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The electronic and optical properties of 2D hexagonal boron nitride are studied using first principle
calculations. GW and BSE methods are employed in order to predict with better accuracy the
excited and excitonic properties of this material. We determine the values of the band gap, optical
gap, excitonic binding energies and analyse the excitonic wave functions. We also calculate the
exciton energies following an equation of motion formalism and the Elliot formula, and find a very
good agreement with the GW+BSE method. The optical properties are studied for both the TM
and TE modes, showing that 2D hBN is a good candidate to polaritonics in the UV range. In
particular it is shown that a single layer of h-BN can act as an almost perfect mirror for ultraviolet
electromagnetic radiation.

I. INTRODUCTION

Two dimensional hexagonal boron nitride (hBN), also
called by some white graphene, is an electrical insula-
tor in which the boron (B) and nitrogen (N) atoms are
arranged in a honeycomb lattice and are bounded by
strong covalent bonds. Like graphene, hBN has good
mechanical properties1 and high thermal conductivity.2
Specially interesting is the possibility of using hBN as a
buffer layer in van der Waals heterostructures, namelly
ones comprised by layers of h-BN/graphene.3 Hexagonal
boron nitride layer can serve as a dielectric or a substrate
material for graphene in order to improve its mobility4
and open a gap5. It can also be used to improve the
thermoelectric performance of graphene.6

Yet, its electronic properties differ significantly from
graphene. Graphene π and π∗ electronic bands have a
linear dispersion at the K point, whereas in hBN there
is a lift of the degeneracy at the same point and a wide
band gap greater than 7 eV is formed, at least within an
independent electron picture. That would, in principle,
make it ideal for optoelectronic devices in the deep ultra-
violet region7,8. As we will see, however, excitonic effects
play an important role in this material: excitonic peaks
are created at the near UV, and this is a much more use-
ful electromagnetic spectral range, when compared to the
deep UV.

The optical properties of monolayer hBN at the UV
range are characterized by the exciton with a correspond-
ing optical band gap calculated in the range 5.30–6.30 eV
(see Sec. II). The presence of the exciton in this range
can be used to excite exciton-polaritons, that share some
properties with surface plasmon-polaritons9,10. There-
fore, the UV optical properties of hBN can be used as an
alternative to the emerging field of UV plasmonics.11–20
The plasmonics in UV range also attracts interest in

biological tissue21 as consequence of the resonances in
nucleotide bases and aromatic amino acids. Plasmon-
ics in this ranges relies in poor metals13,15,16,22 and
Rhodium17,18,20.

Because of the difficulty of its synthesis, few ex-
perimental works have been done for hBN single
layer. Also, to study and probe its electronic and
optical properties it is necessary to work in UV
range. To our best knowledge only one experimen-
tal work23 has been produced that studies the elec-
tronic properties of 2D hBN. Those authors observed
the band structure of BN monolayer on Ni(111) surface
by using angle-resolved ultraviolet-photoelectron spec-
troscopy and angle-resolved secondary-electron-emission
spectroscopy. Because the bond between the interface
of h-BN and Ni(111) is weak, the band-structure ob-
served can be regarded as that of the monolayer h-BN.
The band gap was determined to be ∼ 7 eV and after a
comparison with theoretical works, the authors conclude
that the band gap is estimated to be within the range
of 4.6 to 7.0 eV, too wide when compared with numeri-
cal results. These theoretical works were based on first
principles calculations using Density Functional Theory
(DFT). It is well known that DFT does not predict with
good accuracy the electronic and optical properties of
semiconductors and insulators. Accurate values require
a theory that include many-body effects like the GW
approximation.24,25 To obtain optical properties, a the-
ory that includes the excitonic properties is also needed.
Usually, the Bethe-Salpeter equation (BSE)26,27 is used.

There are several works in the literature that used the
GW approximation28–30 and GW+BSE31–33 on 2D h-
BN. The results from these works vary significantly, as
can be seen in Table I. There is no agreement even on
whether the gap is direct or indirect. Convergence can
be an issue in GW and BSE calculations as can be seen
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in References 34 and 35. It is likely that the works sum-
marized in Table I use different criteria for convergence
and that may explain the differences.

