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Abstract 

The escalating interest in organic nanotechnology has stimulated the development of new materials 

that can undergo self-assembly into well-ordered structures at a nanometer scale. This ground up 

molecular self-assembly of new materials offers the possibility of either enhancing already desirable 

properties or obtaining through synergies entirely new  capabilities. The ability to control molecular 

order during self-assembling processes within confined geometries is an especially important goal 

that will lead to deep insights regarding the relationship between structure and a range of desired 

physical properties. As a particular case, electro-spun nanofibers are an interesting model system 

for studying how the basic interactions amongst components can lead to emergent optical 

properties that are distinct from those of the isolated component molecular species.  

Organic materials have a number of advantages over inorganic materials for nonlinear optical (NLO) 

applications. The ease of modification of organic molecular structures makes it possible to 

synthesize tailor-made molecules and to fine-tune their properties for specific applications. A large 

number of organic π-conjugated molecules have been investigated and certain guidelines have 

been established to obtain large second-order nonlinear responses.  The most common strategy is 

to link donor and acceptor moieties on opposite ends of a π-conjugated aromatic spacer. This 

configuration promotes spatial charge transfer and a strong difference in dipole moments between 

the ground and excited electronic states.  However, more than roughly 80% of all π-conjugated 

organic molecules crystallize in centrosymmetric space groups, producing materials with no 

second order bulk susceptibility.  

para-nitroaniline (pNa) is a paradigmatic molecular building block for organic nonlinear optics. In 

spite of its exceptional molecular nonlinear optical response, pNa crystallizes in a centrosymmetric 

space group P21/n, which impedes the observation of any bulk macroscopic second-order optical 

effect. To overcome this restriction two independent approaches were used in the present  thesis;  

embedding the molecules into nano-structured environments such as polymeric nanofibers and in 

confined polymeric matrices. In the case of the polymeric nanofibers, the self-assembly of pNa 

nanocrystals and their effective manipulation are achieved by tuning the deposition parameters of 

the electrospinning process. The effective resultant second order susceptibility is a few orders 

higher that the inorganic crystal of KDP used to calibrate the polarimetry setup. The size of the 
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nanocrystals, the induced strain and their surface-to-volume ratio are the key aspects behind this 

unusual nonlinear response. Ensuring the assemblage of the pNa into highly oriented meso-

crystalline structures with a dominant acentric surface can also be achieved using a modified 

version of capillarity growth. Using this method, we are able to obtain oriented structures of pNa 

with a second order effect higher than that observed in the doped polymeric nanofibers. The 

breaking of the nominally centrosymmetric nature of pNa at its surface seems to be insufficient to 

explain the unusual magnitude of the second order effect.  The combination of Raman analysis 

and synchrotron radiation scattering suggest that bulk effects make a significant contribution to 

this second order nonlinear optical response. 
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Resumo 

O crescimento do interesse pela nanotecnologia orgânica estimulou o desenvolvimento de novos 

materiais que podem ser sujeitos ao processo de auto-organização em estruturas bem ordenadas 

à escala nanométrica. Essa auto-ordenação molecular dos novos materiais oferece a possibilidade 

de melhorar as propriedades apelativas, ou obter, por meio de sinergias, características 

inteiramente novas. A capacidade de controlar a ordem molecular durante os processos de auto-

ordenação no interior de geometrias confinadas é uma abordagem especialmente importante que 

pode aprofundar o conhecimento sobre a relação entre a estrutura e a gama de propriedades 

físicas desejadas. As nanofibras produzidas por electrospinning são um exemplo particular de um 

sistema modelo interessante para estudar como é que as interações básicas entre aos diferentes 

componentes produzem propriedades óticas inesperadas que são distintas da das espécies 

moleculares constituintes.  

Os materiais orgânicos têm várias vantagens sobre os materiais inorgânicos em aplicações de 

ótica não linear (NLO). A facilidade de modificação das estruturas moleculares torna possível 

sintetizar moléculas feitas à medida e ajustar as suas propriedades para aplicações específicas. 

Um grande número de moléculas π conjugadas foi investigado e certas diretrizes foram 

estabelecidas para obter grandes respostas não-lineares de segunda ordem. A estratégia mais 

comum é ligar grupos dadores e aceitadores de eletrões em extremos opostos de um espaçador 

aromático π conjugado. Essa configuração promove transferência de carga elétrica espacialmente, 

produzindo uma enorme diferença nos momentos dipolares entre os estados eletrónicos 

fundamental e excitado. No entanto, mais de 80% de todas as moléculas orgânicas π conjugadas 

cristalizam em grupos espaciais centro-simétricos, inviabilizando a geração de efeitos óticos de 

segunda ordem em cristais macroscópicos. 

A para-nitroanilina (pNa) é uma molécula orgânica paradigmática para a obtenção de ótica não 

linear. Apesar da sua excecional resposta molecular de ótica não-linear, a pNa cristaliza num grupo 

espacial centro-simétrico P21/n, que impede a observação de qualquer efeito macroscópico de 

segunda ordem. Para ultrapassar essa restrição foram utilizadas na presente tese duas 

abordagens independentes; incorporação das moléculas em ambientes nanoestruturados, como 

nanofibras poliméricas e em matrizes poliméricas confinadas espacialmente. No caso das 

nanofibras poliméricas, a auto-organização da pNa em nanocristais e sua manipulação foi obtida 
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através da alteração dos parâmetros de deposição relacionados com a técnica de electrospinning. 

A suscetibilidade de segunda ordem efetiva resultante é algumas ordens mais intensa que o cristal 

inorgânico KDP usado para calibrar a montagem experimental de polarimetria. O tamanho dos 

nanocristais, a tensão induzida e sua relação área de superfície e volume são os principais 

parâmetros por detrás da resposta não-linear inesperada. A confirmação da organização da pNa 

em estruturas meso-cristalinas altamente orientadas com uma superfície acêntrica dominante 

também foi conseguida usando uma versão modificada do método de crescimento em capilar. 

Utilizando este método, conseguimos obter estruturas orientadas de pNa com um efeito de 

segunda ordem superior ao observado nas nanofibras poliméricas dopadas. A quebra da natural 

centro-simetria da pNa ao nível da sua superfície parece ser insuficiente para explicar a magnitude 

do efeito ótico de segunda ordem inesperado. A combinação da espectroscopia de Raman e 

difração de radiação raio-X em sincrotrão sugere que os efeitos de volume contribuem 

significativamente para esta resposta ótica não linear de segunda ordem.  
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ABREVIATIONS 

AFM – Atomic Force Microscope 

DAST – trans-4-[4-(dimethylamino)-N-methylstilbazolium] p-tosylate 

FLIM – Fluorescence lifetime image microscope 

KDP – Dihydrogen Phosphate 

MNA – 2-methyl-4-nitroaniline 

NLO – Non-linear optical properties 

NPP – (4-nitrophenyl)-(L)-prolinol 

PCL – Polycaprolactone 

PEO – Polyethylene glycol 

PLLA – poly-L-lactic acid 

PMMA – Poly(methyl methacrylate) 

PMT – Photon multiplied tube 

pNa – para-nitroaniline 

POM – 3-methyl-4-nitropyridine-1-oxide 

PS – Polystyrene 

PVA – Poly(vinyl alcohol) 

SAXS – Small Angle X-ray scattering 

SEM – Scanning Electron Microscope 

SHG – Second Harmonic Generation 

TATB – 1,3,5-trinitro-2,4,6-triaminobenzene 

TPA – Two-Photon absorption  

WAXS - Wide Angle X-ray scattering 
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1 Introduction 

This chapter introduces the main topics related to the present thesis. A contextualization of the 

work is provided within the emergent field of organic, or carbon-based, technologies applied to 

nanophotonics, as a major area of interest because they are adaptable, inexpensive, plentiful and 

lightweight. Additionally, the general goals and specific objectives of the present study are 

presented, followed by a short section outlining the overall structure of this dissertation. 
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1.1  General overview 

Organic optoelectronic materials have been reported in the literature for almost a century. One of 

the first examples is anthracene; the first studies of its optical and electronic properties were 

reported in the 1910s[1,2]. In the 1960s and 1970s, interest in such materials intensified, 

motivated by the discovery of electroluminescence in molecular crystals and of conducting 

polymers[3–5]. However, a real surge of interest in the field of organic optoelectronics occurred 

during the past two decades, with Joseph Zyss1 and Larry Dalton2 playing central roles in the field. 

Even more recently, the new concepts in the physics of metamaterials and the rapid development 

of nanoscale fabrication technologies have rejuvenated the field of nanophotonics. It has 

experienced an explosive growth in recent years, enabling various applications relying on flexible 

and efficient subwavelength light manipulations[6]. Nanophotonics occupies the area where 

photonics (photons) merge with nanoscience and nanotechnology, and is related with the material 

(electrons) interactions, that is the generation, transmission, modulation and detection of excitation 

in this confined environmental of the nanomaterials. Nanotechnology allows researchers to 

optimize materials properties such as mechanical strength, and thermal and chemical stability. In 

a similar manner, strengthening the non-linear optical response or optimizing the electrical and 

optical properties of individual materials can be accomplished by creating hybrid structures using 

similar or even markedly different materials[7]. Organic compounds, being easy to alter chemically 

or structurally are particularly attractive components for these hybrid materials and are key 

elements of many current photonics applications and components[8,9].  

One crucial technological breakthrough for this immerging research area of organic compounds 

for optoelectronic application has been the rapid evolution of new laser sources[10]. The time when 

the laser was seen as a solution in search of a problem is long past. Theodore H. Maiman, a 

physicist at Hughes Research Laboratories in Malibu in California could not have foreseen the far-

ranging impact that his first demonstration of a laser system would bring about[11,12]. He 

constructed the first laser using a cylinder of synthetic ruby measuring 1 cm in diameter and 2 cm 

long, with the ends silver-coated to make them reflective and able to serve as a Fabry-Perot 

resonator, employing photographic flash lamps as the laser’s pump source. After his demonstration 

                                                 
1 https://www.researchgate.net/profile/Joseph_Zyss 
2 https://scholar.google.com/citations?user=Vmz9ul0AAAAJ&hl=en 
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both experimental and theoretical research in laser physics exploded. As an example, Logan E. 

Hargrove, Richard L. Fork and M.A. Pollack reported the theory for a mode-locked laser in 

1963[13]. In their first demonstration, they report the use of a helium-neon laser with an acousto-

optic modulator as a system to achieve ultra-fast laser pulses. Schawlow and Bloembergen used a 

laser for the first time as a source for spectroscopic studies[14]. Their contributions and 

developments of the new field of laser spectroscopy and nonlinear optics were recognized with the 

Nobel Prize in physics in 1981. Laser spectroscopy has developed rapidly into a very successful 

field of scientific and technological endeavor. Ranging from applications in analytical spectroscopy 

to Bose-Einstein condensation[15]. Another mark in laser research was achieved with the 

realization of ultrafast pulses below 100 fs, revolutionized by the Kerr lens mode-locking 

mechanism [16]. Ultra-fast laser pulses allow researchers to transfer an appreciable population to 

selective excited states facilitating fluorescence spectroscopy and optical pumping experiments 

with high temporal and spatial resolution with excellent signal to noise ratios, an essential task in 

high sensitivity spectroscopy[17]. Lasers serve as radiation sources in the spectral range from the 

ultra-violet to the infra-red with extremely narrow bandwidths and with high spectral power 

densities. On the other hand, detection sensitivity increases with increasing spectral resolution 

   as long as   is still larger than the linewidth   of the absorption line. Laser pulses 

with a durations of 100 fs or less are opening doors in transient absorption studies and in rapid 

relaxation processes[18]. A complementary aspect of ultra-fast pulses is that their high spectral 

power densities they can be used to measure and study phenomena that require high peak power 

but low energy pulses, particularly non-linear optical effects[19]. These effects have a quadratic or 

higher dependence on the incident power.  

Non-linear phenomena, the central part of this dissertation, have been observed at wavelengths 

from deep infrared to extreme ultra-violet, and even used to generate THz radiation[20]. Crystals, 

amorphous materials, polymers, liquid crystals, semiconductors, organics, liquids, gases and 

plasmas all exhibit optical nonlinear effects. Some examples of second order nonlinear effects are 

harmonic generation, frequency mixing and optical parametric oscillators. Examples of third order 

nonlinear effects are refractive index modulation, self-phase modulation, Kerr lens induced mode-

locking, four wave-mixing, photo-refractivity, two-photon absorption and optical phase conjugation. 

Third order effects can also be used to create spatial solitons and optical bistability[21]. Nonlinear 

optical materials are expected to have a bright future in applications where photonic and electronic 
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integration is a crucial feature, such as, fast communication, data storage, quantum optics and 

quantum computing, to name a few, with many more to come[22,23].   

1.2  Objectives 

The central focus of the work presented in this PhD thesis is to understand in detail the physical 

mechanisms behind the surprisingly large second order nonlinear optical response of Poly(methyl 

methacrylate) (PMMA) electro-spun nanofibers doped with para-Nitroaniline (pNa). More 

fundamentally, it is hoped that this understanding will provide a means to open new pathways for 

developing organic optoelectronic devices. The versatility of the electrospinning[24,25], the 

characteristic of polymeric matrices and the tunability of the organic chromophores are the main 

variables that can be adjusted to optimize the second order nonlinear optical response. 

Previous work of our group sparked the motivation to explore this approach as a main strategy to 

extend the possibilities of organic push-pull molecules. The simplicity of the pNa molecule 

represents the ideal choice to identify the main mechanisms behind the large SHG response 

present in this hybrid material, polymeric nanofibers doped with pNa. 

The role of each part of the electrospinning process has an influence on the final SHG response of 

an individual nanofiber. Manipulating the speed of the polymeric jet solution during the 

electrospinning process, deposition rate and the applied voltage were all observed to influence the 

SHG response, but the specific physical mechanism behind SHG in the nanofibers was not known. 

Using a light source like synchrotron radiation to characterize the variation of the size and the strain 

of the nanocrystals as a function of the deposition parameters is one means of trying to uncover 

the origin of the nanofiber’s SHG response.  

Another key aspect necessary to understand is the effect of the polymeric matrix on the self-

assembly process that occurs inside of the nanofiber. This was explored using an altered version 

of the capillary growth on several polymeric matrices. These matrices were obtained using different 

polymers such as PMMA polymer with different molecular weights, polymers with similar optical 

properties polystyrene (PS) and semi-crystalline polymers polycaprolactone (PCL). At the end, the 

extracted information can provide insights for the manufacturing of organic devices.  

I believe this approach of restricting the self-assembly of the organic compounds inside a polymeric 

matrix host, be it a nanofiber or layered structure, is a mechanism to consider. These methods are 



6 
 

able to overcome the main limitations connected with the use of the organic compounds in 

manufacturing optical devices for a variety of present and  future applications. 

 

1.3  Thesis Structure 

This thesis is divided into four introductory chapters. The first one aims at introducing the topic, as 

well, a detailed description of the main objectives.  Chapter 2 describes the mathematical 

description of light and light-matter interactions with a special focus on the description of SHG and 

ultra-fast lasers. This chapter, provides as well, a general introduction to the topic of nanophotonic, 

organic materials and a detailed description of the pNa molecule. Then, chapter 3 introduces a 

few self-assembling approaches used in engineering to obtain a desired shape or structure, 

exploiting and manipulating the natural organization of the organic compounds. At the end of the 

chapter a brief introduction to the mathematical description of the mechanism that governs the 

self-assemble process is given. Chapter 4 is dedicated to the more important experimental aspects. 

This chapter describes the experimental work, as well, the main characterization techniques 

employed.  Chapter 5 reprints three manuscripts, that were elaborated during the last years and 

that represent the essential outcome of the author’s research activity.  

The last chapter of this thesis contains a brief conclusion and outlines future perspectives that were 

opened by this work. 
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2 Theory and Framework 

This chapter is a brief resume of the major topics embraced in this dissertation. The chapter begins 

with a small introduction guiding the reader through the framework of the investigation. There 

follows a short revision of light-matter interactions, including the linear and nonlinear optical 

response of matter. Next, a more detailed introduction to the NLO effect known as second harmonic 

generation (SHG) is given. The basic theory of ultra-fast Kerr lens mode-locked lasers is then 

covered, followed by a short description of various nanophotonics applications and an indication of 

how organic compounds might help solve several major challenges in the field. The chapter ends 

by discussing the main arguments in favour of using pNa as a building block for a novel 

nanophotonic material, motivating the work undertaken during the elaboration of this dissertation. 

  



 

10 
 

  



Chapter 2 

11 
 

2.1  Framework  

Applications, or devices, that rely on the emission, modulation or control of photons are of 

increasing technological importance. Lasers, displays and sensors are a few examples of light-

emitting devices. The electrical modulation of light emission is, for example, key in many 

applications connected with optical communications. The electronic control of the light emission 

pathways opens up the possibility of novel types of nanophotonic devices, based on active near 

field light-matter interactions [1]. The performance of nanophotonic devices relies essentially on 

our ability to tailor and control electromagnetic fields on a sub-wavelength scale, in much the same 

way as the wave function in electronic nanostructures is localized on an atomic scale. This control 

has already been achieved in metamaterials, photonic and plasmonic crystals, nanoscale 

waveguides, resonators, switches or optical antennas [2–4]. Often the efficiency of these devices 

depends on the control of the relevant material properties at a sub-wavelength spatial scale.  

Looking at the example of the evolution of transistor based integrated circuits, where the  decrease 

in transistors size has doubled every two years (Moore’s law), many researchers around the world 

are pursuing the goal of shrinking photonic devices until they fit onto integrated circuits. In this 

demanding task, the search for the best materials as the building blocks for miniaturizing the 

photonic components will be key to routinely employing nanophotonics in a variety of applications 

including communication and data processing [5,6].  

It is well known that organic materials with donor and acceptor entities separated by an extended 

π-system conjugation often interact strongly with light [7] experiencing significant intra-molecular 

charge transfer upon absorption. This interaction leads to strong nonlinear responses such two-

photo absorption (TPA) and second harmonic generation (SHG) where the interaction with the light 

can be quantified by measuring the two-photon absorption cross-section and the effective non-

linear susceptibility, respectively [8,9]. Larger cross sections allow excitation at lower incident 

intensities, limiting light induced damage and increasing the efficiency of applications such as 

microscopy or data storage. The same happens in applications were the SHG is used as a 

mechanism for light generation and detection. An increase of the effective conjugation length leads 

to a more extensive π-electron delocalization and greater charge transfer distances, both of which 

increase the induced dipole moment of the excited state and strengthen the effective third order 

NLO response associated with processes  such as TPA. In contrast, in organic π-systems, the 

second order NLO coefficients result from the asymmetric polarization of the electron cloud.  For 
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this reason, SHG is very sensitive to the local symmetry of system. Unfortunately, strong donor-

acceptor molecules tend to crystallize in centrosymmetric structures due to the strong dipole-dipole 

interaction that aligns the molecules in alternating head to tail chains. This precludes the use of 

the majority of organic donor-acceptor bulk crystals as second harmonic generators or second 

order electro-optic modulators as bulk centrosymmetric structures are prohibited by symmetry from 

generating a macroscopic second order nonlinear response [8].   

However, the fact that bulk centrosymmetric structures cannot generate a macroscopic second 

harmonic generation does not necessarily imply the rejection of the material for second-order NLO 

applications [10,11]. Even in centrosymmetric arrangements, at the surface the inversion 

symmetry is broken, permitting a dipolar contribution to the harmonic field. It is also well known 

that the local electric fields induced at interfaces by incident radiation can have a noticeable 

influence on the TPA cross-sections. Consequently, for these types of materials, it is the surface 

upon which attention should be focused; this is where structure induced SHG becomes possible. 

 

2.2  Theory of the electromagnetic field  

Electromagnetic fields, including light, should be theoretically treated as three-dimensional vector 

fields. Physically, such fields are fully determined by their divergence and curl properties. The well 

known mathematical description for electromagnetic fields is summarized in the four Maxwell 

equations. They explain the structure and properties of light. In Gaussian units and in their 

macroscopic version they are: 

 

( , ) 4 ( , )

( , ) 0

4 1 ( , )
( , )

c c

1 ( , )
( , )

c

r t r t

r t

r t
r t

t

r t
r t

t





 =

 =


 = +




 = −



D ζ

B

D
H j

B
E

  (2.1) 
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Here = B H  is the magnetic field (at optical frequencies normally the magnetic permeability 

1 = ), = D E  is the dielectric displacement1, ζ  the free charge density, c  the speed of light 

and j  the current density. 

Maxwell’s equations are partial differential equations of first order. It is often helpful to make a 

Fourier decomposition with respect to time and consider only harmonic fields. Henceforth, we will 

use, 

 ( , ) ( ) , ( , ) ( )i t i tr t r e r t r e − −= =E E B B   (2.2) 

and if no source are present ( 0, 0= =ζ j ) Maxwell’s equations reduce to:  

 

( , ) 0

( , ) 0

1 ( , )
( , ) 0

c

( , )
( , ) 0

r t

r t

r t
r t

t

r t
r t

t

 =

  =


 − =




 + =



D

B

D
H

B
E

  (2.3) 

 

2.3  Linear and nonlinear response 

When an external source of electromagnetic radiation is applied to a polarizable medium, the 

electrons in the material respond with a microscopic shift in their positions while remaining bound 

to their associated atoms inducing internal fields. The collective effect on the electric displacement, 

D , of these displaced electrons is characterized by a macroscopic response known as the 

polarization of the material, P . In terms of Maxwell’s theory it becomes useful to distinguish 

between bound charge distributions and free charges, which are represented as ζ in the set of 

equations (2.1). The constitutive relations that describe the material response to the applied fields 

are represented by 

 = + 4 ; = + 4 D E P B H M   (2.4) 

Where P  is the dipole moment per unit of volume and Μ  refers to the magnetic moment per 

unit of volume. Since attention in this dissertation is focused only on fields at optical frequencies 

                                                 
1 This relation connects the microscopic response with a macroscopic field 
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for which the magnetic response of most materials is negligible,  it is assumed that 0=M . Then 

combining Maxwell’s equations one obtains, 

 ( )
2 2

2

2 2 2 2

1 4
0

c t c t

 
 −  − − =

 

E P
E E   (2.5) 

This means that for a full microscopic theoretical description of the response of a polarizable 

material, one requires the relation between the macroscopic electric field E  and the induced 

polarization, P . To proceed, some simplifying assumptions are made. The laboratory fields of 

interest are typically a few orders of magnitude smaller than the electric fields experienced by the 

electrons in atoms, or molecules, in material under investigation. Under these circumstances, it is 

possible to expand ( , )r tP  in a Taylor series in powers of the applied macroscopic field ( , ).r tE

The th  cartesian component of the dipole moment per unit volume is a function of the three 

Cartesian components of the electric field, represented by = ( , )r t E E  with  , , };x y z   

therefore the Taylor series is written as follows:  

 

2
0

3

P P1
( , ) P E E E

E 2! E E

P1
E E E

3! E E E

r t  
    

   


  

   

    
= + + +           

 
+     

 



P

  (2.6) 

The above expansion assumes that the dipole moment ( , )r tP  depends on the electric field E  

at the same point r  in space and at same time t . This imposition of an instantaneous response 

is equivalent to assuming the material has no memory and is clearly violated if the material absorbs 

some of the incident radiation field. While more general treatments are possible this is sufficient to 

describe the generation of second harmonic light by transparent media, one of the main objectives 

of this dissertation.   

