Comparison of vineyard-associated Saccharomyces cerevisiae populations by microsatellite analysis

Dorit Schuller¹, Eva Valero^{2,3}, Brigitte Cambon², Sylvie Dequin², Margarida Casal¹

- ¹ Departamento / Centro de Biologia, Universidade do Minho, Braga, Portugal
- ² UMR Sciences pour l'Oenologie, INRA, Montpellier, France
- ³ Present address: Departamento de Agroalimentación, IMIDRA, Madrid, Spain

Winery

tions was estimated by Fst determination over al. supropulations was estimated by Fst determination over a loci by AMOVA analysis (computed by the Arlequin software [9]). A similarity matrix of allelic frequencies was computed by the program NTSYSpc 2.0 [10], based on the Euclidean

Winery	Year	Number of collected samples	Number of spontaneous fermentations	Number of Isolates	Number of Non-S. cerevisiae isolates	Number of genolypes	
	2001	12	3	90	0	11	1
Α	2002	6	6	180	0	34	0 1 0
	2003	12	6	180	0	41	• 1
С	2001	12	8	240	0	26	
	2002	3	1	30	0	1	
	2003	12	7	210	0	35	0 0 2
Р	2001	12	8	240	0	64	0 2 0
	2002	9	5	150	0	12	02
	2003	12	10	300	0	59	022
М	2001	12	11	330	129	51	0 0 0
	2002	12	12	360	359	1	
	2003	12	6	180	59	21	6

- patterns according their atletic distribution.

 The highest S. cerevisiae biodiversity was observed in winery M (323 isolates, 73 patterns) followed by es P (690 isolates, 135 patterns), A (450 isolates, 86 patterns) and C (480 isolates, 62 patter
- everal genotypes showed a wider temporal and geographical generalized pattern of sporadic prosence and reappearance across sampling sites, vineyards or years.
- Non-Saccharomyces strains belonging to the genus Kloeckera

- The six markers revealed a high degree of genetic variability, being ScAAT1 and ScAAT3 the most polymorphic markers with 31 and 19
- Besides the 41 ScAATi-ScAAT6 alleles previously described for 51 strains [3], 52 new alleles were identified in the present study.

 Some newly described alleles o occur with relative high frequency and may be used as indicative alleles for the Vinho Verde Win.
- The vast majority of alleles were evenly distributed among S. cerevisiae populations belonging to vineyards A, C and P and M, but differences are notorious for few alleles, which can be considered as vineyard(s) or Wine Region indicative

- Vineyard-specific populational substructure is shown by several clusters, comprising sampling sites of vineyards C, P, A and M. Populations within groups C and P are more closely related, while S. cerevisiae populations belonging to vineyard A are much more heterogeneous and also more distinct from C and P.
- The C2 population lies within the P-cluster, indicating that genetic differences do

Source o	AG	APWG	WP		P (r < 0)		
	2001		3.03	9.03	87.94	0.12	< 0.0001
	2002	A/P	6.38	13.28	80,33	0.20	0.0001
	2003		2.76	11.29	85.95	0.14	0.0001
	2001		-4.16	16.66	87.51	0.12	0.059
	2003	A/C	1.09	16.20	82.71	0.17	< 0.000
	2001	C/P	-1.21	8.31	92.89	0.07	0.0001
Among vineyards	2003	CIF	0.48	8.10	91.42	0.09	< 0.000
	2001	M/A	5.87	7.33	86.80	0.13	< 0.000
	2003	W/A	7.38	14.59	78.04	0.22	< 0.000
	2001		0.03	5.72	94.25	0.06	0.016
	2003	M/C	3.85	9.25	86.90	0.13	0.001
	2001	MP	2.75	5.44	91.80	0.08	< 0.000
	2003	IVE	3.48	4.54	91.98	0.08	< 0.000
	2001 / 2002	Α	-2.45	13.94	88.51	0.11	0.034
		P	0.79	9.94	89.27	0.11	0.0001
	2002 / 2003	Α	1.29	15.79	83.0	0.17	< 0.000
	2002 / 2003	P	1.68	7.73	90.59	0.09	0.052
Among years -		Α	-2.45	20.48	82.05	0.18	< 0.000
	2001 / 2002	С	-1.56	12.67	88.89	0.11	0.0001
	2001 / 2003	M	-0.25	5.63	94.61	0.05	0.07
		Р	0.37	6.30	93.33	0.07	0.0001

Pair wise association of populations from different vineyards showed that the closer vineyards A/P and A/C (30 - 50 km) are distant vineyards P/C (ca. 80 km).

F_{st} values for the pair wise association of S cerevisiae populations from France and Portugal (A/M, C/M and P/M) are similar to the values

observed among Portuguese populations.

Populations variation within a vineyard in consecutive years is similar to the variation observed between vineyards, being more variable in A (Fst = 0.11 - 0.18) compared to P

- D. Schuller, H. Alves, S. Dequin, M. Casal. 2005. FEMS Microbiol Ecol. 51, 167-177.
- E. Valero, D. Schuller, B. Cambon, M. Casal, S. Dequin. 2005. FEMS Yeast Res. 5, 959-969.
 Pretorius IS, du Toit M, van Rensburg P (2003). Food Technol Biotechnol 41:3-10.
- [4] Barnett J. A., Payne, R. W., and Yarrow, D. 1990. Yeasts: Characteristics and identification. 2nd Ed. Cambridge University Press. Cambridge. UK.
 [5] Blondin, B., and Vezinhet, F. 1988. Rev. Fr. Oenol. 28: 7-11.
- Pérez, M.A., Gallego, F.J., Martinez, I. and Hidalgo, P. 2001, Lett. Appl. Microbiol, 33, 461-466. [7] López V., Querol A., Ramón D., and Fernández-Espinar M.T. 2001. Int J Food Microbiol 68:75-
- Schuller, D., Valero, E., Dequin, S. and Casal, M. 2004. FEMS Microbiol Lett. 231(1) 19-26. Schneider, S., Kueffer, J-M., Roessli, D. and Excoffier, L. 1997. ARLEQUIN version 1.1. Software for population genetics data analysis. Geneva, Switzerland
- [10] NTSYSpc 2.0, 1997, Exeter Software (http://www.ExeterSoftware.com)

Conclusions

Acknowledgements

This study was supported by the projects ENGSAFE (W 782, Programs AGRO, medida 8) and the programme POOL 2010 (project POCIAGESS71/2004). We appreciate the kind assistance of the enologists fall cultural, assistant Mendes, Euclides Reddyings and Jose Domingson for Entitlisting sampling campaigns in the three tim-pards. Magda Silva Graza is gratefully acknowledged for the operation of the Diffs assignators.

This poster is available at http://repositorium.sdum.uminho.pt http://repositorium.gdum.uminho.pt http://repositorium.gdum.uminho.pt http://repositorium.gdu

Tel: 253 - 60 40 10/17 Fax: 253 – 67 89 80 I: dschuller@bio.uminho.pt