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Abstract: The Ledford and Tawn model for the bivariate tail incorporates a coefficient, η, as a measure of

pre-asymptotic dependence between the marginals. However, in the limiting bivariate extreme value model, G,

of suitably normalized component-wise maxima, it is just a shape parameter without reflecting any description

of the dependency in G. Under some local dependence conditions, we consider an index that describes the

pre-asymptotic dependence in this context. We analyze some particular cases considered in the literature and

illustrate with examples. A small discussion on inference is presented at the end.
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1 Introduction

Consider a stationary sequence {(Xn, Yn)}n≥1 with distribution function (df) F belonging to the maxi-

mum domain of attraction of a bivariate extreme values (BEV) df G. The marginals of G, GX and GY ,

are also extreme value df’s and attract the maximum of {Xn} and {Yn}, respectively. The central result

of the univariate extreme values theory, called Extremal Types Theorem, establishes the three possible

limiting extreme value df’s of the suitably normalized maximum of an independent and identically dis-

tributed (i.i.d.) sequence. This result was extended to stationary sequences under a distributional mixing

condition D which states that the variables tend to independence as they get apart in time (Leadbetter

et al. [12] 1983 and references therein).
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The degree of dependence between GX and GY can be evaluated through the extremal coefficient,

ε ∈ [1, 2] (Tiago de Oliveira, [25] 1962-1963; Smith, [23] 1990), such that

P (GX(X) ≤ u,GY (Y ) ≤ u) = uε, u ∈ [0, 1],

assuming that the random pair (X,Y ) has df G. Sufficient conditions to have ε = 2, that is, independence

between M
(1)
n = maxni=1Xi and M

(2)
n = maxni=1 Yi, suitably normalized, were presented in literature,

both in the case of no clustering of high values within {Xn} and {Yn} (Davis, [3] 1982), as well as, in the

case that such clustering is allowed (Pereira, et al. [19] 2017). This latter scenario means that extreme

events tend to occur in groups. The extremal index (Leadbetter et al. [12] 1983), usually denoted θ,

measures the tendency for data to form clusters. Whenever θ = 1, the extreme values tend to occur

isolated and is a form of asymptotic independence. This may mean that either the data are independent,

or there is eventually a residual dependence that vanishes as n tends to infinity and thus, in the limit,

leading to the occurrence of isolated extremes. As far as we know, there is no discussion about this

pre-asymptotic dependence in neither of these cases, i.e., the dependence between M (1)
n and M (2)

n with

large n in concomitance with the independence between GX and GY .

The topic of pre-asymptotic dependence, also denoted asymptotic independence, is assigned in the

model of Ledford and Tawn (Ledford and Tawn, [14, 15] 1996/1997), in which we base our formulation

of the joint right tail of (Xi, Yj). More precisely, for τ1, τ2 > 0, and denoting fn ∼ gn whenever

fn/gn → a 6= 0, as n→∞, we consider

nP

(
Xi >

n

τ1
, Yj >,

n

τ2

)
∼ n−(1/ηij−1)Lηij

(
n

τ1
,
n

τ2

)
, (1)

i, j = 1, . . . , n, where η ≡ ηi,j ∈ (0, 1] and L ≡ Lηij is a slowly varying function, i.e., there exists g such

that, ∀x, y > 0 and c > 0,

g(x, y) = lim
t→∞

L(tx, ty)
L(t, t)

and g(cx, cy) = g(x, y). (2)

We have asymptotic independence if η < 1 or if η = 1 and L
(
n
τ1
, nτ2

)
→ 0, as n → ∞, and tail

dependence if η = 1 and L
(
n
τ1
, nτ2

)
→ a > 0. The variables Xi and Yj are (almost) independent

if η = 1/2 and positively and negatively associated whenever η > 1/2 and η < 1/2, respectively.

