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a b s t r a c t 

In this work, a block coupled algorithm for the solution of laminar, incompressible viscoelastic flow problems on 

collocated grids is presented. The inter-equation coupling of the incompressible Cauchy momentum equations 

and extra-stress tensor constitutive equation is obtained by deriving a pressure equation in a procedure similar 

to a SIMPLE algorithm with the Rhie-Chow interpolation technique, and a special treatment of the diffusion term 

in the momentum equations added by the improved both-sides diffusion (iBSD) technique, recently developed 

for the finite volume method. Additionally, the velocity field is considered implicitly in the extra-stress tensor 

constitutive equation by expanding the convective term with a second order Taylor series expansion. All the 

equations, comprising the continuity, momentum and extra-stress tensor constitutive equations are block-coupled 

into a single system of equations. The implicitly coupled system of equations is solved by an algebraic multigrid 

algorithm, which allows to accelerate the calculation process. The performance improvements obtained with 

the new solver are studied for three 2D viscoelastic flow case studies, and are quantified in terms of number 

of iterations and CPU time required to reach the predefined convergence criteria. The presented algorithm has 

been implemented into the open-source computational library foam-extend, a community driven fork of the 

OpenFOAM software. 
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. Introduction 

Non-Newtonian fluids proliferate in several aspects of our daily life.

hey emerge in nature, where most of body fluids, like blood and mucus,

re of this type. They are also present in the plastics industry, being used

o produce bags, toys, technical profiles, car components, textiles, etc.,

hrough extrusion, injection molding, fiber spinning, and other tech-

ologies. Molten thermoplastics are viscoelastic fluids, constituting a

lass of the non-Newtonian group. For this type of fluids a non-linear

onstitutive equation that includes elastic effects needs to be consid-

red. For an isothermal problem, the set of highly coupled governing

quations, consisting of the continuity, the momentum and the consti-

utive equations, has to be solved [1] . 

To obtain an approximate solution for the governing equations re-

erred above, a discretization method which approximates the partial

ifferential equations by a system of algebraic equations for the vari-

bles at some set of discrete locations in space (elements/cells) and time

ave to be used. There are many approaches, but the most widely used
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nes are: the Finite Difference (FD), the Finite Volume (FV) and the Fi-

ite Element (FE) methods. The FV approach is perhaps the simplest to

mplement, and all terms that have to be approximated possess a clear

hysical meaning, which made it popular among engineers. On the basis

f the FV discretization is the variable arrangement, defining the stor-

ge location of the flow variables. Usually, the cell-centered variable

rrangement is preferred within the FV method, but vertex-centered

ariable arrangement has also been used [2] . In a vertex-centered ar-

angement the flow variables are stored at the vertices (or grid points),

ith control volumes constructed around the variable locations, by

sing the concept of a dual mesh and dual cells [2] . The major dis-

dvantage of this approach is the need to base the mesh on a set of

lement types for which a shape function can be defined. In the cell-

entered variable arrangement the variables and their related quantities

re stored at the centroids of the grid cells, which is more advantageous

s it leads to a more straightforward computer code implementation. 

After the discretization process has been chosen, another issue to be

ddressed to solve the Navier-Stokes equations is the coupling between

ressure and velocity fields. Generally, this can be done following either

 segregated or a coupled approach. In the segregated approach, the sys-

ems of equations for all variables are solved sequentially using fixed,

est-estimate values of other dependent variables [3–14] . This is in con-

rast with the coupled approach, in which the discretized equations of
anuary 2019 
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ll variables are solved simultaneously in a single system of equations

15–23] , where the explicit contributions are minimized. 

In the segregated approach the use of pressure-correction/fractional

tep schemes, to overcome the difficulty to couple pressure with veloc-

ty in time-dependent viscous incompressible flows, started in the late

960s with the ground breaking work of Chorin [3] and Temam [4] ,

ho developed the non-incremental pressure-correction scheme. How-

ver, the segregated approach acquired popularity in the early 1970s

y the Computational Fluid Dynamics (CFD) group at Imperial Col-

ege through the development of the SIMPLE algorithm (Semi-Implicit

ethod for Pressure Linked Equations) [5] for the solution of incom-

ressible flows. The major advantages of the SIMPLE algorithm were

he low memory requirement and coding simplicity, which were key

actors given the state of computer technology at that time [20] . Fur-

her developments were subsequently undertaken, which led to a family

f SIMPLE-like algorithms [6,9] , a review of which is reported in [14] .

dditionally, Issa [10] developed a non-iterative method for handling

he pressure-velocity coupling of the implicitly discretized fluid flow

quations. The method called PISO, for Pressure-Implicit with Splitting

f Operators, utilizes the splitting of operations in the solution of the dis-

retized momentum and pressure equations so that the fields obtained

t each time-step are close approximations of the exact solution. Later,

an Kan [11] developed a second-order (in space) incremental pressure-

orrection scheme, by considering the pressure gradient term explicitly

n the momentum equations and then correcting the velocity in the con-

inuity equation. More accurate (second-order in time) fractional step

chemes were proposed (see Dean and Glowinski [13] for a framework

nd Brown et al. [24] for a review). 

The previous formulations were prone to checkerboard patterns,

hich were visible between the pressure and velocity fields. This prob-

em can be fixed either by using both a staggered or a collocated grid

rrangement. In the staggered grid the velocity field is stored at cell

aces, while pressure and all other variables are stored at cell centroids.

n this arrangement, the pressure gradient is related with consecutive

rid points values, straddling the element face, without interpolation

eed. Nevertheless, adopting a staggered grid arrangement has its dis-

dvantages, besides the memory requirement to store a grid system for

very velocity component and another for pressure and other variables,

he staggering procedure itself becomes an issue for non-Cartesian grids,

nd even more complex if unstructured grids are considered. There-

ore, it turns out that the use of a cell-centered collocated grid sys-

em, where all variables are stored at the cell centroid, is a more at-

ractive solution, with the mass flux, a scalar value, being stored at the

lement faces. To assure the coupling between the velocity and pres-

ure fields, mass flux is computed using a custom interpolation of the

iscrete momentum equation, known as the Rhie-Chow [8] interpola-

ion. The work of these researchers and that of Hsu [7] provided a solu-

ion to the checkerboard problem and expanded the application area of

he SIMPLE-like algorithms by enabling the use of a collocated variable

rrangement [12] . 

Subsequently, the extension of the SIMPLE-like segregated algo-

ithms to a wide range of fluid physics was done, namely for non-

ewtonian viscoelastic [25–31] fluid flows. When solving numerically

he flow of viscoelastic fluids, the High Weissenberg Number Problem

HWNP) has been addressed over the last decades as one of the main

ifficulties to be handled. This is related to the loss of convergence of

he iterative procedure for solving the non-linear system of governing

ifferential equations, which is attributed to several causes (see [32–

7] ). Although a wide spectrum of techniques and problems have been

nvestigated, most of the published work deals with mixed finite ele-

ent methods [38–42] or in the FVM framework follow a segregated ap-

roach (e.g. log-conformation [43] ). However, the codes implemented

ith a segregated approach are prone to divergence [44] because each

eld is updated sequentially with different equations. Thus, require the

se of large relaxation factors (e.g. 0.3 for pressure and stress fields)

ncreasing the computational time, specially for viscoelastic flows. 
100 
Aiming to reduce the calculation time and tendency for divergence,

everal coupled algorithms for inelastic fluids have been reported in

he literature, which can be divided into two groups [20,21] . In the

rst group, the Navier-Stokes equations are discretized in a direct way,

.e., the continuity equation is enforced meaning that no pressure equa-

ion is derived [45–49] . Examples of these algorithms include the SIVA

simultaneous variable arrangement) algorithm of Caretto et al. [45] ,

he method of Braaten [46] , the SCGS (symmetric coupled Gauss Sei-

el) algorithm of Vanka [47] , the UVP method of Karki and Mongia

48] , and more recently the BIP (Body Implicit Procedure) of Mazhar

49] . The absence of a pressure equation in these algorithms leads to

n ill-conditioned system of equations, because of zero values present

n the main diagonal of the continuity equation [20] . In the second

roup, a pressure equation is derived, yielding an extended set of diago-

ally dominant equations [20] . Generally, two approaches are followed

ithin this second group. In the first [19] , a pressure equation involv-

ng pseudo-velocities, as in the SIMPLER algorithm [6] , is used. In the

econd, a segregated pressure equation is devised without adding new

ariables [15] , as in the SIMPLE algorithm [5] . Using the control vol-

me finite element method (CVFEM), Lonsdale [16] followed the sec-

nd approach and reported large convergence rates and good scaling

ehavior with dense meshes. However, the algorithm did not prove to

e robust [17] . In a subsequent work, using the Rhie-Chow interpola-

ion, Webster [17,18] improved Lonsdale’s algorithm [16] and showed a

ubstantial increase of convergence rate and decrease in computational

ime. In the context of the FVM formulation, Darwish et al. [20] imple-

ented a pressure-based coupled algorithm for the solution of incom-

ressible flow problems over structured grid systems in the open-source

omputational library OpenFOAM, which can be viewed as a continu-

tion of the work of Webster [18] . Their results showed that, for the

roblems presented, the CPU time per control volume is nearly inde-

endent of the grid size. Subsequently, the work was extended to un-

tructured grids [21] , and the results showed a substantial decrease in

PU time using the coupled approach when compared to the segregated

ethod, with the gains increasing with the grid size. Later, Chen and

rzekwas [22] developed a pressure-based coupled solution approach

or incompressible or subsonic compressible flows. The velocity, pres-

ure and temperature are obtained at the same time by solving simul-

aneously the Navier-Stokes momentum, the mass continuity and the

nergy equations. Again, excellent results were achieved in terms of nu-

erical convergence and reduction of CPU time. Finally, Mangani et al.

23] developed a block coupled algorithm for the solution of incom-

ressible turbulent flows. The simultaneous solution of momentum and

ontinuity equations is obtained by implicit block coupling of pressure

nd velocity, and a two-equation eddy viscosity turbulence model is

olved in a segregated fashion. The scalability of the coupled solution

lgorithm with increasing number of cells was found to be almost linear.

hese works showed that when dealing with inelastic fluids the compu-

ational time can be reduced using a fully coupled solver. Therefore, it

s worth to expand the method to viscoelastic flows for which the seg-

egated algorithm, employed until now, presents several stability issues

50] , that requires the use of large relaxation factors and limits the maxi-

um achievable Deborah/Weissenberg numbers if the log-conformation

pproach is not used [43] . 

In this paper a new numerical code is developed in the context of the

VM following a coupling approach to compute the flow of viscoelastic

uids. For the best of the authors knowledge, this is the first attempt to

xpand the concept of coupled solvers to viscoelastic flows. The code

s implemented in the open-source computational library foam-extend

51] , a community driven fork of the OpenFOAM software. The solu-

ion of the enlarged system of equations, composed by continuity, mo-

entum and extra-stress constitutive equations, is obtained using an

lgebraic multigrid solver. The performance of the coupled viscoelas-

ic solver is assessed with three case studies, namely the Oldroyd-B

oiseuille, the UCM lid-driven cavity and the LPTT 4:1 sudden contrac-

ion planar flows. The main target is to assess the performance, in terms



C. Fernandes, V. Vuk čevi ć and T. Uroi ć et al. Journal of Non-Newtonian Fluid Mechanics 265 (2019) 99–115 

o  

i  

p  

r  

t  

t  

d

 

t  

a  

w  

p  

n  

t  

t  

c

2

 

m  

a  

r

∇

w  

i  

t  

s  

e

τ

𝑓

w

i  

t

𝑓

w

 

s  

L  

a  

F  

b  

t

 

(  

(  

s  

i  

d  

m  

t  

o  

t

w  

𝜂  

l  

i  

b  

s  

S  

d

3

 

t  

a  

s

 

i  

e  

c  

t  

P  

g  

t  

t  

t  

s  

u  

m  

t  

M  

b  

i

3

 

t  

i

∫

 

v  

E

∫

w  

u

 

t  

o

𝑉

f the number of iterations and CPU time, of the coupled algorithm with

ncreasing mesh density and Deborah number, when compared with the

reviously developed segregated solver [50] based on the SIMPLE algo-

ithm. Additionally, for assessment purposes, the results obtained with

he developed code are compared with analytical solutions, results ob-

ained with the segregated viscoelastic solver [50] , and with some ad-

itional solutions presented in the scientific literature. 

The remainder sections of the paper are organized as follows. First,

he governing equations of the viscoelastic flow studied in this work

re presented. Then, the numerical procedure of the coupled algorithm

ill be described in detail, including the finite-volume discretization

rocess and the steps followed by the proposed coupled algorithm. Fi-

ally, the performance of the numerical code will be assessed using the

hree case studies mentioned on the last paragraph, aiming to highlight

he advantages of the coupled approach. The paper ends with the main

onclusions. 