Further assuming, that in the absence of an applied electric field the material under study has no 

net dipole moment per unit volume, the field independent term in the above expansion can be 

neglected and following tradition the various tensor coefficients are written as nth order 

susceptibilities:   

 
1 2 3( , ) E E E E E Er t         

  

  = + + +  P   (2.7) 
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The first term, 1  is the linear susceptibility (usually a diagonal matrix) and 2 and 3 are 

referred to as the second and third order susceptibilities, respectively. The number of subscripts 

indicated that the nth order susceptibility n  is a  tensor of rank ( )1n + . In the following develop 

it will be convenient to decompose the polarization, 

 ( , ) ( , ) ( , )L NLr t r t r t  = +P P P   (2.8) 

into a part that is linear with the electric field  

 
1( , ) EL r t  



=P   (2.9) 

and the terms which are nonlinear in the applied field   

 
2 3( , ) E E E E ENL r t       

 

 = + + P   (2.10) 

This allows one to make a clear distinction between linear and nonlinear optics: If we insert ( , )L r tP  

into Maxwell’s equations, we obtain a description of electromagnetic wave propagation in a 

crystalline media, described by an electric susceptibility rank-2 tensor  , in linear response. By 

moving the nonlinearity polarization terms to the right hand side of equation 2.5,  

 ( )
2 2 2

2

2 2 2 2 2 2

1 4 4L NL

c t c t c t

   
 −  − − =

  

E P P
E E   (2.11) 

one obtains a wave-equation in which the nonlinear polarization can be viewed as a source term 

for the linear wave equation. As will be seen subsequently the nonlinear polarization allows one to 

generate new waves, which will then propagate in the medium according to the linear wave 

equation.  

The lowest nonlinear term involves a rank-3 tensor. Since P and E  are vectors, and thus are 

odd under inversion symmetry, 2  vanishes in any material that is left invariant under inversion. 

However, if the symmetry is broken, for example at the interface from one medium to another, or 

in the case of crystal imperfections, we can also obtain 2  localized contributions from 

centrosymmetric materials. A clear example where this broken of symmetry leads to a high SHG 

field is the case of pNa embedded in a polymeric matrix. 
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2.4  Ultra-fast laser source  

A laser has three major components. An optical resonator (optical cavity), a gain material and a 

pump source to excite the material in the gain medium. The optical resonator consists of at least 

two highly reflective mirrors for bouncing the light back and forth resonantly. The mirrors are often 

spherical mirrors used to confine the light to a stable cavity containing the gain medium that 

ultimately leads to constructive laser output. One of the end mirrors called an output coupler is 

made up of a partially reflective material so that a fraction of the light is transmitted providing the 

laser output. The gain medium contains an active material within the resonator and its function is 

to amplify light via stimulated emission. Therefore, only the light that bounces back and forth inside 

an optical resonator is amplified several times in the gain medium to give an intense laser output. 

Interestingly, the amplified light conserves the phase and direction of the incident light to yield 

coherent and directional laser output. Coherence is the fundamental property of a laser light. There 

are two independent forms of coherent light called spatial and temporal coherence. 

An ultra-fast laser emits light pulses with durations shorter than one picosecond. Typically, a 

mechanism modulates the gain of the laser in such a way that light is encouraged to propagate 

within the cavity in short packets. While the average power can be modest, the peak power can 

easily reach MWatts or higher values, providing a convenient source to study nonlinear optical 

phenomena. Typically, the pulse repetition rate of an ultrafast laser is on the order of MHz, but 

amplifiers with high gain work at much lower repetitions rates.  

Subpicosecond duration pulses can be achieved by employing different forms of mode-locking. In 

the work described in this dissertation, the Kerr lens mode-locking technique is used for generating 

ultrafast laser pulses.  

Mode-locking is an optical technique for producing short light pulses, with durations varying from 

nanoseconds to femtoseconds. The main function of the technique is impose a constant phase 

correlation between the several longitudinal cavity modes oscillating in the resonant cavity. Thus, 

the term of mode-locking is referring to phase locking of the produced modes. To achieve mode-

locking the gain bandwidth of the active medium must be sufficiently wide to support multiple cavity 

modes. The number and amplitude of the locked modes and the frequency spacing between the 
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modes determines the pulse duration of the laser. Fast laser pulses are very important for studying 

materials, which require high intensity laser sources and fast temporal probing.  

In order to understand how the mode-locking technique works, it is helpful consider a simplified 

mathematical expression of mode-locking process. Considering that all the oscillating modes 

resonate at equal amplitude inside the resonating cavity, the electromagnetic field resulting from 

the superposition of 2 1n+  equally spaced modes with the same amplitude 
0E  is given by 

 
( )0

0( ) E q

n
i q t

q n

t e
   +  + 

=−

= E   (2.12) 

where 
0  is the frequency of the central mode,    is the angular frequency spacing between 

modes, and q  is the phase of the thq mode. The above equation corresponds to summation of 

all possible modes involved. In the case of equal amplitudes 
0(E )  and locked phases where by 

the phase of the successive modes are all equal ( q =  ), the equation reduces to: 

 
( )0

0( ) E E
n

iq ti t i

q

q n

t e e
  + 

=−

= E   (2.13) 

And this equation can be written as 

 0( ) A( )
i t

t t e


=E   (2.14) 

Where A( )t  is given by 

 
( )

0A( ) E
n

iq ti

q n

t e e
 

=−

=    (2.15) 

Since, q varies from n−  to n , the summation at the right side of equation (2.15) contains a 

geometrical progression. Summing the geometric series leads to the following expression for the 

laser intensity   

  
( )2

2

2 sin 2 1 2

sin ( 2)
( ) A( )

n t

t
I t t





+   


 =   (2.16) 

Equation (2.16) corresponds to a periodic function in which strong peaks emerge in equally spaced 

manner while very weak peaks appear in between. The time spacing between the pulses or the 
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period ( )T  is given by 2   and the pulse duration t  can be estimated as 

2 (2 1) 1n v +  =   where v  is a full frequency width of the oscillating cavity modes.  

In a more realistic case, the different mode amplitudes will not be uniform.  Assuming for simplicity 

that 0 = , the expression for A( )t  is written as:  

 A( )
n

iq t

q

q n

t e 

=−

=  E   (2.17) 

Provided that the number of modes is very large and they are closely spaced in frequency  the 

above sum can be treated in the continuum limit as an integration. Further simplifying by assuming 

the amplitudes decay to zero at the limits of the above sum allows one to take the integration limits 

to infinity. 

 A( ) iq t

qt e dq





−

=  E   (2.18) 

Equation (2.18) essentially states that in the time domain, the amplitude of a mode-locked laser is 

given by the Fourier transform of the amplitude distribution of modes in the frequency domain. For 

instance, the mode-locking of a continuum of oscillating modes with a Gaussian distribution of 

amplitude will result in transform limited Gaussian pulses: 

  

2

2
ln 2

2
I( ) A( ) p

t

t t e


 
−  

      (2.19) 

Where the duration of the pulses is given by  

 
2ln 2 0.441

p
v v




 = =
 

  (2.20) 

Note that the pulse width, p  , is once again inversely proportional to the bandwidth, v . In 

practice, several higher order effects such as group velocity dispersion in the gain medium can 

lead to slightly longer pulses than the transform limit.  

The value of v can written in terms of the spread in wavelengths,   as 

 2

0

c
v






 =   (2.21) 
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where 
0  the central wavelength and c is the speed of light.  For example, the femto-second laser 

system used in the second harmonic measurements carried out in this dissertation work, was 

typically adjusted to have a spectral bandwidth of 12 nm =  with 
0 800 .nm =  The 

corresponding value of v   is 125.75 10 .s  Assuming a 2sech  temporal pulse profile, this leads 

to a transform limited pulse duration of 0.315p v =   or 96   femtoseconds.  

2.5  Second Harmonic Generation 

Second harmonic generation (SHG) was the first nonlinear optical effect observed shortly after the 

invention of the laser, in quartz by Franken et. al. in 1961 [12].  

When a medium is exposed to weak light at frequency  ,  a polarization density is induced of the 

form 

 
1

0( ) ( ; )E( )     = −P   (2.22) 

where 1( ; )  −  is the practical representation of the linear susceptibility [13]. It has already 

been shown that polarization density is not just a linear function of the applied electric field E . 

The linear term is just the first term in the Taylor expansion of P  in E , see equation (2.7). There 

are a plethora of other terms in the Taylor expansion of P  corresponding to nonlinear effects such 

as harmonic generation, the Kerr effect, coherent control, and so on. Generally, these effects are 

only observed using pulsed lasers because the intensity of conventional light sources is too low to 

significantly excite the higher order polarizations. SHG is one of the simplest nonlinear effect, This 

is a process whereby a material is illuminated by light at frequency   and generates light at 

frequency, 2 . Mathematically, there is a second order contribution to the polarization density 

that can be written as  

 2(2 ) ( 2 ; , ) ( ) ( )      = −P E E   (2.23) 

where 2( 2 ; , )   −  is the nonlinear rank-3 tensor associated with second harmonic generation. 
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2.5.1 Second Order Susceptibilities 

The rank-3 tensor associated with second harmonic generation is a matrix with dimensions of 3 × 

3 × 3 consisting of 27 elements. However there are several permutation symmetries that impose 

relations amongst these tensor elements. When the medium is lossless for all frequencies involved, 

i.e. when the material has no effective memory, one can freely permute the tensor indices, provided 

the corresponding frequencies are similarly permuted. For example,  

 ( ) ( )2 2; , ; ,ikj n m m n kij n m n m       + += −   (2.24) 

Physically this states for a transparent medium the process of sum frequency generation, 

m n m n  + = +  has the same nonlinear response as the reverse process of difference frequency 

generation, n m n m  += − . Further simplifications can be obtained if the frequency dispersion of 

the nonlinear susceptibility can be neglected, a condition generally satisfied when all frequencies 

are well removed from any absorption resonances. This leads to a set known as Kleinman’s 

symmetry where the indices can be permuted freely without altering the corresponding frequencies. 

In this case, it is no longer necessary to explicitly write the frequency dependence of the 

susceptibility tensor. For example for second harmonic generation,  

 ( ) ( )2 22 , , 2 , ,ijk ikj       =  . (2.25) 

For the case of second harmonic generation, the last two indices can be freely permuted allowing 

them to be contracted into a more compact notation, that of the so-called d-tensor, which takes 

the form of a 3x6 matrix with 18 independent elements. The interacting frequencies follow the 

energy conservation law being 2  = +  where 2  is SHG frequency. In matrix form, the 

induced second-order nonlinear polarization, and its dependence on the electric fields are then 

given by: 

 ( ) 02 2i ir j kd =P E E   (2.26) 

The Kleinman symmetry implies that the independent element of the d-matrix can be reduced 

using the follows permutation.  
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  (2.27) 

When evaluating the spatial properties of a specific crystal, the d-matrix can almost always be 

further simplified with several elements vanishing and other being equal. This is an important 

aspect to take into account when designing SHG devices, since it is useful to access to the highest 

coefficients in order to have highest conversion efficiency. According to the symmetry of the crystal, 

the crystal can be classified as being either a triclinic crystal system, monoclinic crystal system, 

orthorhombic crystal system, quadratic crystal system, trigonal crystal system, hexagonal crystal 

system, cubic crystal system (or isotopic medium). People already found the susceptibility tensor 

form of these 7 crystal systems and their 32 crystal classes. Visible, the symmetry is higher; the 

number of the non-zero tensor element and independent tensor element is less. 

For example, the second order d tensor of KDP, belonging to the 42m  crystal class, takes the form  

 

14

14

36

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

d

d

d

 
 
 
 
 

  (2.28) 

In this particular case 
36 0.39pm Vd =  is the largest coefficient. Depending on the propagation 

direction and polarization of the incident waves, the corresponding electric fields will have different 

projections onto the crystal’s optic axes and often the interaction is described in terms of an 

effective nonlinear coefficient ( )effd . This coefficient takes into account the projections for a 

specific experimental configuration.  
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2.5.2 Wave equation approximation for SHG 

In the case of propagation in dielectric media, which do not have any free charges and low magnetic 

permeability, the Maxwell’s equations are then reduced to the wave-equation: 

 ( )
2 2

2

02 2 2

1
( , ) ,r t r t

c t t


  
 − = 

  
E P   (2.29) 

where c is the speed of light and 
0  is the permeability of vacuum. Considering the case of 

infinite plane wave approximation and unidirectional propagation, the quasi-monochromatic plane 

waves can be written in the mixed Fourier domain 

 ( )
1

( , ) . .
2

ik x
x x e c c





  = + A A   (2.30) 

Here,   is the angular frequency of the monochromatic waves and ( )k n c  =  is the wave 

vector where ( )n   is the refractive index as a function of the frequency. The losses are not taken 

in consideration and c.c. denotes the complex conjugate of the A-fields. The Fourier transform of 

the wave-equation is 

 ( ) ( )
2

2 2 2

02
( , ) ,NLn r t r t

c


  

 
 − = 
 

A P   (2.31) 

Here, by neglecting absorption, only the real part of the refractive index is considered and PNL
 

contains the higher order susceptibilities. Due to the linear and nonlinear processes, the amplitude, 

varies over a spatial distance. However, if the amplitude varies slowly over a distance on the order 

of the wavelength, then it is possible to approximate the above to a first-order wave equation 

 
( ) ( )2

2

, ,r t r t
k

x x

 


 

A A
 . (2.32) 

This is usually valid and it is commonly called the slow varying envelope approximation. With this 

approximation, the wave equation becomes  
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In the case of the second-order susceptibility, the nonlinear polarization contains the interaction 

between three waves. The wave equation for the second harmonic field is 

 
2

2

i kx

eff

i
d e

x n c


 



 − 
=



A
A A   (2.34) 

where the phase mismatch is 
2 2k k k  = − . Assuming that the conversion form the incident 

fundamental wave to the second harmonic field is low, the amplitude of the fundamental wave can 

be taken to be constant and the above equation can be readily integrated using the initial condition 

2A 0. =  Then the irradiance of the SHG can be calculated using the magnitude of the Poynting 

vector,  
2

0 2I n c= A . This results in the following expression for the second harmonic intensity 

exiting a crystal of length L ,  

 ( )
2 2 2

2 20 2
2 2 2 3

0 2

2
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effd L In c kL
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n n c


 

 





 
= =  

 
A   (2.35) 

Where I  is the intensity of the incident fundamental wave, n  and 2n   are the respective 

refractive indices of the fundamental beam and the second harmonic and sinc( ) sin( )  = . 

This expression is valid for incident plane waves or at best a loosely focused beam. For more 

realistic laser beams with a Gaussian transverse profile, the SHG efficiency depends on the beam 

waist and the optical path length inside the crystal [14,15]. In this case, assuming a focused 

Gaussian laser beam, the amplitude of the second harmonic beam is given by 
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   (2.36) 

where 2

0b kw=  is the confocal beam parameter of the incident beam with 
0w  being the waist 

radius of the beam. Here 
0z  is the position of the entrance to the crystal in relation to the beam 

waist.  

 

2.5.3 Phase-matching 

A fundamental parameter to have a good efficiency of SHG in bulk crystals is the degree of phase-

matching [16], which represents the degree to which the propagation vectors of the fundamental 
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and second harmonic light agree,
2 2k k k  = − . For an efficient SHG the induced polarizations 

and their respective waves need to be phase matched, which can be interpreted as the 

conservation of photon momentum during the second harmonic generation process. If perfect 

phase-matching occurs ( )0k =  the process will be highly efficient. However, perfect phase-

matching is difficult to achieve, since the refractive index usually increases with increasing 

frequency.  In the case of SHG, with E and 
2E  polarized in the same direction, the condition 

that ( ) ( )2n n = is, generally, not possible to obtain and, consequently, the SHG conversion 

efficiency will be low. From equation 2.36 it can be seen that the intensity at 2  will oscillate over 

the crystal length if the phase-mismatch is not zero 

 
( )2

2

2
2 0

n n
k k k

c

 

 

 −
 = − =    (2.37) 

The interpretation of equation is that the driving polarization propagates at a phase velocity of 
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  (2.38) 

whereas the generated wave, 
2A has the phase velocity of 
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k 


−
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  (2.39) 

Hence, if 0k  , after a distance called the coherence length ( )cL , the driving polarization and 

the generated beam will have drifted out of phase by  . At this point back conversion starts and 

the energy will flow back into the fundamental beam from the second harmonic field. In terms of 

the phase mismatch, the coherence length is given by 

 
( )

c

24
L

k n n 

 
= =
 −

  (2.40) 

In birefringent crystals there are main two types of material phase-matching strategies: type-I is 

when two fields at 
1  and 2  will have the same polarization, while the third field, at 3  is 

polarized orthogonally with respect to the first two; type-II, is when the two fields at 
1  and 

2 are 

orthogonal. In a uniaxial material, the principal optics axis is commonly along the crystal z-axis 
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(symmetry axis) and the principal refractive indices are then, ( ) ( ) on x n y n= =  and ( ) en z n=  

which are called the ordinary and the extraordinary refractive indices, respectively. For a positive 

uniaxial crystal, 
o en n ,  the opposite is the case for a negative uniaxial crystal. 

In this work a KDP crystal was used as reference crystal for SHG efficiency calibration. KDP is an 

efficient second harmonic generator, possessing a large nonlinear coefficient, being transparent 

from 0.365 μm to approximately 4.3 μm, and having a high damage threshold. For frequency 

conversion in the visible, KDP is an appropriate choice. KDP is a negative uniaxial crystal with 

normal dispersion. For example, for the fundamental beam at 800 nm  the respective indices are 

1.466en =  and 1.506on = , while for SHG the respective indices becomes 1.487en =  and 

1.534.on =  Thus the birefringence is sufficient to compensate for the refractive index dispersion 

and KDP can be used in a type I phase matching scheme with the fundamental light input as an 

ordinary wave.  

 

 

2.6  Nanophotonics 

Nanophotonics occupies the area where photonics, the science that involves the control of photons 

in free space or in matter, merges with nanoscience and nanotechnology. The related light–matter 

interactions can be generation, transmission, modulation and detection of photons in confined  

structures at a nanoscale [5,17–20]. The future and success of photonic technologies will require 

the discovery of new optical materials and the miniaturization of optoelectronic devices that feature 

better performance, low cost and low power consumption. 

One application that is easy to visualize is a photonic chip that controls or modulates incoming 

light signals as efficiently as possible [21], [22]. A minuscule laser on a chip with a large tuning  

bandwidth allows the user the freedom to adjust the frequency accordingly to optimize the 

modulation. However, the technical difficulties associated with this goal are tremendous. In this 

aspect, NLO can be used to generate new frequencies and increasing the operating bandwidth of 

the device. The Spaser (surface plasmon amplification by stimulated emission of radiation) has be 

singled out as a possible candidate. Its characteristic of a nanoscopic quantum generator of 
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localized surface plasmons able to generate, in a single mode and with a very high spectral density 

and intensity, extreme electromagnetic fields in a small volume capable of pumping a gain medium 

at the nanoscale [23]. The number of potential applications of the spaser is enormous in science, 

in industry and, especially, in healthcare because their nanoscopic sizes and emission frequencies 

can be matched to those of biomolecules. However, current plasmonic devices suffer from high 

losses associated with the metals used, heating, and incompatibility with complementary metal 

oxide semiconductor fabrication processes, among other problems. To overcome such limitations 

high-index nanophotonic structures complement or can even replace different plasmonic 

components in a range of applications [24]. High-index dielectric structures can be employed as 

new building blocks to obtain unique functionalities. This is one example of the development of 

nanoscale optical physics that has recently led to a new branch of nanophotonics. 

Assembling nanomaterials as a building blocks into a clever, functional and highly integrated 2D 

or 3D heterogeneous material systems with a high angular, spatial or temporal precision for 

emitting photons, is a promising future possibility for light matter manipulation [25].  Such 

nanomaterials offer unique opportunities for reducing the dissipative losses, enlarging resonance 

interactions and enhancing the near field amplitudes of both electric and magnetic fields.  

 

2.7  Organic compounds 

Organic compounds are compounds based on carbon and often contain several other low atomic 

number elements like hydrogen, oxygen, nitrogen, sulfur, phosphorus, and halogens like chlorine, 

bromine, fluorine or iodine. Based on their size, organic compounds are mainly divided into two 

classes: molecules (short chain) and polymers (long chain) molecules. Organic materials have 

salient features, including a low cost in terms of both materials and processing equipment, the 

simplicity and high-throughput of their fabrication, as well as the ease of modification of their 

chemical structure compared to their inorganic equivalents, being inherent tunable by chemical 

synthesis techniques. These features are very attractive and convenient for engineering materials 

with optical properties. Chemically grown is an unique process with exceptional advantages, such 

as, the capability to grow single crystals, relatively defect free with atomically smooth surfaces.  

Organic nanomaterials, are promising building blocks for integrated photonic devices [26–28]. 

Their easy processability, plastic properties combined with desirable optical properties, including 
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large optical cross-sections and wide spectral tunability, make them strong prospects to contribute 

to the development of flexible photonics and the realization of nanophotonic circuits for next-

generation optical information processing. 

The first generation of molecular engineering studies whereby a one-dimensional dipolar donor-

acceptor conjugated system had served, since the early 1970s, as a universal template has led to 

strong molecular responses [8,9,29]. Various optimization methods have been proposed: increase 

of the donor or acceptor strength, modification of the electronic structure of the conjugated path, 

or adequate combinations of the end donor, or acceptor groups, with the conjugated bridge. In 

1970s and the 1980s it is well known that the second order nonlinear optical response of the 

organic compounds is a function of the length of the conjugated π-system and the strength of the 

donor and acceptor [29]. However, it has proven difficult to incorporate these molecules at high 

density into noncentrosymmetric structures capable of providing a second order nonlinear 

response. At the time, much of the research was focused on engineering dipolar crystalline 

materials. Several milestones were achieved like as 3-methyl-4-nitropyridine-1-oxide (POM) [30], N-

(4-nitrophenyl)-(L)-prolinol (NPP) [31] and trans-4-[4-(dimethylamino)-N-methylstilbazolium] p-

tosylate (DAST) [32].   

 

Figure 1 – Examples of donor, conjugated path and acceptor groups. Optimization of the second 

order nonlinear coefficient are done by the combination of the best conjugation path together with 

donor and acceptor groups.   
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Dalton and his collaborators have shown that the residual dipole-dipole interactions among 

chromophores makes it extremely difficult to achieve a high degree of noncentrosymmetric order 

in doped polymer devices, unless the undesirable spatially anisotropic intermolecular electrostatic 

interactions are minimized by a modification of the shape of chromophores to sterically inhibit such 

interactions [33]. Typically, the active organic molecules were embedded in a polymeric material 

heated to above the glass transition point and a strong electric field was used to orientate the 

molecules to reach noncentrosymmetric structures in a viscous phase that was then locked in upon 

cooling [33,34]. However, the nonlinear response of the majority of materials fabricated in this was 

relax over a timescale of weeks to months. 

Since the early years of 1990 until now the organic molecular engineering has been advancing for 

example by developing octupolar systems whereby the symmetry-imposed cancellation of the 

dipole moment precludes the molecules to organize in a centrosymmetric order [35–37]. In the 

early 1990s, the first experimental evidence of frequency doubling is observed in the 1,3,5-trinitro-

2,4,6-triaminobenzene (TATB) [38]. 

 

Figure 2 – Representative exemples of octupolar systems. 

However, coupling of preferably large molecular dipoles to an externally applied electric field, is not 

applicable to octupolar molecules which are deliberately deprived of dipole moments. Structures 

based on two-dimensional (2D) and three-dimensional (3D) multipolar arrangements of alternating 

donor and acceptor groups interacting via adequately defined conjugated backbones and have 

been shown to lead to giant nonlinearities [39–43]. Optimization at the molecular level has shown 

great progress in these systems as exemplified by well established structure-property relationship 

for two-dimensional octupoles and the development of highly efficient molecules [44,45].  
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Novel π-conjugated polymers are now promising materials because of their several advantages, 

like semiconductor-like properties, high absorption cross-section, and broad emission spectra, 

which can overlap with a large variety of organic chromophores and polymers, attractive features 

for suitability of hybrid integration. π-conjugated polymers is basically a multi chromophoric system, 

and each subunit acts as a chromophore [46,47]. These hybrid structures have a delocalized π-

electrons along the carbon backbone, which are easily polarizable as useful property to many 

organic nanophotonic systems.  