Ledford and Tawn ([14] 1996) showed that problems arise in modeling and inference if a pre-asymptotic

dependence takes place and is ignored. See also Bortot and Tawn ([1] 1998) and Poon et al. ([20] 2003).

Suppose, without loss of generalization, that F has standard Fréchet marginals FX and FY , and thus
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also GX and GY . The Ledford and Tawn (Ledford and Tawn, [14, 15] 1996/1997) model assumption for

the bivariate tail of G, which is given by

G(u, u) = 1− 2u+ uε = (1− u)(2− ε) + (1− u)2ε(ε− 1)/2 + o((1− u)2), as u ↑ 1,

would take us to η = 1/2 when ε = 2. Therefore, in this case, η cannot be interpreted as a pre-asymptotic

dependence coefficient as in other df’s which are not BEV. On the other hand, the Ledford and Tawn

assumption to model the tail of F , although it allows interpreting η as a coefficient of pre-asymptotic

dependence between the marginals FX and FY , it appears in G, after suitable normalization ofM (1)
n and

M
(2)
n , as a shape parameter (Ramos and Ledford, [21] 2011) without expression in the description of the

dependence of G.

Here, we discuss the conditions about the modeling in (1) that will lead to dependence between the

marginals of G or to independence, describing in this case the type of pre-asymptotic dependence. On

the local behavior of each marginal sequence {Xn} and {Yn}, we will assume that they satisfy Chernick

et al. ([2] 1991) conditions, D(s)(un) and D(t)(vn), for some s ≥ 1 and t ≥ 1, allowing clusters of

extremes separated at least s and t, respectively, and together satisfy a local condition D(k)(un, vn)

regulating the joint location of clusters. A new index encompassing all types of asymptotic dependence

between M
(1)
n and M

(2)
n will be presented in Section 2. In Section 3 we analyze the possible forms of

pre-asymptotic dependence betweenM (1)
n andM (2)

n on some particular cases considered in the literature,

along with illustrative examples. A discussion on Section 4 gives some insight about possible inference

in this framework.

2 Index of asymptotic dependence between M
(1)
n and M

(2)
n

Consider {(Xn, Yn)} a stationary sequence with standard Fréchet marginals and, for {(un, vn)} such that

n(1− FX(un))→ τ1 > 0 and n(1− FY (vn))→ τ2 > 0, as n→∞, it is valid the condition D(un, vn) of

Hsing ([11] 1989), meaning that αn,ln → 0 for some ln = o(n), as n→∞, where

αn,l = max{|P (maxi∈AXi ≤ un,maxi∈B Yi ≤ vn)− P (maxi∈AXi ≤ un)P (maxi∈B Yi ≤ vn)|

: A ⊂ {1, 2, . . . , j}, B ⊂ {j + l, j + l + 1, . . . , n}, 1 ≤ j ≤ n− l} , n ≥ 1, 1 ≤ l ≤ n− 1.
(3)

Condition D(un, vn) extends the univariate distributional mixing condition D in Leadbetter et al. ([12]

1983) to the bivariate case and thus also allows to extend the Extremal Types Theorem to a stationary

sequence of random vectors (Hsing, [11] 1989).

Furthermore, regarding the local behavior of each marginal sequence, we assume that {Xn} satisfies
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the Chernick et al. ([2] 1991) dependence condition D(s)(un), for some s ≥ 1, i.e.,

nP
(
X1 > un,M

(1)
2,s ≤ un < M

(1)
s+1,rn

)
→ 0, as n→∞, (4)

where M (1)
i,j = maxl∈{i,...,j}Xl with maxl∈{i,...,j}Xl = −∞ if i > j and rn = [n/kn] for some {kn} such

that

knln/n→ 0, kn/n→ 0, knαn,ln → 0. (5)

Likewise we use notation M
(2)
i,j = maxl∈{i,...,j} Yl, with maxl∈{i,...,j} Yl = −∞ if i > j. {Yn} satisfies

D(t)(vn), for some t ≥ 1, with the same sequence {kn}, without loss of generality. Both conditions allow

clusters of exceedances of un and vn, for {Xn} and {Yn}, respectively, separated at least s ≥ 1 and t ≥ 1.