A small number of bands used in the calculation28,29 or
not using a truncation to avoid interaction with periodic
images30 may also explain some differences. Sometimes
there is some ambiguity between the value stated for the
gap and the one that can be obtained from the absorption
spectrum presented.32 More difficult to explain are the
values obtained in Ref. 33. They differ significantly from
our work and others, although they seem to have con-
verged the calculations carefully. One explanation may
be that they fixed the lattice constant at the experimental
value, instead of relaxing the unit cell. The experimen-
tal lattice constant may not match the value that actu-
ally optimizes the system and can influence the values of
the gaps in the electronic band-structure. An effective-
energy technique36 was adopted in Ref. 31. That tech-
nique allowed the calculation of the screened Coulomb
interaction W to be converged with only 90 bands and
60 bands for the self-energy Σ calculation. The use of
such technique certainly will produce some differences in
the final results.

In this work we clarify whether the gap in hBN is di-
rect or indirect, as well as their values and the exciton
energies. We also calculate the excitonic spectra using
an equation of motion formalism and the Elliot formula,
fitting it with the GW+BSE calculations thus obtain-
ing a validation of the method. In Section II we de-
scribe the details of the G0W0 calculations and results.
In Section III we show the results of the BSE calcula-
tions. Both G0W0 and BSE calculations were performed
with the software package BerkeleyGW.37–39 Section
IV presents the equation of motion formalism and the
results for the excitonic properties of monolayer hBN. In
Section V we study the properties of exciton-polaritons
of hBN and we show that a monolayer of hBN can be
used as a UV mirror. We finally draw the conclusions in
Section VI.

Table I. Several band gaps calculated in this work and by
other authors using GW0, G0W0 and BSE, in eV. K→K in-
dicates the direct gap at the K point, K→ Γ indicates the
indirect gap from the K to the Γ point, O. Gap is the optical
gap and EBE the excitonic binding energy.

Reference Calculation K→K K→ Γ O. Gap EBE

This work G0W0 + BSE 7.77 7.32 5.58 2.19
Ref. 32 GW0 + BSE 7.80 - 6.30 2.10 or 1.50
Ref. 31 G0W0 + BSE 7.36 - 5.30 2.06
Ref. 33 G0W0 + BSE 7.25 - - 1.90
Ref. 30 G0W0 - 7.40 - -
Ref. 29 GW0 - 6.86 - -
Ref. 28 G0W0 - 6.00 - -

Figure 1. (Color online) Electronic band structure (left) and
electronic density of states of h-BN (right) for both DFT and
GW calculations.

II. G0W0 RESULTS

G0W0 calculations were done on top of DFT cal-
culations with a scalar-relativistic norm-conserving
pseudopotential. The software package Quantum
ESPRESSO40 was used for the DFT calculations. The
details of the DFT calculations are summarized in Ta-
ble II. For G0W0 calculations, a truncation technique is
needed due to the non-local nature of this theory.

We found that for DFT calculations a grid of 6× 6× 1
k-points is enough to reach convergence. For the GW
calculations, a grid of 16 × 16 × 1 k-points and a cut
off energy of 22.6 Ry and 1100 bands were needed for
the dielectric matrix calculations. For the Σ self-energy
calculation we used a cut off energy of 22.6 Ry and 1000
bands. The results obtained for the electronic band gap
are summarized in Table III. They show that a monolayer
of hBN is a wide band-gap indirect-gap material. Fig.
1 presents the electronic band structure and electronic
density of states for both DFT and GW calculations.

As mentioned in the Introduction, the only experimen-
tal work we are aware off is the one from Ref. 23, which
in fact estimates the band gap based on theoretical works
that used mean field calculations to predict the electronic
properties of bulk h-BN. Mean field theories such as DFT
underestimate the band gap value of semiconductors and
insulator materials. They obtain a wide range of possible
values, from 4.6 to 7.0 eV. We believe that a value closer
to 7.0 eV is more reliable, since the gap value for the

Table II. Details of DFT calculations.