 

Figure 3 – Examples of several backbones of π-conjugated polymers  

SHG often has a dipolar origin that cannot exist in a medium possessing inversion symmetry. A 

material with an inversion of symmetry is known as centrosymmetric. The explanation is simple 

since P   and E   are both vectors that change sign under inversion equation 2.12 stipulates that 

for a second order response to exist the second order susceptibility must change signs under 

inversion. However, in centrosymmetric materials, all physical properties remain unchanged by 

inversion. Hence, the bulk second order susceptibility of a centrosymmetric material must vanish.  

Nevertheless, there are many ways to obtain SHG from materials with inversion symmetry, for 

example by breaking the inversion symmetry of the material using different strategies to avoid the 

centrosymmetric structure[39,41,43,48,49]. In a natural way, inversion symmetry is broken at the 
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surface layer of the material, that is, at any interfaces between the centrosymmetric material and 

other materials [49,50]. Therefore, a two-dimensional second harmonic polarization sheet exists 

at interfaces where the SHG is allowed. There is also a bulk quadrupole source, whereby an electric 

quadrupole density (rather than an electric dipole density) is generated in the medium at the 

second harmonic frequency, as well as a magnetic dipole source, whereby a magnetic dipole 

density is generated at 2  [51].  Surface dipolar, and bulk quadrupole/magnetic contributing for 

dipolar SHG are allowed for any crystal system, and they are the main sources of weak second 

harmonic light in centrosymmetric media when there are no external influences acting on the 

medium. 

For long time, all major efforts in crystal engineering of molecular organic with enhanced quadratic 

nonlinear properties have been focused on developing efficient shape-engineered chromophores 

and increasing polar order through careful control of the nanoscale architecture of macromolecules 

[52]. They has so far been almost exclusively based on the paradigm ‘‘molecular dipole’’ of the 

simplest dipolar and octupolar extensions of para-nitroaniline (pNa).   

 

2.8  para-Nitroaniline 

A feature common of many of the organic systems presented in the previous section is their relation 

with the underlying basic polar pNa pattern. With a single pair of donor–acceptor substituents 

interacting through a π-electron conjugated linkage serving as a polarizable electron reservoir, pNa 

is the simplest polar organic compounds with chemical formula
4 22 6C HN NHO . It consists of a 

benzene ring with the electron-donor amino group ( )2NH  and the electron-acceptor nitro group 

( )2NO   attached in a linear geometry to the two carbon atoms leading to an unsaturated bridge 

and a delocalized π-electron system. The delocalization of the π-electrons leads to an asymmetric 

charge distribution resulting in a strong molecular optical nonlinearity [53]. 

Polar organic compounds are, inherently, good candidates for SHG applications. They have several 

advantages compared to their inorganic counterparts including high optical nonlinearities, fast 

response time, high damage threshold and ease of design and fabrication. Despite the exceptional 

molecular nonlinear optical response of pNa it crystallizes in a centrosymmetric space group

12P n , which impedes the observation of any macroscopic second-order nonlinear effect. The 
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principal properties of pNa crystal are the very weak electric conductivity, strong third order 

nonlinear optical properties. It also possesses an anomaly at 140K corresponding to a sign reversal 

in a pyroelectric coefficient2. Finally it displays strong couplings in vibrational spectra, which turn 

out to be analogous to electron-phonon couplings in other charge transfer complexes [54–58]. 

 

Figure 4 – Schematic representation of pNa structure a) and the respective unitary crystal cell b). 

The colours red and blue represent the oxygen and the nitrogen atoms, respectively.  

As mentioned, the inherent polar nature of pNa molecules exhibiting significant ground state dipole 

moments projecting a large charge-transfer between donor and acceptor group. The consequence 

is to favor dipole–dipole interactions that frustrate the structural goal of engineering 

noncentrosymmetric structures for second order nonlinear optics. This problem has been identified 

since the early eighties. Since then, several schemes have been successfully proposed and 

implemented to diminish either the dipole–dipole forces or conversely build-up structures based 

on more energetic interactions which will surpass and hence get around the influence of dipole 

interactions [39,41,48,49,59–62]. 

Methods for the control of bulk dipolar arrangement of organic molecules, including pNa, into 

acentric environments have been restricted to thin film structures. The main techniques are the 

Langmuir-Blodgett technique, guest-hosts approach and orientation of molecules in polymer 

glasses, or liquid-crystalline, using strong electric or magnetic fields. A promising method is the 

                                                 
2 Pyroelectricity is interpreted as the ability of certain materials to generate electric potential energy when they are 
heated or cooled. 
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guest-hosts approach where a polarizable material, whose natural crystal habit may be 

centrosymmetric (thus unable to produce SHG) can be induced to exhibit SHG by inclusion into a 

host matrix which works as a polar director to align the molecular dipoles. The use of inclusion 

compound hosts appears, surprisingly, to be a general method for dipolar alignment of organic 

compounds [60,63–65]. 

The most important message from table 1 is that guest molecules are completely separated from 

each other to avoid molecular centrosymmetric aggregation, which has a beneficial effect for the 

NLO activity. In the 28 examples listed in Table 1, only four failed to exhibit SHG. Statistically, 80% 

of the polar organic compounds crystallize in a centrosymmetric group. With this approach, 

statistically, the occurrence of polar noncentrosymmetric structures increases to 85%. Besides, it 

is convenient to modulate the NLO properties of supramolecular materials by controlling the host–

guest inclusion process. 

Another approach extensively studied to overcome the natural centrosymmetric structure of the 

organic chromophores, including pNa, is the electric field poling. The most common poling 

configurations are contact electrode poling where a high electrical potential are applied between 

the two electrodes that are in direct contact with the material solution[66,67]. These electrodes 

can be oriented in-plane, where the poling axis is parallel to the device surface, or vertically, where 

the poling axis is normal to the device surface. A uniform field is very important in electrical poling 

method in order to obtain molecular organizations with desirable NLO properties. The presence of 

film non-uniformity caused by impurities or inhomogeneity can lower the value of the maximum 

poling field that can be applied before damage occurs. In homogeneities may also change the 

spatial profile of the effective poling field causing local fluctuations in chromophore order. 

Among the progress previously reported in nonlinear molecular engineering for efficient SHG 

crystals, pNa shows some of the most promising values reuslts SHG. In fact pNa is a paradigmatic 

molecule and has be the subject of a multitude of  both experimental and theoretical studies. For 

example, Munn and his co-works have focused on determining the surface response that might 

explain the unusually strong SHG detected from the certain locations along the (101) cleavage 

plane of a pNa crystal [50].  
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Table 1 - Relative Second-Harmonic generation capabilities of several host-guest complexes, 

based on the publication [65]. 

 

 

 

Guest 
Host:Guest 

Ratio 
SHG relative to 

urea 
Inclusion Compounds with β-Cyclodextrin 

p-Nitroaniline 1:1 2.0-4.0 
p-(N,N-imethylamino)cinnamaldehyd 1:1 0.4 
N-methyl-p-nitroaniline 1:1 0.25 
2-amino-5-nitropyridine 1:1 0.07 
p-(dimethylamino)benzonitrile 1:1 0.015 

Inclusion Complexes with Thiourea 
benzenechromium tricarbonyl 3:1 2.3 
(fluorobenzene)chromium tricarbonyl 3:1 2.0 
(cyclopentadieny1)rhenium tricarbonyl ND 0.5 
(1,3-cyclohexadiene)iron tricarbonyl 3:1 0.4 
(1,3-cyclohexadienyI)manganese tricarbonyl 3:1 0.4 
(trimethy1enemethane)iron tricarbonyl 3:1 0.3 
(cyclopentadieny1)manganese tricarbonyl 3:1 0.3 
(1,3-butadiene)iron tricarbonyl ND 1.0 
pyrrolylmanganese tricarbonyl ND 0.2 
(cyclopentadieny1)dicarbonylnitrosyl- 3:1 

chromium 

3:1 0.1 

(cyclopentadien y1)diethylenerhodium ND 0.0 
(cyclopentadienyl)(1,3-

cyclohexadiene)cobalt 

3:1 0.0 

(cyclopentadienyl)ethylenetetrafluoroethylen-

erhodium 

ND 0.0 

Inclusion Complexes with Tris(o-thymotide) 
p-(dimethy1amino)cinnamaldehyde 2:1 1.0 
p-(dimethy1amino)benzonitrile 2:1 0.2 
(p-cyanobenzoyl)manganese pentacarbonyl ND 0.2 
(indane)chromium tricarbonyl 1:1 0.1 
(anisole)chromium tricarbonyl ND 0.1 
(tetra1in)chromium tricarbonyl 1:1 0.1 
benzenemanganese tricarbonyl-

tetrafluoroborate 

ND 0.1 

(pyridine)tungsten pentacarbonyl 2:1 0 
Inclusion Complexes with Deoxycholic Acid 

p-nitroaniline ND 1.0 
4-(dicyanomethylene)-2-methy-6-(p-

(dimethylamino)styryl)-4H-pyran 

ND 0.4 

Errors in powder SHG intensity measurements can be *50% because of particle size differences among 
samples, but relative rankings within a series are probably correct. ND = not determined. 
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In a previous work carried out within our research group, electrospun poly(ethylene oxide) ( PEO ) 

and poly(vinyl alcohol) ( PVA ) nanofiber matrices were used to embed and align the well-known 

organic molecule urea, which can generate significant SHG[68]. Additionally, they used the same 

technique to align the push-pull molecule of 2-methyl-4-nitroaniline (MNA) molecules using poly(L-

lactic acid) (PLLA) as a host [69,70]. MNa is one of the few push-pull molecules that have a natural 

noncentrosymetric crystal form with a strong SHG [71]. In these studies, they discovered that in 

the PEO matrix, the urea molecules combine with the matrix forming an inclusion complex with an 

orthorhombic unit cell; while in PVA matrix, the urea molecules maintain the same tetragonal unit 

cell as seen in its bulk crystals, forming one-dimensional crystalline cores embedded within the 

electrospun nanofibers. The SHG polarizations are different in both matrices. In the case of 

PEO/urea nanofiber arrays, the resultant polarization of the SHG as a function of the excitation 

polarization is nearly independent of the analyser orientation, indicating a poor molecular 

orientation. Conversely, the polarization dependence of the SHG response of the PVA/urea aligned 

fibres array reveals a strong orientation of the active molecules along the fibres. Furthermore, in 

the approach using MNa, optical measurements suggest that the SHG signals from the uniaxial 

aligned PLLA/MNa nanofiber arrays are strongly dependent on the polarization direction of the 

fundamental beam, as well, as the analyser. The powder diffraction X-ray spectra indicates that the 

MNa molecules crystallize within the electrospun nanofibres in a common orientation similar to 

bulk crystals, in the monoclinic 
aI  space group. The individual molecular dipole moments are 

parallel to each other lying in the (010) plane leading to a strong net dipole moment of the unit 

cell. By comparing the SHG signal from the PLLA/MNa fiber with that from a Maker fringe 

measurement on a (110) cut KDP crystal, the value for the effective nonlinear coefficient of the 

PLLA/MNa nanofibers was determined to be greater than that of bulk MNa crystals.  

After the observation of these astonishing results, the research group decided to explore the 

potential of the same approach to overcome the centrosymmetric nature of several organic push-

pull molecules. In this way, we hoped to provide a starting point for a better comprehension of the 

mechanisms involved, and contribute a new pathway for organic crystal engineering. Applying the 

same electrospinning approach, but using pNa molecules embedded in a Poly(methyl 

methacrylate) (PMMA) matrix resulted in a strong and unusual SHG rising from the PMMA/pNa 

nanofibres [48]. PMMA is the most versatile polymer for electrospun nanofibres in same way pNa 

is the simple push-pull molecules.  
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3 Self-assembly Strategies 

This chapter will focus on self-assembly techniques that attempt to translate individual molecular 

optoelectronic properties into macroscopic effects. Several typical approaches to implement micro-

manufacturing by self-assembly are introduced. The chapter concludes with a short theoretical 

description of the self-assembly process.   



 

40 
 

  



Chapter 3 

41 
 

3.1  - Organic engineering 

The robust local control of light and matter interactions at room temperature would create the 

foundations for the practical implementation of photonic quantum technologies [1]. Many 

demonstrations of quantum processes require cryogenic temperatures to protect the quantum 

states. Thermal and spontaneous interactions often introduce dephasing leading to decoherence. 

Nano-engineering of the local environment can relax these thermal constraints. For example, when 

an excited molecule returns to its low-energy ground state by the spontaneous emission of a 

photon, the process is generally incoherent and irreversible. Normally the emitted photon would 

be lost. However, if the molecule is strongly coupled to an optical resonator [2], [3] that subtends 

a significant solid angle, then there is a high probability that the emitted photon will remain near 

the emitter until it is reabsorbed. Under the strong coupling regime, the atom-cavity system can 

lead to a long-lived a coherent quantum state, well described by the Jaynes-Cummings model.   

Organic devices, despite their potentially strong role in next-generation optoelectronic devices, are 

often challenging to implement experimentally, due to their inherent structural disorder; they often 

contain significant grain boundaries, lattice defects or vacancies. These imperfections can 

complicate the transport of energy or charge over intermolecular distances, creating limitations 

that are not present in the bulk inorganic alternatives. The successful application of the organic 

materials in nanophotonics will require strategies to overcome or suppress these limitations 

depending on the specific functionalities of the devices [4], [5]. Concurrently, different synthesis 

and assembly strategies can also alter the optical and/or electronic responses at the individual 

molecular scale, indicating the need for a multi-scale assessment [6].  

Self-assembly strategies rely on the strong intermolecular interactions to create the desired 

structures over a large range of size scales [7]–[9]. The molecular components, either separate or 

linked, spontaneously form ordered aggregates without any external trigger. Since they proceed via 

spontaneous processes, they tend to lead to thermodynamically stable structures. Through the self-

assembly process, one or several intermolecular interactions may be the driving forces. The type 

and strength of the driving forces are generally molecular structure dependent, which when 

properly manipulated, offers one of the most broad-spectrum strategies available for engineering 

nanostructures [10]. Self-assembling processes are especially interesting from a materials 

processing point of view as they provide a route to create regular structures without contamination 

or phase separations (see figure 3.1). They have long been employed in chemistry and materials 
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science to create supramolecular structures with sizes ranging from the nano scale to well-ordered 

macroscopic ensembles.  

One traditional form of self-assembly is the process of crystal growth that encourages the 

arrangement of molecular units into long range, regular and two or three-dimensional periodic 

system [11], [12]. The growth of organic crystals has several peculiarities in comparison the main 

classes of inorganic crystals with optical applications, but recent progress has led to expanded 

activity and lower costs.  Several organic materials are readily available in the form of high quality, 

defect-free crystals, often a prerequisite for their technological application.  All the crystal growth 

processes can be broadly classified according to preparation of the precursor materials [13]. The 

vast majority of approaches can be categorized as either growth from melts, solutions or gas phase 

deposition. The nature of the individual building blocks, their interactions and the specifications of 

the desired physical properties all must be considered when choosing the most suitable method 

for a given application or structure. Several self-assembly methods are particularly well adapted to 

micro-manufacturing and the following text gives a quick review of some key strategies.  

 

3.2  Melt growth – Bridgman-Stockbarger method 

One of the more conventional approaches to obtain organic crystals, the Bridgman-Stockbarger 

method, follows a traditional method to grow inorganic crystals [14]. The vertical Bridgman 

technique is one of the simplest and oldest melt techniques to rapidly obtain high quality bulk 

crystals.  

Crystal growth using the Bridgman technique is based on directional solidification by translating a 

melt material from the hot to the cold zone of the furnace. The active control of how the material 

moves through the temperature gradient determines the quality of the grown crystals. The starting 

material, typically a powder, is placed into a quartz ampoule, sealed under high vacuum, put into 

the Bridgman furnace and heated [14]–[17]. When the melt is homogeneous, the furnace is slowly 

moved upwards. Consequently, the melt experiences a temperature gradient, the narrow tip of the 

ampoule always being the coldest point. Crystallization will start there, and as the ampoule is 

gradually removed from the furnace, growth proceeds until the ampoule is filled with one single 

crystal. During growth the boundary surface of the liquid melt is surrounded and in contact with 

the walls, allowing the latent heat associated with crystallization to be discharged by conduction. 
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This method has several advantages including its simplicity and the possibility of varying the growth 

conditions. It is easy to control the vapor pressure of the volatile components; it is even possible 

to carry out growth under a vacuum in a sealed container. The relatively well-stabilized temperature 

gradient, also permits come control over the extent of convective mixing and segregation [18]–

[21]. Conversely, this method does not allow one to specify the orientation of the obtained crystals. 

Both vertical and horizontal system configurations are possible. 

 

3.3  Self-assembly 

Almost all organic compounds have the inclination to self-assemble. However, many optoelectronic 

applications require the growth of specific crystal orientations often within a pre-determined 

structural from different from that which spontaneously occurs through self-assembly [22]. 

Important progress has been made in this direction over the past couple of years [23].  

 

Figure 3.1 - Molecular self-assembling engineering. Design and processing for functional 

crystalline nanostructures. 

 

3.3.1 Self-Assembly in the Liquid Phase 

Organic compounds are soluble in a variety of organic solvents, even at room temperature. 

Moreover, solution growth allows a considerable degree of control over process parameters, 

including temperature, solution viscosity and concentration. The equipment needed for solution 

growth is simple and low-cost, and good morphology crystals can be produced with a small number 

of defects [24]–[26]. 
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The self-assembly of organic molecules into nanostructures is based on the driving forces from the 

molecules themselves, sometimes encouraged by a nucleation initiator from the surroundings. 

Organic nanotubes, for example, can be achieved through the Coulomb interactions between two 

oppositely charged ionic precursors in aqueous solutions. The dimensions of the nanotubes can 

be tuned by simply changing the temperature of the aqueous solution [7]. Sonication can control 

the length of the self-assembling structures [27]. Lamellar structures have been obtained through 

the cooperation of three chemically orthogonal and spatially independent noncovalent 

intermolecular interactions, namely, hydrogen bonds,  − interaction and van der Waals contact 

[28]. 

Based on the properties of the organic molecules to be crystallized, several solution methods are 

available such as, solvent evaporation [29], slow cooling [30], vapour diffusion [31] and liquid-

liquid diffusion [24]. Solvent evaporation method is by far the simplest and often the most effective 

method to grow single crystals. Volatile organic solvents, such as toluene, are usually employed. If 

a beaker containing a solution is not hermetically sealed, the solvent can slowly evaporate forming 

a supersaturated solution. Spontaneous nucleation will eventually occur followed by growth into 

larger crystals. 

3.3.2 Organogelation 

Self-assembly through organogelation occurs mainly in gel [32]. A gel denotes a dilute mixture of 

at least two components, in which each of the components form a separate continuous phase 

throughout the system. For example, peptide molecules are capable of gelating in a wide range of 

aromatic and aliphatic organic solvents like benzene, toluene, ethyl acetate, tetrahydrofuran, 

chloroform and many others. Generally, gels are divided into two groups, chemical gels and 

physical gels, depending on the type of interactions that hold the network structure together. The 

physical type are those where the network structures are held together by non-covalent interactions 

such as hydrogen bonding or  −  stacking. Additionally, solvophobic and entropic effects can 

be very important in the formation of organogels. These strategies have proven very effective in 

constructing organic 1D nanomaterials with a variety of structures and properties [33], [34]. 

3.3.3 Solvent Evaporation 

Almost all organic materials can be dissolved in some organic solvent. As the solvents evaporate, 

the local concentration increases and molecular aggregates slowly form, eventually leading to small 
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crystals. This is a chaotic process in which, the size, morphology, and uniformity of the molecular 

aggregates are not easy to control, especially in the nanometer regime [35]. However, it is possible 

to achieve well-defined macroscopic single crystals, often through the use of seed crystals in 

saturated solutions [36]. In fact, this is the most common strategy to obtain organic single crystals. 

Some researchers have applied sonication to the solvent evaporation process as an approach to 

tune the morphologies of the resulting nanostructures. The final structures are heavily influenced 

by the container substrate and evaporation conditions as well the initial concentration and the type 

of the solvent used [37].  

3.3.4 Assembling in templates 

A straightforward way to fabricate nanostructures with a specific morphology and structure is by a 

template method. In this approach, target materials are induced to grow according to a template 

pattern.  Nanomaterials have been obtained with a pre-determined shape and size [38]. 

The templates adopted in this method can be divided into two groups: soft and hard [39]. Soft 

templates are those that can be dissolved in the liquid phase. For example, micelles or inverse 

micelles [26]. It is well known that micelles can be formed with different shapes, such as spherical 

or rod-like, by varying the critical micelle concentration. 

Hard templates are often used in the fabrication of inorganic nanomaterials, but have recently been 

invoked to fabricate organic nanomaterials [40], [41]. This group includes, but is not limited, to 

ordered porous membranes prepared with anodized aluminum oxide, silica, nanochannel glass, 

and ion-track-etched polymers. 

 

3.4  Poling 

The tendency of organic   systems to organize themselves in centrosymmetric structures has 

already been mentioned as the principal limitation in the macroscopic application of organic 

systems in second order NLO. However, the centro-symmetry can be broken by applying a strong 

electric field to align the molecular dipole moments along a single direction [42]. To lock in this 

electric field induced alignment, the molecules are typically incorporated inside polymeric hosts to 

prevent the relaxation into their natural (centrosymmetric) state (see Figure 3.2). Sol-gel matrices 

can also be used as a support, but polymers are usually easier and more versatile [43]. The 
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simplest method is to simply mix the active molecules in a polymer solution and let the solution 

crystallize into a guest-host system. By heating the polymer above its glass transition temperature, 

the guest organic molecules gain the ability to reorient in response to a strong applied DC electric 

field. This introduces a long-range orientational order that can be frozen in by subsequently lowering 

the temperate below the glass transition point. UV irradiation had also been used during the 

application of the strong DC electric field to enhance the orientation of chromophores [44]. If no 

further steps are taken, the achieved alignment corresponds to a metastable state that tends to 

relax over a timescale of weeks to months back to the equilibrium centrosymmetric state due to 

the strong Coulomb forces associated with the dipole–dipole interactions. Higher organic molecule 

concentrations tend to lead to faster relaxation rates. Some additional methods such as a 

crosslinking have been employed in an attempt to prevent this relaxation [42].   

 

Figure 3.2 – Representation of the polymeric nanofibre doped with pNa an example of guest-host 

system approach. 

3.5  Morphology Control 

The control of morphology is often a key factor for optoelectronic applications. The morphologic 

control of organic nanomaterials has met with limited success in contrast to their inorganic 

nanomaterial counterparts where choice of the appropriate materials and established synthesis 

methods have been used [45], [46]. The most commonly used strategy to modulate organic 

nanostructures is create a series of derivatives. For examples, researchers have prepared either 

nanobelts or nanospheres by using two different derivatives of perylene [47].  Besides 
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nanostructures made from compounds with different substituents, nanostructures with well-defined 

shapes, such as spheres, square wires and cubes, have also been prepared [8].  For example, 

different organic nanostructures morphologies have been obtained through the self-assembly of 

three isomeric molecules of bis(imino-pyrrole)benzene with the same substituents at different 

positions [47], [48]. Although all three isomeric precursors, o-, m-, and p-bis(iminopyrrole) 

benzene, exhibit similar, strong, multiple hydrogen-bonding interactions for molecular aggregation, 

distinctly shaped nanostructures were obtained [49]. The two iminopyrrole groups in the o-isomer 

are 60º open-armed. Therefore, two monomers can interlock to form a dimer by means of 

quadruple hydrogen bonds, which act as the basic units for the formation of spherical structures. 

In contrast, the configurations of m- and p-isomers, with two iminopyrrole groups open-armed at 

angles of 120º and 180º, respectively, allow each molecule to connect with two other molecules 

via hydrogen bonds, forming chain-like structures. Also determined by the molecular 

configurations, the chain of the m-isomer is zigzag shaped while that of the p-isomer is almost 

linear. These chains are the building blocks to form square wires and cubes, respectively. 

