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We consider a planar two-dimensional system between two media with different dielectric constants and in

the presence of a third dielectric medium separated by a nonplanar interface. Extending a perturbative method

for solving Poisson’s equation, developed by Clinton, Esrick, and Sacks [Phys. Rev. B, 31, 7540 (1985)], in

the presence of nonplanar conducting boundaries to the situation proposed here, we obtain, up to the first order

in terms of the function which defines the nonplanar interface, the effective potential, the effective electrostatic

field, the effective dielectric constant for the planar 2D system, and the effective external field acting in-plane

in the 2D system. Implications of the results to properties of 2D systems are discussed. In the limit of planar

surfaces, vacuum-dielectric or vacuum-conducting media, our results are in agreement with those found in the

literature.

I. INTRODUCTION

Two-dimensional (2D) systems, as for example a 2D

elecron-gas in a heterostructure or in doped graphene, have

properties influenced by the electron-electron interaction1–6,

as well as by the presence of external electric and magnetic

fields7. In the case of graphene, the electron-electron interac-

tions implies in the renormalization of the Fermi velocity, thus

reshaping the Dirac cones3,8, an effect that was experimentally

observed5.

In the context of quantum field theories applied to the con-

densed matter, the pseudo-quantum electrodynamics (PQED)

(sometimes called reduced quantum electrodynamics), an ef-

fective and complete description in 2+1 dimensions for elec-

tronic systems moving on a plane, was built considering that

the static potential of interaction between electrons in the

2D system should be Coulombian, instead of the logarith-

mic one (∝ ln r) characteristic of quantum electrodynamics

in 2+1 dimension8,9. On the other hand, the effective inter-

action between electrons in a two-dimensional system can be

changed by the presence of material media. For example, it

was recently shown that the logarithmic renormalization of

the Fermi velocity in a plane graphene sheet (which, in turn,

is related to the Coulombian static potential associated to elec-

trons in the sheet) is inhibited by the presence of a single par-

allel plate or a cavity formed by conducting plates10,11, with

this inhibition leading to an increase of the optical conductiv-

ity.

In addition, the effective interaction between electric

charges in a two-dimensional planar system, when it is

put in the presence of a planar interface between dielec-

tric media7,12,13, has been investigated. This change of the

electron-electron interaction due to the presence of boundaries

affects Coulomb drag between graphene single layers13,14.

The problem of finding the effective interaction between

static charges in a two-dimensional system can be viewed as

part of a class of problems focusing on a static point charge in

the presence of an interface between two media.

Essentially, the field of the charge induces an electric po-

larization on the interface (or a surface charge distribution),

which generates an additional electric field, usually named

image field, whose knowledge enables us to find the effective

potential and external fields acting on the two-dimensional

system where the point charge lives.

In the 1970s, the image potential was discussed in the con-

text of several phenomena. For instance, the image-potential

states, which are quantum states of electrons localized at sur-

faces of materials which exhibit negative electron affinity15.

These electrons cannot escape from the surface due to the im-

age electric potential field and cannot penetrate into the ma-

terial due to the negative electron affinity16, as it occurs with

electrons in the vicinity of a liquid-helium interface15–17. On

the other hand, up to 1980, the majority of cases that had been

investigated of image-potential effects assumed that the in-

terfaces between the media were planar18,19. Motivated by

the fact that it is almost impossible to create a perfectly pla-

nar surface and interested in determining effects of corruga-

tion on the image potential, Rahman and Maradudin18 cal-

culated perturbatively the electrostatic image potential for a

point charge located near a rough vacuum-isotropic dielectric

interface, with the surface of separation described by a ran-

dom function with mean value equal to zero. The problem

of finding the image potential for a point charge in vacuum

in the presence of a nonplanar metal surface has been investi-

gated by Clinton et al.15, who, based on a work-energy argu-

ment, obtained a general formulation for the image potential

for first-order deformations of an arbitrary shape, showed that

ions and electrons are always attracted to the elevated part of

the surface15. Clinton et al.20 also presented a formal solution

for the electrostatic potential by solving perturbatively Pois-

son’s equation in the presence of a generally modified planar

conducting surface, with the solution extendable to any per-

turbation order in the corrugation function20.

Non planar interfaces occur naturally in graphene-based

plasmonic systems21. In this class of systems, patterned

metallic gratings are positioned at a distance of a single atom

from a single graphene sheet, thus leading naturally to the

class of problems discussed in this paper. Also, the problem of

nanoparticles deposited on graphene,22 and how they change

the electron-electron interactions in graphene, is another class

http://arxiv.org/abs/1810.08939v1
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of problems that can be solved using the approach we develop

ahead. Naturally, the presence of metallic substrates near a

2D material changes the optical conductivity of the material.

How this change occurs is also controlled by the nature of the

interface near the material and, therefore, incorporating the

effect of corrugation in the formalism is a natural application

of the problems tackled in this work.

Doped transition-metal dichalcogenides are known to have

strong electron-hole interactions (excitonic effects) which can

be tuned by the presence of interfaces, being they of dielec-

tric or metallic nature23. Again, how the presence of corruga-

tion changes the electron-electron interaction in this class of

systems is a highly relevant problem in the field of 2D mate-

rials. Finally, if the corrugation24 occurs in the scale of tens

of nanometers, a length scale well in reach of microfabrica-

tion techniques, the corrugation plays the role of a scattering

potential for the electronic propagation, thus affecting the DC

conductivity of the electrons in the 2D material. Since hexag-

onal Boron Nitride has allowed an unprecedent control on the

distance a 2D system can be positioned near a corrugated in-

terface, the problem discussed in this paper acquires relevance

for applications in the field of polaritonics using 2D materials.

In the present paper, we investigate how the presence of

nonplanar surfaces changes the effective electrostatic interac-

tion between electrons in a two-dimensional system, produc-

ing an effective potential dependent not only on the distance

to the source charge but also on the position of the charge it-

self, and also how nonplanar surfaces generate an effective in-

plane external electric field acting along the two-dimensional

system. Specifically, considering a typical configuration7,13,

we investigate a planar two-dimensional system between two

media with different dielectric constants, in the presence third

dielectric medium separated by a nonplanar interface. Extend-

ing the perturbative method for solving Poisson’s equation in

the presence of nonplanar conducting boundaries, proposed

by Clinton, Esrick, and Sacks20, to the situations discussed

here, we obtain the first correction to the effective potential

and dielectric constants for the planar two-dimensional sys-

tem, as well as calculate the coordinate dependent external

electric field induced by the nonplanar surface. As an applica-

tion of our results, we use our results to the case of sinusoidal

surfaces. Finally, implications of the results to properties of

two-dimensional systems are discussed.

The paper is organized as follows. In Sec. II we obtain

the total electric potential function for the problem of a point

charge between two media with different dielectric constants,

and in the presence third dielectric medium separated by a

nonplanar surface. We obtain, from our formulas, the particu-

lar results for two dielectrics, vacuum-dielectric and vacuum-

conducting media, extending and recovering results found in

the literature. We obtain the effective potential and dielectric

constants for charges living in a 2D planar system put between

two dielectric media, also showing the appearance of an effec-

tive external field, induced by the nonplanar interface, acting

on the charges in this 2D system. In Sec. III, we apply our

formulas to the case of sinusoidal surfaces and, using realistic

values, obtain estimates for the intensities of effective inter-

action and external field. In Sec. IV, we present our final

Figure 1. Illustration of the configuration formed by three differ-

ent dielectric media (x-axis perpendicular to the paper). One can

see a planar interface between the regions ǫ3 and ǫ2, where a two-

dimensional system is located. All charges of this system, for in-

stance the charge Q illustrated in the figure, are confined to this

plane. The figure also shows a nonplanar interface [described by

z = λh
(

r||
)

] separating the regions ǫ2 and ǫ1.

comments as well as discuss some implications of our results

for two-dimensional systems.