. Governing equations 

The basic equations governing transient, incompressible and isother-

al laminar flows of viscoelastic fluids are the continuity, momentum

nd constitutive equations. The continuity and momentum equations

ead: 

 ⋅ ( 𝜌u ) = 0 (1) 

𝜕( 𝜌u ) 
𝜕𝑡 

+ ∇ ⋅ ( 𝜌u u ) + ∇ ⋅ ( 𝑝 I ) − ∇ ⋅ τ = 0 (2) 

here 𝜌 is the fluid density, u is the velocity vector, t is the time, p

s the pressure, I is the identity tensor and τ is the total extra-stress

ensor, which is split into solvent ( τ𝑆 ) and polymeric ( τ𝑃 ) contributions,

uch that τ = τ𝑆 + τ𝑃 . Both stress terms are obtained by the following

quations, which form the constitutive model 

𝑆 = 𝜂𝑆 
(
∇ u + ∇ u 

𝑇 
)

(3) 

( tr ( τ𝑃 )) τ𝑃 + 𝜆

( 

𝜕 τ𝑃 
𝜕𝑡 

+ ∇ ⋅ ( u τ𝑃 ) 
) 

= 𝜂𝑃 
(
∇ u + ∇ u 

𝑇 
)
+ 𝜆

(
τ𝑃 ⋅ ∇ u + ∇ u 

𝑇 ⋅ τ𝑃 
)

(4) 

here 𝜂S and 𝜂P are the solvent and polymeric viscosities, respectively, 𝜆

s the polymer relaxation time, and the stress function 𝑓 ( tr ( τ𝑃 )) follows

he linear form of the PTT model [52] : 

( tr ( τ𝑃 )) = 1 + 

𝜆𝜖

𝜂𝑃 
tr ( τ𝑃 ) (5) 

here 𝜖 is the extensibility parameter. 

The constitutive equation for the polymeric component of the extra-

tress tensor ( τ𝑃 ) is given by Eq. (4) . As previously referred, we apply the

PTT model [52] ( 𝜖 ≠0), the Oldroyd-B model [53] ( 𝜖 = 0 and 𝜂𝑆 ≠ 0)
nd the UCM model ( 𝜖 = 0 and 𝜂𝑆 = 0) as the viscoelastic fluid models.

or these models, a characteristic (solvent) viscosity ratio can be defined

y 𝛽 = 𝜂𝑆 ∕( 𝜂𝑆 + 𝜂𝑃 ) = 𝜂𝑆 ∕ 𝜂0 , known as retardation ratio, where 𝜂0 is the

otal viscosity in the limit of vanishing shear rate. 

The divergence of τ𝑆 will appear in the momentum equation

 Eq. (2) ) as a diffusive term (∇ ⋅ ( 𝜂𝑆 ∇ u )) to be discretized implicitly

note that ∇ ⋅ ( 𝜂𝑆 ∇ u 

𝑇 ) = 0 ). In the framework of the coupled viscoelastic

olver developed in this work, the divergence of τ𝑃 is discretized implic-

tly (differently from the usual segregated approach where this term is

iscretized explicitly). Additionally, a standard approach to avoid nu-

erical instabilities, which arise when simulating viscoelastic fluids, is

o add a stabilizing diffusive term (∇ ⋅ ( 𝜂⋆ ∇ u )) to both sides of Eq. (2) ,

ne being discretized implicitly (LHS) and the other explicitly (RHS), a

echnique known as both-sides diffusion (BSD) [54] , 
101 
𝜕( 𝜌u ) 
𝜕𝑡 

+ ∇ ⋅ ( 𝜌u u ) − ∇ ⋅
[
( 𝜂𝑆 + 𝜂⋆ )∇ u 

]
+ ∇ ⋅ ( 𝑝 I ) − ∇ ⋅ τ𝑃 

= − ∇ ⋅ ( 𝜂⋆ ∇ u ) (6) 

here 𝜂⋆ is a viscosity coefficient proportional to the polymer viscosity

P , here defined as 𝜂⋆ = 𝜂𝑃 . The new stress-velocity coupling formu-

ation developed by Fernandes et al. [50] is used to couple the veloc-

ty and stress fields. In practice, the stress-velocity coupling is achieved

y replacing the explicit diffusive term of the BSD technique with a

pecial second-order derivative of the velocity field, as described in

ection 3.1 , a methodology known as iBSD [50] , improved both-sides

iffusion. 

. Numerical method 

In this section, we will describe the mathematical formulation used

o setup a coupled solver procedure to solve the continuity, momentum

nd constitutive equations simultaneously. This will be split into several

ub-sections, one for each set of equations to be solved. 

In the segregated SIMPLE algorithm [5] , the solution is obtained by

teratively solving the momentum equations and a pressure correction

quation, which was derived from the continuity equation, while ac-

ounting for the effects of the pressure field on the momentum equations

hrough a correction of the velocity field. The convergence of the SIM-

LE algorithm is highly affected by the explicit treatment of the pressure

radient in the momentum equations and the velocity field in the con-

inuity equation. In the framework of the coupled solver developed in

his work both terms are treated in an implicit manner. In addition, to

ake into account the influence of the velocity field in the stress con-

titutive equation, the advective term in Eq. (4) is discretized implicitly

sing a Taylor series expansion, as described in Section 3.3 . The devised

ethodology is only explained and illustrated for structured grids, but

he implementation is general and can be used on unstructured grids.

oreover, to facilitate the understanding of the methodology this will

e described assuming a structured 2D grid, but the developed code was

mplemented in an unstructured 3D grid. 

.1. Discretization of the momentum equations 

Following the FVM procedure, the discretization starts by integrating

he momentum equations ( Eq. (6) ) over a general control volume V ,

llustrated in Fig. 1 , to yield 

𝑉 

𝜕( 𝜌u ) 
𝜕𝑡 

d 𝑉 + ∫𝑉 ∇ ⋅ ( 𝜌u u ) d 𝑉 − ∫𝑉 ∇ ⋅
[
( 𝜂𝑆 + 𝜂⋆ )∇ u 

]
d 𝑉 

+ ∫𝑉 ∇ ⋅ ( 𝑝 I ) d 𝑉 − ∫𝑉 ∇ ⋅ τ𝑃 d 𝑉 = − ∫𝑉 ∇ ⋅ ( 𝜂⋆ ∇ u ) d 𝑉 (7) 

Using the Gauss divergence theorem, the volume integrals of the ad-

ection, diffusion, pressure and polymeric extra-stress tensor terms in

q. (7) are transformed into surface integrals as 

𝑉 

𝜕( 𝜌u ) 
𝜕𝑡 

d 𝑉 + ∮𝑆 n ⋅ ( 𝜌u u ) d 𝑆 − ∮𝑆 n ⋅
[
( 𝜂𝑆 + 𝜂⋆ )∇ u 

]
d 𝑆 

+ ∮𝑆 n ⋅ ( 𝑝 I ) d 𝑆 − ∮𝑆 n ⋅ τ𝑃 d 𝑆 = − ∮𝑆 n ⋅ ( 𝜂⋆ ∇ u ) d 𝑆 (8) 

here S is the boundary of control volume V and n the outward pointing

nit vector normal to S . 

Then, evaluating the surface integrals using a second order integra-

ion scheme and a backward implicit Euler scheme to discretize the rate

f change term, the following semi-discretized equation is obtained 

 𝑃 𝜌𝑃 

u 𝑃 − u 

0 
𝑃 

Δ𝑡 
+ 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅ ( 𝜌u u ) 𝑓 − 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅
[
( 𝜂𝑆 + 𝜂⋆ )∇ u 

]
𝑓 

+ 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 𝑝 𝑓 − 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅ ( τ𝑃 ) 𝑓 = − 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅ ( 𝜂⋆ ∇ u ) 𝑓 (9) 
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Fig. 1. Schematic representation of the control volume V with centroid P 

(owner) and with neighboring control volumes with centroids F, G, H and I . 

The face shared by the control volumes with centroids P and F is represented by 

f. 𝜙 holds the value of the variable in the location indicated by the subscript. 
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here Δt is the time-step, the subscript P refers to values of the vari-

bles at control-volume with centroid P and volume V P , the superscript

 represents the previous time step value, nb refers to values at the faces

 , obtained by interpolation between P and its neighbors, and S 𝑓 is the

rea normal vector to face f . 

Finally, the equations are transformed into the algebraic form by

xpressing the variation in the dependent variable and its derivatives in

erms of the control volume P and its neighbors values, at the respective

entroids. The discretized algebraic governing equations are given by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑎 𝑢𝑢 
𝑃 
𝑢 𝑃 + 𝑎 𝑢𝑣 

𝑃 
𝑣 𝑃 + 𝑎 

𝑢𝑝 

𝑃 
𝑝 𝑃 + 𝑎 

𝑢 τ𝑥𝑥 
𝑃 

( τ𝑥𝑥 ) 𝑃 + 𝑎 
𝑢 τ𝑥𝑦 

𝑃 
( τ𝑥𝑦 ) 𝑃 

+ 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑢𝑢 
𝐹 
𝑢 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑢𝑣 
𝐹 
𝑣 𝐹 

+ 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑢𝑝 

𝐹 
𝑝 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑢 τ𝑥𝑥 
𝐹 

( τ𝑥𝑥 ) 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑢 τ𝑥𝑦 

𝐹 
( τ𝑥𝑦 ) 𝐹 = 𝑏 𝑢 

𝑃 

𝑎 𝑣𝑢 
𝑃 
𝑢 𝑃 + 𝑎 𝑣𝑣 

𝑃 
𝑣 𝑃 + 𝑎 

𝑣𝑝 

𝑃 
𝑝 𝑃 + 𝑎 

𝑣 τ𝑥𝑦 

𝑃 
( τ𝑥𝑦 ) 𝑃 + 𝑎 

𝑣 τ𝑦𝑦 

𝑃 
( τ𝑦𝑦 ) 𝑃 

+ 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑣𝑢 
𝐹 
𝑢 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑣𝑣 
𝐹 
𝑣 𝐹 

+ 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑣𝑝 

𝐹 
𝑝 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑣 τ𝑥𝑦 

𝐹 
( τ𝑥𝑦 ) 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑣 τ𝑦𝑦 

𝐹 
( τ𝑦𝑦 ) 𝐹 = 𝑏 𝑣 

𝑃 

(10)

here 𝑎 
𝜖𝜙

𝑃 
and 𝑎 

𝜖𝜙

𝐹 
are the owner and neighbor coefficients in the dis-

retized momentum equations representing the velocity component 𝜖

nd the variable 𝜙 interactions, respectively; 𝑏 𝜖
𝑃 

is the source term, with

he superscript 𝜖 representing the 𝜖 velocity component equation (for 2D

ases, ( u, v )), and NB ( P ) refers to the neighbors of the control-volume

ith centroid P . 

The first term in Eq. (9) , the rate of change ( rchg ), contributes both

or the diagonal of the system of equations and for the explicit term as: 

 

𝑢𝑢 
𝑃 ,𝑟𝑐ℎ𝑔 

= 𝑎 𝑣𝑣 
𝑃 ,𝑟𝑐ℎ𝑔 

= 

𝑉 𝑃 𝜌𝑃 

Δ𝑡 

𝑏 𝑢 
𝑃 ,𝑟𝑐ℎ𝑔 

= 

𝑉 𝑃 𝜌𝑃 𝑢 
0 
𝑃 

Δ𝑡 
, 𝑏 𝑣 

𝑃 ,𝑟𝑐ℎ𝑔 
= 

𝑉 𝑃 𝜌𝑃 𝑣 
0 
𝑃 

Δ𝑡 
(11)

The advection term in Eq. (9) is linearized by computing the mass

ow rate at control-volume face f ( ̇𝑚 𝑓 = S 𝑓 ⋅ ( 𝜌u ) 𝑓 ) using the previous

teration values. In this work two different discretization schemes are

sed to approximate the advection term: the first-order Upwind (UDS)

nd the high-order CUBISTA (third or second order in uniform or non-

niform grids, respectively) [55] differencing schemes. However, many
102 
igh-resolution schemes could be used. For the sake of readability the

iscretization procedure will be presented for the UDS scheme, but it

s important to stress that the methodology is independent of the dis-

retization scheme adopted. Hence, considering a first-order upwind dis-

retization, the coefficients of the advection ( adv ) term contribution for

he momentum equations are given by 

 

𝑢𝑢 
𝐹 ,𝑎𝑑𝑣 

= 𝑎 𝑣𝑣 
𝐹 ,𝑎𝑑𝑣 

= max ( ̇𝑚 𝑓 , 0) 

𝑎 𝑢𝑢 
𝑃 ,𝑎𝑑𝑣 

= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑢𝑢 
𝐹 ,𝑎𝑑𝑣 

, 𝑎 𝑣𝑣 
𝑃 ,𝑎𝑑𝑣 

= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑣𝑣 
𝐹 ,𝑎𝑑𝑣 

 

𝑢𝑣 
𝐹 ,𝑎𝑑𝑣 

= 𝑎 𝑣𝑢 
𝐹 ,𝑎𝑑𝑣 

= 0 

𝑎 𝑢𝑣 
𝑃 ,𝑎𝑑𝑣 

= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑢𝑣 
𝐹 ,𝑎𝑑𝑣 

, 𝑎 𝑣𝑢 
𝑃 ,𝑎𝑑𝑣 

= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑣𝑢 
𝐹 ,𝑎𝑑𝑣 

(12) 

here, for example, the superscript 𝜖𝜙 means the influence of the 𝜙

elocity component in the 𝜖 velocity component momentum equation.

he term max ( ̇𝑚 𝑓 , 0) represents the maximum of �̇� 𝑓 and 0, where the

ass flux is positive if it goes from owner to neighbor cells, i.e. leaves

he control-volume V . Some coefficients are null in Eq. (12) , but their

nclusion is necessary for the proper implementation of the algebraic

olver [20,21] . 

