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Summary

A direct multiple shooting (MS) method is implemented to solve optimal control problems (OCP) in the Mayer form.
The use of an MS method gives rise to the so-called ‘continuity conditions’ that must be satisfied together with general
algebraic equality and inequality constraints. The resulting finite nonlinear optimization problem is solved by a first-order
descent method based on the filter methodology. In the equivalent tri-objective problem, the descent method aims to
minimize the objective function, the violation of the ‘continuity conditions’ and the violation of the algebraic constraints
simultaneously. The preliminary numerical experiments carried out with a set of benchmark OCP are encouraging.
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1 Introduction

An optimal control problem (OCP) is a constrained
optimization problem that has a set of dynamic equations
as constraints. Application domains of OCP are varied1 .
There are three types of OCP that differ in the formulation
of the functional to be optimized. For example, an OCP of
the Lagrange form has the objective functional in its pure
integral form as shown

J∗ = min
u(t)∈U

J(y(t),u(t))≡
∫ T

0
f2(t,y(t),u(t))dt

s.t. y′(t) = f1(t,y(t),u(t)), for t ∈ [0,T ]
y(0) = y0, y(T ) = yT ,

(1)

where y ∈ Rs̄ is the vector of state variables of the dynamic
system, u ∈ U ⊂ Rc is the vector of control or input

variables and U represents a class of functions (in particular
functions of class C1 and piecewise constant) and usually
contains limitations to the control2 . To convert problem (1)
into the Mayer form, a new variable is added to the states
vector y, such that y′s(t) = f2(t,y(t),u(t)) with the initial
condition ys(0) = 0, where s = s̄ + 1 represents the total
number of state variables. Thus, problem (1) becomes:

min
u(t)∈U

J(y(t),u(t))≡ ys(T )

s.t. y′(t) = f1(t,y(t),u(t))
y′s(t) = f2(t,y(t),u(t)), for t ∈ [0,T ]
y(0) = y0, ys(0) = 0, y(T ) = yT .

(2)

In the OCP we want to find u that minimizes the
objective functional J subject to the dynamic system
of ordinary differential equations (ODE). The problem
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may have other more complex ‘terminal constraints’
H(T,y(T ),u(T )) = 0. States y and control u may
also be constrained by algebraic equation constraints
he(t,y(t),u(t)) = 0, e ∈ E and ‘path constraints’
g j(t,y(t),u(t)) ≤ 0, j ∈ F , where E = {1,2, . . . ,m}
and F = {1,2, . . . , l}.

Methods for solving OCP like (2) can be classified
into indirect and direct methods. Indirect methods use
the first-order necessary conditions from Pontryagin’s
maximum principle to reformulate the original problem
into a boundary value problem. On the other hand,
direct methods solve the OCP directly3 transforming
the infinite-dimensional OCP into a finite-dimensional
optimization problem that can be solved by effective and
well-established nonlinear programming (NLP) algorithms.
All direct methods discretize the control variables but differ
in the way they treat the state variables4 . They are also
classified as Discretize then Optimize strategies in contrast
to the Optimize then Discretize strategies of the indirect
methods1 .

This paper explores the use of a first-order descent
method based on the filter methodology5, 6 to solve the NLP
problem, within a direct method for solving an OCP in the
Mayer form. The use of a direct multiple shooting (MS)
method gives rise to the so-called ‘continuity conditions’
that must be satisfied. The novelty here is that a filter
methodology is used to minimize the objective function, the
violation of the ‘continuity conditions’ and the violation of
algebraic constraints simultaneously. The NLP problem is
a tri-objective problem and the first-order descent method
generates a search direction that is either the negative
gradient of one of the functions to be minimized or a convex
combination of negative gradients of two functions. To
overcome the drawback of computing first derivatives, the
gradients are approximated by finite differences.

The paper is organized as follows. Section 2 briefly
describes the direct MS algorithm for solving the OCP in
the Mayer form. The herein proposed first-order descent
filter algorithm is discussed in Section 3, the numerical
experiments are shown in Section 4 and we conclude the
paper with Section 5.