Concerning the joint location of the clusters of {Xn} and {Yn}, we admit that they are distant from

each other at most k ≥ 0, i.e.,

kn

rn∑
i=1

rn∑
j=1

|i−j|>k

P
(
Xi > un,M

(1)
i+1,i+s−1 ≤ un, Yj > vn,M

(2)
j+1,j+t−1 ≤ vn

)
→ 0, as n→∞. (6)

This condition will be denoted D(k)(un, vn) and simplifies the description of the dependence between

GX and GY through the asymptotic behavior of the joint tail of Xi and Yj for a finite number of pairs

(i, j). Observe that the simpler statement

kn

rn∑
i=1

rn∑
j=1

|i−j|>k

P (Xi > un, Yj > vn)→ 0, as n→∞, (7)

implies D(k)(un, vn) in (6) and thus can be used for checking the validity of this latter.

Lemma 2.1. If {(Xn, Yn)} satisfies condition D(un, vn) in (3) for coefficients {αn, ln}, {Xn} satisfies

D(s)(un), {Yn} satisfies D(t)(vn) and {(Xn, Yn)} satisfies D(k)(un, vn) for some {kn} satisfying (5), then

lim
n→∞

P
(
M (1)
n ≤ un,M (2)

n ≤ vn
)
= exp

{
− lim
n→∞

nP
(
X1 > un ≥M (1)

2,s

)
− nP

(
Y1 > vn ≥M (2)

2,t

)

+ lim
n→∞

2k∑
j=0

nP
(
Xk+1 > un ≥M (1)

k+2,k+s, Yj+1 > vn ≥M (2)
j+2,j+t

) .

Proof. From condition D(un, vn) and the stationarity assumption, we have (Hsing [11] 1989; Lemma
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4.1),

lim
n→∞

P
(
M (1)
n ≤ un,M (2)

n ≤ vn
)
= lim

n→∞
P kn

(
M (1)
rn ≤ un,M

(2)
rn ≤ vn

)

= lim
n→∞

1−
knP

(
{M (1)

rn > un} ∪ {M (2)
rn > vn}

)
kn

kn

= exp
{
− lim
n→∞

knP
(
{M (1)

rn > un} ∪ {M (2)
rn > vn}

)}
.

Under conditions D(s)(un) for {Xn} and D(t)(vn) for {Yn}, we have that (Chernick et al. [2] 1991;

Proposition 1.1 and references therein)

lim
n→∞

knP
(
M (1)
rn > un

)
= lim
n→∞

nP (X1 > un, X2 ≤ un, . . . , Xs ≤ un)

and

lim
n→∞

knP
(
M (2)
rn > vn

)
= lim
n→∞

nP (Y1 > vn, Y2 ≤ vn, . . . , Yt ≤ vn) .

In what follows, we apply a commonly used extreme values technique that consists in omitting terms

which summation converges to zero, as n → ∞, under the validity of dependence conditions (see,
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e.g. Leadbetter and Nandagopalan [13] 1989). More precisely, under D(k)(un, vn) and the stationarity,

lim
n→∞

knP
(
M (1)
rn > un,M

(2)
rn > vn

)
= lim

n→∞
kn

rn∑
i=1

rn∑
j=1

P
(
Xi > un,M

(1)
i+1,rn

≤ un, Yj > vn,M
(2)
j+1,rn

≤ vn
)

= lim
n→∞

kn

rn∑
i=1

rn∑
j=1

|i−j|≤k

P
(
Xi > un,M

(1)
i+1,rn

≤ un, Yj > vn,M
(2)
j+1,rn

≤ vn
)

