

node. This initial estimation is obtained running a Gradient Descent Algorithm. This process is

usually unable to find the optimal η, however provides a close estimation, that is later improved

as more samples are processed and the Graph evolves. The complexity in estimating the path

loss exponent, and the approach followed, will be detailed later in this chapter.

Anchor node to AP node edges: These are also RSS-based edges, and are created when

an AP is observed for the first time by an Anchor. Existing edges are updated as new samples

involving the attached nodes are gathered. In contrast to the Sample nodes, the Anchor nodes

represent a set of observations. Therefore, the RSS measurements of the same AP can be

combined, for example by averaging a given number of previous RSS values. Using combined

measurements leads to more robust estimation of the NL with the LDPL model. Therefore the

RSSp for an Anchor edge is the arithmetic mean of all RSS values of the Anchor with reference

to the AP:

Anchor ↔ AP : RSSp = 1
n

n∑
i=0

RSSi (4.10)

With the arithmetic mean of a set of RSS measurements, the error affecting this type of

edges is smaller than the error affecting the edges where the length is calculated based on a

single RSS measurement. Therefore, this type of edges can have more influence on the overall

Graph, as we have an higher degree of certainty on their length.

All the samples collected by an Anchors are therefore represented by a single node in the
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Graph, and the edges for that node are updated with the new arithmetic mean of the RSS

values, when a new sample from that Anchor is processed. For this reason, these edges store a

fixed size list of the latest RSS values observed by an Anchor. When the max size of this list is

reached, the oldest values are eliminated. This allows the Graph to adjust to the changes in the

radio environment. Moreover, this approach also helps to improve the algorithm performance

by reducing the number of the nodes and edges in the Graph.

2.2.2 Motion Edges

Sample to Sample edges: Created between samples of the same moving device, when

possible. The natural length is given by the displacement obtained from odometry or inertial

data, or based on the time elapsed between samples.

• Odometry/Inertial Motion Edges: The length of a motion edge eNL from Odome-

try/Inertial data is given by the actual sensor measurement:

eNL = odometryDisplacement (4.11)

• Time-Based Motion Edges: If no explicit distance measurements are available, the

edge natural length is calculated based on the time different between the two samples,

when they belong to the same device and are separated by a short interval of time.

The natural length of a motion edge eNL, is a random value between zero and the max

possible distance travelled by the device, considering the elapsed time since the previous

sample node:

eNL = random(0, maxDistance) (4.12)

with:

maxDistance = maxV elocity × eslapsedT ime (4.13)

where, maxV elocity is a configurable parameter that defines how much a device can move

in a specific amount of time (e.g. 1 m/s) and elapsedT ime is the time difference between

two consecutive samples (si.time − si−1.time). A specific value for maxV elocity can be

assumed for each type of device, considering for example the motion characteristics of

different vehicles or smartphones carried by humans.
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The accuracy of Time-Based natural length is understandably lower than the natural length

based on explicit distance measurements by sensors. However when explicit measurements are

not available this helps to restrict the possible initial position of the node to a smaller area.

Moreover, the negative impact of the error in Time-Based estimations can be limited, since the

uncertainty in the length of these edges can be controlled by using a lower elasticity (ke).

3 Adjusting the Graph

The 3D Graph evolves when a new sample is processed and the Graph is adjusted. The

position of the APs and the position of the moving devices (Sample nodes) is estimated by

adjusting the Graph, in order to respect the 3D spatial constrains defined by the edges. The

Anchor nodes provide spatial references, in order for the Graph to keep the correct rotation and

scale. To adjust the Graph to a minimum energy state a force-directed approach is used [89].

Following the spring analogy, each edge has associated a force vector that is calculated based

on the difference between the Natural Length (NL) and the Current Length (CL) of the edge,

that is then multiplied by an elastic constant (ke), that gives the edge more a less elasticity. As

explained before, each edge can be in relax state, in tension or in compression, depending on

the current values of NL and CL. The NL defines the desired length for an edge, however as

explained, the NL of each edge can be estimated with different degrees of accuracy, depending

on the data source. An individual edge can be forced to compress or to extend to allow a node

to move to a position that suits better the majority of the edges. In these cases the length of the

edge will be different from it’s natural length, and is named Current Length (CL). Therefore,

the CL is the actual 3D distance between a nodei and a nodej on the Graph at a specific time,

and is given by:

⃗eCL = ⃗nodei(x, y, z) − ⃗nodej(x, y, z) (4.14)

eCL = ∥ ⃗eCL∥ (4.15)

As will be explained in more detail later, the difference between the natural length and

current length is used to define a force associated to the edge.

The elastic constant (ke) is different for each type of edge, allowing them to have different

contributions to node Combined Force (c⃗F ), that is the sum of all forces applied by each edge
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of the node, and by consequence different influence in the nodes’ positions. As mentioned

before, edges connecting Anchors and APs are less affected by signal fluctuations in the RSS

measurements, and for this reason have an higher value of ke. In the edges connecting two

sample nodes the principle is the same. In the odometry or inertial based edges, the length is

defined by distances measured by actual sensors. Therefore, it is natural that these edges have

higher ke than the edges defined by the temporal difference between samples.

In addition, since the intensity of Wi-Fi signals decreases with the distance following a log-

arithmic function (Figure 4.6), variations in lower values of RSS translates in higher differences

in the calculated distance.
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Figure 4.6: Distance variation with RSS (η = 2.5)

Considering this, the error affecting a distance calculated from a low RSS value will be

probably significantly higher than the error affecting the distance calculate based on a higher

RSS value. In addition, lower RSS values can mean that the signal was heavily attenuated by

obstacles and affected by noise, reducing even more the confidence on the estimated distance.

Hence, the ke value for RSS edges is adjusted based on the RSS value, giving more strength

to edges with higher RSS.

The adjusted elasticity constant for an RSS edge (ke′) is a function of the initial elastic

constant ke and the Natural Length (NL) of the edge, and is given by:

ke′ = ke × 10(ke×∥NL∥) (4.16)

The tension magnitude (te) applied by an edge e on the connected nodes is given by:
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For a RSS edge:

te = ke′ × (eCL − eNL) (4.17)

For a Motion edge:

te = ke × (eCL − eNL) (4.18)

The force vector (e⃗F ) is then given by:

e⃗F = ( ⃗distance × û) × signum(te) × log (1 + ∥te∥) (4.19)

where, ⃗distance×û is the distance vector between the positions of the two nodes ( ⃗pnode1− ⃗pnode2)

times the unit vector, signum(te) is the signal, positive or negative, of the tension magnitude,

and log (1 + ∥te∥) is the logarithmic of the tension module.

The total force applied to a nodej ( ⃗cFj) is the vectorial sum of all the forces associated to

each edge (e⃗Fi) connected to the node (Figure 4.7):

⃗cFj =
n∑

i=1
e⃗F i, for all node edges (4.20)

j

j-1

~eF 0~eF 1

~eF 2
~eF 3

~eF 4

AP

~cF j�1 = ~eF 0 + ~eF 4

~cFAP =
n=3X

i=0

~eF i

~cF j = ~eF 1 + ~eF 4

Combined Force

Figure 4.7: Combined forces

The Graph adjustment can affect all nodes or a specific sub-set of nodes. The Graph

adjustment is an iterative process that is performed when a new sample is processed. The

adjustment process stops when all the nodes on the Graph move less than a defined threshold,

meaning that the Graph reached the minimum energy state. In each iteration the nodes are
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moved based on a velocity vector ( ⃗velj) that is the linear combination between the current

combined force ( ⃗cFj) and the previous combined force ( ⃗cFj−1), in order to preserve part of the

momentum from the previous iteration. Hence the velocity vector of a node in an iteration j

is given by:

⃗velj = β1 × ⃗cFj + (1 − β1) × ⃗cFj−1 (4.21)

where β1 is a parameter.

Each node is moved in order to minimize the forces applied to it. The new position is

calculated by adding to the current position the velocity vector multiplied by a factor T :

p⃗os = p⃗os + v⃗el × T (4.22)

The T factor defines how much the node moves in a single iteration in the direction defined

by the velocity vector. This controls how fast the node will converge to the position that

minimizes all forces.

As explained before the c⃗F is a vectorial sum of all the forces applied by the edges connected

to a node. Therefore, more edges connected to a node results into an higher c⃗F magnitude.

This is the case of AP nodes, since they are connected to all Anchor nodes and Sample nodes

within radio communication range. Easily, the number of edges can grow to hundreds or

even thousands. This can lead the node to enter into an oscillatory motion between positions

(Figure 4.8), increasing the time needed for the Graph to converge to a minimum energy state.

In addition, this oscillatory motion can even prevent the Graph to reach the minimum energy

state, even if only one node is oscillating.

In specific conditions, the oscillatory motion can even produce forces that increase progres-

sively in magnitude, with edges changing between tension and compression states when the

node oscillates between two opposite positions.

�p > �pthreshold

tension state

compression sate

relax sate

Figure 4.8: Unstable node in oscillatory motion

This problem appears when a large number of mixed forces push and pull a node, the c⃗F
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vector can have opposite directions from one adjustment iteration to another, due to the node

move beyond the correct position due the high magnitude of the c⃗F vector. In the next iteration,

the additional movement in relation to the correct position produces higher forces that will pull

the nodes back, and this will make the node to go even more beyond the correct position in

the opposite direction, staying in an increasing oscillatory motion. This oscillatory motion

prevents the Graph to reach the minimum motion threshold that defines the minimum energy

state. Reducing the motion threshold would not solve the problem, and in normal conditions

will make the adjustment process to stop before the minimum energy state is reached.

The solution is to keep an high elastic potential energy and momentum, moving the node

faster when it is far from the target position (that results in the minimum energy state for the

node), and reduce the elastic potential energy, moving the node slower when the node is near

the target position, in order to avoid the node to go beyond the target position and enter into

oscillatory motion.

To accomplish this, a process was designed to adjust the magnitude of the c⃗F depending on

the overall nodes’ acceleration. The influence of the total combined force on a node position is

therefore adjusted depending on the acceleration of all nodes in the Graph (Figure 4.9).

This is controlled by dynamically adjusting the value of T at each iteration.

hight acceleration → hight T → high |cF| low acceleration → reduce T → lower |cF|

the nodes keep moving fast the nodes slow down near the target position

Figure 4.9: Dynamic Acceleration

First the position variation, from one iteration to the next, for all nodes is calculated:

∆posnodes = 1
n

×
n∑

i=1
∆pos ⃗nodei

(4.23)

The new value of T (see equation 4.22) to be used in the next adjustment iteration is then

given by:

T = 2
γ + ∆posnodes × ∆t

(4.24)

where γ is the amortization factor, and ∆t is the time taken by the previous iteration.
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The T factor increases when we have higher acceleration of the nodes, and this way forces

have more impact on the node position. When the overall nodes acceleration is lower the T

decreases, resulting in finer adjustments to the node position, reducing the oscillatory motion.

The same T is applied to all nodes, otherwise nodes affected by the same forces could move

more than others. This method keeps the adjustment process only while there is significant

acceleration in the Graph (nodes moving), and not if the movement is generated by only a few

unstable nodes in oscillatory motion. Moreover, with this solution the Graph converges to the

minimum energy state faster, which improves the performance of the algorithm in real time

applications.

3.1 Nodes Adjustment Approaches

The nodes of the Graph can be moved using different approaches:

• Independent Node Adjustment: Each node of the Graph is moved based on its

individual combined force vector (c⃗F ). In addition, depending on the nodes affected by

the adjustment this can be:

– Full adjustment: All the nodes of the Graph are adjusted in each iteration.

– Partial Adjustment: Only a subsequent set of nodes connected to a new node

just added to the Graph are adjusted.

• Group Adjustment: Each node belonging to a group is moved based on the individual

c⃗F vector but also taking into account the group combined force vector (g⃗F ).

3.1.1 Independent Node Adjustment

Full Adjustment: In a full adjustment all nodes in the Graph will be adjusted, therefore

for each node in the Graph the combined force vector (c⃗F ) is calculated and, then based on

the c⃗F vector, the node will be moved. In this approach the adjustment process starts from

the oldest node in the graph. This way the position of the APs and the previous nodes will

be less affected by the possible error in the initial position of a new node. The nodes can be

moved immediately after their c⃗F have been calculated, or only after all nodes’ c⃗F have been

calculated. Each one of the approaches can be useful, depending on the information available

in the sample processed.

Moving a nodei immediately after calculating the c⃗Fi will influence the c⃗F of all nodes

connected to the node moved in the same adjustment iteration. Each adjustment iteration is

preformed in n steps, one step for each node (Figure 4.10). The new position of the nodei
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produces new forces in the edges connecting to the other nodes. Therefore, the c⃗F of the

following node to be adjusted nodei−1 will be calculated taking into account the new state of

the Graph. This can produce problems when we use high values for the elastic constant between

sample nodes (ke1), because in this case the force produced by this edges can overcome the

forces of the edges connecting to the AP’s, and even lead to oscillatory motion.

the new position of the node i creates 
a high tension eFi, that will be 
considered when calculating the cFi-1
for the connected node i-1, and so on 

the value of cFi is calculated and
the node i is moved using cFi

i n

cFi eFi

i n

step 1: node i step 2 : node n-i

Figure 4.10: Calculate a node c⃗F and move the node

An alternative approach is to move the nodes only after all c⃗F forces have been calculated,

therefore each adjustment iteration will have only two steps in total (Figure 4.11). The new

node will affect only the nodes connected to it directly, and the node influence will propagate

slower on the Graph, which can be desirable in order to propagate less the effect of one node

in their node chain. The overall node move will be also lower as only the new node and the

nodes directly connected will be moved in the current iteration.

for node i … n:
calculate node cFi

ni

for node i … n:
move node i using the node cFi

cFi
cFn

ni

step1 : all nodes step 2: all nodes

Figure 4.11: Calculate all nodes c⃗F and them move the nodes

After testing, it was concluded that the second approach has more advantages when per-

forming full graph adjustments in a Graph with a large number of nodes and forces. The

advantage of performing full adjustments is that we can improve the position of all the nodes

in the Graph, even the very old ones, when adding more sample nodes. However, the adjust-

ment time in full adjustment depends on the number of nodes in the Graph, and for this reason

full adjustments may not be ideal as the main adjustment process for Graphs with a large

number of nodes.
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Partial Adjustment: With this in mind, a partial adjustment method was designed to

improve convergence speed in order to improve scalability, and to reduce the impact of the

samples’ initial position error on the Graph. The partial adjustment can be applied to obtain

a rapid position estimation. In Graphs representing a large space and with a large number of

nodes, adding a new sample node in one area will not affect the nodes in other areas, therefore

not all nodes need to be adjust. In addition, as explained before, depending on the information

available on each sample, the initial position estimation can be more or less affected by error,

therefore the nodes already on the Graph can be used to improve the initial position of the new

sample node, without this having limited impact on the other nodes.

For these reasons, in this method the adjustment process starts on the most recent node

added to the Graph. Then a configurable range defines how many levels of nodes will also

be adjusted (Figure 4.12). As an example, with a range r = 0 only the current node will be

adjusted. With a range of r = 1 only the nodes directly connected to the new node will be

adjusted, such as the APs or the previous sample node. In this method the previous sample

nodes of a sequence will help to quickly correct the new node position, mainly when we have

odometry/inertial based edges.

A partial adjustment is therefore more efficient than performing a full adjustment. It only

affects a set of nodes depending on their connections and the defined range. On other hand,

when using a small range, the positions of old samples are not affected, and no further im-

provements are done to their position based on the information from the newer samples.

range 0 range 1

new sample new sample

adjust

adjust

adjust

adjust

Figure 4.12: Partial adjustment with different ranges
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3.1.2 Group Adjustment

As explained previously, the Independent Node Adjustment approach moves the nodes based

on their individual c⃗F . However, in applications where motion information is available, this

approach don’t take full advantage of the potential of the Motion-Edges.

When processing sample nodes connected by Motion-Edges the orientation and distance

information are used to establish spacial constrains between the samples. The algorithm can

use these additional constrains to improve the APs positions and the edges path loss exponents.

As explained before, the Sensor-Based Motion edges are less affected by error, and for that

reason the ke of this type of Motion-Edges is higher (lower elasticity) than the ke of the RSS-

based edges between sample nodes and APs. When the ke for the RSS edges is high, the error

in the edges’ length can degrade a good position estimation that was obtained based on the

motion information, using dead reckoning techniques (Figure 4.13).

Considering this, it seams obvious to maintain the ke of the Motion edges significantly higher

than the ke of RSS edges. However, this leads to another problem. The dead reckoning process

takes into account the orientation and displacement in relation to a previous position, and for

that reason, although it can place accurately a sample node in relation to the previous node,

all the nodes positions will be dependent on the position of the first sample of the sequence.

dead reckoning path path affected by RSS erros

estimated path affected  by the errors in the RSS 
edges to APs, that lead to wrong individual cF

Figure 4.13: Path degradation due to RSS noise

The error in the first sample node, will therefore propagate for the next nodes if not rapidly

corrected (Figure 4.14). This can have a significant impact because the initial position of the
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first sample of a sequence is estimated only based on noisy RSS measurements and therefore

more susceptible to errors. In addition, a low number of shared APs on the Graph, the error

in the AP’s position that may be still converging to a correct position, and the error in the

path loss exponent initial estimation (η), all contribute to the error in initial position of the

first sample.

Considering all these aspects, in fact it makes sense to maintain the Motion-Edges ke higher

than the ke of the RSS edges to APs, in order to prevent the path (given by dead reckoning)

to be destroyed by noisy RSS-based edges. But is also necessary to keep the RSS-based edges

influence to correct errors in the first sample initial position.

