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Abstract: In recent years, the synthesis of polymer electrolyte systems derived from biopolymers
for the development of sustainable green electrochemical devices has attracted great attention.
Here electrolytes based on the red seaweeds-derived polysaccharide κ-carrageenan (κ-Cg) doped
with neodymium triflate (NdTrif3) and glycerol (Gly) were obtained by means of a simple, clean,
fast, and low-cost procedure. The aim was to produce near-infrared (NIR)-emitting materials with
improved thermal and mechanical properties, and enhanced ionic conductivity. Cg has a particular
interest, due to the fact that it is a renewable, cost-effective natural polymer and has the ability of
gelling in the presence of certain alkali- and alkaline-earth metal cations, being good candidates
as host matrices for accommodating guest cations. The as-synthesised κ-Cg-based membranes are
semi-crystalline, reveal essentially a homogeneous texture, and exhibit ionic conductivity values
1–2 orders of magnitude higher than those of the κ-Cg matrix. A maximum ionic conductivity
was achieved for 50 wt.% Gly/κ-Cg and 20 wt.% NdTrif3/κ-Cg (1.03 × 10−4, 3.03 × 10−4,
and 1.69 × 10−4 S cm−1 at 30, 60, and 97 ◦C, respectively). The NdTrif-based κ-Cg membranes
are multi-wavelength emitters from the ultraviolet (UV)/visible to the NIR regions, due to the κ-Cg
intrinsic emission and to Nd3+, 4F3/2→4I11/2-9/2.

Keywords: κ-carrageenan; structure; biopolymer electrolyte; thermal properties; ionic conductivity;
luminescence features

1. Introduction

The studies of solid polymer electrolytes (SPEs) based on biopolymers [1] have exponentially
increased in the last few years because of the desirable properties of these macromolecules and
of the growing global environmental concerns. Biopolymers offer a wide range of benefits as
they are biodegradable, renewable, abundant, and non-hazardous compared to synthetic polymers.
Innovative SPEs based on cellulose and its derivatives [2–4], deoxyribonucleic acid (DNA) [5,6],
gelatin [7–9], chitosan [10,11], corn starch [12,13], agar [14,15], xanthan gum [16] and silk fibroin [17],
were introduced. In the same context, we explored the use of the red-seaweeds-derived carrageenan
(Cg) acid polysaccharides [18]. All these works revealed that these natural macromolecules
have tremendous application potential [19] in various solid state electrochemical devices such as
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dye-sensitized solar cells [20,21], fuel cells [22–24], energy storage devices [3], and electrochromic
devices (ECDs) [7,10,14].

Although Cgs are of the utmost interest for the energy area, the number of works reported in
literature dealing with their use as SPEs is scarce [18,21,24–31]. Cgs are linear high-molecular-weight
sulfated polysaccharides made up of repeating galactose units and 3,6-anhydrogalactose, both sulfated
and non-sulfated [32], joined by alternating alpha 1-3 and beta 1-4 glycosidic linkages. They are
water-soluble polymers extensively employed in the food industry sector, as stabilizer, thickener,
emulsifier, and gelling agent. Cgs are composed of long, highly flexible molecules that curl, forming
helical structures, and therefore, they have an ability to form a variety of different gels at room
temperature. Depending on the method and the algae from which Cg is extracted, three main types
of Cgs can be obtained: (1) Kappa (κ) (Figure 1a), that forms strong, rigid gels in the presence of
potassium (K+) ions; (2) Iota (τ) which forms soft gels in the presence of calcium (Ca2+) ions; and (3)
lambda (λ), which does not form gels. The primary differences that influence the gel properties of
κ-Cg, τ-Cg and λ-Cg are the number and position of the ester sulfate groups in the repeating galactose
units. The Cgs are all soluble in water, but, while λ-Cg forms viscous solutions, κ- and τ-Cgs form
thermoreversible gels. In solution, the molecules of the κ and τ types undergo a thermoreversible
coil-to-helix transition, where the helices self-associate via hydrogen bonds and ionic interactions,
giving rise to a three-dimensional gel structure [33,34], which ultimately results in the formation of
ionotropic and thermotropic gels [35,36]. The three-dimensional ordered packing of κ-Cg allows each
sulfate group to be effectively surrounded by K+ ions, forming firm, but brittle gels, [37] while τ-Cg
gelation is dependent on the presence of Ca2+ ions, forming soft and elastic gels [36]. κ-Cg can also
form cross-linking networks with other components present in the SPEs, such as ionic liquids (ILs) [18]
and lanthanide ions [30].