= lim
n→∞

kn

rn∑
i=1

rn∑
j=1

|i−j|≤k

P
(
X1 > un,M

(1)
2,rn−i+1 ≤ un, Yj−i+1 > vn,M

(2)
j−i+2,rn−i+1 ≤ vn

)

= lim
n→∞

kn

rn∑
i=1

k∑
j=−k

P
(
X1 > un,M

(1)
2,rn−i+1 ≤ un, Yj+1 > vn,M

(2)
j+2,rn−i+1 ≤ vn

)

= lim
n→∞

kn

rn∑
i=1

k∑
j=−k

P
(
X1 > un,M

(1)
2,rn
≤ un, Yj+1 > vn,M

(2)
j+2,rn

≤ vn
)

= lim
n→∞

k∑
j=−k

nP
(
X1 > un,M

(1)
2,rn
≤ un, Yj+1 > vn,M

(2)
j+2,rn

≤ vn
)
.

By applying again conditions D(s)(un) for {Xn} and D(t)(vn) for {Yn}, we conclude that the previous

limit becomes

lim
n→∞

k∑
j=−k

nP
(
X1 > un,M

(1)
2,s ≤ un, Yj+1 > vn,M

(2)
j+2,t ≤ vn

)
.

For each (τ1, τ2) ∈ R2
+, the value

ξ(τ1, τ2) = lim
n→∞

2k∑
j=0

nP
(
Xk+1 > un ≥M (1)

k+2,k+s, Yj+1 > vn ≥M (2)
j+2,j+t

)
≥ 0, (8)

provided that the limit exists for {(un, vn)} such that n(1 − FX(un)) → τ1 > 0 and n(1 − FY (vn)) →

τ2 > 0, as n → ∞, appears as a quantifying parameter of the asymptotic dependence between M
(1)
n

and M (2)
n . Once the local dependence conditions are validated, this index depends on the joint behavior

of a finite number of the variables of the process. This index contemplates the possibility of joint

occurrence of clusters of high values, for each sequence of margins separated by a maximum of k ≥ 0.

By assuming D(s)(un), D(t)(vn) and D(k)(un, vn), we do not establish any relation between s, t and k,

that is, between the minimum distances separating clusters of the same sequence of margins (s and t)
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and the maximum distance between clusters of distinct margins (k). In the following we state two more

properties concerning function ξ(τ1, τ2).

Proposition 2.2. Under conditions of Lemma 2.1, if P
(
M

(1)
n ≤ n/τ1,M (2)

n ≤ n/τ2
)
→ H(τ−11 , τ−12 ),

as n → ∞ and (τ1, τ2) ∈ R2
+, for some BEV df H, then function ξ(τ1, τ2) is homogeneous of order 1

provided it is non-constant.

Proof. By Corollary 1.3 in Chernick et al. ([2], 1991), we have that P (M (1)
2,s ≤ un|X1 > un) → θX , as

well as P (M (2)
2,t ≤ vn|Y1 > vn) → θY , where θX and θY are the respective marginal extremal indexes.

Now, just observe that

P
(
M

(1)
n ≤ n

tτ1
,M

(2)
n ≤ n

tτ2

)
→ e−θXtτ1e−θY tτ2eξ(tτ1,tτ2) = H

(
(tτ1)

−1, (tτ2)
−1) = Ht(τ−11 , τ−12 )

=
(
e−θXτ1e−θY τ2eξ(τ1,τ2)

)t
,

where the second equality is due to a max-stability property of a BEV distribution (Galambos [10] 1987;

Theorem 5.2.1). Thus ξ(tτ1, tτ2) = tξ(τ1, τ2).

Proposition 2.3. Under conditions of Lemma 2.1, if {(Xn, Yn)} has bivariate extremal index θ(τ1, τ2),

then

θ(τ1, τ2) =
θXτ1 + θY τ2 − ξ(τ1, τ2)
τ1 + τ2 − λ(τ1, τ2)

, (9)

where λ(τ1, τ2) = lim
n→∞

nP (X1 > n/τ1, Y1 > n/τ2).

