
Computational Aspects of 

Quaternionic Polynomials
Part I: Manipulating, Evaluating and Factoring

M. Irene Falcão
Fernando Miranda
Ricardo Severino
M. Joana Soares

Original publication:

The Mathematica Journal, 20 (4) (2018)

DOI: 10.3888/tmj.20-4

Wolfram Media, inc

This article discusses a recently developed Mathematica tool–

QPolynomial–a collection of functions for manipulating, evaluating and 

factoring quaternionic polynomials. QPolynomial relies on the package 

QuaternionAnalysis, which is available for download at 

w3.math.uminho.pt/QuaternionAnalysis.

■ Introduction

Some years ago, the first two authors of this article extended the standard Mathematica package imple-

menting Hamilton’s quaternion algebra—the package Quaternions—endowing it with the ability,

among  other  things,  to  perform  numerical  and  symbolic  operations  on  quaternion-valued  functions

[1].  Later on, the same authors,  in response to the need for including new functions providing basic

mathematical tools necessary for dealing with quaternionic-valued functions, wrote a full  new pack-

age, Quaternion Analysis. Since 2014, the package and complete support files have been avail-

able for download at the Wolfram Library Archive (see also [2] for updated versions).

Over time, this package has become an important tool, especially in the work that has been developed

by the authors in the area of quaternionic polynomials ([3–5]). While this work progressed, new Math-

https://www.mathematica-journal.com/
http://dx.doi.org/10.3888/tmj.20-4
http://www.wolfram-media.com/
http://w3.math.uminho.pt/QuaternionAnalysis


by  polynomials  progressed,

ematica functions were written to appropriately deal with problems in the ring of quaternionic polyno-

mials. The main purpose of the present article is to describe these Mathematica functions. There are

two parts.

In  this  first  part,  we  discuss  the  QPolynomial  tool,  containing  several  functions  for  treating  the

usual problems in the ring of quaternionic polynomials: evaluation, Euclidean division, greatest com-

mon divisor  and  so  on.  A first  version  of  QPolynomial  was  already  introduced  in  [4],  having  in

mind the user’s point of view. Here, we take another perspective, giving some implementation details

and describing some of the experiments performed.

The second part of the article (forthcoming) is entirely dedicated to root-finding methods.

■ The QuaternionAnalysis Package and the Algebra of Real 
Quaternions

In 1843, the Irish mathematician William Rowan Hamilton introduced the quaternions, which are num

bers of the form

q = q0 + q1 i+ q2 j+ q3 k, qi ∈ ,

where the imaginary units i, j and k satisfy the multiplication rules

i2 = j2 = k2 = i j k = -1.

This noncommutative product generates the well-known algebra of real quaternions, usually denoted

by ℍ.

Definition 1

In analogy with the complex case, we define:

1. Real part of q,

Re (q) = q0;

2. Vector part of q,

Vec (q) = q1 i+q2 j +q3 k;

3. Conjugate of q,

 q= q0 -q1 i -q2 j-q3 k;

4. Norm of q,

 || q || = q q = q q = q0
2 + q1

2 + q2
2 + q3

2 .

The standard package Quaternions adds rules to Plus, Minus, Times, Divide and the funda-

mental  NonCommutativeMultiply.  Among  others,  the  following  quaternion  functions  are  in-

cluded:  Re,  Conjugate,  AbsIJK,  Sign,  AdjustedSignIJK,  ToQuaternion,

FromQuaternion  and QuaternionQ.  In Quaternions,  a quaternion is an object of the form

Quaternion[x0, x1, x2, x3] and must have real numeric valued entries; that is, applying the

function NumericQ to an argument gives True.

The extended version QuaternionAnalysis allows the use of symbolic entries, assuming that all

symbols represent real numbers. The QuaternionAnalysis package adds functionality to the fol-

2 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



symbols  package  functionality

lowing functions: Plus, Times, Divide, Power, Re, Conjugate, Dot, Abs, Norm, Sign and

Derivative.  We briefly illustrate some of the quaternion functions needed in the sequel.  In what

follows, we assume that the package QuaternionAnalysis has been installed.

In[1]:= Needs["QuaternionAnalysis`"]

 SetCoordinates: The coordinates system is set to {X0, X1, X2, X3}.

These are the imaginary units.

In[2]:= qi = Quaternion[0, 1, 0, 0];

qj = Quaternion[0, 0, 1, 0];

qk = Quaternion[0, 0, 0, 1];

These are the multiplication rules.

In[5]:= qj ** qj

Out[5]= Quaternion[-1, 0, 0, 0]

In[6]:= qi ** qj ** qk

Out[6]= Quaternion[-1, 0, 0, 0]

Here are two quaternions with symbolic entries and their product.

In[7]:= p = Quaternion[p0, p1, p2, p3];

q = Quaternion[q0, q1, q2, q3];

p ** q

Out[9]= Quaternion[p0 q0 - p1 q1 - p2 q2 - p3 q3, p1 q0 + p0 q1 - p3 q2 + p2 q3,

p2 q0 + p3 q1 + p0 q2 - p1 q3, p3 q0 - p2 q1 + p1 q2 + p0 q3]

The product is noncommutative.

In[10]:= q ** p

Out[10]= Quaternion[p0 q0 - p1 q1 - p2 q2 - p3 q3, p1 q0 + p0 q1 + p3 q2 - p2 q3,

p2 q0 - p3 q1 + p0 q2 + p1 q3, p3 q0 + p2 q1 - p1 q2 + p0 q3]

In[11]:= p ** q - q ** p

Out[11]= Quaternion[0, -2 p3 q2 + 2 p2 q3, 2 p3 q1 - 2 p1 q3, -2 p2 q1 + 2 p1 q2]

Here are some basic functions.

In[12]:= Re[p]

Out[12]= p0

Computational Aspects of Quaternionic Polynomials 3



In[13]:= Vec[p]

Out[13]= Quaternion[0, p1, p2, p3]

In[14]:= Re[p] + Vec[p]

Out[14]= Quaternion[p0, p1, p2, p3]

In[15]:= Conjugate[p] // TraditionalForm

Out[15]= p0 - p1  - p2  - p3 

The  function  Power,  which  was  extended  in  Quaternions  through  the  use  of  de  Moivre’s  for-

mula for quaternions, works quite well for quaternions with numeric entries.

In[16]:= Power[Quaternion[1, 1, 0, 1], 2]

Out[16]= Quaternion[-1, 2, 0, 2]

QuaternionAnalysis  contains  a  different  implementation  of  the  power  function,  QPower,

which we recommend whenever a quaternion has symbolic entries.

In[17]:= QPower[p, 2]

Out[17]= Quaternionp02 - p12 - p22 - p32, 2 p0 p1, 2 p0 p2, 2 p0 p3

We refer the reader to the package documentation for more details on the new functions included in

the package.