2 Direct multiple shooting method

In a direct single shooting (SS) method, only the controls
are discretized in the NLP problem3 . The dynamic system
is solved by an ODE solver to get the state values for the
optimization. Thus, simulation and optimization are carried
out sequentially. On a specific grid defined by 0 = t1 < t2 <
· · · < tN−1 < tN = T , where N − 1 is the total number of
subintervals, the control u(t) is discretized, namely using
piecewise polynomial approximations. The simplest of all
is a piecewise constant,

u(t) = qi, for t ∈ [ti, ti+1] and i = 1, . . . ,N−1 (3)

so that u(t) only depends on the control parameters
q = (q1,q2, . . . ,qN−1) and u(t) = u(t,q). When the

horizon length T is not fixed, the control parameter
vector also includes T to define the optimization variables.
The dynamic system is solved by (forward numerical
integration) an ODE solver and the state variables y(t)
are considered as dependent variables y(t,q). The main
advantage of a direct SS method is the reduced number of
decision variables (control parameters) in the NLP even for
very large dynamic systems. However, unstable systems
may be difficult to handle.

In a direct MS method, discretized controls and state
values at the start nodes of the grid (grid points) – xi ∈
Rs, i = 1,2, . . . ,N − 1, known as MS node variables –
are the decision variables for the NLP solver7 . After the
discretization of the controls, the ODE system is solved
on each shooting subinterval [ti, ti+1] independently, but
they need to be linked by the auxiliary variables xi, i =
1,2, . . . ,N − 1. They are the initial values for the state
variables for the N− 1 independent initial value problems
on the subintervals [ti, ti+1]:

y′(t) = f (t,y(t),qi)≡
{

f1(t,y(t),qi)
f2(t,y(t),qi)

y(ti) = xi, for t ∈ [ti, ti+1],

where y ∈ Rs. Trajectories yi(t;xi,qi) are obtained where
the notation “(t;xi,qi)”, for the argument, means that they
are dependent on t as well as on the specified values for the
node variables xi and control parameters. The initial state
values xi should satisfy the ‘continuity conditions’

yi(ti+1;xi,qi) = xi+1, i = 1, . . . ,N−1, (4)

(ensuring continuity of the solution trajectory), the initial
value x1 = y0 and the final state constraints xN = yT

4, 8 .
We choose to implement a direct MS method since it

can cope with differential and algebraic equations that show
unstable dynamical behavior7 . The main steps of the direct
MS algorithm are shown in Algorithm 1.

3 First-order descent filter method

The herein proposed first-order descent filter method relies
on descent directions for two constraint violation functions
(handled separately) and for the objective function in order
to converge towards the optimal solution of the NLP
problem. One of the constraint violation functions emerges
from the ‘continuity constraints’ violation (including initial
state and final state constraints) and the other comes up
from the state and control algebraic equality and inequality
constraints. We assume that the NLP problem is a
non-convex constrained optimization problem (COP). For
practical purposes, we assume that the OCP is in the Mayer
form, the ODE system has initial and boundary state values,
state and control variables are constrained by algebraic
equality and inequality constraints, and the explicit 4th.
order Runge-Kutta integration formula is used to solve the
dynamic system in each subinterval [ti, ti+1] using 5 points.

As stated in the last section, the decision variables
of the COP are the initial state values at the nodes
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Input: T , N, f (t,y,u), y0, yT , constraint functions.
Output: Optimal control and state variables.
Define the grid points in the interval [0,T ]:
0 = t1 < · · ·< tN−1 < tN = T .

Discretize the control: u(t) = qi for t ∈ [ti, ti+1],
i = 1, . . . ,N−1.

Define the starting values for the state vector xi for
each [ti, ti+1], i = 1, . . . ,N−1, and xN .

(Invoke the NLP algorithm)
while Stopping conditions are not satisfied do

With qi, i = 1, . . . ,N−1, xi, i = 1, . . . ,N, use an
ODE solver to evaluate the state trajectories in
[ti, ti+1], i = 1, . . . ,N−1:

for yi(ti) = xi, (yi)′(t) = f (t,yi(t),qi);
Evaluate the ‘continuity conditions’
yi(ti+1;xi,qi) = xi+1, i = 1, . . . ,N−1, as well as
x1 = y0 and xN = yT ;

Evaluate algebraic equality and inequality
constraints for t ∈ [ti, ti+1], i = 1, . . . ,N−1;

Evaluate the objective function.
Generate new qi, i = 1, . . . ,N−1 and
xi, i = 1, . . . ,N.

