
Algebraic Specification of Documents

José Carlos Ramalho
jcr@di.uminho.pt

José João Almeida
jj@di.uminho.pt

Pedro Henriques
prh@di.uminho.pt

Departamento de Informática
Universidade do Minho

Braga – Portugal
July 11, 1997

Abstract

According to recent research, nearly 95 percent of
a corporate information is stored in documents.
Further studies indicate that companies spent be-
tween 6 and 10 percent of their gross revenues
printing and distributing documents in several
ways: web and cdrom publishing, database stor-
age and retrieval and printing. In this context
documents exist in some different formats, from
pure ascii files to internal database or text proces-
sor formats. It is clear that document reusability
and low-cost maintenance are two important is-
sues in the near future.

The majority of available document processors
is purpose-oriented, reducing the necessary flexi-
bility and reusability of documents. Some waste
of time arises from adapting the same text to dif-
ferent purposes. For example you may want to
have the same document as an article as a set of
slides or as a poster; or you can have a dictio-
nnary document producing a book and a list of
words for a spell-checker. This conversion could
be done automatically from the first version of the
document if it complies some standard require-
ments. The key idea will be to keep a complete
separation between syntax and semantics. In this
way we produce an abstract description separat-
ing conceptual issues from those concerned with
the use.

This note proposes a few guidelines to build a
system to solve the above problem. Such a sys-
tem should be an algebraic based environment and
provide facilities for:

• Document type definitions;

• Definition of functions over document types;

• Document definitions as algebraic terms.

This approach (rooted in the tradition of con-
structive algebraic specification), will allow for ho-
mogeneous environment to deal with operations
such as merging documents, converting formats,
translating documents, extracting different kinds
of information (to set up information repositories,
data bases, or semantic networks) or portions of
documents (as it happens, for instance, in liter-
ate programming), and some other actions, not so
traditional, like mail reply, or memo production.

We intend to use Camila (a specification lan-
guage and prototyping environment developed at
Universidade do Minho, by the Computer Science
group) to develop the above mentioned system.

1 Introduction

A document is a collection of pieces of text —
pure character strings— organized according to a
specific structure. Its information content can be
viewed as a message to be delivered (to someone),
and its structure is defined in order to emphasize
some special parts of that message, and in gen-
eral, to improve its transmission process.

When dealing with documents on digital sup-
port is very important to make their structure
explicit (to allow for automatic structure recog-
nition and validation). That is what text process-
ing and word processing systems do, each system
in its own way.

In order to make a document’s structure ex-
plicit additional information must be interspersed
among the natural text of the document. This
added information, called markup, serves two
purposes:

• separating the logical elements of the docu-
ment; and

• specifying the processing functions to be per-

1

formed on those elements.

The tags added to the text (markup), form the
lexicon of a language, a markup language (Her-
wijnen, 1994; Travis and Waldt, 1995).

Document processing means transforming
a given document in order to produce another
document (with a different structure or with
the same organization expressed in a different
markup language) or to execute some reactive
action. This definition includes tasks like text
formatting, translation, interpretation, automatic
reply to message, literate programming, and so
on. Therefore a document processor is nothing
more than a typical language processor where at
least two languages are involved —the markup
language, used to define the document structure,
and the language(s) used to express the informa-
tion content of the document.

Algebraic programming is an approach to
(computer) problem solving based on the defini-
tion of an algebraic model to specify the entities
and transformations arising from the problem be-
ing considered.

In this context, a model consists of a many
sorted algebra(Goguen, Thatcher, and Wagner,
1978) (or relational structure(Nipkow, 1986)) for
a given signature (i.e. a set S of sorts and an S∗-
indexed set of operation symbols). The model
consistently assigns a set to each sort symbol
and a function (or relation) to each operation (or
predicate) symbol.

Our intuition suggests that a document can be
thought of as a data element and document pro-
cessing as an algebraic operation.