In[18]:= ? QuaternionAnalysis`*

QuaternionAnalysis`

AbsVec Pk Tks

CauchyRiemannL PolarForm ToComplexLike

CauchyRiemannR PureQuaternionQ Vec

Ck QPower W

ComplexLike QuaternionToComplex X

ComplexToQuaternion
QuaternionToComplexM-
atrix X0

DiracL QuaternionToMatrixL X1

DiracR QuaternionToMatrixR X2

Laplace R X3

LeftMonogenicQ RightMonogenicQ $CoordinatesList

MonogenicQ SetCoordinates $Dim

Paravector SymmetricProduct

4 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



■ Manipulating Quaternionic Polynomials

We focus now on the polynomial P in one formal variable x of the form

P(x) = an xn + an-1 xn-1 +…+ a1 x+ a0, an ≠ 0, (1)

where the coefficients ak ∈ ℍ are to the left of the powers. Denote by ℍ[x] the set of polynomials of

the form (1), defining addition and multiplication as in the commutative case and assuming the vari-

able x commutes with the coefficients. This is a ring, referred to as the ring of left one-sided (or unilat-

eral) polynomials.

When working with the functions contained in QPolynomial,  a polynomial P(x)  in ℍ[x]  is an ob-

ject defined through the use of the function Polynomial, which returns the simplest form of P(x),

taking into account the following rules.

In[19]:= Polynomial[a_?ScalarQ] := a

In[20]:= Polynomial[a_Quaternion] := a

In[21]:= Polynomial[0 ..] = 0;

In[22]:= Polynomial[Longest[PatternSequence[0] ..], x__] := Polynomial[x]

The function ScalarQ tests if an argument is a scalar in the sense that it is not a complex number, a

quaternion number or a polynomial.

In[23]:= ScalarQ[x_] :=

Apply[And, Head[x] =!= # & /@ {Complex, Quaternion, Polynomial}]

For polynomials in ℍ[x], the rules Plus, Times, NonCommutativeMultiply and Power have

to be defined.

 ◼ Addition

In[24]:= Polynomial /: Plus[sc_?ScalarQ, p_Polynomial] :=

Polynomial @@ Plus @@@ Transpose@PadLeft[{{sc}, List @@ p}]

In[25]:= Polynomial /: Plus[sc_Quaternion, p_Polynomial] :=

Polynomial @@ Plus @@@ Transpose@PadLeft[{{sc}, List @@ p}]

In[26]:= Polynomial /: Plus[p1_Polynomial, p2_Polynomial] :=

Polynomial @@ Plus @@@ Transpose@PadLeft[{List @@ p1, List @@ p2}]

◼ Product by a scalar

In[27]:= Polynomial /: Times[sc_?ScalarQ, p_Polynomial] := Map[sc # &, p]

◼ Multiplication

Computational Aspects of Quaternionic Polynomials 5



In[28]:= Polynomial /: NonCommutativeMultiply[sc_Quaternion, p_Polynomial] :=

Map[sc ** # &, p]

In[29]:= Polynomial /: NonCommutativeMultiply[p_Polynomial, sc_Quaternion] :=

Map[ # ** sc &, p]

In[30]:= Polynomial /: NonCommutativeMultiply[p1_Polynomial, p2_Polynomial] :=

Module[{dim1 = Length@p1, dim2 = Length@p2},

Polynomial @@

Plus @@@

Transpose[

PadRight[MapThread[PadLeft,

{Transpose[Outer[NonCommutativeMultiply, List @@ p1,

List @@ p2]], Range[dim1, dim1 + dim2 - 1]}]]]]

◼ Power

In[31]:= Polynomial /: Power[p_Polynomial, n_Integer?Positive] :=

Nest[NonCommutativeMultiply[p, #] &, p, n - 1]

Example 1

The  polynomials  P(x) = x2 + (1+ i- j) x+ k  and  Q(x) = x+ (2 i- j+ k)  can  be  defined  using
their coefficients in Polynomial in descending order.

In[32]:= px = Polynomial[1, Quaternion[1, 1, -1, 0], Quaternion[0, 0, 0, 1]];

qx = Polynomial[1, Quaternion[0, 2, -1, 1]];

Here is some arithmetic in ℍ[x].

In[34]:= px + 2 qx

Out[34]= Polynomial[1, Quaternion[3, 1, -1, 0], Quaternion[0, 4, -2, 3]]

In[35]:= Quaternion[1, 1, 1, 1] ** px

Out[35]= Polynomial[Quaternion[1, 1, 1, 1],

Quaternion[1, 3, 1, -1], Quaternion[-1, 1, -1, 1]]

In[36]:= px ** qx

Out[36]= Polynomial[1, Quaternion[1, 3, -2, 1],

Quaternion[-3, 1, -2, 3], Quaternion[-1, 1, 2, 0]]

6 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



In[37]:= px3

Out[37]= Polynomial[1, Quaternion[3, 3, -3, 0], Quaternion[-3, 6, -6, 3],

Quaternion[-5, 1, -1, 6], Quaternion[-3, 0, 0, 1],

Quaternion[-3, -1, 1, 0], Quaternion[0, 0, 0, -1]]

We now define three particularly important polynomials, the first two associated with a given polyno-

mial P and the last one associated with a given quaternion q.

Definition 2

With P a polynomial as in equation (1) and q a quaternion, define:

1. Conjugate of P

 P(x) = an xn + an-1 xn-1 +…+ a1 x+ a0;

2. Companion polynomial of P

 CP(x) = P(x) P(x) = P(x) P(x);

3. Characteristic polynomial of q

 Ψq(x) = (x- q) (x- q) = (x- q) (x- q) = x2 + 2 Re(q) x+ || q ||2.

The  first  two  polynomials  are  constructed  with  the  functions  Conjugate  and

CompanionPolynomial.

In[38]:= Polynomial /: Conjugate[p_Polynomial] := Conjugate /@ p

In[39]:= CompanionPolynomial[p_Polynomial] := p ** Conjugate[p]

The built-in function CharacteristicPolynomial now accepts a quaternion argument.

In[40]:= Unprotect[CharacteristicPolynomial];

CharacteristicPolynomial[q_?ScalarQ] := Polynomial[1, -q]^2;

Quaternion /: CharacteristicPolynomial[q_Quaternion] :=

Polynomial[1, -q] ** Polynomial[1, -Conjugate[q]]

SyntaxInformation[CharacteristicPolynomial] =

{"ArgumentsPattern" -> {_, _.}};

Protect[CharacteristicPolynomial];

Observe that CP  is a polynomial with real coefficients. For simplicity, in this context and in what fol-

lows, we assume that a quaternion with vector part zero is real.

In[45]:= Quaternion[a_, 0, 0, 0] := a

Example 2

Consider the polynomial P(x) of Example 1 and the quaternion t = 2 i- j+ k.

In[46]:= Conjugate@px

Out[46]= Polynomial[1, Quaternion[1, -1, 1, 0], Quaternion[0, 0, 0, -1]]

Computational Aspects of Quaternionic Polynomials 7



In[47]:= CompanionPolynomial@px

Out[47]= Polynomial[1, 2, 3, 0, 1]

In[48]:= t = Quaternion[0, 2, -1, 1];

CharacteristicPolynomial[t]

Out[49]= Polynomial[1, 0, 6]

■ Evaluating Quaternionic Polynomials

The evaluation map at a given quaternion α, defined for the polynomial P(x) given by (1), is 

P(α) = an α
n + an-1 α

n-1 +…+ a1 α+ a0. (2)

It is not an algebra homomorphism, as P(x) = L(x) R(x) does not lead, in general, to P(α) = L(α) R(α),

as the next theorem remarks.