Essentially, different interactions involved in aggregate stacking at the supramolecular level 

associated with the isomeric molecular structures are responsible for the different morphological 

configurations. 

Another approach to control the shape and dimension of aggregated organic systems is to induce 

their self-assembly on nanostructured surfaces with different morphologies [50], [51].  

 

3.6  Theoretical aspects 

Crystal growth inside a polymeric matrix is essentially a process of aggregation within a confined 

space. There can be a strong interaction at the interface between the growing organic crystal and 

the solution phase of the surrounding polymeric matrix. An equilibrium between crystal growth and 

dissolution corresponds to a dynamic state for which variations in its concentrations

( )C C C = −  and mass exchange vanish. This corresponds, to a specific point on a solubility 

curve in the phase diagram of a solution where the concentration does not change, a point which 

can often be manipulated by changes in temperature [35]. 
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The theoretical description of the spontaneous association of freely diffusing molecules into  finite-

sized supramolecular objects at the solid–liquid interface, assumes that in systems at chemical 

equilibrium there is no net exchange between the two components, i.e.  

 A B    (0.1) 

where A  is the monomeric species, B is the self-assembled architecture, and   it is the 

molecularity of the reaction. The exchange between the monomer and the supermolecular 

assembly can be described by the difference in the chemical potentials between the two phases: 

that of the crystal ( )B  equalizes and that of the reactant ( )A   

 
AB A B   = −   (0.2) 

From this, a generalized driving force may be expressed as: 

 ln
C

k T
C




 
 =  

 
  (0.3) 

where k   is the Boltzmann constant,C C  is the ration between the initial concentration ( )C   

and cluster concentration ( )C   and T  is the absolute temperature. The driving force can be 

characterized in terms of an unit-less parameter, ( )
1

k T
−

 .  

Self-assembly typically starts by the initial association of a random cluster of a few molecules. 

Subsequently more molecules join, forming a structure that continually grows. In the limit of 

idealized behaviour and at a constant temperature and volume ( )V , the chemical potential can 

be expressed as 

 ( )
( )V,

V, ln
i

i

i

q T
T kT

N
 = −   (0.4) 

with and 
iq and 

iN  being the molecular partition function and the number of molecules of the i-th 

component, respectively.  

The chemical potential of a finite-sized supramolecular structure physio-adsorbed at the interface 

with the polymeric matrix can be estimated introducing the harmonic oscillator approximation and 

the Born–Oppenheimer hypothesis [35]. 
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Here the volume has turned into structure edge area 
IntS where  

IntI   is the principal moment of 

inertia of the molecule around the axis perpendicular to the edge, the number of vibrational modes 

has increased to 3 3n−  as one translational and two rotational degrees of freedom are effectively 

converted into internal vibrations upon 2D confinement, and 
eD  describes the interaction with the 

surface. 

In quantitative terms, this situation at the edge of the structure and the interface with the host 

matrix can be described as follows. The formation of a solid structure in a homogeneous interface 

results from spending a necessary quantity of energy. 

 
Int IntB S B S   = +   (0.6) 

The total quantity of energy ( ) required for the formation of a stable structure is equal to the sum 

of the energy required to form the surface edge ( )
IntS  a positive quantity, and the energy 

IntS  

required to form the bulk of the structure ( )B  a negative quantity. 

While the chemical potential of the unit cell is concentration independent, it is necessary to take 

into consideration both the concentration of building blocks and the packing density. When the 

chemical equilibrium is established, the free energy does not vary with temperature. Therefore, the 

total change in Gibbs free energy ( )G , between the crystalline phase and the surrounding 

matrix results in a driving force, which stimulates crystallization [52]. This free energy is the sum 

of the edge free energy and the volume free energy which can be simply expressed as, 

 0

UC

1
G = G ln

A

IntS

B

C
kT

C

  −   (0.7) 
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Equation (0.7) represents the total free energy normalized to the area of the unit cell per molecule 

( )UCA . The concentration of the molecules in bulk structures is represented by 
BC and the 

concentration of the molecules at the edge is given by 
IntSC (see Figure 3.3).  

 

Figure 3.3 - Model for structure growth with concentration driving in solution state. 
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4 Experimental Techniques 

In this chapter, the tools and techniques that were used to perform measurements of nonlinear 

optical properties shall be described. In particular, the polarimetry procedure used to perform the 

SHG measurements in transmission mode. The measurements were carried out with high spatial 

and temporal resolution with low noise due to the Kerr mode-locked Ti:Sapphire laser that delivers 

stable, spatially and temporally coherent ultra-short laser pulses and a high-sensitivity detection 

scheme. In addition, bulk characterization techniques of the pNa materials will be also addressed. 
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Fabrication of nano-tailored materials is often motivated by advanced applications in the fields of 

separation, catalysis, medicine, electronics and optics. An important area of nano-tailored materials 

consists of polymeric nanofibers, polymeric nanostructures, hybrid materials and direct writing 

templates [1].  

Organic structures with applications in micro and nano optoelectronics are still largely limited to 

laboratory scales. These devices often have major problems in relation to their long-term 

performances, reproducibility and reliability. Until industry-scale production is achieved, future 

visions for organic optoelectronic will remain just that – visions.  

In this work two approaches with the potential to grow and design large surfaces that can be used 

in a variety of devices and applications have been explored; electrospinning and capillary growth 

from a mixed organic chromophore polymeric solution. These two approaches attempt to translate 

the strong second order nonlinear optical response of individual pNa molecules to a macroscopic 

level.  In both of these two particular cases, the organization of the pNa molecules has been 

manipulated to give rise to macroscopic SHG. 

 

4.1  - Electrospinning 

Among all the techniques used for the development nanostructures, electrospinning is an especially 

attractive method due to its versatility and simplicity [2–6]. Electrospinning allows the fabrication 

of polymer nanofibers membranes composed of randomly distributed nanofibers, forming a three-

dimensional network. These networks present a high surface area and is being used as a strategy 

to increase the sensitivity and response of the material [7–9]. Nanofibres materials produced 

through electrospinning are attractive in many fields, particularly in the food industry where 

protective electro-spun membranes potentially allow for the time-controlled release of embedded 

chemical constituents [10]. Their characteristic high surface area per volume ratio, offer a high 

chemical load area with reduced volume and material.   

The large surface to volume ratio of electro-spun polymeric nanofibers is the main motivating 

reason for their use in the developing the hybrid materials here presented.  
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Geometrically, the surface area per unit volume is inversely proportional to the fibers diameter [11]. 

The diameter can be controlled by several process parameters. For example, thinner fibres can be 

obtained by controlling the precursor solution parameters such as viscosity and concentration. 

Concentration is a critical parameter;  very low concentrations, with very low viscosity, tend to result 

in defects arising in the drying of the material during the short path of the polymeric jet in the air, 

due to the excess solvent and lack of matrix, resulting in irregular fibers and even breaks [9,12]. 

However to promote the forming of the polymeric jet, the solution should also have a sufficiently 

low surface tension, a high charge density and a suitable viscosity to prevent the collapse of the jet 

into beads or droplets before the solvent evaporates. The control of the diameter of the fibres is 

typically limited to a narrow window of appropriate concentrations. The main mechanical 

parameters that can be adjusted in electrospinning fabrication are: solution flow, target collector 

distance, applied voltage and needle diameter. The adjustment of these parameters is essential to 

obtain nanofibers with the desired morphologies and diameters. This has been justified in the 

extensive literature. Their optimization was an important preliminary phase prior to the main work 

reported in this thesis. There are also several environmental parameters including temperature, 

humidity and air composition, which may also influence the formation and morphology of 

nanofibers [12].  

The final jet diameter of the polymeric solution is the result of the balance between surface tension 

and electrostatic repulsion [13].  

 

Figure 4.1 – Schematic representation of the applied electrical potential in the polymeric jet 

solution in the electrospinning technique. From low potential, left, to height potential, right.  

When the applied voltage is too small, the electric forces cannot overcome the surface tension and 

no jet is emitted.  
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Figure 4.2 - Schematics of the Taylor cone–jet situation at the applied electrical potential and flow 

rate. 

Therefore, there is a limit voltage needed to ensure that the fluid jet is continuous. Another very 

important choice is that of the solvent used in the precursor solution. For the formation of fibres, a 

solvent with a high vapor pressure is required. Insufficient vapor pressure can lead to excessive 

bead formation (droplets trapped on the fibres) and in the limiting case prevent the formation of 

fibers due to the lack of solvent evaporation. In these cases, increasing the applied voltage and the 

distance between the capillary and the collector can be beneficial [14]. Nevertheless, excessive 

high voltages can provoke higher solvent evaporation rates, which can lead to solidification at the 

tip and instability in the jet [15]. Morphological changes in the nanofibers can also occur upon 

changing the distance between the syringe needle and the collecting substrate. Increasing the 

distance or decreasing the electrical field decreases the bead density, regardless of the 

concentration of the solution polymer. When the electric field and the fluid flow rate are tuned such 

that the electric forces exceed the value of the liquid’s surface tension a Taylor cone is formed. The 

tangential electric field then accelerates the charge carriers in the liquid, increasing the velocity of 

the surrounding fluid toward the counter electrode at the collector. Practically, the flow rate and 

the applied voltage are the main process parameters that were varied to study how they influence 

the SHG response of the resulting fibers.  

The choice of polymer for the matrix is also crucial, as the local environment will determine how 

the pNa molecules self-assemble during the electrospinning process. There is a need for a 

combination of its transmissivity characteristic and the surface SHG of the self-assembling 

nanocrystals of pNa. Given the results of the second harmonic generation, it can be concluded that 
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PMMA presents a good choice for the polymer matrix [16,17]. The combination of its tensile 

strength, compression and transparency, which seem to encourage a self-assembly of the pNa 

molecules that possesses a strong macroscopic second order NLO response from this hybrid 

material.   

4.1.1 Experimental procedure  

The electrospinning device that produced fibers with a macroscopic SHG response, consisted of a 

capillary (tip diameter 0.6 mm), which included a wire electrode, a grounded counter electrode 

placed 12 cm from the capillary and a high voltage source. The potential between the electrodes 

was adjusted with a high-voltage power supply (Spellmann CZE2000). 

The doped polymer nanofibers were prepared by electrospinning of a solution of PMMA with a 

molecular weight of 120000 (purchased from Alfa Aesar). The solutions containing a ratio of 2:1 

between polymer and pNa (purchased from Sigma Chemical Co) by weight were dissolved in 

toluene and stirred for several hours under ambient conditions. To be able to perform the 

subsequent optical investigations, a transparent substrate in the form of a thin cover slide glass 

was placed on axis of the rotational collector (velocity of 100 rpm).  The amount of the fibres 

deposited on the cover slides was controlled by the electrospinning time.  

 

4.2  - Growth of layered structures 

Several times in the previous chapters, it was emphasized that organic crystals have been receiving 

much attention for potential applications in optoelectronics. Underlying most of these possible 

applications is the ability to creating and manipulate radiation. One particular route to achieve this 

is to engineer of nano-tailored organic materials to self-assemble in a non-centrosymmetric crystal 

lattice. The absence of an inversion centre leads to a range of symmetry-dependent properties such 

as piezo- and pyroelectricity, chirality, circular dichroism and even order nonlinear optical 

properties [18]. Many potential applications, especially sensing and switching tasks, could benefit 

from the availability of large area, low-cost, thin and flexible radiation sources, but the currently 

available technologies, based on bulky and rigid inorganic semiconductors, have not been able to 

deliver such devices. 



Chapter 4 

61 
 

The noncentrosymmetric organization of molecular building blocks is an essential requirement for 

a bulk material to exhibit properties such second order nonlinear optical (NLO) effects and 

piezoelectricity. However, even centrosymmetric materials loose this symmetry at their surfaces, 

implying that large area thin centrosymmetric films have the potential to provide an interesting 

second order nonlinear optical response [19]. This would require growing large-area, high-quality 

thin organic crystals, which is challenging with current methods. The relationships between 

chemical structure, supramolecular order and the required optoelectronic properties are 

fundamental when attempting to optimize the performance of electronic devices, or to design novel 

devices with desired properties.  

A portion of this thesis work was dedicated to exploring how surface effects might influence the 

nominally centrosymmetric structure of organic crystals during the construction supramolecular 

assemblies. As will be shown, several of the pNa supramolecular structures display strong 

macroscopic SHG responses, indicating a potential path in advancing beyond conventional 

synthetic methodologies.  

These structures are low-dimensional systems, with a thickness slightly greater than one micron, 

produced under ambient conditions at a constant temperature. In this approach the growth of the 

pNa structures are spatially restricted to a narrow gap between the two glass slides, similar to the 

capillarity growth process reported in the literature [20,21]. 

Understanding the crystallinity of self-assembled pNa structures requires some considerations. 

First, to have nucleation, the anchor group and the end functional group that crystallizes must be 

similar or compatible. Secondly, the host matrix should show a certain flexibility and mobility to 

compensate for the space occupied by the growth of the organic superstructures [22]. Thirdly, the 

pNa molecules inside the host matrix must have mobility along the matrix space to facilitate the 

packing and epitaxial growth of the anchor group and the functional end group, and consequently 

their crystallization.  Nevertheless, the possibility of a rearrangement of the polymer matrix toward 

a denser packing can be assumed, which in turn facilitates the organic chromophore crystallization, 

driven by attractive interaction between the anchor and end group of the individual molecules. 

Intuitively, the mobility of the organic chromophore will depend on the length of the polymeric 

matrix chain. The particular matrix scaffold structure can shape the variety of chromophore 

superstructures that are attainable, i.e., whether tilting, bending and twisting are possible, all of 

which facilitate crystallization.  



62 
 

4.2.1 Experimental procedure 

Para-nitroaniline (pNa) was purchased from Sigma Chemical Co and used as received. Polystyrene 

(PS) was purchased from Alfa Aesar. Both Poly(hexano-6-lactone) (PCL) and Poly(methyl 

methacrylate) (PMMA) with medium and low molecular weights were acquired from Sigma 

Chemical Co. The polymeric raw materials were dissolved in toluene (C6H5CH3, 99.8%), purchased 

from Sigma-Aldrich. The prepared solution was stirred for several hours under ambient conditions. 

pNa in powder form was subsequently added to the polymeric solution, together with a few drops 

of acetone to aid dissolution. The respective polymeric solutions with a concentration of 10 wt% 

and ratio of 2:1 by weight relative to pNa were deposited on clean glass microscope slides. The 

deposited solutions were covered with thin glass coverslips. The growth of the structures was a 

slow process, occurring over several days.  

 

Figure 4.3 – Draw of the approach used to growth pNa structures in the different polymeric 

matrices. 

The structures become visible to the naked eye after a few days. However, they continuously grow 

as long the polymeric matrix mobility exists, that is until complete evaporation of the toluene and 

the complete polymerization of its chains. As expected, the resultant structures depend on the 

respective host matrix; different polymeric matrices lead to distinct pNa nanostructures.  

The different host matricies were selected in order to explore different aspects of the organic 

chromophore, polymeric matrix interaction. Due to its success in the fabrication of nanofiber with 

a strong SHG response by electro-spinning, large molecular weight PMMA was chosen. Given the 

above considerations on the potential effects of polymer mobility structure with low molecular 



Chapter 4 

63 
 

weight PMMA were also grown. In addition, high weight PS that shares many characteristics 

(transmissivity, height molecular weight and strength) with PMMA matrices, was chosen to allow a 

further basis of comparison. Finally, PCL a semi-crystalline polymer, was used to explore the effects 

of the host matrix scaffold rigidity.  

 

4.3  Surface characterization  

4.3.1 FLIM 

The second harmonic response of the electrospun doped nanofibers was characterized using a 

custom-made FLIM microscope [23]. The embedded pNa superstructures were probed by 

femtosecond pulses from a Kerr mode-locked Ti:Sapphire laser emitting at a central wavelength of 

800 nm focused onto the sample by a 100x long-working distance infinity corrected objective. 

Emitted photons were collected by the same objective and a dichroic mirror was used to separate 

the fundamental and second harmonic photons. The second harmonic photons were directed to a 

double monochromator, before entering a multichannel photon multiplier tube (PMT) Hamamatsu 

to the emission’s temporal decay profile. At each incident spot on the fiber mat, the second 

harmonic signal was obtained by accumulating the time correlated signals over a period of few 

seconds. A piezo-scan motor with an active x–y feedback was translated the sample with sub-

micron spatial resolution. Overall the sample was scanned over a grid of (128 × 128 pixels) 

producing two-dimensional decay time intensity images. Custom LabView software was used to 

control the scanning process and for data acquisition.  

4.3.2 SEM 

The morphology, size and shape of pNa-PMMA nanofibres was verified by using a Nova Nano SEM 

200 Scanning Electron Microscope (SEM) operated at an accelerating voltage of 10 kV.  

4.3.3 AFM 

Atomic force microscopy (AFM) imaging was performed under ambient conditions in air with a 

Nanosurf FlexAFM (Paralab SA, Portugal) instrument using a head with a range of 100×100 µm2 

area. The measurements were carried out in tapping mode employing a Tap190Al-G from 

BudgetSensors, with a resonance frequency ∼190 kHz and a force constant of 48 N/m. 
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4.4  Bulk Characterization  

4.4.1 Synchrotron radiation 

The first generation of synchrotron radiation sources were the X-rays generated by the twisting 

magnets of the electron accelerators used in high-energy physics experiments. Gradually these 

sources were optimized by designing purpose built electron storage rings for dedicated high 

brilliance X-ray sources (2nd generation). Using electron undulator1 radiation, which is brighter than 

that created by the bending magnets of storage rings, led to a 3rd generation of even more brilliant 

synchrotron radiation sources. Several large- scale facilities based on these advances were 

designed and constructed in the 1980s. Some examples are the European Synchrotron Radiation 

Facility (ESRF) in France, the Advanced Photon Source (APS) in the US and SPring-8 in Japan with 

electron storage ring energies of 6, 7 and 8 GeV, respectively. With the development of a multi-

bend-achromat lattice, the electron beam in a storage ring can be more tightly focused, thus further 

improving the X-ray brilliance. The Swedish MAX IV, Italian Electra 2.0 and the Brazilian 5 SERIUS, 

three medium-sized storage rings, adopted this new technology to advance the performance of 

current storage ring sources. As of date, PETRA III in Germany is the most brilliant synchrotron 

radiation source.  

Two separate synchrotron radiation studies of the fabricated pNa hybrid materials and self-

assembling structures were carried out in an attempt to characterize the bulk nature of the 

respective materials.  

The first experiment took place at the Austrian SAXS/WAXS end station in the Electra synchrotron, 

located at Trieste, Italy. The objective was characterize the morphology, orientation and micro strain 

of the pNa nanocrystals along the longitudinal axis of the polymeric nanofibers, correlating these 

results with the SHG response of these hybrid materials.  

                                                 
1 The periodic array of dipole magnets forces the traveling electrons to undergo oscillations and 

thus to radiate energy as they traverse the magnet structure. This can lead to the production of 

intense, collimated and spectrally narrow X-ray radiation. 
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Figure 4.4 – Illustration of the synchrotron experiments carried out.  

Wide angle X-ray scattering (WAXS) was employed using an energy of 8 keV. The highly collimated 

high intensity X-ray beam facilitated the acquisition of high-quality spectra with sufficient resolution 

to enable fitting using a Pseud-Voight function. In these X-ray studies, the detailed analysis of the 

peak width and shift enables one to infer the mean size and micro-strain experienced by the pNa 

nanocrystals. 

The second experiment took place at the end station MINAXS in Petra III at DESY synchrotron, 

Hamburg, Germany [24]. The high spatial resolution, high intensity of photons, the micro 

dimension of the beam in combination with the detection microscope permitted acquiring spatially 

resolved micro X-ray diffractograms. The measurement technique, Scanning Nano diffraction 

WAXS, with an energy of 13 keV permitted correlating the structural information from the X-ray 

diffractograms with the different physical and optical characteristics of the pNa structures, as a 

function of spatial coordinates along the polymeric matrix.  This association allows one to infer 

characteristics of the self-assembly mechanism as well the growth orientation and the crystallinity 

of the structures. The results are then correlated with the local second order NLO response of these 

low dimensional structures. 

 

4.4.2  Polarimetry  

A common technique used to measure the local second order NLO response of a variety of 

nonlinear materials is microscopic SHG polarimetry. The intensity and polarization of the detected 
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SHG can provide information regarding the domain shapes, orientation, domain phase and local 

symmetry of the material under study.  

The setup used to preformed the SHG polarimetry is schematically represented in Figure 4.5. A 

linearly polarized femtosecond laser beam is used as the fundamental light with a central 

frequency, ω . The beam is focused onto the sample at normal incidence, while the SHG signal of 

frequency 2ω  generated by the sample is collected in transmission and detected by a 

spectrograph. 

 

Figure 4.5 – Polarimetry setup. 

In the case of pNa in electro-spun nanofibers, the incident fundamental beam enters the sample 

first and then is transmitted through the substrate. A thin glass cover slide with a thickness of 

0.6 mm  is used as support and substrate. These glass slides are amorphous hence non-SHG 

active while being highly transmissive to both fundamental and second harmonic light. In the case 

of the 2-dimensional pNa structures, the incident fundamental beam enters the cover slide first 

before impinging on the sample under study.  

The dipoles (  ) excited by the incident fundamental light lie parallel to the image plane. To analyse 

the observed SHG intensities, it is convenient to introduce a laboratory coordinate systems (x y z), 

where z is parallel to the longitudinal axes of the nanofiber and y is the propagation direction of the 

incident fundamental light.  

The corresponding electric field of the fundamental light has components in the laboratory frame 

of 0 0( , , ) ( cos , 0, sin )x y zE E E E E = . Here, is the azimuthal angle of the fundamental light 

polarization, as depicted in Figure 4.6. The light-induced nonlinear polarization is given by 
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Figure 4.6 - Sketch of the SGH polarimetry experiment carried out in pNa-PMMA nanofibers. 

In this particular case, the two experimentally accessible components of the SHG intensity 

generated at the surface of the nanocrystals of pNa are,  
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Let ˆ
in  correspond to the orientation of the output analyser in position i  expressed in the lab 

coordinate system. Here, 2s is the quadratic response of pNa nanocrystals surface polarization 

(small correction factors related to the Fresnel reflection and transmission coefficients are ignored). 

The polarimetry data show that the dominant SHG signal generated by the pNa nanocrystals, is 

oriented along the longitudinal fibre direction or laboratory z-axis. This implies a predominantly 

dipolar response with the two-fold polar axis aligned with the longitudinal fibre axis.  

Following the work of Brevet [25], if the SHG power were to originated from a single surface of an 

embedded pNa crystal its magnitude would be given by  
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Assuming this to be the case we can estimate the magnitude of the nonlinear surface susceptibility, 

(2 )s  of the pNa nanocrystals embedded within the nanofibers by comparing the response to that 
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of a 4 mm  KDP crystal acquired under the same experimental conditions. The KDP crystal signal 

effectively allows us to calibrate the overall detection efficiency of our system.  

In the case of KDP, within the plane wave approximation, the generated SHG power is described 

by the well-known expression, 
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Here 
1 22k k k = −  is the wave vector mismatch between the fundamental beam (

1k ) and the 

second harmonic beam (
2k ) within the medium,  is area of the focused beam waist and effd  

is the effective nonlinear coefficient. For type I phase matching in KDP at the wavelength of the 

fundamental beam, the appropriate second order coefficient is 36sin( )eff pmd d= , where the 

phase matching angle is 44.9ºpm =  and  1

36 0.39 Vd pm −=   [26]. Due to the birefringence of 

the KDP crystal, there is a walk-off angle between the wave-vector propagation and the direction of 

energy flow. In KDP at the phase matching orientation for the fundamental beam incident light this 

walk-off angle is 28 mrads  and will reduce the efficiency by roughly a factor of 2 under our 

conditions.  

