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Abstract

The paper is concerned with a broad family of scalar periodic delay differential equations
with linear impulses, for which the existence of a positive periodic solution is established under
very general conditions. The proofs rely on fixed point arguments, employing either the Schauder
theorem or Krasnoselskii fixed point theorem in cones. The results are illustrated with applications
to an impulsive hematopoiesis model or generalized Nicholson’s equations, among other selected
examples from mathematical biology. The method presented here turns out to be powerful, in the
sense that the derived theorems largely generalize and improve other results in recent literature,
even for the situation without impulses.
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1 Introduction

Delay differential equations (DDEs) have been extensively used in population dynamics, neural net-
works, disease modeling, control theory and many other scientific fields, where the delays naturally
appear to account for a variety of situations. Among them, periodic DDEs are particularly relevant,
since periodic parameters and delays allow incorporating in the models the periodicity of the envi-
ronment, or some periodic physiological features, as well as other periodic phenomena. Moreover,
some evolutionary systems go through abrupt changes, due to predictable or sudden external circum-
stances, such as weather, resource availability, food supplies, drug treatments, etc. These phenomena
are better described by the so-called impulsive differential equations.

This paper is devoted to establishing the existence of at least one positive periodic solution for a
large family of periodic scalar DDEs with linear impulses, given in the general form

x′(t) + a(t)x(t) = g(t, xt), t0 ≤ t 6= tk,

∆(x(tk)) := x(t+k )− x(tk) = bkx(tk), k ∈ N,
(1.1)

where the functions a and g are continuous, nonnegative and periodic, with a common period ω > 0,
the impulses bk at times tk, with t0 < t1 < t2 < · · · < tk < · · · and tk → ∞, occur with periodicity
ω, and the solutions are left continuous, continuous for t 6= tk, with jump discontinuities at tk, k ∈ N.
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First, some general terminology is introduced here, namely the concept of solution.
For an interval [α, β] ⊂ R, denote by PC([α, β];R) the space of functions ϕ : [α, β] → R which

are piecewise continuous on [α, β] and left continuous on (α, β], endowed with the supremum norm.
For an interval I ⊂ R, define the space PC(I;R) as the space of bounded functions ϕ : I → R
whose restriction to each compact interval [α, β] ⊂ I is in the closure of PC([α, β];R) in the space
of bounded functions B([α, β];R), with the norm ‖ϕ‖ = supt∈R |ϕ(t)|.

If τ > 0 is the time-delay or ‘memory’ for (1.1), we take PC([−τ, 0];R) as the phase space.
In (1.1), we adopt the following standard notations: x′(t) is the left-hand derivative of x(t) and
xt ∈ PC([−τ, 0];R) is defined by

xt(s) = x(t+ s), s ∈ [−τ, 0].

Initial conditions have the form xt0 = ϕ for ϕ ∈ PC([−τ, 0];R). A solution x(t) of (1.1) on an
interval [t0, β) (with β > t0 or β =∞) is a piecewise continuous function in PC([t0 − τ, β);R), with
x′ ∈ PC([t0 − τ, β);R) and x(t) continuous for t 6= tk, such that x′(t) + a(t)x(t) = g(t, xt) on each
interval (tk, tk+1], x(t−k ) = x(tk) and x(t+k ) = (1 + bk)x(tk), for k ∈ N. Theoretical results about
existence, uniqueness and global continuation of solutions are well-known, see e.g. [9, 13, 23]. It is
important to emphasize that the family (1.1) in particular includes periodic DDEs without impulses
of the form x′(t) + a(t)x(t) = g(t, xt).

The unifying method developed here demonstrates the existence of (at least) one positive periodic
solution for very general classes of periodic impulsive equations given by (1.1), under very mild
assumptions on the impulses and with nonlinearities g(t, ϕ) (t ≥ 0, ϕ ∈ PC([−τ, 0];R)) satisfying
some prescribed behavior for ϕ ≥ 0 either sufficiently small or sufficiently large. Our method is
based on finding a fixed point for a convenient operator, by using either Schauder or Krasnoselskii
fixed point theorems. Not only is this technique new, in the sense that a fixed point argument is
applied to a new operator constructed here, but also our criteria rely on some sufficient conditions
which are satisfied by a large number of relevant biological models and whose validity is easy to
check. When applied to concrete models, the main theorems proven here give rise to new criteria on
existence of a positive periodic solution, which largely generalize, recover or improve other results in
recent papers, even for the situation without impulses. As we shall mention in the last section of the
paper, the works of Wan et al. [24] and Li et al. [15] were a strong inspiration for the present study,
whose main aim was twofold: first, to prove that a positive periodic solution for impulsive equations
more general than the ones considered in [24, 15] (where only one discrete delay was allowed) must
exist, and, second, to remove the requirement of having always positive impulses.

The organization of this paper is now briefly described. The main results, about the existence
of a positive periodic solution for (1.1) with some types of nonlinearities g(t, ϕ), are presented in
Section 2. The results apply to both equations with and without impulses. Section 3 is devoted to
applications to a selected number of celebrated equations used as blood cell production models or in
population dynamics, such as generalized Lasota-Wazewska, Mackey-Glass or Nicholson equations.
A discussion of the paper and a further review of relevant literature that focuses on the subject
are postponed to Section 4, to better explain the main differences, advantages and disadvantages
of our approach. Several open problems, as well as a number of future research directions, are also
presented.
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2 Main results

In this section, we present very general results on the existence of positive periodic solutions for
scalar DDEs with impulses. As a consequence, criteria for non-impulsive DDEs will also be derived.

Consider the following scalar impulsive equation with delays:{
y′(t) + a(t)y(t) = g(t, yt), 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N,
(2.1)

where a : R→ R, g : R× PC([−τ, 0];R)→ R and (tk)k∈N is an increasing sequence, and

(h1) the functions a(t), g(t, ϕ) are continuous, nonnegative, not identically zero and ω-periodic in
t ∈ [0,∞), for some constant ω > 0, and g is bounded on bounded sets of R× PC([−τ, 0];R);

(h2) there is a positive integer p such that 0 < t1 < t2 < · · · tp ≤ ω and

tk+p = tk + ω, bk+p = bk, k ∈ N;

(h3) the constants b1, . . . , bp ∈ R satisfy bk > −1;

(h4)

p∏
k=1

(1 + bk) < e
∫ ω
0 a(t) dt.

Assumption (h3) guarantees that, at the impulsive points tk, solutions of (2.1) with y(t−k ) =
y(tk) > 0 must satisfy y(t+k ) > 0, k ∈ N. Thus, since g transforms bounded sets of R×PC([−τ, 0];R)
into bounded sets of R, solutions with nonnegative initial conditions ϕ ∈ PC([−τ, 0];R) and ϕ(0) > 0
are defined and remain positive on R+ = [0,∞).

A function y ∈ P (R;R) is ω-periodic if y(t + ω) = y(t),∀t ∈ R. For y : R+ → R piecewise
continuous and ω-periodic on R+, we may identify y with its ω-periodic extension to R.

Let X be the Banach space of the ω-periodic functions y : R+ → R which are continuous on
R+ \ {tk}, with y(t−k ) = y(tk) and y(t+k ) ∈ R for all k ∈ N, endowed with the supremum norm
‖y‖ = supt∈[0,ω] |y(t)|, y ∈ X. The open balls in X of center y ∈ X and radius r > 0 will be denoted
by Br(y). Denote by X+ the cone of non-negative functions in X, i.e., X+ = {y ∈ X : y(t) ≥ 0, t ∈
[0, ω]}, and consider the partial order in X induced by X+, y1 ≤ y2 if y2 − y1 ∈ X+.