II. POINT-CHARGES CONFINED BETWEEN TWO

DIELECTRICS, IN THE PRESENCE OF A THIRD

DIELECTRIC REGION WITH A NONPLANAR INTERFACE

A. Statement of the problem

We consider a stratified medium containing three different

insulators , arranged as as in Fig. 1 (for the purposes of this

paper, the first dielectric can also be replaced by a metallic

medium). Mathematically, the position of the dielectrics are

given by:

ǫ (r) =











ǫ3, z > d

ǫ2, λh
(

r||
)

< z < d

ǫ1, z < λh
(

r||
)

,

(1)

where r|| = xx̂ + yŷ, d > 0, z = λh(r||) [h(r||) < d]

defines a general (nonplanar) surface, and λ (|λ| < 1) is a

dimensionless parameter such that for λ = 0 one recovers the

planar surface case at z = 0. We consider x̂, ŷ and ẑ unit

vectors pointing to the x, y, and z directions, respectively. For

practical purposes, we write

ǫ (r) =ǫ3θ (z − d) + ǫ2θ
[

z − λh
(

r||
)]

θ (d− z)

+ ǫ1θ
{

−
[

z − λh
(

r||
)]}

, (2)

whose expansion in λ leads to

ǫ (r) = ǫ3θ (z − d) + ǫ2θ (z) θ (d− z) + ǫ1θ (−z)
+ δ (z) [−ǫ2θ (d− z) + ǫ1]λh(r||) +O(λ2) + ...(3)

We consider the problem of a two-dimensional system of

point charges confined in the planar interface between the me-

dia ǫ3 and ǫ2, as illustrated in Fig. 1. This is achieved, po-

sitioning a 2D system between these two dielectrics. From
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Gauss’s law, we have, for a charge Q located at the position

r = r′, with r′ = r′|| + dẑ,

∇ · [ǫ (r)∇φ (r, r′)] = −4πQδ (r− r′) , (4)

where the potential φ can be written as φ (r, r′) = QG (r, r′).
Following Clinton, Esrick, and Sacks20, we look for a solution

of G as an expansion in powers of λ:

G (r, r′) = G(0) (r, r′) +

∞
∑

n=1

λnG(n) (r, r′) , (5)

where G(0) (r, r′) is related to the solution of Gauss’s equa-

tion for planar interfaces. To solve Eq. (4) with ǫ (r) given by

Eq. (2), it is convenient to introduce the Fourier transform in

the x, y coordinates,

f(r||, z) =

ˆ

1

(2π)
2 d

2qf (q, z) eiq·r|| , (6)

where f can represent any function of r|| considered in the

present paper, and q = qxx̂+ qyŷ. We also have

f (q, z) =

ˆ

d2rf
(

r||, z
)

e−iq·r|| , (7)

and we are adopting the same nomenclature for a given func-

tion of (r||, z) and for its 2D Fourier transform. Using the

representation given in Eq. (6), it can be shown that Eq. (4)

can be written as

ˆ

1

(2π)2
d2q′

{

(q′ · q)G (q′, z, r′) ǫ (q− q′, z)

−
∂

∂z

[

∂G (q′, z, r′)

∂z
ǫ (q− q′, z)

]}

= 4πδ (z − d) e−iq·r′|| . (8)

The continuity condition for G (q, z, r′) is required for all val-

ues of z. Specifically focusing on the interfaces, we have

(η > 0):

lim
η→0

G (q, d+ η, r′) = lim
η→0

G (q, d− η, r′) , (9)

lim
η→0

G
(

q, λh
(

r||
)

+ η, r′
)

= lim
η→0

G
(

q, λh
(

r||
)

− η, r′
)

.

(10)

Note that these boundary conditions apply to the full Green’s

function.

B. Method of solution

The central point of the present calculation is to substitute

(3) and (5) into (8), and requiring that the coefficients of λn

vanish. This yields (up to first order in λ) an equation forG(0),

∇ ·

{[

ǫ3θ (z − d) + ǫ2θ (z) θ (d− z) + ǫ1θ (−z)

]

∇

[

G(0) (r, r′)
]

}

= −4πδ (r− r′) , (11)

and an equation for G(1),

∇ ·

{

ǫ3θ (z − d) + ǫ2θ [z] θ (d− z) + ǫ1θ (−z)

∇

[

G(1) (r, r′)
]

}

= ǫ−21∇·
{

δ (z)h
(

r||
)

∇

[

G(0) (r, r′)
]}

,

(12)

where hereafter we consider

ǫ±ij = ǫi ± ǫj . (13)

These equations in Fourier space are given, respectively, by:

q2ǫ (z)G(0)
(

q, z, r′||, d
)

−
∂

∂z



ǫ (z)
∂G(0)

(

q, z, r′||, d
)

∂z





= 4πδ (z − d) e−iq·r′|| (14)

and

q2G(1) (q, z, r′)

[

ǫ3θ (z − d)+ǫ2θ (z) θ (d− z)+ǫ1θ (−z)

]

−
∂

∂z

{

∂G(1) (q, z, r′)

∂z
[

ǫ3θ (z − d) + ǫ2θ (z) θ (d− z) + ǫ1θ (−z)

]}

= ǫ−21

ˆ

1

(2π)2
d2q′

{

(q′ · q)G(0) (q′, z, r′)

δ (z)h (q− q′)−
∂

∂z

[

∂G(0) (q′, z, r′)

∂z
δ (z)h (q− q′)

]}

.

(15)

The solution for (14), taking into account that G(0) is con-

tinuous through the interfaces, is known and given by7,12,13:

G(0) (q, z, r′) =



















G
(0)
III

(

q, z, r′||, d
)

, z ≥ d

G
(0)
II

(

q, z, r′||, d
)

, 0 ≤ z ≤ d ,

G
(0)
I

(

q, z, r′||, d
)

, z ≤ 0.

(16)

The functions G
(0)
I , G

(0)
II and G

(0)
III are explicitly exhibited in

Appendix A.

To solve Eq. (15), we take into account a set of four equa-

tions describing the boundary conditions for G(1). A first pair

of equations is given by (see Appendix B):

G(1)
(

q, d+, r′||, d
)

= G(1)
(

q, d−, r′||, d
)

, (17)

G(1)
(

q, 0+, r′
)

−G(1)
(

q, 0−, r′
)

=

ˆ

1

(2π)2
d2q′h (q− q′)

[

−

(

∂G(0)

∂z

)

(

q′, 0+, r′
)

+

(

∂G(0)

∂z

)

(

q′, 0−, r′
)

]

. (18)
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Then, the initial problem of finding G via Eq. (8) with the

boundary conditions (9) and (10) (both requiring the continu-

ity of G, with the former taken on a planar and the latter taken

on a nonplanar surface), is now effectively replaced (up to first

order in λ) by the problem of finding G(1) via Eq. (15) with

the boundary conditions (17) and (18), which are both taken

on planar surfaces, but with the latter showing a discontinuity

of G(1) when it passes through z = 0.

Looking for a boundary condition for the z-derivative of

G(1) across z = 0, we integrate Eq. (15) in z in the regions

(−η,+η), sending η → 0, obtaining

−ǫ2

[

∂

∂z
G(1) (q, z, r′)

]

z=0+
+ǫ1

[

∂

∂z
G(1) (q, z, r′)

]

z=0−

= ǫ−21

ˆ

1

(2π)2
d2q′h (q− q′) (q′ · q)G(0) (q′, 0, r′) .