Exchange-correlation functional GGA-PBE41

Plane-wave cut-off 70 Ry
K-point sampling (Monkhorst-Pack)42 6× 6× 1
Interlayer distance 15.8 Å
Lattice constant 2.5 Å
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Table III. G0W0 gap values for the transitions K→ Γ, K→K
and Γ→ Γ, and optical gap and exciton binding energy (EBE)
obtained from BSE in this work. The results show that hBN
is an indirect-gap insulator.

Transition K→ Γ K→K Γ→ Γ Optical EBE

Energy [eV] 7.32 7.77 9.07 5.58 2.19

bulk materials are lower when compared to the monolayer
counterpart. And is actually closer to the ones obtained
by works referred in Table I. Still, more experimental
work is needed.

Ref. 23 also calculated the width of the valence bands,
and they found no good agreement with theoretical works
of the time. Table IV shows the width of the valence
bands as calculated with DFT,GW and the experimental
determination of Ref. 23. The π-band is the one that
has its highest energy at the K-point, while the σ1 and
σ2 are the bands that have the highest energy at the Γ
point. Table IV shows that DFT results differ from the
experimental ones by values greater than 0.5 eV in all
cases. On the other hand, G0W0 results differ from the
experimental results by values equal or smaller than 0.1
eV.

We also calculated the effective masses of the high-
est valence band and lowest conduction band using both
G0W0 and DFT (Table V). We found no differences be-
tween G0W0 and DFT, except for the effective mass at
K→ Γ on the first conduction band (DFT value greater
by 0.08me). Thus we conclude that DFT calculations are
reliable to obtain the values of the effective masses in this
material.

Ref. 28 also calculated the effective mass at the Γ
point for the conduction band, and obtained a value of
(0.95 ± 0.05)me with only slight variations for different
planar directions. In our work we obtained differences of
0.3me between different directions in reciprocal space at
the Γ point.

III. BSE RESULTS

After determining the conduction and valence band
states, the electron-hole pair states are determined us-
ing the Bethe-Salpeter (BSE) equation. The imaginary

Table IV. Width of the valence bands. π band is the top
valence band at K point. σ1 and σ2 are the bands that have
the highest energy at the Γ point. The difference is in the
width of the bands which is greater for σ2.

Width of bands [eV] π band σ1 band σ2 band

This work (DFT) 5.20 5.78 7.49
This work (G0W0) 5.90 6.42 8.24
Experimental23 5.80 6.50 8.20

Table V. Effective masses (in electron mass (me) units) for h-
BN calculated using G0W0. The arrow indicate the direction
in which the effective mass is calculated.

Effective mass m∗/me

Symmetry points K→Γ Γ→K Γ→M M→Γ

Valence band 0.63 0.82 1.09 0.46
Conduction band 0.83 0.95 1.27 0.35

part of the dielectric function ε2(ω) is then39

ε2(ω) =
8π2e2

ω2

∑
S

|e · 〈0|v |S〉|2 δ(ω − ΩS) (1)

where ΩS is the energy for an excitonic state S, 〈0|v |S〉
is the velocity matrix element, and e is the direction of
the polarization of incident light with energy ω. e is the
electron charge.

If we do not consider excitonic effects, the expression
becomes a transition between single particle states39

ε2(ω) =
8π2e2

ω2

∑
vck

|e · 〈vk|v |ck〉|2 δ(ω − (Eck − Evk))

(2)
which is a random phase approximation (RPA). The la-
bels v (c) denotes valence (conduction) band states, and
k denotes the single particle momentum (only vertical
transitions are considered).