In order to simplify the writing, in what follows we adopt some notations. Define the functions

A(t) =

∫ t

0
a(u) du , B(t) =

∏
k:tk∈[0,t)

(1 + bk)
−1,

B(s, t) = B(s)B(t)−1 =
∏

k:tk∈[t,s)

(1 + bk)
−1, t ≥ 0, s ∈ [t, t+ ω].

(2.2)

Clearly, B(s + ω, t + ω) = B(s, t) for 0 ≤ t ≤ s ≤ t + ω. Hypotheses (h2),(h3) imply that
B,B ∈ (0,∞), where

B = sup
0≤t≤s≤t+ω

B(s, t), B := inf
0≤t≤s≤t+ω

B(s, t), (2.3)

3



while B(ω)eA(ω) > 1 as a result of (h4). The situation without impulses, in which case bk = 0 for all
k and B = B = 1, is included in our setting.

With the notations in (2.2), define the operator

(Φy)(t) =
(
B(ω)eA(ω) − 1

)−1 ∫ t+ω

t
B(s, t)g(s, ys)e

∫ s
t a(u) du ds (2.4)

for y ∈ X+, t ≥ 0, and a new cone

K = K(σ) = {y ∈ X+ : y(t) ≥ σ‖y‖ for t ∈ [0, ω]},

where σ ∈ (0, 1) is a constant to be chosen below.

Lemma 2.1. Assume (h1)-(h4) and take σ > 0 with

σ ≤
(
B/B

)
e−A(ω).

Then Φ(K) ⊂ K.

Proof. Let y ∈ X+. From the definition of Φ and (h1)-(h4), it is clear that Φy ≥ 0 and Φy is
ω-periodic. Moreover, t 7→ (Φy)(t) is continuous for t 6= tk, with (Φy)(t−k ) = (Φy)(tk) and

(Φy)(t+k ) = (1 + bk)(Φy)(tk) for k ∈ N. (2.5)

Thus, Φ(X+) ⊂ X+. For y ∈ K and t ≥ 0, we have

(Φy)(t) ≤
(
B(ω)eA(ω) − 1

)−1
BeA(ω)

∫ ω

0
g(s, ys)ds,

and

(Φy)(t) ≥
(
B(ω)eA(ω) − 1

)−1
B

∫ ω

0
g(s, ys)ds,

implying that

‖Φy‖ ≤
(
B(ω)eA(ω) − 1

)−1
BeA(ω)

∫ ω

0
g(s, ys)ds

and
(Φy)(t) ≥ B(BeA(ω))−1‖Φy‖.

In what follows, even if not mentioned, K = K(σ) for some fixed σ, with 0 < σ ≤
(
B/B

)
e−A(ω).

Lemma 2.2. Assume (h1)-(h4). Then y = y(t) is a nonnegative ω-periodic solution of (2.1) if and
only if y is a fixed point of the operator Φ.

4



Proof. Let y = y(t) ≥ 0 be an ω-periodic solution of (2.1). From [25, Lemma 3.1], the function
x(t) := B(t)y(t) is continuous and satisfies

x′(t) + a(t)x(t) = B(t)g(t, yt), t ≥ 0, t 6= tk.

Fix t 6= tk. Multiplying by eA(t) and integrating over [t, t+ ω], we obtain∫ t+ω

t

d

ds

[
x(s)eA(s)

]
ds =

∫ t+ω

t
B(s)g(s, ys)e

A(s) ds,

which is equivalent to

(
B(t+ ω)eA(ω) −B(t)

)
y(t)eA(t) =

∫ t+ω

t
B(s)g(s, ys)e

A(s) ds.

Since B(t + ω) = B(t + ω, t)B(t) = B(ω)B(t) and from the definition of B(s, t) = B(s)B(t)−1, one
obtains (

B(ω)eA(ω) − 1
)
y(t) =

∫ t+ω

t
B(s, t)g(s, ys)e

∫ s
t a(u) du ds,

and thus y = Φy.
Conversely, suppose that y ∈ X+ and y = Φy. From (2.5), it follows that ∆y(tk) = bky(tk) for

k ∈ N. For t 6= tk, differentiation of Φy = y leads to

y′(t) = −a(t)y(t) +
(
B(ω)eA(ω) − 1

)−1 [
B(t+ ω, t)e

∫ t+ω
t a(u) du − 1

]
g(t, yt) = −a(t)y(t) + g(t, yt).

The existence of a positive ω-periodic solution of (2.1) will be proven by using either the
Schauder’s or the Krasnoselskii’s fixed point theorems [12]. For the latter case, the version for
compressed cones given below is often used and is a simple corollary of Theorem 6.20.1 in [4].

Theorem 2.1. Let X be a Banach space, K a closed cone in X and T : K → K a completely
continuous operator. Suppose that there exist r,R with 0 < r < R such that:

(i) ‖Ty‖ ≤ R if y ∈ K, ‖y‖ = R;

(ii) There exists ψ ∈ K \ {0} such that y 6= Ty + λψ for all y ∈ K with ‖y‖ = r and λ > 0.
Then there exists a fixed point y∗ of T , with y∗ ∈ {y ∈ K : r ≤ ‖y‖ ≤ R}.

The next lemma asserts that Φ given by (2.4) is completely continuous on K if more regularity
on g is imposed. The restriction Φ|K will be still denoted by Φ.

Lemma 2.3. Assume (h1)-(h4) and that

(h5) the function g0 : [0, ω] × X+ → R defined by g0(t, y) = g(t, yt) is uniformly continuous on
bounded sets of [0, ω]×K .

Then the operator Φ : K → K is completely continuous.
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Proof. (i) We first prove that Φ is continuous. Fix y0 ∈ K. For any ε > 0, t ∈ R+ and y ∈ K∩Bε(y0),
we have ‖yt − y0,t‖ < ε and

|(Φy)(t)− (Φy0)(t)| ≤
(
B(ω)eA(ω) − 1

)−1
BeA(ω)

∫ ω

0
|g(s, ys)− g(s, y0,s)| ds.

As the function g0(t, y) is uniformly continuous on bounded sets of [0, ω] ×K, this shows that Φ is
continuous at y0.

(ii) To prove that Φ is a compact operator in K, first observe that, for any R > 0, Φ(K ∩BR(0))
is bounded, since g0(t, y) is bounded on bounded sets of [0, ω]×K.

Secondly, we show that Φ transforms bounded sets of K into relative compact sets of X. We
define the auxiliary operator

(Fy)(t) = B(t)(Φy)(t)

and remark that formula (2.5) implies that (Fy)(t) is continuous on [0,∞). On the other hand, B(t)
is bounded on [0, ω] below and above by positive constants. Take R > 0. To prove that Φ(K∩BR(0))
is relative compact in X, we show that the family F0 := {(Fy)|[0,ω] : y ∈ K ∩BR(0)}, considered as
a subset of C([0, ω];R), is equicontinuous.

For y ∈ K ∩BR(0), the function (Fy)(t) is piecewise differentiable on [0, ω], with derivative

(Fy)′(t) = B(t)
[
− a(t)(Φy)(t) + g(t, yt)

]
, t ∈ [0, ω] \ {t1, . . . , tp}.