Taking this in consideration and assuming that the observed pNa nanofibre SHG signal is due to a 

single pNa nanocrystal, one can estimate the effective surface quadratic response via the relation.  

 (2 ) 2

22

pNa
s KDP

eff KDP
d L 



 =   (4.5) 

 

4.4.3 Raman spectroscopy  

Raman spectroscopy is a respected technique for probing the chemical composition of materials. 

It is widely applied in the chemical analysis of molecular species [27]. Being sensitive to the 

structure of chemical bonds, it is widely used as a characterization technique in organic condensed 

matter studies. Raman spectroscopy is a non-invasive and label-free tool, intrinsic to the molecules 

contained in the respective sample, effectively probing the molecular vibrational properties. Initially 

the application of the techniques was limited by low spatial resolutions due to the longer wavelength 

involved and the vibrational absorption of the matrix and environmental atmosphere. However, the 
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use of powerful well-collimated laser sources has allowed increased spatial resolution and improved 

signal to noise ratios. Currently high resolution Raman spectroscopy provides good molecular 

specificity with high-speed analysis making it a favourite imaging technique in the bio sciences.  

Raman spectroscopy is associated with a coupling between the incident photons and the natural 

vibrionic modes of the sample. This coupling allows the incident light with a frequency ( ) , to 

excite one of the vibrational modes, leading to a scattered photon with a lower frequency at ( )  .  

By energy conservation the difference in energy between the incident and scattered photon is equal 

to a quanta of the excited vibrational mode.  

 ( )viE h   = −   (4.6) 

Typically in Raman spectroscopy, an incident laser beam is focused tightly onto the sample. The 

scattered photons are then collected by a condenser lens and sent into a spectrometer. A double 

monochromator is usually used to ensure adequate discrimination against the incident light and to 

resolve the various Raman peaks. Often, a cooled CCD array is used as a detector.  

 

Figure 4.7 – Resonance structure for pNa. 

 

Information regarding the vibrational modes that can be sensitive to the phase and local structural 

confinement of the pNa moelcules inside of the polymeric nanofiber produced by electrospinning 

was obtained using a high resolution dispersive Raman microscope Horiban Jobin Yvon, LabRAM 

HR with a CW laser with a wavelength of 514.5 nm = at room temperature. The same setup 

was used as well to study the 2-dimenstional pNa structures growth in different polymeric matrices. 
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In the case of pNa the nitro group can be viewed as a hybrid of the two resonance structures (I) 

and (II) represented in figure 4.7. However, it is also necessary to take into consideration the 

canonical resonant structure (III) of the nitro group because it is the responsible for most of the 

chemical properties of the aromatic compounds such as acidity, reaction speed, spectral shift and 

high polarizability [28]. The positive charge of the nitrogen atom leads to a high electronegativities 

of the electron cloud which manifests as a large dipole moment.  In a simplified two-state model, 

the electronic state of pNa can be viewed as a linear combination between the resonant structures 

(I) and (II) leading to the neutral state ( )VB  and the zwitterionic structure ( )CT  based on 

resonance structure (III) [29,30]. 

 

Figure 4.8 – The two characteristic electronic structures for pNa. 

 

The local environment can provoke mixing between these states and in general, the electronic 

ground state ( )g   and the first electronic state ( )E  of pNa will be given as the linear 

combination of these two structures, 
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  (4.7) 

Ordinarily, the ground state is mostly the neutral state 
VB  while the exited state is predominantly 

the zwitterionic state
CT . This implies a certain amount of charge transfer when the molecule is 

excited. Furthermore, in polar environments the molecule is more stable in zwitterionic structure. 
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In this case the molecule presents a large transition diploe moment ( )ge . The intensity of the 

Raman ( )2

RI   spectrum is direct related with the resonate structures of the molecule 

 2

R Mge g eI d 
+

−

=     (4.8) 

Where M  is the vector moment and d  is the product of the volume of all atomic elements.  

Using this simple model one can understand how the Raman spectrum might be influenced by the 

phase and local environment of the pNa molecule. However, several peaks have nearly the same 

frequencies independent of its state, they are listed in table 3 [31]. 

Table 3. Raman frequency of the coincident peaks in bulk pNa and the electro-spun nanofibres together 
with the identification of the corresponding vibrational mode. 

Raman Shift 
(cm-1) 

Relative Intensity 
(Nanofibres) 

Relative Intensity 
(bulk) 

Vibrational modes* 

860 0.34 0.24 δ(NO2) 

1109 0.34 0.12 ν(C-NO2) 

1137 0.12 0.08 φ(13) 

1178 0.12 0.07 φ(9a) 

1397 0.07 0.08 φ(19b) 

1452 0.09 0.06 φ(19a) 

1507 0.11 0.06 νas(NO2) 

1598 0.20 0.08 φ(8a) 

a ν =stretching, δ =in-plane deformation, γ =out-of-plane deformation, φ   

vibrations of benzene; nomenclature according to G. Varsanyi . 

 

The reported Raman spectra of pNa show several anomalies, some of them due to its molecular 

structure, others to its crystalline structure [29,30,32,33]. In the region 1270-1350 cm-1 differences 

are greatest, both for the frequencies and for the intensities. In the solid phase, the 
3v  line 1287 

cm-1 (assigned to a ring vibration), is by far the strongest in the Raman spectrum. The contrary 

behaviour is present for the 
2

s

NOv line at 1338 cm-1 of the group NO2. In the molten fase these two 

Raman lines are strong but in solutions the 3v  line is no longer visible while the 
2

s

NOv line splits 

into two components, whose intensities depend on the nature of the solvent and on the 

concentration of pNa [34]. 
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5 Papers Reprints 

In the next chapter are present the reprints of the papers published during this thesis. We discussed 

the properties of hybrid nanofibers and the pNa structures, the nano crystals size, the influence of 

surface, bulky strain, polymeric matrix, depositions parameters and growth orientation.
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Abstract: Intense well polarized second harmonic light was generated by 

Poly(methyl methacrylate) nanofibres with embedded para-Nitroaniline 

nanocrystals. Subwavelength diameter fibres were electro-spun using a 1:2 weight 

ratio of chromophore to polymer.  Analysis of generated second harmonic light 

indicates that the pNa molecules, which nominally crystalize in the 

centrosymmetric space group, were organized into noncentrosymmetric structures 

leading to a second order susceptibility dominated by a single tensor element. 

Under the best deposition conditions, the nanofibrers display an effective nonlinear 

optical susceptibility approximately two orders of magnitude greater than that of 

potassium dihydrogen phosphate. Generalizing this approach to a broad range of 

organic molecules with strong individual molecular second order nonlinear 

responses, but which nominally form centrosymmetric organic crystals, could open 

a new pathway for the fabrication of efficient sub-micron sized second harmonic 

light generators.  

PACS: 42.65.-k Nonlinear optics; 42.65.An Optical susceptibility; hyperpolarizability, 

42.65.Ky Frequency conversion; harmonic generation; 42.70.Jk Polymers and organics 
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1. Introduction 

New materials with tailored linear and nonlinear optical (NLO) properties are actively being sought to 

extend the frontiers that limit many photonic devices. Currently the majority of commercial nonlinear 

photonic components are based on inorganic materials [1]. Despite the successful development of many 

new inorganic crystalline materials over the past several decades, the applications of these materials is often 

limited by the magnitude of the available optical nonlinearities as well as the associated fabrication costs. 

In particular, efficient generation of second harmonic light by sub-micron sized systems is not routinely 

available from inorganic materials. Recently, several different processing approaches to extend the range 

of available nonlinear optical materials have been explored, including self-assembly [2,3], poling [4], 

lithography [5,6], molecular beam epitaxy [7] and electrospinning deposition [8-12]. Concurrently, 

researchers have developed a variety of alternative building blocks such as metallic nanoparticles[13], semi-

conductors quantum dots [14], 2D-Materials [15] and tailored organic molecules [16].  

In particular, organic systems have been widely investigated for nonlinear optical applications. They 

possess several attractive features including their low cost, fast, large nonlinear responses over a broad 

frequency range and tailorability [4,16]. A paradigmatic example is the organic molecule of para-

Nitroaniline (pNa) [17-20]. It has a delocalized π-electron system and unsaturated bridge linking a donor 

amino group (NH2) and an acceptor nitro group (NO2). The delocalization of the π-electrons leads to an 

asymmetric charge distribution resulting in a strong molecular hyperpolarizability (β) [21]. Unfortunately, 

because it crystallizes in a centrosymmetric space group ( )12P n  [17], the bulk second order nonlinear 

response of pNa crystals vanishes. This commonly occurs in donor-pi bridge-acceptor organic crystals: the 

dominant dipole–dipole interactions result in a pairwise, side-by-side antiparallel molecular alignment 

within the unit cell [22].  Experimentally, several different approaches have sought to achieve useful SHG 

when employing pNa as the active molecular building block [10,18,20,23]. These range from modifying 

the surface of pNa crystals [18] to the incorporation of the organic dye within carbon nanotube structures 

[24]. Recently we reported observing strong SHG from pNa embedded in electro-spun poly(L-lactic acid) 

(PLLA) polymer nanofibres [10]. Here we report on similar results obtained using Poly(methyl 

methacrylate) (PMMA) as the polymeric host. Contrary to the situation with PLLA, the pNa-PMMA fibres 

produce an intense well-polarized second harmonic response dominated by a single tensor element of the 

effective second order susceptibility.  

Electrospinning deposition is a versatile technique with deposition parameters that can be tuned to induce 

long range molecular order organic molecular dopants, leading to enhanced optical and NLO coefficients 
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[13,25]. The sub wavelength size of the resultant hybrid nanostructures promotes localized coherent 

interactions in the transverse direction and allows as well as waveguiding effects along the longitudinal 

direction [26].Furthermore, the technique is relatively low cost and can be easily scaled-up to an industrial 

level [9].   

In this study, pNa molecules were embedded in a one dimensional (1D) nanostructured Poly(methyl 

methacrylate) (PMMA) matrix, using different deposition rates during the electrospinning process. With 

this technique, the growth of the pNa crystals is encouraged along the longitudinal axis. Strong coherent 

SHG radiation was produced when 100fs pulses from a mode-locked Ti:Sapphire laser operating at a central 

wavelength of 800nm were focused onto these nanofibres.  The polarization dependence of the SHG 

generated by these fibres allows us to comment on how the electrospinning deposition rate influences the 

degree of pNa alignment with the fibres. The complementary characterization techniques of Scanning 

Electron Microscope (SEM), X-ray diffraction, Raman spectroscopy, Fluorescence Lifetime Imaging 

Microscopy (FLIM) and Hyperspectral Microscopy were employed to obtain insights regarding the local 

nanostructured environment of the embedded pNa molecules. 

 

2. Methods 

2.1 Materials 

Para-nitroaniline (pNa) was purchased from Sigma Chemical Co and used as received. Poly(methyl 

methacrylate) (PMMA, Mw 120000) was purchased from Alfa Aesar. The raw materials  were dissolved 

in dimethyl formamide (DMF) and toluene at a 1:2 volume ratio. DMF (C3H7NO, 99.8%) and toluene 

(C6H5CH3, 99.8%) were purchased from Sigma-Aldrich as used as received. The relative weight ratio of 

pNa to PMMA in the final precursor solution was 1:2. The prepared solutions were stirred for several hours 

under ambient conditions prior to deposition by electrospinning. 

2.2 Nanofibre Production 

The polymeric nanofibres were electro-spun. The precursor solution was loaded into a syringe with its 

needle connected to the anode of a high voltage power supply (Spellmann CZE2000). To produce the in-

plane aligned fibre arrays, 17 kV were applied to the needle while the grounded rotating drum collector was 

rotated at 100 rpm. In this technique, the nanofibres are the result of a rapid solidification of a jet of 

polymeric solution created by the intense electric field between the tip and the support. The nanofibres are 

deposited on a glass slide attached to a rotating drum collector, while the distance between anode and 

collector was 12 cm. Precursor solution flow rates of 0.05 mL/h, 0.40 mL/h and 0.75 mL/h were used. 

These rates were controlled by a dedicated syringe pump. 
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2.3 Material Characterization 

The morphology, size and shape of  pNa-PMMA nanofibrers was verified by using a Nova Nano SEM 200 

Scanning Electron Microscope (SEM) operated at an accelerating voltage of 10 kV. A homebuilt 

Fluorescent Lifetime Image Microscope (FLIM) [27] was used as a complementary analysis of the 

morphology and alignment of the pNa-PMMA nanofibres. FLIM analysis gives information about the 

individual SHG response of each nanofibre. 

Crystallinity and crystallographic orientation of the pNa nanocrystals inside the nanostructured fibres was 

studied by X-ray diffraction. The X-ray diffraction pattern of nanofibres was measured from 2−   scans 

recorded between 10 and 60° on a Philips PW-1710 X-ray diffractometer using Cu-Kα radiation of 

wavelength 1.5406 Å. The lattice planes parallel to the substrate surface were determined from the q vector 

perpendicular to the nanofibres mat plane and thus perpendicular to the longitudinal nanofibre axes.  

A high-resolution Raman spectrometer, Horiba LabRAM HR Evolution confocal microscope using a laser 

excitation of 532 nm (2.33 eV), was employed to characterize the local molecular order and orientation of 

the pNa inside of the PMMA host matrix. A 100x objective lens was used to focus the laser onto the sample. 

Polarized Raman spectra were obtained at room temperature between 600-1800cm-1. 

The bright field microscopic images were recorded using an Olympus BX51 microscope (10×, 50×, 100× 

objectives), in the transmission mode, equipped with a digital CCD camera (Retiga 4000R, QImaging) used 

to capture the microphotographs (exposure time:  0.1 s) of the samples under illumination of white light of 

a DC regulated illuminator (DC-950, Fiber-Lite). The dark field images were acquired by replacing the 

standard microscope condenser, used for bright field transmission mode, by the CytoViVa enhanced 

darkfield illumination system. The hyperspectral microscope images were obtained with a digital camera 

(IPX-2M30, Imperx) coupled to a spectrograph (V10E 2/3″, Specim, 30 μm slit, nominal spectral range of 

400–1000 nm, and nominal spectral resolution of 2.73 nm). A UV-IR Cut Filter (IF 486, Schneider 

Kreuznach) with transmission range from 390 to 690 nm was placed in front of the cameras. Each pixel 

field-of-view on the hyperspectral images corresponds to an area of 128×128 nm2 on the sample plane. 

2.4 Polarimetry measurements 

The SHG response of the pNa-PMMA nanofibres was analysed by polarimetry measurement using the 

experimental set-up shown schematically in figure 1. The incident fundamental light at frequency   was 

provided by a femtosecond Ti:Sapphire mode-locked laser (Coherent Mira 900F) pumped by a frequency 

doubled CW Neodymium-laser (Coherent Verdi 5W), with a 100 femtosecond (fs) temporal pulse width 

and a central wavelength of 800nm. The measurement consists in illuminating pNa-PMMA nanofibres with 
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linearly polarized fundamental light and analysing the polarization of the transmitted SHG field. An 

achromatic half-wave plate (𝜆⁄2) is placed before a 50mm focal length plano-convex lens, in order to 

continuously vary the polarization direction of the incident light (0 – 360o). The generated SHG field is 

collected by a microscope objective 100× Mitutoyo Plan Infinity-Corrected Long working distance 

objective (NA=0.7). A set of filters was used to eliminate the transmitted fundamental beam intensity and 

select the SHG field with a central frequency of 2ω. A polarizer was used to analyse the polarization of the 

generated SHG light. The polarizer was fixed to be either parallel (q-p configuration) or perpendicular (q-

s configuration) to the nanofibre’s longitudinal axis. The analysed SHG field was recorded by focusing the 

beam onto a multimode fibre optic cable coupled to the entrance slit of a 0.3m imaging spectrograph Andor 

Shamrock SR-303i, with 0.20nm resolution. 

 

Figure 1. Polarimetry Setup. The sample is excited by a linearly polarized Ti:Sapphire laser beam. The 

polarization of the incident beam is continuously varied using an achromatic half-wave wave plate (WP – 

λ/2). After passing through a fixed polarization analyser the second harmonic signal is detected using a 

cooled CCD array coupled to a 0.3 m spectrograph.  

3. Results and Discussion 

3.1 Structural, Morphology and filled content analysis 

The morphology, size and shape of the pNa-PMMA nanofibers were investigated using SEM. As shown in 

figure 2 and summarized in table 1. One clearly sees that they present a homogeneous cylindrical 

morphology with sub-micron diameters. A crucial aspect is the absence of pNa crystals grown outside of 

the PMMA fibres confirming that the SHG signal comes from pNa molecules located inside the polymeric 

matrix. No external beads are observed [28]. 
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Figure 2. SEM image of pNa-PMMA nanofibres (a) deposited by electrospinning using a deposition rate of 

0.05 mL/h. (b) Detail of the selected area in the left image with an indication of a few selected nanofibre 

diameters. 

The high spatial and time resolution of the FLIM microscopy setup allows the measurement of the SHG 

signal of each individual nanofibre (figure 3). Illuminating the nanofibres by the femtosecond laser with a 

central wavelength of 800 nm the resulting second harmonic response (SHG) near 400 nm is collected and 

recorded. Each pixel of the image in figure 3 is coloured and corresponds to a single decay profile at the 

respective pixel’s spatial coordinate. The overall temporal response is represented in the histogram. The 

prompt SHG emission is characteristic of a scattering process in a well-defined temporal window with a 

width that is close to the instrumental response time of the detection system. This eliminates the possibility 

of other effects, such as fluorescence induced by the absorption of two photons. FLIM microscopy 

demonstrates that each individual pNa-PMMA nanofibre presents a second order nonlinear response. 
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Figure 3. (a) Coloured FLIM microscope image of pNa-PMMA nanofibres using a 

deposition rate of 0.05 mL/h. (b) Temporal histogram of the SHG response. The sharp peaks 

in the histogram, with widths close to the instrument response time of the system, are a 

characteristic of a prompt nonlinear effect.  

The mean diameter of the pNa-PMMA nanofibres tends to diminish as the deposition rate increases 

(table 1). Furthermore, the distribution of diameters broadens at higher deposition rates.  

Table 1. Mean diameter of the pNa-PMMA nanofibres as a function of the deposition rate. 

 

 

 

 

 

X-ray diffraction spectra acquired on pNa-PMMA fibre mats for each of the deposition rates listed in table 

1 is shown in figure 4. The acquired diffraction patterns show evidence of well aligned nanocrystals 

dominated by a strong peak corresponding to the plane with the Miller indices (202) which is parallel to 

pNA natural cleavage plane (101) [19]. After performing a baseline subtraction, a Lorentzian was fit to the 

(202) peak for the different deposition rates as shown in the inset of figure 4. 

Deposition rate 

(mL/h) 

Mean Fibre Diameter 

(nm) 

0.05 786 ± 45 

0.40 594 ± 64 

0.75 578 ± 140 
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Figure 4. The X-Ray diffraction peaks of the PMMA nanofibres doped with pNa, deposited 

at different rates. (Inset) Lorentzian fit to the peak corresponding to dominant peak with the 

Miller indices (202).  

The Lorentzian fit allows us to quantify the broadening of the (202) diffraction peak as the deposition rate 

is increased. This broadening could be due either to a reduction in the mean size of the pNa nanocrystals or 

an increase in strains to which they are subjected. When size effects dominate the broadening, the Scherrer 

equation [29] can be used to relate the width of the hkl diffraction peak in radians, to the mean crystal size 

through the equation:  

 
cos( )

hkl

k

D






 
=  
 

 . (1) 

Here D is the crystal size in the direction perpendicular to the lattice planes,   is the wavelength of the 

radiation (1.5406Å),   is the diffraction angle in radians and k numerical factor frequently referred to as 

the crystallite-shape factor. In the absence of detailed shape information, k=0.9 is generally accepted as a 

good approximation. This allows us to estimate a minimum size for the pNa crystals.  
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Table 2. The experimental values of 202 obtained by the Lorentzian peak fit of cleavage plane with the 

Miller indices (202) for the different deposition rate and the corresponding estimate for lower limit of the 

mean crystal size using equation 1. 

 

 

 

 

 

 

The experimental values of 202
 and the corresponding minimum crystal size listed in table 2 together with 

the SEM results presented in table 1, suggest that nanofibres deposited at higher rates lead to thinner 

nanofibres containing smaller embedded pNa nanocrystals. Generally, thinner nanofibres are the result of 

a fast and efficient solvent evaporation [9] as the nanofibres solidify on their way to the grounded collection 

substrate. Another possible consequence of the rapid solidification can be the increase of the surface tension 

generating micro-strains, which in turn broadens the diffraction peaks. For a deposition rate of 0.75 mL/h 

the peak broadening is accompanied by a decrease of the peak area and maximum peak height. This suggests 

a lower degree of crystallinity accompanied by some combination of a decrease in the average size of the 

nanocrystals and an increase in the presence of micro-strains. The 0.05 mL/h deposition rate leads to a 

significantly larger lower limit on the mean crystal size. At this deposition rate the average nanofibre 

diameter is larger, consistent with a slower evaporation rate which should lead to more uniform 

crystallization within the nanofibres. The preferential orientation corresponds to the plane with Miller 

indices (202) which is parallel to the natural cleavage plane (101). Theoretical calculations of surface 

quadratic susceptibilities in pNa crystals [10,19] indicate that (101) and (202) surface terminations 

correspond to large quadratic susceptibilities and consequently strong surface nonlinear responses.  

Hyperspectral microscopy was used to ascertain whether the concentration of pNa varied significantly along 

the fibres. Figure 5a shows an optical image of pNa fibres on a microscope slide. The fibre region was 

magnified (area marked with a rectangle) and the resulting hyperspectral image of a few pNa fibres under 

white light excitation is depicted in figure 5c. The hyperspectral curves collected randomly along the fibres 

(within pixels of size 128x128 nm2) are spectrally uniform consistent with an overall homogenous 

concentration of embedded pNa molecules.  We note that the intensity variations present in figure 5a, 

primarily occurs in regions of overlapping fibres which increases the amount of light scattered.     

Deposition rate 

(mL/h) 
202

   

(radians) 

Minimum pNa crystal size 

(nm) 

0.05 0.15 54.26 

0.40 0.28 29.07 

0.75 0.37 22.01  
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Figure 5. (a) Optical and (c) hyperspectral microscopy images of pNa fibres in transmission dark-field 

mode (b) Hyperspectral spectrum measured within the single pixel areas (1-3 in c). 

 

Raman spectroscopy was used to better understand the nature of the pNa embedded within the polymeric 

fibres.  Several peaks in the Raman spectrum have nearly the same frequencies in a thin sample of bulk 

crystalline pNa and the nanofibres, both acquired at room temperature. The most prominent of these peaks 

are listed in table 3. 

In figure 6 the Raman bands in bulk crystalline pNa (solid line), and pNa-PMMA nanofibres (dashed line) 

are shown for the spectral region between 600-1700 cm-1. Three intense lines at 1282 cm-1, 1314 cm-1 and 

1338 cm-1 characterize the Raman spectrum of bulk pNa crystals [32,33].  The most striking feature in 

figure 6 is the inexistence in the pNa-PMMA nanofibre Raman spectra of the band centered at 1282 cm-1, 
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which is the most intense peak in bulk crystalline pNa. Harrand [32] has identified this peak as resulting 

from a superposition of the benezene ring symmetric stretching mode, 
3  , with a combination  line arising 

from another ring stretching mode and a torsion of the amino group,  
25 NH + . The hydrogen bonding 

between the nitro and amine groups of neighboring molecules induces −electron charge concentration in 

the C-N bonds as well as between the bonds connecting unsubstituted carbons in the benzene ring. This 

produces a quinodal-like structure that leads to an enhanced Raman response. In contrast, 1282 cm-1 peak 

is absent for pNa in solution where the lack of hydrogen bonding results in a more aromatic -electron 

charge distribution. The absence of this prominent peak in the pNa-nanofibres suggests that the normal 

hydrogen bonds between the nitro and amine groups are somehow weakened by the electro-spinning 

production technique. Alternatively, it might be evidence that the majority of pNa molecules within the 

fibre are not incorporated into nanocrystals, but are rather embedded in a less organized structures. 