Therefore, we propose to apply the algebraic
specification method to document processing.
The key idea of this approach is the definition of
a document type —every document must have an
associated type, predefined or user-defined. Each
processing task is specified as an operator (a func-
tion) defined over document types, and a docu-
ment can be expressed as a term of the underly-
ing algebra. This method can be useful to spec-
ify documents and tools and to rapidly prototype
them.

Furthermore, we will also analyze the use of an
external standard format to describe documents.
We will propose a mapping between this external
document markup system and the internal alge-
braic typing system. Since we already know how
to refine algebraic functions into procedural pro-
grams (Oliveira, 1990; Oliveira, 1992), that map-
ping will enable one to formally obtain implemen-

tations from specifications and prototypes.
The concepts introduced above —document

types, functions and documents— are discussed
in detail in the next section (sec. 2). The ar-
chitecture of the algebraic system we envisage to
develop and its interface to the real world of doc-
ument manipulation are described in section 3.
In section 4 we illustrate our proposal with two
examples. The paper closes with some final re-
marks and prospects for future work (sec. 5).

2 The proposed algebraic ap-

proach

Document definition is an old problem.
Whoever uses a computer to carry out the tasks

involved in document production, wants easy
manipulation of documents (such as subdoc-
ument extraction, structural document transla-
tion, etc).

It should be possible to formally describe the
behavior of the tools used to manipulate docu-
ments. Furthermore, those tools should help us
to guarantee:

• document structural correctness – have the
right components according to text purpose.

• invariant preservation – where invariants are
some defined constraints which are to be sat-
isfied by the document.

Document reuse arises when one has to deal
with different documents based on the same text,
or different views of the same document.

To achieve this it is necessary to separate a
document from the details of final views.

Example 1: [Document reuse]
A dictionary can be printed. However, its
definition should not be tied to pagination, be-
cause that would clutter, if not even disable the
possibility of reusing it for other operations, such
as its conversion into an electronic hyper-text.
——————

2.1 Document type definitions

The rules that define the possible structures for a
given kind of document form the document type
definition of that type of document. Therefore it
is a step to the notion of document correctness.

2

In Camila (Barbosa and Almeida, 1995)
(a model-based algebraic specification system,
briefly introduced in appendix A) a type defini-
tion involves the definition of:

• the carrier set of its single sort

• an invariant (a boolean-valued function that
restricts the carrier set structure to cope with
semantic requirements).

Example 2: [electronic mail]
When dealing with electronic mail system specifi-
cation, we must define the carrier set of the mail
sort. The carrier set definition is:

mail= header : id -> string (1)
body : string-seq (2)

(1) - mapping between identifiers and strings.
(2) - a list of strings (lines of text).

The following invariants guarantee that mes-
sages have nonempty content:

inv_mail(m) = body(m) != "" \/
header(m)[subject] != "" ;

A complete example can be found in section 4.1.

——————

In order to be consistent with this model, a doc-
ument has to be structurally correct, and satisfy
the invariant.

The structure of a document is also a good
guide to building translations to/from other
formats/models, manipulation functions and
browsers of documents.

2.2 Function definition over doc-

ument types

The specification of new functions over document
types can serve the following goals:

• describe document manipulation (such as
translation between different formats)

• describe the behavior (or intended behavior)
of existing tools

• support future tools and (document) types

• build documentation of tools and formats

In our framework, Camila , the definition of a
function comprises the following steps:

• definition of its domain and codomain: the
enumeration of the sorts for its arguments and
the expected sort for the result (we call it the
function signature).

• definition of a precondition (predicate over ar-
guments and state) that has to be evaluated
to true, so that the function can be applied

• definition of a returned value, whenever
the function is applicable (the precondition
holds).

• definition of how to update the state, upon
function application

Function specifications are an important step
in the definition of system (document and tools)
correctness. Though a function definition must
guarantee:

• that the invariant of the returned value type
evaluates to true

• that the invariant of the computed state eval-
uates to true.

• that the precondition of every function used
is true

and a function application must:

• have a list of argument values according to the
function signature

• verify its precondition (the predicate must be
true)

The basic collections of operators associated to
Camila type constructors (e.g., union, intersec-
tion of two sets, domain or range of binary rela-
tions, application or overwrite of finite functions,
etc) are available as primitive functions in the lan-
guage. So are the propositional connectives and
the first-order quantifiers.