Solving this problem relying only on a good balance between the ke values proved to be

very difficult, usually leading to a destroyed path or to a whole path affected by the error of

the first sample.

first sample estimated position
path real initial position

the initial error influence the 
position of next samples

position given by dead reckoning

Figure 4.14: First sample error propagation on a path

To address this problem, the algorithm should be able to explore the information from both

types of edges, taking advantage of the strengths of each one. Let’s consider the characteristics

of the two types of edges.

The Motion edges:

• Can preserve accurate spacial constrains between samples (paths), that were defined by

dead reckoning.

• The motion edges alone can’t position a sample in the space. In addition, the dead

reckoning process is based on a previous sample position, therefore the error of previous

sample nodes will propagate to the next nodes.
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The RSS edges:

• Are based on less accurate and noisy measurements than the Motion edges, therefore can

destroy the spacial constrains defined by the Motion edges.

• But can position the sample nodes in the space, and help to correct problems in the dead

reckoning process.

The Group Concept concept: Considering these characteristics leaded to the Group

Adjustment concept. A sequence of sample nodes from the same device connected by Motion

edges can be seen as a Group, and the algorithm can take advantage of the Group, to improve

the position estimation for each node of the Group. In addition, improving the Group also

improves the initial position estimation when a new sample node is added to that Group, as

this estimations are based on the previous related samples. Therefore, the Group Adjustment

method moves each node belonging to a Group, based not only on their individual c⃗F vector,

but also taking into account in the Group Force vector (g⃗F ).

The Group Force: The g⃗F is the vectorial sum of all the Group’ nodes individual c⃗F

(Figure 4.15).

distance constrain

direction constrain

node individual cF 

real path

group force gF

Figure 4.15: Group Force

For each nodei of the Group, the c⃗Fi is calculated and added to the g⃗F , that is normalized

using the number of nodes (n) in the Group:

g⃗F = 1
n

n∑
i=0

c⃗F i (4.25)

Then for each nodei a linear combination between the node individual force c⃗Fi and the
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group force g⃗F provides the node final combined force vector ⃗cF ′
i :

⃗cF ′
i = c⃗Fi × (1 − β2) + g⃗F × β2 (4.26)

The value of β2 controls the percentage of each force that will be used to move the node.

For example β2 = 1 means that only the group force vector (g⃗F ) is used to move the node, and

β2 = 0 means that only the node individual c⃗F is used.

This linear combination allows the nodes to be moved as a Group, rapidly correcting the

error in the initial position and preserving the path shape. Each node will benefit from the

Group but can also keep some adjustment freedom as an individual element. The sample nodes

will not be totally crystallized as a Group. This is important in order to allow individual

corrections in the nodes of a path, that can be affected by errors for example in the dead

reckoning information, such as the direction drift, as will be explained later.

After the final force ⃗cF ′ is calculated for all nodes of the Group, the nodes are moved using

their ⃗cF ′:

p⃗os = p⃗os + ⃗cF ′ × T (4.27)

The contribution from each node is used to improve the other nodes position, even the

previous nodes. The next nodes to be added to the group will also leverage from the correction

made to the group.

This method allows a sequence of nodes to be moved in the Graph without changing the path

shape that was given by the dead reckoning information. In addition, moving the nodes based

also on the Group force minimizes the impact of individual errors. Moreover, this approach

also helps to improve the position of the APs. By preventing the related samples spatial

constrains (for example a path) to be destroyed, provides additional information to adjust the

APs. Another advantage is that the Group constrains help to progressively learn and adjust

the path loss exponent (η) of each edge. The progressive path loss learning will be addressed

further on.

68



THE FASTGRAPH APPROACH

3.1.3 Orientation Drift

Sensors used to measure orientation, such as Inertial Measurement Units (IMUs) are often

affected by drift. The drift impact increases with the time and the distance travelled (Figure

4.16).

true path

path affected by drift

Figure 4.16: Drift Example

Trajectory tracking approaches based in pure dead reckoning are highly affected by drift.

In the FastGraph the dead reckoning is only a part of the solution, but the orientation is an

important parameter to define the travel trajectory and the position of samples belonging to a

path. The drift effect can degrade this estimations, leading to lower positioning performance.

In order to evaluate the impact of the drift in the FastGraph approach, experiments were

done using controlled synthetic data, generated by the developed simulator. In a first experi-

ment, the graph algorithm was configured to operate as a pure dead reckoning solution. Then

the orientation readings were affected by drift. This experiment provide an idea of the impact

of the drift when the Wi-Fi has no influence over the sample nodes positions.

The drift evolution can be described as increasing linearly over time [90]. Following this,

the drift added to the orientation angle of each sample (θi) was based on a linear function given

by:

θi = θi−1 + θdrift × i (4.28)

The position of each sample of the sequence is given by the orientation and distance in

relation to the previous sample position. The previous sample position may already be affected

by drift. Considering this, a position where all the previous n samples are affected by drift can

be given by:

xn = x0 +
n∑

i=0

⃗displacementi × cos(θi−1 + drift × i)

yn = y0 +
n∑

i=0

⃗displacementi × sin(θi−1 + drift × i)
(4.29)
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This means that even with a small amount of drift in each sample, the impact in the

estimated position will increase over time. This effect is shown in the Figure 4.17, that is

the result of a pure dead reckoning solution, where the Wi-Fi information has no effect on

the samples position. Based on the Equation 4.28 was added drift (with θdrift = 0.5◦) to the

orientation readings.

>2.4 m

1.8 m

1 m

<0.2 m

sample errorno drift 0.5º drift

path distance 38.5m

y
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Figure 4.17: Path with and without drift (using path adjustment method)

The path affected by 0.5◦ of drift results in a progressive increasing position error along

the travelled distance (38.5 meters). Increasing the travelled distance, increases the effect of

the drift in the position estimation, and by consequence the positioning error. In this research

domain, the error is usually defined as being the percentage between the Euclidean error and

the traveled distance, therefore in this case: 2.4m/38.5m = 6.2%.

Solutions for Drift: In the previous experiment we saw how a sensor with a 0.5º of drift

can affect a pure dead reckoning solution.

Some works have addressed this problem, and developed methods to reduce the effect of the

drift, in order to improve the orientation, using for example wearable sensors [90]. However,

this type of approach used to remove the drift effect, often depends on the type of sensors, the

type of movement, the travelled distance, or requires previous calibration.

Each sensor can be differently affected by drift. For that reason one of the parameters of

commercial IMU units is in fact the amount of drift over time. Advanced IMUs use techniques

such as sensor fusion to improve estimations and correct the drift, combining the gyroscope

and Active Heading Stabilization (AHS) that uses the magnetometers to estimate the gyro

bias. This way, drift in heading can be as low as 1 deg after 60 minutes, providing accurate

orientation measurement even in long time operation. In smartphones the sensor fusion is also

applied to improve the orientation readings over time.

Despite of addressing the drift problem being out of the scope of this thesis, and although
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there are IMU units on the market that provide accurate orientation readings with low drift,

an additional experiment was performed to evaluate how the FastGraph method handle data

affected by drift.

The Impact of Drift on the Proposed Solution: With the combination of Wi-Fi and

dead reckoning it is expect that the developed approach will be able to reduce the impact of

drift by taking advantage of the Wi-Fi readings to compensate the position error introduced

by the drift.

As explained before, the Group Adjustment method adjusts the nodes of a group based

on the group combined force g⃗F and the node individual force c⃗F (Eq. 4.25). This method

takes advantage of the information provided by each sample of the Group, and combines that

information to adjust the samples position based on the group force.

If only the group force was used to move the nodes, the drift would also be preserved. How-

ever the individual force of the node also contributes to the node position allowing individual

corrections, which may allow to compensate at least part of the drift in each node.

In fact, in ideal conditions, where the Wi-Fi RSSS readings are not affected by noise, the

drift would be completely compensated. Figure 4.18 shows the result where the FastGraph

algorithm corrects the drift using the Wi-Fi information, and the path shape is preserved.
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Figure 4.18: Drift correction with Wi-Fi (no RSS noise)

However, in real world, where we have noise in the Wi-Fi RSS measurements, each sample

will be affected by a different amount of error, and the path shape deteriorates when we give

more weight to the individual c⃗F of each sample node. Figure 4.19 shows the same path

adjusted with different group force (g⃗F ) and individual force (c⃗F ) percentages, using the linear

combination (Eq. 4.26) with different β2 values. For this experiment the synthetic dataset

used was generated adding Gaussian noise with zero mean and γ = 3 to each Wi-Fi RSS
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measurement.
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Figure 4.19: Paths affected by drift and Wi-Fi noise: Adjustment with different group force
percentage (β2)

The results show that when the group force is the only force applied to the nodes, as

expected the drift is fully preserved (not corrected). In the cases where the group force is 80%

and 70%, the drift is compensated. Less percentage of group force reduces the effect of the

drift, but in neither of the cases it is completely corrected, and the path shape is destroyed by

the noise in the Wi-Fi RSS readings.

Reducing the Drift Impact and Preserving the Path:

In order to improve the drift correction and avoid the path deformation, due to the noise in

the Wi-Fi RSS measurements, the algorithm was updated to create additional edges between

the sample nodes of a Group. With more edges, the path shape will be less affected by RSS

noise, while keeping the effect of the APs’ forces on the sample nodes to correct the drift.

Therefore, instead of connecting only the current sample node to the previous sample node, the

algorithm connects the current node to the previous n nodes, that belong to the same sequence.

The length of this additional edges are estimated by applying dead reckoning techniques from

the present to the past (Figure 4.20).
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(dis2; he2)

nodei

nodei�1

(dis1; he1)

nodei�2

dis3?

current node

Figure 4.20: Edges length estimation between the current and the previous nodes

To establish an edge between the current node (nodei) and a previous node (nodei−2), the

edge length (dis3) as to be calculated. However, the current position of the previous nodes on

the Graph can’t be considered, since it may have been changed by the adjustment process and

the influence of the RSS edges. For this reason, a dead reckoning process is used to estimate the

position where the previous nodes should be considering the most recent node current position.

For this orientation (he) and displacement (dis) information of each sample node is taken into

account.

Therefore, in relation to the current position of most recent node (nodei) the position of the

nodei−1 will be given by:

nodei−1.x = nodei.x + dis1 × cos(he1)

nodei−1.y = nodei.y + dis1 × sin(he1)

⃗nodei−1 = (nodei−1.x, nodei−1.y)

(4.30)

Following the node sequence the position of the node (nodei−2) in relation to the calculated

position of the node nodei−1 is then given by:

nodei−2.x = nodei−1.x + dis2 × cos(he2)

nodei−2.y = nodei−1.y + dis2 × sin(he2)

⃗nodei−2 = (nodei−2.x, nodei−2.y)

(4.31)

Then the edge length (dis3) is given by:

dis3 = | ⃗nodei − ⃗nodei−2| (4.32)
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With this we can formulate that the natural length (eCL) of an edge between the current

sample node (nodei) and a previous sample node (nodei−j) of the same Group with n nodes is

given by:

nodei−j.x = nodei.x +
n∑

i=i−1
d⃗isi−j × cos(hei−j)

nodei−j.y = nodei.y +
n∑

j=i−1
d⃗isi−j × sin(hei−j)

eCL =
√

(nodei.x − nodei−j.x)2 + (nodei.y − nodei−j.y)2

(4.33)

With more edges, the shape of the trajectory at tight turns, as the ones depicted in Figure

4.20, is more preserved by forming triangles. Figure 4.21 shows the result using the solution

with this improvement to correct the drift. The dataset used was the same from the previous

experiment (see Figure 4.19), with the same noise in the Wi-Fi RSS measurements. The

additional edges between samples help to further correct the drift without completely destroying

the path shape. In this experiment edges between the current node and the 15 previous nodes

were added.
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Figure 4.21: Improved solution with drift correction

As mentioned before, the drift correction is out of the scope of this thesis, however with a

relative simple approach it was possible to minimize the impact of the drift in the proposed

solution. This improvement enables this solution to work better with low grade sensors and to

be more robust against possible errors in the dead reckoning information.
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4 Environment Dynamics and Scalability

Many Wi-Fi positioning solutions are limited in terms of scalability. For example a Finger-

printing solution requires an extensive radio map to be available, which is difficult to create.

In addition, in the online phase, the number of fingerprints in that radio map will influence the

matching time necessary to estimate a position. In this context, and as explained previously,

different matching process can be used.

In the FastGraph approach it is easy to understand that, without any scalability mechanism,

increasing the Graph size will increase the adjusting time, also affecting the position estimation

time. Therefore several scalability mechanisms ensure that the FastGraph solution can be used

in a large environments with multiple users.

• Anchor Samples Fusion: As described before, the fusion or merging of the Anchors

samples improves the length estimation of the Anchors edges, by averaging multiple RSS

measurements. However, this feature is also important in terms of scalability. By fusion

the samples from an Anchor in a single node, the number of nodes on the Graph is

significantly reduced, with less nodes and edges to be handled by the adjustment process.

• Partial Adjustment: It was also explained before that when the Graph has a large

number of nodes, adjusting the entire Graph when a new node is added to Graph is

not efficient. Therefore, the partial adjustment is also an important feature in term of

scalability. This way the Graph is adjusted by sections, where only the nodes that may

be affected by a new node are adjusted. These sections can be seen as sub Graphs. In

this process a different number of nodes can be adjusted, depending on the node type or

the node source.

• Graph Pruning: In contrast to the two previous mechanisms, the Graph Pruning pro-

cess was specially designed and implemented to further improve the FastGraph scalability.

This process ensures that the solution can maintain the performance despite the opera-

tion time or number of users. The pruning process eliminates old nodes from the Graph,

while ensuring that a necessary minimum number of nodes is maintained. The nodes

removed from the Graph can be maintained in a separated database and used in other

applications as a radio map.

Results regarding the computational time, specifically the time required to provide a position

estimation, will be presented and discussed in the results chapter.
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4.1 Graph Pruning Process

The Graph size can increase with time when more samples are added. A partial adjustment

process was designed to be efficient with short adjustment times. However, if using the full

adjustment process, more nodes increase the adjustment time.

In addition, the fingerprints or samples collected as explained before age up and become

outdated due to radio environment changes, this means that old fingerprints may not be good

at characterizing the environment.

Therefore, the pruning process serves two purposes.

• First, it ensures that the computational performance is maintained.

• Second, it helps the Graph to dynamically adjust to the variations of the radio environ-

ment, including radio infrastructure changes.

The main factors that lead to radio environment dynamics were already described before,

being the radio infrastructures changes one of the most severe alterations. For example, APs

being removed, added or changed from one position to another in maintenance processes have

high impact on the radio signatures.

For FastGraph, the new APs are not a problem since they are handled and added to the

Graph by the normal process described before. The pruning process helps the FastGraph

to eliminate old APs that were not observed by any samples for a specific time, which can

configured to be hours or days. If an AP is moved from one position to another, the algorithm

will start to reposition the AP in the Graph based on the new samples, then the pruning process

removes the old samples and edges related to the AP previous position.

A set of rules are followed to maintain the Graph consistency, such as ensure a minimum

number of edges for each AP or ensure that the sample node are not left without edges.

The pruning process can be activated by the algorithm if the number of nodes is over

a configurable number or if the average time to process a sample increases over a specific

threshold.
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5 Estimating the Path Loss Exponent (η)

The importance of the Path Loss Exponent (η) was frequently mentioned along the previous

sections of this thesis, and the complexity of estimating the value of this parameter was de-

scribed in Chapter 2 (Page 23). In this section are described the methods that were designed to

estimate this parameter and how they perform. During this research three different approaches

were considered: Analytic Calculation, Optimization, and Learning.

In the FastGraph approach, the η of each edge is used to compensate not only the path

loss, but also other factors that affect the received signal at a specific area. In addition, a

fixed RSS0 is kept for all APs and the difference in the RSS0 for each individual AP is also

compensated by this value. With preliminary experiments using synthetic data it was confirmed

that, as expected, the nodes would not converge to the correct positions without estimating the

path loss exponent for each edge of the Graph. This confirms that the path loss is a complex

parameter with significant impact, since the FastGraph in previous experiments was able to

handle significant noise levels added to the RSS values, and even compensate drift added to

the motion information.

5.1 Minimum Energy Optimization

The η can be analytically calculated using the LDPL model:

n = −
(RSS−RSS0)

log10(d/d0)

10
(4.34)

However, to calculate the η at a given position based on the LDPL model, in addition to

have a RSS measurement and the RSS0, it is also necessary to know the AP position and the

device position, in order to calculate the distance (d). In most of the cases of interest, neither

are known.

As described in Chapter 2, previous works suggest that a system of non-linear LDPL equa-

tions has no analytical closed form solution [63], therefore in that work the problem is addressed

using optimization algorithms to find the solution that minimizes the least mean absolute er-

ror. However, as reported by the authors, that approach has high computational requirements

where the algorithm can take several hours to find a solution. In addition, only 2D positions

for the APs are considered, which simplifies the problem.

On the other hand, the FastGraph approach solves a system of LDPL equations, where each

equation is represented by an edge between a device and an AP. Considering this, in order to
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reach the minimum energy state, each edge force must be zero. This means that the natural

distance, estimated by the LDPL equation, and the current distance of the edge are the same.

Hence, in FastGraph the sum of all edges differences of a Node can be used as an objective

function, and therefore the solution for the system of LDPL equations is where the objective

function is zero (when the forces of all edges are zero).

In order to reach the minimum energy state, the η of all edges must be corrected, other-

wise the difference between the natural and current distance of an edge will generate a force.

Following this idea, minimum search algorithms can be designed to find the values of η that

minimize the objective function, where the edges energy sum is zero.

Therefore, the energy of a node j can be given by:

energyj =
n∑

i=0
∥NLi − CLi∥ (4.35)

where, NL is the natural length given by the LDPL model using the η value, the CL is the

current length of the edge, and n is the number of edges connected to the node.