Proof. Since

lim
n→∞

nP ({X1 > n/τ1} ∪ {Y1 > n/τ2}) = τ1 + τ2 − lim
n→∞

nP

(
X1 >

n

τ1
, Y1 >

n

τ2

)
= τ1 + τ2 − λ(τ1, τ2),

then

P
(
M

(1)
n ≤ n

τ1
,M

(2)
n ≤ n

τ2

)
→
(
e−θXτ1e−θY τ2eξ(τ1,τ2)

)
= exp{−θ(τ1, τ2)(τ1 + τ2 − λ(τ1, τ2))}

with θ(τ1, τ2) satisfying (9).

Observe that λ(τ1, τ2) above corresponds to the bivariate upper tail copula function considered in

Schmidt and Stadtmüller ([22] 2006). See also Li ([17] 2009) and references therein. The bivariate

extremal index was introduced in Nandagopalan [18] 1994. More recent developments can be seen in

Pereira, et al. ([19] 2017).
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If the marginals of the limiting BEV H are independent, we have ξ(τ1, τ2) = 0. However, a residual

tail dependence measured through the rate of convergence of ξ(τ1, τ2) towards zero may occur. This type

of dependence is usually ruled in the literature through the Ledford and Tawn coefficient η, defined in

(1). This is addressed in the next section.

3 Pre-asymptotic dependence between M
(1)
n and M

(2)
n

We are going to analyze the asymptotic dependence function ξ(τ1, τ2) in (8), by considering two particular

cases for s and t often addressed in the literature.

Proposition 3.1. Under conditions of Lemma 2.1, if s = t = 1 and, as n→∞,

nP (Xi > un, Yj > vn) ∼ n−(1/ηij−1)Lηij
(
n

τ1
,
n

τ2

)
(10)

holds for all j = 1, . . . , 2k + 1 and i = k + 1, with ηij ≡ ηij(τ1, τ2) ∈ (0, 1] and Lηij slowly varying

functions, then

ξ(τ1, τ2) ∼ n−(1/η−1)L∗
(
n

τ1
,
n

τ2

)
, (11)

where η = max{ηij : j = 1, . . . , 2k + 1, i = k + 1} and

L∗
(
n

τ1
,
n

τ2

)
=

2k∑
j=0

n−(1/ηij−1/η)Lηij
(
n

τ1
,
n

τ2

)

is a slowly varying function.

Proof. Under conditionsD(1)(un) andD(1)(vn), we have θX = θY = 1 (Chernick et al., [2] 1991; Corollary

1.3). Now observe that,

lim
n→∞

P
(
M (1)
n ≤ un,M (2)

n ≤ vn
)
= e−ν1e−ν2eξ(τ1,τ2), (12)

with ν1 = τ1, ν2 = τ2 and

ξ(τ1, τ2) = lim
n→∞

2k∑
j=0

nP (Xk+1 > un, Yj+1 > vn) , (13)

for all k ≥ 0.

In the context of Proposition 3.1 we have ξ-asymptotic tail independence if η < 1 or if η = 1 and
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L∗
(
n
τ1
, nτ2

)
→ 0, as n → ∞ (which holds if Lηij

(
n
τ1
, nτ2

)
→ 0, for all j = 1, . . . , 2k + 1, i = k + 1, such

that ηij = 1). This case lead us to ξ(τ1, τ2) = 0.

We have ξ-tail dependence if η = 1 and L∗
(
n
τ1
, nτ2

)
→ c > 0, as n→∞ (which holds if Lηij

(
n
τ1
, nτ2

)
→

cj > 0, for some j = 1, . . . , 2k + 1, i = k + 1, such that ηij = 1). Now we obtain ξ(τ1, τ2) > 0.