The availability of all the repertoire of Camila

operators and the guidelines offered by the type
model, as exemplified above, greatly simplify the
task of defining a new function.

3 The Algebraic System

It is quite clear that an algebraic system is of lim-
ited expressivity, concerning the reality of doc-
ument electronic interchange. This entails the

3

need of one more layer intended to establish a
bridge between the algebraic system and the out-
side world of documents. A format (or set of for-
mats) must be chosen as the input and output of
this layer and consequently of the system. This
format should not have any character set depen-
dencies and should be easy to parse and generate.
This layer will incorporate a parser/translator for
the chosen formats.

SGML
doc.

LaTeX
doc.

X
doc.

d

e

a

b

c

CAMILA world

Translation Layer

f1

f2

TXT
doc.

Processing
tool

Figure 1: System Architecture

Figure 1, exemplifies the idea of the intended
system in more detail, where:

f1 denotes a Camila function that receives two
documents as arguments and produces a new
one.

f2 denotes a Camila function that transforms
one document into anotherone.

External processing using external tools, e.g.
accepting a format FMT1 and building a docu-
ment in format FMT2, is modeled by defining
an exportFMT1 and a importFMT2 functions (see
txtedit in mail example, subsection 4.1).

Looking at the current scene, there are some
strong candidates to be considered as an in-
put/output format to/from our system such

as LATEX(Lamport, 1986), Word or SGML
(Sperberg-McQueen and Burnard, 1994). On the
other hand, a closer look at those formats shows
that Word is not a good choice because it has not
a visible structure and its format (under a private
copyright) is not well known to the public.

Both SGML and LaTeX have a visible struc-
ture, are widely used, and there are plenty of tools
to process documents written in their formats.

Though one major difference comes up, LaTeX
is too tied up to format and typographic aspects,
whilst SGML is not. Besides this SGML has the
following advantages:

• it is an ISO standard (ISO 8879).

• it is not concerned with formatting aspects
and is fully data independent.

• its only concern is the textual structure of a
document.

• its use is spreading rapidly, and there
are many commercial and public-domain
tools NSGMLS, SP, JADE, RITA(Cowan
et al., 1991), CoST(Harbo, 1994) and
sgmlpl(Megginson, 1995b; Megginson, 1995a)
available to create and process SGML docu-
ments.

Therefore, for the time being, SGML is the base
format chosen to communicate with the outside
world (this will not eliminate the possibility of
adding other formats).

3.1 SGML as Input and Output

SGML, abbreviation for ”Standard Markup Lan-
guage”, is a meta-language to define descriptive
markup languages which specify the structure of
a particular kind of documents. The markup lan-
guage does not specify how the document is to be
processed or printed, it only specifies its struc-
tural elements and the relations between them.
For example, a markup language could specify
the lines and stanzas of a poem, but not the type
of font or size to be used when printing or dis-
playing the document.

Using SGML it is possible to specify the struc-
ture of a certain kind of documents by creating
a Document Type Definition (DTD). Documents
that obey that structure are classified as being of
that type. This way, any SGML document be-
longs to a type (or class) of documents.

Therefore, we can say that a DTD corresponds
to the signature of an algebraic specification.

4

When creating a DTD, structural elements and
the way they are related to eachother are speci-
fied. Then, when writing a document according
to a specific DTD, we decorate it with start tags
(”<tag>”) and end tags (”</tag>”) delimiting
the structural elements, as, for example, in the
following mail message:

Example 3: [electronic mail]

<mail>
<header>
<from> jcr@di.uminho.pt </from>
<to> epl@di.uminho.pt </to>

</header>
<body>
This is only a tutorial example
to be used in this article...