5.1.1 Finding the best common Path Loss (η) for an AP

As explained before, in a real world environment one cannot assume a single value of η for

an AP. However, in order to understand how complex it is to estimate the path loss exponent

a simple approach was initially designed. This approach tries to find the best common η value

for an AP.

The best common η is the value that gives the minimum energy for the AP when applied to

all of its edges. With this common η, the algorithm can estimate an initial position for the AP.

After applying the common η to all edges of the AP, and adjusting the Graph, the AP Energy

(ape) will be given by the equation defined before (Eq. 4.35).

This process tries values of η between 1.5 and 5 with steps of 0.01, and calculates the AP

Energy for each value. The η that generates the minimum energy will be selected the as the

common path loss exponent for the AP.

To experiment this process a synthetic dataset was generated in a space with an obstacle

(Figure 4.22). The obstacle produces variations in the path loss by introducing 6 dB of at-

tenuation to the edges that intersect it. A η = 2.5 was used as standard free space path loss

exponent.
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Figure 4.22: Virtual space with obstacle (n variation)

The evolution of the energy as different η values are applied to the edges between Anchor

nodes and AP nodes is shown in Figure 4.23.
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Figure 4.23: Energy using the same Path Loss Exponent for all edges

As expected the η values estimated for the APs 5,6 and 7 are close to the standard free

space η used in the simulator (2.5), since they have line of sight to almost all Anchors (see

Figure 4.22). The energy for all APs decrease rapidly for lower values of η, and stabilizes for

higher values. This is related to the LDPL logarithmic base that is used to estimate the natural

length for the edges, as the following plot shows (Figure 4.24).
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Figure 4.24: Distance vs Path Loss Exponent

Although the minimum energy curve (Figure 4.23) becomes almost flat for large values of

η, the value that produces the minimum energy for an AP when applied to all edges can be

easily found. However as expected, with this method the zero energy state can’t be reached,

which confirms that each edge must have a different η value.

5.1.2 Finding the best Path Loss (η) for each Edge

After finding the best common η for all edges of a node that minimizes the energy, the η of

each edge can be individually adjusted.

The base principle is the same, the η for each edge will be selected based on the global

minimum energy of the node (Eq. 4.35), and by testing values between 1.5 and 5 with steps

of 0.01. However, in this case this values are tested to each edge individually, and the node

energy is measured after each value applied. The best η for an edge is the value that generates

the minimum energy for the node.

The process follows the node edges sequentially, and as the η of the last edge is adjusted,

the process can be repeated to improve the η values based on the new state of the other edges.

This iterative process ends when there is no variation in the AP energy from one iteration to

another.

The same dataset was used to experiment this process. The following plot (Figure 4.25)

shows the η adjustment for an edge, after three iterations, when the energy variation was zero.
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Figure 4.25: Distance variation in relation to η (AP1 to Anchor 6)

From the first iteration to the second, the AP energy dropped more significantly. However

as we can see the η for this edge had a low variation from iteration to iteration. The drop in

the first iteration was because initially all edges had the same η, and for some reason that value

was far from the correct η. This is an example of an edge with line of sight.

The next plot (Figure 4.26) shows an edge that intersects the obstacle, and therefore is

affected by attenuation. This means that the correct η has to be superior to the standard free

space η. Also the minimum is superior to the minimum obtain in the line of sight example

(Figure 4.25), due to the obstacle.

Figure 4.26: Distance variation in relation to η (AP2 to anchor 6)

With this method it is possible to estimate different values of the η for each edge of a node,

resulting in a lower energy, and a lower error in the length of the edges. However, also in this
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case it was not possible to reach the zero energy state, even in this simple example where we

have only an obstacle and a low number of edges. Each node is always adjusted based on the

state of the other edges, which makes it difficult to find the global minimum, even if keeping

adjusting for several iterations.

5.1.3 Finding the Correct η Values (The Needle in a Haystack)

After several experiments the results have confirmed that the correct values of η are very dif-

ficult to find, even when using optimization algorithms, because, in contrast to other solutions,

the FastGraph handles 3D spaces.

In order to further demonstrate this, another synthetic dataset was generated using the

simulator. In the virtual 3D space were placed three Anchors at different positions. Then a

different η was defined for each one of the Anchors areas. With this configurations the RSS

measured by each Anchor was affected by a different path loss exponent. The η values used to

generate the dataset were η1 = 2.8, η2 = 1.9, η3 = 3.2 (Figure 4.27).

Then, the possible permutations of values of η between 1.5 and 3.4 with 0.1 interval (20

values), for each one of the three edges of the AP were tested. For an AP with only three edges

the number of possible solutions are:

P R(n, r) = P R(20, 3) = nr = 203 = 8000 (4.36)

anchor 1

anchor 2anchor 3

AP

η1=2.8

η2=1.9η3=3.2

Figure 4.27: Search for the η values

In this experiment, each one of the possible solutions was tested, and for each solution the

sum of the difference between the natural and current length (|NL − CL|) of the three edges
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was computed. The correct solution will have sum of zero (zero energy state). Only three

Anchors were used to be possible to plot a surface and identify the minimums.

The zero energy was naturally obtained for the correct values of η. Figure 4.28 shows a 3D

and 2D surface slices. In the first slice is represented the energy minimums for different values

of η2 and η3 for η1 = 1.5. In the plots was used a logarithmic scale, therefore the edges energy

can assume negative values.

As can be observed in these plots, there are several local energy minimums with a very low

magnitude, and we are considering only a single slice of the space of solutions in η1 = 1.5.

For this slice the absolute minimum was at η1 = 1.5, η2 = 3, and η3 = 3.2 with an energy

magnitude of 0.12. This value is very close to zero however we have wrong values for the η1

and η2, that should be η1 = 2.8 and η2 = 1.9.
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Figure 4.28: Slice of η solutions surface for η1 = 1.5

Figure 4.28 also shows another slice of the solutions space, this time for η2 = 1.9, which is

the correct value for the η2. Therefore in this slice is the absolute minimum, with zero energy.

The absolute minimum appears at η1 = 2.8 and η3 = 3.2, which are in fact the correct

values. However, as in the previous slice, also here there are local minimums with very low

energy.

These results allow to clearly understand that finding the correct values of η for a node
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with several edges, without information about the APs positions and in a 3D space, is a really

complex problem. Even for this simple example, where an AP has only three edges, and the

possible values that η can assume are limited, several low energy local minimums exist, even

for significantly wrong η values.

This is a complex multidimensional minimum search problem, since there are several local

minimums with very low magnitude where a minimum search algorithm can fall. Simple opti-

mization and minimum search algorithms were tested to solve this problem, such as Gradient

Descent (GD) and a Genetic Algorithm (GA). However, as these results had already suggested,

these algorithms also failed to find the absolute minimum. Perhaps more advanced optimiza-

tion algorithms be able to provide better results, however that is a topic that is far out of the

scope of this thesis.

Nevertheless, these experiments and results were important and useful to understand the

problem. Based on this, was designed a new approach that uses the Gradient Descent, which

provide a decent initial estimation for the values of the η, and then that initial estimation is

improved based on a progressive learning process, that will be explained later.

5.2 Estimating the η values for Independent Sample Nodes

The η has higher impact in the initial position of independent samples, such as the first

sample node of a Group, or samples without motion information, because the sample initial

position is defined relying only on Wi-Fi.

Without knowing the correct η for the sample, the algorithm applies the default η, which

may need to be adjusted. To reduce the impact of using the default η in the sample node initial

position, a new η is estimated for each edge of the sample node, using a Gradient Descent (GD)

algorithm.

The GD algorithm search the values of η for all edges of the sample node that lead each

edge to a relax state or minimum energy state, minimizing the c⃗F (Figure 4.29). The possible

values for the η for each edge can be limited if the resulting distance is an impossible value,

considering the typical Wi-Fi signals range.

As mentioned before, the global minimum is very difficult to find and the GD algorithm

does not ensures that the global minimum is reached. However, a local minimum provides

better initial η values than the default and common η.
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Figure 4.29: Adjusting the η values to reach a minimum energy for the node

5.3 Progressive Path Loss Exponent (η) Learning

The difficulty of modeling the path loss in a complex 3D indoor environment using analytical

and optimization approaches is well known and was verified during this research work.

It was demonstrated that when the algorithm tries to estimate the path loss for each edge of

an AP the existence of multiple minimums is a problem. Advanced optimization algorithms to

search the global minimum may be able to obtain good estimations, but even in 2D problems the

process requires high processing power and time, as some researchers have already reported [63].

Considering all of these aspects a different approach was designed. The solution proposed to

deal with this problem takes advantage of the unique features of the FastGraph algorithm, and

is based on one of the initial hypothesis for this research: with more data processed the Graph

becomes a better representation of the radio environment. Considering this, some modifications

were made in the FastGraph algorithm, which is now able to improve the estimations of the

path loss exponents for each edge of the Graph, when more information is added.

This can be seen as a progressive learning process, in the sense that, as the Graph evolves,

the algorithm is able to improve the values of η estimated initially. Then the learning process

progressively adjusts the η using more and more information from the samples processed. The

η is adjusted progressively by a linear combination to minimize the tension or compression of

each edge. The current length and natural length of the edge will progressively match.

It may seem odd to adjust the η value in order to the natural length match the current

length, since the current length may not be correct. However, as more and more samples are

processed, the several edges will create a group averaging effect, that forces lead the node

to converge to the correct position. As the node approaches that position the η values are
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improved. When reached the correct position the natural length of the edges is in fact correct.

In Equation 4.37, eZEη is the η value that produces zero energy to an edge e. To obtain the

zero energy for the edge the Current Length (CL) is considered as the target length:

eZEη = −
RSS−RSS0
log10(CL/d0)

10
(4.37)

Then the η value is updated by a linear combination between the edge current η and the

eZEη, which allows progressive convergence (learning) to the correct value:

eη = (β3 − 1) × eη + β3 × eZEη (4.38)

The learning rate is defined by β3. A high learning rate can be used to converge fast while

keeping part of the edges energy, in order to corrected the nodes and the AP’s positions. The

new forces introduced by the edges of new nodes will increase the energy of the nodes, that

help improving the nodes positions, and by consequence the η values.

Figure 4.30 shows a synthetic dataset with eleven APs and 6 Anchors. Three obstacles were

added to the scenario, two of them introducing 6 dB of attenuation, and another introducing

10 dB. With these obstacles the RSS measurements are affected by different combinations of

attenuation, depending on the obstacles between the sample and an AP.

The smooth walk motion model was used to collect 1500 samples. Each one of the RSS

measurements in each sample were also affected by Gaussian noise with zero mean and γ = 3.
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Figure 4.30: Experimenting progressive η learning (Simulation Setup)
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With the progressive η estimation, the FastGraph was able to estimate the η value for 25503

edges with an average error of 0.06. More results regarding the this topic will be presented in

the results chapter.

6 Summary and Discussion

This chapter described the fundamental principles and the approach behind the FastGraph.

The 3D Force-Directed Graph is the foundation that distinguish the FastGraph from other

solutions. The organic nature of this approach allows to solve complex multidimensional scaling

problems, without trying to analytically solve multiple sets of equations.

The Graph is adjusted based on a minimum energy approach, and evolves to be a repre-

sentation of the physical and radio environment, with nodes representing APs, Anchors, or

Samples from Moving Devices. The reference samples, usually collected by Anchors, are used

to initialize the Graph, estimating the initial positions of the APs and matching the Graph to

the physical space.

The nodes are connected by edges, that can be RSS based, representing communications

channels, or Motion-Edges that characterize the device motion. The natural length of the RSS

edges is given by the LDPL model, and each edge has its own propagation characteristics, with

a different path loss exponent. The natural length of motion edges is given by displacement

information, when available in the moving devices samples, or based on time between consec-

utive samples. Each edge type has different elastic constants, given different level of influence

on the Graph, depending on the accuracy of the data used to establish the edge length.

The FastGraph solution includes mechanisms to address problems such as oscillatory nodes

and orientation drift. Moreover, to deal with the environment dynamics and the solution

scalability, some mechanisms were designed and implemented such as the Anchors sample

fusion, the partial adjustment, and the Graph pruning process. These mechanisms ensure that

the computational performance is maintained, and helps the Graph to follow the variations of

the radio environment, including radio infrastructure changes.

The complexity in estimating a path loss exponent for each edge, in a 3D indoor environ-

ment, was documented with experimental examples. Considering this, a strategy based on

minimum energy optimizations and progressive learning was conceived, which leverages from

the Graph evolution, with more and more information from new samples, to progressively

improve the path loss estimations.
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In order to validate the proposed hypothesis, and evaluate the solution in real word exper-

iments, the FastGraph algorithm was implemented in Java and can be executed in a common

machine with regular hardware specifications. With minor adjustments, it can even run directly

in Android Smartphones, which may be interesting in specific scenarios.
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Real World Setup

The virtual environment from the simulator provided valuable synthetic data, allowing

controlled experiments to tackle a specific problem at a time.

After encouraging results obtained with synthetic data, the natural step was the evaluation

in real world scenarios. The real world introduces additional levels of complexity and variability

difficult to simulate.

In this chapter is described how the proposed solution was deployed in two very distinct

real world spaces, allowing to test the solution in two different operation modes.

Section I and II describe the spaces and experimental setups where FastGraph was evaluated.

Section III and IV describe the devices and additional Software modules developed as part

of the FastGraph prototype, to allow the deployment of the solution.
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1 PIEP - Industrial Enviroment

The first deployment space is a polymers engineering building PIEP (Pólo de Inovação em

Engenharia de Polímeros) at University of Minho (Figure 5.1). The PIEP is very similar to a

factory building, with an area of ≈1000 m2.

Figure 5.1: Real World Experiment Space A (PIEP)

In this space there are several metallic elements, industrial machinery and exposed beams,

that result in several reflections, multi-path effects and non line of sight. This is a challenging

space for radio signal propagation, and is also very dynamic, because machines and cargo are

moved from place to place, and people are also frequently present in the space. The space

was mapped, and a XYZ referential defined. A ground truth grid, based on floor tags spaced

1 meter from each other, was added to the space, to define paths with known positions. Six

anchors were installed to cover the area.

1.1 Space Setup

The PIEP had very low Wi-Fi coverage, with almost no access points at the testing site.

For this reason, eleven access points were installed to provide the necessary support for the

experiments.

Two different types of APs were installed, in order to have distinct radiation models and

power transmissions. Eight celling type Access Points were installed on the existing technical

cable trays, and 3 APs were places in walls (Figure 5.2). The APs were placed at different

heights ranging from 3.95 meters to 5.46 meters, and placed near the walls, because due to the

PIEP daily operations it was impossible to place them in central positions (Figure 5.3).
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Celling AP (PIEP) Wall AP (PIEP)

Figure 5.2: Photo of APs at PIEP

In order to better evaluate the positioning solution, in addition to mapping the space and

define a referential, a ground truth grid was also added (Figure 5.3).
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Figure 5.3: Access Points and Tags Positions PIEP
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The ground truth grid is based on near 100 numbered floor tags (Figure 5.4) with known

positions on the defined referential. The tags were spaced 1 meter from each other.

Figure 5.4: Photo of tags at PIEP

With the ground truth grid, different paths can be followed and the position tracked, using a

camera to record the tags. The ground truth for a specific sample can be obtained by comparing

the sample timestamp with the timestamp of each tag in the video. The clock of the camera and

the device that collects the samples were synchronized by a clock synchronization algorithm.

The ground truth for the samples collected between tags was obtained by interpolation,

since the testing device used in the experiments moves at a uniform speed.

1.2 Solution Deployment

The installation of the APs and the ground truth grid were steps necessary to perform

the experiments at PIEP, but in a normal deployment are unnecessary. The ground truth

referential is only needed for evaluation, and it is assumed that in most spaces the APs are

already installed. For these reasons, it makes sense to conceptually separate these tasks from

the actual solution deployment phase.

The actual solution deployment involves the anchors installation, and for the PIEP appli-

cation scenario, the setup of the MTU (Moving Testing Unit), which features will be detailed

in the experiment devices section.

Six Anchors (Figure 5.5) were installed at PIEP, being distributed in the space and placed

in the walls at 2 meters of hight (Figure 5.6). The number of Anchors used corresponds to a

density of ≈ 1 Anchor for each 166 m2.
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Figure 5.5: Photo of an Anchor at PIEP
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Figure 5.6: Anchors and APs positions at PIEP
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2 DSI-DEP: University Building

The second deployment space was another building at the University of Minho. A floor of

this building has a combined square footage of around 4638 m2. The DSI-DEP, occupying the

first floor of building 11, is a space with characteristics very distinct from PIEP. The layout

of the DSI-DEP (Figure 5.7) is complex with several offices, rooms and corridors, which result

in different propagation characteristics in relation to PIEP, where the main obstacles are large

industrial metallic machines.

Figure 5.7: Real World Experiment Space B (DSI-DEP)

In indoor positioning, some solutions have different performances depending on the space

layout, with systems obtaining better results in narrow layouts, such as corridors, and others in

open areas. Therefore this space, allows to evaluate how FastGraph Wi-Fi positioning performs

in a typical offices building.

2.1 Space Setup and Solution Deployment

The DSI-DEP is a space with a large number of Access Points, therefore it was not necessary

to install additional APs. The only necessary step to prepare the experimental setup to evaluate

the solution, was to define a spatial referential and map the position of some APs. Fifhteen

APs in accessible areas, such as corridors and public rooms, at the first and second floor were

mapped (Figure 5.8).

At the DSI-DEP the strategy for the solution deployment was different from that used at

PIEP. The DSI-DEP is a very large space, being necessary more Anchors to cover the space.