In 2017 we introduced κ-Cg-based biopolymer electrolytes with foreseen application in solid
state electrochemical devices, as long as their operation does not require the flow of gases and does
not lead to water formation, such as ECDs [18]. These attractive green flexible electrolytes were
prepared in aqueous solution, by means of a simple, clean, fast and low-cost procedure, from κ-Cg,
the IL 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), and glycerol (Gly). The highest ionic
conductivity achieved was 8.47 × 10−4/2.45 × 10−3 S cm−1 at 20/66 ◦C under anhydrous conditions,
and 54.9/186 m S cm−1 at 30/60 ◦C at a relative humidity of 98%.

More recently, we investigated a 5-layer configuration ECD including (as an external layer)
amorphous indium zinc oxide (a-IZO), a conducting oxide with high transmission in the visible and
near-infrared (NIR) spectral regions, together with an innovative NIR-emitting electrolyte composed
of κ-Cg, Gly and erbium triflate (ErTrif3.xH2O) [30]. The sample with highest ionic conductivity
(1.5 × 10−4 S cm−1 at 20 ◦C) displayed ultraviolet (UV)/blue and NIR emissions associated with the
κ-Cg based host and the Er3+ ions (4I15/2 → 4I13/2), respectively. The ECD tested demonstrated fast
switching time (50 s), high switching efficiency (transmittance variations of 46/51% at 550/1000 nm),
high optical density (0.89/0.75 at 550/1000 nm), outstanding coloration efficiency (450th cycle:
−15,902/−13,400 cm2 C−1 and +3072/+2589 cm2 C−1 at 550/1000 nm for coloration and bleaching,
respectively), excellent electrochemical stability, and self-healing following mechanical stress. The ECD
encompassed two voltage-operated modes: semi-bright warm (+3.0 V, transmittances of 52/61% at
550/1000 nm) and dark cold (−3.0 V, transmittances of 7/11% at 550/1000 nm) [30].

In the present work, we enlarged the study of the NIR-emitting κ-Cg electrolytes to the analogue
system doped with trivalent neodymium (Nd3+) ions, introduced as neodymium (III) triflate (NdTrif3)
(Figure 1b). The Nd3+ ions are attractive in the area of SPEs owing to their high Lewis acidity and
coordination number. Silva et al. prepared SPEs from poly(oxyethylene) (POE) and europium (Eu3+),
Nd3+, and Er3+ triflates [38–40]. These authors reported relatively higher ionic conductivity for
the system doped with NdTrif3 with respect to the analogue electrolytes doped with the other two
lanthanide triflates [40]. As κ-Cg exhibits relatively low ionic conductivities at room temperature (in
the range of 10−7 S cm−1 [18]), the addition of Gly and NdTrif3 allowed circumventing this problem.



Molecules 2019, 24, 1020 3 of 14

The surface morphology of the films was characterized by Scanning Electronic Microscopy (SEM),
the structure of the films was examined by X-ray diffraction (XRD) measurements, and the thermal
behavior of the films was analyzed by Differential Scanning Calorimetry (DSC). The influence of
the neodymium salt concentration on the ionic conductivity values was evaluated by impedance
spectroscopy. The degree of ionic association in the materials was analyzed through Fourier Transform
Raman (FT-Raman) spectroscopy. The emission and excitation features were examined from the
UV/visible to the NIR regions. The produced membranes were denoted as CGxNdz, where C
represents κ-Cg, G stands for Gly, and x and z indicate the concentrations of Gly and NdTrif3,
respectively, with respect to κ-Cg.
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2. Results and Discussion