</body>
</mail>

——————

The corresponding DTD may be specified as:

Example 4: [Mail DTD]

<!ELEMENT mail - - (header,body)>
/* mail is composed of header and body */
<!ELEMENT header - - (from,to)>

/* header is composed of from and to */
<!ELEMENT from - - (#PCDATA)>

/* #PCDATA is free text */
<!ELEMENT to - - (#PCDATA)>
<!ELEMENT body - - (#PCDATA)>

——————

Assuming SGML as the standard format for in-
put/output to/from the system, we need to es-
tablish a correspondence function between SGML
elements and the Abstract Data Types of the Al-
gebraic System. To do this, we must ensure that
a faithful interpretation of SGML into Camila

(data models) exists. In the next section we will
show that it is possible to model SGML con-
structs with Camila Data Models. This will
enable us to define a translation function from
SGML to Camila .

3.2 SGML ↔ Camila Data Models

SGML is a very simple, structure-oriented lan-
guage. So it should not be difficult to create a
correspondence between its features and appro-
priate Camila data models.

An SGML specification is composed of a series
of ELEMENT declarations. Each ELEMENT
corresponds to a structural element of the docu-
ment and is defined as text or as being a combina-
tion of other elements. SGML has a few operators
to specify relations between elements:

SGML features
Expression Meaning

x, y element x followed by element y
x & y x and y in any order
x | y either x or y
x∗ element x 0 or more times
x+ element x 1 or more times
x? element x 0 or 1 time

Given the variety of Camila data models, it
so happens that more than one of them could be
chosen to correspond to each of the features listed
above. For example, the following mapping could
represent a translation scheme:

Translation Scheme
SGML CAMILA

x, y tuple
x & y tuple
x | y alternative
x∗ X-seq
x+ X-seq
x? [X]

The above scheme is poor in some respects. For
example x+ is being mapped into X-seq but this
list should have one or more element. This can be
defined by means of an invariant. The translation
to Camila , besides converting the types, should
add the necessary invariants to each case.

The relation between SGML and our system
is further explored in (Ramalho, Almeida, and
Henriques, 1996).

4 Some examples

In order to illustrate some of the advantages of
the proposed approach, we present two examples
using Camila .

5

4.1 Mail

In this example we specify what a unix mail mes-
sage is. Next we use the specified structure to
specify some real processing.

To define the document type that describes a
unix mail message we could write the following
Camila specification:

MODEL mail

use "txt.cam"

TYPE

header= SYM -> ANY;

mail = h:header

b:TXT;

env = user:SYM /* operating system */

date:ANY; /* environment */

ENDTYPE

STATE e:env;

e <- env(’joao,"today"); /*initial state*/

Mail is composed of header and body. The
body is simply text. The header is a mapping
from symbol to anything, where symbol is a to-
ken; in this case pertinent tokens are: to, from,
cc, subj, ...

Now we can write some functions over that type
reflecting our knowledge about the behaviour of
mail messages. For example, it may be stated
that a mail message, in order to be considered cor-
rect, should have a from field and its body should
not be empty. This can be written in Camila as
the following invariant:

inv_mail(a)=

’from in dom(h(a)) /\

(b(a) != "" \/ h(a)[’subj] != "");

In the following we specify a mail reply function:

func reply(a:mail):mail

returns

mail([’to -> h(a)[’from],

’subj -> strcat("re:",h(a)[’subj]),

’from -> user(e),

’date -> date(e),

’cc -> h(a)[’cc]],

< "In the last episode you said:" :

<strcat("> ",x) | x <- b(a)>>);

To finish this example we reproduce a mail session
in Camila . We begin by creating a document
of type mail:

ex<-mail([’to-> ’joao,

’from -> ’peter,

’subj ->"Testing",

’cc -> ’jcr],

< "dear Joao",

"good luck with this" >) ;

so that we can apply to that document (ex mail
message) the function reply

re_ex <- reply(ex);

the document re ex now has the value:

mail([’to-> ’peter,

’from -> ’joao,

’subj ->"Re: Test of the system",

’cc -> ’jcr],

< "In the last episode you said:"

"> dear Joao",

"> good luck with this" >)

Now it is necessary to allow the user to edit the
body of the mail in order to continue the message.
The function txtedit will do that task by:

• writing the message body to a file (txtsave)

• calling an external editor (Ex. vi)

• reading back a text (txtload) (using an ex-
ternal txt2cam format translator)

func txtedit(txt:TXT):TXT

returns do(txtsave("_tmp",txt),

sh("vi _tmp")),

txtload("_tmp"));

func txtload(name:STR):TXT

returns

let(f=popen(strcat("txt2cam ",name),"r"),

t=readf(f)) in t;

Now it possible to edit re ex body in order to
continue the message and to finish the reply:

re_ex.b <- txtedit(b(re_ex));

4.2 Literate programming

In this section a näıve literate program-
ming(Knuth, 1992) system is described.1

The main idea is to have a document type lpt
(literate programming type) that is a list of ele-
ments which can be:

1The complete examples (including the auxiliary func-
tions not presented here because of space constraints) and
other case studies can be obtained from the authors.

6

• titles (of document(tit) or section(sec))

• program definitions, associations of identi-
fiers(id) with programs(pro)

• programs(pro) – sequences of strings(STR) or
program references(id)

• straight text strings(STR)

That document contains a program (to be ex-
tracted with getprog function) and a textual doc-
ument (to be extracted with getlatex) typically
a manual describing the program implemention
and including the program.

MODEL lp

TYPE

lpt = ele-seq; list of elements

ele = STR | pro | defi | id | sec | tit;

pro=(STR | id)-seq; program with id

defi = i : id id definition

v : pro;

id = SYM; identifier

sec = STR; section title

tit = STR; document title

ENDTYPE

Let ex be an example document (built using
the implicit constructors of the language)2:

ex <- <

tit("Example of literate prog"),

sec("Stack - FAQ"),

defi(’main, <"main(){...}",

"int S[20]; sp=0",

’pop ,

’push >),

sec("pushing elements"),

"to push elements",

"you can use this function:",

defi(’push, <"void push(int x)",

"{S[sp++]=x;}">),

sec("poping elements"),

"not yet available",

defi(’pop, <"int pop(x)",

"{/*to be continued*/}">)>;

Next we define the function getprog whose
purpose is to extract a program(prog) from a lit-
erate programming text(lpt).

In the first step an index is built (function
mkindex). The function explode is defined to
make the recursive substitution of identifiers(id).

2A more WEB-like notation could be used based on a
webget translator (easily built in PERL).

TYPE

prog = STR-seq; (prog with no id)

index = id -> ele-pro;

ENDTYPE

func mkindex(t:lpt): index

return [i(x) -> v(x) | x<-t : is-defi(x)];

func getprog(t:lpt): prog

return explode(’main,mkindex(t));

func explode(i:id, d: index) : prog

pre i in dom(d)

returns CONC(

< if(is-id(x)-> explode(x,d),

else -> <x>) |x <- d[i]>);

Let pex be the program extracted from ex:

pex <- getprog(ex);

would assign to pex

main(){...}

int S[20]; sp=0

int pop(x)

{/* to be continued * /}

void push(int x)

{S[sp++]=x;}

To extract the document part(latex) of the lit-
erate programming text, we have to define the
document type latex3:

/* micro Latex */

latex =

d : documentclass /* article*/

t : tit /* title */

s : section-seq ; /* body */

section =

t : sec

v : (STR | verbatim)-seq ;

documentclass = SYM ;

verbatim = STR-seq;

func getlatex(t:lpt):latex

returns

if (t is-<ti:se>->latex(’article,

ti,

getsecList(ta)));

....

To create the latex part of ex:

latex_ex <- getlatex(ex);

3In order to be useful, this example should also include
a generate function that produce the actual LATEXsyntax
from the camila latex document type.

7

would assign to latex ex

latex(

article ,

tit(Example of literate prog),

< section(

sec(Stack - FAQ),

< verbatim(< main

main(){...}

int S[20]; sp=0

pop

push >)>)

section(

sec(pushing elements),

< to push elements

you can use this function:

verbatim(< push

void push(int x)

{S[sp++]=x;} >)>)

section(

sec(poping elements),

< not yet available

verbatim(< ...