Considering that the experiment setup was temporary, finding power sources and places to

install them was a problem. Therefore, instead of having several Anchors installed at fixed
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positions, a unit that can be used as moveable Anchor (Tripod Testing Unit - TTU) was

designed. With this approach, data was collected at 13 different locations in the first floor of

DSI-DEP, one location at a time, simulating the use of 13 Anchors. The number of “virtual”

Anchors used corresponds to a density of ≈ 1 Anchor for each 357 m2, a lower density compared

to PIEP.
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Figure 5.8: Access Points (Mapped) and Anchors

3 Experiment Devices

To deploy the FastGraph system and perform the evaluation was necessary to design pro-

totype solutions to be used as Anchors and as Moving Devices.

After defining the requirements, adequate hardware and sensors were selected, and then

software modules were developed to perform the necessary tasks in the selected hardware.

The Raspberry Pi 3 (RPi3) was choosed as the core for the solution implementation. The low

cost and small single board computer has the necessary resources with a low power consumption.

The internal Wi-Fi interface allows to collect Wi-Fi data, being therefore perfect to work as

Anchors. The several IO interfaces allow to extend the board enabling the use of external

sensors to track displacement and direction.
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3.1 Anchors

Each Anchor is based on a single RPi3 (Figure 5.9). The low cost and low power consump-

tion are advantages in the deployment scalability. Even a Raspberry Pi Zero W v1.1 (Figure

5.10) with integrated Wi-Fi could be used, reducing the deployment cost from 29€ (RPi3)1 to

11€ (RPi Zero) per unit2.

Anchor (Raspberry Pi 3)

Anchors at PIEP

Figure 5.9: Photo of Anchors (PIEP)

Anchor (Raspberry Pi Zero W)

Figure 5.10: Raspberry Pi Zero W3 (11€ board) that can be used to implement the Anchors

In these experiments the RPi3 was used for the anchors since it can be used on other

experiments. Using the RPi Zero W the PIEP setup would cost 66€ (instead 174€ when

using RPi3) and the DSI-DEP deployment would cost 143€ (instead of 377€), which is very

inexpensive.
1Price in 06.06.2018 from https://pt.rs-online.com
2Price in 06.06.2018 from www.kubii.fr
3From: https://www.raspberrypi.org/products/raspberry-pi-zero-w/
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3.2 Moving Testing Unit (MTU)

To evaluate the FastGraph as an industrial positioning application, a Moving Testing Unit

(MTU) was developed (Figure 5.11). The MTU allows to emulate an autonomous robot or

machine moving inside a factory.
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power

Moving Testing Unit (MTU)

Figure 5.11: Moving Testing Unit (MTU) Diagram

The MTU core is also based on a RPi3. The USB interfaces allow the integration of external

sensors. To measure displacement a Magnetic Encoder was used. The Magnetic Encoder

measures the angular rotation of the wheel, that is then converted into distance. To track the

direction of movement, an Internal Measurement Unit (IMU) was used, that measures several

parameters such as Roll, Pitch, and Yaw. For this specific solution only the Yaw was used,

giving the orientation of the device.

A camera (smartphone) was also installed in the MTU to keep track of the ground truth

tags. In the MTU were also added four additional 2.4 GHz Wi-Fi interfaces to collect additional

data. Figure 5.12 shows photos of the described MTU unit. The IMU used was the Xsens MTi-

300-2A5G4-DK4 and the encoder was the US Digital A2 Absolute Encoder5.

4https://www.xsens.com/products/mti-100-series/
5https://www.e-motionsupply.com/product_p/a2.htm
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Power

Encoder
Wi-Fi

Figure 5.12: Moving Testing Unit (MTU) Photos

3.3 Tripod Testing Unit (TTU)

In the DSI-DEP experiment the Anchors were based in the same hardware and software

used at PIEP. However, at DSI-DEP, in order to simplify the experiment preparation, instead

of having several Anchors installed in fixed positions, it was decided to use an Anchor that

could be easily moved.

With this objective a tripod base unit was designed to collect data. The Tripod Testing

Unit (TTU) diagram can be seen in Figure 5.13. This unit has a Raspberry Pi, four additional

external Wi-Fi interfaces, a power bank, and a Wi-Fi AP. The Wi-Fi AP installed in the

TTU provide direct communication with the Raspberry Pi in order to control and monitor the

operation. A smartphone can also be attached to collect several other types of data, such as

cellular, acceleration and orientation. The TTU is light and can be easily moved, therefore can

be used not only to work as an Anchor, but also as a Moving Device in applications where the

magnetic encoder and the IMU is not necessary.

This simple approach, based on a tripod, can be easily placed at any location, and the

height and direction of the testing unit can be precisely set. The photos in Figure 5.14 shows

the TTU used as an Anchor to collect data at DSI-DEP.
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android smartphone

raspberry pi

4 external wi-fi interfaces

wi-fi access point

power

Tripod Testing Unit (TTU)

Figure 5.13: Tripod Testing Unit (TTU) Diagram

Tripod Testing Unit (TTU)

Power

External Wi-Fi

Raspberry

Wi-Fi

Figure 5.14: Tripod Testing Unit (TTU) Photos
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4 Software Modules

The FastGraph deployment prototype also required the development of software modules.

4.1 Data Collection Modules

In the Anchors and Moving Device, the Wi-Fi samples are collected periodically by a python

script that automatically runs when the device starts. This script collects several information

about the nearby APs, such as BSSID, RSS, Channel and Frequency.

In the MTU, another python script reads the angle given by the magnetic encoder mounted

in the wheel. The IMU information, specifically the Yaw or direction, is obtained by a program

written in C.

All of this information is stored in SQLite databases, one for each sensor or interface in

order to avoid concurrency problems.

4.2 Support Modules

The time synchronization is not important for the solution operation, but for the evaluation

it is convenient that all devices are in the same time frame. A Raspberry Pi is not able to

keep the clock synched if disconnected from power, it corrects the time when connected to the

Internet. To adjust the time in all devices without relying that they have an Internet connection,

a clock sync script and an Android application were developed. The script communicates with

the mobile application in the Android allowing all devices to sync their time by the time

provided by the Android smartphone.

4.3 Android Data Collection Application

An Android mobile application was also developed to collect several types of data (Figure

5.15). In this application was integrated an algorithm developed to detect motion in order to

save energy when the device is in stationary state [59]. This algorithm can be configured or

completely disabled. When the motion algorithm is disabled, data is collected even when the

application is closed, with all the operations performed in a background service.

Several parameters can be configured in the main interface, such as the sampling periods,

and the data collection from each sensor or interface can be individually enabled or disabled.

All the data collected is stored in a local SQLite database and also sent to a server. The

number of samples stored in the device is displayed in the App and can be managed by source.

The App interface displays also information regarding the running time of the service, the time
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collecting data and the time suspended.
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Figure 5.15: EMSA data collection application for Android

This application is an useful tool to obtain data from several interfaces and sensors on

Android devices, data that can be used to test different solutions of positioning, maintaining

the energy efficiency. Cellular data was also collected with this app, and will be useful to test

the possible application of the proposed solution with cellular networks.

Data collected by the app:

• Wi-Fi: SSID (Service Set IDentifier); BSSID (MAC Address); RSSI (Received Signal

Strength Indication); Channel; Capabilities

• Accelerometer: X-Axis Acceleration; Y-Axis Acceleration; Z-Axis Acceleration

• Gyroscope/Magnetometer Fusion: Yaw; Pitch; Roll

• Celular: MCC (Mobile Country Code); MNC (Mobile Network Code); LAC (Location

Area Code); Cell ID; RSS (Received Signal Strength)

• Bluetooth: MAC Address; Device Name; Class; RSS (Received Signal Strength); Ser-

vices
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• GPS: Latitude; Longitude; Speed; Altitude; Accuracy

• Battery: Percentage

4.4 Experiment Monitoring Application

The devices can be controlled by an SSH (Secure Shell) connection. In addition, an iOS App

for iPad was developed to monitor the operation process, where the most recent information

collected by each device can be seen.

DEVICE MONITORING
192.168.1.24Server IP:

Time: 2018.07.10 15:37
Last sample ID: 110
APs: 11

- - -

Time: 2018.07.10 15:36
Last sample ID: 106
APs: 11

- - -

Time: 2018.07.10 15:35
Last sample ID: 32
APs: 10

-Time: 2018.07.10 15:35
Last sample ID: 1598
Angle: 2.8867745828

Time: 2018.07.10 15:35
Last sample ID: 639
Yaw: 11.39

MTU

Anchor 2

Anchor 1

Wi-Fi Encoder IMU Bluetooth

Wi-Fi Encoder IMU Bluetooth

Wi-Fi Encoder IMU Bluetooth

Figure 5.16: Monitoring iOS Application (iPad)
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5 Summary and Discussion

In this Chapter were described two real world spaces, with very distinct characteristics, were

FastGraph was tested. In addition, were also presented the prototype devices and software

modules developed to allow the FastGraph deployed and evaluation.

The PIEP is an industrial environment, similar to a factory, with around ≈1000 m2 of

area. In this space several metallic elements and large industrial machines lead to severe multi-

path and reflection effects and there are multiple Non Line of Sight (NLoS) areas. In PIEP

were installed eleven APs, and to deploy the FastGraph 6 fixed Anchors were deployed, which

corresponds to a density of ≈ 1 Anchor for each 166 m2 square meters. The positions of the

APs were mapped, and a ground truth grid with floor tags was installed.

The FastGraph was also deployed at DSI-DEP, an office building at University of Minho.

A floor of this building has a combined square footage of around 4638 m2. This space has

characteristics very distinct from PIEP, with a more complex and larger layout, and is highly

dynamic in terms of density of people. In this space can be detected a large number of APs,

therefore the installation of additional APs was not necessary.

Since was not possible to install fixed Anchors at DSI-DEP the developed Tripod Testing

Unit (TTU) was used as a “virtual” Anchor to collect reference samples in 13 different positions.

The Anchor density at DSI-DEP was ≈ 1 Anchor for each 357 m2, resulting in a significantly

lower Anchor density in relation to PIEP. Fifteen APs installed in corridors and public access

rooms, at the first and second floor were mapped.

Different prototype devices were developed to allow the FastGraph deployment. The An-

chors were based on Raspberry Pi 3, but can also be used a Raspberry Pi Zero, which reduces

the deployment costs. A Moving Testing Unit (MTU) with multiple sensors and Wi-Fi inter-

faces was also developed and can be used for example to simulate an autonomous machine. To

the MTU was also attached a camera to record the ground truth tags. Was also developed the

Tripod Testing Unit (TTU) that can be also used as moving device or as a movable “virtual”

Anchor. This unit can be easily moved and placed at any location.

Different software modules (Python Scripts, Java Applications, Mobile Applications) to col-

lected the data from the different interfaces and sensors and also to support the experimentation

process were developed.
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Results

The previous chapter described the experimental setups and the deployment of FastGraph

prototype in two spaces. The DSI-DEP, which is an office type building, and the PIEP, an

industrial type building.

In this chapter, the experiments performed in these two spaces are described, and the results

obtained are presented and discussed. These real world results are important to support and

validate the initial proposed hypothesis, as well as the FastGraph performance as a unsupervised

positioning system.

The first section presents the results obtained at DSI-DEP, where the solution was deployed

and tested using only Wi-Fi data.

Section II presents the results obtain at PIEP, where the accurate ground truth grid allowed

to extend the experiments. With the PIEP’s setup it was possible to test the FastGraph in

scenarios where Wi-Fi can be combined with data from other sensors to improve the accuracy.

This chapter ends in Section III, comparing the obtained positioning results with other state

of the art positioning solutions.
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1 Experiments at DSI-DEP

Wi-Fi only positioning solutions are the most suitable to provide positioning in large spaces,

such as Airports, Shopping Malls, Stadiums or Office Buildings, since the other types of sensors

are difficult to explore in these types of environments.

The DSI-DEP office type building characteristics are suitable to evaluate the FastGraph as

a Wi-Fi only positioning solution, where techniques such as Fingerprinting are normally used.

As mentioned before, a large number of APs can be detected at DSI-DEP (Figure 6.2), but

many of them are inside private offices or installed in nearby buildings. To evaluate the AP

location feature of FastGraph, the real position of APs was mapped at the corridors and some

inside rooms with public access, in the first and second floors (Figure 6.1).

In these experiments data was collected from the 13 “virtual” Anchors and from a moving

device (TTU). In each device, the Wi-Fi data was collected by a single 2.4 GHz Wi-Fi interface.

The first set of results show the algorithm APs’ position estimation for the APs at two dif-

ferent floors. The second set of results show the positioning error with the algorithm operating

using only Wi-Fi data.

The Graph initialization phase, where only samples from Anchors were processed, took only

around 6 minutes worth of data, after which the position estimation of the moving device was

initiated.
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−10

−5

0

5

10

15

20

25

30

35

40

45

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Figure 6.1: DSI: Anchors and Mapped APs
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Data collected:

• Anchors Wi-Fi samples: 4066 (≈ 313 per Anchor)

• TTU Wi-Fi samples: 455 (10 positions)

1.1 Access Points Position Estimation Error

Figure 6.2 shows all the APs detected at DSI-DEP. The position of each AP in the figure was

estimated by FastGraph. As shown, the algorithm placed some APs outside of the DSI-DEP

building, since there are other buildings with APs nearby.
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access points (84)
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Figure 6.2: APs observed at DSI
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For the APs mapped at the first floor (see Figure 6.1), the average XYZ error was 8.21

meters with a max error of 15.88 meters (Figure 6.3 and Table 6.1).

AP XY Error Z Error XYZ Error
AP1 6.56 0.35 6.57
AP2 5.39 0.20 5.39
AP3 10.30 0.35 10.31
AP4 2.41 0.35 2.44
AP5 1.48 0.37 1.52
AP6 11.42 0.48 11.43
AP7 12.19 0.43 12.20
AP8 15.87 0.49 15.88

Average 8.20 0.38 8.21

Table 6.1: APs Position Error DSI Floor 1 in Meters

>12 m

8 m

4 m

<1 m

error

6.571 m
5.391 m

10.31 m2.44 m 1.521 m

11.43 m 12.2 m 15.88 m

"virtual" anchors
ap true position

ap estimated position

average error: 8.21 m

y

−10

0

10

20

30

40

50

x

−30 −20 −10 0 10 20 30 40 50 60 70 80 90

Figure 6.3: APs Error DSI: Floor 1

For the APs at the second floor the average XYZ error was 15.58 meters with a max error

of 23.26 meters (Figure 6.4 and Table 6.2). It is important to note that all the Anchors were

at the first floor, and the position of all APs was estimated based only on these Anchors. The

larger error in the position estimation for the APs at second floor is therefore expected. For

optimal results Anchors should be added to the second floor.

108



RESULTS

AP XY Error Z Error XYZ Error
AP9 9.45 2.62 9.81
AP10 11.04 1.67 11.17
AP11 0.54 0.89 1.04
AP12 23.25 0.89 23.26
AP13 20.91 1.67 20.97
AP14 19.24 3.71 19.59
AP15 22.87 4.22 23.25

Average 15.32 2.24 15.58

Table 6.2: APs Position Error DSI Floor 2 in Meters

>12 m

8 m

4 m

<1 m

error

9.815 m

11.17 m

1.038 m 23.26 m

20.97 m
19.59 m

23.25 m

anchors (0 at 2nd floor)
ap true position

ap estimated position

average error: 15.58 m
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Figure 6.4: APs Error DSI: Floor 2

These results were compared with Serendipity [66], that locates APs using reference scans

at known positions, and the dissimilarities between pairs of APs. Serendipity requires a dense

AP coverage, with the overlapping of at least two APs. Therefore an AP cannot be located

individually. Also scans in all floors are required. The number of floors has to be known in

order to cluster the APs in different floors, a 2D position is then estimated for each AP. An

error between 3.5 meters and 6.7 meters is reported, for two buildings with floor area of 1000

m2 and 1750 m2.

FastGraph estimates a 3D position for each AP. The 3D error of 6.73 meters at PIEP (in

an area of 1000 m2), and the 8.2 meters error in the first floor of the DSI-DEP (with area

of 4638 m2), are interesting results. The results at the second floor of the DSI-DEP are not
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comparable, since those APs were located without any scan in that floor.

1.1.1 Access Points Floor Estimation

Figure 6.5 shows the XZ plan, with the estimated position of the APs at the first and second

floors.

Is evident that even without Anchors at the second floor, the FastGraph placed almost all

APs in the correct floor. The exception are two APs of the second floor, which are estimated

to be in the floor limit.

This suggests that this results can be improved with Anchors also in the second floor. A

very small error in the Z position, similar to the APs in the first floor, is also expected.

Discussing multi-floor applications is out of the scope of this research, but these results

strongly suggest that FastGraph can easily support multi-floor positioning. Moreover, in some

scenarios may even not require Anchors in all floors.
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Figure 6.5: APs Z Error DSI 1st and 2nd Floors
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1.2 Wi-Fi Only Positioning

Figure 6.7 shows the positioning results at DSI-DEP, at ten testing positions across the

space (Figure 6.6). The samples were collected in testing positions at different distance from

each other in order to verify the error variation between close and far positions. In each position

a different number of samples was collected with an average of ≈ 46 samples per position. All

the APs detected were added to the Graph, and used in the positioning process, including the

APs at the second floor, which have higher error. An average error of 5.08 meters with a max

error of 14.86 meters was obtained.
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Figure 6.6: DSI-DEP Testing Positions
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Figure 6.7: RT Position Error: WiFi Only at DSI
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Figure 6.8 shows the CDF of the error, with 6.21 meters for the third quartile.
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Figure 6.8: Real Time Positioning Error CDF

Adding Anchors to the second floor, the APs’ position estimation is expected to improve,

also improving the positioning results. Moreover, a method to select a set of APs to be used

may also be useful. Previous works suggest that using all the APs detected can in fact produce

worse positioning results [66].

