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Abstract. The reconstruction of integrated genome-scale models of metabo-
lism and gene expression has been a challenge for a while now. In fact, various
methods that allow integrating reconstructions of Transcriptional Regulatory
Networks, gene expression data or both into Genome-Scale Metabolic Models
have been proposed. Several of these methods are surveyed in this article, which
allowed identifying their strengths and weaknesses concerning the reconstruc-
tion of integrated models for multiple prokaryotic organisms. Additionally, the
main resources of regulatory information were also surveyed, as the existence of
novel sources of regulatory information and gene expression data may con-
tribute for the improvement of methodologies referred herein.
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1 Control of Gene Expression in Prokaryotes

The optimal composition of the proteome in prokaryotes and eukaryotes changes
considerably over time. In prokaryotic organisms, these changes often reflect the cell
response to an ever-changing environment. Hence, the regulation of the gene expres-
sion is pivotal for controlling the optimal cellular composition of the proteome as a
function of the consecutive environmental conditions.

The control of gene expression can occur at several potential stages of regulation
[1]. Nevertheless, this review focuses primarily on the regulation of transcription ini-
tiation, as it likely is the main control stage of gene expression, in prokaryotic cells [2].
In addition, this study emphasizes the control of gene expression associated with the
regulation of the cell metabolism.

Transcription is initiated when the holoenzyme RNA polymerase binds to a specific
region of DNA known as the promoter [2]. Although there are consensus sequences for
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many promoters, these may vary considerably within the genome. As a result, the
binding affinity of RNA polymerase is affected, and consequently the rate at which
transcription is initiated. Due to this control over the initiation of transcription, these
DNA sequences are often classified as strong or weak promoters.

Many of the principles assumed in the regulation of prokaryotic gene expression
are based on the fact that genes are clustered into operons, which are regulated together
[2]. In prokaryotes, genes are placed linearly and sequentially. A single functional
mRNA molecule contains the information for the synthesis of multiple related proteins.
A well-known example is the lac operon [3].

Considering the operons, these primary units of regulation of gene expression often
comprise additional regulatory DNA sequences. The so-called cis-acting elements, also
referred to Transcription Factor Binding Sites (TFBS), which are specific sites where
gene transcription regulatory proteins bind to, directly or indirectly affect the initiation
of transcription [2]. Also known as regulators or transcription factors (TFs), regulatory
proteins are trans-acting elements that either induce or repress the expression of a given
gene. A given regulator might coordinate the regulation of many operons. A network of
operons with a common regulator is so called a regulon [1].

Besides the fundamental biological machinery described above, there are many
other regulatory mechanisms for controlling gene expression in prokaryotes, such as
transcriptional attenuation and gene regulation by recombination [1]. Yet, the scope of
this review only encompasses biological processes that are quantitatively described in
literature, databases and methodological approaches.

2 Regulatory Information Resources

Considering their type, there are two main resources of regulatory information.
A considerable number of databases collect transcriptional data regarding elements of
biological machinery that control gene expression. Valuable information regarding
promoters, TFs, TFBS and operons among other, is often kept in these databases, once
data is retrieved from literature or inferred with comparative genomics tools. On the
other hand, a restricted number of databases centralize most gene expression data
currently available. The development of high-throughput technologies, such as next-
generation sequencing, contributed to the increase in the amount of gene expression
data found in these public repositories.

Depending on the methodology used for reconstructing integrated genome-scale
models of metabolism and gene expression, one may resort to either transcriptional
regulatory data, raw gene expression data or a combination of both.

2.1 Databases of Transcriptional Information

Databases of prokaryotic transcriptional information store valuable information on
regulatory interactions that take place inside the cell. Information contained in these
databases often describes the biological machinery responsible for controlling the gene
expression as a function of changes in the environmental conditions.
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According to their representativity, databases of regulatory information can be
categorized into two groups: organism-specific and non-organism specific. Table S1 of
supplementary file 1 (https://bit.ly/2WonbG0) provides the most relevant databases of
regulatory information grouped by the corresponding scope.

Comprehensive organism-specific databases are only available for model organisms
such as Escherichia. coli and Bacillus subtilis, or well-known bacteria such as
Mycobacterium tuberculosis, Gamma-proteobacteria, Mycobacteria and Cyanobacteria.
These databases are the result of collaborative task forces aimed at collecting regulatory
information on a single organism, which are spread all over literature and other
resources, like databases of gene expression data.

For instance, the Database of Transcriptional Regulation in B. subtilis (DBTBS)
comprises a collection of experimentally validated gene regulatory relations and the
corresponding TFBS of the bacterium genes [4]. Recently, the reconstruction of the
Transcriptional Regulatory Network (TRN) for B. subtilis combined information
available in this database with data of less comprehensive databases and a gene
expression dataset [5]. This work, by Faria et al. [5], also proposed a novel repre-
sentation of fundamental units of function within a cell called Atomic Regulons
(ARs) [6].