5 Conclusion

Along this paper we have discussed an approach
to document processing we intend to develop fur-
ther: define document types and specify document
manipulations under an algebraic system. Types
are described using the usual abstract data mod-
els plus a predicate that establishes type invari-
ants. Documents are created, and processed as
instances of a given type by means of function
application. Those functions with type models
define an algebra and documents can then be
thought of as algebraic terms.

Our proposal is based on the use of the alge-
braic system CAMILA, a general purpose con-
structive specification language and an environ-
ment for building and running program proto-
types.

With this approach we gain in simplicity and
conciseness. Moreover, we think that three other
obvious advantages emerge from this method: the
reusability of types and functions; the correctness
proof, based on type invariant checking and val-
idation of function calls (with respect to its sig-
nature); the refinement guidelines.

SGML was compared to other solutions and
has been chosen as the external document de-
scription language to interchange documents with
our system.

Two examples —definition and manipulation
of Unix mail messages and literate programs— were

presented for illustration of our approach, its style
and its power.

Another topic that is currently under research
is the use of attributed abstract syntax trees to
store and manipulate documents under an alge-
braic approach.

The long-term aim is to develop an automatic,
or semi-automatic, translation process based on
the systematic analysis of document types.

Acknowledgements

We would like to thank the precious comments
and suggestions from our anonymous referees that
were very helpful to improve this paper.

We also are grateful to Luis Barbosa for the
profitable discussions and Camila material in-
corporated in the appendix.

Thanks are dued to J.N.I.C.T. for the grant
under which this work is being developed.

Bibliography

Barbosa, Luis and J.Joao Almeida. 1995. System
Prototyping in CAMILA. University of Minho.
Lecture notes for the system Design Course,
Computer System Engineering, University of
Bristol.

Cowan, D., E. Mackie, G. Pianosi, and
G. d. V. Smit. 1991. Rita - an editor and
user interface for manipulating structured doc-
uments. Electronic Publishing, Origination,
Dissemination and Design, 4:125–150.

Feijs, L. and H. Jonkers. 1992. Formal Speci-
fication and Design. 35. Cambridge Tracts in
Theoretical Computer Science.

Germán, Daniel M. and D. D. Cowan. 1995. Ex-
periments with the z interchange format and
sgml.

Goguen, J., J. W. Thatcher, and E. G. Wagner.
1978. Initial Algebra Approach to the Spec-
ification, Correctness and Implementation of
Algebraic Data Types. In Current Trends in
Programming Technology, volume IV. Prentice-
Hall International.

Guttag, J. and J Horning. 1993. Larch:
Languages and Tools for Formal Specification.
Springer-Verlag.

8

Harbo, Klaus. 1994. CoST version 0.2 - Copen-
hagen SGML Tool. University of Copenhagen.

Harper, R. and K. Mitchell. 1986. Introduction
to Standard ML. Technical Report, University
of Edimburgh.

Haxthausen, A. 1990. A Tutorial on RAISE.
Technical Report RAISE/CRI/DOC/1-2-3-9,
CRI A/S (Denmark).

Hendersen, P. 1984. me too: A Language for
Software Specification and Model Building —
Preliminary Report. Tecnhical Report, Univer-
sity of Stirling.

Herwijnen, Eric. 1994. Practical SGML. Kluwer
Academic Publishers.

Knuth, Donald E. 1992. Literate Program-
ming. Distributed by Unversity of Chicago
Press. CSLI–27.

Lamport, Leslie. 1986. LaTeX User’s Guide and
Reference Manual. Addison-Wesley Publishing
Company.

Megginson, David. 1995a. sgmlspl: a simple
post-processor for sgmls and nsgmls. Techni-
cal report, Dep. English - Univ. Ottawa.

Megginson, David. 1995b. Sgmls.pm: a perl5
class library for handling output from the sgmls
and nsgmls parsers. Technical report, Dep. En-
glish - Univ. Ottawa.