The histograms of the error in X and Y (Figure 6.9) shows that the error distribution is in

general around zero, with the tendency more evident in the X.
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Figure 6.9: Wi-Fi Only DSI XY Error Histograms

When the same data is processed several times the results that are obtained may vary
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slightly, due to the process of creating the Graph that estimates the initial position for the APs

(see Figure 4.3), and the progressive path loss exponent learning. After processing the data

10 times, the average error in real time was 5.20 meters and the overall max error was 14.86

meters (Table 6.3). These results show that the algorithm operation is consistent.

Run Average Error (m) Max Error (m)
1 5.23 14.84
2 5.24 14.85
3 5.37 14.86
4 5.06 14.85
5 4.94 14.85
6 5.53 14.85
7 5.09 14.85
8 5.23 14.83
9 5.22 14.85
10 5.07 14.84

Average 5.20 14.85

Table 6.3: Experiment Repetition

The results at DSI-DEP, where only Wi-Fi data was used, show that the error magnitude is

similar for the samples collected in each test position. Some near testing positions have similar

error (e.g. P2 and P3), but other close positions have different error (e.g. P1 and P2 or P7

and P8), and this is understandable considering that even in close positions the propagation

effects can be different. The position P9 has the worst results and this can be explained by the

fact that the samples were collected exactly in a corner (see Figure 6.6) where the multi-path

and scattering effects, as well as the level of interference (as will be discussed in Chapter 7) are

more significant and lead to higher errors.

The results (see Figure 6.7) also show higher variation of the error in position P4. These

variations may be due to the proximity to a door being opened and closed several times by

people passing through the corridor. Also on multiple occasions, especially in the initial position

P1, people with curiosity leaned over the TTU to see the device, severely attenuating the radio

signals and resulting in variations in the error.
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2 Experiments at PIEP

The PIEP space provided the ideal conditions to deploy and experiment the FastGraph in

an industrial environment. These experiments were important to validate the solution in appli-

cations such as indoor navigation of autonomous machines, where orientation and displacement

data can be combined with Wi-Fi. Moreover, PIEP has distinct propagation characteristics,

which allowed to further evaluate the performance consistency of FastGraph in Wi-Fi only

operation.

The experimental setup at PIEP, with an accurate ground truth grid and all APs mapped,

allowed to extend the experiments for a more comprehensive evaluation of the FastGraph. The

ground truth grid was essential to evaluate the algorithm performance when using displacement

and orientation, for high accuracy positioning.

Two sets of experiments were performed to evaluate the FastGraph as:

• Wi-Fi Only Positioning Application

• Enhanced Accuracy Positioning Application (where the Wi-Fi is combined with orienta-

tion and motion data).

Additional experiments also evaluate other features of the FastGraph solution:

• The evolution of all APs’ position estimation, using only the Anchors (including the

initialization phase).

• The APs’ position error after samples containing motion information.

• The progressive η learning process.

• The influence of the number of Anchors in the positioning performance.

• The time required to obtain a position estimation.

In these experiments, Wi-Fi data was collected by six Anchors and by the MTU (Moving

Testing Unit). The MTU followed four different and individual paths, with a total travelled

distance of 302 meters (Figure 6.10), using the ground truth tags as reference. Between each

path the MTU stopped for a few minutes, and the data collection process shutdown, simulating

a device becoming offline and online. The tags of each experiment path were recorded by the
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Figure 6.10: Experiment Paths

smartphones’ camera installed in the MTU, and the video was used in post processing to extract

the ground truth information for the paths.

The sampling periods for the Wi-Fi, IMU and Encoder are shown in the Table 6.4.

Wi-Fi IMU (orientation) Encoder (distance)
1 s 50 ms 20 ms

Table 6.4: Sampling Periods

Data collected:

• Anchors Wi-Fi samples: 40059 (≈ 6677 per Anchor)

• MTU Wi-Fi samples: 743

• IMU readings (orientation): 61652

• Encoder readings (distance): 202550

The positioning results are presented as:

• Real Time Error: The error in the position estimation, obtained right after a sample

is processed and the Graph is adjusted.

• Final Error: As the graph evolves, with more samples processed, the position of the

nodes already on the Graph can change. Therefore, the final error is the error in the
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position of the samples at the end of the experiment. This can be used as a metric of the

resulting radio map quality.

2.1 APs’ Position Estimation in the Initialization Phase

The objective of this experiment was to understand how the position estimation for all APs

evolve with the number of samples processed from the Anchors.

As explained before, the Graph algorithm uses the known and fixed position of the Anchors

to obtain improved distance constrains to the APs, by averaging the radio signal readings for the

same AP. This process helps to reduce the noise that is related to the signal level fluctuations.

Figure (Figure 6.11) shows the sum of the position change (top plot), for all APs, at every

100 samples processed. The plot shows around 2h of sampling, with around 6677 samples per

Anchor. The bottom plot shows the APs’ average positioning error, in the same conditions.

These results show that, as expected, the APs positions’ average error decreases when more

samples from the anchors are processed. The APs positions start stabilizing as more samples

are processed. Despite the APs moving less with more samples, their position error keeps

dropping, as smaller corrections are made based on the new information provided by the new

samples. These results suggest that, with time, the anchors samples allow to perform small

corrections in the APs positions, improving the their position estimation.
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Figure 6.11: APs positions variations over samples processed (40500 samples)

The Graph initialization phase took only around 8 minutes of sampling data from the

Anchors (around 500 samples from each Anchor), after which the system was ready to provide
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positioning.

The APs’ average XYZ position error, using only the Anchors’ data, was 6.73 meters. The

errors for each AP are presented in the Table 6.5 and Figure 6.12. As the results show, the

average error is considerable affected by the AP11, which has a error much larger than the

other ten APs. In addition, the error in Z is consistent, and small for most of the APs.

AP XY Error Z Error XYZ Error
AP1 4.79 1.54 5.04
AP2 7.20 1.54 7.36
AP3 3.73 1.24 3.93
AP4 4.33 0.44 4.36
AP5 4.17 0.0 4.17
AP6 5.0 2.87 5.78
AP7 8.82 0.0 8.82
AP8 3.67 2.96 4.71
AP9 5.26 1.33 5.43
AP10 6.90 0.5 6.92
AP11 17.47 1.33 17.52

Average 6.49 1.26 6.73

Table 6.5: Anchors Only: APs Position Error in Meters
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Figure 6.12: Anchors Only: APs Position Error Map
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2.2 Wi-Fi Only Positioning

The results that will be presented next, were obtained in an experiment to further evaluate

the FastGraph in a Wi-Fi only positioning application.

It is important to note that, these results are using only Wi-Fi information, from a single 2.4

GHz interface, and without any information regarding the MTU orientation or displacement.

After the initialization phase (around 8 minutes after the system boot), which created

the initial 3D Graph, with an initial estimation of the APs positions, the algorithm started

estimating the MTU position, by processing its samples.

The real time positioning error obtained for each processed sample of the MTU, along the

four different paths, is shown in Figure 6.13.
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Figure 6.13: Real Time Position Error: WiFi Only

The most noticeable aspect in the positioning error plot are the two error peaks, with almost

identical magnitude (around 24 meters), one during the path two and the other during the path

four. In fact, these two peaks occurred when visiting the same area of the PIEP, below a metal

bridge and behind shelfs. This was identified as a critical area, due to low coverage and low

line of sight (LoS) with the APs.

The map in Figure 6.14 shows the position where each sample was collected. As the map

also shows, there is no APs at the left side of that area, and the bridge, at a lower level than the

APs, heavily obstructed the signals. The color of each sample is related to the error obtained
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for that sample. The critical area is identified by the red rectangle, but can also be clearly

identified by a large group of samples with the light green color.
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Figure 6.14: PIEP Critical Area (Error Wi-Fi Only)

In Figure 6.13 it is also noticeable that the error increases and decreases almost the same

way around the two peaks, because every time that the MTU travels to the critical area, it

has to make the inverse path, as there are no other possible way. From the map plot, it is also

perceptible that the more central areas are less affected by error, since that areas have better

coverage from the APs. In addition, the APs at the outer positions are more affected by error

due to the Anchors positions, that are more centered in the space.

As shown in Figure 6.13, the average error (5.65 meters) is highly affected by the two large

peaks. However, even so, this is a very interesting result, considering how fast the system be-

comes ready to provide positioning, and when compared to the positioning results of traditional

fingerprinting approaches, which require extensive calibration. Moreover, PIEP is a complex

environment, with the factory-like characteristics, full of metallic elements and machines that

result in non line of sight, reflections, multi-path effects and attenuation.

Figure 6.15 shows the CDF of the position error, in real time and at the final of the process.

Both CDF are very similar, but the final error CDF is slightly better, because as new samples

are added, small corrections are made on the old samples of the Graph.

The critical area problem can be addressed with installation of new access points and An-

chors. Just as reference, if not considering the samples collected at that area, the average error

drops to 4.26 meters (1.39 meters less) with the max error dropping to 15.51 meters. Figure
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6.16 shows the position error CDF with and without considering the samples collected at the

critical area, where the improvement is evident.

real time error CDF final error CDF

real time error
max : 24.32m 
avg  : 5.65m

final error
max : 24.86m 
avg  : 5.52m 

(6.9 , 0.75)0.75: 6.91m

pr
ob

ab
ilit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

error (m)
0 5 10 15 20

Figure 6.15: Wi-Fi Only Position Error CDF
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Figure 6.16: Wi-Fi Only Position Error CDF: With and Without Critical Area

The histograms of the error in X and Y (Figure 6.17) follow a normal distribution with null

mean, while slightly skewed due to the critical area.
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Figure 6.17: Wi-Fi Only XY Histograms

As explained before, the obtained results can vary slightly when processing the same data

multiple times. After 10 runs the average error in real time was 5.65 meters and the overall

max error was 27.27 meters (Table 6.6). These results show that the algorithm operation is

consistent.

Run Average Error (m) Max Error (m)
1 5.69 24.32
2 5.67 26.11
3 5.55 26.33
4 5.58 25.55
5 5.66 26.85
6 5.71 25.48
7 5.67 26.36
8 5.68 27.27
9 5.66 26.28
10 5.67 26.50

Average 5.65 26.10

Table 6.6: Experiment Repetition
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2.3 Wi-Fi Only Positioning With Known APs Positions

The data collected by the Anchors allow the algorithm to extract spatial constrains that

define the positions for the APs. In Wi-Fi only applications, the estimated APs positions

provide the constrains to estimate the position of a moving device. Therefore, more accurate

estimation for the APs’ positions means more accurate positioning for the moving devices.

Considering this hypothesis, FastGraph was further tested in a Wi-Fi only scenario, but

where the algorithm can have previous knowledge about the APs positions. This experiment

is relevant because, in specific applications, this information may be already available, or can

be easily obtained, and can be used to improve the system performance.

Moreover, with knowledge about the APs’ positions, the Anchors may even be discarded.

However, if the Anchors are maintained, they can be used to better estimate the propagation

parameters in specific areas, since the position of the Anchors and the APs are known. This

information also helps in the estimation of the path loss exponent for the edges associated to

samples collected by the target devices.

As expected, a significant drop in the average error was observed, from 5.65 meters to 3.98

meters (Figure 6.18), suggesting, that in fact, the positioning performance can be improved in

such conditions.
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Figure 6.18: RT Position Error WiFi Only: Fixed APs
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The two peaks, resulting from the critical area, are still evident, but have lower magnitude.

The other smaller peak, near the sample 600, disappears. This may be related to the APs at

the outer positions, which were more affected by error when their positions had to be estimated.

Figure 6.19 shows the CDF of the positioning error, in real time and at the final of the process.

As shown, the CDFs are very similar, as the APs position are known from the beginning, and

no corrections to their positions are necessary along the process.
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Figure 6.19: Wi-Fi Only and Known APs Position Error CDF

When compared with the experiment without the fixed APs (Table 6.7), an improvement of

1.67 meters for the average error, and 5.86 meters for the max error were observed. Moreover,

for the third quartile, there is an improvement of 2.35 meters.

Data APs Positions Max Error Avg Error CDF 0.75
Wi-Fi only Unknown 24.32m 5.65m 6.91m
Wi-Fi only Known 18.46m 3.98m 4.56m

Table 6.7: Position Results Comparation (Wi-Fi Only)

In an analysis similar to the previous experiment, where the samples collected in the critical

area are not considered, the results improve to around 8 meters of max error and 3 meters of

average error.
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The distributions of the error in X and Y (Figure 6.20) are similar to the previous exper-

iment, following a normal distribution around zero, but with lower magnitude of error. The

histograms of X, follow a right-skew distribution, related with the samples collected in the

critical area, which have higher error.
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Figure 6.20: Wi-Fi Only Known APs Positions XY Histograms

2.4 Enhanced Positioning: Wi-Fi and Motion Data

In the results presented before, the FastGraph was evaluated when using only Wi-Fi data

from the moving device.

The next experiments evaluate the FastGraph in applications where, in addition to Wi-

Fi, it is also possible to obtain displacement and direction information. The orientation and

displacement data allow the Graph algorithm to implement dead reckoning techniques, in order

to establish additional constrains.

There is a wide range of positioning applications where displacement and direction infor-

mation are available. In smartphones, this information can be obtained directly from the

smartphone built in sensors, such as accelerometer, gyroscope and magnetometer. With sensor

fusion techniques the measurements from these sensors can be improved. In industrial scenar-

ios, IMUs and Encoders installed in robots and machines can provide accurate measurements

regarding the moving displacement and direction.

Therefore, these experiments evaluate the FastGraph positioning capabilities when combin-

ing the Wi-Fi with orientation and displacement data.
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Each MTU position estimation is compared to the ground truth information, resulting in a

more precise evaluation of the positioning error. The positioning errors are presented for real

time and at the final of the process.

2.4.1 Real Time Positioning Error

Figure 6.21 shows the error evolution in real time, right after each sample being processed.

This plot includes the first path, which works as warm up or learning for the algorithm. After

the warm up path, three additional paths are followed, with different areas visited and with

different traveling distances. As explained before, between each path the MTU was stopped,

and after some seconds the data collection process was terminated, simulating in this case an

autonomous machine turning off and on. In Figure 6.21, are also represented a few samples

collected while the MTU was stopped, before and after the shutdown between paths.
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Figure 6.21: Real Time Position Error Evolution

The positioning error shows a drop tendency as the device moves and collects more samples,

with the higher error registered in the first path during the warm up period. The average error

in the warm up path is also not significantly high, but the max errors are much lower after the

warm up showing a drop tendency. Moreover, as more samples are processed less peaks occur,

and with lower magnitude. This is also expected, since with more information, more spatial

constrains are created, leading to better initial estimations. This is the expected behavior of

the FastGraph algorithm, where the Graph becomes more consistent with more information
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added, therefore these results support the algorithm convergence principle.

Figure 6.22 shows the MTU sample nodes at the estimated positions in real time, with the

node color representing the real time error. This figure shows that the nodes most affected by

error in real time belong to the warm path, and that the following paths have lower real time

error.
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Figure 6.22: Real Time Error : Paths Plot

Figure 6.23 shows the CDF of the positioning error. The top plot shows the CDF for all

paths, including the warm up path. The bottom plot shows the CDF after the warm up path.

The green line is the real time positioning error and the blue line the final error.

Considering also the warm up path in the error statistics, the average error in real time was

0.53 meters, with 0.76 meters for the third quartile.

The error of the samples at the end of the process (after all samples processed) is lower,

with 0.54 meters for the third quartile and 0.48 meters of average. In this case, the average

error is lower at the final of the process than it is in real time. This results from the samples

with higher error from the warm up path, which have their position estimation improved with

the Graph evolution, showing a lower error at the end.

When the warm up path is excluded from the error statistics, the result can be considered

as the system performance after warm up. In this case the average error was 0.43 meters with

0.49 meters for the third quartile. The final average error was the same (0.43 meters) and the

third quartile error was 0.46 meters.
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Figure 6.23: Real Time Positioning Error CDF

Table 6.8 shows the results obtained when running the experiment ten times. The real

time average position error obtained, after warm up, was 0.506 meters (see Table 6.8) with a

max overall error of 2.025 meters. This results also show the algorithm positioning estimation

consistency. Although the variations are small, at this level of accuracy are more noticeable.

Run Average Error (m) Max Error (m)
1 0.427 1.688
2 0.571 2.025
3 0.565 2.017
4 0.556 2.019
5 0.426 1.697
6 0.556 2.020
7 0.552 2.011
8 0.556 2.020
9 0.425 1.697
10 0.425 1.694

Average 0.506 1.889

Table 6.8: Experiment Repetition

Figure 6.24 shows the Histograms of the real time and final positioning error in X and Y. As

can be observed, the error in X and Y in real time are more distributed, which means that the

nodes of one or more paths were shifted from the original position. This is mainly related to

the nodes of the warm up path. As can also be observed, in the final of the process, when the
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samples from the warm up path were already improved, the histograms become more centered

in zero, reducing the shift.
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Figure 6.24: Position Error Histograms X and Y

2.4.2 APs’ Position Error After Samples with Motion Data

When processing samples with orientation and displacement information from moving de-

vices, the Motion-Edges between the sample nodes create additional constrains, which are also

used to improve the APs’ positions. Table 6.9 and Figure 6.25 show the error in the APs’

positions after processing the samples containing motion information from the previous exper-

iment.

