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Abstract: To any given n×n matrix D, associate a so-called tower matrix
T with n × n rows and n columns. This matrix T deserves attention because
it gives more information than D: in fact, the tower matrix exhibits, not only
the shortest length of the paths from point p to point q, but also, for each third
point k, the shortest length of the paths from p to q that pass through k. In-
terpretations of interest for business management and international commerce,
for instance, emphasize the advantage of this supplementary information.

1. The numerical tower matrix: By definition, a distance matrix is
a square matrix D whose entries are non-negative real numbers which satisfy
the following three conditions:

∀i : di,i = 0; ∀i, k : di,k = dk,i; ∀i, j, k : di,k ≤ di,j + dj,k.

It is usually assumed that di,k > 0 for i 6= k. And if the symmetry is not
required in the definition, then D will be called a quasi-distance matrix.

Recall that distances and quasi-distances have been studied in terms of
graphs and digraphs (see [1], [2], [3], [4] [5], [7]): the length of a shortest path
from vertex p to vertex q is the value of entry dp,q of the matrix D. This matrix
is associated to a graph (when D is symmetric) or to a digraph (when D is not
symmetric).

Defining the numerical tower matrix: Given an arbitrary (that means,
not necessarily a distance or quasi-distance) matrix D, of type n×n and whose
entries dp,q are real nonnegative numbers, the tower matrix T will be formed
with n columns and n × n rows denoted L(p, q), where L(p, q) is the sum
of L(p), the row p, and C(q), the column q, of D; and the rows L(p, q) are
ordered in lexicographic order of p, q, that is to say, by increasing values of pq,
this pair pq being seen as a two-digits integer written using the number system
of radix n + 1. By other words, the rows of T appear, from top to bottom, as
L(1, 1), L(1, 2), ..., L(1, n); L(2, 1), L(2, 2), ... L(2, n); ... ; L(n, 1), L(n, 2),
..., L(n, n). The reason for the name tower matrix is that T can be seen as a
pile of n matrices T1, ..., Tn, each one of type n × n, with L(1, 1), ..., L(1, n)
forming T1, L(2, 1), ..., L(2, n) forming T2, and so on.

As immediate consequences of the definition, in the tower matrix T of a
matrix D, the entry in position p of the row L(p, p) is equal to 2 × dp,p, that
is, zero, when D is a distance or quasi-distance matrix; in this case, entries in
positions p and q of row L(p, q) are both equal to dp,q, and entry in position
k, distinct from p and q, of row L(p, q) is equal to dp,k + dk,q. This makes
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the tower matrix really interesting. In comparison with D, the tower matrix
T exhibits some pieces of information in a much more direct way: while the
entries of D, say dp,q, just show the length of the shortest route from p to q,
the matrix T , besides exhibiting dp,q, it exhibits also the length of the shortest
routes from point p to point q which pass through each one of the other points.

It is important to note that all these entries are not necessarily lengths
of routes. They may be, for instance, travel times or transportation costs;
or phylogenetic distances (see [8]) or even costs of making business (see [9]).
Think that, in contemporary global markets, closing a business deal between
two players A and B has a cost, say dA,B. If there is an intermediary K,
the total cost may be dA,K + dK,B. The respective tower matrix may be
formed and, if some event (say political or economic) makes a direct negotiation
between A and B impossible, resorting to an intermediary chosen from a set
of intermediaries will be necessary and the important role of a tower matrix
becomes obvious in such a situation.

A natural question is to ask when is D a distance or quasi-distance matrix,
by just looking at its rower matrix T . The answer might be understood almost
as a necessary and sufficient condition for D to be a distance or quasi-distance
matrix. In fact, as an immediate consequence of the definitions, the following
result holds:

Theorem: Let D be a matrix of type n×n and whose entries dp,q are real
nonnegative numbers.