(19)

Repeating the procedure for the region (d− η, d+ η), we get

ǫ3
∂

∂z
G(1) (q, z, r′)d+η−ǫ2

∂

∂z
G(1) (q, z, r′)d−η = 0. (20)

Requiring that limz→±∞ G(1) = 0, we write the solution

for (15), (17), (18), (19) and (20) as:

G(1) (q, z, r′) =



















G
(1)
III

(

q, z, r′||, d
)

, z ≥ d

G
(1)
II

(

q, z, r′||, d
)

, 0 < z ≤ d ,

G
(1)
I

(

q, z, r′||, d
)

, z < 0

(21)

with G
(1)
I , G

(1)
II and G

(1)
III shown in Appendix A. The solution

for G(1) in terms of x and y is given by (see Appendix C):

G
(1)
III

(

r||, z, r
′
||, d

)

=
1

4π
ǫ−21

ˆ

d2r̃h
(

r̃||
)

[

G1

(

r||, d− z, r′||, d, r̃||

)

+
ǫ1
ǫ2
G2

(

r||, d− z, r′||, d, r̃||

)

]

, (22)

G
(1)
II

(

r||, z, r
′
||, d

)

=
1

8π

ǫ−21
ǫ2

ˆ

d2r̃h
(

r̃||
)

{

ǫ−23

[

G1

(

r||, z − d, r′||, d, r̃||

)

+
ǫ1
ǫ2
G2

(

r||, z − d, r′||, d, r̃||

)

]

+ ǫ+23

[

G1

(

r||, d− z, r′||, d, r̃||

)

+
ǫ1
ǫ2
G2

(

r||, d− z, r′||, d, r̃||

)

]

}

, (23)

G
(1)
I

(

r||, z, r
′
||, d

)

=
1

8π

ǫ−21
ǫ2

ˆ

d2r̃h
(

r̃||
)

{

ǫ−23

[

G1

(

r||, z − d, r′||, d, r̃||

)

+ G2

(

r||, z − d, r′||, d, r̃||

)

]

+ ǫ+23

[

G1

(

r||, z − d, r′||, d, r̃||

)

− G2

(

r||, z − d, r′||, d, r̃||

)

]

}

, (24)

where

G1

(

r||, ζ, r
′
||, d, r̃||

)

= ∇||G
(0)
I

(

r̃||, ζ, r||, d
)

·∇′
||G

(0)
I

(

r̃||, 0, r
′
||, d

)

, (25)

G2

(

r||, ζ, r
′
||, d, r̃||

)

=

[

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r||, d
)

]

z̃=ζ
[

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r
′
||, d

)

]

z̃=0

. (26)

We have, therefore, concluded the solution of the problem in

its most general form.

C. Particular results

If we consider the case vacuum-dielectric (ǫ3 = ǫ2 = 1),

we get G
(1)
III

(

r||, z, r
′
||, d

)

= G
(1)
II

(

r||, z, r
′
||, d

)

, so that

G
(1)
II

(

r||, z, r
′
||, d

)

=
1

4π
(1− ǫ1)

ˆ

d2r̃h
(

r̃||
)

{

∇||G
(0)
I

(

r̃||, d− z, r||, d
)

·∇′
||G

(0)
I

(

r̃||, 0, r
′
||, d

)

+ ǫ1

[

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r||, d
)

]

z̃=d−z
[

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r
′
||, d

)

]

z̃=0

}

, (27)

G
(1)
I

(

r||, z, r
′
||, d

)

=
1

4π
(1− ǫ1)

ˆ

d2r̃h
(

r̃||
)

{

∇||G
(0)
I

(

r̃||, z + d, r||, d
)

·∇′
||G

(0)
I

(

r̃||, 0, r
′
||, z

′
)

−

[

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r||, z
′
)

]

z̃=z+d
[

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r
′
||, d

)

]

z̃=0

}

, (28)
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where, for this case,

G
(0)
I

(

r||, z, r
′
||, z

′
)

=
2

(ǫ1 + 1)

1
[

|r|| − r′|||
2 + (z − d)

2
]1/2

.

(29)

The particular result given by Eqs. (27) and (28) also gener-

alize that found in the literature20. Finally, if we consider the

vacuum-conducting case (ǫ3 = ǫ2 = 1 and ǫ1 → ∞), we get

G
(1)
II

(

r||, z, r
′
||, d

)

= −
1

4π

ˆ

d2r̃h
(

r̃||
)

[

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r||, d
)

]

z̃=d−z
[

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r
′
||, d

)

]

z̃=0

, (30)

G
(1)
I

(

r||, z, r
′
||, d

)

= 0, (31)

where, for this case,

G
(0)
I

(

r||, z, r
′
||, d

)

=
2

[

|r|| − r′|||
2 + (z − d)

2
]1/2

. (32)

This result recovers the result found in the literature20 and

is formally identical to Hadamard’s theorem for Green’s

functions20,25, which gives the solution (up to first order in

λ) of

∇
2G (r, r′) = −4πδ (r− r′) , (33)

with the boundary condition

G (r− r′) |z=λh(r||) = 0. (34)

D. Interaction between a charge and the surrounding

polarized matter induced by it

When we bring a charge Q to the position r′, we produce

a state of polarization in the dielectric media. The energy

of interaction W between the charge Q and the polarized

dielectrics (we are considering a linear behavior for the di-

electrics) is given by (see Appendix D):

W =
1

2
Qφind (r

′) , (35)

where φind is the induced (or image) potential function,

which, taken at r′, is given by

φind (r
′) ≈ Q

[

G
(0)
ind (r, r

′)
r=r′

+ λG(1) (r, r′)
r=r′

]

. (36)

Then, we have

W ≈ W (0) + λW (1), (37)

where

W (0) =
1

2
Q2G

(0)
ind (r, r

′)
r=r′

,

W (1) =
1

2
Q2G(1) (r, r′)

r=r′
, (38)

with

G
(0)
ind

(

r||, z, r
′
||, d

)

= −

ˆ

1

(2π)
2 d

2qe−qz 1

q
eiq·r||e−iq·r′||

1

ǫ+23

8πǫ2ǫ
−
12

[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
] . (39)

Considering the solution for G(1) for z = d, we have:

W = −Q2 1

π

ǫ2ǫ
−
12

ǫ+23

ˆ

d2q
1

q

e−qd

[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
]

+ λQ2ǫ−21
1

8π

ˆ

d2r̃h
(

r̃||
)

{

|∇′
||G

(0)
I

(

r̃||, 0, r
′
||, d

)

|2

+
ǫ1
ǫ2

([

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r
′
||, d

)

]

z̃=0

)2 }

. (40)

If we consider the case vacuum-dielectric (ǫ3 = ǫ2 = 1) in

Eq. (40), we obtain

W = −Q2 1

4d

(ǫ1 − 1)

(ǫ1 + 1)

+ λQ2 (1− ǫ1)

8π

ˆ

d2r̃h
(

r̃||
)

{

|∇′
||G

(0)
I

(

r̃||, 0, r
′
||, d

)

|2

+ ǫ1

([

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r
′
||, d

)

]

z̃=0

)2 }

, (41)

where G
(0)
I for this case is obtained considering ǫ3 = ǫ2 = 1

in Eqs. (A8) and (A9), and using (6). The result shown in Eq.