Fig. 2 shows the imaginary part of the dielectric func-
tion calculated by BSE, done on top of a G0W0 calcu-
lation with a grid of 16 × 16 × 1 k-points. The conver-
gence of the G0W0 band structure with a particular grid
of k-points does not imply that BSE will be converged
with the same grid. An interpolation with a fine grid
of 120× 120× 1 k-points was needed to achieve conver-
gence. Fig. 2 also shows the imaginary part of dielectric
function without excitonic effects. The first peak has an
energy of 5.58 eV and the second peak has an energy of
6.48 eV. In Table III we summarize the gap values of the
band structure, the optical gap and the excitonic bind-
ing energy. Fig. 3 shows the real part of the dielectric
function calculated with and without excitonic effects.

We also calculated the eigenvalues of the two particle
states. Figure 4 shows the energies of the 8 lowest energy
excitonic states. From now we label each state by the
corresponding energy in an ascending order. The pairs
of states (1,2), (3,4), and (7,8) are degenerate. States
1 and 2 are the degenerated ground state. We plot the
probability density |φ (re, rh)|2 obtained from the BSE
for these eight excitonic states in Fig. 5. These plots
show the probability to find an electron at position re if
the hole is located at rh. We set the hole localized slightly
above the nitrogen atom. The results were calculated
using a coarse grid of 12 × 12 × 1 k-points and a BSE
interpolation of 72×72×1 k-points. It can be noticed the
complementarity of the degenerate states. For instance,
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Figure 2. (Color online) Imaginary part of dielectric function
of 2D h-BN. The blue (red) lines represent the BSE (RPA)
imaginary part of dielectric function.

Figure 3. (Color online) Real part of the dielectric function
of 2D h-BN. The blue (red) lines represent the BSE (RPA)
real part of dielectric function.

if one adds the probability density of states 3 and 4, the
symmetry of the lattice is recovered. And the same can
be seen for the other degenerate states. The work of Ref.
33 has also studied the excitonic states. Their results
are in good agreement with the ones obtained from this
work.

IV. BSE IN THE EQUATION OF MOTION
FORMALISM AND THE ELLIOT FORMULA

In this section we will follow the approach of the equa-
tion of motion derived in Ref. 43 and detailed in the
Appendix A. The formalism is grounded on the calcula-
tion of the expected value of the polarization operator
P̂ (t) after we introduce an external electric field of inten-
sity E0 and frequency ω that couples with the electron
gas in the 2D material. The optical conductivity and
other properties can be obtained from the macroscopic
relations. The starting point of our model is an effective
Dirac hamiltonian,44 that can be obtained from a power

Figure 4. (Color online) Excitonic energies for the lowest
energy exciton states. The system has a C3v symmetry with
three representations: A1, E and A2. The states 1 to 4 have
E symmetry and are valley degenerate; states 5 and 6 have
A2 and A1 symmetries respectively and are non degenerate
(see Ref. 33).

series expansion of the tight-binding hamiltonian. The
electron-electron interaction for a 2D material is given by
the Keldysh potential.45 This effective model only con-
siders the top valence band and the bottom conductance
band.

From the equation of motion we derive the following
BSE:

(ω − ω̃λk) pλ(k, ω) = (E0dλ(k) + Bkλ(ω)) ∆fk, (3)

where λ = ±, p±(k, ω) is the interband transition am-
plitude, ω̃λk is the transition energy renormalized by the
exchange self-energy and Bkλ(ω) is a term that renor-
malizes the Rabi-Frequency, dλ(k) is the dipole matrix
element and ∆fk is the occupation difference, given by
the Fermi-Dirac distribution. See Appendix A for more
details.

From the homogeneous part of Eq. (3) we can obtain
the exciton energies and the wave functions. Using the
procedure explained in Ref. 43, we can obtain the corre-
sponding Elliot formula for the optical conductivity:

σ(ω)

σ0
= 4i~ω

∑
n

pn
~ω − En + iγ

, (4)

where n labels the exciton state, γ is the exciton
linewidth, En the exciton energy, pn the corresponding
exciton weight and σ0 = e2