1. A necessary and sufficient condition for D to be a quasi-distance matrix
is that, in its tower matrix T , position p of L(p, p) be zero (for every p),
positions p and q of L(p, q) be equal to one another and position k of L(p, q)
be equal to dp,k + dk,q;

2. A necessary and sufficient condition for D to be a distance matrix is
that, besides the conditions in the previous item, the following additional one
be also met: in the tower matrix T , for any p and q, position q of L(p, q) is
equal to position p of L(q, p).

As an example of matrices D and T , look first at the digraph of Figure 1,
with 1, 2, 3, 4 as main vertices and x as an auxiliary one.
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Figure 1: A digraph and its quasi-distances. For the matrices see Figure 2

In Figure 2, see the quasi-distance matrix D and the tower matrix T ,
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yielded by the digraph of Figure 1.
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Figure 2: A quasi-distance matrix D and its tower matrix T

Look at T and consider it partitioned into n square sub-matrices T1, T2,
..., Tn, where T1 is formed by the top n rows of T , T2 formed by the following
n rows, and so on. As is easy to verify, in Ti its diagonal and its column C(i)
are equal, element to element, to the row L(i) of D. Note that all entries of D

appear in T , but they don’t use up all positions of T . In Figure 2, we have in
bold, the entries of T which are equal to the entries in the rows of D.

2. Defining the Boolean tower matrix: To end up this note consider
a variant of the tower matrix defined in boolean terms: call it the boolean
tower matrix. Where the numerical version exhibits path lengths, the boolean
variant exhibits simply the existence of paths or links.

Remember (see [6], for instance) that the boolean adjacency matrix D of
a graph or digraph G with n vertices is a square matrix of type n × n whose
entries dp,q are defined as follows: - For every p, dp,p = 1; for p 6= q, it is
dp,q = 1 when there is an arc (oriented edge) from p to q in the digraph G,
or an edge when G is a graph; otherwise, dp,q = 0. Note that, in terms of
graphs and digraphs, the existence of loops from each vertex to itself is always
assumed. These loops are oriented in digraphs, non-oriented in graphs.

Keeping the notation of the previous section, define the boolean tower ma-
trix B associated to D as a matrix of type n2 × n whose row L(p, q) is the
boolean product (not the boolean sum!) entry by entry, of the p row L(p) by the
q column C(q) of D. This is an unexpected but necessary, or at least conve-
nient difference between the definitions of numerical and boolean tower matrix.
Otherwise, the matrix B may also be seen as a pile of square matrices B1, ...,
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Bn, of type n × n, which play here the roles of T1, ..., Tn, respectively. Thus,
the entry k of L(p, q) is 1 if and only if there is, in G, a directed path from p

to q consisting of two arcs (p, k) and (k, q). Don’t forget that an arc (p, q) may
be understood as the path (p, p), (p, q) or as the path (p, q), (q, q); this means
that, when the arc (p, q) exists, the entries p and q of L(p, q) are equal to 1.
Obviously, when G is a graph, edges will play the role of the (oriented) arcs in
digraphs.

In Figure 3, see, as an example, the boolean adjacency matrix D and the
boolean tower matrix B of the digraph pictured in Figure 4.
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Figure 3: A boolean adjacency matrix D and its boolean tower matrix B

Recalling what was pointed out for the matrices Ti, it holds also here that,
in each Bi, the main diagonal and the column Ci (in bold) are equal, entry by
entry, to the row L(i) of D.
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Figure 4: The digraph whose associated matrices are in Figure 3

3. Some conclusive remarks: The tower matrix defined in this pa-
per may be associated to any square matrix whose entries take numerical or
Boolean values.
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The focus of the analysis in this paper is on tower matrices which are
associated with distance, quasi-distance or adjacency matrices. Their huge
potential for applications is pointed out. In fact, transport costs, travel times,
genetic similarities and negotiation difficulties, among many others, all these
variables may play the role of traditional distances, quasi-distances, existence
or non-existence of links.

Note also that tower matrices may be naturally associated to graphs and
digraphs. Plus, an unexpected difference in the definitions of the numerical
versus the Boolean versions of the tower matrix is impressive and pointed out
in this note.
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