AP XY Error Z Error XYZ Error
AP1 1.16 1.45 1.85
AP2 2.58 1.45 2.96
AP3 2.26 0.97 2.46
AP4 1.84 1.45 2.34
AP5 3.10 1.74 3.55
AP6 4.67 2.96 5.53
AP7 2.62 2.91 3.92
AP8 5.51 0.55 5.54
AP9 10.19 1.24 10.26
AP10 4.70 0.14 4.71
AP11 10.08 0.74 10.11

Average 4.43 1.42 4.84

Table 6.9: APs Position Error in meters (After Sample with Motion Data)
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As expected, the average error in the APs’ position estimation is lower after the samples

with motion data (4.84 meters), when compared to the APs’ error based only on the Anchors

(6.73 meters).
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Figure 6.25: APs Final Position After MTU samples

2.5 Progressive η learning

The complexity in estimating the Path Loss Exponent (η) lead to a progressive learning

strategy to improve the initial estimations, which was explained in Chapter 4.

In order to evaluate the error in the estimation of each edge path loss exponent (η), it is

necessary to known the correct value of η for that specific edge. However, the exact value is not

easy to obtain since as explained before, the path loss exponent is dynamic and can be affected

by several effects.

Despite of that, in the experimental setup, the correct positions of the APs and the correct

positions of the samples is known. Therefore, this information can be use to obtain a fair

approximation of the correct η value for each edge. Therefore, to enable an evaluation, the

correct η values were calculated using the LDPL model, with the correct distance between an

AP and a sampling point, as well as the RSS measurement as input.

Figure 6.26 shows, for three APs at PIEP, η estimations evolve with samples being processed.

The PL error is the average error of the path loss exponent (η) estimation for all edges connected

to the AP. The three APs show a significant η error drop in the beginning, then become more

stable.
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Figure 6.26: Progressive Path Loss (PL or η) learning

It is important to note that, with more samples, the number of edges for which the η has

to be adjusted increases. This means that in addition to improve the η values of the existing

edges, the algorithm has also to estimate new η values for the edges of each new sample. This

is reflected in the variations that can be observed along the process. The variations are also

related to the new edges that are created with the default η value, which can be further way or

closer from the correct value. Nevertheless, the algorithm is able to maintain a low average error

for the path loss exponents, without requiring computational or time demanding algorithms.

In this experiment, for 12630 edges of the Graph, the algorithm was able to estimate the

value of the η with an average error of 0.337. This value is low, but given the logarithmic

nature of the LDPL model, can represent a different error in an edge length, depending on the

RSS magnitude and the η magnitude. Therefore, edges with lower RSS values or lower η values

will be more affect by errors in the estimation of the η parameter. However, this is minimized

by the way that the elastic constants are applied depending on the natural length of the edge,

as was explained before.

The difficulty in estimating the path loss exponent in indoor environments is well known and

was clear during this research. In contrast to many other approach, the FastGraph estimates a

different path loss exponent for a specific communication channel (edge), between an AP and

a sampling position. This strategy, although correct, increases the complexity of the problem

even more. Considering this, the obtain results are interesting, but this topic certainly needs

to be further explored.
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2.6 Using Different Number of Anchors

The FastGraph algorithm relies on reference samples, normally given by the Anchors, to

estimate the position of the APs, which are then used to estimate the position of a target device.

Therefore, it is relevant to understand how the number of Anchors impact the positioning

performance of the algorithm.

At PIEP, FastGraph was evaluated operating with a different number of Anchors. Fig-

ure 6.27 shows that when using four Anchors instead of six, the impact in the positioning

performance is limited, and more noticeable on the average error, increasing around 0.36 me-

ters1. When less Anchors are used the positioning error increases significantly. Considering the

number of Anchors for the space dimensions, these results are acceptable and expected.

It is understandable that a space with 1000 square meters can’t be correctly covered by only

three Anchors. In fact three is the lowest number of Anchors to be considered, which is the

standard requirement in the trilateration principle. As the results show, with only two Anchors

the error is incomparable higher.
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Figure 6.27: Real time Positioning Error with different number of Anchors

The estimation of the APs’ positions is also affected by using a lower density of Anchors

(Figure 6.28). However the impact is more noticeable in the max error than in the average

error, which is a positive result. Therefore, the increase in the real time positioning error, when

using less Anchors, is probably related with some of the APs with higher error.

In these experiments only eleven APs were used, therefore each AP is expected to have

more impact in the positioning performance. With more APs the device’s position estimation
1The average is error is the average of ten runs for each Anchor configuration. The max error is the overall

max of all runs.
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Figure 6.28: APs’ position Error with different number of Anchors

will be probably less affected by individual APs with higher error.

With more Anchors the positioning error may improve. However, to further evaluate this

topic, a more accurate method to obtain the ground truth is required. At this level of accuracy,

the benefits from using more Anchors may not be reflected on the positioning performance, due

to small errors in the ground truth data.

These results also provide an idea about the robustness of FastGraph, showing that the

solution can operate with acceptable positioning performance if an Anchors fails, giving time

to solve the problem without significant impact in the positioning service. In addition, at

DSI-DEP, where a lower density of Anchors was used, FastGraph was able to achieve similar

positioning results in WI-Fi only mode, suggesting that the system can provide interesting

performance with a low density of Anchors.

2.7 Position Estimation Time

As explained before, some positioning solutions proposed by other authors can have de-

manding computational requirements or high processing times. However, in most scenarios, a

fast position estimation is required, otherwise that position is no longer valid or useful. The

computational performance of FastGraph is maintained by a set of scalability mechanisms

described in Chapter 4.

The time required by the FastGraph to obtain a position estimation was evaluated. The

results consider the time from the beginning of processing of a sample, until a position is

estimated. To take into account the max possible processing time, only samples with orientation

and displacement information, collected at PIEP were considered.

Figure 6.29 shows the processing time by sample, after being already processed around
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3000 samples (warm up period). An average time of 37 ms and a maximum of 280 ms were

observed. The processing time has variations along the process, this is related to each sample

having reference to a different number of APs, and the RSS measurements that can be affected

by different levels of noise. In these cases the adjusting process can take more time, but as the

results show the max processing time is still low.

In this experiment, the average positioning error for all samples was around 0.43 meters. The

results were obtained running the FastGraph solution in a Core i5-2400 at 3.10 GHz desktop

machine, with 4 GB of RAM and a 64-bit operating system. The machine specifications are

fairly low. In a more powerful machine, and with multithreading optimizations, the processing

time is expected to be lower. Moreover, as explained before, the Graph pruning process can

be configured to keep a maximum number of nodes on the Graph, or to maintain a specific

processing time. This feature can be used to adapt the solution to different scenarios, adapting

for example to specific positioning time requirements. Moreover, mechanisms to filter and

remove APs from the Graph can be implemented. In specific scenarios, where for example the

FastGraph is deployed for a single building, the APs at nearby buildings can be removed from

the Graph. The building area can be defined by the Anchors, and the algorithm can identify the

APs with positions estimated outside the building. This can improve both the computational

and positioning performance, as previous works suggest [35, 63].
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Figure 6.29: Processing Time by Sample

133



Chapter - 6

3 The Radio Maps

The radio maps created by FastGraph are expected to be useful in different contexts and

applications. The accuracy of the resulting radio map will be dependent on the data used

by the FastGraph. The radio maps obtained when processing samples with orientation and

displacement information will have higher accuracy, when compared to the radio maps obtained

in Wi-Fi only applications.

However, each type of radio map has its own benefits. The radio maps based only on Wi-Fi

are easier to obtain, an can be obtained in any space, independent of the space dimensions or

the moving devices used. The radio maps created with Wi-Fi only, even though less accurate,

may provide interesting results when used in Fingerprinting, since most of the Fingerprinting

solutions estimate a position based not only on a single fingerprint, but in a set of fingerprints,

using for example weighted methods.

The radio maps created based on Wi-Fi combined with motion data can be used in appli-

cations where more accurate radio maps are required. Both types of these radio maps can be

created using smartphones as moving devices, not being required special hardware. However,

with smartphones, there are some practical challenges to address, including the inertial sensors’

noise, the orientation drift, or the step detection. It is out of the scope of this research to further

address this topic, but this is a well known and frequently studied subject. Several solutions

were already proposed and even integrated in the mobile operating systems. Techniques such

as sensor fusion are already integrated on the mobile OSs, such as the Android, in order to

provide accurate orientation data and more accurate step counting.

FastGraph’ radio maps are not common radio maps, such the ones created for fingerprinting.

First of all, these radio maps are automatically created, which is their main advantage. Sec-

ondly, the additional information on these radio maps expand the possible application scenarios.

Figure 6.30 shows a Graph representation of an example 3D radio map, that was obtained with

FastGraph for PIEP. In addition to the traditional position referenced fingerprints, these radio

maps have information about the APs positions, and the propagation characteristics of the

communication channel (edges), between an AP and a fingerprint’s position.

The additional data in these radio maps can be used in different fields, such as for advanced

interference mapping and analysis, or for automatic physical space mapping. These two possible

applications will be discussed, and an initial validation will be presented, in the next chapter.
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Figure 6.30: Example of a FastGraph’s 3D Radio Map for PIEP

4 Comparing with Other Positioning Solutions

The FastGraph positioning results were compared with the results obtained in two Tracks

of the 2017 IPIN competition [1]:

• Track 1: Smartphone-based (on-site)

• Track 3: Smartphone-based (off-site)

The IPIN competition has been attracting the attention of many teams working on indoor

positioning solutions from around the world. In the 2018 edition, which was recently held

in Nates, France, the number of competing teams increased including also teams from large

companies, including teams from Google and Sony2. Since the results from the 2018 IPIN

competition were unavailable at the time of this thesis writing, the results from the 2017

edition were considered.

The objective of Track 1 is to evaluate the competing system on-site, and in real-time. The

competing teams are not allowed to install any instrumentation in the competition area. The

FastGraph uses the Anchors to collect reference samples. This data is essential to initialize the

Graph, but not required in the real-time positioning phase. Since the competing teams have at

least a full day before the competition to survey the area, obtaining the reference samples would

not be a problem. The TPU device could be used to collect the necessary data to initialize the

Graph, instead of using Anchors.
2http://ipin2018.ifsttar.fr/competition/competition-teams/
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In this track, competing teams are given the coordinates of a starting point, from where

they must start walking over a reference path. Any sensor available in the smartphone can be

used to track the user trajectory. In the experiments with FastGraph, reported in the previous

sections, the starting point was unknown to the algorithm.

In Track 3 the teams compete off-site, being provided all the data for calibration, which

includes Wi-Fi and data from all sensors available in a smartphone. In addition, the teams can

calibrate their solutions with several ground-truth databases.

Table 6.10 compares the results obtained for FastGraph with the results obtained in these

two tracks.

Track 1 (on-site) Data Mean (m) 3/4 (m)
SNU-NESL PDR Team Wi-Fi + Sensors 6.2 8.8

MCL Team Wi-Fi + Sensors 12.6 16.8
XMC Team Wi-Fi + Sensors 23.0 30.8

Track 3 (off-site) Data Mean (m) 3/4 (m)
UMinho Team Wi-Fi + Sensors 3.00 3.48
AraraDS Team Wi-Fi + Sensors 3.74 3.53

Yai Team Wi-Fi + Sensors 3.51 4.41
HFTS Team Wi-Fi + Sensors 3.52 4.45

FastGraph (DSI-DEP) Wi-Fi 5.08 6.21
FastGraph (PIEP) Wi-Fi 5.65 6.91
FastGraph (PIEP) Wi-Fi + Sensors 0.50 0.55

Table 6.10: Comparing with IPIN’17 Track 1 and Track3 [1]

When using only Wi-Fi, FastGraph performs worse than Track 3 (off-site) and better than

the Track 1 (on-site), however in both tracks, additional sensors are used and previous calibra-

tion is allowed. The results of FastGraph when using also data from the additional sensors are

significantly better. The comparison of results when using sensors may be limited by differences

in the sensors quality.

Moreover, it is important to note that FastGraph’ results, when using only Wi-Fi, are

consistent in two completely distinct environments, despite different layout, dimensions, build

materials, propagation characteristics and AP density.

All aspects considered, these are certainly interesting and encouraging results, even when

using only Wi-Fi, since FastGraph is full unsupervised and automatic, and is compared with

state of the art solutions.
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5 Summary and Discussion

In this chapter were presented the results obtained when deploying the FastGraph in two

real word spaces. The experiments evaluated the FastGraph when operating only with Wi-Fi

data, and when Wi-Fi data was combined with orientation and motion data.

The DSI-DEP, with office-type building characteristics, provided the ideal environment to

deploy and test the FastGraph in a Wi-Fi only scenario.

The PIEP’s industrial characteristics provided the ideal conditions to test the enhanced

FastGraph which combines Wi-Fi with motion data. The controlled experimental setup with

the ground truth grid, allowed to test the FastGraph in higher accuracy positioning applications,

such as autonomous machines indoor navigation, where orientation and displacement data can

be combined with Wi-Fi. The developed Moving Testing Unit (MTU) was used to simulate an

autonomous machine.

The results showed that the FastGraph initialization phase, where the reference samples

from the Anchors are used to locate the APs and start the Graph, takes less than 10 minutes.

After this the system is ready to provide positioning.

The solution showed positioning results consistent in two very distinct spaces, with around

5 meters of average error in Wi-Fi only mode. When combining Wi-Fi with orientation and

displacement data the positioning performance changes to a completely different level of accu-

racy, with an average error around 0.5 meters. These positioning results compare well against

the results obtained by state of the art solutions, such as those in the IPIN’17 competition.

FastGraph was able to estimate the 3D position of the APs with interesting results in

both spaces, and the results also showed the Graph convergence principle, since with more

samples the APs’ positions becomes more stable, and the estimations are improved. Moreover,

with motion enable samples, the solution is able to significantly improve the estimated APs’

positions. The results at DSI-DEP also suggest that the algorithm may even operate without

Anchors in all floors.

The computational performance was also evaluated, specifically regarding the time necessary

to obtain a position estimation. The results showed that the algorithm takes around 37 ms

(with a max of 280 ms) to process a sample and estimate a position. These results were obtained

in a low grade machine and without optimizing the algorithm for multithreading or to improved

processing times.

The results using different number of Anchors are within what was expected, since a low
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density of Anchors is already used. However, these results are interesting as indicator of the

expected positioning performance in relation to the Anchors density. In specific applications a

low density of Anchors may be enough to provide the necessary positioning performance.
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FastGraph: Extended Features

In the previous chapter were presented the results of several experiments where the Fast-

Graph was deployed and evaluated in two different spaces.

This chapter describes how the FastGraph approach can be used and extended to other

applications, especially for additional automatic mapping features.

The first additional application proposed for the Radio Maps created by FastGraph is their

use as interference maps for analysis of the radio environment. The interference analysis process

normally requires a manual site survey, similar to the site survey required by Fingerprinting,

which, as previously discussed, in large buildings is unpractical.

The proposed solution can automatically provide interference maps based on two distinct

strategies: AP-Based Interference Maps or Sample-Based Interference Maps, each one with its

own characteristics.

Another proposed application for the FastGraph’ Radio Maps is to automatically create

a map of the physical space. This can be accomplished by detecting the obstacles positions

using the path loss values of the several communication channels (edges) between an AP and a

sample position. By combining the information of the attenuation introduced in multiple RF

signals at multiple locations, it may be possible to automatically obtain the floor plant or the

location of the obstacles, in an approach somewhat similar to tomography.

An initial exploration of these two applications is presented in this chapter. The results

suggest that the FastGraph may be a versatile solution that can be in fact used in different

contexts.

The first section describes the Automatic RF Interference Mapping (ASIR-Mapping) fea-

ture, where the metric used to measure the interference is described. Moreover, the two methods

to create the interference maps are explained. Examples for real world spaces are provided.

Section two presents the Automatic Space Mapping solution, describing the approach and

presenting results based on synthetic data from the virtual space simulator.
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1 Automatic RF Interference Mapping

The interference severely affects the communication quality in Wi-Fi networks. Access

Points operating in channels with overlapping frequencies interfere with each other, and due to

the uncoordinated deployment of Wi-Fi networks this problem is frequent. Tools to survey the

radio environment are useful to analyse how the frequencies are being used by the Access Points,

and to define strategies to reduce the interference. The available tools to perform this type of

analysis require manual survey of the space, by manually collecting data at several positions,

in a process similar to create a radio map for fingerprinting. The quality of the interference

map increases with more positions surveyed. The interference affecting the signals of a specific

AP, at a specific position, can be described by the Signal-to-Interference Ratio (SIR).

1.1 Signal-to-Interference Ratio (SIR)

The interference can be due to Co-Channel Interference (CCI) and Adjacent Channel In-

terference. Channels operating in the same frequency are denominated by Co-Channels, and

lead to Co-Channel Interference (CCI). Adjacent Channel interference is related to channels

operating in partial overlapping frequencies (Figure 7.1).

1

Co-Channel Interference

1 2

Adjacent Channel Interference

Figure 7.1: Channel Interference

The Signal-to-Noise Ratio (SNR) is the ratio of the power of a signal, to the power of the

background noise:

SNRdB = 10 log10

(
Psignal(w)
Pnoise(w)

)
(7.1)

A SNR higher than 0 dB means that the power of the signal is higher than the power of

the noise. Therefore, the higher the values of SNR ratio, the better the system performance in

presence of noise. However, increasing the SNR don’t solve the Co-Channel Interference, and
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in fact can make it worse. To reduce the CCI it is necessary to increasing the distance between

Co-transmitters using the same channel (frequency band).

Channels that are adjacent in frequency are supposed to not interfere with each other, but

in practice, adjacent channels may have sidebands that interfere.

The interference is therefore related to the power and frequencies of the signals in the

environment. In Wi-Fi, the frequency is related to the channel in which each Access Point is

operating.