4~ . Fig. 6 shows that the
G0W0+BSE described in section III fits well to the El-
liot formula, with a very good agreement in the real part
and a small shift in the imaginary part. The energies and
weights of the fit for the G0W0+BSE and the equation
of motion method are compared in table VI. We use the
parameters from Ref. 44: a0 = 2.51 Å, t0 = 2.33 eV
~vF =

√
3
2 t0a0, 2mv2F = 3.92 eV. The Keldysh potential

parameter r0 was calculated in Ref. 33 to be r0 = 10 Å.
We can see a excellent agreement between the exciton en-
ergies of both methods. The difference in the weights pn
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7 8

Figure 5. (Color online) Probability density |φ (re, rh)|2 for the exciton states 1 to 8. The hole is localized slightly above the
nitrogen atom (light color) at the centre of the lattice.
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can be explained by the oversimplification of the Dirac
hamiltonian used for the Elliot formula and consequently
the less accurate dipole matrix elements that enter their
calculation.

Figure 6. (Color online) Fit of the Elliot formula to the
G0W0+BSE result. There is a very good agreement for the
real part and a small shift in the imaginary part; the exciton
linewidth used was γ = 0.1 eV. The parameters of the fitting
are shown in table VI.

Finally, we used the equation of motion to predict the
behavior of the exciton energy and the K→K transition
energy as a function of the environment dielectric con-
stant. The result can be seen in Fig. 7. There is a strong
decrease in the K→K transition energy and an almost lin-
ear behavior, also decreasing, of the first exciton energy
as the external dielectric constant increases. This effect
is simple to understand, since a large dielectric constant
screens more effectively the electron-electron interaction.

V. EXCITON-POLARITONS

In this section we discuss the exciton-polariton modes
in 2D hBN. Those modes are electromagnetic evanes-
cent waves along the direction perpendicular to the hBN
sheet. We assume that the hBN monolayer is cladded be-
tween two uniform, isotropic media with dielectric con-
stants ε1 and ε2 and that the hBN sheet is in the xy-
plane. So the electromagnetic mode is evanescent in the z
axis and proportional to e−κiz (i = 1, 2). The modes can
be classified as transverse magnetic or transverse electric
(TM/TE).

Table VI. Comparison of the Elliot formula parameters used
in the G0W0+BSE calculation and the equation of motion
approach. The spin and valley degeneracy is already included
in the weight.

E1(eV) p1 E2(eV) p2

G0W0+BSE 5.48 0.088 6.41 0.027
Eq. of Motion 5.52 0.354 6.53 0.045

Figure 7. (Color online) Exciton and K→K transition energy
as function of the environment dielectric constant. We can see
that the dependence of the first exciton energy is almost linear
while the K→K transition energy has a greater dependence
on the dielectric constant.

The dispersion relation for the TM mode is given by
the solution given in Ref. 46:

ε1
κ1

+
ε2
κ2

+ i
σ(ω)

ε0ω
= 0, (5)

and for the TE mode:

κ1 + κ2 − iωµ0σ(ω) = 0, (6)

with σ(ω) the hBN optical conductivity and:

κi =

√
q2 − εi

ω2

c2
, (7)

where q is the exciton-polariton in-plane wavevector and
c is the velocity of light in vacuum. We shall consider
the simplest case of ε1 = ε2 = 1. A rule of thumb is
that when =σ(ω) > 0 (=σ(ω) < 0 ) TM (TE) modes are
supported.

A. Complex q × Complex ω

First, we note that both Eqs. (5) and (6) are com-
plex. Therefore, for a given q (ω) real, the solution will
be a complex ω (q). Each of these approaches (complex
q or complex ω) lead to different dispersion relations for
the exciton-polaritons as discussed elsewhere.47–51 Both
complex q and complex ω approaches give the same re-
sults when an active media is used to balance the losses.51
The complex q approach is suitable when the polariton is
excited in a finite region of space with a monochromatic
wave, while the complex ω approach is valid instead when
the entire sample is excited by a pulsed light.49

The dispersion relation for both the TE and TMmodes
in the complex ω approach was obtained by solving Eqs.
(5) and (6) and using the Elliot formula (4) with the pa-
rameters of table (VI) for the G0W0+BSE calculation
and a damping of γ = 0.1 eV. The result is shown in
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Figure 8. (Color online) Exciton-polariton dispersion relation
for complex frequency. The results are given as a function of
the wavenumber ν̃ = λ−1

q . The gray dashed-dot line repre-
sents the light cone in air. In this approach, the wavenumber
can reach large values for both TE and TM modes for either
A or B exciton energies. Detail around excitons A and B is
shown in the right panels.