2.1. Structure and Morphology

The XRD patterns of the CGxNdz membranes display an intense broad and non-resolved Gaussian
peak located at 20.7–21.1◦ and weak peaks around 15.8, 18.3, 29.5 and 31.7◦ (Figure 2), revealing a
semi-crystalline nature, with predominance of amorphous phase. In all the diffractograms of the
Nd3+-doped κ-Cg-based membranes the sharp Bragg reflections of the pure salt are missing (Figure 2,
pink line), meaning that the κ-Cg-membrane is a good matrix for the dissolution and thus encapsulation
of the salt in the range of concentrations analysed.Molecules 2019, 24, x FOR PEER REVIEW 4 of 13 
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Figure 2. XRD curves of the non-doped (black line) and doped CG50Ndz membranes, and of NdTrif3

(pink line).
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Carrageenan gels possess thermo-reversible property, presenting somewhat crystalline regions,
called junction zones, and amorphous regions. Prior to discussing the SEM data, it is useful to explain
the gelation of κ-Cg in aqueous solutions during cooling by means of the zipper model [41–44]. In light
of this methodology, the gelation process can be explained through two stages: (1) the polymer chains
change from random coils to helices yielding clusters soluble; and (2) rigid ordered double helices are
formed which then aggregate into network junctions in the presence of the so-called gelling cations,
such as K+ and Ca2+, which are responsible for the occurrence of intra- and intermolecular interactions,
respectively [41–43].

Thus, the gel-sol/sol-gel transition associated with heating/cooling corresponds to the
opening/closing of zippers. In addition, the crystallinity degree of κ-Cg is correlated with the
degree of packing of the helices [44]. Recently, we concluded that the CG50Er0 membrane contained
micro-aggregates of variable shapes rich in intra- and intermolecular bridges (i.e., OSO3

− ··· K+··· O
and OSO3

− ··· Ca2+ ··· −O3SO cross-linkages, respectively) [30].
The SEM images of the CG50Ndz system (Figure 3) reveal that the samples display globally a

homogeneous, non-rough texture. Small spherical micro-aggregates are detected in the membranes
with z = 10 and 40. The analysis of the EDS mapping images of CG50Ndz demonstrates that the
different atoms are homogeneously distributed (Figure 3a and Figure S1, Supplementary Information).
In the case of the analogue system incorporating ErTrif3, the formation of larger micro-aggregates
made the detection of Ca2+, Er3+ and -OSO3

− ions possible, thus indicating the co-existence of
[OSO3

− ··· Ca2+ ··· −O3SO] and [OSO3
− ··· Er3+ ··· −O3SO]+ intermolecular cross-linkages, the latter

probably counter-balanced by the Trif− ions [30]. The same applies here to the [OSO3
− ··· K+ ··· −O3SO]-

intramolecular bridges, which are not discerned either [30]. We recall that the commercial κ-Cg
employed to synthesize the CG50Ndz membranes contains a minor content of Ca2+ and K+ gelling
ions (see Materials in Experimental section).
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Figure 3. SEM images of the CG50Ndz membranes with z = 10% (a), 20% (b), 30% (c) and 40% (d).
Scale bars = 50 µm. a1–a6: EDS mapping of the inset region of a.

2.2. Thermal Behavior

The DSC curves of the CG50Ndz membranes in the 25–300 ◦C range, reproduced in Figure 4,
show an endothermic peak centered around 123–131 ◦C. This event is attributed to the reversible
gel-sol transition temperature (Tg-s) involving the change of the polymer chains from double helices,
then to helices (soluble clusters) and ultimately to random coils. The increase of the Tg-s of CG0Nd0
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(115.0 ◦C) observed upon introduction of Gly and NdTrif3 can be interpreted as decrease in segmental
motion due to the formation of a hydrogen-bonded network between the -OH groups of Gly and the
-OH and/or -C-O-C- and/or -OSO3