The Signal-to-Noise-Plus-Interference Ratio (SNIR) [91, 92] considering two APs can be

defined as follows:

SINR = Pi

Pj(1 − α) + N
(7.2)

where Pi is the received power of the main AP, Pj is the interfering power received from the

adjacent APj, N is the power of background noise or noise floor, α is a constant that accounts

for interference between adjacent channels. The noise floor term can be seen as constant, and

when considered as zero, the Signal-to-Noise-Plus-Interference Ratio (SNIR) can be reduced to

Signal-to-Interference Ratio (SIR), in the same way as when the interference is zero we have

the Signal-to-Noise Ratio (SNR). For the interference mapping, the noise floor is not relevant

and therefore we can use the SIR as a metric of performance.

To calculate the total interference affecting an APi, in a specific location, all the signals

received from the n other APs in range are considered as possible interference. Therefore the

interference (Ii) affecting the APi is the sum of the interference from each in range APj:

Ii =
n∑

j=1
Pj(w) × COij (7.3)

where, COij is the level of overlapping between the channel used by APi and that of APj,

that can range between 0 (when there is no overlapping) and 1 (for Co-Channels). Pj is the

power (in watts) of the signal of the interfering AP, and can be obtained from the received

power (in dBm) by:

P (w) = 10−3 × 10(P (dBm)
10 ) (7.4)

Then the Signal-to-Interference Ratio in dB, for an APi in a given location, can be given

by:

SIRi(dB) = 10 log10

 Pi(w)∑j=n
j=1 Pj(w) × COij

 (7.5)
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This metric relates the level of power from the interfering signal with the level of overlapping

with the channel of the target AP. This means that larger overlapping and higher signal power

from the interfering signal results in higher contribution to the overall interference. The higher

the SIRdB, the lower the impact of the other APs in the target AP.

1.2 Available Site Survey Tools

There are several site survey tools available, both free and commercial, that can be used to

perform interference analysis.

TamoGraph1 is an application to perform Wi-Fi site surveys. They suggest that a site

survey should be performed as:

• Pre-deployment survey: In order to test the network plan in the real-world environ-

ment, using temporary APs to fine-tune the APs and antennae placement, to avoid poor

coverage zones.

• Post-deployment survey: To verify if the WLAN performance and coverage meet the

design requirements after deployment.

• Regular, ongoing surveys: Regular surveys are necessary to maintain high perfor-

mance and coverage, due to several factors such as new users, site expansion and neigh-

boring WLANs.

TamoGraph can perform passive surveys, where the application collects data on the RF

environment without connecting to WLANs. In active surveys, a connection to the chosen

wireless network is done to measure actual throughput rates and a few other metrics. Tamo-

Graph also provide predictive modeling which is performed off-site, and is based on computer

simulations.

Regarding to interference analysis, TamoGraph suggest that one AP should be selected

at a time for SIR analysis in order to obtain a better representation. This way the AP-

specific problem zones can be isolated by selecting APs one by one. Analysis based on a

cumulative representation, displayed when multiple APs are selected, is more difficult. In their

website TamoGraph suggest a set of solutions to deal with interference such as, change the

channel selection and work with the classical “honeycomb” AP placement, as well as using non

overlapping channels.

1https://www.tamos.com/products/wifi-site-survey/
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NetSpot2 is another commercial tool for Wi-Fi site surveying, with features similar to Tamo-

Graph, allowing to perform interference analysis. They also suggest some strategies to minimize

co-channel interference, such as adjusting the AP transmitting capacity. They also suggest that

poor SIR levels are considered to be below 30 dB and critical levels are below 10 dB3.

Ekahau4 has another commercial survey tool which can be used with Ekahau Sidekick

(Figure 7.2), which is defined by Ekahau as All-in-One Wi-Fi Site Diagnostics and Measurement

Device, and described as a professional measurement device for Wi-Fi site surveys and spectrum

analysis. Ekahau Sidekick allows simultaneous active and passive site surveys, with dual-band

Wi-Fi adapters, in order to minimize the site survey and troubleshooting time.

Figure 7.2: Ekahau Sidekick5

The available commercial Wi-Fi survey applications already pack the necessary tools to

analyse Wi-Fi environments. However, the survey process can take a long time, since the areas

of the space must be manually surveyed, requiring collecting data at several locations. This

is a problem in large spaces, leading to solutions such as the Ekahau Sidekick, to improve the

required manual survey. In addition, as referred by TamoGraph, regular surveys are essential

to maintain high performance and coverage. For these reasons, an automatic survey tool, able

to provide constant analysis of the radio environment can be a very interesting solution.

2https://www.netspotapp.com
3On the NetSpot webpage the SIR values are in dBm; since SIR is a ratio between two powers, was considered

that NetSpot meant dB instead of dBm.
4https://www.ekahau.com
5https://www.ekahau.com/products/sidekick/overview/
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1.3 Automatic Interference Maps

The FastGraph algorithm allows automatic site survey, and to perform the interference

analysis based on the Automatic Interference Maps (ASIR-Maps) created using two distinct

strategies:

• Sample-Based Interference Maps: This method uses the data samples collected by

the target devices and the estimated positions from FastGraph, to create the interference

map. This strategy uses the actual RSS measurements in each sample to provide accurate

and position-based interference analysis.

• AP-Based Interference Maps: The APs positions, estimated by FastGraph, are used

to easily create an interference map for the entire space by estimating the power levels

distributions using the LDPL model. This strategy estimates the RSS measurements at

each position.

Interference Maps can be created for:

• A single target AP: An AP is selected an the interference map represents how the

selected AP is affected by the radio environment is different areas of the space.

• A target Network: An network is selected, by the Service Set Identifier (SSID), and

the created interference map reflects how the APs with the selected Service Set Identifier

(SSID) are affected by the radio environment. For each location of the interference map,

the target AP is the AP of the selected network with the strongest RSS.

• The strongest AP (of any network): This mode is similar to the Network mode, but

in this case there are no target Network. Therefore, when selecting the target AP, based

on the strongest RSS, all APs from all available networks are considered.
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1.3.1 Sample-Based Interference Mapping

This method uses the actual RSS measurements in the sample nodes, which combined to

the position estimate by the FastGraph, allows to create a more accurate representation of

the interference at each sample position. Figure 7.3 shows a Sample-Based Interference Map

created for PIEP where the different levels of interference can be observed. The level of accuracy

required for interference analysis is related to the APs coverage area, which in relation with the

samples position error is much higher.
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Figure 7.3: Example of Sample-Based SIR Map (PIEP space)

However, with this method, in order to obtain an interference map for the entire space, it is

necessary to wait until samples are collected in different areas of the space. The time required

will of course depend on the number of users and their motion patterns. Therefore, this method

is more suitable to create accurate interference maps for the most important areas of a space.

1.3.2 AP-Based Interference Mapping

The APs positions, automatically estimated by the FastGraph algorithm, can be used to

easily compute and maintain an interference map for the entire space. The only requirement

is the deployment of the Anchors or to collect reference samples. After provided the space

dimensions (X,Y,Z), the system creates a grid of mapping positions for example at every 1

meter (configurable parameter). Then the interference level in each position is estimated by

considering the positions of the APs in range, and their channels. The RSS for each AP in

a given position is approximated by using the LDPL propagation model (Equation 4.8). For

the positions of the Anchors, the interference calculation is based on the actual measured
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RSS values. Figure 7.4 shows an AP-Based Interference Map where the positions of the APs

estimated by FastGraph were used to automatically estimate an interference map for the entire

DSI-DEP space.
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Figure 7.4: Example of AP-Based SIR Map (DSI-DEP space)

The accuracy of these interference maps, based on RSS estimations, is lower than the

interference maps created based on sample nodes with actual RSS measurements. However,

these interference maps can provide a rapid and easy overview of the radio environment for the

entire space. In very large spaces or when an overview of the channels usage and distribution

is required, these maps can be more useful.

1.4 Interference versus Positioning Error

During the analysis of the interference maps created for PIEP, a relationship between the

interference levels and the positioning error was observed. This relationship is apparently new,

and not previously reported by the research community.

As the results presented before revealed (see Section 2.2), the error was higher in areas with

low coverage and Non Line of Sight (NLoS) (critical areas). The interference maps show that

in the areas with higher position error, such as the critical area, the interference level is also

significantly higher. Figure 7.5 shows the error map (Wi-Fi only results) and Figure 7.6 shows

the interference map for the same space.
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Figure 7.5: Error map (Wi-Fi only)
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Figure 7.6: SIR map (Wi-Fi only)

It is perceptible that the areas with larger error in Figure 7.5 also have high interference

in Figure 7.6. In the critical area (samples with error >12 meters at the left) it is clear a

relationship between the high interference (low SIR) and the large positioning error.

Some areas with high interference have low positioning error. This is expected since the

FastGraph algorithm is able to compensate in some situations, and obtain a low error even

when the radio signals are affected by interference. However, in low interference areas, the

positioning error is consistently low. This behavior can be observed in Figures 7.7 and 7.8, where

the positioning error is plotted against the SIR for each sample processed by the FastGraph

algorithm.
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Figure 7.7: Positioning error vs SIR (Wi-Fi Only at PIEP)
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Figure 7.8: Positioning error vs SIR (Wi-Fi Only at PIEP) by Sample

In these plots the SIR and the positioning error relationship is clear, and suggests that lower

SIR (hight interference) increases the probability of larger positioning error, and with high SIR

(over 25 dB) the probability of large error is very low. Moreover, for values of SIR below 10

dB, the probability of larger error is far superior. This is in agreement with the NetSpot’s6

suggestion that SIR values below 10 dB are considered critical levels. Figure 7.8 also clearly
6https://www.netspotapp.com
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shows that in the two peaks of error, that resulted from the critical area, the SIR is very low

which means high interference.

1.4.1 Improving Positioning with SIR Information

Considering the observed relationship between the SIR and the positioning error, it was

hypothesized that a SIR value can be computed for each sample processed by the algorithm

and based on the SIR value increase or decrease the elasticity (ke value, see Eq. 4.16) of the RSS

edges. With this approach the position of the samples with higher SIR can be more influenced

by the RSS edges since in theory this edges are less affected by interference. A method to

compute the samples SIR was implemented in the FastGraph solution and the PIEP dataset

from the previous experiments was used to compare the positioning results (Table 7.1).

Run Avg. (m) SIR Avg. (m) Max (m) SIR Max (m)
1 0.427 0.537 1.688 1.915
2 0.571 0.540 2.025 1.916
3 0.565 0.440 2.017 1.590
4 0.556 0.440 2.019 1.584
5 0.426 0.439 1.697 1.596
6 0.556 0.504 2.020 1.887
7 0.552 0.537 2.011 1.911
8 0.556 0.542 2.020 1.922
9 0.425 0.441 1.697 1.579
10 0.425 0.439 1.694 1.585

Average 0.506 0.486 - -
Overall Max - - 2.025 1.922

Table 7.1: Comparing Positioning Error using SIR

The results show a slight improvement in the positioning errors when using the SIR infor-

mation from each sample to control the influence of the RSS edges. In addition, with the SIR

the results between runs are more consistent. These results indicate that this subject needs

further research and evaluation, which was not possible in this thesis time frame. With a more

advanced approach to use SIR information it might be possible to obtain more improvements

in the positioning performance. Moreover, if this relationship can be further proved it may also

be useful to provide a confidence or accuracy level with every position estimation.
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2 Automatic Space Mapping

This section describes how the FastGraph’s Radio Maps can be used to automatically map

obstacles.

With further research it may be possible to automatically create the floor plant of a space.

For now, the hypothesis and the base approach will be discussed. A simple initial validation

will be presented, using synthetic data from the 3D space simulator.

The base idea is to explore the path loss information of each edge. As explained before,

an edge represents a unique communication channel between an AP and a sample position.

Therefore the path loss exponent of each edge, characterize how the signal power decays with

the distance from the AP. The obstacles introduce attenuation to the signal, decreasing the

signal power faster. Hence, an edge with high path loss exponent means that the signal was

attenuated by obstacles.

Following this idea, using the path loss information of multiple edges, it may be possible to

identify the areas that introduce attenuation to the signals, and that areas can be defined as a

possible obstacle. Moreover, each material introduces a different level of attenuation, therefore

depending on the global path loss factor for that area, it may even be possible to infer the

obstacle building material.

This approach is somewhat comparable with tomography, where penetrating waves, such as

X-Rays, are used to produce images or 2D slices of 3D objects.

Figure 7.9 shows the edges, samples and APs, one of the Radio Maps that was created with

FastGraph. This Radio Map was the result of a synthetic dataset, generated by the virtual

space simulator, with a configuration of APs similar to PIEP. A single 3D obstacle7 was added

to the space. This obstacle introduces an attenuation of 6 db to the signals intersecting it.

In addition, in order to simulate the noise introduced by other propagation effects, all Wi-

Fi signals are affected by noise following a normal distribution with zero mean and standard

deviation of 3.

In Figure 7.9 all edges between the samples and the APs can be observed. The standard

path loss exponent (η) used in the simulation was 2.5. It is clear in this plot that the edges

crossing the obstacle have an higher path loss exponent. To detect obstacles only the edges with

high η are considered, therefore the edges with η below 2.8 were filtered out. The remaining

edges are shown in Figure 7.10, where it is more clear the obstacle relation with the edges path

7Obstacle dimensions in meters: (0.5 width x 3 length x 10 height)
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Figure 7.9: FastGraph’s Radio Map: Edges Path Loss
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Figure 7.10: Edges with path loss exponent (η) over 2.8

It can clearly be observed that in the obstacle area there is a high density of edges inter-

secting in the XY plan. There are other edges with high η but unrelated with the obstacle.

This is due to the noise introduced in the virtual space.

By observation it is possible to identify the obstacle position (Figure 7.11), but a computa-

tional method has to be developed to perform this identification automatically.
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Edges Affected by Obstacle (3D)  

Figure 7.11: Edges in a 3D plan

In a 2D plan the intersection points of multiple edges can be used. However, when consid-

ering a 3D space, the edges intersection will not work to find the obstacle position. In 3D, the

edges can intersect the obstacle at different Z coordinates, and most of them will in fact not

intersect.

3 Identifying Obstacles Positions

The approach proposed to identify the obstacles in a 3D space, is to calculate the shortest

distance between a pair of edges, obtaining this way a line segment that connects each pair of

edges at the shortest distance.

There are, however, two problems with this approach. The first is when the two edges have

the same origin or destination node. In this case the shortest distance will be at the origin or

destination, and not at the obstacle position (Figure 7.12). This segments will not be useful to

estimate the obstacles positions, therefore are eliminated.

The second problem appears when considering two edges from samples in positions too

close. In this case, the shortest distance segment may be out of the obstacle. Figure 7.13 shows

an example where the segments between the edges of consecutive samples are outside of the

obstacle (out target), but the segments between the edges of intercalated samples are on the

obstacle (on target).
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origin segment (out target) useful segment (on target)

2D (XY) 2D (XY)

Figure 7.12: Shortest Distance Segments (Origin Segments)

on target segments

out target segments

Figure 7.13: Shortest Distance Segments (Near Samples)

This problem is more complex than the origin segments, but can be minimized by considering

only pair of edges from samples at a specific minimum distance.

To each segment, a weight is given based on the combined path loss factor of the two edges.

For the time being, the weight will not be used, but in future experiments may be important

to eliminate segments or to help identifying the obstacle material.

After obtained the line segments for all pairs of edges (Figure 7.14) are eliminated, the

segments with length over 1 meter are eliminated. This removes the segments from the edges

that are far from each other. Then the mid point of each segment is calculated, and the

segments are converted into a cloud of points (Figure 7.15).
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Figure 7.14: Segments Between Pairs of Edges

Figure 7.15: Cloud of Points

In the two previous plots, a main cluster of segments and points can be identified, at the

obstacle position area. Therefore, a clustering algorithm is used to identify different possible

clusters in the cloud of points, in order to identify one or more obstacles, and eliminate noise

points.

Figure 7.16 shows the point cloud after applying the clustering algorithm. In this case the

Shared Nearest Neighbor (SNN) algorithm was used. The SNN is a density based clustering

algorithm, which uses the similarity distance within the shared nearest neighbors as metric.
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Figure 7.16: Point Clusters (SNN Algorithm)

When plotting the resulting cluster in the Map (Figure 7.17), it is possible to see that the

cluster position is on the obstacle area. Although some points are out target, the obstacle is

corrected defined in Y by the cluster points. In X, the points spread outside the obstacle area.

This may be due to the small dimension of the obstacle in X (0.5 meters). In addition, the

strategy to avoid the out target segments, resulting from the near (consecutive) samples was

not implemented.
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Figure 7.17: Obstacle Position Identification by Point Clustering

To complete the initial validation of this possible application, an additional simulation was

done, this time with three obstacles with different dimensions and attenuation of 10 dB. Figure
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7.18 shows the obstacles positions and the edges with path loss exponent over 2.8.
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Figure 7.18: Edges with path loss exponent (η) over 2.8 (three obstacles)

When comparing to the same plot of the previous experiment (see Figure 7.10), the most

noticeable aspects are the larger number of edges with η over 2.8. Moreover, the max path

loss values are superior. This is related with having more obstacles, and the higher obstacles’

attenuation, which is combined for the edges intersecting more than one obstacle. After the

same steps described in the first experiment, three clusters were obtained, as shown in Figure

7.19.
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Figure 7.19: Obstacle Position Identification by Point Clustering (three obstacles)
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The number of clusters obtained is correct, however the result shows that the green cluster

is not correctly placed at the obstacle position. The reason for this is not clear, but may be

due to a shadowing effect caused by the other two obstacles, especially the large obstacle at

left. Or the result of segments from near consecutive samples, as described before.