(41) is agreement with that found in the literature20. For the

vacuum-conducting case (ǫ3 = ǫ2 = 1 and ǫ1 → −∞), we

obtain from Eq. (40) the result

W = −Q2 1

4d

−λQ2 1

8π

ˆ

d2r̃h
(

r̃||
)

{([

∂

∂z̃
G

(0)
I

(

r̃||, z̃, r
′
||, d

)

]

z̃=0

)2 }

,

(42)

We can also rewrite Eq. (40) in the following manner:

W = −Q2 ǫ2ǫ
−
12

ǫ+23

1

d
F1

(

ǫ−23ǫ
−
12, ǫ

+
23ǫ

+
12

)

+ λQ2ǫ−21
1

π2

ˆ

d2q̃h (q̃) eiq̃·r
′
||

ˆ ∞

0

dR RJ0 (q̃R)

ˆ ∞

0

dq

ˆ ∞

0

dq′F2

(

q, ǫ−23ǫ
−
12, ǫ

+
23ǫ

+
12, d

)

F2

(

q′, ǫ−23ǫ
−
12, ǫ

+
23ǫ

+
12, d

)

×
{

ǫ22J1 (qR)J1 (q
′R) + ǫ1ǫ2J0 (qR)J0 (q

′R)
}

, (43)
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where

F1 (a, b) =

{

[ln (a+ b)− ln (b)]/a a 6= 0

1/b a = 0,
(44)

F2 (q, a, b, d) = q/
(

ae−qd + beqd
)

, (45)

and J0 and J1 are Bessel functions of the first kind of zeroth

and first order, respectively. The form for W given in Eq.

(43) is very convenient for numerical calculations. Next, we

take some limits of the presented formulas and recover some

results found in the literature.

For the case with ǫ3 = ǫ2, we have the problem involving

two dielectrics ǫ2 and ǫ1, for which we get:

W = Q2 ǫ
−
21

ǫ+12

1

4d

1

ǫ2
+ λQ2 ǫ−21

ǫ2(ǫ
+
12)

2

1

4π2

ˆ

d2q̃h (q̃) eiq̃·r
′
||

ˆ ∞

0

dRRJ0 (q̃R)

{

ǫ2R
2 + ǫ1d

2

(R2 + d2)
3

}

(46)

The vacuum-dielectric case can be recovered by doing ǫ2 = 1
in Eq. (46). The vacuum-conducting case is recovered taking

ǫ1 → −∞. Both results for these limit cases coincide with

those found in the literature15,20.

The presence of a nonplanar interface between ǫ2 and ǫ1
media also induces an external field, so that on each charge Q
in the two-dimensional system acts an effective force parallel

to the plane z = d given by

F
(ext)
|| ≈ −

1

2
λQ2

∇
′
||G

(1)
(

r′||, d, r
′
||, d

)

. (47)

This force depends on the magnitude of the charge (specifi-

cally, on Q2) and it can point to the next valley or peak of

the nonplanar interface, depending on the sign of ǫ2 − ǫ1.

This generalizes the result found in the literature for the case

vacuum-conductor15, where the correspondent force always

points to the next peak of the nonplanar interface.

We also have a perpendicular force acting on Q, given by

F
(ext)
⊥ ≈ −

1

2
Q2 ∂

∂d

[

G
(0)
ind

(

r′||, d, r
′
||, d

)

+λG(1)
(

r′||, d, r
′
||, d

)

]

. (48)

Part of this force (proportional to λ) can be quite relevant for

suspended graphene, since the force induces a deformation of

the material which, in turn, affects its optical and DC transport

properties.

E. Effective charge-charge interaction in the 2D-material

Let us now consider the effective electron-electron interac-

tion, which alters its usual form due to the presence of corru-

gation. The effective electric potential φ(eff) associated to a

point-charge Q in the position r′|| is

φ(eff)
(

r||, r
′
||, d

)

= φ
(

r||, d, r
′
||, d

)

= QG
(

r||, d, r
′
||, d

)

.

(49)

Up to the first order, we have

φ(eff)
(

r||, r
′
||, d

)

≈ φ(0)
(

r||, d, r
′
||, d

)

+λφ(1)
(

r||, d, r
′
||, d

)

.

(50)

Using Eqs. (16) and (21), we get

φ(eff)
(

q, r′||, d
)

≈
2πQ

q
e−iq·r′||

{

2
[

ǫ−21e
−2qd + ǫ+12

]

[

ǫ−23ǫ
−
12e

−2qd + ǫ+23ǫ
+
12

]

+ λ
ǫ2

(

T̃2ǫ
−
21 + T̃1ǫ1q

)

eqd

q
[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
]

}

, (51)

where

T̃1 =

ˆ

1

(2π)
2 d

2q′ 4qh (q− q′) ǫ−21e
ir′||·(q−q

′)
[

ǫ−23ǫ
−
12e

−q′d + ǫ+23ǫ
+
12e

q′d
] , (52)

T̃2 =

ˆ

1

(2π)2
d2q′ 4qh (q− q′) (q′ · q) ǫ2e

ir′||·(q−q
′)

q′
[

ǫ−23ǫ
−
12e

−q′d + ǫ+23ǫ
+
12e

q′d
] .(53)

From Eq. (51), we get the effective dielectric constant ǫeff :

1

ǫeff
=

2
[

ǫ−21e
−2qd + ǫ+12

]

[

ǫ−23ǫ
−
12e

−2qd + ǫ+23ǫ
+
12

]

+λ
ǫ2

(

T̃2ǫ
−
21 + T̃1ǫ1q

)

eqd

q
[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
] . (54)

Notice that ǫeff depends on r′||. When λ = 0, the result given

in Eq. (54) recovers that found in the literature7,12,13. The

functions φ(0) and φ(1) in Eq. (50) are given explicitly in

Appendix E and exhibit the symmetry properties

φ(0)
(

r||, d, r
′
||, d

)

= φ(0)
(

r′||, d, r||, d
)

(55)

φ(1)
(

r||, d, r
′
||, d

)

= φ(1)
(

r′||, d, r||, d
)

, (56)

from which the energy interaction W12 between two charges

Q1 and Q2 located at r1|| and r2||, respectively, is

W12 ≈ Q2φ
(eff)
1

(

r2||, r1||, d
)

= W21

≈ Q1φ
(eff)
2

(

r1||, r2||, d
)

, (57)

as expected, with φ
(eff)
1 and φ

(eff)
2 the potential functions

associated to the charges 1 e 2.

The effective electric field E
(eff)
|| produced by a charge Q

is

E
(eff)
||

(

r||, r
′
||, d

)

= −∇||φ
(eff)

(

r||, r
′
||, d

)

, (58)

which can be written as

E
(eff)
||

(

r||, r
′
||, d

)

≈ E
(0)
||

(

r||, d, r
′
||, d

)

+λE
(1)
||

(

r||, d, r
′
||, d

)

,

(59)
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with

E
(0)
||

(

r||, r
′
||, d

)

= −∇||φ
(0)

(

r||, d, r
′
||, d

)

, (60)

E
(1)
||

(

r||, r
′
||, d

)

= −∇||φ
(1)

(

r||, d, r
′
||, d

)

, (61)

and E
(0)
|| and E

(1)
|| given explicitly in Appendix E.

For E
(0)
|| , we have the usual symmetry

E
(0)
||

(

r||, d, r
′
||, d

)

= −E
(0)
||

(

r′||, d, r||, d
)

, (62)

but for E
(1)
|| , in general, we find

E
(1)
||

(

r||, d, r
′
||, d

)

6= −E
(1)
||

(

r′||, d, r||, d
)

. (63)

Then, the effective 2D electrical field is such that

E
(eff)
||

(

r||, r
′
||, d

)

6= −E
(eff)
||

(

r′||, r||, d
)

, (64)

so that the effective forces between two charges do not point

along the line from one charge to the other.