Theorem 1

Let L(x) = ∑i=0
n ai xi  and R(x) = ∑j=0

m bj x j  be two polynomials in ℍ[x]  and consider the polyno-

mial P(x) = L(x) R(x) and α ∈ ℍ. Then:

1. P(α) = ∑i=0
n ai R(α) αi.

2. If R(α) = 0, then P(α) = 0.

3. If R(α) ≠ 0, then P(α)= L(α

) R(α), where α


= R(α) α (R(α))-1.

4. If L(x) is a real polynomial, then P(α) = R(α) L(α).

5. If α ∈ , then P(α)= L(α) R(α).

As usual, we say that α is a zero (or root) of P(x) if P(α) = 0. An immediate consequence of Theorem

1 is that if R(α) ≠ 0, then α is a zero of P(x) if and only if R(α) α (R(α))-1 is a zero of L(x).

 A straightforward implementation of equation (2) can be obtained through Eval.

In[50]:= Eval[p_Polynomial] :=

Plus @@ MapThread[NonCommutativeMultiply,

{List @@ p,

Reverse@Function[x, NestList[(# ** x) &, 1, Length@p - 1]][#]}] &

In[51]:= Eval[p_Polynomial, x_] := Eval[p][x]

As in the classical (real or complex) case, the evaluation of a polynomial can also be obtained by the

use of Horner’s rule [3]. The nested form of equation (2) is

P(α) = ((…(an α+ an-1) α+…) α+ a1) α+ a0,

and the quaternionic version of Horner’s rule can be implemented as HornerEval.

8 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



In[52]:= HornerEval[p_Polynomial, x_] :=

Fold[NonCommutativeMultiply[#1, x] + #2 &, 0, p]

Example 3

Consider  again  the  polynomial  P(x) = x2 + (1+ i- j) x+ k.  The  problem  of  evaluating  P(x)  at
t = 2 i- j+ k can be solved through one of the following (formally) equivalent expressions.

In[53]:= Eval[px, t]

Out[53]= Quaternion[-9, 1, -2, 3]

In[54]:= HornerEval[px, t]

Out[54]= Quaternion[-9, 1, -2, 3]

Example 4

We  now  illustrate  some  of  the  conclusions  of  Theorem  1  by  considering  the  polynomials
L(x) = x- i+ k, R(x) = x- 1- j+ k and S(x) = x- 2 and the quaternion u = i- k.

In[55]:= lx = Polynomial[1, Quaternion[0, -1, 0, 1]];

rx = Polynomial[1, Quaternion[-1, 0, -1, 1]];

sx = Polynomial[1, -2];

u = Quaternion[0, 1, 0, -1];

In[57]:= px1 = lx ** rx;

Eval[px1][u] === Eval[lx][u] ** Eval[rx][u]

Out[58]= False

In[59]:= Eval[px1][Abs@u] === Eval[lx][Abs@u] ** Eval[rx][Abs@u]

Out[59]= True

In[60]:= px2 = sx ** rx;

Eval[px2][u] === Eval[rx][u] ** Eval[sx][u]

Out[61]= True

■ The Euclidean Algorithm

For the theoretical background of this section, we refer the reader to [6] (see also [7] where basic divi-

sion algorithms in ℍ[x] are presented). Since ℍ[x] is a principal ideal domain, left and right division al-

gorithms can be defined. The following theorem gives more details.

Theorem 2—Euclidean division

If  P1(x)  and  P2(x)  are  polynomials  in  ℍ[x]  (with  0< deg P2 ≤ deg P1),  then  there  exist  unique

Computational Aspects of Quaternionic Polynomials 9



If  polynomials deg deg
Qleft(x), Rleft(x), Qright(x) and Rright (x) such that 

P1(x) = Qleft(x) P2(x) + Rleft(x) (3)

and

P1(x) = P2(x) Qright(x) + Rright(x), (4)

with deg Rleft ≤ deg P2 and deg Rright ≤ deg P2.

If  in  equation  (3),  Rleft(x) = 0,  then  P2(x)  is  called  a  right  divisor  of  P1(x),  and  if  in  equation  (4),

Rright(x) = 0, P2(x) is called a left divisor of P1(x). This article only presents right versions of the divi-

sion  functions;  in  QPolynomial  both  the  left  and  right  versions  are  implemented.  The  function

PolynomialDivisionR performs the right division of two quaternionic polynomials, returning a

list with the quotient and remainder of the division.

In[62]:= PolynomialDivisionR[p1_Polynomial, sc_?ScalarQ] := {p1 / sc, 0}

In[63]:= PolynomialDivisionR[p1_Polynomial, sc_Quaternion] :=

{p1 ** (1 / sc), 0}

In[64]:= PolynomialDivisionR[p1_Polynomial, p2_Polynomial] :=

Module[{tt, qq = 0, rr = p1, degree = Length@p1 - Length@p2},

While[

Head@rr === Polynomial && degree ≥ 0,

tt = Polynomial @@

(PadRight[{First@rr ** (1 / First@p2)}, degree + 1]);

qq = qq + tt;

rr = rr - tt ** p2;

degree = Length[rr] - Length[p2]

];

{qq, rr}]

Example 5

Consider the polynomials P1(x) = x2 + (-1+ i- k) x+ 2+ 2 j+ 2 k and P2(x) = x- 2 k.

In[65]:= px1 = Polynomial[1, Quaternion[-1, 1, 0, -1], Quaternion[2, 0, 2, 2]];

px2 = Polynomial[1, Quaternion[0, 0, 0, -2]];

PolynomialDivisionR[px1, px2]

Out[67]= {Polynomial[1, Quaternion[-1, 1, 0, 1]], 0}

Since R(x) = 0, P2(x) is a right divisor of P1(x) and P1(x) = (x- 1+ i+ k) (x- 2 k). On the other hand,
P3(x) = x- 1+ i+ k does not right-divide P1(x) (but it is a left divisor).

In[68]:= px3 = Polynomial[1, Quaternion[-1, 1, 0, 1]];

PolynomialDivisionR[px1, px3]

Out[69]= {Polynomial[1, Quaternion[0, 0, 0, -2]], Quaternion[0, 0, 4, 0]}

10 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



The greatest common (right or left) divisor polynomial of two polynomials can now be computed us-
ing the Euclidean algorithm by a basic procedure similar to the one used in the complex setting. The
function GCDR implements this procedure for the case of the greatest common right divisor.

In[70]:= GCDR[a_, 0] = a;

In[71]:= GCDR[a_, b_] := GCDR[b, Last[PolynomialDivisionR[a, b]]]

In[72]:= GCDR[a_, b_, c__] := GCDR[GCDR[a, b], c]

In[73]:= PolynomialGCDR[a_, b_, c___] := PNormalizeL[GCDR[a, b, c]]

Here PNormalizeL is defined as follows.