Nonetheless, the x-ray diffraction spectra does indicate that a significant fraction of pNa molecules do 

crystallize with their 202 planes oriented within the fibre mat. 

 

Table 3. Raman frequency of the coincident peaks in bulk pNa and the electro-spun nanofibres together 

with the identification of the corresponding vibrational mode1. 

Raman Shift 

(cm-1) 

Relative Intensity 

(Nanofibres) 

Relative Intensity 

(Thin Crystal) 

Vibrational modesa 

860 0.34 0.24 δ(NO2) 

1109 0.34 0.12 ν(C-NO2) 

1137 0.12 0.08 φ(13) 

1178 0.12 0.07 φ(9a) 

1397 0.07 0.08 φ(19b) 

1452 0.09 0.06 φ(19a) 

1507 0.11 0.06 νas(NO2) 

1598 0.20 0.08 φ(8a) 
a ν=stretching, δ =in-plane deformation, γ=out-of-plane deformation, φ=vibrations of 

benzene; nomenclature according to G. Varsanyi [30] . 

 
 

The doublet 1313/1332 cm-1 band, that is characteristic of pNa in solution and assigned 

predominately to symmetric NO2 stretch, is unexpectedly the strongest band in pNa nanofibre 

Raman spectra. For pNa in solution, the relative intensities of the doublet varies with the solvent 

polarity. Interestingly, the observed ratio in the pNa nanofibres is similar to that of pNa in 

acetonitrile (a highly polar solvent), indicating that pNA molecules inside the PMMA matrix find 

themselves in a polar environment.  This might indicate the presence of a residual electric field 

from the electro-spinning process that was frozen into the nanofibres as they solidified during the 
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flight from the needle to the collecting drum. There is also a noticeable enhancement in intensity 

of the of pNa nanofibre Raman peaks at 860 cm-1 which corresponds  to NO2  in plane deformation 

(“scissors”);  at 1109 cm-1 corresponding  to a phenyl-NO2 stretch; and at 1598 cm-1 belonging to 

a phenyl ring stretching mode. 

 

Figure 6.  Raman spectra of a bulk sample of polycrystalline pNa, a pNa-PMMA nanofibre and a pure 

PMMA nanofibre (without pNa) between 600 cm-1 and 1700 cm-1. The two spectra containing pNa were 

normalized to have the same maximum peak height, while the PMMA nanofibre spectrum is reported using 

the same scale as the pNa-PMMA nanofibre spectrum.    

 

The Raman spectra of un-doped PMMA nanofibres is strongly polarized as shown in figure 7. The polymer 

chains are found to preferentially align along the nanofibre direction. The peak at 810 cm-1 corresponds to 

the stretching mode of the ν(C-O-C) bond; its intensity decreases for crossed polarization, indicating an 

alignment of the PMMA scaffold and consequently an anisotropic environment for the embedded pNA 

molecules.  This may explain why the doublet intensity ratio observed for pNa-PMMA nanofibres is similar 

to that of pNa in a polar solvent.  
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Figure 7. Raman spectra of PMMA nanofibres obtained with polarization configuration V-V and V-H. 

3.2 Second harmonic polarimetry 

The polarization properties of the second harmonic light was studied to assess the degree of orientational 

order of the pNa molecules embedded within the nanofibres, using the experimental set-up of figure 1. 

Whereas the polarization of the incident field varies continuously, the SHG field is collected in the so-

called q-p and q-s configurations, i.e. with the analyser parallel and perpendicular to the longitudinal axis 

of the fibre respectively. A strong signal SHG resulted when the polarization of the incident fundamental 

light and the analyser were both aligned parallel to the selected fibre. 

The SHG response of the pNa-PMMA nanofibres shows a quadratic dependence as a function of the 

incident power (figure 8) as expected for a second order nonlinear effect. The r-squared coefficient for the 

quadratic fit is 0.998. 
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Figure 8. The SHG response of the pNa-PMMA nanofibres using a deposition rate of 0.05 mL/h as a 

function of the average incident power of the fundamental beam (repetition rate of 76 MHz). 

The polarimetry curves display a polarization dependence that is characteristic of a SHG response 

dominated by a single diagonal second-order susceptibility tensor element, figure 9.  

 

Figure 9.  Polar plot of the SHG polarimetry data of pNa-PMMA nanofibres produced using a deposition 

rate of 0.05 mL/h. 
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When the polarization direction of the incident field is continuously varied, the intensity of the SHG field 

decreases and reaches a minimum at 90◦. This minimum can be a function of the orientation, micro-strain 

and/or size homogeneity of the nanocrystals inside the nanofibres [34]. The very good alignment of the 

nanocrystals leads to a nearly vanishing SHG field at cross polarization. The maximum intensity of the 

SHG radiation for the different deposition rates represented in Figure 10 was normalized to the same value 

in order to explore the variation with the deposition rate of the minimum intensity (at crossed polarization) 

of the SHG (inset). The lowest cross-polarization intensity corresponds to the 0.05 mL/h deposition rate, 

consistent with the X-Ray diffraction data. This is the deposition rate that  leads to a narrower diffraction 

peak indicating larger crystals or less micro-strain and consequently a slightly better degree of preferential 

alignment of the pNa crystals.  

 

Figure 10. Polar plots of the normalized q-p SHG polarimetry data of PMMA nanofibres doped with pNa 

for the 3 different deposition rates. The close resemblance to a cosine squared polarization dependence is 

indicative of well-oriented SH generators. (Inset) Variation of the minimum of SHG field near the position 

of crossed polarizer and analyser. 

In figure 11 the second harmonic response of a pNa embedded PMMA nanofiber mat taken at two 

different times separated by interval of one year is shown. Roughly 80% of the original response 

has been maintained. 
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Figure 11. Polar plots of the integrated SHG polarimetry data of PMMA nanofibres doped with pNa  

produced at a deposition rate of 0.05mL/h. The two polarimetry curves were taken at an interval of one 

year. 

 

3.3 Effective nonlinear optical coefficient 

In this section, we explore two potential explanations for observed second harmonic signal from the pNa 

nanofibres. One possibility is that the signal is due to the surface polarization of the pNa nanocrystals 

embedded within the nanofibres. We focus our attention on the nanofibres deposited at speed of 0.05 mL/h, 

which have the strongest observed SHG response. The SHG signal generated by a 4 mm thick potassium 

dihydrogen phosphate (KDP) crystal under the same excitation and detection conditions is used to calibrate 

the overall detection efficiency of our system.  

The incident fundamental light consisted of pulses with and energy of approximately 0.2 nJ, a FWHM 

duration of 100 fs and a  
21 e  diameter of 0.8 mm. A 50 mm focal length plano-convex lens focused the 

fundamental beam onto the fibre or KDP crystal. We estimate that the diameter of the focused fundamental 

beam is roughly 65 m within the nanofibre or crystal with a corresponding confocal length,

2

1 / 4 1.2b k D cm=  . Here 
1k  is the magnitude of the wave vector for the fundamental beam in the 

medium, while D is the 1/e2 diameter at the focus. The expression for the SHG light intensity from a bulk 
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crystal can be obtained from the solution of the nonlinear wave equation. When the confocal length of the 

incident fundamental beam is much greater than the crystal thickness the second harmonic power, 
2

KDP

 , 

generated by the crystal is well described by solution obtained using the plane wave approximation [35,36]:   

 

2 2
2

2 2

2 2 3

0 1 2

2
sinc

2

KDP

eff

L kL
d

n n c
 





 
 =   

 
  (2) 

Here 
1 22k k k = −  is the wave vector mismatch between the fundamental beam (

1k ) and the second 

harmonic beam (
2k ) within the medium,  is area of the focused beam waist and 

effd  is the effective 

nonlinear coefficient. For type I phase matching in KDP at the fundamental wavelength of 800nm, the 

appropriate second order coefficient is
36sin( )eff pmd d= , where the phase matching angle is 44.9ºpm =  

and 
1

36 0.39 Vd pm −=  [36].  

The birefringence of the KDP crystal, imparts a spatial walk-off angle between the wave-vector propagation 

and the direction of energy flow of the second harmonic beam that propagates as an extraordinary ray. In 

KDP at the phase matching orientation for 800nm incident light, this walk-off angle is 29.5 mrads [37]. 

Furthermore, the dispersion of KDP creates a group velocity mismatch of approximately 80 fs/mm [37] 

between the fundamental and second harmonic beams leading to a further temporal walk-off effect. Wang 

and Weiner [38] have developed a theoretical expression for the reduction in SHG efficiency in the presence 

of simultaneous spatial and temporal walk-off while taking into account the diffraction effects associated 

with Gaussian beam propagation. Using their expression we estimate that under our conditions these 

combined effects will reduce the SHG  efficiency by roughly a factor of 3 from that predicted by the 

continuous plane-wave approximation implicit in equation (2) .  

We couple the second harmonic light generated by the crystal or the nanofibre to the 0.3 m imaging 

spectrograph (Andor Shamrock SR-303i) via a multimode optical fibre bundle by employing a 100× infinity 

corrected long working length microscope objective from Mitutoyo (Plan Apo). This objective has a 

numerical aperture of 0.7 and an effective focal length of 2 mm both large enough to fully collect the second 

harmonic light generated by the crystal.  

On other hand, following the calculations of Brevet [39] the SHG power arising from a single surface of a 

pNa crystal is given by, 

 
2

2
(2 ) 2

2 2 3

0 1 2

1

2

pNa s

n n c
 





 =      (3) 

Here 
( )2s

  is the quadratic response of pNa nanocrystal’s surface polarization and we have ignored small 

correction factors related to the Fresnel reflection and transmission coefficients. The ratio of second 
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harmonic signals experimentally measured using our set-up for KDP and the pNa nanofibres is roughly

2 2150KDP pNaP P  . Comparing equations (2) and (3)  and ignoring the possibly different refractive index 

contributions, while including the factor of 3 reduction due to the spatial and temporal walk-off in the KDP 

crystal, we can estimate the effective surface quadratic response under the assumption that the observed 

pNa nanofibre SHG signal is due to a single pNa nanocrystal via the expression,  

 
(2 ) 17 22

2

5.2 10 /
3

pNa
s KDP

eff KDP
d L x m V



 −=   . (4) 

 Here we have taken into account that a single crystal has two surfaces that will contribute coherently to the 

second harmonic electric field, leading to a multiplicative factor of four in right hand side of equation (3). 

Malagoli and Munn [19] predict that the dominant quadratic surface susceptibility tensor element for a pNa 

surface oriented along the (202) direction is (2 ) 22 21.93 10 /s

yyy x m V −=  , more than five orders of magnitude 

lower than the above estimate.  This would seem to rule out surface SHG alone as a possible explanation 

for the observed SHG signal.  

A possible alternative mechanism is that the strong electric fields applied during the electrospinning process 

manage to align a significant number of individual pNa molecules during the ejection process and this 

orientation is frozen into the nanofibres during the rapid solidification that occurs as the fibres travel from 

the needle to the collection drum. This possibility is consistent with the Raman spectra that indicate the 

majority of pNa molecules present spectra consistent with that of molecules with find themselves in a liquid 

state dispersed within a polar environment. In many ways this process might be viewed as an accelerated 

form of electric field poling. This would then allow one to make use of the high molecular polarizability of 

individual pNa molecules.  

Assuming, for the sake of argument, that all the embedded pNa molecules were appropriately aligned by 

the applied electric field, the order of magnitude of the resultant second order susceptibility can be easily 

estimated through the relation,  

 ( ) ( ) ( ) ( )(2) 2

0 , 2 ; , 2 2 ; ,pNa eff f f N          − = −   (5) 

Here N  is the number density of pNa molecules, while   is the average value of first molecular 

hyperpolarizability. The quantities ( )2f   and ( )f  represent the local field factors due to the presence 

of the surrounding PMMA matrix. Within the Lorentz approximation these factors can be estimated 

according to the relation  

 ( ) ( )2 / 3f  = +   (6) 
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Together they result in an overall increase by a factor of 1.24 as estimated using the tabulated refractive 

indices of PMMA at the fundamental (1.484) and second harmonic (1.502) wavelengths.  In this case the 

second harmonic generation mimics that of a crystalline material with the effective nonlinear coefficient 

effd  in equation (2) replaced by ( ) ( )2

02 /f f N    . Assuming that the density of pNa molecules in 

the nanofibres is approximately that of pNa in the crystalline phase (6.3x1027 m-3)  and disregarding the 

possible differences in the refractive indices, we can estimate the value of the mean molecular 

hyperpolarizability that would be required to generate the magnitude of SHG signals we observe,  

 
( ) ( )

0 2

2

22 3

pNa
pNa KDPKDP

eff effKDP

pNa pNa

L
d

f f N t








 

 
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 
  (4) 

Where t  is the thickness of a typical pNa nanofibre, roughly 800 nm and we have taken into account the 

reduction in SHG efficiency of the KDP crystal by a factor of 3 due to spatial and temporal beam walk-off. 

Substituting the appropriate values into the above equation, we find that
50 3 27 10 /pNa

eff x Cm V − . 

Huyskens et al. [40] have measured the average first hyperpolarizability of pNa in a variety of solvents. 

From their extensive list, the solvent that is chemically most similar to PMMA is methyl acetate, for which 

they measure a value of  
50 3 29.5 10 /x Cm V−

 at an incident wavelength of 1064nm when corrected for the 

most recent value based on second harmonic generation in quartz [41]. This agrees with the above order of 

magnitude estimate, suggesting that a large fraction of the second order optical response of the individual 

pNa molecules was translated into a macroscopic response of the doped electro-spun polymeric fibres.   

The equivalent effective second order susceptibility can be estimated as
( )2

65 /eff pm V  , roughly the same 

magnitude as was reported by Miyazaki et al.[42] for guest-host mixtures of pNa and poly(  - 

caprolactone). However, our electro-spinning method has the added advantage of producing fibres with a 

well-defined alignment and good optical quality leading to a coherent and strongly polarized response.  

4. Conclusions 

In this study, we have shown it is possible to obtain a strong macroscopic second harmonic response from 

pNa molecules embedded in PMMA electro-spun fibres with sub-micron diameters. Low deposition rates 

favour stronger SHG responses. The size of the effect indicates that it is not simply a result of symmetry 

breaking at the pNa-polymer surfaces, but  rather suggest that a non-centrosymmetric arrangement has been 

induced, possibly as the result of strong hydrogen bonds between the pNa molecules and the polymeric 

host. We speculate that the high electric fields experienced during extrusion in the electro-spinning process, 

coupled to the unusually large ground state pNa electric dipole moment of nearly 7 Debye may lead to 

highly aligned molecular structures that are subsequently frozen into the 1D nanostructure by the rapid 
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solidification that occurs. This would in essence, amount to a highly accelerated version of electric field 

poling commonly done to align organic molecules with strong nonlinear responses in polymer substrates. 

However contrary to normal electric field poling, the electro-spun fibres retain their ability to generate 

significant second harmonic light over timescales extending to one year.  

The electro-spinning should be extendable to other organic molecules with large dipole moments and strong 

second order nonlinear optical responses. Given the large number of NLO active organic compounds that 

crystallize in centrosymmetric structures; this technique has the potential to open up a new pathway to 

fabricate sub-wavelength photonic materials with large second order nonlinear optical responses. 

5. Acknowledgements  

Hugo Gonçalves thanks the Portuguese Foundation for Science and Technology (FCT) for the support 

under grant PD/BD/111873/2015. The equipment used to characterize the second harmonic response of the 

electro-spun fibres was acquired within the framework of the Portuguese National Program for Scientific 

Re-equipment, contract REEQ-25/FIS/2005 with funds from POCI 2010 (FEDER) and FCT. The Raman 

microscope was acquired through the project nSTeP Nanostructured Systems for Tailored Performance, 

NORTE-07-0124-FEDER-000039, ON.2. This work was in part developed in the scope of the projects 

CICECO − Aveiro Institute of Materials (UID/CTM/50011/2013), financed by national funds through the 
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 The influence of nanocrystal size on optical second harmonic generation by para-

nitroanaline embedded in electro-spun polymeric fibres 
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Abstract 

Poly(methyl methacrylate) electro-spun fibres with embedded nanocrystals of the 

paradigmatic donor–acceptor nonlinear chromophore para-nitroaniline, have been 

recently demonstrated to be efficient generators of second harmonic light. To understand 

the influence of the size and local strain experienced by the embedded para-nitroaniline 

nanocrystals, a Williamson−Hall analysis was carried out on the X-ray diffraction 

intensity. Both the mean crystal size and strain can be tuned by simple changes in the 

deposition parameters of flow rate and applied voltage. The observed second harmonic 

signal is well correlated with the ratio of the fibre diameter to the mean para-Nitroaniline 

crystal size suggesting that surface effects are the main source of the strong nonlinear 

optical response. Adjusting the electro-spinning deposition parameters when producing 

polymeric fibres doped with strong nonlinear organic chromophores with high dipole 

moments has the potential to provide a versatile and efficient method for developing 

second order nonlinear optical materials. 
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Introduction 

At the nanoscale, confinement effects can significantly influence the physical, electrical 

and optical properties of materials. A judicious application of these effects can lead to the 

strategic development of tailored micro/nanostructures to fabricate novel optoelectronic 

devices, or to enhance their performance (Boles 2016; Ni 2016; O’Brian 2016). Organic 

chromophores have attracted attention in the past decades because of their promising 

applications in electronic and photonic devices (Dvornikov 2009; Li 2017; Ostroverkhova 

2016). Arrangements of multiple chromophores in well-defined structures with well-

defined orientations or separations can be tuned to provide specific properties of 

optoelectronic nanocomponents (Duan 2016, Varughese 2014). Even simple variations in 

the ambient conditions present during the formation of nanocrystals can enable a tuning 

of their dimensions and optical responses (Ostroverkhova 2016). 

The para-nitroaniline (pNa) (C6H6N2O2) molecule and its derivatives are model push–

pull charge transfer organic molecules (Shkir 2014).  Due to strong intra-molecular charge 

transfer from the NH2 electron-donor group through the phenyl ring to the electron-

acceptor NO2 group, pNa is one of the simplest organic molecules that allow optical 

second harmonic generation (SHG) (Islam 2011). This and other photo and chemical 

features of pNa have long been the subject of various investigations (Shkir 2014;  

Malagoli 2000; Isakov 2014; Kato 1997; Werner 1992) . However, despite having a large 

effective hyperpolarizability, pNa crystallizes in a centrosymmetric structure where the 

individual molecular dipoles interfere destructively, cancelling the macroscopic second 

order nonlinear optical response (Lalama  1979) . pNa crystalizes in a monoclinic system 

with a space group P21/n and the respective unit cell parameters are a=9.0335(8) Å, 

b=6.9356(5)Å, c=6.8008(6)Å (Shkir 2014). The general tendency of organic push-pull 

molecules to crystallize in centrosymmetric forms has so far limited the extent to which 

they have been employed in opto-electronic applications. 

Our group has been developing strategies to modulate the organization of pNa 

nanocrystals by embedding them inside a 1D polymeric matrix (Isakov 2014) through the 

electro-spinning technique. For example, controlling the mean fibre diameter, imposes 

restrictions the kinetic growth of the organic nanocrystals. Furthermore, since 

nanocrystals have a high surface to volume ratio they are sensitive to the local 

environment in which they form. In the case of pNa embedded in a 1D polymeric matrix 

fabricated via electro-spinning via a strong DC electric field, the cleavage plane with 
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Miller indices (202) predominates as the preferential orientation and is parallel to the 

nanofibre elongation direction (Isakov 2014). This crystalline plane has been reported to 

be an efficient surface for optical second harmonic generation (SHG) (Malagoli 2000).  

Electro-spinning efficiently incorporates pNa molecules into sub-wavelength polymeric 

fibres. This has been proven to be a simple and versatile technique were a number of 

processing parameters can be tuned to influence the resultant morphology and diameter 

of the fibres (Chronakis 2005; Naseri 2016). The viscosity and conductivity of the main 

solution, the molecular weight of the components, and needle diameter are a few 

examples of parameters that determine the final fibre morphology. Additionally, the 

applied voltage, the distance between the needle and collector, the type of collector and 

the flow rate of the solution, as well as ambient temperature and humidity, play important 

roles in governing the physical properties of the fabricated fibres.  

This work investigates the influence of the flow rate and applied voltage on the mean pNa 

crystal size and strain, employing synchrotron X-ray radiation at the synchrotron 

ELETTRA, Italy. Analysing the diffraction line width of the Bragg reflections, the size 

and local strain of the pNa nanocrystals inside the poly(methyl methacrylate) (PMMA) 

fibres are estimated using the Williamson−Hall method (Williamson 1953; Zak 2011). 

Here focus is on the x-ray diffraction peaks at low Bragg angles since they are the most 

sensible to the specimen geometry (Pecharsky 2009). 

 

Experimental details 

 

Several sets of PMMA fibres containing pNa in a 2:1 ratio by weight, were produced by 

electro-spinning employing different flow rates and applied voltages. The pNa with 

99.98% purity was purchased from Sigma Chemical Co. and was dissolved in dimethyl 

formamide (DMF). PMMA with a molecular weight of 120000 was purchased from Alfa 

Aesar, and was dissolved in toluene, producing a precursor solution with a concentration 

of 10 % by weight. The precursor solution for the production of the fibres was stirred 

under ambient conditions for several hours, before deposition by electro-spinning. The 

DMF (C3H7NO, 99.8%) and toluene (C6H5CH3, 99.8%) were purchased from Sigma-

Aldrich and used as received.  
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The precursor solution was loaded into a syringe with a 0.6 mm diameter needle and 

connected to the anode of a high voltage power supply (Spellmann CZE2000). To 

produce well-aligned nanofibre arrays, a high voltage was applied between the needle and 

a grounded drum collector rotating at 100 rpm. The distance between the anode and 

collector was 12 cm. The fibres sets were produced using flow rates of 0.05 mL/h, 0.40 

mL/h and 0.75 mL/h, with a fixed applied DC voltage of 17kV. A dedicated syringe pump 

controlled the flow rate. Another two sets of fibres were produced, fixing the flow rate at 

0.05mL/h, and setting the applied voltage to 14kV and 19kV.  

Images of the resulting fibres were acquired using a Scanning Electron Microscopic 

(SEM) Nova Nano SEM 200, operated at an accelerating voltage of 10 kV. The pNa 

nanocrystallite mean size and local strain were estimated using the synchrotron X-Ray 

diffraction patterns acquired at the Austrian SAXS/WAXS beamline in Elettra, Italy 

employing a wavelength of 1.54 Å. To obtain the intensity patterns, undoped PMMA 

fibres, PMMA/pNa fibres or polycrystalline pNa powder were loaded into a 1.5 mm 

diameter, borosilicate capillary. The corresponding X-Ray diffraction patterns were 

recorded using a Pilatus 100K 2D detector system with a pixel size of 172 µm. 

The SHG efficiency of the PMMA/pNa fibre sets were measured using a polarimetry 

setup based on a mode-locked Ti:Sapphire laser (Coherent, Mira) with a 100fs temporal 

pulse width and a 76 MHz repetition rate. These measurements consisted in illuminating 

the sample at normal incidence with fundamental light whose linear polarization was 

rotated about the incident beam axis, and collecting the SHG response through a 

polarization analyser orientated either along the fibres longitudinal axes (q-p 

configuration) or perpendicularly to the fibres axes (q-s configuration), see figure 1.   