Clearly, the derivative is uniformly bounded on K ∩ BR(0), i.e., ‖(Fy)′‖ ≤ M for some M > 0,
because Φ(K ∩BR(0)) is bounded and

|(Fy)′(t)| ≤ B
[

max
t∈[0,ω]

a(t) ‖Φy‖+ sup
t∈[0,ω],y∈BR(0)

|g(t, yt)|
]
.

Therefore, F0 is equicontinuous, hence relatively compact in C([0, ω];R). By multiplying each
function x(t) in F0 by B(t)−1 and considering its ω-periodic extension on R+, we conclude that
Φ(K ∩BR(0)) is relatively compact in K.

We are finally in the position to prove the main results of this section. We shall consider two
distinct situations. First, we address the case where y(t) ≡ 0 is not a solution of (2.1) and g0(t, y) is
uniformly bounded on [0, ω]×K.

Theorem 2.2. Consider (2.1) and assume that (h1)-(h5) hold. In addition, suppose that g0(t, y) :=
g(t, yt) is uniformly bounded on [0, ω]×K and that g(t, 0) 6≡ 0. Then there exists at least one positive
ω-periodic solution of (2.1).

Proof. Consider Φ : K → K, where K = K(σ) ⊂ X is the cone defined above, with e.g. σ fixed as
σ =

(
B/B

)
e−A(ω). By Lemma 2.2, it suffices to show that there exists a positive fixed point of Φ.

Let |g(t, yt)| ≤M for (t, y) ∈ [0, ω]×X+, for some M > 0. For R ≥Mω
(
B(ω)eA(ω)−1

)−1
BeA(ω),

we have
Φ
(
K ∩BR(0)

)
⊂ K ∩BR(0).

On the other hand, observe that K ∩ BR(0) is a closed, bounded, convex subset of X. Since Φ
is completely continuous, by Schauder’s fixed point theorem there exists a fixed point y∗ of Φ in
K ∩BR(0). Since Φ0 6= 0, y∗ 6= 0, thus y∗(t) ≥ σ‖y∗‖ > 0.
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For a large number of models with real world applications, one however has g(t, 0) ≡ 0, and thus
y(t) ≡ 0 is a solution of (2.1). For (2.1) under hypotheses (h1)-(h5), if a type of monotonicity behavior
on g(t, ϕ) is prescribed for ϕ ≥ 0 in the vicinity of 0+ and ‘at infinity’, the use of Krasnoselskii’s
theorem on a suitable annulus {y ∈ K : r ≤ ‖y‖ ≤ R} enables us to conclude that (2.1) has at least
a positive ω-periodic solution in K.

Theorem 2.3. Consider (2.1) and assume that (h1)-(h5) hold. In addition, suppose that there are
constants r0, R0 with 0 < r0 ≤ R0 and continuous functions b, h : R+ → R+, such that:

(i) b(t) ω-periodic and b(t) 6≡ 0,

(ii) h(u) > 0 for u > 0, with

lim
u→0+

u

h(u)
< C, lim

u→+∞

u

h(u)
=∞, (2.6)

where

C =
(
B(ω)eA(ω) − 1

)−1
B inf

t≥0

∫ t+ω

t
b(s)e

∫ s
t a(u) du ds, (2.7)

(iii) for any r ≥ 0, ϕ ≥ 0 and t ≥ 0,

g(t, ϕ) ≤ b(t)h(r) if R0 ≤ ϕ ≤ r,
g(t, ϕ) ≥ b(t)h(r) if r ≤ ϕ ≤ r0.

(2.8)

Then there exists at least one positive ω-periodic solution of (2.1).

Proof. Again, consider Φ : K → K, where K = K(σ) ⊂ X is the closed cone with σ =
(
B/B

)
e−A(ω).

We shall show that Φ has a fixed point in {y ∈ K : r ≤ ‖y‖ ≤ R}, for some 0 < r < R.
Take R ≥ σ−1R0. For y ∈ K with ‖y‖ = R, we have R0 ≤ y(t) ≤ R and

(Φy)(t) ≤ h(R)
(
B(ω)eA(ω) − 1

)−1
BeA(ω)

∫ ω

0
b(s)ds, t ∈ [0, ω].

Since limu→+∞
h(u)
u = 0, we can choose R > 0 sufficiently large such that

(Φy)(t) ≤ R, t ∈ [0, ω].

Next, as a result of limu→0+
u

h(u) < C, one can choose r > 0 small so that r ≤ r0 and u
h(u) < C

for 0 < u ≤ r, where C is as in (2.7).
With ψ ≡ 1, we claim that Φy + λψ 6= y for all λ > 0, y ∈ K, ‖y‖ = r.
Otherwise, there are λ0 > 0 and y0 ∈ K with ‖y0‖ = r, such that y0 = Φy0 + λ0ψ. Choose t∗ ∈

[0, ω] such that µ := inft∈[0,ω] y0(t) ≥ y0(t∗)−λ0/2. Clearly, 0 < σr ≤ µ ≤ r and g(t, y0,t) ≥ b(t)h(µ),
hence

µ ≥ y0(t∗)− λ0/2 = λ0/2 + (Φy0)(t∗)

≥ λ0/2 +
(
B(ω)eA(ω) − 1

)−1
Bh(µ)

∫ t∗+ω

t∗

b(s)e
∫ s
t∗ a(u) du ds

≥ λ0/2 + Ch(µ),

implying that µ
h(µ) > C, which contradicts the choice of r. This proves the claim. By Theorem 2.1,

the proof is complete.
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A careful analysis of the arguments above shows that they are valid if the nonlinearity g(t, ϕ)
in (2.8), where ϕ ∈ PC([−τ, 0];R+), is replaced by g0(t, y) = g(t, yt), where now y ∈ K = K(σ).
Therefore we state below a slightly stronger version of Theorem 2.3, which will turn out to be very
useful in some applications (see Section 3).

Theorem 2.4. Consider (2.1), fix σ =
(
B/B

)
e−A(ω), consider the cone K = K(σ) = {y ∈ X+ :

y(t) ≥ σ‖y‖ for t ∈ [0, ω]} and assume (h1)-(h5). Suppose also that there are constants r0, R0 with
0 < r0 ≤ R0 and continuous functions b, h : R+ → R+ such that the additional requirements (i), (ii)
in the statement of Theorem 2.3 are satisfied, and:

(iii*) for any r ≥ 0, y ∈ K and t ∈ [0, ω],

g(t, yt) ≤ b(t)h(r) if R0 ≤ y(t) ≤ r,
g(t, yt) ≥ b(t)h(r) if r ≤ y(t) ≤ r0.

(2.9)

Then there exists at least one positive ω-periodic solution of (2.1).

Remark 2.1. In the situation of Theorems 2.3 and 2.4, it is useful to note that C as in (2.7) satisfies
C ≥ C0 where

C0 =
(
B(ω)eA(ω) − 1

)−1
B

∫ ω

0
b(s) ds,

thus the first condition in (2.6) holds if limu→0+
u

h(u) < C0. Of course, for concrete functions a(t), b(t)

it is often possible to deduce that C > C0, in which case the first condition in (2.6) can be replaced
by limu→0+

u
h(u) ≤ C0. On the other hand, additional hypotheses on the coefficients permit writing

(2.6) in a simpler form, as shown in the next criterion.