The above result can be understood as follows. Under the

external field associated to a charge Q, the atoms of the di-

electric media become polarized, or with permanent dipoles

aligned with the field26. Let us consider that these dipole mo-

ments contribute to the averaged charge density of the dielec-

tric media26,

〈ρ′ (r)〉 =
1

∆V

ˆ

∆V

ρ′ (r+ ξ) d3ξ, (65)

where ρ′ is the exact position (in a certain instant of time) of

the charges in motion (thermal or zero point effects) in the

dielectric media, ∆V is a macroscopically small volume, ξ

ranges over the this small volume, and 〈 〉 means the average

value26. For the situation where all interfaces are flat, 〈ρ′ (r)〉,
now relabeled as 〈ρ′(0)(r)〉, is (by symmetry arguments) a

function of z and of the distance |r||−r′|||. Then, the effective

potential φ(eff), for this case, is φ(eff) = φ(0), which is as-

sociated to the distribution of charges Qδ(r− r′)+ 〈ρ′(0)(r)〉.

From Eq. (E1) we can see that φ(0)
(

r||, d, r
′
||, d

)

depends on

d and on the distance |r|| − r′|||. This means that the equipo-

tential lines are circular lines with the charge Q at the center

of the circle. For this case, the effective electric field E
(eff)
||

is E
(eff)
|| = E

(0)
|| , with E

(0)
|| [Eq. (E5)] proportional to the

vector r|| − r′||, depending on d, on the distance |r|| − r′|||,

and exhibiting the symmetry shown in Eq. (62). On the other

hand, if we consider a nonplanar surface, for example, the sur-

face defined by the 2D gaussian function,

z = λh
(

r||
)

= λde−k2(x2+y2), (66)

as illustrated in Fig. 2, the mean charge density 〈ρ′ (r)〉 can

be written as

〈ρ′(r)〉 ≈ 〈ρ′(0)(r)〉 + λ〈ρ′(1)(r)〉, (67)

Figure 2. Illustration of the planar two-dimensional system in the

presence of a nonplanar surface described by Eq. (66), with d =

300nm, k = 2π/d, and λ = 1/10. The vertical axis exhibits z/d,

whereas the other axes represent χ = x/d and υ = y/d.

where the term λ〈ρ′(1)(r)〉 is related to the presence of the

surface z = λh
(

r||
)

. If a charge Q, in the 2D system

(z = d), is put exactly over the center (peak) of the gaus-

sian, the term λ〈ρ′(1)(r)〉 in Eq. (67) is, by the symmetry of

this situation, a function of z and of the distance |r|| − r′|||.

For this specific position of Q, the effective electric field

E
(eff)
|| ≈ E

(0)
|| + λE

(1)
|| is along the line from the charge

Q to any other point of the plane z = d, since both parts,

E
(0)
|| and λE

(1)
|| , are proportional to r|| − r′||. However, this

is a particular situation. If Q is not over the peak, but dis-

placed along the x axis, as shown in Fig. 3, its expected

that external field associated to the charge Q contributes to

different average charge densities in the dielectric media for

the left and right side of Q , in the sense that, in general,

〈ρ′(1)(r′||−δxx̂+δyŷ+zẑ)〉 6= 〈ρ′(1)(r′||+δxx̂+δyŷ+zẑ)〉.

This means that for the potential φ(eff) ≈ φ(0) + λφ(1), al-

though for the term φ(0) the equipotential lines are circular

lines with Q at the center, those associated with φ(1) are not

circular lines, so that λE
(1)
|| (and, as a consequence, E

(eff)
|| )

is not proportional to the vector r|| − r′||, and consequently is

not along the line from the charge Q (point A) to the point B
in Fig. 3. Inversely, putting the charge Q at the point B, by

analogous arguments we expect the behavior of E
(eff)
|| is as

shown in Fig. 4. Comparing E
(eff)
|| in Fig. 3 and Fig. 4, one

can visualize the inequality given in Eq. (64). Comparing the

behavior of E
(0)
|| and E

(1)
|| , one can also visualize Eqs. (62)

and (63).
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Figure 3. Front view of the 2D system located on the plane z = d (z-

axis is perpendicular to the paper). The circular lines are projections

on the plane z = d of some contour lines indicating points of equal

altitude of the gaussian surface shown in Fig. 2. A charge Q > 0 is

located at the point A, whereas the electric field is shown at the point

B.

Figure 4. Front view of the 2D system located on the plane z = d (z-

axis is perpendicular to the paper). The circular lines are projections

on the plane z = d of some contour lines indicating points of equal

altitude of the gaussian surface shown in Fig. 2. A charge Q > 0 is

located at the point B, whereas the electric field is shown at the point

A.

III. SOME APPLICATIONS

For simplicity, let us consider the situation with ǫ3 = ǫ2,

for which can use Eq. (46), which we write as W = W (0) +
λW (1), where W (0) is obtained making λ = 0 in Eq. (46).

For this case, and when λ = 0 (the interface between ǫ2 and ǫ1
is plane), a perpendicular force F

(0)
⊥ = − ∂

∂dW
(0)ẑ acts on a

point-charge Q in the two-dimensional system, which will be

used as reference in comparison to the external parallel force

given in Eq. (47).

Figure 5. Illustration of the planar two-dimensional system in the

presence of a nonplanar surface described by Eq. (68), with Lx =

Ly = d = 300nm, and λ = 1/10. The vertical axis exhibits z/d,

whereas the other axes represent χ = x/d and υ = y/d.

A. 2D sine-grating

For the case of a two-dimensional sine grating (see Fig. 5),

z = λh
(

r||
)

= λd sin (kxx) sin (kyy) , (68)

where and hereafter kx = 2π/Lx and ky = 2π/Ly, we have

W (1) = Q2d
ǫ−21

ǫ2(ǫ
+
12)

2 sin (kyy
′) sin (kxx

′)
[

k2x + k2y
]

ˆ ∞

0

dR̃R̃







ǫ2R̃
2 + ǫ1

[

k2x + k2y
]

d2

(

R̃2 +
[

k2x + k2y
]

d2
)3






J0

(

R̃
)

(69)

(whose behavior can be visualized in Fig. 6), which is related

to the charge-polarized matter interaction and with an effec-

tive external force parallel to the 2D-material, as shown in Fig.

7. Note that, since ǫ2 < ǫ1, the force points to the next peak

of the nonplanar surface.

B. 1D sine-grating

For the case of a one-dimensional sine grating (see Fig. 8)

z = λh
(

r||
)

= λd sin (kyy) , (70)

with ǫ3 = ǫ2, we have

W (1) = Q2d
ǫ−21

ǫ2(ǫ
+
12)

2 sin (kyy
′) k2y (71)

ˆ ∞

0

dR̃R̃







ǫ2R̃
2 + ǫ1k

2
yd

2

(

R̃2 + k2yd
2
)3






J0

(

R̃
)

(72)
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Figure 6. Ratio λW (1)/|W (0)|, for the interface described by Eq.

(68), with Lx = Ly = d = 300nm, ǫ1 = 4, ǫ2 = 1 and λ =

1/10. The vertical axis exhibits λW (1)/|W (0)|, whereas the other

axes represent χ = x/d and υ = y/d.

Figure 7. Effective external force acting on an electron in the two-

dimensional system, for the interface described by Eq. (68), with

Lx = Ly = d = 300nm, ǫ1 = 4, ǫ2 = 1 and λ = 1/10. The

vectors represent exhibits F
(ext)

|| /|F
(0)
⊥ |, whereas the axes represent

χ = x/d and υ = y/d.

(whose behavior can be visualized in Fig. 9), which is related

to the interaction charge-polarized matter and the effective ex-

ternal force shown in Fig. 10. Note that, since ǫ2 > ǫ1, the

force points to the next valley of the nonplanar surface.

The effective potential related to a charge Q is given by Eq.

Figure 8. Illustration of the planar two-dimensional system in the

presence of a nonplanar surface described by Eq. (70), with Ly =

d = 300nm, and λ = 1/10. The vertical axis exhibits z/d, whereas

the other axis represent χ = x/d and υ = y/d.