In[74]:= PNormalizeL[0] = 0;

In[75]:= PNormalizeL[sc_?ScalarQ] := (1 / sc) ** sc

In[76]:= PNormalizeL[sc_Quaternion] := 1

In[77]:= PNormalizeL[p_Polynomial] := (1 / First@p) ** p

Example 5 (continued)

 GCDR(P1, P2) = P2 and GCDR(P1, P2, P3) = 1.

In[78]:= PolynomialGCDR[px1, px2]

Out[78]= Polynomial[1, Quaternion[0, 0, 0, -2]]

■ The Zero Structure in ℍ(x)

Before  describing  the  zero  set  ℤP  of  a  quaternionic  polynomial  P,  we  need  to  introduce  more

concepts.

Definition 3

We say that a quaternion q is congruent (or similar) to a quaternion r (and write q~ r) if there

exists a nonzero quaternion h such that r= h q h-1.

This is  an equivalence relation in ℍ[x]  that  partitions ℍ[x]  into congruence classes.  The congruence

class containing a given quaternion q is denoted by [q]. It can be shown (see, e.g. [8]) that

[q] = {r ∈ ℍ : Re q = Re r and || r || = || q ||}.

This  result  gives  a  simple way to test  if  two or  more quaternions are  similar,  implemented with the

function SimilarQ.

In[79]:= SimilarQ[q_Quaternion, r_Quaternion] :=

ZeroQ[Re@q - Re@r] && ZeroQ[Norm@q - Norm@r]

Computational Aspects of Quaternionic Polynomials 11



For zero or equality testing, we use the ZeroQ test function.

In[80]:= ZeroQ[a_] := PossibleZeroQ[a, Method → "ExactAlgebraics"]

In[81]:= ZeroQ[q_Quaternion] := And @@ ZeroQ /@ q

In[82]:= q5 = Quaternion[1, 2, 3, 4];

q6 = Quaternion[1, 3, 4, 2];

q7 = Quaternion[-1, 2, 3, 4];

SimilarQ[q5, q6]

Out[83]= True

In[84]:= SimilarQ[q6, q7]

Out[84]= False

It  follows  that  [q] = {q}  if  and  only  if  q ∈ .  The  congruence  class  of  a  nonreal  quaternion

q = q0 + q1 i+ q2 j+ q3 k  can  be  identified  with  the  three-dimensional  sphere  in  the  hyperplane

{(x0, x1, x2, x3) ∈ 4 : x0 = q0} with center (q0, 0, 0, 0) and radius q1
2 + q2

2 + q3
2 .

Definition 4

A zero q of P ∈ ℍ[x] is called an isolated zero of P if [q] contains no other zeros of P. Other-

wise, q is called a spherical zero of P and [q] is referred to as a sphere of zeros.

It can be proved that if q is a zero that is not isolated, then all quaternions in [q] are in fact zeros of P

(see Theorem 4); therefore the choice of the term spherical to designate this type of zero is natural. Ac-

cording to  the  definition,  real  zeros  are  always isolated zeros.  Identifying zeros  can be done,  taking

into account the following results.

Theorem 3 ([9])

Let P∈ ℍ[x] and α∈ ℍ. The following conditions are equivalent:

1. There is an α ' ∈ [α] such that P(α ') = 0.

2. The characteristic polynomial of α, Ψα, is a divisor of the companion polynomial CP of P.

3. α is a root of CP.

Theorem 4 ([9], [10])

A nonreal zero α  is a spherical zero of P ∈ ℍ[x]  if and only if any of the following equivalent

conditions hold:

1. α  and α are both zeros of P.

2. [α] ⊂ ℤP.

3.  The  characteristic  polynomial  Ψα  of  α  is  a  right  divisor  of  P;  that  is,  there  exists  a  polynomial

Q ∈ ℍ[x] such that P (x) = Q (x) Ψα (x).

Example 6

We are going to show that the polynomial

12 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



P(x) = x3 + (1- i+ j) x2 + 2 x+ 2- 2 i+ 2 j 

has a spherical zero: i+ j and an isolated one: -1+ i- j.

In[85]:= px4 = Polynomial[1, Quaternion[1, -1, 1, 0], 2,

Quaternion[2, -2, 2, 0]];

sph = Quaternion[0, 1, 1, 0];

iso = Quaternion[-1, 1, -1, 0];

We first observe that both sph and iso are zeros of P.

In[88]:= Eval[px4][sph]

Out[88]= 0

In[89]:= Eval[px4][iso]

Out[89]= 0

Now we use Theorem 4-1 to conclude that the zero sph is spherical, while the zero iso is isolated.

In[90]:= Eval[px4][Conjugate@sph]

Out[90]= 0

In[91]:= Eval[px4][Conjugate@iso]

Out[91]= Quaternion[8, -2, 2, 0]

We can reach the same conclusion from Theorem 4-3.

In[92]:= PolynomialDivisionR[px4, CharacteristicPolynomial[sph]]

Out[92]= {Polynomial[1, Quaternion[1, -1, 1, 0]], 0}

In[93]:= PolynomialDivisionR[px4, CharacteristicPolynomial[iso]]

Out[93]= {Polynomial[1, Quaternion[-1, -1, 1, 0]],

Polynomial[Quaternion[1, 2, -2, 0], Quaternion[5, 1, -1, 0]]}

Taking  all  this  into  account,  the  verification  of  the  nature  of  a  zero  can  be  done  using  the  function

SphericalQ.

In[94]:= SphericalQ[p_Polynomial, q_Quaternion] :=

ZeroQ[Eval[p][q]] && ZeroQ[Eval[p][Conjugate@q]]

Consider the same polynomial and quaternions again.

In[95]:= SphericalQ[px4, sph]

Out[95]= True

Computational Aspects of Quaternionic Polynomials 13



In[96]:= SphericalQ[px4, iso]

Out[96]= False

We now list other results needed in the next section.

Theorem 5—Factor theorem ([11], [12])

Let  P ∈ ℍ[x]  and  α ∈ ℍ.  Then  α  is  a  zero  of  P  if  and  only  if  there  exists  Q ∈ ℍ[x]  such  that

P (x) = Q (x) (x- α).

Theorem 6—Fundamental theorem of algebra ([13])

Any nonconstant polynomial in ℍ[x] always has a zero in ℍ.

■ Factoring

In this section, we address the problem of factoring a polynomial P. We mostly follow [4]. As in the

classical case, it is always possible to write a quaternionic polynomial as a product of linear factors;

however the link between these factors and the corresponding zeros is not straightforward. As an im-

mediate consequence of Theorems 5 and 6, one has the following theorem.

Theorem 7—Factorization into linear terms

Any monic polynomial  P of  degree n≥ 1  in  ℍ[x]  factors into linear factors;  that  is,  there exist

x1, x2, …, xn ∈ ℍ such that

P(x) = (x- xn) (x- xn-1)… (x- x1). (5)

Definition 5

In a factorization of P of the form (5), the quaternions x1, x2, …, xn are called factor terms of P

and the n-tuple (x1, x2, …, xn) is called a factor terms chain associated with P or simply a chain of P.

If  (x1, x2, …, xn)  and (y1, y2, …, yn)  are  chains  associated with  the  same polynomial  P,  then we say

that the chains are similar and write (x1, x2, …, xn) ~ (y1, y2, …, yn).