− polar groups of κ-Cg, and intermolecular bridges between the
Nd+ ions and κ-Cg, which strengthen the gel. The polymer chains become harder since the rotation
of the polymer segments is blocked by these cross-linkage bonds, and the flexibility of the polymer
backbone is reduced. This upshift can also be explained on the basis of the zipper model. According
to this model, the heat capacity of a gel depends on the number of zippers (N), on the number of
parallel links (N) of a zipper, on the rotational freedom (G) of a link, and on the energy required to
open a link [42]. Consequently, the Tg-s increase observed upon addition of NdTrif3 to the host κ-Cg
can be associated with an increase of N and reduction of G, as a result of the aggregation of adjacent
κ-Cg double helices via the Nd3+ ions which play the role of cross-linking agents, in a way similar to
the Ca2+ ions. However, the Tg-s value of the various Nd3+-doped membranes remained practically
unchanged (Table 1 and Figure 4). The reason for this effect could be the occurrence of a high number
of intermolecular cross-linkages all over the materials leading to the formation of many separate
junction zones each involving a few double helices. This process would yield small micro-aggregates,
as suggested by the SEM data.

Molecules 2019, 24, x FOR PEER REVIEW 5 of 13 

 

Figure 3. SEM images of the CG50Ndz membranes with z = 10% (a), 20% (b), 30% (c) and 40% (d). 

Scale bars = 50 μm. a1–a6: EDS mapping of the inset region of a. 

2.2. Thermal Behavior 

The DSC curves of the CG50Ndz membranes in the 25–300 °C range, reproduced in Figure 4, 

show an endothermic peak centered around 123–131 °C. This event is attributed to the reversible gel-

sol transition temperature (Tg-s) involving the change of the polymer chains from double helices, then 

to helices (soluble clusters) and ultimately to random coils. The increase of the Tg-s of CG0Nd0 (115.0 

°C) observed upon introduction of Gly and NdTrif3 can be interpreted as decrease in segmental 

motion due to the formation of a hydrogen-bonded network between the -OH groups of Gly and the 

-OH and/or -C-O-C- and/or -OSO3− polar groups of κ-Cg, and intermolecular bridges between the 

Nd+ ions and κ-Cg, which strengthen the gel. The polymer chains become harder since the rotation 

of the polymer segments is blocked by these cross-linkage bonds, and the flexibility of the polymer 

backbone is reduced. This upshift can also be explained on the basis of the zipper model. According 

to this model, the heat capacity of a gel depends on the number of zippers (N), on the number of 

parallel links (N) of a zipper, on the rotational freedom (G) of a link, and on the energy required to 

open a link [42]. Consequently, the Tg-s increase observed upon addition of NdTrif3 to the host κ-Cg 

can be associated with an increase of N and reduction of G, as a result of the aggregation of adjacent 

κ-Cg double helices via the Nd3+ ions which play the role of cross-linking agents, in a way similar to 

the Ca2+ ions. However, the Tg-s value of the various Nd3+-doped membranes remained practically 

unchanged (Table 1 and Figure 4). The reason for this effect could be the occurrence of a high number 

of intermolecular cross-linkages all over the materials leading to the formation of many separate 

junction zones each involving a few double helices. This process would yield small micro-aggregates, 

as suggested by the SEM data. 

 

40 80 120 160

  

 

 

z

(a)

40
0

0

10

30

20

100

T(ºC)

40

ex
o

40
0

H
ea

t f
lu

x 
 (

m
W

.g
-1
)

en
do

0 10 20 30 40
160

170

180

190

200

210

220

 

 

T
d
 (
ｺºC

)

z (%)

(b)

Figure 4. Differential Scanning Calorimetry (DSC) curves (a) and variation of the decomposition
temperature (Td) with salt content z (b) of the non-doped and doped CG50Ndz membranes and of
NdTrif3 (green line). The line drawn in (b) is a guide for the eyes.