Algorithm 1: Direct MS algorithm

xi ∈ Rs, i = 1, . . . ,N and the control variables qi ∈ Rc,
i = 1, . . . ,N−1. Besides possible algebraic constraints on
the state and control variables, the ‘continuity constraints’
(4), the initial state and the final state constraints must be
added to the optimization problem formulation. Thus, our
COP has the following form:

min
xi, i∈IN ;qi, i∈I

ys(T )

s.t. g j(yi(t;xi,qi),qi)≤ 0, t ∈ [ti, ti+1], i ∈ I, j ∈ F
he(yi(t;xi,qi),qi) = 0, t ∈ [ti, ti+1], i ∈ I,e ∈ E
yi(ti+1;xi,qi)− xi+1 = 0, i ∈ I
x1− y0 = 0,xN− yT = 0

(5)
where I = {1, . . . ,N−1} and IN = I ∪ {N}. To solve
the optimization problem (5), the set of ODE must be
solved so that the ‘continuity constraints’ yi(ti+1;xi,qi)−
xi+1 = 0, the initial state and the final state constraints, the
other equality and inequality constraints and the objective
function are evaluated (see Algorithm 1). Since problem
(5) has constraints, we seek optimal values for x and q such
that all the constraints are satisfied – a feasible solution of
the COP – and the objective function takes the least value.

3.1 Filter methodology

To check solution feasibility, a measure for the violation
of the constraints is adopted. To implement the
herein proposed filter methodology, the constraints are
fractionated into two sets and their violations are computed
and handled separately. We denote the violation of
the ‘continuity constraints’, initial state and final state

constraints by the non-negative function:

θ(x,q) = ∑
l∈L

∑
i∈I

(yi
l(ti+1;xi,qi)− xi+1

l )2

+∑
l∈L

(x1
l − yl0)

2 +(xN
l − ylT )

2 (6)

where L = {1,2, . . . ,s}, noting that θ(x,q) is zero if the
solution (x,q) satisfies these constraints, and is positive
otherwise. These are the constraints that are more difficult
to be satisfied and we need to prioritly drive the violation θ
to zero as soon as possible so that the ODE integration runs
as close as possible to the exact values of the state variables.

To evaluate the algebraic equality and inequality
constraints violation, a non-negative function p, also based
on the Euclidean norm of vectors, is used

p(x,q) = ∑
j∈F

∑
i∈I

max
{

0,g j(yi(t;xi,qi),qi)
}2

+ ∑
e∈E

∑
i∈I

he(yi(t;xi,qi),qi)2,
(7)

and similarly, p(x,q) = 0 when the corresponding
constraints are satisfied, and p(x,q) > 0 otherwise. The
violation of these constraints is also forced to converge to
zero.

The extension of the filter methodology5 , into the
descent algorithm to solve the COP is equivalent to
the reformulation of the problem (5) as a tri-objective
optimization problem that aims to minimize both the
feasibility measures, defined by the constraint violation
functions θ(x,q) and p(x,q), and the optimality measure
defined by the objective function ys(T ):

min
xi, i∈IN ;qi, i∈I

(θ(x,q), p(x,q),ys(T )) . (8)

In our filter methodology, a filter F is a finite set of
triples (θ(x,q), p(x,q),ys(T )) that correspond to points
(x,q), none of which is dominated by any other in the
filter. A point (x̂, q̂) is said to dominate a point (x,q) if
and only if the three conditions are satisfied simultaneously:
θ(x̂, q̂) ≤ θ(x,q), p(x̂, q̂) ≤ p(x,q) and ŷs(T ) ≤ ys(T ).
The filter is initialized to F = {(θ , p,ys) : θ ≥ θmax, p ≥
pmax}, where θmax, pmax > 0 are upper bounds on the
acceptable constraint violations. Let Fk be the filter at
iteration k of the algorithm. To avoid the acceptance of a
trial point (x̄, q̄) (approximation to the optimal solution),
or the corresponding triple (θ(x̄, q̄), p(x̄, q̄), ȳs(T )), that is
arbitrary close to the boundary of the filter, the conditions
of acceptability to the filter define an envelope around the
filter and are as follows:

θ(x̄, q̄)≤ (1− γ)θ(x(l),q(l)) or p(x̄, q̄)< (1− γ)p(x(l),q(l))

or ȳs(T )≤ y(l)s (T )− γ
(

θ(x(l),q(l))+ p(x(l),q(l))
)

(9)
for all points (x(l),q(l)) that correspond to triples
(θ(x(l),q(l)), p(x(l),q(l)),y(l)s (T )) in the filter Fk. Points
with constraint violations that exceed θmax > 0 or pmax > 0
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are not acceptable. The constant γ ∈ (0,1) is fixed and the
smaller the tighter is the envelope of acceptability. The
above conditions impose a sufficient reduction on one of
the feasibility measures or on the optimality measure for a
point to be acceptable. When the point is acceptable to the
filter, the filter is updated and whenever a point is added to
the filter, all the dominated points are removed from it.

3.2 The first-order descent filter algorithm

The proposed first-order descent method is based on using
gradient approximations of the functions, θ , p or ys, of
the tri-objective problem (8), to define search directions
coupled with a simple line search to compute a step size
that gives a simple decrease on one of the measures θ , p or
ys. Since θ is the most difficult to reduce, priority is given to
searching along the (negative) gradient of θ or a (negative)
combination of the gradient of θ with the gradient of p or
ys. See Algorithm 2. We denote the vector of decision
variables by v =

[
x1, . . . ,xN ,q1, . . . ,qN−1

]
where v ∈ RnD

and nD stands for sN + c(N−1).
Each component i of the gradient of θ with respect to

the variable vi, at an iteration k, is approximated by

∇iθ(v(k))≈
θ(v(k)+ εei)−θ(v(k))

ε
, i = 1,2, . . . ,nD (10)

for a positive and sufficiently small constant ε , being
the vector ei ∈ RnD the i column of the identity matrix.
Similarly for the gradients approximation of p and ys.

To identify the best point computed so far, the below
conditions (11) are imposed. Let vbest be the current
best approximation to the optimal solution of problem (8).
A trial point, v̄, will be the best point computed so far
(replacing the current vbest) if one of the conditions

Θ(v̄)< Θ(vbest) or ȳs(T )< ybest
s (T ) (11)

holds, where Θ = θ + p.
At each iteration, the algorithm computes a trial point

v̄, approximation to the optimal solution, by searching
along a direction that is the negative gradient of θ , or a
negative convex combination of the gradients of θ and p,
θ and ys, or p and ys, at the current approximation v.
The selected direction depends on information related to
the magnitude of θ and p, at v. For example, if p(v) is
considered sufficiently small, i.e., 0 ≤ p(v) ≤ τ1, while
θ(v) > τ1 (for a small error tolerance τ1 > 0), then the
direction is the negative gradient of θ at v. The search for
a step size α ∈ (0,1] goals the reduction of θ (‘M ← θ ’
in Algorithm 2). On the other hand, if both p and θ
are considered sufficiently small, then the direction is the
negative convex combination of the gradients of θ and ys,
although the search for α forces the reduction on θ .

If both θ and p are not small yet (situation that occurs
during the initial iterations) the direction is along the
negative convex combination of the gradients of θ and
p, although the line search forces the reduction on θ .
However, if 0≤ θ(v)≤ τ1 but p(v)> τ1, then the direction

Input: N, T , kmax > 0, Itmax > 0, τ1 > 0
Output: vbest ,θ best , pbest ,ybest

s
Set k = 0, exit = “false”; Initialize F ;
Set initial v = (x,q) (x ∈ RsN and q ∈ Rc(N−1));
Compute θ = θ(v), p = p(v),ys = ys(T ); Update F ;
Set vbest = v,θ best = θ , pbest = p,ybest

s = ys;
while k < kmax and exit = “false” do

Set k = k+1, It = 0, itno = 0, accept = “true”,
stop = “false”;

while It < Itmax and stop = “false” do
Set It = It +1, FIt = It/Itmax;
Compute Gθ ≈ ∇θ(v), Gp ≈ ∇p(v),
Gys ≈ ∇ys(T ) using (10);