 

 



Chapter 5 
 

105 
 

 
Figure 1 – Polarimetry Setup consisting of a linearly polarized Ti:Sapphire laser beam emitting 

pulses centred at 800nm with a 100 fs temporal width that is focused onto a single nanofibre by a 

5mm focal length lens. The SHG was collected using a 100× microscope objective with a 

numerical aperture of 0.7. The collected signal is registered by a cooled CCD after passing 

through a 0.3m Spectrograph with a 0.20 nm spectral resolution. An achromatic half-wave wave 

plate (WP – λ/2) is used to continuously vary the polarization orientation of the incident field. A 

fixed polarizer (P) and a set of filters (F) selects the SHG component polarized along or 

perpendicular to the longitudinal fibre axis 

 

The SHG emission was collected through an infinity corrected long working distance 

(x100) microscope objective with a numerical aperture of 0.7 (Mitutoyo). A set of filters 

reduces the incident beam intensity and isolates the SHG signal. The resulting spectra 

were recorded by focusing the signal beam onto a multi-mode optical fibre coupled to a 

0.3m spectrograph (Andor, Shamrock) outfitted with a cooled CCD array (Andor, 

Newton DU920P-BVF) 

 

Results and Discussion 

Figure 2 shows a SEM image of several PMMA/pNa fibres. These fibres were deposited 

using an applied accelerating voltage of 17kV and a flow rate of 0.4mL/h. The fibres have 

a homogeneous morphology with sub-micron diameters. The mean diameter of the 

nanofibers tends to decrease as the flow rate is increased, while both higher and lower 

accelerating voltages result in larger diameter fibres with a large size dispersion.  Table 1 

summarizes the data characterising these observations. A statistical comparison between 

the fibre groups was carried out using the parametric method of one-way ANOVA, 

followed by Tukey post hoc test for multi-group comparison. Only the fibres produced at 

a voltage of 17 kV and flow rates of 0.05 and 0.4 mL/h can be labelled as statistically 

distinct at a significance of p<0.05.  
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Figure 2 - SEM microscopy images of PMMA/pNa fibres produced by electro-spinning. The 

different images in the left-hand column were obtained for fibres produced with different flow 

rates, but a constant applied voltage of 17 kV; for those in the right-hand column the flow rate 

was held fixed at 0.05 mL/h and the applied voltage varies. Specific values of the flow rate and 

applied DC voltage are: a) 0.05 mL/h and 17 kV; b) 0.05 mL/h and 14 kV; c) 0.40 mL/h and 17 

kV; d) 0. 05 mL/h and 17 kV; e) 0.75 mL/h and 17 kV; f) 0.05 mL/h and 19 kV. Several 

representative fibre diameters are indicated in the images. 
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Table 1 – Mean PMMA/pNa fibre diameters dfib and the corresponding standard 

deviations quoted as uncertainties as a function of flow rate and the applied voltage. 

 

Applied Voltage of 

17kV 
 Flow rate of 0.05 mL/h 

Flow rate 

(mL/h) 

dfib 

(µm) 
 

Applied Voltage 

(kV) 

dfib 

(µm) 

0.05 0.80 ± 0.1  14 1.42 ± 0.4 

0.40 0.55 ± 0.1  17 0.80± 0.1 

0.75 0.50 ± 0.1  19 1.01 ± 0.3 

 

The Williamson−Hall method was applied using the observed XRD intensity patterns of 

the different PMMA/pNa fibre sets, in order to evaluate how the flow rate and the applied 

voltage influence the mean pNa crystal size and average induced local strain. The X-ray 

profile of pNa powder at low-angles is shown in figure 3 together with the respective 

Miller indices of the main peaks. The 2 c  values for the peaks were obtained by summing 

the pixel intensities at each diffraction angle and subsequently performing a Pseudo-Voigt 

fit to each peak ( I ) according to the expression in equation 1.  
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   (1) 

Various mathematical functions have been investigated and classified according to their 

ability to adequately model Bragg reflections (Pecharsky 2009) . The pseudo-Voigt 

function is obtained from a weighted linear superposition of Lorentz and Gauss functions 

where the parameter um  represents the fractional contribution of the Lorentz function. 

The parameter (A) estimates the amplitude of the diffraction peak above the background, 

I0, while the full width at half maximum of the peak is given by the parameter  . The 

width of a given Bragg peak is typically a convolution of the instrument response with 

the sample dependent width.  

The broadening due to the instrumental response instr  was characterized by collecting 

the diffraction pattern of a standard sample of p-bromo benzoic acid (PBB), yielding 

0.001ºinstr  . This is negligible compared to the widths of observed diffraction peaks 

for the PMMA-pNa fibres. 



108 
 

The powder profile of the pNa powder shown in figure 3 is dominated by an intense peak 

ascribed to the (110) Bragg plane. Due to the symmetry-equivalent planes a split is 

observed in this peak. Figure 3 also displays the diffraction profiles arising from the pNa 

crystals within the electro-spun PMMA fibres. The applied voltage for these cases was 

held constant at 17kV, while the employed flow rates were 0.05, 0.40 and 0.75 mL/h. All 

peaks observed for the pNa doped fibres were significantly broadened in comparison with 

the pNa powder sample, principally due to the small sizes of the embedded pNa crystals. 

Small deviations in angles are also observed, indicating the presence of uniform local 

strain.  Furthermore, the flow rate value influences the relative intensities of the X-Ray 

diffraction patterns of the embedded pNa nanocrystals.  

  

Figure 1- X-Ray diffraction patterns of pNa polycrystalline powder (a) and those of pNa 

embedded in the PMMA fibres. The profiles shown in (b), (c) and (d) correspond to fibres 

produced at an applied voltage of 17kV with flow rates of 0.05, 0.40 and 0.75 mL/h respectively.  

The corresponding Miller indices indicated in (a) are shared by all of the profiles. 
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The average crystal diameter ( D ) and the maximum apparent strain (ε) was estimated 

following the Williamson-Hall (W-H) (Williamson 1953; Zak 2011) method through the 

equation 

 hkl cos( ) 4 s i n( )
K

D


   = +  . (2) 

The Williamson-Hall analysis assumes that the broadening due to size effect and 

inhomogeneous strain are simply additive.  Since they have different angular dependences 

their respective contributions can estimated by plotting the product of cos( )   as a 

function of 4sin( ) , and fitting a straight line to the experimental points. The width of 

each peak, hkl , in radians, was obtained from the Pseudo-Voigt function fits according 

to (eq.1). In equation (2) the constant K , known as the Scherrer is a factor that takes into 

account the crystallite habit and can vary between 0.87 and 1 (Holzwarth 2011). Although 

the differences between the powder pNa XRD pattern and those of the pNa-PMMA fibres 

suggests that the pNa nanocrystals do not grow isotropically within the fibres, for all the 

analyses reported here a value of 0.94K = corresponding to spherical crystals was 

assumed as is common in the literature (Zak 2011). This amounts to making a simplifying 

assumption regarding the overall scaling factor for the mean nanocrystal sizes that has an 

uncertainty of at most 8% given the range of possible Scherrer factors.   

  
Figure 2 – An example of the Pseudo-Voigt fit to the X-ray profile corresponding to fibres 

produced with an applied voltage of 17kV at a flow rate of 0.05 mL/h with typical residues shown. 
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Plots of cos( )   as a function of 4s i n( )   for the three x-ray profiles of figure 3 are 

shown in figure 5. The average internal crystalline strain and mean crystallite size are 

estimated, respectively, from the slope and the intercept of the linear fit to the 

experimental data corresponding to the seven fit diffraction peaks. 

  
Figure 3 - The W-H plots of the pNa embedded in PMMA fibres for the three different flow rates 

employed in the electro-spinning process.  The applied voltage was fixed at 17 kV. 

 

For a flow rate of 0.05mL/h and an applied voltage of 17kV, the mean crystal diameter is 

estimated to be 30.5 ± 0.2 nm with a strain value of 0.016.  As a note of caution one 

should keep in mind that obtaining values of the local strain from the W-H plots is a 

practical empirical approach and indicative of general trends, but lacks a firm theoretical 

basis (Birkholz 2011). The same analysis was applied to the remaining fibre sets at this 

applied voltage and the resulting values for the deduced crystal sizes and micro-strains 

are summarized in figure 6.  
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Figure 4 - The results of the W-H analysis of pNa embedded in electro-spun PMMA fibres as a 

function of the flow rate employed. 

 

High flow rates tend to produce smaller crystals with negative local strain. The strain 

might be an indication of residual stress created by the strong DC electric field used in 

the deposition. To observe the influence of the applied voltage, the same analysis was 

performed for sets of fibres produced using 14kV and 19 kV at a flow rate of 0.05mL/H.  

Figure 7 presents the results of the respective W-H analysis. The highest applied voltage 

resulted in significantly smaller pNa crystals. The SEM images (see results summarized 

in table 1) show that the mean diameter as well as the width of the diameter distribution 

(indicated by the standard deviation) for these two fibre sets produced at 14kV and 19kV 

are larger than the corresponding values for the fibres produced at 17kV.  
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Figure 5 - The W-H analysis of pNa –PMMA for different applied voltages keeping the flow rate 

constant at 0.05mL/h. 

  

Either higher flow rates or a large applied voltage lead to significantly smaller mean pNa 

crystal sizes. We hypothesize that both high flow rates and elevated applied voltages, 

which provoke higher ejection rates, induce a more rapid solidification of the polymeric 

jets, reducing the time for nanocrystal growth.  The Williamson-Hall analysis indicates 

that this affects the size of pNa nanocrystals as well as their internal strain. The results 

presented in figure 6 indicate that for a fixed applied voltage, the sign of the local strain 

is opposite for the smaller and larger nanocrystals.  This could be connected with an 

increase in the surface to volume ratio, leading to an increased interaction with the 

surrounding matrix. Additionally, the strain can correspond to a combination of radial, 

axial and shear deformations and the relative weights may vary with the applied voltage 

which creates a longitudinal electric field along the polymer jet as it initially forms. 

Overall the estimated effective strain values are relatively high. A possible explanation is 

that the polymeric solution jet suffers severe torsion and stretching as it forms the Taylor 

cone. The strain could induce a deformation in the centrosymmetric structure of the 

nanocrystals, one possible source for the intense macroscopic second harmonic 

generation (SHG) observed in these fibres.  On the other hand, the increase of the surface 

to volume ratio leads, as well, to a SHG high efficiency, as shown below. 

Our group has previously reported the efficient second harmonic generation by the pNa 

nanocrystals inside polymeric nanofibres (Isakov 2014). In this study, the SHG was 

measured using a polarimetry setup represented in figure 1, an example of which is shown 
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in Figure 8. Typically, the standard deviation of the maximum SHG signal is around 10%. 

Figure 9 displays the relation between the nanocrystals size, the local strain, the ratio of 

the nanofibre diameter to the nanocrystal size and the relative SHG intensity. 

 
Figure 8 – SHG polarimetry carried out for set of fibres fabricated with a flow rate of 0.05 mL/h 

and an applied voltage of 14 kV. The q-s and q-p curves correspond to the polarization analyser 

being oriented perpendicular or parallel to the fibre’s longitudinal axis, respectively.  

 
 

 
Figure 6 – The variation of the key characteristics of the pNa crystals embedded in PMMA fibres 

as a function of flow rate and applied voltage. The first column corresponds to fibres produced 

with an applied voltage of 17 kV, while in the second column the flow rate was 0.05 mL/h. The 

observed SHG intensity is higher for larger ratios of the fibre diameter to the mean pNa 

crystal size. The strains tend to be positive for larger nanocrystals and negative for smaller 

nanocrystals. 
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Carrying out a cross-correlation analysis on the different samples, the only parameter to 

which the SHG signal is statistically correlated is the ratio of the fibre diameter to the 

mean pNa crystal size with a p value of 0.014. This suggests that the strong SHG observed 

in these PMMA/pNa fibres is primarily a surface phenomenon. Given the 2:1 weight ratio 

used to prepare the precursor solutions, based on the relative densities of PMMA to pNa, 

we expect that on average, the volume fraction of the solidified fibre occupied by pNa 

nanocrystals is approximately 0.30.  The total volume of the pNa nanocrystals 

encountered by the incident fundamental laser beam should scale as the square of the fibre 

diameter and should be independent of the mean pNa crystal diameter.   

In Figure 10 we plot the variation of the observed second harmonic signal as a function 

of the mean fibre diameter to mean pNa crystal diameter. If the mechanism were simply 

due to the breaking of the pNa centrosymmetric crystalline structure at the pNa polymer 

interface, one would expect that the second harmonic signal would scale as the square of 

the fibre to pNa crystal diameters for a narrow size distribution of pNa nanocrystals of 

uniform shape. This assumes each individual nanocrystal contributes coherently to the 

SHG signal.  The coherent superposition of SHG signals would be expected despite 

probable phase-mismatches, since the fibre thickness are at most only a few wavelengths 

of the incident light. However, the best fit to a power law, ( )/
n

fibre pNaSHG D d , yields 

an exponent of 3.6 rather than a quadratic dependence, although there is a fair amount of 

uncertainty in this exponent as the 95% confidence interval is  2.0,5.2n . A higher than 

quadratic dependence might be an indication of a fractal nature for the pNa - polymer 

interfaces.  
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Figure 10: Variation of the measured second harmonic signal in function of the ratio between the 

mean fibre diameter to pNa crystal size ratio. The best nonlinear least weighted least squares 

power law fit to the data yields an exponent of 3.6 with a 95% confidence interval of [2.0, 5.2]. 

 

We note that the estimated response due to a simple symmetry breaking at the 

pNa/PMMA based on the theoretical work of Malagoli and Munn (Malagoli 2000) for 

the quadratic surface susceptibility of a bulk pNa crystal is not sufficient to explain the 

magnitude of the observed SHG response. Our estimates, described in detail our previous 

publication (Gonçalves 2018), indicated that the observed response of the fibre produced 

at a flow rate of 0.05mL/h with an applied voltage of 17 kV are roughly five orders of 

magnitude greater than the signal that can be expected from two pNa crystal surfaces 

summed coherently. The coherent superposition of the signal arising from N  surface 

scales in intensity as 
2N , but even accounting for the approximately 30 crystals that 

would be encountered, on average, within the fibre diameter, there still remains more than 

two orders of magnitude for which to account. One possibility is that the surrounding 

polymeric matrix might have a stronger influence on the structure of the organic crystals 

when they are smaller in size and that the size distribution of the pNa nanocrystals is 

highly skewed towards smaller sizes. Furthermore, even though, the overall strain 

estimated from the Williamson-Hall analysis is not well correlated with the observed 

SHG response, this does not entirely rule out a possible contribution of strain associated 

with a specific deformation, be it axial, radial or shear. The above Williamson-Hall 
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analysis can only give a sense of the magnitude of the global strain, not the contributions 

of the individual types that maybe are more or less effective in promoting a strong second 

harmonic response. 

 

Conclusion  

 

Detailed in-situ characterization of the morphology associated with confinement effects 

of nanoscale materials can provide crucial information regarding the strength of their 

response and their potential to be optimized for specific applications. In this study, 

PMMA-pNa nanofibres were produced by the electro-spinning technique and 

characterized by wide-angle X-Ray scattering at the Elettra synchrotron. The obtained X-

ray diffraction patterns suggest that the pNa structure of the nanocrystals inside a PMMA 

matrix is nearly identical to the bulk centrosymmetric structure. The line broadening 

observed for the resulting nanocrystals was primarily due to the small crystallite size with 

a lesser contribution played by the average local strain. This broadening was analysed by 

the W-H method and the respective size-strain plot. From the results, we conclude that 

the mean pNa crystal size is lower at higher flow rates and higher applied voltages. The 

measured SHG scales with the ratio of the mean fibre diameter to nanocrystal size with a 

higher than quadratic dependence. While the exact physical origin of the strong SHG 

response of the electro-spun pNa/PMMA fibres remains to be established, this 

dependence strongly suggests that surface interactions between the pNa and the polymer 

host play an important role Our results suggest that the electro-spinning process is an 

effective means of producing a large number of pNa surfaces within a small volume, 

leading to a strong effective second harmonic response that is able to compete with the 

best non-organic nonlinear crystals when normalized for thickness. These electro-spun 

pNa/PMMA fibres are potentially attractive alternatives for applications in which it is 

advantageous to generate macroscopic second harmonic signals from micron thick 

materials, such as in the characterization of ultrafast laser pulses. 
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Abstract: Intense well-polarized second harmonic light was generated by para-

Nitroaniline self-assembled thin films in different polymeric host matrices. The 

large area films of the organic chromophore with a thickness of a few microns 

were produced using a modified version of capillary growth.  Analysis of the 

generated second harmonic light indicates that the para-Nitroaniline molecules, 

which nominally crystalize in a centrosymmetric space group, were organized 

into non-centrosymmetric structures with an appreciable second order 

susceptibility dominated by a single tensor element. Under the best conditions, 

films effective nonlinear optical susceptibility is slightly greater than that of beta 

barium borate. Generalizing this approach to a broad range of organic molecules 

with strong individual molecular second order nonlinear responses, but which 

ordinarily form centrosymmetric organic crystals, could open a new pathway for 

the fabrication of efficient sub-micron sized second harmonic light generators. 

 
PACS: 42.65.-k Nonlinear optics; 42.65.An Optical susceptibility; 

hyperpolarizability, 42.65.Ky Frequency conversion; harmonic generation; 

42.70.Jk Polymers and organics 

 

Declarations of interest: none 
 

1. Introduction 

Over the past decades, scientists have sought strategies to enhance the nonlinear optical 

response of organic molecules and polymers and to incorporate them into assemblies with high 

optical and thermal stability, as well, as the good optical transparency needed for most practical 

applications[1–6]. More often than not, the large individual molecular first order 

hyperpolarizabilities of the developed organic chromophores are associated with large dipolar 

moments in the ground state leading to strong interactions between the constituent molecules in 

these assemblies and a tendency to assemble in head to tail centrosymmetric structures that 

preclude stable and strong macroscopic second order nonlinear optical responses[7,8].     

The arrangement of the molecular building blocks within supramolecular structures has a marked 

effect on their physical properties[9]. The development of techniques for controlling the spatial 

arrangement of the individual components of a composite material at the nanometre and 



122 
 

micrometre scale is, therefore, crucial to the design and fabrication of advanced electronic, 

optical, and mechanical materials[7,10–12]. para-Nitroaniline (pNa) is an organic chromophore 

with an appreciable molecular hyperpolarizability (β)[13,14], often considered a model for 

organic donor-acceptor systems with strong second order molecular responses[15–17].  However, 

pNa molecules tend to arrange themselves in an antiparallel centrosymmetric fashion in the solid 

state, causing their individual even order molecular non-linearities to cancel, making the bulk 

SHG signal vanish. Various methods to prevent this alignment have been proposed, including the 

introducing of chiral substituents, aligning the chromophores by a strong externally applied 

electric field or confined within 1D nanostructures and host-guest complexes [18–24].  

Our group has previously reported that electro-spun nanofibers embedded with pNa can be 

efficient generators of second harmonic light [4,21], well beyond what can be expected due to the 

breaking of centrosymmetry at the pNa bulk crystalline surfaces [4]. This implies that the 

electrospinning process is able to somehow break the nominal centrosymmetry of the pNa 

embedded in the polymeric fibers. One possibility is that the strong DC electric field applied to 

eject the jet in the electro-spinning process induces subtle distortions into the pNa nanocrystals, 

or provokes a local polarization of the surrounding polymer which is then frozen into the fiber as 

it rapidly solidifies. To test whether the electric field is an essential stimulus for obtaining strong 

second harmonic responses we explore here growing pNa together with various polymers in a 

confined geometry. We have found that pNa thin films with a high SHG response can be cast 

using a series of linear aliphatic polymers with different molecular weights and with varying 

degrees of crystallinity; from amorphous to semi-crystalline. These films were obtained using a 

variation of capillary growth, by placing a precusrsor polymer pNa solution between the surfaces 

of two closely spaced glass slides. That is instead of restricting the pNa nanocrystals geometries 

by the physical dimensions of the ejected polymer jet in electro-spinning, the self-assembly of 

pNa crystals was restricted to the limited space on the order of a micron between the glass slides.  

We have characterized the SHG response of the resulting thins films. For polymers with sufficient 

length, their inherent flexibility is the key factor determining the organization of the resulting pNa 

thin films. Two distinct co-crystallization mechanisms were observed. Long chain polymers, 

tended to produce largely continuous planar pNa films, whereas shorter polymer chains gave rise 

to dendritic arrangements.  These different assemblies lead to different second harmonic 

responses as well as notable differences in the respective Raman spectra.  

 



Chapter 5 
 

123 

 

2. Experimental Section 

Methods 

Para-Nitroaniline (pNa) was purchased from Sigma Chemical Co and used as received. 

Polystyrene (PS) with a molecular weight (MW 300000) was purchased from Alfa Aesar. Both 

Poly(hexano-6-lactone) (PCL) with (MW 80000) and Poly(methyl methacrylate) (PMMA) with 

medium (MW 120000)  and low (MW 15000) molecular weights were acquired from Sigma 

Chemical Co. The polymeric raw materials were dissolved in toluene (C6H5CH3, 99.8%), 

purchased from Sigma-Aldrich. The prepared solution was stirred for several hours under ambient 

conditions. pNa in powder form was subsequently added to the polymeric solution, in a ratio of 

2:1 polymer to pNa by weight, together with a few drops of acetone to aid solvation. The 

respective polymeric solutions with a concentration 10 wt% were deposited on glass microscope 

slides. The deposited solutions were covered with thin glass coverslips. The growth of the films 

was a slow process, occurring over several days.  

 

Thin film fabrication 

The thin films studied are quasi two-dimensional systems, with a thickness slightly 

greater than one micron, produced under ambient conditions at a constant temperature. In this 

approach the growth of the pNa films were geometrically restricted to the narrow gap between 

the two glass slides, similar to the capillarity growth process reported in the literature[25,26], see 

figure 1.  

 

 

Figure  1 – The method used to obtain the two-dimensional pNa-polymeric thin films.  
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The resulting pNa/polymeric thin films become visible to the naked eye after a few days. 

However, they continuously grow as long as some residual mobility in the polymeric matrix 

exists, that is until complete evaporation of the toluene. The resultant morphologies depend on 

the respective host matrix; different polymeric matrices lead to distinct pNa nanostructures. 

 

Figure 2 – Several representative pNa thin films obtained using different polymeric matrices:  a) a 

PS matrix, b) low molecular weight PMMA, c) medium molecular weight PMMA and d) PCL matrix. 

The images were taken using a microscope equipped with a combination polarizer/analyser under 

incoherent white light illumination.  

 

In Figure 2 several differences are visible between the thin films. The PS matrix leads to 

a considerable number of forms with relatively large elongated sizes the majority of which have 

at least one sharp edge.  By contrast, PCL, with a tendency to form a semi-crystalline matrix, 

leads a small number of elongated rectangular shaped pNa structures with relatively sharp edges.  

The pNa structures obtained in PMMA matrices vary with the PMMA mean molecular weight. 
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For low molecular weight PMMA, conical and needle-like forms arise, whereas medium 

molecular weight PMMA leads to layered pNa films with a mixture of sharp and jagged edges.  

3. Experimental characterization  

AFM Measurements 

AFM imaging was performed under ambient conditions in air with a Nanosurf FlexAFM 

(Paralab SA, Portugal) instrument with a 100×100 µm2 head. The measurements were carried out 

in tapping mode employing a Tap190Al-G from BudgetSensors, with a resonance frequency 

∼190 kHz and a force constant of 48 N/m.  

 

 

Figure 3 – AFM topography of the surface of films presented in Figure 2 and the respective 

thicknesses. In a) PS matrix, b) low molecular weight PMMA, c) medium molecular weight PMMA 

and d) PCL matrix. The samples were partially destroyed during separation of the glass slides 

necessary to perform the measurement. The measurements were performed at the edge of the thin 

film structures. In the cases of the low and medium weight PMMA matrices, the specific location 

is marked with a red square in Figure 2b and 2c. 