The implicit diffusion ( idiff) contribution, third term of Eq. (9) , is

iscretized taking a linear profile (see page 86 of [56] ) as 

 𝑓 ⋅
[
( 𝜂𝑆 + 𝜂⋆ )∇ u 

]
𝑓 
= ( 𝜂𝑆 + 𝜂⋆ ) 

S 𝑓 ⋅ S 𝑓 

d 𝑃𝐹 ⋅ S 𝑓 
( u 𝐹 − u 𝑃 ) (13) 

here d 𝑃𝐹 is the vector joining the centroids P and F (see Fig. 1 ). The

oefficients of that term for the momentum equations are given by 

 

𝑢𝑢 
𝐹 ,𝑖𝑑𝑖𝑓𝑓 

= 𝑎 𝑣𝑣 
𝐹 ,𝑖𝑑𝑖𝑓𝑓 

= −( 𝜂𝑆 + 𝜂⋆ ) 
S 𝑓 ⋅ S 𝑓 

d 𝑃𝐹 ⋅ S 𝑓 

𝑎 𝑢𝑢 
𝑃 ,𝑖𝑑𝑖𝑓𝑓 

= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑢𝑢 
𝐹 ,𝑖𝑑𝑖𝑓𝑓 

, 𝑎 𝑣𝑣 
𝑃 ,𝑖𝑑𝑖𝑓𝑓 

= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑣𝑣 
𝐹 ,𝑖𝑑𝑖𝑓𝑓 

 

𝑢𝑣 
𝐹 ,𝑖𝑑𝑖𝑓𝑓 

= 𝑎 𝑣𝑢 
𝐹 ,𝑖𝑑𝑖𝑓𝑓 

= 0 

𝑎 𝑢𝑣 
𝑃 ,𝑖𝑑𝑖𝑓𝑓 

= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑢𝑣 
𝐹 ,𝑖𝑑𝑖𝑓𝑓 

, 𝑎 𝑣𝑢 
𝑃 ,𝑖𝑑𝑖𝑓𝑓 

= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑣𝑢 
𝐹 ,𝑖𝑑𝑖𝑓𝑓 

(14) 

The pressure gradient term is discretized assuming a linear variation

etween the cell centers, thus the cell face pressure can be obtained by

inear interpolation 

 𝑓 = 𝑔 𝑓 𝑝 𝑃 + (1 − 𝑔 𝑓 ) 𝑝 𝐹 (15) 

here g f represents the linear interpolation weight. Hence, the coef-

cients of the pressure gradient term contribution for the momentum

quations are given by 

 

𝑢𝑝 

𝐹 
= 𝑆 𝑥 

𝑓 
(1 − 𝑔 𝑓 ) , 𝑎 

𝑣𝑝 

𝐹 
= 𝑆 

𝑦 

𝑓 
(1 − 𝑔 𝑓 ) 

 

𝑢𝑝 

𝑃 
= 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

𝑆 𝑥 
𝑓 
𝑔 𝑓 , 𝑎 

𝑣𝑝 

𝑃 
= 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

𝑆 
𝑦 

𝑓 
𝑔 𝑓 (16) 

here 𝑆 𝑥 
𝑓 

and 𝑆 
𝑦 

𝑓 
are, respectively, the x and y components of the surface

rea vector S 𝑓 . 

For the divergence of the extra-stress tensor term, the same approach

s the one applied for the pressure gradient term was used, and the face

xtra-stress tensor is obtained by linear interpolation of the values of

he two adjacent control volumes 

 τ𝑃 ) 𝑓 = 𝑔 𝑓 ( τ𝑃 ) 𝑃 + (1 − 𝑔 𝑓 )( τ𝑃 ) 𝐹 (17) 

ence, the coefficients of the extra-stress tensor divergence term contri-

ution for the momentum equations are given by 
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 τ𝑥𝑦 

 

( τ𝑥

 τ𝑦𝑦 

 

( τ𝑦

T

u

w

𝐵( 𝑃 ) 𝑎 
𝑢

𝐹

𝐵( 𝑃 ) 𝑎 
𝑣

𝐹

a

D

3

 

i

∫

 

𝑢 τ𝑥𝑥 
𝐹 

= − 𝑆 𝑥 
𝑓 
(1 − 𝑔 𝑓 ) , 𝑎 

𝑢 τ𝑥𝑦 

𝐹 
= − 𝑆 

𝑦 

𝑓 
(1 − 𝑔 𝑓 ) 

 

𝑢 τ𝑥𝑥 
𝑃 

= − 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

𝑆 𝑥 
𝑓 
𝑔 𝑓 , 𝑎 

𝑢 τ𝑥𝑦 

𝑃 
= − 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

𝑆 
𝑦 

𝑓 
𝑔 𝑓 

 

𝑣 τ𝑥𝑦 

𝐹 
= − 𝑆 𝑥 

𝑓 
(1 − 𝑔 𝑓 ) , 𝑎 

𝑣 τ𝑦𝑦 

𝐹 
= − 𝑆 

𝑦 

𝑓 
(1 − 𝑔 𝑓 ) 

 

𝑣 τ𝑥𝑦 

𝑃 
= − 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

𝑆 𝑥 
𝑓 
𝑔 𝑓 , 𝑎 

𝑣 τ𝑦𝑦 

𝑃 
= − 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

𝑆 
𝑦 

𝑓 
𝑔 𝑓 (18) 

Finally, the explicit diffusion term present in Eq. (9) is given by a spe-

ial second-order derivative, which contributes to the coupling between

he velocity and the extra-stress tensor fields, as described in detail in

ernandes et al. [50] . The discretization of this term is given by 

 𝑓 ⋅ ( 𝜂⋆ ∇ u ) 𝑓 

= S 𝑓 ⋅ 𝜂
⋆ 
[
𝑔 𝑓 (∇ u ) 0 

𝑃 
+ (1 − 𝑔 𝑓 )(∇ u ) 0 

𝐹 

]
= S 𝑓 ⋅ 𝜂

⋆ 

[ 

𝑔 𝑓 

( 

1 
𝑉 𝑃 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 u 

0 
𝑓 

) 

+ (1 − 𝑔 𝑓 ) 

( 

1 
𝑉 𝐹 

∑
𝑓= 𝑛𝑏 ( 𝐹 ) 

S 𝑓 u 

0 
𝑓 

) ] 

(19) 

here the face gradient of u 

0 , (∇ u ) 0 
𝑓 
, is calculated as a linear interpola-

ion of the cell-centred gradient of u 

0 for the two cells sharing the face

56] . The coefficients of the explicit diffusion ( ediff) term contribution

or the momentum equations are then given by 

 

𝑢 
𝑃 ,𝑒𝑑𝑖𝑓𝑓 

= − 𝜂⋆ 

[ 

𝑔 𝑓 

( 

1 
𝑉 𝑃 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

(
( 𝑆 𝑥 
𝑓 
) 2 + ( 𝑆 𝑦 

𝑓 
) 2 
)
𝑢 0 
𝑓 

) 

+ (1 − 𝑔 𝑓 ) 

( 

1 
𝑉 𝐹 

∑
𝑓= 𝑛𝑏 ( 𝐹 ) 

(
( 𝑆 𝑥 
𝑓 
) 2 + ( 𝑆 𝑦 

𝑓 
) 2 
)
𝑢 0 
𝑓 

) ] 

 

𝑣 
𝑃 ,𝑒𝑑𝑖𝑓𝑓 

= − 𝜂⋆ 

[ 

𝑔 𝑓 

( 

1 
𝑉 𝑃 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

(
( 𝑆 𝑥 
𝑓 
) 2 + ( 𝑆 𝑦 

𝑓 
) 2 
)
𝑣 0 
𝑓 

) 

+ (1 − 𝑔 𝑓 ) 

( 

1 
𝑉 𝐹 

∑
𝑓= 𝑛𝑏 ( 𝐹 ) 

(
( 𝑆 𝑥 
𝑓 
) 2 + ( 𝑆 𝑦 

𝑓 
) 2 
)
𝑣 0 
𝑓 

) ] 

(20) 

Notice that the owner and neighbor coefficients related to velocity

omponents interactions are given by the sum of the rate of change,

dvection and implicit diffusion term contributions 

 

 

 

 

 

 

 

 

 

 

 

𝑢 𝑃 + 

𝑎 
𝑢 τ𝑥𝑥 
𝑃 

( τ𝑥𝑥 ) 𝑃 + 𝑎 
𝑢 τ𝑥𝑦 

𝑃 
( τ𝑥𝑦 ) 𝑃 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 𝑎 

𝑢𝑢 
𝐹 
𝑢 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 𝑎 

𝑢 τ𝑥𝑥 
𝐹 

( τ𝑥𝑥 ) 𝐹 + 
∑
𝐹= 𝑁𝐵( 𝑃 ) 𝑎 

𝑢

𝐹

𝑎 𝑢𝑢 
𝑃 

+ 

𝑉 𝑃 

𝑎 𝑢𝑢 
𝑃 

𝜕𝑝 𝑃 

𝜕𝑥 
= 0 

𝑣 𝑃 + 

𝑎 
𝑣 τ𝑥𝑦 

𝑃 
( τ𝑥𝑦 ) 𝑃 + 𝑎 

𝑣 τ𝑦𝑦 

𝑃 
( τ𝑦𝑦 ) 𝑃 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 𝑎 

𝑣𝑣 
𝐹 
𝑣 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 𝑎 

𝑣 τ𝑥𝑦 

𝐹 
( τ𝑥𝑦 ) 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 𝑎 

𝑣

𝐹

𝑎 𝑣𝑣 
𝑃 

+ 

𝑉 𝑃 

𝑎 𝑣𝑣 
𝑃 

𝜕𝑝 𝑃 

𝜕𝑦 
= 0 

H 𝑃 [ 𝑢 ] = 

𝑎 
𝑢 τ𝑥𝑥 
𝑃 

( τ𝑥𝑥 ) 𝑃 + 𝑎 
𝑢 τ𝑥𝑦 

𝑃 
( τ𝑥𝑦 ) 𝑃 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 𝑎 

𝑢𝑢 
𝐹 
𝑢 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 𝑎 

𝑢 τ𝑥𝑥 
𝐹 

( τ𝑥𝑥 ) 𝐹 + 
∑
𝐹= 𝑁

𝑎 𝑢𝑢 
𝑃 

H 𝑃 [ 𝑣 ] = 

𝑎 
𝑣 τ𝑥𝑦 

𝑃 
( τ𝑥𝑦 ) 𝑃 + 𝑎 

𝑣 τ𝑦𝑦 

𝑃 
( τ𝑦𝑦 ) 𝑃 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 𝑎 

𝑣𝑣 
𝐹 
𝑣 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 𝑎 

𝑣 τ𝑥𝑦 

𝐹 
( τ𝑥𝑦 ) 𝐹 + 

∑
𝐹= 𝑁

𝑎 𝑣𝑣 
𝑃 
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𝜖𝜙
𝛼

= 𝑎 
𝜖𝜙

𝛼,𝑟𝑐ℎ𝑔 
+ 𝑎 

𝜖𝜙

𝛼,𝑎𝑑𝑣 
+ 𝑎 

𝜖𝜙

𝛼,𝑖𝑑𝑖𝑓𝑓 
(21)

here 𝜖 and 𝜙 can be either u or v and 𝛼 can be either P or F . Addi-

ionally, the explicit terms of the momentum equations are given by the

um of the rate of change and explicit diffusion terms 

 

𝜖
𝑃 
= 𝑏 𝜖

𝑃 ,𝑟𝑐ℎ𝑔 
+ 𝑏 𝜖

𝑃 ,𝑒𝑑𝑖𝑓𝑓 
(22) 

here again 𝜖 can be either u or v . 