The function PolynomialFromChain  constructs  a  polynomial  with a given chain,  and the func-

tion SimilarChainQ checks if two given chains are similar.

In[97]:= PolynomialFromChain[list_List] :=

NonCommutativeMultiply @@ (Polynomial[1, -#1] &) /@ Reverse[list]

In[98]:= ZeroQ[p_Polynomial] := And @@ (ZeroQ /@ p)

In[99]:= SimilarChainQ[c1_List, c2_List] :=

ZeroQ[PolynomialFromChain[c1] - PolynomialFromChain[c2]]

The repeated use of the next result allows the constructions of similar chains, if any.

Theorem 8

Let (x1, x2, …, xl-1, xl, …, xn) be a chain of a polynomial P. If h = xl - xl-1 ≠ 0, then

(x1, …, h-1 xl h, h-1 xl-1 h, …, xn) ~ (x1, x2, …, xl-1, xl, …xn).

14 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



Theorem 8 can be implemented using the function FactorShift.

In[100]:= FactorShift[{q1_, q2_}] := Module[{

h = (Conjugate@q2 - q1)},

If[ZeroQ@h, {q2, q1}, {(1 / h) ** q2 ** h, (1 / h) ** q1 ** h}]

]

In[101]:= FactorShift[l_List, m_Integer?Positive, n_Integer?Positive] :=

Module[

{lista = l, dim = Length@l, seq},

If[m > dim || n > dim, Message[FactorShift::args],

seq = Sort /@ Partition[Range[m, n, Sign[n - m]], 2, 1];

Map[(Part[lista, #] = FactorShift[Part[lista, #]]) &, seq]];

lista

]

In[102]:= FactorShift::args = "Chain too short.";

Example 7

This constructs chains similar to the chain (1+ i+ k, -1+ j, i+ j+ k).

In[103]:= c1 = {Quaternion[1, 1, 0, 1], Quaternion[-1, 0, 1, 0],

Quaternion[0, 1, 1, 1]};

In[104]:= c2 = FactorShift[c1, 3, 1]

Out[104]= Quaternion0,
43

27
,

7

27
,
17

27
,

Quaternion1,
23

189
,
248

189
,

97

189
, Quaternion-1,

2

7
,
3

7
,
6

7


In[105]:= c3 = FactorShift[c1, 1, 3]

Out[105]= Quaternion-1,
6

7
,
3

7
, -

2

7
,

Quaternion0,
17

35
,
19

35
,
11

7
, Quaternion1,

23

35
,
36

35
,
5

7


Observe that c1, c2 and c3 are similar chains.

In[106]:= SimilarChainQ[c1, c2]

Out[106]= True

In[107]:= SimilarChainQ[c2, c3]

Out[107]= True

We emphasize that there are polynomials with just one chain. This issue is addressed in Theorem 12.

Computational Aspects of Quaternionic Polynomials 15



 polynomials  just

For the moment, we just give an example of such a polynomial.

In[108]:= c4 = {x4 = Quaternion[0, 1, 0, 0], x5 = Quaternion[0, 0, 1, 0],

x6 = Quaternion[0, 0, 0, 1]};

FactorShift[c4, 3, 2]

Out[109]= {Quaternion[0, 1, 0, 0], Quaternion[0, 0, 1, 0], Quaternion[0, 0, 0, 1]}

In[110]:= FactorShift[c4, 1, 3]

Out[110]= {Quaternion[0, 1, 0, 0], Quaternion[0, 0, 1, 0], Quaternion[0, 0, 0, 1]}

In[111]:= PolynomialFromChain[c4]

Out[111]= Polynomial[1, Quaternion[0, -1, -1, -1], Quaternion[0, -1, 1, -1], -1]

In[112]:= Polynomial[1, -x6] ** Polynomial[1, -x5] ** Polynomial[1, -x4]

Out[112]= Polynomial[1, Quaternion[0, -1, -1, -1], Quaternion[0, -1, 1, -1], -1]

These  computations  lead us  to  the  conclusion that  the  polynomial  x3 - (i+ j+ k) x2 - (i- j+ k) x- 1

factors uniquely as (x- k) (x- j) (x- i).

The  next  fundamental  results  shed  light  on  the  relation  between factor  terms  and  zeros  of  a  quater-

nionic polynomial.

Theorem 9 ([12–14])

Let (x1, x2, …, xn) be a chain of the polynomial P. Then every zero of P is similar to some factor

term xk in the chain and conversely, every factor term xk is similar to some zero of P.

Theorem 10—Zeros from factors ([12])

Consider  a  chain (x1, x2, …, xn)  of  the polynomial  P.  If  the  similarity  classes  [xk]  are  distinct,

then P has exactly n zeros ζk, which are given by:

ζk = k(xk) xkk(xk)
-1

; k = 1, …, n, k = 1, …, n,

where

k(x) = 
1 if k = 1,
(x- xk-1)… (x- x1) otherwise.

(6)

The  function  ZerosFromChain  determines  the  zeros  of  a  polynomial  with  a  prescribed  chain  in

the case where no two factors in the chain are similar quaternions, giving a warning if this condition

does not hold.

16 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



In[113]:= ZerosFromChain[fact_List] := Module[

{n = Length@fact, factors = fact, roots = {}, RPoli, RPoliz},

If[n > Length@Union@Map[{Re@#, Norm@#} &, fact],

Message[ZerosFromChain::args],

For[i = 1, i ≤ n, i++,

RPoli = RPol[factors, i];

RPoliz = Eval[RPoli][factors〚i〛];

AppendTo[roots, RPoliz ** factors〚i〛 ** (1 / RPoliz)];

];

roots

]]

In[114]:= ZerosFromChain::args = "Arguments in the same similarity class.";

In[115]:= RPol[fact_, i_] := Module[

{n = Length@fact},

Which[

i == 1, Polynomial[1],

i ⩵ 2, Polynomial[1, -Conjugate@#] & @@ (Drop[fact, i - n - 1]),

i ≤ n,

(NonCommutativeMultiply @@

(Polynomial[1, -Conjugate@#] & /@ (Drop[fact, i - n - 1])))

];

]

Example 8

Consider the polynomial P(x) = (x- i+ j- k) (x+ 2 k) (x- 1) (x+ 1- i+ j).  One of its  chains is
(-1+ i- j, 1, -2 k, i- j+ k), and it follows at once that the similarity classes of the factor terms are
all  distinct.  Therefore,  we  conclude  from Theorem 10  that  P  has  four  distinct  isolated  roots,  which
can be obtained with the following code.

In[116]:= ZerosFromChain[{Quaternion[-1, 1, -1, 0], 1, Quaternion[0, 0, 0, -2],

Quaternion[0, 1, -1, 1]}]

Out[116]= {Quaternion[-1, 1, -1, 0], 1,

Quaternion[0, 0, 0, -2], Quaternion[0, 1, -1, 1]}

On the  other  hand,  the  polynomial  P(x) = (x- i) (x+ 2 k) (x- j)  has  ( j, -2 k, i)  as  one  of  its  chains.

Since [i] = [ j], one cannot apply Theorem 10 to find the roots of P.