 

 
The AFM images show evidence of a compact packing of the self-assembled pNa films which 

depends on the polymer host. Films grown in the presence of long chain polymeric matrices tend 

to have sharp-edges, sometimes assuming a layered structure, with smooth planar surfaces of sub-

micron height. There are no noticeable ruptures, folds or fissures. On the other hand, films grown 

in the presence of small chain polymeric matrices give rise to textured granular surfaces, ordered 

in conical shapes and needles with no apparent order or growth orientation.  
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Wide-angle X-ray scattering 

Taking advantage of the micro-focus wide-angle x-ray scattering beam line 

(MiNaXS)[27] at PETRA III at DESY in Hamburg, Germany the crystallographic orientation of 

the pNa thin films were investigated. The micro beam with a 13.43 keV of energy at the P03 end 

station, focused down to a size of 1×1μm  was employed. The corresponding X-Ray diffraction 

patterns were recorded using a Pilatus 1K detector system with a pixel size of 172 µm. As might 

be expected from the above polarizing microscope images, the micro focused X-Ray scattering 

measurements reveal that the pNa films grown in PMMA with low molecular weight do not have 

a preferential crystal orientation.  

Figure 4 – X-Ray diffractograms of the thin films presented in Figure  2. The red arrow represents 

the Q vector normal to the diffracting planes. (a) pNa/PS matrix, (b) pNa/low molecular weight 

PMMA, (c) pNa/medium molecular weight PMMA and (d) pNa/PCL matrix.  
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However, the thin films obtained in the host matrices of PS, PMMA (medium molecular weight) 

and PCL produce fewer peaks, raising the possibility of preferential orientation of the pNa 

crystals. The strongest peak observed for the pNa crystals grown in the presence of PS has Miller 

indices of [1 1 -1] with weaker peaks at [0 1 1] and [1 1 1]. PMMA medium molecular weight 

polymers encouraged growth that gave rise to an intense peak with Miller indices of [4  0  4], 

while the PCL matrix produced a film with the strongest reflection indexed as [1 3 0] and a much 

weaker [2 1 -4]  reflection , see Table 1. In contrast, the films obtained using the PMMA matrix 

with lower molecular weight produced a number of diffraction peaks indicating the presence of 

multiple orientations. This is consistent with the AFM topography of its surface suggesting a 

random agglomeration of pNa nanocrystals. We note that for all of our samples it is very likely 

that several prominent lower angle diffraction peaks are obscured by the strong background 

diffraction rings produced by the polymer and glass supports.  

Table 1 – Identified x-ray diffraction angles of the pNa crystals in the respective polymeric 

matrices and the respective theoretical values based on the structure of [28].  

Structure Miller Indices Observed 

2  (degrees) 

Theoretical 

2  

(degrees) 

pNa/PS [011] 

 [11-1] 

[111] 

10.69 

11.45 

11.53 

10.68 

11.44 

11.56 

pNA/PMMA [404] 30.67 30.70 

pNa/PCL [130] 

[21-4] 

26.63 

27.47 

26.69 

27.54 

 

Raman analyses 

A high-resolution Raman spectrometer, Horiba LabRAM HR Evolution confocal 

microscope using a laser excitation at 532 nm (2.33 eV), was employed to characterize the bulk 

molecular order and orientation of the pNa in all the different thin films. A 100x objective lens 

was used to focus the laser onto the sample. Polarized Raman spectra were obtained at room 

temperature between 600-1800cm-1 corresponding to the internal molecular vibrations. The 

Raman spectrum of pNa is sensitive to its physical phase state[29–31]. The most salient feature 

of crystalline pNa’s Raman spectra is a broad intense peak at 1282 cm−1. In Figure 5, the Raman 

bands of the films displayed in figure 2b) and 2c) present three prominent lines at 862 cm-1, 1282 

cm-1 and 1316 cm-1 all of which can be assigned to the Raman spectrum of pNa in its crystalline 

form. On the other hand, the Raman bands of the films displayed in 2a) and 2d) are dominated by 
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two lines at 862 cm-1 and 1276 cm-1 with a substantial red shift (≈ 6 cm-1) in relation to the other 

films and the bulk crystalline form. The most striking feature of Figure 5 is the absence of the 

Raman band cantered at 1316 cm-1 and a red shift of ≈ 6 cm-1 and a broadening of ≈ 5 cm-1 in the 

band 1282 cm-1 in the spectra corresponding to films grown in PS and PCL hosts. 

The peaks centered at 1282 cm-1 is attributed to a Fermi resonance between a symmetric benzene 

ring vibrations and a combination line from a lower frequency symmetric ring vibration and the 

torsion motion of the amine group [30]. The strength of this resonance is sensitive to the 

localization of the   electrons. In the crystalline state, strong hydrogen bonding promotes an 

increase of the electron density around the C-N bonds with the amine and nitro groups, leading 

to a pseudo-quinoidal configuration enhancing the intensity of the 3  Raman band. In contrast 

in non-polar liquids, the   electron cloud assumes a largely aromatic distribution and the Raman 

peak near 1280 cm-1 is reduced in intensity.  Harrand has shown [30] that for crystalline pNa this 

intense band shifts and narrows with increasing temperature moving from 1276.8 cm-1 at 30 K to 

1284.4 cm-1 at 300 K, reflecting a blue shift with an increase in the intermolecular distances. This 

suggests that the red shift of the 1280 cm-1 band observed for the pNa/PS and pNa/PCL systems 

might be associated with smaller intermolecular distances and consequently slightly stronger 

hydrogen bonding.  
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Figure 5 – Raman spectrum of the films represented in Figure 2. A red shift is observed in the 

peak characteristic of the crystalline state at frequency 
11284 cm −=  in the spectra of Figure 

2a) and 2d). 

 

The Raman line near 1316 cm-1 was assigned by Harrand [30] to a bending motion of the CH 

groups, while that at approximately 865 cm-1 is associated with a bending mode of the nitro group.   

Both of these bands are less intense relative to the main 1282 cm-1 line in the pNa/PS and pNa/PCL 

films, while the lower weight PMMA enhances their relative intensity.  We suspect that the 

relative decrease in the 1282cm-1 line observed in the low weight PMMA system indicates a more 

random orientation of the pNa nanocrystals reducing the projection of the mode onto the incident 

laser polarization. We note that this film generates very little if any second harmonic light and 

produces the weakest Raman signal overall. In contrast, the pNa/PS and pNa/PCL films have the 
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strongest Raman response. The Raman bands of the medium weight PMMA thin film, (that of 

figure 2c) represent an intermediate arrangement. There is no shift in the 1282 cm-1 peak, but the 

peak at 1316 cm-1 is reduced in intensity as is the NO2 bending mode at 865 cm-1.  This might 

reflect the better orientational order of the pNa grown in the presence of medium weight PMMA. 

 

 

Polarimetry measurements 

The SHG response of the pNa films was analysed as a function of the polarization 

direction of the incident light. The incident fundamental light (at frequency ω) was provided by a 

femtosecond Ti:Sapphire mode-locked laser (Coherent Mira 900F) pumped by a frequency 

doubled CW Neodymium-laser (Coherent Verdi 5W). The incident light had a 100 femtosecond 

(fs) temporal pulse width and a central wavelength of 800nm. The measurement consists in 

illuminating the pNa films with different polarization orientations and collecting and analysing 

the transmitted SHG field. An achromatic half-wave plate (𝜆⁄2) is placed before a 10× microscope 

objective with a numeric aperture (NA=0.25), in order to continuously vary the polarization 

direction of the incident light (0 – 360o). The SHG field is collected through a microscope 

objective 100× Mitutoyo Plan infinity-corrected long working distance objective (NA=0.7). A set 

of filters were used to reduce the incident beam intensity and select the SHG field with a central 

frequency of 2ω. Before detection the generated second harmonic light was analysed using a 

linear polarizer, fixed to be either parallel to the incident polarization that gave rise to the highest 

SHG signal (q-p configuration) or perpendicular to this polarization (q-s configuration) to the 

incident beam polarization that produced the largest SHG signal. The analysed SHG field was 

recorded by focusing the beam into an optical fiber bundle connected to the entrance of a 0.3meter 

imaging spectrograph (Andor Shamrock SR-303i), with 0.20 nm resolution (see Figure 6). 

 

 

Figure 6 - Polarimetry Setup. The sample is excited by a linearly polarized Ti:Sapphire laser 

beam. The polarization of the incident beam is continuously varied using an achromatic half-wave 

wave plate (WP – λ/2). A 10x objective is used to focus the beam on the sample. The SHG is 

collected via a 100x objective. A set of bandpass filters are used to eliminate the fundamental 
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beam. After passing through a fixed polarization analyser (P) the SHG signal is detected using a 

cooled CCD array coupled to a 0.3 m spectrograph. 

 

 

The polarimetry study of the different pNa films are shown in Figure 7. The stronger responses 

were obtained for the pNa films grown in PS and medium weight PMMA. For these the energy 

per incident pulse was approximately 17 pJ corresponding to a peak power of order 200 W.  The 

film grown with the PCL host required a higher incident energy of roughly 660 pJ, nearly 40 times 

greater. 

Except for the pNa/PCL film, the SHG polarization dependence is dominated by a cosine squared 

type variation indicating the dominance of a single nonlinear dipolar response orientated in the 

thin film plane. Consequently, pNa thin films grown in PS and medium weight PMMA create 

nonlinear mediums where the SHG signal is dominated by a single element of the second order 

susceptibility tensor. However, since the growth orientation are different between them, the 

respective tensor element corresponds to a distinct plane in each film. The clover leaf pattern of 

the signal form the sample grown in the presence of PCL is indicative of a cross-polarization 

dependence, typical of the situation when two elements of the second order susceptibility tensor, 

related by symmetry, have equal magnitudes. The pattern is similar to one that would be generated 

by a crystal with 42m  symmetry such as Potassium diphosphate (KDP). 
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Figure 7 - Polar plots of the SHG intensity of the pNa-polymer films represented in Figure 2.  a) 

displays the SHG polarimetry data of the pNa-PS thin film shown in Figure 2a), acquired using 

an incident beam with an average pulse energy ≈ 17 pJ. b) and c) display the SHG polarimetry 

data for the pNa-medium weight PMMA films obtained at the illuminated spots 1 and 2 

respectively as marked in Figure 2c). The incident beam had average energy per pulse ≈ 17 pJ. d) 

shows the data of the pNA-PCL film displayed in Figure 2d). In this case the SHG signal was 

much lower, requiring a higher average incident energy per pulse of ≈ 660 pJ. 

 

 

Second order response estimates 

To calibrate our SHG polarimetry system we replaced the pNa thin film samples by a 1 mm thick 

beta barium borate (BBO) crystal. For these measurements, the incident fundamental light 

consisted of pulses with an approximate energy of 4 pJ, a FWHM duration of 100 fs and a 21 e

diameter of 6 mm. Using a x10 microscope objective with a numerical aperture of 0.25 to focus 

the fundamental beam onto the BBO crystal, we estimate that the focused fundamental beam 

diameter is roughly 2.2 m within the crystal. Under this tight focusing, it is necessary to take 

into account spatial walk-off of the second harmonic beam due to the crystal birefringence. Wang 

and Weiner have developed a theoretical expression taking into account both spatial walk-off and 

the temporal walk-off effects due to group velocity mismatch between the fundamental and 

second harmonic beams [32].  Assuming an incident beam with transverse spatial and temporal 

profiles well described by Gaussians, their asymptotic expression for the second harmonic 

generation conversion efficiency is given by,  

 ( )12
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BBO BBO
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U t
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Here U  and 2U   are the energies of the incident fundamental and generated second harmonic 

pulses, pt  is the FWHM pulse duration of the fundamental beam, while   is the ratio of the 

crystal thickness L to the incident beam’s confocal length. In our situation 63  indicating a 

very tight focusing limit and allows us to replace ( )1tan −  by its limiting value of / 2 . The 

parameter S Tl −  represents an effective length over which the fundamental and second harmonic 

beams propagate together before separating due to the crystal birefringence or the group velocity 

mismatch. It is given by summing in quadrature the spatial and temporal effects according to the 

expression 
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where   denotes the angle between the ordinary and extraordinary ray’s pointing vectors and   

represents the group velocity mismatch between the fundamental and second harmonic beams. In 

our case these values are 68 mrads  and 194 /fs mm respectively for SHG of 800nm in BBO by 

type I phase matching. The parameter 0  is the 
21 e  radius of the fundamental beam at its focus 

within the BBO crystal.  We estimate that for our case 16S Tl m−   and is dominated by the spatial 

walk-off. Finally,   represents a scaled nonlinear coupling coefficient and is given by,  

 

2 2

3

2 0 0

4 effd

n n c 




 
=   3 

with 2.0 /effd pm V=  the effective second order nonlinear coefficient for SHG  via type I phase 

matching of 800nm light with a BBO crystal, n  and 2n   are the respective refractive indices of 

the two beams (both are equal to 1.660) and 0 800 nm =  is the fundamental wavelength in air. In 

our case 21.7 10 /s Jm −  . Substituting these values into equation (1) we estimate the second 

harmonic efficiency of our system to be 42 10x −  well into the non-depletion regime.  

Momentarily, let us assume that the observed SHG generated by the pNa films arises from the 

symmetry breaking at the surfaces. The SHG power generated by the surfaces can be described 

in terms of an effective surface susceptibility using the approach of Brevet[33]. According to his 

theoretical development, the SHG efficiency arising from a single pNa crystalline surface would 

be given by the following expression, 

 

2
2 (2 )

2 3

2 0 0

42ln 2
s pNa

pNa

p

U

n n c bt




 

 


  

  =   4 

Here, ( )( )2s
  is the effective quadratic surface polarization, while b  is the confocal length of 

the incident fundamental beam (in air) and is approximately equal to 550 m . Small correction 

factors related to the Fresnel reflection and transmission coefficients have been ignored in 

equation 4. Combining the above expressions, we can readily obtain an estimate for the quadratic 

surface susceptibility of the pNa films, 
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  5 

where ( , )

2

BBO pNaS   is the second harmonic signal measured for the BBO crystal or pNa/polymeric 

thin film and is proportional to the energies of the respective second harmonic pulses. We have 
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ignored small factors related to differences in the refractive indices of the BBO crystal and the 

pNa thin films. The respective estimates are reported in Table 2.  

 
Table 2 - Estimates for the effective quadratic surface susceptibility and effective material 

quadratic susceptibility of the pNa/polymeric thin films 

 

Material Thickness, 

L ( m ) 

Incident 

pulse energy, 

U   (pJ) 

SHG 

2S   (au) 

( )2s
  

(nm2/V) 

pNa

effd  

(pm/V) 

BBO 1.0x103 4 1.11x108 _ 2.0 

pNa/PS 1.9 17 1.78x105 2.9 1.5 

pNA/PMMA 

(Spot 1) 
2.7 17 7.06x105 5.8 2.1 

pNA/PMMA 

(Spot 2) 
2.0 17 9.52x105 6.7 3.3 

pNa/PCL 0.9 660 3.23x104 0.03 0.03 

 

Alternatively, if the second harmonic light is generated throughout the thickness of the thin pNa 

crystal one can use the standard plane wave result for estimating the effective quadratic 

susceptibility coefficient, pNa

effd  , 
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Since the propagation of the fundamental light within the thin films is on the order of a few 

wavelengths phase mismatch between the fundamental and second harmonic waves can be safely 

ignored. In addition, neither temporal separation nor spatial separation, due to group velocity 

mismatch and birefringence respectively, are relevant. Combining this relation with equation 1 

we arrive at the following estimate for the effective quadratic susceptibility of the pNa thin films, 
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Again we have ignored small corrections that take into account the difference in the refractive 

indices of the nonlinear media. The above relation is used to estimate the last column of values in 

Table 2.  

Using equation 5 the (2 )s for the pNa films grown with PS (Figure 2a) is roughly

( )2 23 nm /V
s

 , roughly a factor of twenty below that estimated for pNa nanocrystals 
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assembled inside of PMMA polymeric electrospun nanofibers [4]. For the pNa crystals grown 

with medium weight PMMA the values obtained are factors of 2 and 2.3 greater for the two 

different spots measured (se figure 2c).  Finally, the signal from the pNa/PCL films of Figure 2d) 

leads to an estimate which is roughly a factor of 100 lower than the pNa/PS sample. We note 

however that these estimates are for a single surface, whereas it is quite likely the eletrospun fibers 

contain multiple pNa nanocrystals within the area illuminated by the incident fundamental beam. 

In comparison, the quadratic surface susceptibility values estimated theoretically by Malagoli and 

Munn [34] for an isolated surface of a bulk pNa crystal are three orders of magnitude lower than 

the above estimates for the pNa medium weight PMMA system. The highest surface quadratic 

susceptibility tensor element they estimate is ( )2 3 21.416 10 nm /V
s

zzz −= −   for a surface with 

Miller indices of (004). This implies that the large second order nonlinear response of these 

systems must be due to an interaction with the underlying polymeric matrix.  

Alternatively, it is plausible that interactions at the polymer/pNa crystals surface leads to slight 

strains or distortions that break the nominal centrosymmetry of the pNa crystals over a distance 

extending more than a few atomic layers into the crystal. However, given that the thicker 

pNa/PMMA sample produced a slightly lower signal, this symmetry breaking appears not to 

extend throughout the full sample thickness. Nevertheless, the estimates in the last column 

provide an interesting basis for comparison with previous studies. Hwang et al. [35] obtained 

strong second harmonic generation from pNa /PS mixtures that were formed by flash evaporation 

from a toluene solution. When the pNa concentration was 10% by weight they observed a signal 

over 1000 times greater than urea which has a nonlinear coefficient of 36 1.2 /d pm V  [36]. Earlier 

in 1988 Miyazaki et al. [24] observed SHG from a cast benzene solution of a pNa/ PCL (Mw = 

75000) composite that that was 115 times as large as urea when the pNa composition was 20% 

by weight.  Although our observations lead to lower effective second order nonlinear coefficients, 

we note that the previous systems investigated by Hwang et al. and Miyazaki et al. are both highly 

scattering, whereas our pNa/ polymeric films have reasonable optical quality, an advantage for 

many potential applications. Furthermore, the x-ray data suggest that our films are preferentially 

oriented crystals, so that it might be possible to improve the SHG response by optimizing the 

fundamental beam’s angle of incidence. 

In summary, except for the low weight PMMA-pNa films, all of the samples produce second 

harmonic light with good efficiency observable by the naked eye with low energy fundamental 

pulses. The above estimated quadratic surface susceptibilities are all several orders of magnitude 

greater than that expected from an isolated pNa crystalline surface based on the estimates of  

Malagoli and Munn [33]. We note that these authors predict that the dominant contribution from 

the centrosymmetry breaking at the crystal surface rapidly vanish with the main contributions 
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coming from the first two unit cells. We hypothesize that interactions with the polymeric hosts, 

most likely through hydrogen bonding, introduces alteration of the normally centrosymmetric 

head to tail crystalline structure of pNa that persists over multiple molecular layers enhancing the 

second harmonic response relative to that of an isolated crystal.   

 

4. Conclusion  

In this study, we have shown it is possible to obtain a strong macroscopic second 

harmonic response from pNa molecules organized in a layered thin film with good optical quality. 

A modified version of capillary growth was used to obtain various pNa thin films in different host 

polymeric matrices. The thin films here obtained in a confined environment have distinct 

nonlinear optical properties compared to bulk pNa crystals. It was observed that matrix with long 

molecular chains tend to produce lamellar structures which favour SHG while matrices with short 

molecular chains leads to randomly oriented pNa microstructures that do not generate appreciable 

second harmonic light. The strength of the observed SHG signal in these systems, is roughly an 

equivalent to that previously measured in electro- spun pNa-PMMA fibers [4], if one assumes 

that any given ray of the incident fundamental beam will encounter on average 3-5 pNa 

nanocrystals when traversing the fibers. This suggests that rather than the strong dc electric fields 

applied during the electro-spinning process, pNa-polymer interactions are likely to play a major 

role in inducing the strong SHG response. Future efforts will explore whether the response of 

these films can be optimized by varying the relative pNa – polymer concentration or by changing 

the temperature under which the films are formed.  

The fabrication method used here should be extendable to other organic molecules with large 

dipole moments and strong second order nonlinear optical responses that crystalize primarily 

though hydrogen bonding via the donor and acceptor moieties. Given the large number of NLO 

active organic compounds that crystallize in centrosymmetric crystalline structures; this technique 

has the potential to open up a new pathway to fabricate sub-wavelength photonic materials into 

with large second order nonlinear optical responses. The thin films here obtained in a confined 

environment have distinct optical nonlinear properties in relation to that of the ordered bulk 

structure. 
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What has been done 

In this work we have discussed many aspects of the unusual optical nonlinear properties of 

polymeric nanofibers doped with organic pNa. Tuning the electrospinning parameters, such as the 

applied tension and flow rate of the polymeric solution, the size of the self-assembled pNa 

nanocrystals inside of the nanofibre vary with the resultant speed of the jet. In contrast, the resulting 

SHG field shows a tendency to increase as the size of nanocrystals decreases. The size and the 

strain induced during the self-assembling, result from interactions with the matrix and appear to 

induce  at  least a partial breaking of the bulk symmetry. The intense resultant SHG was observed 

and measured using the polarimetry technique. The magnitude of the effective non-linear 

coefficient is higher than the theoretical value reported in literature for a single surface which led 

us to conclude that there are other effects apart from the surface effects. These results made us 

question about the role of the polymeric matrix and of the strong electric field used during the 

electrospinning process. To eliminate the electric field contribution a modified version of the 

traditional capillarity growth method was used to growth pNa structures in confined environment 

and conditions. The shape, non-linear properties and orientational growth of the resultant 

structures were correlated. The shape and measured non-linear properties show differ according 

to  the polymeric matrix used. The resultant SHG intensity in the best cases was observed to be a 

few orders of magnitude greater than that generated by the doped nanofibres. The main results 

and conclusions are summarized in a reprint of three articles in chapter 5. We discussed the 

properties of hybrid nanofibers and the pNa structures, the nano crystals size, the influence of 

surface, bulky strain, polymeric matrix, depositions parameters and growth orientation. 

 

What is still left to do  

The two approaches that we explore and introduce overcome many of the restrictions associated 

with organic non-linear chromophores in optoelectronic applications, but there is still plenty of room 

for improvement. For example, a better exploration of the method used to grow the pNa structures 

could possibly go beyond the results discussed, improving this method to a potentially viable 

commercial process to fabricate optically non-linear custom-made structures. Another aspect that 

has not been addressed was the use of templates and seed nanocrystals to induce a preferential 

growth orientation. Besides the detailed testing of substrate effects we need also to investigate 
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grating effects. One of the limitations of the electrospinning process is the lack of controlled 

deposition. This is something, which in principle can also be controlled within a appropriate 

apparatus, but further investigation on this topic is still needed. In the polymeric structures obtained 

with the two approaches, the limits that the source bandwidth sets on the efficiency of the SHG 

was not yet determined. It would be interesting to measure the SHG bandwidth generated by an 

ultrashort  laser with a few femtoseconds pulse width duration. This could potentially be of use in 

characterizing the temporal profile of ultrashort pulses. In future, properties such as wave guiding, 

lasing, SHG in function of incident frequency and higher harmonic generation can also be explored 

in such materials.  

Another very interesting and exciting strategy is the possibility to use sieves and mixtures of 

chromophores to create layered sandwich like structures. This represents a very nice continuation 

of our approach and will hopefully allow deeper insights into the self-assembly of organic 

nanocrystalline structures for optoelectronic applications. The key to success in any kind of 

fundamental research is to find the unexpected and then explore how the limits of how science 

constrains the new phenomena. Thus, the prediction of future perspectives in any kind of research 

field is inherently risky. Nevertheless because of the highly diverse nature of organic world we can 

assume an exciting future and high activity in this field. For instance there is great potential in 

merging inorganic with organic structures, with plasmonic or biochemical applications motivating 

themes. There are still many other open questions to explore and we are looking forward to new 

challenges and tasks.  
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