For the discretization of the continuity equation presented in

ection 3.2 the Rhie-Chow [8] interpolation technique is used. For that

erivation it is suitable to write the discretized momentum equations,

q. (10) , for each cell as 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑎 𝑢𝑢 
𝑃 
𝑢 𝑃 + 𝑎 𝑢𝑣 

𝑃 
𝑣 𝑃 + 𝑎 

𝑢 τ𝑥𝑥 

𝑃 
( τ𝑥𝑥 ) 𝑃 + 𝑎 

𝑢 τ𝑥𝑦 

𝑃 
( τ𝑥𝑦 ) 𝑃 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑢𝑢 
𝐹 
𝑢 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑢𝑣 
𝐹 
𝑣 𝐹 

+ 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑢 τ𝑥𝑥 

𝐹 
( τ𝑥𝑥 ) 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑢 τ𝑥𝑦 

𝐹 
( τ𝑥𝑦 ) 𝐹 + 𝑉 𝑃 

𝜕𝑝 𝑃 

𝜕𝑥 
= 𝑏 𝑢 

𝑃 

𝑎 𝑣𝑢 
𝑃 
𝑢 𝑃 + 𝑎 𝑣𝑣 

𝑃 
𝑣 𝑃 + 𝑎 

𝑣 τ𝑥𝑦 

𝑃 
( τ𝑥𝑦 ) 𝑃 + 𝑎 

𝑣 τ𝑦𝑦 

𝑃 
( τ𝑦𝑦 ) 𝑃 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑣𝑢 
𝐹 
𝑢 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 𝑣𝑣 
𝐹 
𝑣 𝐹 

+ 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑣 τ𝑥𝑦 

𝐹 
( τ𝑥𝑦 ) 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑣 τ𝑦𝑦 

𝐹 
( τ𝑦𝑦 ) 𝐹 + 𝑉 𝑃 

𝜕𝑝 𝑃 

𝜕𝑦 
= 𝑏 𝑣 

𝑃 

(23) 

here the pressure gradient term, assumed to be constant on each

ell, is explicitly shown. Since the cross-coupling velocity coefficients

re null (see Eqs. (12) and (14) ), Eq. (23) can equivalently be written

s 

𝑦 ) 𝐹 − 𝑏 𝑢 𝑃 

𝑦 ) 𝐹 − 𝑏 𝑣 𝑃 

(24) 

his leads to the momentum equations written in operator form as 

 𝑃 + H 𝑃 [ u ] = −∇ 𝑝 𝑃 ⋅ D 𝑃 (25) 

ith each component of H 𝑃 [ u ] given by 

 τ𝑥𝑦 

 

( τ𝑥𝑦 ) 𝐹 − 𝑏 𝑢 𝑃 

 τ𝑦𝑦 

 

( τ𝑦𝑦 ) 𝐹 − 𝑏 𝑣 𝑃 

(26) 

nd D 𝑃 defined as 

 𝑃 = 

⎛ ⎜ ⎜ ⎝ 
𝑉 𝑃 

𝑎 𝑢𝑢 
𝑃 

0 

0 𝑉 𝑃 

𝑎 𝑣𝑣 
𝑃 

⎞ ⎟ ⎟ ⎠ (27) 

.2. Discretization of the continuity equation 

The discretization of the continuity equation, Eq. (1) , starts with the

ntegration over the control volume V to yield 

𝑉 

∇ ⋅ ( 𝜌u ) d 𝑉 = 0 (28) 
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Again, using the divergence theorem, the volume integral is trans-

ormed into a surface integral as 

𝑆 

n ⋅ ( 𝜌u ) d 𝑆 = 0 (29)

Hence, the semi-discretized form of the continuity equation is given

y ∑
= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅ ( 𝜌u ) 𝑓 = 0 (30)

In a collocated framework, the velocity at the face is obtained by re-

onstructing a pseudo-momentum equation at the face from the momen-

um equations of the straddling cells P and F , known as the Rhie-Chow

nterpolation [8] . Using Eq. (25) , the momentum equations of cells P

nd F are given by 

 𝑃 + H 𝑃 [ u ] = −∇ 𝑝 𝑃 ⋅ D 𝑃 and u 𝐹 + H 𝐹 [ u ] = −∇ 𝑝 𝐹 ⋅ D 𝐹 (31)

ence, the velocity at face f , u 𝑓 , straddling the control volumes P and F

an be computed by a pseudo-momentum equation as 

 𝑓 + H 𝑓 [ u ] = −∇ 𝑝 𝑓 ⋅ D 𝑓 (32)

n the spirit of a collocated FVM approach, where the variables are

tored at the cell centers, a simple linear interpolation profile is used

o compute the coefficients of Eq. (32) , 

 𝑓 [ u ] = 𝑔 𝑓 H 𝑃 [ u ] + (1 − 𝑔 𝑓 ) H 𝐹 [ u ] = H 𝑓 [ u ] 

 𝑓 = 𝑔 𝑓 D 𝑃 + (1 − 𝑔 𝑓 ) D 𝐹 = D 𝑓 

(33)

ubstituting Eq. (33) in Eq. (32) we obtain 

 𝑓 + H 𝑓 [ u ] = −∇ 𝑝 𝑓 ⋅ D 𝑓 (34)

he next step is to write the coefficient H 𝑓 [ u ] in terms of velocity and

ressure. Combining Eqs. (31) and (33) we obtain 

 𝑓 [ u ] = 𝑔 𝑓 
[
− u 𝑃 − ∇ 𝑝 𝑃 ⋅ D 𝑃 

]
+ (1 − 𝑔 𝑓 ) 

[
− u 𝐹 − ∇ 𝑝 𝐹 ⋅ D 𝐹 

]
= − u 𝑓 − ∇ 𝑝 𝑓 ⋅ D 𝑓 (35)

here u 𝑓 = 𝑔 𝑓 u 𝑃 + (1 − 𝑔 𝑓 ) u 𝐹 . Hence, the face velocity vector is ob-

ained by substituting Eq. (35) in Eq. (34) as 

 𝑓 = u 𝑓 − 

(
∇ 𝑝 𝑓 − ∇ 𝑝 𝑓 

)
⋅ D 𝑓 (36)

he main feature of Eq. (36) is the dependence of the face velocity on

he pressure of the adjacent cells, which avoids checkerboard patterns

etween velocity and pressure fields [20] . 

Substituting the face velocity, Eq. (36) , obtained by Rhie-Chow in-

erpolation, in Eq. (30) , the continuity equation becomes ∑
= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅
{ 

𝜌𝑓 

[
u 𝑓 − 

(
∇ 𝑝 𝑓 − ∇ 𝑝 𝑓 

)
⋅ D 𝑓 

]} 

= 0 (37)

hich can be expanded into ∑
= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅
[
𝜌𝑓 

(
−∇ 𝑝 𝑓 ⋅ D 𝑓 

)]
+ 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅
(
𝜌𝑓 u 𝑓 

)
= 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅
[
𝜌𝑓 

(
− ∇ 𝑝 𝑓 ⋅ D 𝑓 

)]
(38)

This leads to the algebraic equation with the following form: 

 

𝑝𝑝 

𝑃 
𝑝 𝑃 + 𝑎 

𝑝𝑢 

𝑃 
𝑢 𝑃 + 𝑎 

𝑝𝑣 

𝑃 
𝑣 𝑃 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑝𝑝 

𝐹 
𝑝 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑝𝑢 

𝐹 
𝑢 𝐹 

+ 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑝𝑣 

𝐹 
𝑣 𝐹 = 𝑏 

𝑝 

𝑃 
(39)

here 𝑎 
𝑝𝜙

𝑃 
and 𝑎 

𝑝𝜙

𝐹 
are respectively, the owner and neighbor coefficients

n the discretized continuity equation representing the 𝜙 influence; and
104 
 

𝑝 

𝑃 
is the source term, with the superscript p representing the pressure

quation. 

The pressure gradient part is discretized implicitly, similarly to what

as done with the implicit diffusion term in the momentum equations

see page 86 of [56] ). Hence, 

 𝑓 

[
⋅𝜌𝑓 

(
−∇ 𝑝 𝑓 ⋅ D 𝑓 

)]
= − 𝜌𝑓 

S 𝑓 ⋅ ( S 𝑓 ⋅ D 𝑓 ) 
d 𝑃𝐹 ⋅ S 𝑓 

( 𝑝 𝐹 − 𝑝 𝑃 ) (40) 

he coefficients of the implicit pressure gradient term for the continuity

quation are given by 

 

𝑝𝑝 

𝐹 
= − 𝜌𝑓 

S 𝑓 ⋅( S 𝑓 ⋅D 𝑓 ) 
d 𝑃𝐹 ⋅S 𝑓 

 

𝑝𝑝 

𝑃 
= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
𝑝𝑝 

𝐹 ,𝑖𝑝𝑔𝑟𝑎𝑑 

(41) 

The second term of Eq. (38) corresponding to the velocity contribu-

ion yields the following implicit coefficients 

 

𝑝𝑢 

𝐹 
= 𝑆 𝑥 

𝑓 
𝜌𝑓 (1 − 𝑔 𝑓 ) , 𝑎 

𝑝𝑣 

𝐹 
= 𝑆 

𝑦 

𝑓 
𝜌𝑓 (1 − 𝑔 𝑓 ) 

 

𝑝𝑢 

𝑃 
= 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

𝑆 𝑥 
𝑓 
𝜌𝑓 𝑔 𝑓 , 𝑎 

𝑝𝑣 

𝑃 
= 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

𝑆 
𝑦 

𝑓 
𝜌𝑓 𝑔 𝑓 

(42) 

Finally, the coefficients of the explicit pressure gradient term contri-

ution for the continuity equation are given by 

 

𝑝 

𝑃 
= 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅
[
𝜌𝑓 

(
− ∇ 𝑝 𝑓 ⋅ D 𝑓 

)]
(43) 

.3. Discretization of the constitutive equation 

The constitutive equation, Eq. (4) , is first divided by the relaxation

ime, 𝜆, yielding 

 

1 
𝜆
+ 

𝜖

𝜂𝑃 
tr ( τ𝑃 ) 

) 

τ𝑃 + 

𝜕 τ𝑃 
𝜕𝑡 

+ ∇ ⋅ ( u τ𝑃 ) = 

𝜂𝑃 

𝜆

(
∇ u + ∇ u 

𝑇 
)

+ τ𝑃 ⋅ ∇ u + ∇ u 

𝑇 ⋅ τ𝑃 (44) 

n the framework of the viscoelastic coupled solver here developed, the

dvective term in Eq. (44) is expanded in a way so that the velocity field

ould appear implicitly in the stress equation. For that, a second order

aylor series approximation for the functional 𝑓 ( u , τ𝑃 ) = u τ𝑃 is used

57] , to obtain 

 ⋅ ( u τ𝑃 ) = ∇ ⋅ ( τ0 
𝑃 

u ) + ∇ ⋅ ( u 

0 τ𝑃 ) − ∇ ⋅ ( u 

0 τ0 
𝑃 
) (45) 

ence, the constitutive equation, Eq. (44) , is rewritten as 

 

1 
𝜆
+ 

𝜖

𝜂𝑃 
tr ( τ𝑃 ) 

) 

τ𝑃 + 

𝜕 τ𝑃 
𝜕𝑡 

+ ∇ ⋅ ( τ0 
𝑃 

u ) + ∇ ⋅ ( u 

0 τ𝑃 ) 

= 

𝜂𝑃 

𝜆

(
∇ u + ∇ u 

𝑇 
)
+ τ𝑃 ⋅ ∇ u + 

+ ∇ u 

𝑇 ⋅ τ𝑃 + ∇ ⋅ ( u 

0 τ0 
𝑃 
) (46) 

hich integrated over the control volume V gives 

 

1 
𝜆
+ 

𝜖

𝜂𝑃 
tr ( τ𝑃 ) 

) 

∫𝑉 τ𝑃 d 𝑉 + ∫𝑉 
𝜕 τ𝑃 
𝜕𝑡 

d 𝑉 + ∫𝑉 ∇ ⋅ ( τ0 
𝑃 

u ) d 𝑉 

+ ∫𝑉 ∇ ⋅ ( u 

0 τ𝑃 ) d 𝑉 

= 

𝜂𝑃 

𝜆 ∫𝑉 
(
∇ u + ∇ u 

𝑇 
)
d 𝑉 + ∫𝑉 

(
τ𝑃 ⋅ ∇ u + ∇ u 

𝑇 ⋅ τ𝑃 
)
d 𝑉 

+ ∫𝑉 ∇ ⋅ ( u 

0 τ0 
𝑃 
) d 𝑉 (47) 
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Again, using the Gauss divergence theorem, the volume integrals of

he flux divergences are transformed into surface integrals as 

 

1 
𝜆
+ 

𝜖

𝜂𝑃 
tr ( τ𝑃 ) 

) 

∫𝑉 τ𝑃 d 𝑉 + ∫𝑉 
𝜕 τ𝑃 
𝜕𝑡 

d 𝑉 + ∮𝑆 n ⋅ ( τ0 
𝑃 

u ) d 𝑆 

+ ∮𝑆 n ⋅ ( u 

0 τ𝑃 ) d 𝑆 

= 

𝜂𝑃 

𝜆 ∫𝑉 
(
∇ u + ∇ u 

𝑇 
)
d 𝑉 + ∫𝑉 

(
τ𝑃 ⋅ ∇ u + ∇ u 

𝑇 ⋅ τ𝑃 
)
d 𝑉 

+ ∮𝑆 n ⋅ ( u 

0 τ0 
𝑃 
) d 𝑆 (48) 