Another set of curated regulatory interactions can be obtained for E. coli in the
RegulonDB [7]. The authors present this database as a unified resource for transcrip-
tional regulation in E. coli K-12. In the latest version, an additional effort for incorpo-
rating high-throughput-generated binding data was made, extending the understanding
of gene expression in the model organism. However, non-model organisms’ databases
are less comprehensive. Some of these resources comprise regulatory DNA motifs,
respective TFs and regulatory networks of less described bacteria.

These databases are gold standards of regulatory information for a single
prokaryotic organism. Hence, these should be assessed to infer high-quality TRNs or
integrate regulatory information with Genome-Scale Metabolic (GSM) models. Nev-
ertheless, they may lack regulatory interactions found in recent data.

Non-organism specific databases offer limited information. These resources contain
information for vast phylogenetic clades, including specific elements of the biological
machinery of regulation of gene expression. Comprehensive information, such as the
regulatory interactions between TFs and target genes, can, nevertheless, be obtained
with comparative genomics approaches.

For example, RegPrecise [8] represents at least 14 taxonomic groups of bacteria,
with a collection of transcriptional regulons, determined with comparative genomics
approaches, inferred from high-quality manually-curated transcriptional regulatory
interactions, namely called regulogs [9]. PRODORIC2 is another database that includes
manually curated and unique collection of TFBS for a considerable range of bacteria
[10]. Other databases, shown in Table S1, also provide relevant information regarding
the regulation of gene expression in prokaryotes, such as putative operons, promoters,
TFs and TFBS for multiple species of bacteria. These databases are useful for com-
parative genomics-based approaches towards the reconstruction of TRN.
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2.2 Databases of Gene Expression Data

Up to now, the main sources of gene expression data were based on high-throughput
transcriptomics technologies, namely microarrays [11] and RNA-seq [12, 13]. Whereas
the former contributed for the initial steps of the research in this area, the latter is
responsible for a paradigm shift (see below). Other techniques for measuring gene
expression level, such as ChIP-chip [14], SAGE [15], or ChIP-seq [16] are worth
mentioning as well.

Expression profiling-based techniques such as microarrays [11] and SAGE [15]
allow measuring the level of gene expression and quantifying the amount of mRNA,
respectively. Besides the nature of these possible outputs, genome binding experiments
also provide insights over DNA-protein binding targets [14]. NGS-based technologies
have the advantage of being sensitive while providing whole-genome direct mea-
surements of mRNA without previous knowledge of the genome sequence [12, 13, 16].
These techniques are also able to detect transcription starting sites [17].

Functional genomics data repositories, like GEO [18] and ArrayExpress [19], store
gene expression data for a wide diversity of organisms, including bacteria. Further-
more, both databases respect the Minimum Information About a Microarray Experi-
ment (MIAME) [20] and provide query and browsing tools for analyzing and retrieving
gene expression data. Other databases of gene expression data derived from microarray
and RNA-seq experiments are COLOMBOS [21] and M3D [22]. Both databases
provide comprehensive compendia of bacterial gene expression normalized and
downstream processed data. These databases are of extreme importance for recon-
structing novel TRNs or determining sets of co-expressed genes using de novo reverse
engineering-based approaches. Besides, the mentioned resources of gene expression
data have already been used for reconciling gene expression data with GSM models.

GEO and ArrayExpress were surveyed as these are the major sources of gene
expression data to date. The type and amount of available expression studies, as well as
availability of NGS-based techniques, are summarized in Fig. 1A and B. The distri-
bution of gene expression bacterial data was also retrieved. As shown in the Figure
S1-C and S1-D of the supplementary file 1 (https://bit.ly/2WonbG0), GEO was further
analyzed by collecting the availability of experimental series throughout the years and
determining the most-represented bacterial species, respectively.

This survey shows that most data available in both databases is from expression
profiling and transcription profiling studies, with 82094 (70%) and 8150 (66%)
experimental series for GEO and ArrayExpress, respectively (Fig. 1A and B). In 2012,
NGS-based studies represented approximately 2% of the data available in GEO [23].

Although most expression series are derived from microarray-based studies, 64%
and 77% in GEO and ArrayExpress, respectively, as of February 2019, the proportion
of NGS studies (36% and 23%) has risen significantly. These numbers are aligned with
predictions for high-throughput sequencing techniques [23]. GEO has seen a consistent
increase in publicly available gene expression experimental series since 2012, at a rate
of approximately 11000 series a year (Figure S1 – C of the supplementary file 1
available at https://bit.ly/2WonbG0).
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Analyzing the amount of experimental series for each species revealed that the
proportion of bacterial-associated data is about 8% and 11% in GEO and ArrayExpress,
respectively. As depicted in the Figure S1 – D of the supplementary file 1 (https://bit.ly/
2WonbG0), the most-represented bacterial species in GEO as well as in ArrayExpress
(data not shown) is E. coli. Additionally, we found that Proteobacteria, Firmicutes and
Actinobacteria are extensively represented phyla, including 18 of the 20 most-
represented bacterial species.