Corollary 2.1. Consider (2.1), assume (h1)-(h5), and suppose also that there are positive constants
r0, R0 and continuous functions b, h : R+ → R+ with b(t) ω-periodic, such that (2.8) (or (2.9)) is
satisfied, with:
(a) b(t) > a(t) on [0, ω];
(b) h(u) is positive for u > 0, limu→0+

u
h(u) ≤ C1, limu→+∞

u
h(u) =∞, where

C1 =
(
B(ω)eA(ω) − 1

)−1
B
(
eA(ω) − 1

)
.

Then there exists at least one positive ω-periodic solution of (2.1).

Proof. Note that ∫ t+ω

t
a(s)e

∫ s
t a(u) du ds = e

∫ t+ω
t a(u) du − 1 = eA(ω) − 1, t ≥ 0.

From (a), we deduce that

inf
t≥0

∫ t+ω

t
b(s)e

∫ s
t a(u) du ds > eA(ω) − 1

and therefore C > C1, where C is defined in (2.7).
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The equation without impulses,

y′(t) + a(t)y(t) = g(t, yt), t ≥ 0, (2.10)

is simply (2.1) with bk = 0, k ∈ N, and is included in the above setting. Below, we denote C+(R+) =
C(R+;R+) and C+

ω = {y ∈ C+(R+) : y is ω-periodic}, and state Theorems 2.2 and 2.3 for the
non-impulsive case.

Theorem 2.5. Consider (2.10) where a ∈ C+
ω , a(t) 6≡ 0, g : R+×C([−τ, 0];R+)→ R+ is continuous,

ω-periodic in t, and g0 : R+ × C+
ω → R+ defined by g0(t, y) = g(t, yt) is uniformly continuous and

bounded on bounded sets of [0, ω]×C+
ω . If g(t, 0) 6≡ 0, then there exists at least one positive ω-periodic

solution of (2.10).

Theorem 2.6. Consider (2.10) where a ∈ C+
ω , a(t) 6≡ 0, g : R+×C([−τ, 0];R+)→ R+ is completely

continuous, ω-periodic in t, and g0(t, y) = g(t, yt) is uniformly continuous on bounded sets of [0, ω]×
C+
ω . In addition, suppose that there are constants r0, R0, with 0 < r0 ≤ R0, and continuous functions

b, h : R+ → R+, where:

(i) b(t) is ω-periodic and
∫ ω
0 b(s) ds > 0;

(ii) h(u) > 0 for u > 0, with limu→0+
u

h(u) < C, limu→+∞
u

h(u) =∞, where

C =
(
eA(ω) − 1

)−1
inf
t≥0

∫ t+ω

t
b(s)e

∫ s
t a(u) du ds ; (2.11)

(iii) for all r ≥ 0, ϕ ≥ 0 and t ≥ 0,

g(t, ϕ) ≤ b(t)h(r) if R0 ≤ ϕ ≤ r,
g(t, ϕ) ≥ b(t)h(r) if r ≤ ϕ ≤ r0.

Then there exists at least one positive ω-periodic solution of (2.10).

Of course, for σ = e−A(ω), in the above statement one can replace (iii) by (iii*) as in Theorem
2.4.

Corollary 2.2. Consider the hypotheses of Theorem 2.6, with lim
u→0+

u

h(u)
< C replaced by one of the

following conditions:

(a) lim
u→0+

u

h(u)
< C0, where C0 =

(
eA(ω) − 1

)−1 ∫ ω
0 b(s) ds;

(b) lim
u→0+

u

h(u)
≤ 1 and b(t) > a(t), t ∈ [0, ω].

Then (2.10) has a positive ω-periodic solution.

Remark 2.2. As in [8], one could consider impulsive DDEs where the impulses are not linear,
but instead have the form ∆(y(tk)) = Ik(y(tk)), with Ik : R+ → R continuous, u + Ik(u) > 0 for
u > 0, and there exist a positive integer p such that tk+p = tk + ω, Ik+p(u) = Ik(u) (k ∈ N, u > 0)

and constants a1, . . . , ap and b1, . . . , bp, with bk > −1 and such that bk ≤ Ik(x)−Ik(y)
x−y ≤ ak, x, y ≥

0, x 6= y, k = 1, . . . , p. In this situation, B(t) defined on (2.2) depends on y ∈ X+ and has the form
By(t) =

∏
k:tk∈[0,t) Jk(y(tk)), where Jk(u) := u

u+Ik(u)
(u > 0) satisfies (ak+1)−1 ≤ Jk(u) ≤ (bk+1)−1.

Clearly, the definition of Φ and the above results have to be rewritten with some care. For further
comments, see Section 4.
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3 Application to some mathematical biology models with and with-
out impulsive effects

The results in Section 2 apply to a very broad class of periodic scalar DDEs, both with linear im-
pulses and without impulses, which include many relevant models used in population dynamics,
physiological systems, ecology, physics, and a variety of other fields. The present method has signif-
icant applications, as the hypotheses in the statements of Theorems 2.2 and 2.3 are often fulfilled
and their validity easy to check.

In this section, we illustrate the results with a few selected examples which, in view of their
numerous and important applications, have been widely studied. Although a brief comparison with
some related results in recent literature will be given, we of course will not mention all the relevant
contributions regarding these selected models. Typically, the equations under consideration are
periodic, have the form

y′(t) + a(t)y(t) =
m∑
i=1

fi(t, y(t− τi(t))), 0 ≤ t 6= tk,

and are subjected to periodic linear impulses at the points tk, k ∈ N. In this case, g(t, ϕ) =∑m
i=1 fi(t, ϕ(−τi(t))) is completely continuous and (h5) is satisfied if fi(t, x) (1 ≤ i ≤ m) are con-

tinuous on R+ × R+. As we shall see, dependence on multiple discrete delays in each function fi
can also be considered. Clearly, models with distributed delays can again be included in the form
(2.1), see Section 4 for a discussion of this subject. Further comments regarding the novelty of our
method, as well as directions for future research, will be postponed to the last section of the paper.

3.1 Models without the trivial solution

The first example concerns a DDE with a bounded nonlinearity, for which y = 0 is not a solution.
Consider the following generalized impulsive model of hematopoiesis: y′(t) + a(t)y(t) =

m∑
i=1

bi(t)

1 + y(t− τi(t))n
, 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N,
(3.1)

where m ∈ N, n is a positive constant, (tk), (bk)k∈N are sequences satisfying (h2)-(h4), and the delays
and coefficients satisfy the following assumption:

(h1*) a(t), bi(t), τi(t) ∈ C+
ω (ω > 0), with a(t), bi(t) not identically zero, i = 1, . . . ,m.

Theorem 3.1. Assume (h1*),(h2)-(h4). Then there exists a positive ω-periodic solution of (3.1).

Proof. Let τ = max1≤i≤m maxt∈[0,ω] τi(t). The hematopoiesis model (3.1) has the form (2.1), where

g(t, ϕ) =

m∑
i=1

bi(t)

1 + ϕ(−τi(t))n
, t ≥ 0, ϕ ∈ PC([−τ, 0];R+).
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Clearly, g(t, ϕ) is uniformly bounded for (t, ϕ) ∈ [0, ω] × PC([−τ, 0];R+). Moreover, g(t, 0) =∑m
i=1 bi(t) 6≡ 0, hence 0 is not a solution of (3.1). The result is an immediate consequence of

Theorem 2.2.

For the situation without impulses, we obtain the corollary below.

Corollary 3.1. The DDE

y′(t) + a(t)y(t) =
m∑
i=1

bi(t)

1 + y(t− τi(t))n
, t ≥ 0, (3.2)

where m ∈ N, n is a positive constant and the delays and coefficients satisfy (h1*), has at least one
positive ω-periodic solution.