Hence, the semi-discretized form of the extra-stress tensor constitu-

ive equation is given by 

 𝑃 

( 

1 
𝜆
+ 

𝜖

𝜂𝑃 
tr ( τ0 

𝑃 
) 
) 

τ𝑃 + 𝑉 𝑃 

τ𝑃 − τ0 
𝑃 

Δ𝑡 
+ 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅ ( τ0 𝑃 u ) 𝑓 

+ 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅ ( u 

0 τ𝑃 ) 𝑓 

= 

𝜂𝑃 𝑉 𝑃 

𝜆

(
∇ u + ∇ u 

𝑇 
)
+ 𝑉 𝑃 

(
τ𝑃 ⋅ ∇ u + ∇ u 

𝑇 ⋅ τ𝑃 
)
+ 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅ ( u 

0 τ0 
𝑃 
) 𝑓 

(49) 

Finally, the equation is transformed into an algebraic equation by
xpressing the variable values and derivatives in terms of the owner
 P ) and neighbor ( F ) cells values. The discretized algebraic governing
quation is given by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑎 
τ𝑥𝑥 τ𝑥𝑥 

𝑃 
( τ𝑥𝑥 ) 𝑃 + 𝑎 

τ𝑥𝑥 𝑢 

𝑃 
𝑢 𝑃 + 𝑎 

τ𝑥𝑥 𝑣 

𝑃 
𝑣 𝑃 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑥 τ𝑥𝑥 

𝐹 
( τ𝑥𝑥 ) 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑥 𝑢 

𝐹 
𝑢 𝐹 

+ 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑥 𝑣 

𝐹 
𝑣 𝐹 = 𝑏 

τ𝑥𝑥 

𝑃 

𝑎 
τ𝑥𝑦 τ𝑥𝑦 

𝑃 
( τ𝑥𝑦 ) 𝑃 + 𝑎 

τ𝑥𝑦 𝑢 

𝑃 
𝑢 𝑃 + 𝑎 

τ𝑥𝑦 𝑣 

𝑃 
𝑣 𝑃 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑦 τ𝑥𝑦 

𝐹 
( τ𝑥𝑦 ) 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑦 𝑢 

𝐹 
𝑢 𝐹 

+ 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑦 𝑣 

𝐹 
𝑣 𝐹 = 𝑏 

τ𝑥𝑦 

𝑃 

𝑎 
τ𝑦𝑦 τ𝑦𝑦 

𝑃 
( τ𝑦𝑦 ) 𝑃 + 𝑎 

τ𝑦𝑦 𝑢 

𝑃 
𝑢 𝑃 + 𝑎 

τ𝑦𝑦 𝑣 

𝑃 
𝑣 𝑃 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑦𝑦 τ𝑦𝑦 

𝐹 
( τ𝑦𝑦 ) 𝐹 + 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑦𝑦 𝑢 

𝐹 
𝑢 𝐹 

+ 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑦𝑦 𝑣 

𝐹 
𝑣 𝐹 = 𝑏 

τ𝑦𝑦 

𝑃 

(50) 

here 𝑎 𝜖𝜙
𝑃 

and 𝑎 𝜖𝜙
𝐹 

are the owner and neighbor coefficients in the dis-

retized polymeric extra-stress tensor equations representing the stress

omponent 𝜖 and the variable 𝜙 interactions, respectively; and 𝑏 𝜖
𝑃 

is the

ource term, with the superscript representing the 𝜖 polymeric extra-

tress tensor component equation (for 2D cases 𝜖 = { τ𝑥𝑥 , τ𝑥𝑦 , τ𝑦𝑦 } , be-

ause the tensor τ𝑃 is symmetric, which means that τ𝑥𝑦 = τ𝑦𝑥 ). 

The first term ( stress ) in Eq. (49) contributes to the diagonal of the

ystem of equations as 

 

τ𝑥𝑥 τ𝑥𝑥 
𝑃 ,𝑠𝑡𝑟𝑒𝑠𝑠 

= 𝑎 
τ𝑥𝑦 τ𝑥𝑦 

𝑃 ,𝑠𝑡𝑟𝑒𝑠𝑠 
= 𝑎 

τ𝑦𝑦 τ𝑦𝑦 

𝑃 ,𝑠𝑡𝑟𝑒𝑠𝑠 
= 𝑉 𝑃 

( 

1 
𝜆
+ 

𝜖

𝜂𝑃 
tr ( τ0 

𝑃 
) 
) 

(51) 

The second term in Eq. (49) , the rate of change ( rchg ), contributes

o the diagonal of the system of equations as 

 

τ𝑥𝑥 τ𝑥𝑥 
𝑃 ,𝑟𝑐ℎ𝑔 

= 𝑎 
τ𝑥𝑦 τ𝑥𝑦 

𝑃 ,𝑟𝑐ℎ𝑔 
= 𝑎 

τ𝑦𝑦 τ𝑦𝑦 

𝑃 ,𝑟𝑐ℎ𝑔 
= 

𝑉 𝑃 

Δ𝑡 
(52) 

dditionally, the second term has an explicit contribution, which will

e given below in Eq. (55) . 

The third term in Eq. (49) is discretized using a first-order Upwind

cheme or a high-order CUBISTA scheme. Again, for the sake of read-

bility, only the discretization with the Upwind scheme is shown. Hence,

he coefficients of this implicit velocity term contribution for each com-

onent of the stress constitutive equations are given by 

 

τ𝑥𝑥 𝑢 

𝐹 
= max ( 𝑆 𝑥 

𝑓 
( τ0 
𝑥𝑥 
) 𝑓 , 0) , 𝑎 

τ𝑥𝑥 𝑣 

𝐹 
= max ( 𝑆 𝑦 

𝑓 
( τ0 
𝑥𝑥 
) 𝑓 , 0) 
105 
 

τ𝑥𝑥 𝑢 

𝑃 
= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑥 𝑢 

𝐹 
, 𝑎 

τ𝑥𝑥 𝑣 

𝑃 
= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑥 𝑣 

𝐹 

𝑎 
τ𝑥𝑦 𝑢 

𝐹 
= max ( 𝑆 𝑥 

𝑓 
( τ0 
𝑥𝑦 
) 𝑓 , 0) , 𝑎 

τ𝑥𝑦 𝑣 

𝐹 
= max ( 𝑆 𝑦 

𝑓 
( τ0 
𝑥𝑦 
) 𝑓 , 0) 

𝑎 
τ𝑥𝑦 𝑢 

𝑃 
= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑦 𝑢 

𝐹 
, 𝑎 

τ𝑥𝑦 𝑣 

𝑃 
= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑦 𝑣 

𝐹 

𝑎 
τ𝑦𝑦 𝑢 

𝐹 
= max ( 𝑆 𝑥 

𝑓 
( τ0 
𝑦𝑦 
) 𝑓 , 0) , 𝑎 

τ𝑦𝑦 𝑣 

𝐹 
= max ( 𝑆 𝑦 

𝑓 
( τ0 
𝑦𝑦 
) 𝑓 , 0) 

𝑎 
τ𝑦𝑦 𝑢 

𝑃 
= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑦𝑦 𝑢 

𝐹 
, 𝑎 

τ𝑦𝑦 𝑣 

𝑃 
= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑦𝑦 𝑣 

𝐹 
(53) 

here we can define the volumetric flux �̇� τ𝑃 = S 𝑓 ⋅ ( τ0 𝑃 ) 𝑓 , which will

ive the influence of each velocity component ( u, v ) in each component

f the stress constitutive equations. 

The fourth term in Eq. (49) is discretized also using the first-order

pwind scheme or the CUBISTA scheme. Hence, the coefficients of the

xtra-stress tensor advection ( estadv ) term contribution for the stress

onstitutive equations are given by 

 

τ𝑥𝑥 τ𝑥𝑥 
𝐹 ,𝑒𝑠𝑡𝑎𝑑𝑣 

= 𝑎 
τ𝑥𝑦 τ𝑥𝑦 

𝐹 ,𝑒𝑠𝑡𝑎𝑑𝑣 
= 𝑎 

τ𝑦𝑦 τ𝑦𝑦 

𝐹 ,𝑒𝑠𝑡𝑎𝑑𝑣 
= max ( 𝑆 𝑥 

𝑓 
𝑢 0 
𝑓 
+ 𝑆 

𝑦 

𝑓 
𝑣 0 
𝑓 
, 0) 

 

τ𝑥𝑥 τ𝑥𝑥 
𝑃 ,𝑒𝑠𝑡𝑎𝑑𝑣 

= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑥 τ𝑥𝑥 
𝐹 ,𝑒𝑠𝑡𝑎𝑑𝑣 

 

τ𝑥𝑦 τ𝑥𝑦 

𝑃 ,𝑒𝑠𝑡𝑎𝑑𝑣 
= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑥𝑦 τ𝑥𝑦 

𝐹 ,𝑒𝑠𝑡𝑎𝑑𝑣 

 

τ𝑦𝑦 τ𝑦𝑦 

𝑃 ,𝑒𝑠𝑡𝑎𝑑𝑣 
= − 

∑
𝐹= 𝑁𝐵( 𝑃 ) 

𝑎 
τ𝑦𝑦 τ𝑦𝑦 

𝐹 ,𝑒𝑠𝑡𝑎𝑑𝑣 
(54) 

here we can define the volumetric flux �̇� u = S 𝑓 ⋅ u 

0 
𝑓 
, which will give

he influence of each stress component in the respective component of

he stress constitutive equations. 

All the terms on the right hand side of Eq. (49) are explicitly dis-

retized, i.e., there is no implicit interaction from other stress compo-

ents in the 𝜖 constitutive equation, except the 𝜖 component (see first

erms of each equation in Eq. (50) ). This fact does not limit the ap-

licability of the numerical algorithm to other differential viscoelastic

onstitutive models (because these terms are explicitly discretized and

ot neglected), but in future studies the efficiency of the algorithm is ex-

ected to increase if the referred terms are implicitly discretized. Thus,

he coefficients of the explicit extra-stress tensor terms contribution for

he stress constitutive equations are given by 

 

τ𝑥𝑥 
𝑃 

= 

𝑉 𝑃 τ
0 
𝑥𝑥 

Δ𝑡 
+ 

2 𝜂𝑃 𝑉 𝑃 
𝜆

𝜕𝑢 0 

𝜕𝑥 
+ 2 𝑉 𝑃 

( 

τ0 
𝑥𝑥 

𝜕𝑢 0 

𝜕𝑥 
+ τ0 

𝑥𝑦 

𝜕𝑢 0 

𝜕𝑦 

) 

+ 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅ ( u 

0 τ0 
𝑥𝑥 
) 𝑓 

𝑏 
τ𝑥𝑦 

𝑃 
= 

𝑉 𝑃 τ
0 
𝑥𝑦 

Δ𝑡 
+ 

𝜂𝑃 𝑉 𝑃 

𝜆

( 

𝜕𝑣 0 

𝜕𝑥 
+ 

𝜕𝑢 0 

𝜕𝑦 

) 

+ 𝑉 𝑃 

( 

τ0 
𝑥𝑥 

𝜕𝑣 0 

𝜕𝑥 
+ τ0 

𝑥𝑦 

( 

𝜕𝑣 0 

𝜕𝑦 
+ 

𝜕𝑢 0 

𝜕𝑥 

) 

+ τ0 
𝑦𝑦 

𝜕𝑢 0 

𝜕𝑦 

) 

+ 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅ ( u 

0 τ0 
𝑥𝑦 
) 𝑓 

𝑏 
τ𝑦𝑦 

𝑃 
= 

𝑉 𝑃 τ
0 
𝑦𝑦 

Δ𝑡 
+ 

2 𝜂𝑃 𝑉 𝑃 
𝜆

𝜕𝑣 0 

𝜕𝑦 
+ 2 𝑉 𝑃 

( 

τ0 
𝑥𝑦 

𝜕𝑣 0 

𝜕𝑥 
+ τ0 

𝑦𝑦 

𝜕𝑣 0 

𝜕𝑦 

) 

+ 

∑
𝑓= 𝑛𝑏 ( 𝑃 ) 

S 𝑓 ⋅ ( u 

0 τ0 
𝑦𝑦 
) 𝑓 (55) 

Notice that the owner and neighbor coefficients related to extra-

tress tensor component interactions are given by the sum of the stress,

ate of change and advection terms contributions 

 