In[117]:= ZerosFromChain[

c5 = {Quaternion[0, 0, 1, 0], Quaternion[0, 0, 0, -2],

Quaternion[0, 1, 0, 0]}]

 ZerosFromChain: Arguments in the same similarity class.

Computational Aspects of Quaternionic Polynomials 17



Observe that this does not mean that the roots of P are spherical.

In[118]:= px5 = PolynomialFromChain[c5]

Out[118]= Polynomial[1, Quaternion[0, -1, -1, 2], Quaternion[0, 2, 2, 1], 2]

In[119]:= Eval[px5][First@c5]

Out[119]= 0

In[120]:= SphericalQ[px5, First@c5]

Out[120]= False

This issue will be resumed later in connection with the notion of the multiplicity of a zero. The follow-

ing  theorem  indicates  how,  under  certain  conditions,  one  can  construct  a  polynomial  having  pre-

scribed zeros.

Theorem 11—Factors from zeros ([9])

If  ζ1, …, ζn  are  quaternions  such  that  the  similarity  classes  [ζk]  are  distinct,  then  there  is  a

unique  polynomial  P  of  degree  n  with  zeros  ζ1, …, ζn  that  can  be  constructed  from  the  chain

(x1, x2, …, xn), where 

xk = k(ζk) ζk(k(ζk))
-1, k = 1, …, n,

where k is the polynomial (6).

 The function ChainFromZeros implements the procedure described in Theorem 11.

In[121]:= ChainFromZeros[root_List] := Module[

{n = Length@root, factor, factors, QPoli = 1, QPoliz},

If[n > Length@Union@Map[{Re@#, Norm@#} &, root],

Message[ChainFromZeros::args1],

factor = First@root; factors = {factor};

For[i = 2, i ≤ n, i++,

QPoli = Polynomial[1, -factor] ** QPoli;

QPoliz = Eval[QPoli][root〚i〛];

factor = QPoliz ** root〚i〛 ** (1 / QPoliz);

AppendTo[factors, factor];

];

factors

]]

In[122]:= ChainFromZeros::args1 =

"Arguments in the same similarity class. Use an alternative

syntax.";

Example 9

Consider  the  problem  of  constructing  a  polynomial  having  the  isolated  roots

18 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



 constructing  polynomial  having
i, 1+ i+ k, -1+ 3 j. We first determine one chain associated with these zeros.

In[123]:= chain =

ChainFromZeros[

roots = {Quaternion[0, 1, 0, 0], Quaternion[1, 1, 0, 1],

Quaternion[-1, 0, 3, 0]}]

Out[123]= Quaternion[0, 1, 0, 0],

Quaternion[1, 0, 1, 1], Quaternion-1, -
94

33
,
31

33
,

2

33


Now we determine the polynomial associated with this chain.

In[124]:= px6 = PolynomialFromChain[chain]

Out[124]= Polynomial1, Quaternion0,
61

33
, -

64

33
, -

35

33
,

Quaternion
28

33
, -

65

33
,
127

33
, -

63

11
, Quaternion-

65

33
, 2,

125

33
,
92

33


Check the solution.

In[125]:= Eval[px6][roots]

Out[125]= {0, 0, 0}

Theorem 12 ([9–15])

Let P be a quaternionic polynomial of degree n. Then x1 ∈ ℍ \  is the unique zero of P if and

only if P admits a unique chain (x1, x2, …, xn) with the property

xl ∈ [x1] and xl ≠ xl-1, (7)

for all l = 2, …, n.

Moreover, if a chain (x1, x2, …, xn) associated with a polynomial P has property (7), Q is a poly-

nomial of degree m such that y1 ∈ ℍ \  is its unique zero and y1 ∉ [x1], then the polynomial Q P (of

degree m+ n) has only two zeros, namely x1 and P(y1) y1P(y1)
-1

.

We can now introduce the concept of the multiplicity of a zero and a new kind  of zero. In this con-

text,  we  have  to  note  that  several  notions  of  multiplicity  are  available  in  the  literature  (see  [9],

[15–17]).

Definition 6

The multiplicity of a zero q of P is defined as the maximum degree of the right factors of P with

q as their unique zero and is denoted by mP(q). The multiplicity of a sphere of zeros [q] of P, denoted

by mp([q]), is the largest k ∈ ℕ0 for which Ψq
k divides P. 

A zero q of P is called a mixed zero if mp([q]) > 0 and mP(q) > mP(q ') for all q ' ∈ [q].

Example 10

The polynomial P (x) = (x- k) (x- j) (x- 1+ i)  has an isolated root q1 = 1- i  with multiplicity
mP(q1) = 1 and an isolated root q2 =

1
3
(-2 i+ j+ 2 k) with multiplicity mP(q2) = 1.

Computational Aspects of Quaternionic Polynomials 19



The  polynomial  P(x) = (x+ j) (x- j) (x- 1+ i)  has  an  isolated  root  q1 = 1- i  with  multiplicity
mP(q1) = 1 and a sphere of zeros [q2] = [ j] with multiplicity mP([q2]) = 1.

The  polynomial  P(x) = (x+ j) (x- j)2  has  a  mixed  root  q = j  with  multiplicity  mP(q) = 2  and
mP([q]) = 1.

Finally,  one  can  construct  a  polynomial  with  assigned  zeros  by  the  repeated  use  of  the  following

result.

Theorem 13 ([4])

A polynomial with ζ1  and ζ2  as its isolated zeros with multiplicities m and n, respectively, and a

sphere of zeros [ζs] with multiplicity k can be constructed through the chain 

ζ1, …, ζ1

m

, ζ

2, …, ζ


2

n

, ζs, ζs, …, ζs, ζs 

2 k

where ζ

2 =  (ζ2) ζ2((ζ2))

-1 and  (x) = (x- ζ1)
m.

An alternative  syntax  for  the  function  ChainFromZeros  addresses  the  problem of  constructing  a

polynomial (in fact it constructs a chain) once one knows the nature and multiplicity of its roots.

In[126]:= ChainFromZeros[{}, {}] := {}

In[127]:= ChainFromZeros[isoroots : {{_, _} ..}, {}] := Module[

{nisoroots = Length@isoroots, factor, multiplicity, factors,

QPoli = 1, QPoliz},

If[

nisoroots >

Length@Union@Map[{Re@#, Norm@#} &, First@Transpose@isoroots],

Message[ChainFromZeros::args2],

factor = isoroots〚1, 1〛;

multiplicity = isoroots〚1, 2〛;

factors = Table[factor, {multiplicity}];

For[i = 2, i ≤ nisoroots, i++,

QPoli = Power[Polynomial[1, -factor], multiplicity] ** QPoli;

QPoliz = Eval[QPoli][isoroots〚i, 1〛];

factor = QPoliz ** isoroots〚i, 1〛 ** (1 / QPoliz);

multiplicity = isoroots〚i, 2〛;

factors = Join[factors, Table[factor, {multiplicity}]];

];

factors

]

]

20 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



In[128]:= ChainFromZeros[{}, sphroots : {{_, _} ..}] := Module[

{nsphroots = Length@sphroots},

If[nsphroots > Count[sphroots, {_Quaternion, _}],

Message[ChainFromZeros::args4],

If[

nsphroots >

Length@Union@Map[{Re@#, Norm@#} &, First@Transpose@sphroots],

Message[ChainFromZeros::args3], Null];