Fig. 8, where A and B denote the first two excitonic
energies. Both TE and TM modes can have a large lo-
calization (high κi or q) in this case. The TE mode has
a flat dispersion relation that approaches the exciton en-
ergy as q goes to infinity. As expected, the TM mode has
a higher frequency than the exciton energy while the TE
mode has a lower frequency. We point out that, and con-
trary to graphene, the TE mode presents a high degree
of localization.

In the complex ω approach both excitons A and B sup-
port polaritons. This can be understood by examining
Eq. (4). As ~ω approaches En − iγ, the corresponding
contribution to the optical conductivity diverges. This
quantity can be infinitely negative or positive depend-
ing on the real part of the frequency approaching En
from the right or the left, supporting TM and TE modes
respectively. Fig. 8 also shows that the electrostatic
limit q � ω/c is approached near both exciton energies.
In that limit the lifetime τ of the TM exciton-polariton
τ = −1/=ω can be calculated from (see Appendix B):

τ−1 =
γ

~
+

1

~
pn= [bn]∣∣∣∣ (ε1 + ε2)bn

4παcq
+ 1

∣∣∣∣2
, (8)

where α is the fine-structure constant and bn is the con-
tribution that arises from the background conductivity
provenient from interband transitions and other excitonic
states. For a negligible background bn ≈ 0, the exciton-
polariton lifetime is proportional to the inverse of the

exciton linewidth γ.
Next we shall consider the case of complex q. There

will be then a simple relation to obtain q for a given
frequency (assuming εi = 1):

c2q2 = ω2 + c2κ2α(ω), (9)

with α =TM/TE and from Eqs. (5) and (6) we have:

κTE(ω) = i
ε0ω

2σ(ω)
, (10a)

κTM(ω) = i
ωµ0σ(ω)

2
, (10b)

The condition for the existence of polaritons is <κα > 0.
These equations allowed us to calculate the dispersion
relation shown in Fig. 9 for several values of the damp-
ing constant γ. The dependence of the γ parameter of
excitons was studied for WS2 in Ref.52 as function of
temperature, showing that the linewidth decreases as the
temperature decreases. From Fig. 9 we can see that the
TE mode is strongly supressed except when the damping
has the very low value of 4 meV, close to the intrinsic
line-width. The opposite happens for the TM mode, for
which the dispersion relation is almost insensitive to the
damping γ.

An important figure of merit is the ratio of the prop-
agation length ` = = q−1 to the exciton wavelength
λq = 2π/< q , as it indicates if a polariton can propagate
before extinction, that is shown in Fig. 10 for several
values of γ. The TM mode is highly supressed except
for the very low γ = 4 meV, while the TE mode has
higher propagation rate and two different qualitative be-
haviors. For larger γ, the propagation rate increases with
the frequency while the opposite happens for γ = 4 meV.
A better understanding of this behavior can be achieved
if we consider the confinement ratio λ0/λq, with λ0 be-
ing the wavelength of the free-radiation (see Figure 11).
The confinement of the TM modes increases with in-
creasing frequency and have a negligible γ dependence.
On the other hand, the TE modes are poorly confined,
with the confinement going to zero faster with increasing
γ. This explains the large propagation rate in this case:
the poorly confined field is essentially attenuated free ra-
diation, i.e., there are no more excitons being excited,
but the radiation field is attenuated by the material free
charges.

The overall conclusion is that 2D hBN is a good plat-
form for exciton-polaritons when we consider the complex
ω approach for both TM and TE modes. In the complex
q approach, the results show that exciton-polariton can
be observed only for γ = 4 meV.