Observe that, in order to have ξ(τ1, τ2) = 0, all random pairs (Xi, Yj), j = 1, . . . , 2k + 1, i = k + 1,

must be asymptotic tail independent. On the other hand, if one random pair is tail dependent then

ξ(τ1, τ2) > 0. Notice also that this evaluation is based on exceedances of high thresholds. In the next

case our analysis is based on down-crossings of extreme thresholds.

Proposition 3.2. Under conditions of Lemma 2.1, if s = t = 2 and

nP (Xi ≥ un > Xi+1, Yj ≥ vn > Yj+1) ∼ n−(1/βij−1)Lβij

(
n

τ1
,
n

τ2

)
(14)

holds, as n → ∞, for all j = 1, . . . , 2k + 1 and i = k + 1, with βij ≡ βij(τ1, τ2) ∈ (0, 1] and Lβij
slowly

varying functions. Then

ξ(τ1, τ2) ∼ n−(1/β−1)L∗∗
(
n

τ1
,
n

τ2

)
, (15)

where β = max{βij : j = 1, . . . , 2k + 1, i = k + 1} and

L∗∗
(
n

τ1
,
n

τ2

)
=

2k∑
j=0

n−(1/βij−1/β)Lβij

(
n

τ1
,
n

τ2

)
(16)

is a slowly varying function. Moreover if we assume, as n→∞, that

nP

⋂
i∈I
{Xi > un},

⋂
j∈J
{Yj > vn}

 ∼ n−(1/ηI,J−1)LηI,J ( nτ1 , nτ2
)
, (17)

for all I ⊆ {k + 1, k + 2} and J ⊆ {1, . . . , 2k + 2}, then β = max{ηij : j = 1, . . . , 2k + 1, i = k + 1} and

Lβij

(
n
ν1
, nν2

)
∼ Lηij

(
n
τ1
, nτ2

)
− n−(1/η{i},{j,j+1}−1)Lη{i},{j,j+1}

(
n
τ1
, nτ2

)
−n−(1/η{i,i+1},{j}−1)Lη{i,i+1},{j}

(
n
τ1
, nτ2

)
+n−(1/η{i,i+1},{j,j+1}−1)Lη{i,i+1},{j,j+1}

(
n
τ1
, nτ2

)
,

(18)

where ηij ≡ η{i},{j}.

9



Proof. Just notice that (12) holds with ν1 = τ1θ1, ν2 = τ2θ2, θ1, θ2 ∈ (0, 1] and

ξ(τ1, τ2) = lim
n→∞

2k∑
j=0

nP (Xk+1 ≥ un > Xk+2, Yj+1 ≥ vn > Yj+2) , (19)

for all k ≥ 0.

The second part is straightforward from Proposition 2 of Ferreira and Ferreira ([7] 2012).

Observe that βij is similar to the up-crossings asymptotic tail independent coefficient introduced in

Ferreira and Ferreira ([7] 2012). Analogously to the previous case, we can exploit tail (in)dependence un-

der the point of view of down-crossings of high levels. Therefore, we have ξ-asymptotic tail independence

if β < 1 or if β = 1 and L∗∗
(
n
τ1
, nτ2

)
→ 0, as n → ∞ (leading to ξ(τ1, τ2) = 0) and ξ-tail dependence

if β = 1 and L∗∗
(
n
τ1
, nτ2

)
→ c > 0, as n → ∞ (obtaining ξ(τ1, τ2) > 0). Once again, in order to have

ξ(τ1, τ2) = 0, all random pairs (Xi, Yj), j = 1, . . . , 2k + 1, i = k + 1, must be down-crossings asymptotic

tail independent, but if one random pair is down-crossings tail dependent then ξ(τ1, τ2) > 0.

Example 3.1. Let {X∗n} and {Y ∗n } be stationary sequences such that conditions D(s)(un) and D(t)(vn)

respectively hold, and {Zn} be an i.i.d. sequence independent of {(X∗n, Y ∗n )}, all having common margin

standard Fréchet. Consider

Xn = X∗n ∨ Z1/α
n and Yn = Y ∗n ∨ Z1/ρ

n , (20)

where α, ρ ∈ (0, 1), corresponding to a pMAX model introduced in Ferreira and Ferreira ([5] 2014).