Flatten@(Table[{#1, Conjugate@#1}, {#2}] & @@@ sphroots)

]

]

In[129]:= ChainFromZeros[isoroots : {{_, _} ...}, sphroots : {{_, _} ...}] :=

Module[

{ch1 = ChainFromZeros[isoroots, {}],

ch2 = ChainFromZeros[{}, sphroots]},

If[ch1 =!= Null && ch2 =!= Null, Join[ch1, ch2], Null]

]

In[130]:= ChainFromZeros::args2 =

"Two or more isolated zeros are in the same similarity class.";

ChainFromZeros::args3 =

"Two or more spherical zeros are in the same similarity class.";

ChainFromZeros::args4 = "Spherical zeros must be nonreals.";

Example 11

We reconsider here Example 6 of [4]. An example of a polynomial P that has ζ1 = i as a zero of
multiplicity  three,  ζ2 = -1+ j+ k  as  a  zero of  multiplicity  two and [2+ i]  as  a  sphere of  zeros with
multiplicity two is 

P(x) = Ψ2+i
2(x- x2)

2 (x- x1)
3,

where x1 = ζ1 = i , x2 = (ζ2) ζ2((ζ2))
-1 and  (x) = (x- x1)

3; that is,

P(x) = (x- 2- i)2 (x- 2+ i)2 x+ 1+
7

5
i+

1

5
j

2

(x- i)3.

Of course this solution is not unique. For example, the polynomial

Q(x) = (x- 2- i)2 (x- 2+ i)2 (x+ 1- j- k) x+ 1+
7

5
i+

1

5
j (x- k) (x- j) (x- i)

solves the same problem.

We confirm this using the function ChainFromZeros with the new syntax.

Computational Aspects of Quaternionic Polynomials 21



In[133]:= ChainFromZeros[{{Quaternion[0, 1, 0, 0], 3},

{Quaternion[-1, 0, 1, 1], 2}}, {{Quaternion[2, 1, 0, 0], 2}}]

Out[133]= Quaternion[0, 1, 0, 0], Quaternion[0, 1, 0, 0], Quaternion[0, 1, 0, 0],

Quaternion-1, -
7

5
, -

1

5
, 0, Quaternion-1, -

7

5
, -

1

5
, 0,

Quaternion[2, 1, 0, 0], Quaternion[2, -1, 0, 0],

Quaternion[2, 1, 0, 0], Quaternion[2, -1, 0, 0]

In[134]:= ChainFromZeros[{{Quaternion[0, 1, 0, 0], 1}},

{{Quaternion[0, 1, 0, 0], 1}}]

Out[134]= {Quaternion[0, 1, 0, 0],

Quaternion[0, 1, 0, 0], Quaternion[0, -1, 0, 0]}

In[135]:= PolynomialFromChain[%]

Out[135]= Polynomial[1, Quaternion[0, -1, 0, 0], 1, Quaternion[0, -1, 0, 0]]

Here are two spherical roots corresponding to the same sphere.

In[136]:= ChainFromZeros[{}, {{Quaternion[0, 1, 0, 0], 1},

{Quaternion[0, 0, 1, 0], 1}}]

 ChainFromZeros: Two or more spherical zeros are in the same similarity class.

Out[136]= {Quaternion[0, 1, 0, 0], Quaternion[0, -1, 0, 0],

Quaternion[0, 0, 1, 0], Quaternion[0, 0, -1, 0]}

In[137]:= PolynomialFromChain[%]

Out[137]= Polynomial[1, 0, 2, 0, 1]

Observe that the result is, of course, the same as this one.

In[138]:= PolynomialFromChain[ChainFromZeros[{}, {{Quaternion[0, 1, 0, 0], 2}}]]

Out[138]= Polynomial[1, 0, 2, 0, 1]

Recall that a real root is always an isolated root, and two roots in the same congruence class cannot

be isolated.

22 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares



In[139]:= ChainFromZeros[{{Quaternion[0, 1, 0, 0], 2},

{Quaternion[0, 0, 1, 0], 2}}, {{Quaternion[1, 1, 0, 0], 3}, {2, 2}}]

 ChainFromZeros: Two or more isolated zeros are in the same similarity class.

 ChainFromZeros: Spherical zeros must be nonreals.

■ Conclusion

This article has discussed implementation issues related to the manipulation, evaluation and factoriza-

tion  of  quaternionic  polynomials.  We  recommend  that  interested  readers  download  the  support  file

QPolynomial.m to get complete access to all the implemented functions. The increasing interest in

the use of quaternions in areas such as number theory, robotics, virtual reality and image processing

[18]  makes  us  believe  that  developing  a  computational  tool  for  operating  in  the  quaternions  frame-

work will be useful for other researchers, especially taking into account the power of Mathematica as

a symbolic language.

In the ring of quaternionic polynomials, new problems arise mainly because the structure of zero sets,

as we have described, is very different from the complex case. In this article, we did not discuss the

problem of computing the roots or the factor terms of a polynomial; all the results we have presented

assumed that either the zeros or the factor terms of a given polynomial are known. Methods for com-

puting the roots or factor terms of a quaternionic polynomial are considered in Part II.

■ Acknowledgments

Research at the Centre of Mathematics at the University of Minho was financed by Portuguese Funds

through FCT - Fundação para a Ciência e a Tecnologia, within the Project UID/MAT/00013/2013. Re-

search at  the Economics Politics Research Unit  was carried out within the funding with COMPETE

reference  number  POCI-01-0145-FEDER-006683  (UID/ECO/03182/2013),  with  the  FCT/MEC’s

(Fundação para a Ciência e a Tecnologia, I.P.) financial support through national funding and by the

European Regional Development Fund through the Operational Programme on “Competitiveness and

Internationalization - COMPETE 2020” under the PT2020 Partnership Agreement. 

■ References

[1] M. I. Falcão and F. Miranda, “Quaternions: A Mathematica Package for Quaternionic Analysis,” in Compu-

tational  Science and Its Applications (ICCSA 2011),  Lecture Notes in Computer Science,  6784  (B.  Mur-

gante, O. Gervasi, A. Iglesias, D. Taniar and B. O. Apduhan, eds.), Berlin, Heidelberg: Springer, 2011 pp.

200–214. doi:10.1007/978-3-642-21931-3_17.

[2] F. Miranda and M. I. Falcão. “QuaternionAnalysis Mathematica Package.” w3.math.uminho.pt/Quaternion-

Analysis.

Computational Aspects of Quaternionic Polynomials 23

https://doi.org/10.1007/978-3-642-21931-3_17
http://w3.math.uminho.pt/QuaternionAnalysis/
http://w3.math.uminho.pt/QuaternionAnalysis/


[3] M. I. Falcão, F. Miranda, R. Severino and M. J. Soares, “Evaluation Schemes in the Ring of Quaternionic

Polynomials,” BIT Numerical Mathematics, 58(1), pp. 51–72. doi:10.1007/s10543-017-0667-8.