B. UV radiation mirror

It was pointed out recently that excitons in MoSe2
can lead to very high reflection of electromagnetic
radiation53,54. In this section we show that the same
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Figure 9. (Color online) Exciton-polariton dispersion relation
in the complex wavenumber approach. Panel A (B) shows
the TM (TE) mode. The TM mode has a dispersion almost
insensitive to the relaxation rate while the TE mode changes
significantly: the wavenumber is close to the free-light one
and only for γ = 4 meV there is a different behavior.

occurs with hBN, but in a different spectral range. We
consider a free-standing hBN monolayer. In this case the
reflection is given by:55

R =

∣∣∣∣ παf(ω)

2 + παf(ω)

∣∣∣∣2 , (11)

where f(ω) = σ(ω)/σ0 , α ≈ 137−1 is the fine structure
constant and σ0 = e2/4~. Fig. 12 shows that the reflec-
tion can reach almost 100% for the value γ = 4 meV at
the A exciton energy. This is a consequence of the very
high weights for hBN that appears in the Elliot formula
(see table VI). We emphasize that those results are for a
free-standing hBN sheet. The γ value can be controlled
by the temperature as discussed in the sections before.
As shown in Fig. 7, the exciton energy and therefore the
reflection peak can be controlled by varying the external
dielectric constant.

VI. CONCLUSION

We calculated the band structure of 2D hexagonal
boron nitride using DFT and the G0W0 approximation.

Figure 10. (Color online) Exciton-polariton propagation ra-
tio. Panel A (B) shows the TM (TE) mode. The propagation
rate of the TM mode is very low except for γ = 4 meV. The
peak at ω = 5.48 corresponds to the propagation of radia-
tion. As can be seen in Fig. 9, the wavenumber tends to
the free-light wavenumber. The same result appears in the
propagation rate for the TE modes: except for γ = 4 meV, all
other modes correspond to poorly confined modes (see Fig.
11 also). For γ = 4 meV and the TE mode, the propagation
rate decreases with the increasing frequency.

Then the Bethe-Salpeter equation was used to determine
the excitonic energies of hBN. We determined the values
of the band gap, optical gap, excitonic binding energies
using a first principles approach. The results are in very
good agreement with the ones obtained using a very dif-
ferent approach, namelly the equation of motion formal-
ism and the Elliot formula, which are also presented in
this paper. This latter formalism allowed us to study the
optical properties for both the TM and TE modes. Our
results show that 2D hBN is a good candidate to polari-
tonics in the UV range. We also show that a single layer
h-BN can act as an almost perfect mirror for ultraviolet
electromagnetic radiation.
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Appendix A: Equation of motion formalism

The total hamiltonian that we consider in the equation
of motion approach is H = H0 +HI +Hee where we have
the Dirac hamiltonian:

H0(k) = ~vF
(
σ · k + σ3mv

2
F

)
, (A1)

the dipole interaction hamiltonian:

ĤI(t) = −eE(t)x̂, (A2)

and the electron-electron interaction:

Ĥee = −e
2

∫
dr1dr2ψ̂

†(r1)ψ̂†(r2)V (r1 − r2)ψ̂(r2)ψ̂(r1),

(A3)
where we used the field operator:

ψ̂(r, t) =
1

L

∑
k,λ

φλ(k)âkλ(t)e−ik·r, (A4)

with the eigenvector of H0:

φλ(k) =

√
Ek + λm

2Ek

(
1

kx−iky
λEk+m

)
, (A5)

and eigenvalues:

Ek =
√
k2 +m2. (A6)

We note that the electron-electron interaction for
charges confined in a 2D material is given by the Keldysh
potential:45,56

V (q) = − e

2ε0

1

q(r0q + εm)
, (A7)

The expected value of the polarization operator for the
2D Dirac equation can be written as:

P (ω) = − igse

2

∑
kλ

d−λ(k)pλ(k, ω), (A8)

gs = 4 takes into account the spin and valley degeneracy,
λ = ± labels the valence (−) or the conduction (+) band.
The dipole matrix element d−λ(k) is:

dλ(k) = − 1

2Ek

(
sin θ + i

m

Ek
cos θ

)
. (A9)

The interband transition amplitude is defined as:

pλ(k, ω) =

∫ ∞
−∞

dω

2π
e−iωt

〈
â†k,λ(t)âk,−λ(t)

〉
. (A10)

where â†k,λ(t)(âk,λ(t) ) is the creation (annihilation) op-
erator in band λ in the Heisenberg picture.