We have that {Xn} and {Yn} also satisfy conditions D(s)(un) and D(t)(vn), respectively. Consider the

particular case where {Y ∗n = X∗n1{Jn=0} + X∗n+11{Jn=1}}, with {Jn} an i.i.d. Bernoulli sequence and

s = t = 1. We have θX = θX∗ = 1, θY = θY ∗ = 1 (see Proposition 2.2 in Ferreira and Ferreira, [5]

2014) and ξ(τ1, τ2) is given by (13). Assuming that, as n→∞,

nP (X∗i > un, X
∗
l > vn) ∼ n−(1/η

(X∗)
i,l −1)L

η
(X∗)
i,l

(
n

τ1
,
n

τ2

)
,

for i = k + 1 and l = 1, . . . , 2k + 2, thus

nP
(
X∗i > un, Y

∗
j > vn

)
= nP (X∗i > un, X

∗
j > vn)(1− p) + nP (X∗i > un, X

∗
j+1 > vn)p

∼ n−(1/η
(X∗)
i,j −1)L

η
(X∗)
i,j

(
n
τ1
, nτ2

)
+ n−(1/η

(X∗)
i,j+1−1)L

η
(X∗)
i,j+1

(
n
τ1
, nτ2

)
∼ n−(1/η

(X∗,Y ∗)
i,j −1)L

η
(X∗,Y ∗)
i,j

(
n
τ1
, nτ2

)
,

where, for i = k + 1 and j = 1, . . . , 2k + 1, η(X
∗,Y ∗)

i,j = max{η(X
∗)

i,j , η
(X∗)
i,j+1} = 1, since η(X

∗)
k+1,k+1 = 1 and
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thus η(X
∗,Y ∗)

k+1,k+1 = 1.

Therefore, by applying Proposition 2.6 in Ferreira and Ferreira ([5] 2014)), we have that (11) holds

with
η = max

{
α

α+min{1,ρ} , αη
(X∗,Y ∗)
i,j : i = k + 1, j = 1, . . . , 2k + 1

}
= max

{
α

α+min{1,ρ} , α : i = k + 1, j = 1, . . . , 2k + 1
}
.

Example 3.2. Consider again the pMAX model above in (20), where α, ρ ∈ [1,∞). Consider the

particular case where k = 1, and s = t = 2, {X∗n} 1-dependent (and thus satisfy D(2)(un)) and {Y ∗n =

X∗n+31{Jn=0} + X∗n+41{Jn=1}}, with {Jn} an i.i.d. Bernoulli sequence.We have ν1 = θX = θX∗ , ν2 =

θY = θY ∗ (see Proposition 2.2 in Ferreira and Ferreira, [5] 2014) and

ξ(τ1, τ2) =nP (X2 > un ≥ X3, Y1 > vn ≥ Y2) + nP (X2 > un ≥ X3, Y2 > vn ≥ Y3)

+nP (X2 > un ≥ X3, Y3 > vn ≥ Y4) .

Since {X∗n} 1-dependent, as n→∞, we have

nP
(
X∗2 > un, X

∗
j > vn

)
∼ τ1τ2

n

for j ≥ 4, and thus η(X
∗,Y ∗)

2,j = 1/2.

By Proposition 2.6 in Ferreira and Ferreira ([5] 2014)), we have that (15) holds with

β = max

{
1

α+ 1
,

1

ρ+ 1
,
1

2

}
.

The example below addresses factor models, used in the modeling of large losses within, e.g., insurance

(Lescourret and Robert, [16] 2006) and finance (Ferreira and Canto e Castro, [8] 2010; Ferreira and

Ferreira, [4] 2015). See also Li ([17], 2009) and references therein.