Figure 9. Ratio λW (1)/|W (0)|, for the interface described by Eq.

(70), with Ly = d = 300nm, ǫ1 = 1, ǫ2 = 4 and λ = 1/10. The

vertical axis exhibits λW (1)/|W (0)|, whereas the other axes repre-

sent χ = x/d and υ = y/d.

(50), with

φ(0)
(

r||, d, r
′
||, d

)

= Q
1

π

ˆ ∞

0

dq

[

ǫ−21e
−q2d + ǫ+12

]

2ǫ2ǫ
+
12

J0

(

q|r′|| − r|||
)

, (73)
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Figure 10. Effective external force acting on an electron in the two-

dimensional system, for the interface described by Eq. (70), with

Ly = d = 300nm, ǫ1 = 1, ǫ2 = 4 and λ = 1/10. The vectors

represent exhibits F
(ext)
|| /|F

(0)
⊥ |, whereas the axes represent χ =

x/d and υ = y/d.

φ(1)
(

r||, d, r
′
||, d

)

= ǫ−21
Q

4π

d
(

ǫ+12
)2

ˆ

dx̃

ˆ

dỹ sin (ky ỹ)











[(x̃− x) (x̃− x′) + (ỹ − y) (ỹ − y′)] + ǫ1
ǫ2
d2

(

|̃r|| − r|||2 + d2
)3/2

(

|̃r|| − r′|||
2 + d2

)3/2











. (74)

The term φ(0) depends on the distance |r′|| − r|||, as expected,

whereas the first correction φ(1) depends on r′|| and r||, sepa-

rately.

IV. FINAL COMMENTS AND IMPLICATIONS OF THE

RESULTS

Two-dimensional materials, for instance graphene and tran-

sition metal dichalcogenide monolayers (TMD), are very im-

portant systems in condensed matter physics. The behavior

of 2D systems between substrates, or in the presence of other

material media (for instance, conducting materials), is a rele-

vant problem, since these external media affect, for instance,

the Coulomb interaction between electrons in the 2D sys-

tems which, in turn, influences various electronic properties

of these systems.

In the present paper, we have extended the perturbative

method for solving Poisson’s equation for a point charge in

the presence of a nonplanar conducting interface, proposed by

Clinton, Esrick and Sacks20, to the problem of a point charge

between two media with different dielectric constants and in

the presence of a third dielectric medium separated from those

by a nonplanar interface. Up to the first order λG(1), we ob-

tained the effective potential, effective electrostatic field, di-

electric constant, and the effective external field acting along

the 2D system.

The results for G(1), from Eq. (22) to (24), generalize those

found in the literature for the case of a vacuum-conductor

situation20. The results for a vacuum-dielectric interface,

given by Eqs. (27) and (28), also generalize those found in

the literature20. Moreover, Eqs. (30) and (31) recover the

vacuum-conducting result found in the literature20 which, in

turn, is formally identical to Hadamard’s theorem for Green’s

functions20,25.

In the case where all interfaces are flat, G = G(0) and coin-

cides with the results found in the literature7,13. The effective

potential, dielectric constant, and electric field are given, re-

spectively, in Eqs. (51), (54), and (59). The first terms in the

right hand sides of these equations correspond to results found

in the literature7,12,13, whereas the second terms (proportional

to λ) correspond to the first order correction from the nonpla-

nar behavior, obtained here.

From Eq. (51), we obtained that the effective potential is

affected locally (term λφ(1)) by the presence of the nonplanar

interface. This means that, for example, if a graphene sheet is

put on the plane z/d = 1 (see Figs. 2, 5, and 8), a local change

in the electron-electron interaction caused by the presence of

a nonplanar interface implies in a local renormalization of the

Fermi velocity, which, in turn, can lead to a local increasing

of the optical conductivity. From Eq. (59), we obtained that

the effective electric field is affected locally by the presence of

the nonplanar interface and does not point along the line from

the source charge to the point where the field is considered.

We have shown that on each charge Q in the 2D planar

system acts along the plane an effective external force, given

by Eq. (47), which depends on the magnitude of the charge

(specifically, on Q2) and whose direction depends on ǫ2 − ǫ1.

This force can point to the next peak of the nonplanar interface

(if ǫ2 < ǫ1, as illustrated in Fig. 7), or to a valley (if ǫ2 > ǫ1,

as illustrated in Fig. 10). The possibility of the effective exter-

nal force moving the charge in the 2D system to a valley or to

a peak, depending on ǫ2 − ǫ1, generalizes the result found in

the literature for the case vacuum-conductor, where the charge

is always attracted to a position of the plane which is over the

next elevated part of the interface15. This effective external

field, induced by a nonplanar interface, can contribute to the

redistribution of the charges in the 2D system, as, for instance,

of electrons in a graphene sheet.

Our results are very general and can be applied in a wide

range of other problems. For instance, in the context of

the pseudo-quantum electrodynamics (PQED)8,9, an effective

quantum field theory describing 2D systems in the presence

of nonpanar interfaces (as illustrated in Fig. 1) needs to be

built taking into account an effective static potential which is

not a Coulombian potential, but in the one given by Eq. (51).

In addition, the effective 2D quantum field theory should take

into account the presence of an effective external field [see

Eq. (47)] induced by the nonplanar interface. The formulas

obtained in the present paper can also be useful, for example,

for problems of finding the quantum states of electrons local-

ized at surfaces of materials which exhibit negative electron

affinity, in realistic contexts, since the effects of corrugations

on the image potential can be relevant because it is almost
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impossible to create perfectly planar interfaces18.

Finally, we have obtained the first perturbative correction

G(1) in Eq. (5), which is the solution of Eq. (4) in the pres-

ence of three dielectric regions, as presented in Eq. (1). On

the other hand, procedures similar to those given here can be

used to extend the calculations to investigate systems with a

larger number of dielectric regions, or to find other orders of

corrections, enhancing the accuracy of the results.

Appendix A: Solutions for G(0)
(

q, z, r′||, d
)

and

G(1)
(

q, z, r′||, d
)

When we have a plane interfaces between the media ǫ3 and

ǫ2 and between ǫ2 and ǫ1, namely

ǫ (r) = ǫ (z) = ǫ3θ [z − d] + ǫ2θ [z] θ [d− z] + ǫ1θ [−z] ,
(A1)

the solution φ(0) of Eq. (4) [or the solution of Eq. (11)] can

be obtained directly via image method or solving directly this

equation. The correspondent Fourier version (noting that only

r|| is involved in the Fourier transform) of Eq. (4) for this case

is7

q2ǫ (z)G(0)
(

q, z, r′||, d
)

−
∂

∂z



ǫ (z)
∂G(0)

(

q, z, r′||, d
)

∂z





= 4πδ (z − d) e−iq·r′|| . (A2)

Integrating this equation in z, between d − η and d + η and

sending η → 0 we get

ǫ3

[

∂

∂z
G(0)

(

q, z, r′||, d
)

]

z=d+η

− ǫ2

[

∂

∂z
G(0)

(

q, z, r′||, d
)

]

z=d−η

= −4πe−iq·r′|| . (A3)

Integrating again, now between −η and +η, we get

ǫ2

[

∂

∂z
G(0)

(

q, z, r′||, z
′
)

]

z=+η

(A4)

−ǫ1

[

∂

∂z
G(0)

(

q, z, r′||, z
′
)

]

z=−η

= 0. (A5)

These equations, together with the continuity condition for

G(0)
(

q, z, r′||, z
′
)

and the requirement of limz→±∞ G(0) =

0, lead to solution in the form shown in Eq. (16), with:

G
(0)
III

(

q, z, r′||, d
)