Nipkow, T. 1986. Non-Deterministic Data
Types: Models and Implementation. Acta In-
formatica, (22):629–661.

Oliveira, J. N. 1990. A Reification Calculus for
Model-Oriented Software Specification. For-
mal Aspects of Computing, (2):1–23.

Oliveira, J. N. 1992. Software Reification Using
the SETS Calculus (invited communication).
In Theory and Practice of Formal Software De-
velopment. BCS FACS 5th Refinement Work-
shop, London.

Ramalho, J.C., J.J. Almeida, and P.R. Henriques.
1996. Document semantics: two approaches.
In SGML’96: Celebrating a decade of SGML,
Sheraton-Boston Hotel, Boston, USA, Nov.

Sperberg-McQueen, C.M. and Lou Burnard.
1994. Guidelines for Electronic Text En-
coding and Interchange (TEI P3). Chicago:
ACH/ACL/ALLC.

Travis, Brian and Dale Waldt. 1995. The SGML
Implementation Guide. Springer.

Turner, D. A. 1986. Miranda: A Non-Strict
Functional Language with Polymorphic Types.
Jour. Comp. Sys. Sci., (19):27–44.

A Camila : a brief introduction

Parts of this appendix come from (Barbosa and
Almeida, 1995) lecture notes where a more de-
tailed overview of Camila can be obtained.

A.1 Camila philosophy and evo-

lution

From school physics we got used to a basic
problem solving strategy: create a mathematical
model, reason on it, calculate a solution. The
Camila approach is an attempt to make such
a strategy available at the software engineering
level. Based on a notion of formal software com-
ponent it encompasses a set-theoretic notation,
a prototyping environment, fully connectable to
external applications and equipped with commu-
nication facilities, and an inequational refinement
calculus.

Camila aims to be both a learning tool for
Computer Science students and a working tool for
software engineers. At the first level it provides
a smooth way to programming. At the second a
rigorous way to develop complex systems and to
promote the use of formal methods in software
industry.

Camila
4 was originally devised as a collection

of interrelated support tools for teaching different
parts of the Computer Science and Software Engi-
neering curricula. The project affiliates itself, but
is not restricted to, to the research in exploring
Functional Programming as a rapid prototyping
environment for formal software models, whose
origin can be traced back to P. Hendersen’s me
too (Hendersen, 1984).

In the way, some new theoretical and techno-
logical results — namely a component classifica-
tion and reification calculus and a notion of con-
nectable high-level prototyping environment —
were achieved and incorporated in the project.

4
Camila is named after a Portuguese 19th-century

novelist — Camilo Castelo-Branco (1825 - 1890) — whose
immense and heterogeneous writings, deeply rooted in his
own time experiences and controversies, mirrors a passion-
ate and difficult life.

9

As a working tool for software engineers it of-
fers a simple set-theoretic notation and a fully
connectable environment. As a learning tool sup-
porting a Computer Science curriculum, it aims
to be easy to understand and to use, and to stimu-
late a kind of abstract and compositional reason-
ing which paves the way to sound methodological
principles.

The Camila platform is organized around 5
main components:

• An executable (functional) specification lan-
guage directly based on naive set theory.

• An inequational calculus (Oliveira, 1990;
Oliveira, 1992) — Sets — for refining and
classifying software formal models. In partic-
ular it enables the synthesis of target code pro-
grams by transformation of the initial specifi-
cations.

• A flexible rapid prototyping kernel which
bears “full citizenship” at C/C++ program-
ming level (C may call Camila services and
Camila may also invoke external C func-
tions). It is available at both Unix, Linux

and MS/DOS operating systems and may
provide services under X-Windows or as a
Windows 3.1 DLL. Furthermore the proto-
typing environment provides a set of commu-
nication facilities to animate systems built by
composition of independent and concurrent
software components.

• A formal software components repository
which catalogues available models and a
compositional notation based on “software-
circuit” diagrams (a shorthand for some piece
of mathematics), suggestively resembling the
conventional hardware notation.

• An approach to the specification and genera-
tion of structural Human-Machine Interfaces,
independent of but mirroring the application
semantics.