The autonomous equation y′(t)+ay(t) = b/(1+yn(t−τ)) (a, b, τ, n > 0) was proposed by Mackey
and Glass [18] as an appropriate model to describe the process of production of blood cells. Since
then a number of generalizations have been analyzed. In the case of the nonimplusive equation (3.2)
with a single delay (m = 1), the existence of a positive periodic solution was established in [24],
among others. Later, the equation with multiple delays (3.2) was studied by Liu et al. in [17], where
the authors showed the existence and uniqueness of a positive ω-periodic solution y∗(t) without
further constraints if 0 < n ≤ 1 and with the additional restriction

(n− 1)

[
eA(ω)

(
eA(ω − 1

)−1 ∫ ω

0
b(s) ds

]n
≤ 1

for the case n > 1; sufficient conditions for the global asymptotic stability of y∗(t) were also given.
More recently, Saker and Alzabut [22] investigated the global asymptotic behavior of the impulsive

system (3.1) with a single discrete constant delay multiple of the period and n a positive integer: y′(t) + a(t)y(t) =
b(t)

1 + y(t−mω)n
, 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N,
(3.3)

where m,n ∈ N and a(t), b(t) are positive periodic functions of period ω > 0. Besides (h2),(h3), the
requirement that the impulsive function t 7→

∏
k:tk∈[0,t)(1 + bk) is ω-periodic was further assumed in

[22], a condition which has been often imposed in the literature of periodic impulsive equations (see
e.g. [5, 10, 27]). However, as noticed by Liu and Takeuchi [16], this condition implies (h2) and

p∏
k=1

(1 + bk) = 1 , (3.4)

thus it imposes a very restrictive setting. On the other hand, the equation with a single delay multiple
of the period is simpler to treat, since to look for an ω-periodic solution of y∗(t) of (3.3) is equivalent
to looking for an ω-periodic solution of the corresponding impulsive equation without delay – which
was proven to exist in [22] by using the continuation theorem of degree theory. In summary, our
method allows to significantly improve and generalize criteria established in recent literature.
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For the Lasota-Wazewska model with linear impulses y′(t) + a(t)y(t) =
m∑
i=1

bi(t)e
−ci(t)y(t−τi(t)), 0 ≤ t 6= tk,

∆(y(tk)) = bky(tk), k ∈ N,
(3.5)

with the assumptions (h1*),(h2)-(h4), in a similar way we deduce that there exists a positive ω-
periodic solution.

3.2 Mackey-Glass equation

Next example illustrates the application of Theorem 2.3 for both an impulsive equation with increas-
ing nonlinearities and nonmonotone nonlinearities.

Consider the impulsive Mackey-Glass equation y′(t) + a(t)y(t) =
m∑
i=1

bi(t)y(t− τi(t))
1 + y(t− τi(t))n

, 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N,
(3.6)

where all the coefficients, delays and impulses satisfy (h1*),(h2)-(h4), 0 ≤ τi(t) ≤ τ , m ∈ N and
n > 0. Write (3.6) in the form (2.1), where

g(t, ϕ) =

m∑
i=1

bi(t)ϕ(−τi(t))
1 + ϕ(−τi(t))n

.

We consider separately the cases 0 < n ≤ 1 and n > 1. If 0 < n ≤ 1, take b(t) =
∑m

i=1 bi(t) and

h(u) = u
1+un . We have h(u) increasing on R+, lim

u→0+

u

h(u)
= 1, lim

u→+∞

u

h(u)
= +∞. Condition (2.8)

holds true for any choice of r0, R0 > 0. If n > 1, the function u
1+un attains its absolute maximum

at the point u0 = (n− 1)−1/n, is increasing on [0, u0] and decreasing on [u0,∞). For this situation,
(2.8) is satisfied with r0 = R0 = u0, b(t) =

∑m
i=1 bi(t) and

h(u) =

{
u

1+un if u ∈ [0, u0]
u0

1+un0
if u ∈ [u0,∞)

.

The nondecreasing function h(u) satisfies lim
u→0+

u

h(u)
= 1, lim

u→+∞

u

h(u)
= +∞. Hence, for any n > 0

we may apply Theorem 2.3 (see also Remark 2.1 and Corollary 2.1) and deduce:

Theorem 3.2. Consider (3.6) under the conditions (h1*),(h2)-(h4). Suppose in addition that C > 1,
where C is defined in (2.7), for b(t) =

∑m
i=1 bi(t), B(ω) =

∏p
k=1(1 + bk)

−1, B = min1≤l,q≤p
∏q
k=1(1 +

bl+k)
−1. Then there is at least one positive ω-periodic solution of (3.6).

In particular, this is the case if one of the following conditions holds:

(i) b(t) > a(t) for t ∈ [0, ω] and(
B(ω)e

∫ ω
0 a(s) ds − 1

)−1
B
(
e
∫ ω
0 a(s) ds − 1

)
≥ 1 ; (3.7)
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(ii) (
B(ω)e

∫ ω
0 a(s) ds − 1

)−1
B

∫ ω

0
b(s) ds > 1. (3.8)

For the ω-periodic DDE without impulses, Theorem 2.6 and Corollary 2.2 yield the following
criteria:

Corollary 3.2. Consider the Mackey-Glass equation

y′(t) + a(t)y(t) =

m∑
i=1

bi(t)y(t− τi(t))
1 + y(t− τi(t))n

, t ≥ 0, (3.9)

where a(t), bi(t), τi(t) ∈ C+
ω , for some constant ω > 0, i = 1, . . . ,m, with a(t), b(t) :=

∑m
i=1 bi(t) not

identically zero. If C > 1, for C given by (2.11), then there exists a positive ω-periodic solution of
(3.9). In particular, this holds true if either

∫ ω
0 b(s) ds > e

∫ ω
0 a(s) ds − 1 or b(t) > a(t) on [0, ω].

The asymptotic properties for the original Mackey-Glass equation [18], as well as for generalized
models, have been the subject of extensive researches. The case of the periodic Mackey-Glass equation
with a single time-varying delay,

y′(t) + a(t)y(t) =
b(t)y(t− τ(t))

1 + y(t− τ(t))n
(n > 0),

with a(t), b(t), τ(t) continuous, ω-periodic and a(t), b(t) positive, was studied in [24], where the
authors proved the existence of a positive ω-periodic solution under the condition b(t) > a(t) for
t ∈ [0, ω]. This criterion is recovered in Corollary 3.2. For other relevant results, see [1, 2, 15] and
references therein. Namely, in [1] the authors considered (3.9) with two different time-varying delays
in each term on the righ-hand-side. A similar model, but with a Nicholson-type nonlinearity, will be
treated in the next subsection.

Remark 3.1. For the impulsive equation (3.6), if all impulses are nonnegative, i.e., bk ≥ 0 for all k,
then B = B(ω) and (3.7) is always satisfied, whereas (3.8) is equivalent to∫ ω

0
b(s) ds > e

∫ ω
0 a(s) ds −

p∏
k=1

(1 + bk).

3.3 On generalized Nicholson’s blowflies equations with several delays

In this subsection, we analyze some generalizations of the Nicholson’s blowflies equation, with im-
pulses and multiple delays.