Example 3.3. Consider the mixture model, (Xn, Yn) = (RX∗n, RY
∗
n ), where sequences {X∗n} and {Y ∗n }

satisfy, respectively, conditions D(s)(un) and D(t)(vn) and have extremal indexes θX∗ and θY ∗ , and

where R is a positive r.v. independent of {(X∗n, Y ∗n )} and such that E(R) < ∞. If {(X∗n, Y ∗n )} satisfies

D(k)(un, vn) then {(Xn, Yn)} satisfies it as well. Let u∗n = n/τ∗1 and v∗n = n/τ∗2 be normalized levels

for {X∗n} and {Y ∗n }. Thus, they are normalized levels for {Xn} and {Yn} with τ1 = E(R)τ∗1 and

11



τ2 = E(R)τ∗2 , respectively. By applying (8), we have

ξ(τ1, τ2) = lim
n→∞

∫ ∞
0

2k∑
j=0

nP

(
X∗k+1 >

n

τ∗1 r
≥M (1)

k+2,k+s, Y
∗
j+1 >

n

τ∗2 r
≥M (2)

j+2,j+t

)
dFR(r)

= lim
n→∞

∫ ∞
0

ξ∗(τ∗1 r, τ
∗
2 r)dFR(r) = ξ∗(τ∗1 , τ

∗
2 )E(R),

if ξ∗(τ∗1 , τ∗2 ) exists and is homogeneous of order 1. Assuming that, as n→∞,

nP

(
X∗i >

n

τ∗1
, Y ∗j >

n

τ∗2

)
∼ n−(1/η

∗
ij−1)Lη∗ij

(
n

τ∗1
,
n

τ∗2

)
,

we have, by applying the dominated convergence theorem,

nP
(
RX∗i >

n
τ∗1
, RY ∗j > n

τ∗2

)
=

∫ ∞
0

nP

(
X∗i >

n

τ∗1 r
, Y ∗j >

n

τ∗2 r

)
dFR(r)

∼
∫ ∞
0

r1/η
∗
ijn−(1/η

∗
ij−1)Lη∗ij

(
n

τ∗1 r
,
n

τ∗2 r

)
dFR(r)

∼
∫ ∞
0

r1/η
∗
ijn−(1/η

∗
ij−1)Lη∗ij

(
n

τ∗1
,
n

τ∗2

)
dFR(r)

= n−(1/η
∗
ij−1)Lη∗ij

(
n
τ∗1
, nτ∗2

)
E(R1/η∗ij ),

provided E(R1/η∗ij ) exists. Thus, we can state

nP

(
Xi >

n

τ1
, Yj >

n

τ2

)
∼ n−(1/ηij−1)Lηij

(
n

τ1
,
n

τ2

)
,

where ηij = η∗ij and Lηij
(
n
τ1
, nτ2

)
= Lη∗ij

(
n
τ∗1
, nτ∗2

)
E(R1/η∗ij ).

4 Discussion

In this paper we introduce a new index, ξ(τ1, τ2), in order to measure a (pre-)asymptotic dependence

between the component-wise maxima of a bivariate stationary sequence. We consider the marginal local

behavior of the sequence ruled through Chernick et al. ([2] 1991) dependence conditions, D(s)(un) and

D(t)(vn), for some s, t > 0, along with a bivariate local dependence condition D(k)(un, vn), k > 0,

defined here. An empirical approach to validate some D(s)(un) was presented in Ferreira and Ferreira

([6] 2016). See also Süveges ([24] 2007). An automated statistical method for joint selection of threshold

12



un and parameter s can be seen in Fukutome et al. ([9] 2014). We believe that both methodologies can

be extended to D(k)(un, vn), at least through condition (7). In Ledford and Tawn ([15] 1997) we can

find parametric estimation based on maximum likelihood (and thus not suitable in our context which

assumes dependence between random pairs), as well as, a non-parametric proposal. This approach will

be a starting point to address this topic in a future work.
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