The Camila approach to programming tech-
nology claims to provide a smooth way to teach-
ing and using (constructive) formal methods in
software engineering. Its roots on functional pro-
totyping of information models (Hendersen, 1984)
has already been referred. Similar motivations
may be found either in the research on formal
specification methods, such as Vdm, Z, Raise

(Haxthausen, 1990), Cold-K (Feijs and Jonkers,
1992) or Larch (Guttag and Horning, 1993),
or on functional programming languages such as

ML (Harper and Mitchell, 1986) or Miranda

(Turner, 1986).
In contrast with the former group one could

stress the lighter notation of Camila, borrowed
from set theory, and the direct correspondence
to the prototyping language. But what is, to
our knowledge, new is the associated calculus for
model reasoning and refinement. On the other
hand, Camila lacks the sophisticated interface
and documentation management features avail-
able, for instance, in Raise.

Camila, or at least its prototyping language,
may also be compared with other functional lan-
guages which achieved a high degree of clarity
and expressive power. Although some features of
more elaborated languages (eg , effective polimor-
phism) are absent in Camila, we would point out
as original features Camila’s flexibility in being
fully connectable to other “galaxies” of the com-
putation universe and easily suited to different
application domains.

A.2 The Camila Language

A Camila specification is a set of software com-
ponents. Each one is a model that includes type,
function and state definitions.

Model --> MODEL id

TypeDef

FunDef

StateDef

ENDMODEL

Where a type definition has the following form:

TypeDef --> TYPE

(id = TypeModel)*

ENDTYPE

The basic data type models predefined in
Camila are:

Data Models Camila

Sets X-set
Lists X-seq

Mappings X �−→ Y
Binary Relations X ←→ Y

Alternatives X | Y | ...
[X]

Tuples id1:X ... idn:Y
Integers INT
Strings STR
Tokens SYM

Universe ANY

10

where X, Y denote data type models.

Camila also provides some other primitive
types which do not bear a direct mathematical
correspondence but are inherent to its program-
ming environment.

A function definition has the following form:

FunDef --> FHeader FPredCond FState FBody

FHeader--> FUNC fid (ParamLst) : type

FPreCond--> PRE CondExp

FState --> STATE id <- Exp

FBody --> RETURNS Exp

Finally, a state definition is written according
to the syntax:

StateDef --> STATE id : type

The state identifier id will be used whenever one
has to access or modify the state.

The basic collections of functions associated
with Camila type constructors (eg , intersection
or union of two sets, domain or range of binary
relations, application or overwrite of mappings,
concatenation of sequences and reduce operators,
structure definition by enumeration or compre-
hension, etc.) are available as primitive functions
in the language. So are the propositional connec-
tives and quantifiers. To exemplify, a synopsis of
some collections is presented below in the form of
tables showing the Camila syntax, a brief infor-
mal description and the corresponding set theo-
retic notation.
Mappings — X �−→ Y

Camila Description Semantics

dom(f) Domain dom f
ran(f) Co-domain rng f
f[x] Application f [x]
f/s Dom. restriction f |s
f\s Dom. subtraction f \ s

f + g Overwrite f by g f † g
[�→ , . . .] Map. enum. [...]

[x→ e | x← s : p] Map. compreh. [e| x ∈ s ∧ p]
Sequences — X-seq

Camila Description Semantics

hd(s) Head hd s
tl(s) Tail tl s

nth(i,s) Elem. by pos. s(i)
s^r Concatenation s � r
<x:s> Appending <x> � s
CONC(s) concatenation s1 � s2.. � sn

inds(s) Domain dom s
<e|x<-s:p> Seq. compreh. < e| x ∈ s ∧ p >

In the following table we describe some
Camila notation to ease the reading of some of
the examples presented in earlier sections.

Camila Description

’ident constant of type SYM (token)
”...” constant of type STR (string)

strcat string concatenation
popen(command,”r”) opens a pipe to read

from an external command
readf reads an expression from a file

sh(command) executes an external command

11