As explained in Ref. 43, from the equation of motion
for the transition amplitude we can derive the following
Bethe-Salpeter Equation:

(ω − ω̃λk) pλ(k, ω) = (E0dλ(k) + Bkλ(ω)) ∆fk, (A11)

where ω̃λk is the renormalized transition energy:

ω̃λk = 2λEk + λΣxc
k,λ, (A12)

where the exchange self-energy is included as

Σxc
k,λ =

∫
dq

(2π)2
V (q)∆fk−q

[
Fλ′λλλ′(k,k− q)−

−Fλλλλ(k,k− q)
]
,(A13)

where Fλ1λ2λ3λ4
are defined in Eq. (A15). We define

∆fλk = nF (λEk) − nF (−λEk) where nF is the Fermi-
Dirac distribution and which gives us the difference in
occupation between valence and conductance bands for
a vertical transition. Finally, the integral term Bkλ(ω)
is:

Bkλ(ω) =

∫
dq

(2π)2
V (|k− q|)

[
pλ(q, ω)Fλ′λ′λλ(k,q) +

+pλ′(q, ω)Fλ′λλ′λ(k,q)
]
.(A14)

The homogeneous part of equation A11, obtained by
setting E0 = 0, can be used to calculate the excitons
wavefunctions and energies. From the inhomogeneous so-
lution of A11, pλ(k, ω) the macroscopic polarization P (ω)
can be calculated using Eq. A8 and from there it follows
the optical conductivity, permittivity and absorbance.

The overlap of four wavefunctions is given by the
Fλ1,λ2,λ3,λ4

(k1,k2) function:

Fλ1,λ2,λ3,λ4
(k1,k2) =

= φ†λ1
(k1)φλ2

(k2)φ†λ3
(k2)φλ4

(k1) . (A15)

Appendix B: Exciton in the polariton eletrostatic
limit

In the electrostatic limit the TM exciton-polariton
equation read as:

ε1 + ε2
q

+ i
σ(ω)

ε0ω
= 0, (B1)

with the solution:

~ω(q) = En +
Mn

(ε1+ε2)bn
4παcq + 1

bn − i~γ, , (B2)

where bn can be a complex quantity, the polariton life-
time is given by −1/= [ω], and:

= [ω] = −γ − 1

~
Mn= [bn]∣∣∣ (ε1+ε2)bn4παcq + 1

∣∣∣2 , (B3)

http://dx.doi.org/10.1103/PhysRevB.90.075429
http://dx.doi.org/10.1103/PhysRevB.90.075429
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from (B2) we can see that excitons-polaritons always ex-
ist in TMD’s systems. For the parameters considered,

<
[

Mn
(ε1+ε2)bn

4παcq +1
bn

]
> 0, so the exciton-polariton will al-

ways exists for energies higher than the exciton energy.
This term also defines the exciton-polariton bandwidth,
for q →∞:

< [~ω(q →∞)] = En +Mn< [bn] . (B4)


	Excitons in hexagonal boron nitride single-layer: a new platform for polaritonics in the ultraviolet
	Abstract
	I Introduction
	II G0W0 results
	III BSE results
	IV BSE in the equation of motion formalism and the Elliot formula
	V Exciton-Polaritons
	A Complex q  Complex 
	B UV radiation mirror

	VI Conclusion
	 Acknowledgments
	 References
	A Equation of motion formalism
	B Exciton in the polariton eletrostatic limit