All the DSC curves also present an exothermic peak above 190 ◦C (Figure S2 of Supporting
Information and Table 1) associated with the thermal decomposition (Td) of the κ-Cg [18]. The analysis
of Figure 4b leads us to conclude that doping the CG50Ndz matrix with low contents of NdTrif3

increased the stability of the biopolymer matrix. However, the increase of NdTrif3 content for z ≥ 20
destabilized the system, shifting the onset of degradation to lower temperatures.
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Table 1. Gel-sol transition temperature (Tg-s) and decomposition temperature (Td) of the
CG50Ndz membranes.

Sample z (%) Tg-s (◦C) Td (◦C)

κ-Cg - 139 [18] 188 [18]
CG0Nd0 0 115 [18] 197 [18]
CG50Nd0 0 124 190
CG50Nd10 10 131 195
CG50Nd20 20 124 182
CG50Nd30 30 129 169
CG50Nd40 40 124 170

2.3. Ionic Conductivity Study

The degree of salt dissociation, salt concentration, ion mobility, the dielectric constant of the
host polymer, and the segmental mobility of the polymer chains [45,46] influence the ion transport
properties of SPEs. In the present work, Gly was added as plasticizer to increase the amorphous
phase content; dissociate ionic aggregates, and lower the glass transition temperature [45] of the
CG50Ndz membranes.

Figure 5 shows the Arrhenius conductivity plot of the CG50Ndz membranes in the 20–110 ◦C
temperature range at variable concentration of NdTrif3. Below the Tg-s value all the doped samples
demonstrate a non-linear variation of the ionic conductivity with temperature, a behavior typically
found in disordered electrolytes. This process is favoured in the presence of the plasticizer which
primarily increases the fraction of free volume by better separation of the polymer chains and ultimately
influences the movement of charge carriers. The examination of this plot reveals that the membrane
with the highest conductivity in the temperature range studied is CG50Nd20. This sample exhibits
1.03 × 10−4, 3.03 × 10−4, and 1.69 × 10−4 S cm−1 at 30, 60, and 97 ◦C, respectively (Figure 5,
green symbols). With the increase of salt content (z = 30), a marked reduction in conductivity is
observed (Figure 5, blue symbols). At this salt composition the salt begins to be poorly dissociated
and ion aggregates probably form. As a consequence, the number and mobility of charged species
present in the electrolyte system is reduced at high salt content and hence the conductivity decreases.
However, at z = 40 the ionic conductivity suffers a slight increase. We will return to the analysis
of the concentration dependence of conductivity in the section devoted to the FT-Raman analysis.
Above the Tg-s value the ionic conductivity of most samples suffered a marked decrease. This effect
can be ascribed to the dramatic loss of the mechanical properties of the membranes at temperatures
higher than Tg-s.

It is worth comparing the present results with those reported elsewhere for CG50Erz

electrolytes [30] and POE/Nd3+ [40]. The conductivity values of the present system are similar
to those reported for SPEs based on κ-Cg and ErTrif3 (1.5 × 10−4 and 3.6 × 10−4 S cm−1 at 20 and
60 ◦C, respectively) [30], or POE and NdTrif3 (3.16 × 10−4 S cm−1 at 30 ◦C) [40].
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Figure 5. Arrhenius conductivity plot of the CG50Ndz membranes. 
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2.4. Ionic Association Study

To evaluate the ionic association in the Nd3+-doped κ-Cg-based membranes, the symmetric
stretching vibration mode of the SO3 group (νsSO3) was studied through the analysis of the FT-Raman
spectra. Several species are known to exist in SPEs: (a) “free” or weakly bonded ions with considerable
mobility; (b) cations strongly bonded to the host polymer and thus with low mobility; (c) ionic
aggregates, such as contact ion pairs and higher ionic multiplets, with low-moderate mobility.