if accept = “true” then
if θ ≤ τ1 and p≤ τ1 then

Set G = (1−FIt)Gθ +FItGys ;
M← θ ;

else
if p≤ τ1 and θ > τ1 then

Set G = Gθ ; M← θ ;
else

if θ ≤ τ1 and p > τ1 then
Set G = (1−FIt)Gp +FItGys ;
M← p;

else
Set G = (1−FIt)Gθ +FItGp;
M← θ ;

else
Set itno = itno +1;
if itno < (Itmax−1) then

Set G = (1−FIt)Gθ +FItGp;
M← θ ;

else
Set G = (1−FIt)Gys +FItGθ ;
M← ys;

Compute α ∈ (0,1] such that
M(v−αG)< M(v); Set
v̄ = v−αG, θ̄ = θ(v̄), p̄ = p(v̄), ȳs = ȳs(T );

if v̄ is acceptable to filter (9) then
Set v = v̄,θ = θ̄ , p = p̄,ys = ȳs;
Set accept = “true”; Update F ;
if v̄ is the best computed so far (11) then

vbest = v̄,θ best = θ̄ , pbest = p̄,ybest
s =

ȳs;
if (12) is satisfied then

Set stop = “true”, exit = “true”
(convergence);

Set stop = “true”;

else
Set accept = “false”;

Algorithm 2: Descent-filter algorithm
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is along the negative convex combination of the gradients
of p and ys and the line search forces the reduction on p.
Further details are shown in the Algorithm 2.

The new trial point is accepted for further improvement
if it satisfies the conditions to be acceptable to the current
filter (see conditions (9)), although each trial point is
considered as a new approximation to the optimal solution
only if it is better than the previously saved best point,
according to (11). In this situation, a new outer iteration
- indexed by k in Algorithm 2 - is carried out unless the
convergence conditions are satisfied (see (12) below). If the
trial point is accepted but it does not satisfy (11), θ , p and
ys are evaluated at the trial point and a new inner iteration
- indexed by It - is carried out. This inner iterative process
runs for a maximum of Itmax iterations.

The trial point might not be acceptable to the filter, in
which case another inner iteration is tried. If the number
of iterations with non acceptable trial points reaches Itmax,
the new direction is along the negative convex combination
of the gradients of θ and ys (with a reduction on ys in the
line search); otherwise, the negative convex combination of
the gradients of θ and p (with a reduction on θ in the line
search) is tested.

The convergence conditions are said to be satisfied at a
new trial point – the best point computed so far, vbest , – if

θ(vbest)< τ1 and p(vbest)< τ1 and perror < τ2, (12)

for small error tolerances τ1 > 0 and τ2 > 0, where

perror =


∣∣∣ybest

s − ypr.best
s

∣∣∣/ ∣∣ybest
s

∣∣ , if |ybest
s | ≥ 1E−10∣∣∣ybest

s − ypr.best
s

∣∣∣ , otherwise

and the superscript pr.best refers to the previous best point.
The outer iterative process also terminates if the number of
iterations exceeds kmax.

4 Numerical Experiments

The new direct MS method based on descent directions
and the filter methodology has been tested with six OCP.
The MatlabTM (Matlab is a registered trademark of the
MathWorks, Inc.) programming language is used to code
the algorithm and the tested problems. The numerical
experiments were carried out on a PC Intel Core i7–7500U
with 2.7GHz, 256Gb SSD and 16Gb of memory RAM.
The values for the parameters are set as follows: θmax =
1E + 03θ(v(0)), pmax = 1E + 03max{p(v(0)),1}, γ = ε =
1E−05, τ1 = 1E−04, τ2 = 1E−03, kmax = 750, Itmax = s.

Problem 1. A simple car model (Dubins car) is formulated
with three degrees of freedom where the car is imagined as
a rigid body that moves in a plane2 . The position of the
car is given by (x,y,β ) where x and y are the directions and
β is the angle with the x axis. The problem is to drive in

minimum time the car from a position to the origin:

min
u(t)

J(x(t),y(t),β (t),u(t))≡ T

s.t. x′(t) = cos(β (t))
y′(t) = sin(β (t))
β ′(t) = u(t), t ∈ [0,T ]
x(0) = 4, y(0) = 0, β (0) = π

2 , x(T ) = 0, y(T ) = 0,
|u(t)| ≤ 2, t ∈ [0,T ].