𝜖𝜙
𝛼

= 𝑎 
𝜖𝜙

𝛼,𝑠𝑡𝑟𝑒𝑠𝑠 
+ 𝑎 

𝜖𝜙

𝛼,𝑟𝑐ℎ𝑔 
+ 𝑎 

𝜖𝜙

𝛼,𝑒𝑠𝑡𝑎𝑑𝑣 
(56) 

here 𝜖 and 𝜙 can be either τ𝑥𝑥 , τ𝑥𝑦 or τ𝑦𝑦 and 𝛼 can be either P or F . 
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Fig. 2. Physical domain for the Poiseuille problem. 
.4. Coupled algorithm 

Combining the discretized momentum ( Eq. (10) ), continuity

Eq. (39) ) and stress constitutive ( Eq. (50) ) equations, the following sys-

em of equations, written in matrix form, is obtained for each control

olume: 

 

 

 

 

 

 

 

 

 

 

 

𝑎 𝑢𝑢 
𝑃 

𝑎 𝑢𝑣 
𝑃 

𝑎 
𝑢𝑝 

𝑃 
𝑎 
𝑢 τ𝑥𝑥 
𝑃 

𝑎 
𝑢 τ𝑥𝑦 

𝑃 
𝑎 
𝑢 τ𝑦𝑦 

𝑃 

𝑎 𝑣𝑢 
𝑃 

𝑎 𝑣𝑣 
𝑃 

𝑎 
𝑣𝑝 

𝑃 
𝑎 
𝑣 τ𝑥𝑥 
𝑃 

𝑎 
𝑣 τ𝑥𝑦 

𝑃 
𝑎 
𝑣 τ𝑦𝑦 

𝑃 

𝑎 
𝑝𝑢 

𝑃 
𝑎 
𝑝𝑣 

𝑃 
𝑎 
𝑝𝑝 

𝑃 
𝑎 
𝑝 τ𝑥𝑥 
𝑃 

𝑎 
𝑝 τ𝑥𝑦 

𝑃 
𝑎 
𝑝 τ𝑦𝑦 

𝑃 

𝑎 
τ𝑥𝑥 𝑢 

𝑃 
𝑎 
τ𝑥𝑥 𝑣 

𝑃 
𝑎 
τ𝑥𝑥 𝑝 

𝑃 
𝑎 
τ𝑥𝑥 τ𝑥𝑥 
𝑃 

𝑎 
τ𝑥𝑥 τ𝑥𝑦 

𝑃 
𝑎 
τ𝑥𝑥 τ𝑦𝑦 

𝑃 

𝑎 
τ𝑥𝑦 𝑢 

𝑃 
𝑎 
τ𝑥𝑦 𝑣 

𝑃 
𝑎 
τ𝑥𝑦 𝑝 

𝑃 
𝑎 
τ𝑥𝑦 τ𝑥𝑥 

𝑃 
𝑎 
τ𝑥𝑦 τ𝑥𝑦 

𝑃 
𝑎 
τ𝑥𝑦 τ𝑦𝑦 

𝑃 

𝑎 
τ𝑦𝑦 𝑢 

𝑃 
𝑎 
τ𝑦𝑦 𝑣 

𝑃 
𝑎 
τ𝑦𝑦 𝑝 

𝑃 
𝑎 
τ𝑦𝑦 τ𝑥𝑥 

𝑃 
𝑎 
τ𝑦𝑦 τ𝑥𝑦 

𝑃 
𝑎 
τ𝑦𝑦 τ𝑦𝑦 

𝑃 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑢 𝑃 

𝑣 𝑃 

𝑝 𝑃 

( τ𝑥𝑥 ) 𝑃 
( τ𝑥𝑦 ) 𝑃 
( τ𝑦𝑦 ) 𝑃 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

∑
𝐹= 𝑛𝑏 ( 𝑃 ) 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑎 𝑢𝑢 
𝐹 

𝑎 𝑢𝑣 
𝐹 

𝑎 
𝑢𝑝 

𝐹 
𝑎 
𝑢 τ𝑥𝑥 
𝐹 

𝑎 
𝑢 τ𝑥𝑦 

𝐹 
𝑎 
𝑢 τ𝑦𝑦 

𝐹 

𝑎 𝑣𝑢 
𝐹 

𝑎 𝑣𝑣 
𝐹 

𝑎 
𝑣𝑝 

𝐹 
𝑎 
𝑣 τ𝑥𝑥 
𝐹 

𝑎 
𝑣 τ𝑥𝑦 

𝐹 
𝑎 
𝑣 τ𝑦𝑦 

𝐹 

𝑎 
𝑝𝑢 

𝐹 
𝑎 
𝑝𝑣 

𝐹 
𝑎 
𝑝𝑝 

𝐹 
𝑎 
𝑝 τ𝑥𝑥 
𝐹 

𝑎 
𝑝 τ𝑥𝑦 

𝐹 
𝑎 
𝑝 τ𝑦𝑦 

𝐹 

𝑎 
τ𝑥𝑥 𝑢 

𝐹 
𝑎 
τ𝑥𝑥 𝑣 

𝐹 
𝑎 
τ𝑥𝑥 𝑝 

𝐹 
𝑎 
τ𝑥𝑥 τ𝑥𝑥 
𝐹 

𝑎 
τ𝑥𝑥 τ𝑥𝑦 

𝐹 
𝑎 
τ𝑥𝑥 τ𝑦𝑦 

𝐹 

𝑎 
τ𝑥𝑦 𝑢 

𝐹 
𝑎 
τ𝑥𝑦 𝑣 

𝐹 
𝑎 
τ𝑥𝑦 𝑝 

𝐹 
𝑎 
τ𝑥𝑦 τ𝑥𝑥 

𝐹 
𝑎 
τ𝑥𝑦 τ𝑥𝑦 

𝐹 
𝑎 
τ𝑥𝑦 τ𝑦𝑦 

𝐹 

𝑎 
τ𝑦𝑦 𝑢 

𝐹 
𝑎 
τ𝑦𝑦 𝑣 

𝐹 
𝑎 
τ𝑦𝑦 𝑝 

𝐹 
𝑎 
τ𝑦𝑦 τ𝑥𝑥 

𝐹 
𝑎 
τ𝑦𝑦 τ𝑥𝑦 

𝐹 
𝑎 
τ𝑦𝑦 τ𝑦𝑦 

𝐹 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑢 𝐹 

𝑣 𝐹 

𝑝 𝐹 

( τ𝑥𝑥 ) 𝐹 
( τ𝑥𝑦 ) 𝐹 
( τ𝑦𝑦 ) 𝐹 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑏 𝑢 
𝑃 

𝑏 𝑣 
𝑃 

𝑏 
𝑝 

𝑃 

𝑏 
τ𝑥𝑥 
𝑃 

𝑏 
τ𝑥𝑦 

𝑃 

𝑏 
τ𝑦𝑦 

𝑃 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(57)

he collection of all such systems over the entire computational domain

esults in a system of equations which size depends on the number of

ells used, and can be written in the form A 𝚽 = b where all variables

= ( u , 𝑝, τ) are solved simultaneously. In this procedure all variables in

he different equations are treated implicitly, which is expected to be ad-

antageous for speed-up and stability of the overall calculation process.

oreover, the continuity equation is written in terms of pressure rather

han pressure correction [58] , because the system of equations computes

ll variables simultaneously. The algorithm used to solve the coupled

overning equations can be summarized into the following steps: 

1. Start with the latest available values ( ̇𝑚 

𝑛 
𝑓 
, �̇� 𝑛 τ𝑃 

, �̇� 𝑛 u , u 

𝑛 , 𝑝 𝑛 , τ𝑛 ) . 
2. Assemble and solve the momentum, continuity and stress constitu-

tive equations for u , p and τ (see Eqs. (10) , (39), (50) and (57) ). 

3. Calculate �̇� 𝑓 , �̇� τ𝑃 
and �̇� u using Eqs. (12) , (53), (54) . 

4. Return to step 2 and repeat until convergence. 

For the solution of the global system of discretized algebraic equa-

ions it is fundamental that an efficient linear solver is used in order to

btain the best overall convergence. In this work an algebraic multigrid

olver (AMG) [59,60] with a block-ILU algorithm without fill-in [61] ,

hich works as a smoother in the multigrid cycle, are used, both for the

oupled and segregated approaches. 

. Results and discussion 

The performance of the viscoelastic coupled solver is assessed in

hree laminar, incompressible viscoelastic fluid flow problems: the pla-

ar Poiseuille flow of an Oldroyd-B fluid, the planar lid-driven flow of

n Upper-Convected Maxwell (UCM) fluid and the 4:1 planar sudden

ontraction flow of a linear Phan-Thien-Tanner (LPTT) fluid. In addi-

ion, comparisons with the viscoelastic segregated solver based on the

IMPLE algorithm developed by Fernandes et al. [50] are presented.

otice that different SIMPLE-like algorithms, such as SIMPLER or SIM-

LEC, could be used for a fairer comparison against the coupled solver,

owever only the original SIMPLE algorithm is currently implemented
106 
nd validated on the foam-extend library [50,62] . The efficiency of the

roposed coupled viscoelastic solver is demonstrated by comparing the

umber of iterations and CPU time required by each method on var-

ous computational grids, comprising different refinement levels. The

ame initial guess was used in all cases presented, and computations

ere stopped when the initial residual (RES) [63] of all variables ( 𝚽)

ecome smaller than 10 −5 . RES is defined as 

𝐸𝑆 = 

𝑁 ∑
𝑖 =1 

||b − A 𝚽||
𝑛 

(58) 

here N is the number of cells and n is the normalisation factor defined

s 

 = 

𝑁 ∑
𝑖 =1 

(|||A 𝚽 − A 𝚽||| + 

|||b − A 𝚽|||) + 𝛿 (59) 

here 𝚽 is the arithmetic average of all the solution values 𝚽 in the

omain and 𝛿 = 10 −20 is a stabilization parameter to avoid divisions by

ero. The initial residual for each iteration is evaluated based on the

urrent values of the field, before solving the block-coupled system. Af-

er each block solver linear iteration, the residual is re-evaluated (final

esidual). When the maximum number of linear iterations (in this work

efined as 100) or the final residual falls below the solver absolute toler-

nce (set as 10 −9 ), the block-coupled system current iteration stops and

dvances in time. The relaxation factors in the segregated runs were

efined as 0.3 for pressure and stress and 0.7 for velocity, and in the

oupled runs as 0.95 for velocity and stress and 1.0 for pressure, which

n both cases correspond to the best performance in terms of computa-

ional time spent by the solvers. 

The following discretization methods were used both in the segre-

ated and coupled viscoelastic solvers. The time derivatives in the mo-

entum and constitutive equations are discretized with the first-order

mplicit Euler scheme. The time marching is used only for relaxation pur-

oses as the cases in this study are steady-state. As stated in Section 3 the

dvective terms in the momentum and constitutive equations are dis-

retized using the first-order Upwind scheme or the high-order CUBISTA

cheme. The diffusive term in the momentum equation is discretized us-

ng second-order accurate linear interpolation. A second-order Gaussian

iscretization is applied for source terms and for the gradients calcula-

ion. All computations were performed on a computer with a 3.40-GHz

ntel Core i7-2600 CPU processor and 8 GB of RAM. 

.1. Poiseuille flow of an oldroyd-B fluid 

The Poiseuille flow is an important benchmark case study for CFD

ode developers, because it often allows to obtain analytical solutions

or fully developed flow conditions [64] . The geometry for this case is

llustrated in Fig. 2 and consists of a channel with length L and half

f the channel height H . In this work the ratio 𝐿 ∕ 𝐻 = 10 was used. The
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Fig. 3. Comparison of predicted (a) streamwise velocity and extra-stress tensor 

components (b) τ𝑥𝑥 and (c) τ𝑥𝑦 , using the segregated and coupled solvers, with 

analytical solutions for 𝐷𝑒 = {0 . 1 , 0 . 5 , 1 , 5} . 
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Table 1 

Comparison of the number of iterations and CPU time required by the segregated 

(S) and coupled (C) solvers for all De and grid sizes for the Oldroyd-B Poiseuille 
ow has a symmetry plane along the centerline ( 𝑦 = 0 ), to save computa-

ional resources and reduce the CPU time. The computations were done

n three quadrilateral uniform grids with different levels of refinement,

eshes M1, M2 and M3, with 2560 (160 ×16), 10240 (320 ×32) and

0960 (640 ×64) control volumes, respectively. The streamwise velocity

omponent is u , the cross-stream velocity component is v , and the flow

s defined in the ( x, y )-plane with y representing the transversal coordi-

ate. At the wall, 𝑦 = 𝐻, the usual no-slip velocity is imposed and zero

radient is used both for pressure and extra-stress tensor fields (which

oes not affect the flow near the wall). At the inlet, a fully developed
ig. 4. Error as a function of the mesh resolution for the streamwise velocity 

omponent at 𝑦 = 0 . The solid lines represent linear fits to the values obtained 

n a log-log scale, thus its slope gives the convergence order. 

fl

M

107 
elocity (see Eq. (60) ), extra-stress tensor component (see Eqs. (62) and

63) ) profiles and pressure gradient value (see Eq. (61) ) are imposed. At

he outlet, a uniform pressure with zero value is used and zero gradient

s imposed both for velocity and extra-stress tensor fields. Finally, for all

he computational cells, the initial values for all fields were set to zero.

he problem is solved for a Reynolds number 𝑅𝑒 ≡ 𝜌𝑢 𝐻 

𝜂0 
= 0 . 01 , Deborah

umbers of 𝐷𝑒 ≡ 𝜆𝑢 

𝐻 
= {0 . 1 , 0 . 5 , 1 , 5} and retardation ratio 𝛽 = 

1 
9 , where

 is the cross-sectional average velocity. 