= D(0)
(

q, r′||, d
)

e−qz , (A6)

G
(0)
II

(

q, z, r′||, d
)

= B(0)
(

q, r′||, d
)

eqz

+C(0)
(

q, r′||, d
)

e−qz, (A7)

G
(0)
I

(

q, z, r′||, d
)

= A(0)
(

q, r′||, d
)

eqz (A8)

A(0)
(

q, r′||, d
)

=
ǫ28πe

−iq·r′||

q
[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
] , (A9)

B(0)
(

q, r′||, d
)

=
ǫ+124πe

−iq·r′||

q
[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
] , (A10)

C(0)
(

q, r′||, d
)

=
ǫ−214πe

−iq·r′||

q
[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
] , (A11)

D(0)
(

q, r′||, d
)

=

[

ǫ−21e
−qd + ǫ+12e

qd
]

4πe−iq·r′||

q
[

ǫ−23ǫ
−
12e

−2qd + ǫ+23ǫ
+
12

] . (A12)

Now, let us focus on the solution form G(1). When we have

a plane interface between the media ǫ3 and ǫ2, but a nonplanar

interface between ǫ2 and ǫ1, as described by Eq. (2), we obtain

the solution for φ in Eq. (4) via perturbative method, accord-

ing to Eq. (5). The first correction to G(0), namely G(1), can

be obtained by solving Eq. (12) (in coordinate space) or Eq.

(15) in Fourier space. The procedures to solve this latter equa-

tion are described in Sec. II, with the functions mentioned in

Eq. (21) given by:

G
(1)
III

(

q, z, r′||, d
)

= D(1)
(

q, r′||, d
)

e−qz, (A13)

G
(1)
II

(

q, z, r′||, d
)

= B(1)
(

q, r′||, d
)

eqz

+C(1)
(

q, r′||, d
)

e−qz, (A14)

G
(1)
I

(

q, z, r′||, d
)

= A(1)
(

q, r′||, d
)

eqz, (A15)

A(1)
(

q, r′||, d
)

=
ǫ−23 (T2ǫ2 + T1ǫ2q − T2ǫ1) e

−qd

q
[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
]

−
ǫ+23 (−T2ǫ2 + T1ǫ2q + T2ǫ1) e

qd

q
[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
] , (A16)

B(1)
(

q, r′||, d
)

=
ǫ−23 (−T2ǫ1 + T2ǫ2 + T1ǫ1q) e

−qd

q
[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
] ,

(A17)

C(1)
(

q, r′||, d
)

=
ǫ+23 (−T2ǫ1 + T2ǫ2 + T1ǫ1q) e

qd

q
[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
] , (A18)

D(1)
(

q, r′||, d
)

=
2ǫ2 (−T2ǫ1 + T2ǫ2 + T1ǫ1q) e

qd

q
[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
] ,

(A19)
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with

T1 =−
ǫ−12
ǫ2

ˆ

1

(2π)
2 d

2q′h (q− q′) q′G(0)
(

q′, 0, r′||, d
)

,

(A20)

T2 =

ˆ

1

(2π)
2 d

2q′h (q− q′) (q′ · q)G(0)
(

q′, 0, r′||, d
)

,

(A21)

G(0)
(

q′, 0, r′||, d
)

=
ǫ28πe

−iq′·r′||

q
[

ǫ−23ǫ
−
12e

−q′d + ǫ+23ǫ
+
12e

q′d
] . (A22)

Appendix B: Boundary conditions

Let us start, considering:

G
(

r||, z, r
′
||, d

)

=



















GIII

(

r||, z, r
′
||, d

)

, d < z

GII

(

r||, z, r
′
||, d

)

, λh
(

r||
)

< z < d

GI

(

r||, z, r
′
||, d

)

, z < λh
(

r||
)

.

(B1)

Requiring the continuity of the Green function, we have

GII

(

r||, λh
(

r||
)

, r′||, d
)

= GI

(

r||, λh
(

r||
)

, r′||, d
)

,

(B2)

from which we get

GII

(

r||, 0, r
′
||, d

)

+

[

∂

∂z
GII

(

r||, z, r
′
||, d

)

]

z=0

λh
(

r||
)

+...

= GI

(

r||, 0, r
′
||, d

)

+

[

∂

∂z
GI

(

r||, z, r
′
||, d

)

]

z=0

λh
(

r||
)

+...

(B3)

Using Eq. (5) in Eq. (B3), we have

G
(0)
II

(

r||, 0, r
′
||, z

′
)

+ λG
(1)
II

(

r||, 0, r
′
||, z

′
)

+

[

∂

∂z
G

(0)
II

(

r||, z, r
′
||, z

′
)

]

z=0

λh
(

r||
)

+O
(

λ2
)

= G
(0)
I

(

r||, 0, r
′
||, z

′
)

+ λG
(1)
I

(

r||, 0, r
′
||, z

′
)

+

[

∂

∂z
G

(0)
I

(

r||, z, r
′
||, z

′
)

]

z=0

λh
(

r||
)

+O
(

λ2
)

, (B4)

from which we obtain the two boundary conditions written

next. First, for G(0), we have

G
(0)
II

(

r||, 0, r
′
||, z

′
)

= G
(0)
I

(

r||, 0, r
′
||, z

′
)

, (B5)

whose Fourier version is

G
(0)
II

(

q, 0, r′||, z
′
)

= G
(0)
I

(

q, 0, r′||, z
′
)

, (B6)

which we also write as

G(0)
(

q, 0+, r′||, z
′
)

= G(0)
(

q, 0−, r′||, z
′
)

, (B7)

used in Eq. (17). Second, for G(1), we obtain

G
(1)
II

(

r||, 0, r
′
||, d

)

−G
(1)
I

(

r||, 0, r
′
||, d

)

= −

{[

∂

∂z
G

(0)
II

(

r||, z, r
′
||, d

)

]

z=0

−

[

∂

∂z
G

(0)
I

(

r||, z, r
′
||, d

)

]

z=0

}

h
(

r||
)

, (B8)

which can be written as

G(1)
(

r||, 0
+, r′||, d

)

−G(1)
(

r||, 0
−, r′||, d

)

= −

{[

∂

∂z
G(0)

(

r||, z, r
′
||, d

)

]

z=0+

−

[

∂

∂z
G(0)

(

r||, z, r
′
||, d

)

]

z=0−

}

h
(

r||
)

, (B9)

whose Fourier version is shown in Eq. (18).

For the region z = d, we require the following continuity

condition for the Green function:

GIII

(

q, d, r′||, z
′
)

= GII

(

q, d, r′||, z
′
)

. (B10)

Expanding this equation, we have

G
(0)
III

(

q, d, r′||, z
′
)

+ λG
(1)
III

(

q, d, r′||, z
′
)

+O
(

λ2
)

= G
(0)
II

(

q, d, r′||, z
′
)

+ λG
(1)
II

(

q, d, r′||, z
′
)

+O
(

λ2
)

,

(B11)

from which we obtain the other two boundary conditions. For

G(0), we get

G
(0)
III

(

q, d, r′||, z
′
)

= G
(0)
II

(

q, d, r′||, z
′
)

, (B12)

which can be written in the notation

G(0)
(

q, d+, r′||, z
′
)

= G(0)
(

q, d−, r′||, z
′
)

. (B13)

For G(1) we get

G
(1)
III

(

q, d, r′||, z
′
)

= G
(1)
II

(

q, d, r′||, z
′
)

, (B14)

which can be written in the notation

G(1)
(

q, d+, r′||, z
′
)

= G(1)
(

q, d−, r′||, z
′
)

, (B15)

used in Eq. (17).
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Appendix C: Obtaining G(1)
(

r||, z, r
′
||, d

)