It was not possible to further investigate this case. However, implementing the strategy to

avoid segments from near consecutive samples, and reducing the shadowing areas with more

samples in the Radio Map, may contribute to solve this problem.

In general, the other two clusters are well placed in the obstacles areas, which is an encour-

aging result and suggest that in fact, with further research and more elaborated methods, it

may be possible to automatically create a floor plant, or at least map large obstacles.

4 Summary and Discussion

In this chapter were discussed two additional potential applications for the FastGraph so-

lution. It was proposed that the additional information in the automatically created Radio

Maps, especially the APs positions and propagation information, can be explored to automat-

ically create interference maps and to map the physical elements of a space.

It was demonstrated that two types of interference maps can be created: Accurate Sample-

based Interference Maps, or Fast Interference Maps for the entire space, created based on the

APs positions estimated by FastGraph.

With the Anchors, both of these interference maps can be automatically created and main-

tained. Considering that the available tools for interference mapping and analysis rely on

manual site survey, the FastGraph automatic interference mapping features are interesting and

useful.

While researching the interference maps topic, an interesting and potential important dis-

covery was made. A relationship between the interference level and the obtained positioning

errors was observed. This relation, as far as we known, was never reported in the research

community, and can be significant for the indoor positioning field. At this point it is not clear

if this relation is a FastGraph’s unique characteristic, related to the distinct aspects of the

Force-Directed Graph approach, or if can be explored in other Wi-Fi positioning techniques.

Preliminary analysis suggest that this relation can be found in other positioning methods,

such as Fingerprinting. Therefore, in the future this subject has to be further developed and

validated.
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Regarding the physical space mapping hypothesis, the base idea to automatically map ob-

stacles, using the path loss exponent information in the FastGraph’ Radio Maps was described.

The edges with high path loss exponent are combined in pairs to obtain a cloud of points. The

position of the obstacles is then discovered by applying a clustering algorithm in the cloud of

points. Two experiments were presented as an initial validation. The RF 3D Environment

Simulator was used to generate two synthetic datasets. A different number of obstacles, with

different attenuations, were used in each dataset. In addition, noise was added to the RSS

measurements in order to simulate other propagation effects in real world environments. The

results are preliminary and further research and experimentation is required to validate the

proposed hypothesis in more complex scenarios, which in the time frame of this PhD was not

possible to accomplish. Nevertheless, these results are encouraging and suggest that, at least

in specific scenarios, with FastGraph it is possible to automatically discover the position of

obstacles, with acceptable accuracy.
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Conclusions and Future Work

This chapter concludes this PhD thesis, summarizing the fundamental discoveries and new

contributions, as well as the main prospects for future work.

The first section begins with a brief recap regarding the initial hypothesis and objectives, as

well as an general overview of the proposed approach to achieve them. Moreover, some relevant

and practical aspects related to the solution deployment are also discussed.

Section two introduces some ideas to be addressed in a near future and presents long-term

prospects for future research, discussing the FastGraph solution in a broader perspective.
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1 Conclusions

In the beginning of this PhD, the main research objective was defined as the creation of a

new method for unsupervised radio mapping and positioning, that may be applied to different

wireless technologies. In this research, the Wi-Fi was considered for being an ubiquitous and

well establish technology in the indoor environments and in the indoor positioning field.

The main contribution from this research are a new method to automatically create radio

maps and provide positioning, as alternative to the exhaustive manual calibration required by

the main indoor positioning techniques using Wi-Fi, such as Fingerprinting.

To address the problem stated, a new hypothesis was proposed: A dynamic 3D Graph

that is built iteratively and adjusted by a Force-Directed approach, that can be

used to model radio environments and to automatically create and maintain Radio

Maps, and that can be used in different contexts.

The research of this problem and the validation of the proposed hypothesis resulted in a

new approach named FastGraph, which can be described as a new positioning and mapping

solution, that as shown can be used in different applications.

The FastGraph algorithm implements the Force-Directed 3D Graph approach, which is used

as alternative to trying to analytically solve multiple sets of equations, in a multidimensional

scaling problem. In fact, along the research process, the FastGraph solution surpassed the

initial objective of automatic creation of radio maps, becoming a SLAM solution, able to

provide positioning while creating the radio map.

Following the initial objectives set for this research, an in contrast with other approaches,

the proposed method does not rely on previous information or manual calibration to provide

positioning, such as radio maps or knowledge about the APs’ positions. In addition to create

and maintain Radio Maps, FastGraph is in fact also able to automatic estimate the APs’

positions. Moreover, the proposed solution is able to keep all of this information updated by

adjusting dynamically to the radio environment changes. Also, no assumptions are made about

the propagation parameters being uniform for a given space, or that propagation characteristics

for an AP are equal in all areas of the space. This makes the solution more versatile to be used

in different environments.

It was also theorized that the additional information in the FastGraph’s Radio Maps (APs

positions and propagation information) can be used in other applications. An initial validation

suggest that the radio maps from FastGraph can be used to automatically create interference
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maps and map the physical elements of a space. The current tools for interference mapping

and analysis rely on manual site survey. Therefore, the FastGraph approach, with automatic

interference mapping features, can be an important contribution in this area. Moreover, during

the research process, an interesting relation between the Signal to Interference Ratio (SIR)

and the positioning error was found. As far as we known this relation has never been reported

before, and can lead to improvements in the indoor positioning field, deserving further research.

An initial and simple validation of the hypothesis of using the radio maps to automatically

map the layout and obstacles of a space was also performed, using synthetic data. The results

suggest that the hypothesis is valid, but the research of this topic is only in an initial stage not

allowing to draw further conclusions.

In the positioning field it was demonstrated that FastGraph can provide real-time unsuper-

vised positioning, within only a few minutes after deploying the Anchors. It was also shown that

the solution can operate in Wi-Fi only applications, as well as in enhanced accuracy positioning

applications, by combining the Wi-Fi with data from sensors such as IMUs and encoders.

The FastGraph positioning performance was validated in two different environments, show-

ing promising results an prospects in this field. When using only Wi-Fi, the FastGraph was

able to provide positioning with an average error in the 5 meters range, which compare well

with state of the art solutions that require calibration.

When combining the Wi-Fi with data from other sensors (orientation and displacement) the

results obtained are especially interesting, with average error around 0.5 meters. This enhanced

operation mode can be used in applications with more strict accuracy requirements, such as

autonomous navigation inside industrial environments.

1.1 Practical Aspects: Deployment, Maintenance and Operation

The effort and costs related to the deployment and maintenance of a positioning solution are

two of the most important practical aspects, and can compromise the solution regardless the

achieved positioning performance. In this context, a brief analysis of these aspects regarding

FastGraph is an interesting complement.

1.1.1 Easy deployment, configuration and self-maintenance

As explained before, the only requirement to deploy the FastGraph is the installation of

the Anchors, after that FastGraph is a full unsupervised positioning and mapping solution.

In specific scenarios, where the Anchors can’t be installed, referenced fingerprints can be used

instead.
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The advantage of using the Anchors is that after being installed no further effort or calibra-

tion is required to maintain the solution performance. In contrast, in most positioning solutions

such as fingerprinting, the Radio Maps for the entire space have to be manually created and

then updated from time to time. Moreover, the robustness is one of the foundations in the

FastGraph approach. FastGraph was designed to dynamically adjust to the radio environment

changes, due to for example obstacles being moved, different density of people, and even due

to the radio infrastructure being updated, with APs’ being removed or added. In addition, it

was shown that FastGraph can maintain an acceptable positioning performance if an Anchor

fails.

1.1.2 Fast Initialization After Deployment

One of the advantages of the FastGraph is the ability of providing positioning only a few

minutes after the deployment. In the experiments in two very distinct spaces, the FastGraph

initialization took only between 6 to 8 minutes of sampling from the Anchors.

1.1.3 Scalability and Positioning Time

The FastGraph can be deployed in different spaces, with the scalability mechanisms ensuring

the algorithm processing performance. The experimental results show that the solution can

provide a position estimation quickly, while maintaining the positioning performance, even

when the algorithm is running in a low grade machine. This also suggests that the FastGraph

may be able to run directly for example in a Smartphone or Vehicle, which can be useful in

specific conditions.

1.1.4 Deployment Costs

The experimental results also suggest that interesting positioning performance can be ob-

tained with a low density of Anchors, which results in very low deployment costs. Based on

these results, some deployment costs indicators1 were estimated and are presented next, when

using the Raspberry Pi Zero W (11 EUR) as Anchors and a density of 1 Anchor for 357 m2

(same density used at DSI-DEP):

• South China Mall (≈892,000 m2) one of the world’s largest malls: 2499 Anchors (27 489

EUR).

• King Fahd International Airport - Dammam, Saudi Arabia (≈327,018 m2): 916 Anchors

(10 076 EUR).
1These values are a estimative based on the space gross area, and can vary depending on the space layout.
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These are very low deployment costs, even more considering that after the deployment the

solution is full automatic not requiring calibration or maintenance.

2 Future Work

The limited time frame defined for a PhD means that in general many ideas are left un-

explored. The results suggest that this solution can be extended to different fields and has

potential to grow and to be improved, therefore the scope for future research is wide.

The short-term objectives include testing the FastGraph solution with 5 GHz Wi-Fi enable

devices, as it is well known that the 5 GHz channels are less affected by noise and signal

fluctuations. With this, the positioning performance is expected to improve. This was not

already done because the Wi-Fi interface in the Raspberry Pi used (RPi3) has only support

for 2.4 GHz. The new version (RPi 3B+) already has support for 5 GHz bands. Testing the

solution, and the positioning performance, with Anchors in multiple floors is also planned.

Another idea to be explored in the near future is to add an additional Wi-Fi interface to

the Anchors. With another interface, the Anchors can also work as Wi-Fi Beacons, and can

be explored by FastGraph as APs with known positions, creating additional constrains, and

possible improving the positioning performance without any extra deployment effort. Moreover,

when Anchors can detect each other, more accurate path loss values can be calculated for the

communication channel between the two Anchors. As explained before, the air pressure can

be used as reference to identify a floor, however it varies over time. For this reason, reference

barometer sensors deployed in different floors are frequently used to collect air pressure readings

to be used as floor reference [85,86]. Therefore, another idea to be explored is the integration of

a barometer sensor in the Anchors, to provide air pressure references continuously in multiple

floors, also without any extra deployment effort.

As shown, the radio maps created and maintained by the FastGraph can be explored in

different applications. The automatic network maintenance and planing, and the physical map-

ping are only two examples covered in this thesis, and the initial validation provided promising

indicators. The relation between the SIR and the positioning error is specially promising, since

is easy to obtain and can contribute to improve the positioning performance and provide a

confidence metric for the position estimations. These two application require further research

and broader evolution, and may be an important contribution to improve positioning solutions

and communications quality in Wi-Fi environments.
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The easy and inexpensive deployment, the fast positioning, and the automatic adaptation

to the environment changes, place the FastGraph as a versatile solution, that can be used in

different applications and environments, and specially promising in the positioning field.

2.1 FastGraph’s Possible Future Application Scenarios

During this thesis were discusses different contexts where the FastGraph can be used for

radio mapping and positioning. The experiments and results presented in this thesis provided

a validation for the proposed solution, and covered two of the possible scenarios.

The next step is to deploy the FastGraph in more spaces, as a full operational and long-term

positioning and radio mapping solution. The deployment in more buildings in the University

campus, operating as regular indoor positioning applications, is the logical next step, being

only necessary to install the Anchors (Figure 8.1).

Mobile Positioning

Wi-Fi AP

FastGraph for Regular Indoor Spaces

Wi-Fi Anchor

FastGraph Office Building Deployment Concept © Cristiano Pendão

Figure 8.1: Smart Office Building Deployment Concept

The positioning performance in this type of scenario can be enhanced by combining the Wi-

Fi data with the data from smartphone’s sensors. Moreover, it may also worth to experiment the

algorithm running directly in Smartphones. With the Anchors working also as Wi-Fi beacons,

this approach may be specially interesting in specific conditions.

It is also important to deploy FastGraph in more industrial environments, and taking the

experiments further by integrating with autonomous machines, such as fork lifters and cargo

robots, and perhaps in the future even with warehouse package carrying drones (Figure 8.2).
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The results from the experiments at PIEP suggest that this is possibly one of the most promising

application scenarios for the FastGraph’s positioning features. In this context, the next step is

the integration of FastGraph with autonomous machines navigation systems and sensors.

Mobile Positioning

Wi-Fi AP

Drone Positioning 

Autonomous Machine 
Positioning 

FastGraph for Industrial Spaces

Wi-Fi Anchor

FastGraph Smart Factory Deployment Concept © Cristiano Pendão

Figure 8.2: Smart Factory Deployment Concept

Another promising application scenario mentioned before is the positioning in large spaces,

such as Airports or Shopping Malls. Figure 8.3 shows a deployment concept for an Airport,

and in the depicted concept scenario, the FastGraph provides positioning for the passengers

using smartphones and for autonomous bag carrier vehicles.

This is a more ambitious scenario, however with the Anchors installed the FastGraph can

provide unsupervised positioning, not requiring further intervention or calibration. In large

spaces, such as an Airport, this is one essential aspect.

A long-term objective is the extension of FastGraph for outdoor environments, and in this

context the upcoming technologies and future applications have to be discusses and considered.

Cellular Networks will have an essential role in outdoors positioning, for this reason cellular

data was already collected in the performed experiments. The next step is to prepare the

FastGraph to handle this data and combine it with Wi-Fi. The cellular base stations can be

treated in the same way as the Wi-Fi APs (Figure 8.4), however it is necessary to model the

propagation of the cellular radio signals. The cellular networks operate in different frequency

bands and the propagation is different from Wi-Fi and Bluetooth.

Extending FastGraph to outdoor environments can open a different new set of opportunities,
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Figure 8.3: Airport Deployment Concept
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Figure 8.4: FastGraph: Anchors as Beacons and Cellular Networks Extensions
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specially considering the 5G specifications. Small cells are expected to have a key role in 5G,

being deployed for example in city lamp posts (Figure 8.5), with the necessary power and with

no visual footprint. This smart light posts can also include Wi-Fi, environmental sensors or

security cameras. In addition, 5G will probably require the deployment of small cells indoors,

for example in Shopping Malls or Hospitals. This can benefit solutions targeting seamless

positioning between outdoors and indoors.

Mobile Users Position Awareness 
for Cellular Networks

FastGraph with 5G Cellular Networks

FastGraph City Deployment Concept

Positioning Services Based in Wi-Fi 
and Cellular Networks (Small Cells)

 © Cristiano Pendão

Figure 8.5: Cellular and Wi-Fi Positioning

The Millimeter Wave (MM-Wave) is a promising technology for the next generation of

cellular communications. Operating in the high frequency bands enables improved speeds and

capacity [93]. However, the transmission with millimeter waves usually need line of sight to

work, leading to dense deployments, which can benefit the positioning accuracy.

Considering all of these prospects, the FastGraph approach seams a interesting base to

support future positioning systems, combining Wi-Fi, Cellular and Sensors data, and perhaps

providing seamless positioning between indoors and outdoors.

In addition to provide positioning for moving devices, a solution such as FastGraph may also

be used by the cellular networks to obtain accurate positioning information about the mobile

terminals, even indoors. This positioning information can be used to improve spectrum usage,

increase data transmission rates, and characterize and map how the mobile network is used in

terms of services, users density and motion patterns.

The current and future applications for a scalable and calibration-free positioning solutions
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such as FastGraph are therefore endless. And will be required to operate with same performance

both in indoors and outdoors.

The Internet of Things (IoT) and Augmented Reality (AR) are two examples of applications

that will require accurate and ubiquitous positioning solutions (Figure 8.6).

Positioning in Augmented RealityPositioning in Internet of Things

Pack 230547

 © Cristiano Pendão  © Cristiano Pendão

Shopping Mall

City Hall

AB Inc.

Figure 8.6: Positioning in IoT and AR

The current and most popular AR applications are powered by GNSS services. However,

the normal accuracy of for example GPS (5 to 20 meters), is not enough for advanced AR,

such as display 3D content over a store front door. In addition, even in outdoors the GNSS

services can operate poorly, since in large cities the signals can be affected by the buildings

(urban canyons), with a reported accuracy of 38 meters in dense urban environments, even

when combining GPS+GLONASS+Galileu2. For indoor, the same source reports 67 meters of

accuracy in the best scenario and also using the three GNSS services.

Since Wi-Fi can be used as an alternative to GNSS for indoors, solutions based for example

in fingerprinting have been already proposed for AR [3]. However, as mentioned before, this type

of solutions have low accuracy or require constant calibration, being expensive and difficult to

deploy and maintain. With accurate positioning Augmented Reality can enable intuitive visual

navigation, being possible to easily find and identify a product inside a large store, such as

IKEA, or to create a position-based experience in natural parks, museums or sport events.

The Internet of Things (IoT) is a upcoming reality, and is already being considered in

the new generation of cellular technologies, with the 3GPP working in positioning support for

IoT [2]. The examples of IoT applications requiring positioning in indoors and outdoors are

numerous, such as package and cargo tracking in warehouses or in the street (massive IoT),

as well as inventory tracking in hospitals. This is one of the reasons why the GNSS services
2https://www.gsa.europa.eu/newsroom/news/results-are-galileo-increases-accuracy-location-based-services
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is not considered suitable for supporting IoT in most scenarios. Wi-Fi and cellular networks,

specially the upcoming generations, are therefore promising alternatives in this field.

Future applications such as a drone delivering a package or medical supplies inside a build-

ing, or even directly on a car in traffic, are a reality not so far, and will most certainly use inno-

vative positioning approaches and communications technologies being developed today (Figure

8.7).

LTE Macro Cells
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Figure 8.7: Future City Deployment: A Not so Far Concept
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