The FT-Raman spectra of the CG50Ndz membranes in the νsSO3 region is represented in Figure 6a.
Because the νsSO3 band is superimposed with that due to the stretching vibration mode of the S=O
group of the sulfate ester (-OSO3H unit) of κ-Cg, at 1063 cm−1 [47], it was necessary to first subtract the
FT-Raman spectrum of the matrix from those of the Nd3+-doped κ-Cg-based membranes. Figure 6b
shows the results of the curve-fitting performed in the subtracted νsSO3 FT-Raman band.
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In short, the νsSO3 FT-Raman band of the CG50Ndz membranes with z ≤ 20% was resolved into
three components: a sharp band at 1031 cm−1 assigned to “free” ions and two shoulders around 1037
and 1026 cm−1 (Figure 6b), attributed to weakly coordinated triflate ions located in two different
anionic environments [48]. In the CG50Nd30 membrane, a new component at 1042 cm−1 emerges
(Figure 5b). This component is tentatively attributed to the formation of a crystalline compound of
unknown composition and stoichiometry [48]. The presence of a crystalline complex in CG50Nd30

could be the reason for the drop of ionic conductivity in this membrane. In the case of the sample with
z = 40, this component is not detected, but the concentration of species which produce the 1026 cm−1

band is much higher. This might explain the higher ionic conductivity of this electrolyte with respect
to CG50Nd30. The spectroscopic analysis carried out provides evidence that, as expected, some of the
charge carriers of membrane with highest conductivity (CG50Nd20) are very likely “free” Trif− ions or
weakly coordinated species.

2.5. UV/Visible and NIR Analysis

The κ-Cg-based membranes are multi-wavelength emitters from the UV/visible to the NIR region,
as demonstrated in Figure 7a,b for two selected samples. The emission results from the overlap of
a series of NIR straight lines ascribed to the Nd3+, 4F3/2→4I11/2-9/2 transitions with a broad band in
the UV/visible spectral region attributed to the κ-Cg intrinsic emission [49], whose emission peak
position deviates to the red as the excitation wavelength increases. The emission energy dependence
on the excitation wavelength indicates a large distribution of emitting centres, in good agreement
with the amorphous local structure of k-Cg evidenced by XRD (Figure 2). The excitation spectra were
monitored around the Nd3+ most intense transition revealing a broad band peaking at 350 nm and a
series of low-relative intensity intra-4f 3 lines arising from transitions between the 4I9/2 excited state
and the 4D5/2-1/2, 2I11/2, 2L15/2, 4G11/2-5/2, 2G9/2-7/2, 2K13/2, 4S3/2 and 4F7/2 levels. We note that an
analogous broad band around 350 nm also dominates the excitation spectrum monitored within the
κ-Cg intrinsic emission, despite the presence of a low-relative intensity one in the low-wavelength
region. The presence of the more intense excitation band found in the excitation spectra monitored
within the host emission than in that monitored within the Nd3+ levels points out the occurrence of
effective κ Cg-to-Nd3+ energy transfer. The fact that the κ-Cg-related band is more intense than those
of the intra-4f 3 transitions in the excitation spectra monitored around the Nd3+ emission, readily
indicates that the ions’ excited states are mainly populated though the ligands sensitisation rather
than by direct intra-4f3 excitation. Moreover, the observation in the excitation spectra of Figure 7c,d
of self-absorptions in the κ-Cg emission indicates the presence of κ-Cg-to-Nd3+ radiative energy
transfer, i.e., the κ-Cg emission resonant with the Nd3+ intra-4f lines is absorbed by the metal ions and,
subsequently, converted into f–f emission. Such radiative energy transfer was previously observed in
Nd+3 and received the designation of “inner filter” effect [50].
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4D5/2-1/2, 2I11/2, 2L15/2,
and 4I9/2→4G11/2-5/2, 2G9/2,7/2, 2K13/2, respectively.

3. Experimental Section

3.1. Materials

κ-Cg (Carrageenan CG-130, Genugel, CP Kelco, 3 and 1.3 wt.% of K+ and Ca2+, respectively) [51],
neodymium (III) triflate (NdTrif, Aldrich, Steinheim, Germany, 98%), and glycerol (Gly, Sigma-Aldrich,
Steinheim, Germany, 99%) were used as received. High purity deionized water (H2O) (type II pure
water, using Elix Reference Water Purification System 10 from Millipore, Rephile Bioscience, Lda.,
Boston, MA, USA) was used in all experiments.