First, consider the impulsive Nicholson’s model y′(t) + a(t)y(t) =

m∑
i=1

bi(t)y(t− τi(t))e−ci(t)y(t−τi(t)), 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N,
(3.10)
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where m ∈ N, a(t), bi(t), ci(t), τi(t) ∈ C+
ω (ω > 0), with a(t), b(t) :=

∑m
i=1 bi(t) not identically zero,

ci(t) > 0, for t ∈ [0, ω], i = 1, . . . ,m, and the impulsive times (tk) and impulses (bk) satisfy (h2)-(h4).
For (3.10), the application of Theorem 2.3 requires some additional care, not only because the

nonlinearities bi(t)ue
−ci(t)u are nonmonotone on u, but also because they do not have the form

bi(t)hi(u). Nevertheless, as shown below, the framework of Theorem 2.3 is applicable to this equation.

Theorem 3.3. Consider the impulsive equation (3.10), with the above requirements on coefficients,
delays and impulses. With the notation in (2.2),(2.3), assume that C > 1, where C is defined in
(2.7). Then, there is at least one positive ω-periodic solution of (3.10).

In particular, this is the case if either b(t) > a(t) for t ∈ [0, ω] and (3.7) holds, or if (3.8) is
satisfied.

Proof. Eq. (3.10) takes the form (2.1) with g(t, ϕ) =

m∑
i=1

bi(t)ϕ(−τi(t))e−ci(t)ϕ(−τi(t)). Consider the

positive numbers
c = min

1≤i≤m
min
0≤t≤ω

ci(t), c = max
1≤i≤m

max
0≤t≤ω

ci(t), (3.11)

and the functions fi(t, u) := ue−ci(t)u, u ≥ 0. For i = 1, . . . ,m and t ∈ [0, ω] fixed, fi(t, ·) attains
its maximum at u = ci(t)

−1, with fi(t, ·) increasing on [0, ci(t)
−1], decreasing on [ci(t)

−1,∞) and
fi(t, ci(t)

−1) = ci(t)
−1e−1 ≤ (ce)−1. Choose r0 = c−1 and R0 = c−1. As before, we shall use Theorem

2.3 with b(t) =
∑m

i=1 bi(t).
For i = 1, . . . ,m, one has

bi(t)ϕ(−τi(t))e−ci(t)ϕ(−τi(t)) = bi(t)fi(t, ϕ(−τi(t))) ≤ bi(t)(ce)−1, for 0 ≤ t ≤ ω, ϕ ∈ X.

For i = 1, . . . ,m, 0 < r ≤ r0 and ϕ ∈ X, one obtains

bi(t)ϕ(−τi(t))e−ci(t)ϕ(−τi(t)) ≥ bi(t)fi(t, r) ≥ bi(t)re−c r, for 0 ≤ t ≤ ω, r ≤ ϕ ≤ r0.

Therefore, condition (2.8) is satisfied with h : R+ → R+ continuous, linear on [r0, R0] and such that

h(u) =

{
ue−c u if u ∈ [0, r0]
(ce)−1 if u ∈ [R0,∞)

.

Clearly, lim
u→0+

u

h(u)
= 1, lim

u→+∞

u

h(u)
= +∞. From Theorem 2.3, the existence of a positive ω-periodic

solution is guaranteed if C > 1.

Corollary 3.3. Consider the periodic Nicholson’s equation

y′(t) + a(t)y(t) =

m∑
i=1

bi(t)y(t− τi(t))e−ci(t)y(t−τi(t)), t ≥ 0, (3.12)

where a(t), bi(t), ci(t), τi(t) ∈ C+
ω (ω > 0), with a(t) 6≡ 0 and ci(t) positive, i = 1, . . . ,m. If either

m∑
i=1

∫ ω

0
bi(s) ds > e

∫ ω
0 a(s) ds − 1, (3.13)
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or
m∑
i=1

bi(t) > a(t), t ∈ [0, ω], (3.14)

(3.12) has a positive ω-periodic solution.

Remark 3.2. For the periodic Nicholson equation with a single delay multiple of the period and
c(t) ≡ c > 0, given by y′(t) + a(t)y(t) = b(t)y(t − nω)e−cy(t−nω) (n ∈ N), Saker and Agarwal [21]
showed the existence of a positive ω-periodic solution if mint∈[0,ω] b(t) > maxt∈[0,ω] a(t). Later, by
using a Krasnoselskii fixed point theorem for an operator as in [11, 24], Li and Du [14] considered
the more general version (3.12), and proved the existence of a positive ω-periodic solution under the
less restrictive sufficient condition (3.14), as in the above corollary.

Motivated by the nice paper of Chen [3] (see also [1]), next we consider a more general model.
Let us first mention that the equation

y′(t) + a(t)y(t) = b(t)y(t− σ(t))e−c(t)y(t−τ(t)), (3.15)

with a(t), b(t), σ(t), τ(t), c(t) positive, ω-periodic continuous functions (ω > 0), was studied by Chen
[3], who proved the existence of a positive ω-periodic solution of (3.15) under the following sufficient
conditions: ∫ ω

0
b(s) ds >

∫ ω

0
a(s) ds, if σ(t) = nω (for some n ∈ N),∫ ω

0
b(s) ds > e2

∫ ω
0 a(s) ds

∫ ω

0
a(s) ds, if σ(t) 6≡ nω ∀n ∈ N.

(3.16)

It is clear that xe2x > ex − 1 for x > 0. Hence, the above Corollary 3.3 strongly generalizes and
improves the result in [3] for a general equation (3.15) with τ(t) = σ(t) periodic. But nevertheless
it does not recover the results when σ(t) 6≡ τ(t), nor when σ(t) is a multiple of the period. Still,
we shall show that the refined version of the existence result given in Theorem 2.4 allows us to
deal with equations with two different periodic delays σi(t), τi(t) (1 ≤ i ≤ m) in each term on the
right-hand-side of (3.12).

First, we treat the impulsive case. The next result is not derived directly from Theorem 3.3, but
similar arguments are used, where now we invoke Theorem 2.4, rather than Theorem 2.3.

Theorem 3.4. Consider the impulsive equation y′(t) + a(t)y(t) =

m∑
i=1

bi(t)y(t− σi(t))e−ci(t)y(t−τi(t)), 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N,
(3.17)

where m ∈ N, a(t), bi(t), ci(t), σi(t), τi(t) ∈ C+
ω (ω > 0), with a(t), b(t) :=

∑m
i=1 bi(t) not identically

zero, ci(t) > 0, for t ∈ [0, ω], i = 1, . . . ,m, and the impulses satisfy (h2)-(h4). Assume that

inf
t≥0

∫ t+ω

t
b(s)e

∫ s
t a(u) du ds > eA(ω)

(
B(ω)eA(ω) − 1

)
B−2B . (3.18)

Then, there is at least one positive ω-periodic solution of (3.17).
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Proof. Now, (3.10) has the form (2.1) with g(t, ϕ) =
m∑
i=1

bi(t)ϕ(−σi(t))e−ci(t)ϕ(−τi(t)). Take σ =(
B/B

)
e−A(ω) and consider the cone K = K(σ). Set c, c as in (3.11), choose

r0 = c−1, R0 = (cσ)−1 = c−1BeA(ω)B−1,

and define the functions b(t) =
∑m

i=1 bi(t), fi(t, u, v) := ue−ci(t)v, u, v ≥ 0 and t ∈ [0, ω], i = 1, . . . ,m.
For i = 1, . . . ,m, R ≥ R0 and y ∈ K with R0 ≤ y(t) ≤ R, it follows that σR ≤ y(t) ≤ R, hence

y(t− σi(t))e−ci(t)y(t−τi(t)) = fi(t, y(t− σi(t)), y(t− τi(t)))
≤ fi(t, R, σR) ≤ Re−cσR ≤ (cσe)−1, for 0 ≤ t ≤ ω,

(3.19)

because the function ue−cu attains its maximum at u = R0. Similarly, for i = 1, . . . ,m, 0 < r ≤ r0
and y ∈ K with r ≤ y(t) ≤ r0, we have

y(t− σi(t))e−ci(t)y(t−τi(t)) ≥ fi(t, σr0, r0)
≥ σr0e−cr0 ≥ σre−cr, for 0 ≤ t ≤ ω,

(3.20)

because the function σue−cu is increasing on [0, r0]. From (3.19) and (3.20), condition (2.9) is satisfied
with h : R+ → R+ continuous, linear on [r0, R0] and such that

h(u) =

{
σue−c u if u ∈ [0, r0]
(σce)−1 if u ∈ [R0,∞)

.