We show in Figures 1 and 2 respectively the optimal states
trajectory and control when N = 11 is considered. The
initial guesses were x(ti) = 2, y(ti) = 0, β (ti) = 1, u(ti) = 0.
The results are shown in Table 1. The table shows the values
of J, θ and p achieved at iteration k, as well as the number
of function evaluations, n f e, and the time in seconds, time.
Optimal solution reported2 is J∗ = 4.32174. The results are
considered quite satisfactory.
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Trajectories of state variables for Dubins car

x direction
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Figure 1: States trajectory for problem Dubins car.
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u

Optimal Control for Dubins car

Optimal control

Figure 2: Optimal control for problem Dubins car.

Problem 2. The resource allocation problem (R allocation)
goals the assignment of resources in minimum time2 :

min
u(t)

J(y(t),u(t))≡ T

s.t. y′1(t) = u1(t)y1(t)y2(t)
y′2(t) = u2(t)y1(t)y2(t), t ∈ [0,T ]
y1(0) = 1, y2(0) = 2, y1(T )y2(T ) = 10,
y1(t)≥ 0,y2(t)≥ 0, t ∈ [0,T ]
u1(t)+u2(t) = 1,u1(t)≥ 0,u2(t)≥ 0, t ∈ [0,T ].
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Table 1: Results obtained for the six tested problems.
k J θ p n f e time

Dubins car 1 4.7539 2.7003E +01 0.0000E +00
472 4.3337 9.9979E−05 1.2552E−05 53789 60.4

R allocation 1 0.5714 1.0484E +02 0.0000E +00
565 0.7215 9.8176E−05 1.6701E−05 53016 57.0

Tank reactor 1 0.0046 1.12E−02 0.0000E +00
176 0.0357 9.9503E−05 0.0000E +00 16320 18.0

obstacle 1 0.0000 2.4395E +00 0.0000E +00
341 2.3257 9.2300E−05 2.5452E−05 26208 27.1

750§ 2.4616 1.3062E−08 4.8821E−10 52702 53.7
masstravel 1 3.2633 6.9821E +01 1.6000E +02

69 6.0311 7.9855E−05 0.0000E +00 4830 5.3
128§ 6.0256 9.2528E−11 0.0000E +00 8963 9.7

trajectory 1 0.6457 1.6043E +01 1.0424E +01
56 0.2691 9.3978E−05 0.0000E +00 3922 4.4

307§ 0.2635 8.8477E−11 0.0000E +00 21494 22.5

Since u2 = 1− u1 the control vector can be reduced to a
scalar u1 ≡ u ∈ [0,1]. Using the initial guesses y1(ti) =
1, y2(ti) = 0, u(ti) = 0 and N = 11, the results are shown
in Table 1. Figures 3 and 4 show the optimal states y1, y2
and control u1, u2, respectively. Optimal solution reported2

is J∗ = 0.714118. The algorithm stopped at iteration 565
with a reasonably good solution.
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2

2.5
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Trajectories of state variables for R allocation

y
1
 state variable

y
2
 state variable

Figure 3: States trajectory for problem R allocation.

Problem 3. In a continuous stirred-tank chemical reactor
(Tank reactor), y1 represents the deviation from the
steady-state temperature, y2 represents the deviation from
the steady-state concentration and u is the effect of the
coolant flow on the chemical reaction9 :

min
u(t)

J ≡
∫ T

0
(y1(t)2 + y2(t)2 +Ru(t)2)dt

s.t. y′1(t) =−2(y1(t)+0.25)+(y2(t)+0.5)exp
(

25y1(t)
y1(t)+2

)
−(y1(t)+0.25)u(t)

y′2(t) = 0.5− y2(t)− (y2(t)+0.5)exp
(

25y1(t)
y1(t)+2

)
, t ∈ [0,T ]

y1(0) = 0.05, y2(0) = 0,

where T = 0.78 and R = 0.1 are considered. Optimal
solution reported9 is J∗ = 0.0268. Using the initial guesses
y1(ti) = 0.05, y2(ti) = 0, u(ti) = 0.75 and N = 11, the
results are shown in Table 1. Figures 5 and 6 show
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Figure 4: Optimal control for problem R allocation.

the optimal states y1,y2 and control u respectively. The
proposed strategy has produced again a reasonably good
solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
st

at
es

Trajectories of state variables for Tank reactor

y
1
 state variable

y
2
 state variable

Figure 5: States trajectory for problem Tank reactor.