The solution for G(1) in terms of x and y can be obtained

using Eqs. (6), (21), and (A13) - (A22). This leads to:

G
(1)
III

(

r||, z, r
′
||, z

′
)

= ǫ−21
1

4π

ˆ

1

(2π)
2 d

2q

ˆ

1

(2π)
2 d

2q′

h (q− q′)

{

∇||G
(0)
I

(

q, d− z,−r||, d
)

·

∇
′
||G

(0)
I

(

q′, 0, r′||, z
′
)

+
ǫ1
ǫ2

[

∂

∂z̃
G

(0)
I

(

q, z̃,−r||, z
′
)

]

z̃=d−z
[

∂

∂z̃
G

(0)
I

(

q′, z̃, r′||, z
′
)

]

z̃=0

}

, (C1)

G
(1)
II

(

r||, z, r
′
||, z

′
)

=
1

8π

1

ǫ2
ǫ−21

ˆ

1

(2π)2
d2q

ˆ

1

(2π)2
d2q′

h (q− q′)

{

ǫ−23

[

[

∇||G
(0)
I

(

q, z̃,−r||, d
)

]

z̃=z−d
·

∇
′
||G

(0)
I

(

q′, 0, r′||, z
′
)

+
ǫ1
ǫ2

[

∂

∂z̃
G

(0)
I

(

q, z̃,−r||, d
)

]

z̃=z−d
[

∂

∂z̃
G

(0)
I

(

q′, z̃, r′||, z
′
)

]

z̃=0

]

+ ǫ+23

[

[

∇||G
(0)
I

(

q, z̃,−r||, d
)

]

z̃=d−z
·∇′

||G
(0)
I

(

q′, 0, r′||, z
′
)

+
ǫ1
ǫ2

[

∂

∂z̃
G

(0)
I

(

q, z̃,−r||, d
)

]

z̃=d−z
[

∂

∂z̃
G

(0)
I

(

q′, z̃, r′||, z
′
)

]

z̃=0

]}

, (C2)

G
(1)
I

(

r||, z, r
′
||, d

)

=
1

8π

ǫ−21
ǫ2

ˆ

1

(2π)
2 d

2q

ˆ

1

(2π)
2 d

2q′

h (q− q′)

{

ǫ−23

[

∇||G
(0)
I

(

q, z − d,−r||, d
)

·

∇
′
||G

(0)
I

(

q′, 0, r′||, d
)

+

[

∂

∂z̃
G

(0)
I

(

q, z̃,−r||, d
)

]

z̃=z−d
[

∂

∂z̃
G

(0)
I

(

q′, z̃, r′||, d
)

]

z̃=0

]

+ ǫ+23

[

∇||G
(0)
I

(

q, z + d,−r||, d
)

·∇′
||G

(0)
I

(

q′, 0, r′||, d
)

−

[

∂

∂z̃
G

(0)
I

(

q, z̃,−r||, d
)

]

z̃=z+d
[

∂

∂z̃
G

(0)
I

(

q′, z̃, r′||, d
)

]

z̃=0

]}

. (C3)

Now, considering the symmetry

G
(0)
I

(

r||, z, r
′
||, z

′
)

= G
(0)
I

(

−r||, z,−r′||, z
′
)

, (C4)

we get, after manipulations, the formulas (22)-(26).

Appendix D: Energy of interaction

When we put together a set of macroscopic (real) charges

[described by ρ (r)], in the presence of dielectric media, we

have to take into account the state of polarization induced in

these media26. The total work W to assemble the system de-

scribed by ρ (r) includes the work done on the dielectric me-

dia. If the behavior of the media is linear, then we can use the

formula26

W =
1

2

ˆ

d3rρ (r)φ (r) . (D1)

Let us consider the total potential φ divided into two parts:

φ (r) = φρ (r) + φind (r) , (D2)

where φρ is the potential associated with the distribution ρ (r),
whereas φind is the potential produced by the averaged in-

duced charges on the dielectric media. Considering

ρ (r) = Qδ (r−r′) , (D3)

and using the notation φρ → φQ, we have

W =
1

2
QφQ (r′) +

1

2
Qφind (r

′) . (D4)

The term 1
2QφQ (r′) can be seen as the work to build the point

charge Q, which is divergent and will be discarded. Then,

effectively, we will consider just the second term in the right

hand side of Eq. (D4), which leads to Eq. (35).

Appendix E: Potential and electric fields in coordinate

representation

The functions φ(0) and φ(1) in Eq. (50) are given explicitly

by:

φ(0)
(

r||, d, r
′
||, d

)

=
Q

π

ˆ ∞

0

dq

[

ǫ−21e
−q2d + ǫ+12

]

[

ǫ−23ǫ
−
12e

−2qd + ǫ+23ǫ
+
12

]

J0

(

q|r′|| − r|||
)

, (E1)
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φ(1)
(

r||, d, r
′
||, d

)

= ǫ−21ǫ
2
2

Q

π

ˆ

d2r̃h
(

r̃||
)

ˆ ∞

0

dq̃
q̃

[

ǫ−23ǫ
−
12e

−q̃d + ǫ+23ǫ
+
12e

q̃d
]

ˆ ∞

0

dq
q

[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
]

{

J1
(

q̃|̃r|| − r|||
)

J1

(

q|̃r|| − r′|||
)

A(1)
(

r̃||, r||, r
′
||

)

+
ǫ1
ǫ2
J0

(

q̃|̃r|| − r|||
)

J0

(

q|̃r|| − r′|||
)

}

(E2)

where

A(1)
(

r̃||, r||, r
′
||

)

=
(x̃− x)

|̃r|| − r|||

(x̃− x′)

|̃r|| − r′|||
(E3)

+
(ỹ − y)

|̃r|| − r|||

(ỹ − y′)

|̃r|| − r′|||
. (E4)

The fields E
(0)
|| and E

(1)
|| are given by:

E
(0)
||

(

r||, d, r
′
||, d

)

= −Q
1

π

ˆ ∞

0

dq

[

ǫ−21e
−q2d + ǫ+12

]

[

ǫ−23ǫ
−
12e

−2qd + ǫ+23ǫ
+
12

]

qJ1

(

q|r′|| − r|||
) r′|| − r||

|r′|| − r|||
, (E5)

E
(1)
||

(

r||, d, r
′
||, d

)

= ǫ−21ǫ
2
2

4

π
Q

ˆ

d2r̃h
(

r̃||
)

ˆ ∞

0

dq̃
q̃

[

ǫ−23ǫ
−
12e

−q̃d + ǫ+23ǫ
+
12e

q̃d
]

ˆ ∞

0

dq
q

[

ǫ−23ǫ
−
12e

−qd + ǫ+23ǫ
+
12e

qd
]

{

q̃J0 (q̃|β1|)J1 (q|β2|)A
(1)

(

r̃||, r||, r
′
||,
) β1

|β1|

− J1 (q̃|β1|)J1 (q|β2|)A
(1)

(

r̃||, r||, r
′
||,
) β1

|β1|
2

+ J1 (q̃|β1|)J1 (q|β2|)A
(2)

(

r̃||, r||, r
′
||,
)

β3

−
ǫ1
ǫ2
q̃J1 (q̃|β1|)J0 (q|β2|)

β1

|β1|

}

, (E6)

where

β1 = r̃|| − r||, (E7)

β2 = r̃|| − r′||, (E8)

β3 = − (ỹ − y) x̂+ (x̃− x) ŷ, (E9)

A(2)
(

r̃||, r||, r
′
||

)

=
(x̃− x′)

|̃r|| − r′|||

(ỹ − y)

|̃r|| − r|||3

−
(ỹ − y′)

|̃r|| − r′|||

(x̃− x)

|̃r|| − r|||3
. (E10)
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