3 Methods for Integrating TRN Reconstruction
or Gene Expression Data in GSM Models

As of 2001, several methods have been developed for assisting in the reconstruction and
analysis of integrated genome-scale models of metabolism and gene expression [23–25].
The main theory, type of implementation and major drawbacks associated with these
methods were addressed, to understand how they comply regulatory information with
metabolism. Table S2 of supplementary file 1 (https://bit.ly/2WonbG0) summarizes
their main requirements, implementations and drawbacks.

Contrasting with previous reviews [23–25], this review was extended to include
more methods. Blazier and Papin [24] reviewed MADE [26], E-FLUX [27] and PROM
[28] by highlighting the methods advantages and limitations. Afterwards, Machado and
Herrgård [25] revised and evaluated those methods plus tFBA [29] and the method by
Lee et al. [30], using two gene expression datasets of E. coli and one of Saccharomyces
cerevisiae. Additionally, rFBA [31], SR-FBA [32], PROM [28] and tFBA [29] were
already classified and categorized according to the deviations from traditional pheno-
type simulation with FBA [23]. Besides of these previous reports, TIGER toolbox [33],
GIM3E [34], FlexFlux [35], TRFBA [36], CoRegFlux [37] and ME-models [38] were
never surveyed before.

Methods were grouped by the type of implementation, namely whether they inte-
grate TRN reconstructions, gene expression data or both. Regardless of classifying

Fig. 1. Survey of the GEO and ArrayExpress databases. Types of available expression studies in
GEO (A) and ArrayExpress (B) for a total of 118170 and 12375 series, respectively. EP
(Expression profiling); GVP (Genome Variation Profiling); GB/OP (Genome binding/occupancy
profiling); MP (Methylation profiling); PP (Protein profiling); NcRNAP (Non-coding RNA
profiling); TP (Transcription profiling); CGHbA (Comparative genomic hybridization by array).
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these methodologies in toolboxes, simple algorithms, computational tools, advantages
or drawbacks, the main deviations to the standard constraint-based modeling approach
and Flux Balance Analysis (FBA) framework [39] are also presented.

Unlike ME-models [38] and GIM3E [34], all methods addressed in this study allow
the simulation of phenotypes for multiple environmental and genetic conditions using
integrated genome-scale models of metabolism and transcriptional information. Note
that, GIMM3E and ME-models require the utilization of additional omics data such as
exometabolomics and proteomics, respectively.

4 Discussion

The present study is aimed at highlighting the required resources, features and limi-
tations of the latest efforts towards the reconstruction of integrated genome-scale
models of metabolism and gene expression. The existence of new sources of regulatory
information and gene expression data (e.g. RNA-seq and ChIP-seq) opens previously
closed doors for introducing new methods. Although the main share of gene expression
data is still from microarray expression studies, the number of datasets and series
obtained by NGS-based technologies is on the rise. Nevertheless, most of the methods
surveyed in this article, except the method by Lee et al. [30], only used microarray
expression data.

None of the methods for integrating gene expression with metabolic models, pre-
viously evaluated by Machado and coworkers [25], outperforms each other in phe-
notype predictions. Furthermore, simple growth maximization with parsimony FBA
(pFBA) [40], performed as well as the evaluated methods, namely MADE [26],
E-FLUX [27], PROM [28], tFBA [29] and the method by Lee et al. [30]. This indicates
that the promising results reported by these methods are just mere artifacts.

In fact, most results presented by such tools might be related with rigid constraints
created around the nature of the gene expression dataset. Whereas some methods
require large-scale gene expression datasets to be robust, others resort to mapping
levels of gene expression directly with the reactions bounds which might not be the
case for all organisms and datasets. The first methods to ever be developed (RFBA [31]
and SR-FBA [32]) limit the solution space by removing possible solutions with
Boolean logic. Complex formulations, requirements for large-scale or specific gene
expression datasets (that are scarce for some bacteria groups) and incongruences
obtained in recent benchmarking tests, pose a hard challenge for using these methods
out of the scope they were developed for.

Some of the major drawbacks are not a repercussion of the methodologies itself but
rather due to the difficulty in propagating their implementations to other organisms,
especially those poorly documented. Hence, the perspective of reconstructing inte-
grated genome-scale models of metabolism and gene expression for diverse prokary-
otes rather than well-known organisms is still a complex endeavor. Nevertheless, this
gap can be overcome by novel approaches, such as using comparative genomics tools
for determining in silico regulatory mechanisms that affect metabolism [23].
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A user-friendly tool implementing different methods and approaches as a function
of the available data would likely shed some light on the reconstruction of these
methods. Lastly, reconstructing models that incorporate TRN reconstructions should be
more advantageous when compared with only the reconciliation of gene expression
data into a new FBA-based formulation. Firstly, the model would provide compre-
hensive knowledge regarding the metabolic and regulatory events occurring inside the
cell. Secondly, the various approaches as well as the amount of data available for
reconstructing and integrating TRN into GSM models would ease the diffusion of this
approach to most bacteria having a sequenced genome. This hypothetical computa-
tional tool would therefore be able to combine different sources of regulatory infor-
mation available in the resources discussed above, which are rarely combined.
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