In fully developed flow, the velocities and stresses depend only on

he transverse coordinate y (see [64] ). The streamwise velocity profile

s given by 

 ( 𝑦 ) = − 

𝑝 𝑥 

2 𝜂𝑃 

(
𝐻 

2 − 𝑦 2 
)

(60) 

here p x is the constant pressure gradient, which can be computed

rom 

 = 

− 𝑝 𝑥 𝐻 

2 

3 𝜂𝑃 
(61) 

he two non-vanishing stress components are given by 

𝑥𝑥 = 

2 𝜆
𝜂𝑃 
𝑝 2 
𝑥 
𝑦 2 (62) 

𝑥𝑦 = 𝑝 𝑥 𝑦 (63) 

esults were validated by comparing the predictions generated by the

oupled and segregated approaches at 𝑥 ∕ 𝐿 = 0 . 9 against the analytical

olutions, as shown in Fig. 3 . As expected, the numerical streamwise

elocity and the xy -component of the extra-stress tensor are invariant

ith the De number, contrarily to the extra-stress tensor xx -component.

n addition, both methods (segregated and coupled) fall on top of each

ther and on the analytical solution, demonstrating the validity of the

oupled solver. 

In Fig. 4 we present the absolute value of the relative error of the

treamwise velocity component u at 𝑦 = 0 , given by |𝑢 𝑛𝑢𝑚 − 𝑢 𝑎𝑛𝑎 |, as

 function of the normalized cell size Δy . Notice that in fully devel-

ped flow conditions the advective terms vanish [65] , and therefore the

hoice of the discretization scheme does not affect the convergence rate,

ven the Upwind scheme results in second-order convergence with re-

pect to the grid size. Accordingly, the Poiseuille flow problem is not

uitable to test the accuracy of the discretization schemes used for the

dvective terms, which will be assessed on the subsequent case study,

he Lid-Driven Cavity. 

A summary of the number of iterations and CPU time needed by the

egregated and coupled approaches are presented for all De and grid

izes in Table 1 . The ratio of the number of iterations required by the
ow. 

De Mesh Number of iterations Execution time [s] 

C S S/C C S S/C 

0.1 M1 106 764 7.2 16 33 2.0 

M2 454 5296 11.7 282 850 3.0 

M3 1373 34,873 25.4 4321 22,190 5.1 

0.5 M1 291 2321 8.0 43 96 2.2 

M2 1112 13,629 12.3 654 2190 3.3 

M3 2820 83,902 29.8 7737 53,756 6.9 

1 M1 489 6704 13.7 69 278 4.0 

M2 1868 30,645 16.4 990 4878 4.9 

M3 1431 153,336 107.2 4048 97,218 24.0 

5 M1 3653 83,216 22.8 474 3370 7.1 

M2 451 78,431 173.9 279 12,570 45.1 

M3 1749 396,775 226.9 4805 252,160 52.5 

1: 2560 CV; M2: 10240 CV; M3: 40960 CV. 
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Fig. 5. Comparison of Oldroyd-B Poiseuille flow residual history plots with mesh M3 using coupled and segregated approaches for different 𝐷𝑒 = {0 . 1 , 0 . 5 , 1 , 5} . 
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egregated algorithm to that required by the coupled one (S/C) increases

rom 7.2 to 25.4, 8.0 to 29.8, 13.7 to 107.2, and 22.8 to 226.9 for 𝐷𝑒 =
 . 1 , 𝐷𝑒 = 0 . 5 , 𝐷𝑒 = 1 and 𝐷𝑒 = 5 , respectively. Hence, as the De number

ncreases the gains of the coupled algorithm over the segregated one

re higher, both in terms of number of iterations and CPU time. This

s a direct consequence of the implicit coupling between velocity and

xtra-stress fields with the De . In addition, as the grid size increases

rom 2560 to 40,960 control volumes, the corresponding ratio of the

PU times needed increases from 2.0 to 5.1, 2.2 to 6.9, 4.0 to 24.0, and

.1 to 52.5 for the tested De . This represents significant savings, as the

otal time required by the coupled approach to solve the four De number
108 
roblems on the coarsest and densest grids used are 602 and 20,911

econds, while those required by the segregated method are 3777 and

25,324 seconds, respectively, with the average S/C ratio varying from

.3 to 20.3. This clearly shows the benefits obtained with the coupled

pproach. 

The improved performance of the coupled solver is further demon-

trated by the residual history plots of all the variables computed for all

e in the densest grid, M3, presented in Fig. 5 . As shown, the residual

volution with the coupled solver is smoother when compared to the

egregated one, which results in an improved stable calculation, less

rone to divergence. Moreover, we should stress that, in the graphs
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Fig. 6. Physical domain for the lid-driven cavity flow problem. 
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and a clear indication of a successful extension to viscoelastic flows. 

F

(

hown in Fig. 5 , the x -axis are different by two orders of magnitude,

hen comparing coupled (left) and segregated (right) approaches, for

he highest De . 

.2. Lid-driven cavity flow of an UCM fluid 

The 2D fluid motion in a quadrangular channel induced by the trans-

ation of the lid (top wall) - the so-called lid-driven cavity flow - is

 well-known benchmark problem for the validation of new numer-

cal methods and techniques [66] . The geometry is shown schemati-

ally in Fig. 6 and comprises a two-dimensional rectangular channel

f height H and width L , in which the top wall translates horizontally

ith a peak velocity U . In this work the aspect ratio H / L is set equal to

ne and four consistently refined quadrilateral uniform grids have been

sed, with the number of control volumes in grids M1, M2, M3 and M4

eing equal to 1681 (41 ×41), 6889 (83 ×83), 27225 (165 ×165) and

08241 (329 ×329), respectively. Each mesh has an odd number of cells

n both directions so that the variables are calculated exactly along the

ertical and horizontal centrelines. The boundary conditions applied to

he three stationary walls are no-slip and impermeability (i.e. 𝑢 = 𝑣 = 0 ,
here u and v are the Cartesian components of the velocity vector).

or the moving wall, a 4th order polynomial velocity regularization is

sed, such that both the velocity and the velocity gradient vanish at the

orners [67] . The velocity regularization is given by 

 ( 𝑥 ) = 16 𝑈 

(
𝑥 

𝐿 

)2 (
1 − 

𝑥 

𝐿 

)2 
(64) 

he pressure and extra-stress tensor fields were defined with zero gradi-

nt boundary condition at all the domain boundaries. The initial values

or all fields were set to zero. The dimensionless groups defined for this

ase study are the Re ≡ 𝜌UH / 𝜂 , because for the UCM model the solvent
P 

ig. 7. Computed streamlines for the UCM lid-driven cavity flow using coupled (gre

b) 𝐷𝑒 = 0 . 4 and (c) 𝐷𝑒 = 0 . 6 . 

109 
ontribution is null ( 𝜂𝑆 = 0 ), and De ≡ 𝜆U / L . The problem is solved for

𝑒 = 0 . 01 and 𝐷𝑒 = {0 . 2 , 0 . 4 , 0 . 6} . 
The resulting flow fields in the domain are visualized by the stream-

ine maps presented in Fig. 7 . As shown, the two sets of contours fall

lmost on top of each other confirming the validity of the developed

oupled approach. In addition, the implementation was validated by

omparing the predictions generated by the coupled and segregated

olvers for the velocity distribution along the channel lines 𝑥 ∕ 𝐿 = 0 . 5
nd 𝑦 ∕ 𝐻 = 0 . 5 , and for the polymeric extra-stress tensor components

long 𝑦 ∕ 𝐻 = 0 . 99 . As shown in Figs. 8 and 9 , the results provided by

oth solvers (segregated and coupled) overlap, demonstrating the cor-

ect implementation of the coupled solver. 

In Fig. 10 we present the absolute value of the error for the minimum

treamwise velocity component u at 𝑥 ∕ 𝐿 = 0 . 5 , given by |𝑢 min − 𝑢 𝑒𝑥𝑡 min |,
nd for the maximum transversal velocity component v at 𝑦 ∕ 𝐻 = 0 . 5 ,
iven by |𝑣 max − 𝑣 𝑒𝑥𝑡 max |, as a function of the normalized cell size Δx / L ,

here ext denotes the extrapolated value using Richardson extrapola-

ion [68] (see Table 2 ). The calculations were performed using the Up-

ind and CUBISTA schemes, for the discretization of the advection term,

eing the order of convergence computed for both schemes. Addition-

lly, the results of Sousa et al. [67] using a segregated approach and

he CUBISTA scheme are plotted for comparison purposes. As can be

een in Fig. 10 the results obtained using the developed coupled algo-

ithm are in line with the theoretical order of convergence of the UDS

nd CUBISTA schemes, which is 1 and 3 (on uniform grids) or 2 (on

on-uniform grids), respectively. 

A summary of the number of iterations and CPU time needed by the

egregated and coupled approaches are presented for all De and grid

izes in Table 3 . The ratio of the number of iterations required by the

egregated algorithm to that required by the coupled one (S/C) is nearly

onstant in each De , except for M4 with 𝐷𝑒 = 0 . 6 , which shows a value

f 14.4. As for the Poiseuille flow case study ( Section 4.1 ) the tendency

f the S/C ratio is to increase with De , which seems to be a clear ad-

antage of the viscoelastic coupled algorithm. In addition, as the grid

ize increases from 1681 to 108,241 control volumes, the corresponding

atio of the CPU time needed by the segregated solver to that required

y the coupled one tends to increase, from 1.3 to 1.5, 1.3 to 2.0, and

.4 to 5.5 for the De tested. Again, a huge saving as the total time re-

uired by the coupled approach to solve the three De number problems

n the coarsest and densest grids used are 2428 and 459,418 seconds,

hile those required by the segregated method are 3204 and 1,576,202

econds, with the average S/C ratio varying from 1.3 to 3.4. Again, the

enefits of the coupled over the segregated approach are visible, both

n terms of number of iterations and CPU time, and also by the resid-

al history plots of all the variables computed for all De numbers with

he densest grid, M4, presented in Fig. 11 . The above findings are in

ine with the results reported in [20,21,23] , for the performance of the

ressure-velocity coupled solver on structured and unstructured grids,
y line) and segregated (black line) approaches, with mesh M4, for (a) 𝐷𝑒 = 0 . 2 , 
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Fig. 8. Comparison of predicted velocity components at 𝑥 ∕ 𝐿 = 0 . 5 (top) and 𝑦 ∕ 𝐻 = 0 . 5 (bottom) using segregated and coupled approaches, with mesh M4, for (a) 

𝐷𝑒 = 0 . 2 , (b) 𝐷𝑒 = 0 . 4 and (c) 𝐷𝑒 = 0 . 6 . 

Table 2 

Effect of mesh refinement on: minimum values of u computed along 𝑥 ∕ 𝐿 = 0 . 5 and maximum values of v computed 

along 𝑦 ∕ 𝐻 = 0 . 5 for 𝐷𝑒 = 0 . 4 , using Upwind and CUBISTA discretization schemes. 

Mesh Coupled algorithm Segregated algorithm [67] 

Upwind CUBISTA CUBISTA 

𝑢 min ∕ 𝑈 𝑣 max ∕ 𝑈 𝑢 min ∕ 𝑈 𝑣 max ∕ 𝑈 𝑢 min ∕ 𝑈 𝑣 max ∕ 𝑈

M1 − 0.112007 0.100735 − 0.111177 0.0996204 − 0.116698 0.104745 

M2 − 0.1128 0.100807 − 0.1115 0.0996436 − 0.117251 0.105013 

M3 − 0.1145 0.102062 − 0.114396 0.101896 − 0.117398 0.105118 

M4 − 0.115853 0.103426 − 0.115806 0.103387 − 0.117412 0.105109 

Extrapolated − 0.117206 0.10479 − 0.116276 0.103884 − 0.117417 0.105106 

Table 3 

Comparison of the number of iterations and CPU time required by the segregated and coupled flow solvers for all 

De and grid sizes for the UCM lid-driven cavity flow. 