3.2. Preparation of the κ-Cg -Based Electrolytes

A mass of approximately 0.30 g of κ-Cg was dispersed in 15 mL of distilled water and heated
under magnetic stirring at 60–70 ◦C during 1 h for complete dissolution. A volume of 122 µL of
Gly (corresponding to 50% wt. Gly/κ-Cg) and different amounts of NdTrif3 were then added to this
solution under stirring (Table 2). When the solutions became homogeneous, they were transferred
to Petri plates and cooled down to room temperature. All the membranes prepared were stored in
an oven at 50 ◦C over 4 days. Under these drying conditions, the colour of κ-Cg does not tend to
turn brown and not observed cleavage of the glycosidic linkage [52]. The main problem associated
with drying κ-Cg is the formation of a gel between this polysaccharide and water which inhibits the
diffusion of water to the surface [52]. The as-produced membrane films were denoted as CGxNdz,
where C represents κ-Cg, G stands for Gly, and x and z indicate the concentrations of Gly and NdTrif3,
respectively, with respect to κ-Cg.
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Table 2. Relevant details of the CGxNdz membranes.

CGxNdz

x z m (κ-Cg) (g) V (H2O) (mL) % Nd/κ-Cg m (NdTrif) (g)

50 0 0.3017

15

- -
10 0.3013 10 0.0316
20 0.3020 20 0.0615
30 0.3006 30 0.0919
40 0.3020 40 0.1211

3.3. Characterization Techniques

The X-ray diffraction (XRD) measurements were recorded at room temperature with a Rigaku
Dmax III/C X-ray diffractometer, power 40 kV/30 mA and using monochromated CuKα radiation
(λ = 1.5418 Å) over the 2θ range of 10 to 70.0◦ at 1.2◦ min−1.

DSC curves of the samples were recorded using a Netzsch instrument (model STA 449 F3 Jupiter,
Nurnberg, Germany). The samples were transferred to aluminum crucibles, covered with pin holed
seals, and then heated from 30 to 260 ◦C at 10 ◦C min−1. Dry nitrogen was used as purge and protective
gases (50 mL min−1).

Scanning electron microscopy (SEM) images were obtained at 20 kV on a Hitachi S-3400N type
II microscope equipped with a Bruker x-flash 5010 at high vacuum. The sample was coated with
gold. Elemental mapping of the samples was performed by Energy Dispersive X-ray (EDX) analysis.
The acquisition time for a satisfactory resolution and noise performance was 30 s.

The Fourier Transform Raman (FT-Raman) spectra were recorded at room temperature with
an FT Raman Bruker RFS 100/S spectrometer equipped (Hamburg, Germany) with a Nd-YAG with
wavelength 1064 nm (350 mW). The spectra were collected over the 4000–100 cm−1 range by averaging
1500 scans at a resolution of 4 cm−1.

To evaluate complex FT-Raman band envelopes and to identify underlying spectral components,
the iterative least-squares curve-fitting procedure in the PeakFit software (version 4) [53] was used
extensively. The best fit of the experimental data was obtained by varying the frequency, bandwidth,
and intensity of the bands. As the morphology of the materials was under investigation, Gaussian band
shapes were employed. A linear baseline correction with a tolerance of 0.2% was used. The standard
errors of the curve-fitting procedure were less than 0.0002.