Note that the nondecreasing function h(u) satisfies lim
u→0+

u

h(u)
= σ−1 = BeA(ω)B−1, lim

u→+∞

u

h(u)
=

+∞. From Theorem 2.4, the existence of a positive ω-periodic solution is guaranteed if(
B(ω)eA(ω) − 1

)−1
B inf

t≥0

∫ t+ω

t
b(s)e

∫ s
t a(u) du ds > BeA(ω)B−1,

which is equivalent to (3.18).

Combining Theorem 3.4 with Corollary 2.2, for the situation without impulses we obtain the
following criterion.

Corollary 3.4. Consider the generalized Nicholson’s equation

y′(t) + a(t)y(t) =

m∑
i=1

bi(t)y(t− σi(t))e−ci(t)y(t−τi(t)), t ≥ 0, (3.21)

where m ∈ N, a(t), bi(t), ci(t), σi(t), τi(t) ∈ C+
ω (ω > 0), with a(t), b(t) :=

∑m
i=1 bi(t) not identically

zero and ci(t) > 0, for t ∈ [0, ω], i = 1, . . . ,m. Then, there is at least one positive ω-periodic solution
of (3.21) if ∫ ω

0
b(s) ds > e

∫ ω
0 a(s) ds

(
e
∫ ω
0 a(s) ds − 1

)
. (3.22)

Remark 3.3. Since xe2x > ex(ex − 1) for x > 0, even in the case of (3.21) with m = 1 as in
(3.15), the sufficient condition (3.22) is less restrictive than the one in (3.16) (for σ(t) not a constant
multiple of the period).
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4 Discussion and open problems

In this section, we compare the general criteria for existence of positive periodic solutions obtained
in Section 2 with related results in recent literature. Some open problems will also be proposed as a
subject for future research.

In [11], Jiang and Wei successfully employed a Krasnoselskii fixed point theorem to establish a
general result on the existence of a positive periodic solution, for a family of periodic DDEs with
distributed infinite delay, given by

y′(t) + a(t)y(t) = b(t)

∫ 0

−∞
K(s)g(t, y(t+ s)) ds,

where, a(t), b(t), g(t, y),K(t) are continuous, nonnegative, a(t), b(t), g(t, y) are ω-periodic on t (ω >
0), and

∫ 0
−∞K(s) ds = 1. Using a similar technique, the existence of positive periodic solutions for

periodic DDEs with one nonautonomous discrete delay

y′(t) + a(t)y(t) = g(t, y(t− τ(t))) (4.1)

(with a(t), τ(t), g(t, y) continuous, nonnegative and ω-periodic on t) was later studied by Wan et
al. [24]. We emphasize that this family encompasses a large number of biomathematics models.
The same basic technique has been largely explored in other related papers, see [10, 15, 17, 26] and
references therein. On the other hand, one should stress that the approach in [24] was anticipated by
a former work of Nieto [19], who employed fixed point arguments to study the existence of solutions
for first order ordinary differential equations with periodic boundary conditions and impulses.

The work by Li et al. [15], where the technique in [11, 24] was refined for equations with positive
impulses, was in fact a strong motivation for our study. In [15], the impulsive version of (4.1) given
by {

y′(t) + a(t)y(t) = g(t, y(t− τ(t))), 0 ≤ t 6= tk,

∆(y(tk)) = Ik(y(tk)), k ∈ N,
(4.2)

was considered, where the functions a(t), g(t, u), τ(t) are continuous, positive, ω-periodic on t, the
functions Ik : R+ → R are continuous and tk, Ik(u) (k ∈ N) satisfy:

(h2*) there is a positive integer p such that 0 < t1 < t2 < · · · tp ≤ ω and tk+p = tk + ω, Ik+p(u) =
Ik(u) for k ∈ N, u ≥ 0;

(h3*) Ik(u) > 0 for k ∈ N, u > 0.

For (4.2), criteria for the existence of one or two positive ω-periodic solutions were given in [15]. For
instance, when applied to (3.1) with positive impulses ∆(y(tk)) = Ik(y(tk)), the result in [15] shows
that at least one positive ω-periodic solution exists if

lim sup
u→∞

p∑
j=1

Ij(u)

u
= 0. (4.3)

In spite of this general framework, where nonlinear impulses are allowed, the results in [15] cannot
be applied when the impulses are linear as in (h2), because Ik(u) = bku and condition (4.3) is not
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satisfied, nor to equations with more than one delay. Moreover, the requirement of having always
positive impulses is very restrictive and not very reasonable in real world applications. See e.g. [16]
for a discussion on the use and effect of impulses.

When compared with the approach in [11, 15, 24], the main difference of our method is that it
relies on finding a fixed point for the operator Φ defined by (2.4), either on a bounded conical sector
(K ∩BR(0))\{0}, or on a suitable closed “conical annulus” K ∩ (BR(0)\Br(0)) of the Banach space
X, whereas the approach in [15] uses again fixed point theory on cones, but to find a nonzero fixed
point for a different operator Ψ. It turns out however that, for the approach in [15], the restriction
of positive impulses in (h3*) must hold, to guarantee that Ψ(X+ \ {0}) ⊂ X+ \ {0}. Although our
setting allows the treatment of (2.1) with impulses whose sign may vary, so far it only deals with
linear impulses. Of course, in the case of nonlinear impulses given by functions Ik : R+ → R as
in (h2*), the analogues to the functions B(t) and B(s, t) defined in (2.2) also depend on y ∈ X+;
as mentioned in Remark 2.2, additional conditions on the impulses should be imposed, so that the
operator Φ in (2.4) still applies K into K and is completely continuous.

Typically, the impulsive versions of equations (3.2),(3.9) and (3.12) with m = 1 (i.e., one non-
autonomous periodic delay) are included in the family (4.2). Under (h1*),(h2*),(h3*) and (4.3), the
existence of a positive ω-periodic solution for such equations was obtained in [15] without further
constraints for the case of the hematopoiesis model, and with the additional requirement of b(t) > a(t)
for t ≥ 0 for the case of the Mackey-Glass and the Nicholson’s equations. These criteria are similar
to ones included in Theorems 3.1, 3.2 and 3.3.