[4] M. I.  Falcão, F. Miranda, R. Severino and M. J. Soares, “Mathematica Tools for Quaternionic Polynomi-

als,”  in  Computational  Science and Its  Applications (ICCSA 2017),  Lecture Notes in Computer  Science,

10405, (O. Gervasi, B. Murgante, S. Misra, G. Borruso, C. M. Torre, A. M. A. C. Rocha, D. Taniar, B. O.

Apduhan,  E.  Stankova  and  A.  Cuzzocrea,  eds.),  Berlin,  Heidelberg:  Springer,  2017  pp.  394–408.

doi:10.1007/978-3-319-62395-5_27.

[5] M. I. Falcão, F. Miranda, R. Severino and M. J. Soares, “Weierstrass Method for Quaternionic Polynomial

Root-Finding,” Mathematical Methods in the Applied Sciences, 2017 pp. 1–15. doi:10.1002/mma.4623.

[6] N. Jacobson, The Theory of Rings (Mathematical Surveys and Monographs), New York: American Mathe-

matical Society, 1943.

[7] A. Damiano, G. Gentili and D. Struppa, “Computations in the Ring of Quaternionic Polynomials,” Journal

of Symbolic Computation, 45(1), 2010 pp. 38–45. doi:10.1016/j.jsc.2009.06.003.

[8] F. Zhang, “Quaternions and Matrices of Quaternions,” Linear Algebra and Its Applications, 251, 1997 pp.

21–57. doi:10.1016/0024-3795(95)00543-9.

[9] B.  Beck,  “Sur  les  équations  polynomiales  dans  les  quaternions,”  L’  Enseignement  Mathématique,  25,

1979 pp. 193–201.

[10] A. Pogorui and M. Shapiro, “On the Structure of the Set of Zeros of Quaternionic Polynomials,” Complex

Variables. Theory and Application, 49(6), 2004 pp. 379–389. doi:10.1080/0278107042000220276.

[11] B.  Gordon  and  T.  S.  Motzkin,  “On  the  Zeros  of  Polynomials  over  Division  Rings,”  Transactions  of  the

American Mathematical Society, 116, 1965 pp. 218–226. doi:10.1090/S0002-9947-1965-0195853-2.

[12] T.-Y. Lam, A First Course in Noncommutative Rings, New York: Springer-Verlag, 1991.

[13] I.  Niven,  “Equations  in  Quaternions,”  The  American  Mathematical  Monthly,  48(10),  1941  pp.  654–661.

www.jstor.org/stable/2303304.

[14] R.  Serôdio  and L.-S.  Siu,  “Zeros  of  Quaternion Polynomials”.  Applied  Mathematics  Letters,  14(2),  2001

pp. 237–239. doi:10.1016/S0893-9659(00)00142-7.

[15] R.  Pereira,  Quaternionic  Polynomials  and  Behavioral  Systems,  Ph.D.  thesis,  Departamento  de

Matemática, Universidade de Aveiro, Portugal, 2006.

[16] G. Gentili and D. C. Struppa, “On the Multiplicity of Zeroes of Polynomials with Quaternionic Coefficients,”

Milan Journal of Mathematics, 76(1), 2008 pp. 15–25. doi:10.1007/s00032-008-0093-0.

[17] M. I. Falcão, F. Miranda, R. Severino and M. J. Soares, “Quaternionic Polynomials with Multiple Zeros: A

Numerical  Point  of  View,”  in  11th  International  Conference  on  Mathematical  Problems  in  Engineering,

Aerospace  and  Sciences  (ICNPAA 2016),  La  Rochelle,  France,  AIP  Conference  Proceedings,  1798(1),

2017 p. 020099. doi:10.1063/1.4972691.

[18] H. R. Malonek, “Quaternions in Applied Sciences. A Historical Perspective of a Mathematical Concept,” in

17th International Conference on the Applications of Computer Science and Mathematics in Architecture

and Civil Engineering (IKM 2003) (K. Gürlebeck and C. Könke, eds.), Weimar, Germany, 2003.

M. I. Falcão, F. Miranda, R. Severino and M. J. Soares, “Computational Aspects of Quaternionic Polynomials,” The Mathe-

matica Journal, 2018. doi:10.3888/tmj.20–4.

Additional Material

1. The package QuaternionAnalysis.

Available at: w3.math.uminho.pt/QuaternionAnalysis

2. The file QPolynomial.m.

24 M. Irene Falcão, Fernando Miranda, Ricardo Severino and M. Joana Soares

http://doi.org/10.1007/s10543-017-0667-8
http://doi.org/10.1007/978-3-319-62395-5_27
https://doi.org/10.1002/mma.4623
http://doi.org/10.1016/j.jsc.2009.06.003
http://doi.org/10.1016/0024-3795(95)00543-9
https://doi.org/10.1080/0278107042000220276
http://doi.org/10.1090/S0002-9947-1965-0195853-2
http://www.jstor.org/stable/2303304
http://doi.org/10.1016/S0893-9659(00)00142-7
http://doi.org/10.1007/s00032-008-0093-0
http://doi.org/10.1063/1.4972691
http://dx.doi.org/doi:10.3888/tmj.20.4
http://w3.math.uminho.pt/QuaternionAnalysis


Available at: www.mathematica-journal.com/data/uploads/2018/05/QPolynomial.m

About the Authors

M. Irene Falcão is an associate professor in the Department of Mathematics and Applications of the
University of Minho. Her research interests are numerical analysis, hypercomplex analysis and scien-
tific software.

Fernando Miranda is an assistant professor in the Department of Mathematics and Applications of the
University  of  Minho.  His  research  interests  are  differential  equations,  quaternions  and  related  alge-
bras and scientific software.

Ricardo Severino is an assistant professor in the Department of Mathematics and Applications of the
University of Minho.  His research interests  are dynamical  systems,  quaternions and related algebras
and scientific software.

M. Joana Soares is an associate professor in the Department of Mathematics and Applications of the
University of Minho. Her research interests are numerical analysis, wavelets mainly in applications to
economics, and quaternions and related algebras.

M. Irene Falcão
CMAT - Centre of Mathematics

DMA - Department of Mathematics and Applications

University of Minho

Campus de Gualtar, 4710-057 Braga 
Portugal

mif@math.uminho.pt

Fernando Miranda
CMAT - Centre of Mathematics

DMA - Department of Mathematics and Applications

University of Minho

Campus de Gualtar, 4710-057 Braga 
Portugal

fmiranda@math.uminho.pt

Ricardo Severino
DMA - Department of Mathematics and Applications

University of Minho

Campus de Gualtar, 4710-057 Braga 
Portugal

ricardo@math.uminho.pt

M. Joana Soares
NIPE - Economics Politics Research Unit

DMA - Department of Mathematics and Applications

University of Minho

Campus de Gualtar, 4710-057 Braga 
Portugal

jsoares@math.uminho.pt

Computational Aspects of Quaternionic Polynomials 25

http://www.mathematica-journal.com/data/uploads/2018/05/QPolynomial.m
mailto:mif@math.uminho.pt
mailto:fmiranda@math.uminho.pt
mailto:ricardo@math.uminho.pt
mailto:jsoares@math.uminho.pt