Bulk ionic conductivities (σi) of the membranes were obtained during heating cycles from
room temperature to 60 ◦C, over the frequency range of 65 kHz to 0.5 Hz, by means of an Autolab
PGSTAT-12 (Eco Chemie, Utrecht, The Netherlands), and using cell GE/electrolyte membrane/GE
(where GE stands for 10 mm diameter ion-blocking gold electrodes, Goodfellow, > 99.95%). Prior to
characterization, the κ-Cg based electrolytes were vacuum-dried at 50 ◦C for about 48 h and stored
in an argon-filled glovebox. The electrode–membrane–electrode assembly was secured in a suitable
constant-volume support, which was installed in a Buchi TO 51 tube oven. A calibrated type-K
thermocouple placed close to the membrane disc was used to measure the sample temperature with a
precision of about 0.2 ◦C. The CGxNdz electrolytes demonstrated almost ideal semiconductor behavior
up to 60 ◦C and bulk conductivities were extracted in the conventional manner from impedance data
by using an equivalent circuit composed of Rb in parallel with Gc, where Rb is the bulk electrical
resistance of the electrolyte and Gc is its geometric capacity. The circuit element corresponding to the
blocking electrode interface was simulated by a series Cdl elements, where Cdl is the double layer
capacity. The σi was calculated using the expression,

σi = d/(Rb A) (1)

where Rb, d and A are the bulk resistance, the thickness and the area of the electrolyte sample,
respectively.
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The emission and excitation spectra were recorded using a Fluorolog3® Horiba Scientific (Model
FL3-2T, Montpellier, France) spectroscope, with a modular double grating excitation spectrometer
(fitted with a 1200 grooves/mm grating blazed at 330 nm) and a TRIAX 320 single emission
monochromator (fitted with a 1200 grooves/mm grating blazed at 500 nm, reciprocal linear density
of 2.6 nm mm−1), coupled to R928 (UV/visible measurements) or H10330A (NIR measurements)
Hamamatsu photomultiplier, using the front face acquisition mode. The excitation source was a 450 W
Xe arc lamp. The emission spectra were corrected for detection and optical spectral response of the
spectrofluorimeter and the excitation spectra were corrected for the spectral distribution of the lamp
intensity using a photodiode reference detector. Moreover, a band path filter was used to avoid stray
radiation arising from the monitoring wavelength in the excitation spectra.

4. Conclusions

SPEs consisting of a κ-Cg, NdTrif3, and Gly were prepared via solvent-casting. In the present
work, we have reported structural, morphological and optical properties, thermal behavior, ionic
conductivity, and the degree of ionic associations of membranes, as a function the NdTrif3 content.
The analysed membranes show a semi-crystalline nature, with predominance of amorphous phase
and a homogeneous, non-rough texture with small spherical micro-aggregates. A maximum ionic
conductivity was achieved in an optimized sample with 50 wt.% Gly/κ-Cg and 20 wt.% NdTrif3/κ-Cg,
(1.03 × 10−4, 3.03 × 10−4, and 1.69 × 10−4 S cm−1 at 30, 60, and 97 ◦C, respectively). FT-Raman
spectroscopy suggests that the charge carriers of membrane with highest conductivity are “free” Trif−

ions or weakly coordinated species. The NdTrif3-based κ-Cg membranes present UV/visible and
NIR emission associated with the κ-Cg based host and the Nd3+, 4F3/2→4I11/2-9/2, respectively. These
membranes also display radiative energy transfer, named as “inner filter” effect. The encouraging
results reported in this work suggest that similar electrolytes incorporating highly efficient Nd3+

β-diketonate complexes instead of the salt employed here, may find application in ECDs featuring
attractive attributes, such as continuous NIR emission and UV harvesting ability. These characteristics
are of interest for the next generation of nearly-zero smart windows of the future sustainable buildings.
These devices will help curbing the energy consumption in the building, will avoid the need for
anti-UV coatings, while contributing to the increase of the occupant’s well-being. Considering that
the transmission of this type of polysaccharide-based electrolytes is not very high in the bleached
state [30], we may further speculate that this sort of electrolytes will be suitable for anti-glare purposes.

Supplementary Materials: The following are available online. Figure S1: SEM images of selected CG50Ndz
membranes with z = 20 and 40% (b). EDS mapping images for z = 20% (a1–a6) and z = 40% (b1–b6) for Ca (calcium,
purple), S (sulphur, blue), F (fluor, yellow), K (potassium, cyanide), O (oxygen, green), and Nd (neodymium, pink)
atoms. Figure S2: DSC curves of selected CG50Ndz membranes.
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