Problem 4. The obstacle problem (obstacle) can be
reformulated as3 (with T = 2.9 fixed):

min
u(t)

J ≡ 5y1(T )2 + y2(T )2

s.t. y′1(t) = y2(t)
y′2(t) = u(t)−0.1(1+2y1(t)2)y2(t)
y1(0) = 1, y2(0) = 1,
1−9(y1(t)−1)2− (

y2(t)−0.4
0.3 )2 ≤ 0,

−0.8− y2(t)≤ 0, t ∈ [0,T ]
|u(t)| ≤ 1, t ∈ [0,T ].

Using the initial guesses y1(ti) = 0, y2(ti) = 0, u(ti) = 0
and N = 11, the results are shown in Table 1. This problem
is also solved with τ1 = 1E − 10, τ2 = 1E − 06 in (12) to
analyze the convergence issue (identified with § in Table 1).
Figures 7 and 8 show the optimal states y1,y2 and control u
respectively.

Problem 5. In the point mass maximum travel example
(masstravel), the force u(t) that moves a mass to the longest

6
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Figure 7: States trajectory for problem obstacle.

distance is to be found (with T = 10 fixed):

max
u(t)

J ≡
∫ T

0
v(t)dt

s.t. s′(t) = v(t)
v′(t) = u(t)− k0− k1v(t)− k2v(t)2, t ∈ [0,T ]
s(0) = 0, v(0) = 0, v(T ) = 0
|u(t)| ≤ g+ k3v(t)2, t ∈ [0,T ]

for k0 = 0.1, k1 = 0.2, k2 = 1, k3 = 1.
The results for N = 11 are shown in Table 1. The

initial guesses were s(ti) = 1, v(ti) = 2, u(ti) = 5. When
transforming the above form into the Mayer form, the
objective function value is just s(T ). To confirm
convergence, the problem is also solved with τ1 = 1E−10,
τ2 = 1E−06 in (12). Figures 9 and 10 contain the optimal
states trajectory and control respectively.
Problem 6. (trajectory) Find u(t) that minimizes J (with
T = 3 fixed)4 ,

min
u(t)

J ≡
∫ T

0
(y2(t)+u2(t))dt

s.t. y′(t) = (1+ y(t))y(t)+u(t), t ∈ [0,T ]
y(0) = 0.05, y(T ) = 0,
|y(t)| ≤ 1, t ∈ [0,T ]
|u(t)| ≤ 1, t ∈ [0,T ].

The obtained results for N = 11, with the initial guesses
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Figure 9: States trajectory for problem masstravel.

y(ti) = 1, u(ti) = 0, are displayed in Table 1. Results with
τ1 = 1E− 10, τ2 = 1E− 06 in (12) are also included. The
Figures 11 and 12 present the optimal state trajectory and
control respectively.

5 Conclusions

A first-order descent method based on a filter methodology
is proposed to solve a finite-dimensional nonlinear
optimization problem that arises from the use of a direct
multiple shooting method for OCP. The implemented filter
method relies on three measures. The two feasibility
measures are handled separately in order to give priority
to the minimization of the ‘continuity constraints’ violation
over the algebraic equality and inequality constraints
violation and the objective function. This priority is patent
by the use of search directions that are along either the
negative of the gradient of the ‘continuity constraints’
violation function or a negative convex combination of
that gradient and the gradient of the other constraints
violation, or the objective function. Numerical derivatives
are implemented in order to avoid computing the first
derivatives of the involved functions. The preliminary
numerical experiments carried out until now have shown
that the presented strategy is worth pursuing.

Issues related to the extension of the proposed method

7
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to solving retarded OCP with constant delays in the state
variables and in the control will require further work.
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