Let us focus, for the sake of illustration, on the hematopoiesis model (3.2). For (3.2) with m = 1
(i.e., with a single time-varying periodic delay τ(t)), as well as for the model with distributed infinite
delay given by

y′(t) + a(t)y(t) = b(t)

∫ 0

−∞

K(s)

1 + y(t+ s)n
ds, (4.4)

where n > 0, a(t), b(t) ∈ C+
ω and the kernel K(t) is positive, continuous and normalized so that∫ 0

−∞K(s) ds = 1, the general setting established in [11] led to the existence of at least one positive
periodic solution y∗(t). In [2], the global dynamics for both equation (3.2) with m = 1 and (4.4) were
investigated. Several criteria for permanence, oscillation about y∗(t) and global asymptotic stability
of y∗(t) were given. The extension of those results to equations with several delays and periodic
parameters as in (3.2), as well as to equations with linear and nonlinear impulses, was formulated in
[2] as an open problem. Partial answers to the open questions in [2] have been given in Section 3.

Clearly, the method proposed in this paper can be applied to a number of scalar DDEs with
distributed delays. For instance, Corollary 3.1 applies without changes to (3.2) replaced by

y′(t) + a(t)y(t) = b0(t)

∫ 0

−τ(t)

K(s)

1 + y(t+ s)n
ds, t ≥ 0.

where K : R+ → R+ is continuous, with b(t) := b0(t)
∫ 0
−τ(t)K(s) ds. However, it does not extend

immediately to situations with infinite delay, as in equation (4.4). The generalization of Theorems
2.2 to 2.4 to impulsive DDEs with infinite delays requires further investigation, but the framework
used here seems sufficiently flexible to be easily adjusted to this situation.
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The question of the global attractivity of a positive periodic solution, most relevant in terms
of applications, is not addressed in the present work, but will be investigated for the hematopoiesis
model in a forthcoming paper. In fact, previously the authors [7, 8] have studied the global asymptotic
stability of the zero solution of a general scalar impulsive delay differential equation x′(t)+a(t)x(t) =
g(t, xt) as in (1.1), but with possible infinite delay and nonlinear impulses ∆(x(tk)) = Ik(x(tk)) given
by continuous functions Ik : R→ R. The theory in [7, 8] was applied to derive sufficient conditions
for the global attractivity of the positive periodic solution (assuming it existed) of the following
Lasota-Wazewska model with impulses: y′(t) + a(t)y(t) =

m∑
i=1

bi(t)e
−ci(t)y(t−τi(t)), 0 ≤ t 6= tk,

∆(y(tk)) = Ik(y(tk)), k ∈ N,
(4.5)

where all the coefficients and delays are ω-periodic, the impulses satisfy (h2*) and bku ≤ Ik(u) ≤ aku,
with some prescribed behavior for the sequences (bk), (ak).

In contrast with the periodic case, the results about almost periodic solutions are not as frequent.
To find almost periodic solutions for almost scalar periodic DDEs, the ideas of Sacker and Sell [20]
might be useful. Another challenging problem is to treat multi-dimensional equations, without and
with impulses. In [5], an interesting result on existence of a positive periodic solution for a neutral
predator-prey planar model with impulsive effects was established by using coincidence degree theory.
Recently, the Schauder’s fixed point theorem was used in [6], to prove that there exists a positive
periodic solution for a broad family of n-dimensional periodic nonmonotone DDEs with distributed
delays. It is our belief that the method developed here can be extended to several classes of multi-
dimensional DDEs.
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References

[1] Berezansky, L., Braverman, E.: A note on stability of Mackey-Glass equations with two delays,
J. Math. Anal. Appl. 450, 1208–1228 (2017).

[2] Berezansky, L., Braverman, E., Idels, L.: Mackey-Glass model of hematopoiesis with monotone
feedback revisited. Appl. Math. Comput. 219, 4892-4907 (2013).

[3] Chen, Y.: Periodic solutions of delayed periodic Nicholson’s blowflies models, Can. Appl. Math.
Q. 11, 23–28 (2003).

[4] Deimling, K.: Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

19



[5] Du, Z.J., Feng, Z.S.: Periodic solutions of a neutral impulsive predator-prey model with
Beddington-DeAngelis functional response with delays, J. Comput. Appl. Math. 258, 87–98
(2014).

[6] Faria, T.: Periodic solutions for a non-monotone family of delayed differential
equations with applications to Nicholson systems, J. Differential Equations (2017),
http://dx.doi.org/10.1016/j.jde.2017.02.042.

[7] Faria, T., Oliveira, J.J.: A note on stability of impulsive scalar delay differential equations.
Electron. J. Qual. Theory Differ. Equ. 69, 1-14 (2016).

[8] Faria, T., Oliveira, J.J.: On stability for impulsive delay differential equations and applications
to a periodic Lasota-Wazewska model, Disc. Cont. Dyn. Systems Series B 21, 2451–2472 (2016).

[9] Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations, Springer-
Verlag, New-York, 1993.

[10] Huo, H.F., Li, W.T., Liu, X.Z.: Existence and global attractivity of positive periodic solution
of an impulsive delay differential equation, Applicable Analysis 83, 1279–1290 (2004).

[11] Jiang, D., Wei, J.: Existence of positive periodic solutions for Volterra integro-differential equa-
tions, Acta Math. Sci. 21B, 553–560 (2001).

[12] Krasnoselskii, M.A., Positive Solutions of Operator Equations, P. Noordhoff Ltd., Groningen,
1964.

[13] Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations,
World Scientific, Singapore, 1989.

[14] J. Li, C. Du, Existence of positive periodic solutions for a generalized Nicholson’s blowflies
model, J. Comput. Appl. Math. 221 (2008), 226–233.

[15] Li, X., Lin, X., Jiang, D., Zhang, X.: Existence and multiplicity of positive periodic solutions
to functional differential equations with impulse effects, Nonlinear Anal. 62, 683-701 (2005).

[16] Liu, X., Takeuchi, Y.: Periodicity and global dynamics of an impulsive delay Lasota-Wazewska
model, J. Math. Anal. Appl 327, 326–341 (2007).

[17] Liu, G., Yan, J., Zhang, F.: Existence and global attractivity of unique positive periodic solution
for a model of hematopoiesis. J. Math. Anal. Appl. 334, 157–171 (2007).

[18] Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems, Science 197,
287–289 (1977).

[19] Nieto, J.J.: Basic theory for nonresonance impulsive periodic problems of first order, J. Math.
Anal. Appl. 205, 423–433 (1997).

[20] Sacker, R.J.., Sell, G.R.: Lifting properties in skew-product flows with applications to differential
equations, Mem. Amer. Math. Soc. 11, no. 190 (1977).

20



[21] Saker, S.H., Agarwal, S.: Oscillation and global attractivity in a periodic Nicholson’s blowflies
model, Math. Comput. Modelling 35, 719–731 (2002).

[22] Saker, S.H., Alzabut, J.O.: On the impulsive delay hematopoiesis model with periodic coeffi-
cients, Rocky Mountain Journal of Mathematics 39, 1657–1688 (2009).

[23] Sell, G.R., You, Y.C.: Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.

[24] Wan, A., Jiang, D., Xu, X.: A New Existence Theory for Positive Periodic Solutions to Func-
tional Differential Equations, Comput. Math. Appl. 47, 1257–1262 (2004).

[25] Yan, J.: Stability for impulsive delay differential equations. Nonlinear Anal. 63, 66-80 (2005).

[26] Yan, J.: Existence of positive periodic solutions of impulsive functional differential equations
with two parameters, J. Math. Anal. Appl. 327, 854–868 (2007).

[27] Yan, J., Zhao, A., Nieto, J.J.: Existence and global attractivity of positive periodic solution of
periodic single-species impulsive Lotka-Volterra systems, Math. Comput. Modelling 40 (2004),
509–518.

21