De Mesh Number of iterations Execution time [s] 

C S S/C C S S/C 

0.2 M1 6830 31,012 4.5 555 694 1.3 

M2 7523 38,196 5.1 3523 6100 1.7 

M3 9554 40,653 4.3 21,031 34,684 1.7 

M4 10,248 43,402 4.2 103,625 151,045 1.5 

0.4 M1 11,374 58,811 5.2 863 1112 1.3 

M2 12,632 70,410 5.6 5383 10,462 1.9 

M3 14,955 81,276 5.4 30,395 65,633 2.2 

M4 16,481 84,709 5.1 149,065 295,347 2.0 

0.6 M1 15,197 85,000 5.6 1010 1398 1.4 

M2 17,167 116,282 6.8 6697 12,497 1.9 

M3 21,112 139,422 6.6 38,234 84,394 2.2 

M4 25,145 362,526 14.4 206,728 1,129,810 5.5 

M1: 1681 CV; M2: 6889 CV; M3: 27225 CV; M4: 108241 CV. 

110 
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Fig. 9. Comparison of predicted polymeric extra-stress tensor components at 𝑦 ∕ 𝐻 = 0 . 99 using segregated and coupled approaches, with mesh M4, for (a) 𝐷𝑒 = 0 . 2 , 
(b) 𝐷𝑒 = 0 . 4 and (c) 𝐷𝑒 = 0 . 6 . 
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.3. LPTT Fluid flow in a 4:1 planar sudden contraction geometry 

The 2D fluid motion in a sudden contraction geometry with con-

raction ratio 𝐶𝑅 = 𝐻 1 ∕ 𝐻 2 = 4 is the last case study to be performed

n this work, and it is appropriate to expose shear-extension interaction

69] and possible numerical instability of the developed code. A sketch

f the contraction geometry is illustrated in Fig. 12 , where only half of

he two-dimensional domain is used for the computations, with symme-

ry conditions imposed at the centreline, 𝑦 = 0 . The half-width of the

horter channel H 2 is taken as the characteristic length scale, and the

verage velocity in that channel, U 2 , is the characteristic velocity scale.

or this case study, the CUBISTA scheme is used for the discretization

f the velocity and extra-stress tensor advective terms. 

The computations have been performed on two meshes, with higher

efinement near the walls and in the contraction region, because these
111 
wo regions are known to present the highest gradients of the flow vari-

bles. The meshes employed are similar to the ones used on a pre-

ious study [50] , being the total number of control volumes equal

o 942 and 3598, which correspond to a minimum mesh spacing of

𝑥 min = Δ𝑦 min = 0 . 04 𝐻 2 and 0.02 H 2 , respectively. 

The viscoelastic coupled solver is tested for increasing values of

he Deborah number 𝐷𝑒 ≡ 𝜆𝑈 2 ∕ 𝐻 2 = {1 , 5 , 10 , 20 , 50 , 100} but for a con-

tant Reynolds number 𝑅𝑒 ≡ 𝜌𝑈 2 𝐻 2 ∕ 𝜂0 = 0 . 01 , representative of creep-

ng flow conditions. The linear PTT model with viscosity ratio 𝛽 = 1∕9
nd extensional parameter 𝜖 = 0 . 25 , typical of polymer melts, is used. 

The following boundary conditions were used for all the runs per-

ormed: for velocity, no-slip at the walls, symmetry at the centerline,

ully-developed profile at the inlet (with average velocity 𝑈 1 = 𝑈 2 ∕ 𝐶𝑅 )

see Eq. (60) ), and a zero gradient condition at the outlet, i.e., assuming

ully-developed flow; for pressure, fixed pressure gradient at the inlet
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Fig. 10. Error as a function of the mesh resolution for the (a) mini- 

mum value of the streamwise velocity component u at 𝑥 ∕ 𝐿 = 0 . 5 and 

for the (b) maximum value of the transversal velocity component v 

at 𝑦 ∕ 𝐻 = 0 . 5 for 𝐷𝑒 = 0 . 4 . The solid lines represent linear fits to the 

values obtained with meshes M2-M4 in a log-log scale, thus its slope 

gives the convergence order. The dashed lines are an extrapolation of 

the linear fit. 

Fig. 11. Comparison of UCM lid-driven cavity residual history plots with mesh M4 using coupled and segregated approaches for different 𝐷𝑒 = {0 . 2 , 0 . 4 , 0 . 6} . 

Fig. 12. Schematic representation of the 4:1 planar sudden con- 

traction. 
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Fig. 13. Distribution of the axial normal stress τ𝑥𝑥 for the linear 

PTT model with 𝜖 = 0 . 25 along the centreline. 
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Table 4 

Comparison of the number of iterations and CPU time required by the segregated 

and coupled flow solvers for all De and grid sizes for the LPTT fluid flow in a 

4:1 planar sudden contraction geometry. 

De Mesh Number of iterations Execution time [s] 

C S S/C C S S/C 

1 M1 14,908 92,398 6.2 845 1238 1.5 

M2 14,846 120,445 8.1 5024 6183 1.2 

5 M1 23,847 176,584 7.4 1047 2373 2.3 

M2 23,621 303,233 12.8 6472 15,675 2.4 

10 M1 28,585 175,940 6.2 1064 2359 2.2 

M2 28,275 217,102 7.7 6336 11,912 1.9 

20 M1 33,823 109,547 3.2 1040 1596 1.5 

M2 33,441 182,394 5.5 6475 9990 1.5 

50 M1 41,298 104,388 2.5 1028 1536 1.5 

M2 40,812 156,659 3.8 7079 9795 1.4 

100 M1 47,133 67,289 1.4 906 969 1.1 

M2 46,517 169,526 3.6 7285 10,456 1.4 

M1: 942 CV; M2: 3598 CV. 

F

{

see Eq. (61) ), zero gradient at the wall, symmetry boundary condition

t the centerline and fixed value, 𝑝 = 0 , at the outlet; finally, for the stress

ensor, fully-developed profiles at the inlet (see Eqs. (62) and (63) ), sym-

etry boundary condition at the centerline, and zero gradient condition

t the walls and outlet. All internal fields were set to zero at the initial

ime. 

Fig. 13 presents the longitudinal profiles along the centreline ( 𝑦 =
) of the axial normal stress component ( τ𝑥𝑥 ) , normalised with τ𝑤 ≡
 𝜂0 𝑈 2 ∕ 𝐻 2 , for all the De numbers tested. For comparison purposes, the

ata of Alves et al. [70] is also plotted in the figure, which shows a

air agreement with minor differences in the downstream channel, thus

urther validating the newly developed viscoelastic coupled solver. 

A summary of the number of iterations and CPU time required by

he segregated and coupled approaches are presented for all De and grid

izes in Table 4 . The results obtained show again the benefits of the cou-

led over the segregated approach, both in terms of number of iterations

nd CPU time. Moreover, Fig. 14 show the residual history plots of all

he variables computed for 𝐷𝑒 = {1 , 50 , 100} with the densest grid M2.
ig. 14. Comparison of LPTT 4:1 planar sudden contraction residual history plots with mesh M2 using coupled and segregated approaches for different 𝐷𝑒 = 
1 , 50 , 100} . 
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Table 5 

Comparison between numerical 𝜏xx stress component ( Pa ) at 𝑦 = 𝐻 and analyt- 

ical solution for 𝜂⋆ = { 𝜂𝑃 , 10 𝜂𝑃 , 100 𝜂𝑃 } . The values between parentheses are the 

relative errors (%) computed as 𝑒𝑟𝑟𝑜𝑟 = 100 × ( 𝜏𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑥𝑥 − 𝜏𝑛𝑢𝑚𝑒𝑟𝑖𝑐 
𝑥𝑥 

)∕ 𝜏𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑥𝑥 . 

𝜂⋆ De M1 M2 M3 

𝜂P 0.1 0.000636369 0.000640142 0.000639915 

(0.6) (0.02) (0.01) 

0.5 0.00318168 0.00319969 0.0031991 

(0.6) (0.01) (0.03) 

1 0.00636158 0.00640067 0.00639553 

(0.6) (0.01) (0.07) 

10 𝜂P 0.1 0.000634404 0.000640824 0.000641218 

(0.9) (0.1) (0.2) 

0.5 0.00317179 0.00320349 0.00318213 

(0.9) (0.1) (0.6) 

1 0.00634206 0.00640678 0.00640301 

(0.9) (0.1) (0.05) 

100 𝜂P 0.1 0.000619046 0.000636936 0.000640991 

(3.3) (0.5) (0.2) 

0.5 0.00309412 0.00318433 0.0032011 

(3.3) (0.5) (0.03) 

1 0.0061878 0.00636829 0.00640898 

(3.3) (0.5) (0.1) 

M1: 2560 CV; M2: 10240 CV; M3: 40960 CV. 

Table 6 

Comparison between numerical pressure drop ( Pa ) and analytical solution for 

𝜂⋆ = { 𝜂𝑃 , 10 𝜂𝑃 , 100 𝜂𝑃 } . The values between parentheses are the relative errors 

(%) computed as 𝑒𝑟𝑟𝑜𝑟 = 100 × (Δ𝑃 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 − Δ𝑃 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 )∕Δ𝑃 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 . 

𝜂⋆ De M1 M2 M3 

𝜂P 0.1 0.0123116 0.0121778 0.0120936 

(2.6) (1.5) (0.8) 

0.5 0.0121965 0.0121108 0.0120572 

(1.6) (0.9) (0.5) 

1 0.0116638 0.0117555 0.0118117 

(2.8) (2.0) (1.6) 

10 𝜂P 0.1 0.0123388 0.0122073 0.0121137 

(2.8) (1.7) (0.9) 

0.5 0.0122463 0.0121479 0.0120709 

(2.1) (1.2) (0.6) 

1 0.0116703 0.011766 0.01184 

(2.7) (1.9) (1.3) 

100 𝜂P 0.1 0.0122334 0.0121924 0.012122 

(1.9) (1.6) (1.0) 

0.5 0.0121938 0.0121572 0.0120907 

(1.6) (1.3) (0.8) 

1 0.0119209 0.01195 0.0119566 

(0.7) (0.4) (0.4) 

M1: 2560 CV; M2: 10240 CV; M3: 40960 CV. 
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gain, the limiting variable in the convergence of the segregated solver

s the pressure field, which is related to the iterative approach used to

olve the governing equations. 

. Conclusions 

This paper presented a fully coupled method for the solution of lam-

nar incompressible viscoelastic flows on collocated grids. The method

as newly developed and implemented in the open-source computa-

ional library foam-extend, a community driven fork of the OpenFOAM

oftware. The coupled solver is a pressure-based method in which the

ressure equation is derived in the same way as in the SIMPLE algo-

ithm, the explicit diffusion term added by the iBSD technique to the

omentum equation is discretized with a special second order deriva-

ive of the velocity field, and the convective term in the extra-stress ten-

or constitutive equation is approximated with a second order Taylor

eries expansion. 

The performance of the coupled algorithm was demonstrated with

hree laminar incompressible viscoelastic fluid flow problems: Oldroyd-

 Poiseuille, UCM lid-driven cavity and LPTT 4:1 sudden contraction

lanar flows. The performance of coupled and segregated solvers was

ompared in terms of number of iterations and CPU time required to

btain a solution converged to a predefined level. The results showed

hat the computational time and number of iterations required by the

oupled solver are significantly lower than those needed by the segre-

ated one. This represents huge savings as the ratio of the calculation

ime (segregated/coupled) range from 2.0 to 52.5 for the Oldroyd-B

oiseuille flow, from 1.3 to 5.5 for the UCM lid-driven cavity flow, and

rom 1.1 to 2.4 for the LPTT 4:1 sudden contraction flow. In addition, the

enefits were found to increase with the grid refinement and Deborah

umber, a feature that further evidences the pertinence of the proposed

pproach. This is particularly important when dealing with practical

cenarios (e.g. industrial-sized problems). Lastly, the results obtained

rom the coupled and segregated approaches have been shown to be

early equal, and a fair comparison is also obtained with other results

ound in the scientific literature, which allowed to validate the present

mplementation. 

In future works the extension of the algorithm to circumvent the

igh Weissenberg number problem and to improve the implicitness of

he extra-stress constitutive equation will be addressed, and 3D case

tudies with unstructured meshes are also envisaged. 
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ppendix 

To show the independence of the results on the artificial diffusivity,
⋆ , added by the improved both-sides diffusion (iBSD) methodology, we

mployed the Poiseuille flow case study (presented in Section 4.1 ), with

 quantitative comparison of the stress and pressure drop for different

alues of 𝜂⋆ . This way, the stress component at the wall ( 𝜏𝑥𝑥 at 𝑦 = 𝐻)
nd the pressure drop, for three different values of the artificial diffusiv-

ty, 𝜂⋆ = { 𝜂𝑃 , 10 𝜂𝑃 , 100 𝜂𝑃 } were computed. The relative error between

he numerical results and the analytical solution (see Eqs. (61) and (62) )

s presented in Tables 5 and 6 , respectively, for the 𝜏xx and pressure

rop, and for the different tested values of 𝜂⋆ , De and mesh densities.
114 
hese results show that the relative errors are less than 3.3% for all

he cases tested and, in general, decrease with mesh refinement, which

onfirms, as desired, the independence of the results on the artificial

iffusivity. 
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