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Abstract

In this paper, sufficient conditions for the global asymptotic stability of a broad family
of periodic impulsive scalar delay differential equations are obtained. These conditions
are applied to a periodic hematopoiesis model with multiple time-dependent delays and
linear impulses, in order to establish criteria for the global asymptotic stability of a
positive periodic solution. The present results are discussed within the context of re-
cent literature. In conclusion, when compared with previous works, not only sharper
stability criteria are obtained here, even for models without impulses, but also the usual
constraints imposed on the linear impulses are relaxed.
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1 Introduction

Consider the family of scalar periodic delay differential equations (DDEs) with impulses
given by x′(t) + a(t)x(t) =

m∑
i=1

βi(t)gi(t, x(t− τi(t))), 0 ≤ t 6= tk,

x(t+k )− x(tk) = bkx(tk), k ∈ N,
(1.1)

where the coefficient functions a(t), βi(t), gi(t, x) and the delay functions τi(t) ≥ 0 (1 ≤ i ≤
m) are continuous and periodic in t with a common period ω > 0, bk are constants and the
sequence of impulses at instants tk (k ∈ N) occur with periodicity ω.

For impulsive DDEs of the form (1.1), in [1] the authors gave very general conditions for
the existence of a positive periodic solution – which need not be unique. The study in [1] was
mostly motivated by the fact that the class of impulsive DDEs (1.1) includes a number of
important models used in mathematical biology. As we shall see, this biological framework
imposes some natural additional conditions on the coefficient functions and impulses in (1.1),
as well as restricts the set of admissible solutions to the set of nonnegative functions. Of
course, when the results in [1] guarantee that a positive periodic solution must exist, a topic
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of major importance is the convergence to this periodic solution (as t → ∞) of all positive
solutions.

In this paper, we investigate the asymptotic behaviour of solutions of the following de-
layed periodic hematopoiesis model with linear impulses and multiple time-dependent delays: y′(t) + a(t)y(t) =

m∑
i=1

βi(t)

1 + y(t− τi(t))n
, 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N,
(1.2)

where m ∈ N, n ∈ (0,∞), (tk)k∈N and (bk)k∈N are ω-periodic real sequences, and a, βi : R→
[0,∞), τi : R→ [0,∞) are continuous and ω-periodic, for i = 1, . . . ,m. Our main goal is to
establish criteria for the global asymptotic stability of a positive periodic solution of (1.2).

This system generalizes one of the celebrated hematopoiesis models proposed by Mackey
and Glass, and is embedded within the framework set by (1.1).

Hematopoiesis is the process of production, multiplication, regulation and specialization
of blood cells in the bone marrow, until they become mature blood cells for release in the
circulation bloodstream. Blood is a connective tissue which is made up of cellular elements
– red blood cells, white blood cells and platelets – and an extracellular fluid, the plasma.
Hematopoiesis begins with the differentiation and division of the multipotent hematopoietic
stem cells: some of them remain hematopoietic stem cells, allowing hematopoiesis to con-
tinue, and others divide into lymphoid and myeloid stem cells; after several intermediate
stages, the lymphoid stem cells give rise to the lymphocytes (various types of white blood
cells), whereas the myeloid stem cells originate thrombocytes (platelets), erythrocytes (red
blood cells), and other white blood cells: basophils, neutrophils, eosinophils and monocytes.
The stem cells take time to multiply and specialize into mature blood cells, thus time lags
occur. Typically the plasma is replaced within 24 hours, but it takes between days and
several weeks to replace the different types of blood cells. For instance, neutrophils mature
in about 2 weeks while the basophils mature in 7 days.

In 1977, Mackey and Glass [2] introduced scalar differential equations with a time delay
to describe some physiological mechanisms, such as the hematopoiesis process. Two type
of models of the form x′(t) = −γx(t) + f(x(t − τ)) were proposed in [2], a first one where
the production of cells is given by a monotone decreasing function f(x) = β0

θn

θn+xn (n > 0),
and a second one with a unimodal production function f(x) = β0

x
θn+xn (n > 1), where all

the constants are positive. We remark that Hill functions f(x) = β0
θn

θn+xn are often used as
production or growth functions in physiological modelling or population dynamics, where β0

is an intrinsic rate and the coefficients θ, n are determined so that f fits well with clinical and
experimental data [3, 4]. After normalization of the coefficients, the mathematical models
proposed by Mackey and Glass [2] with decreasing and unimodal production rate are given
by, respectively,

y′(t) + γy(t) =
β

1 + y(t− τ)n
, t ≥ 0, (1.3)

and

y′(t) + γy(t) =
βy(t− τ)

1 + y(t− τ)n
, t ≥ 0 (1.4)

with γ, β > 0 and n > 0 in (1.3) and n > 1 in (1.4). In [5, 6], Mackey used (1.3),(1.4) as
appropriate models to reproduce hematopoiesis. In (1.3), y(t) is the density of mature cells
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in the circulation, τ is the time delay between the production of immature cells in the bone
marrow and their maturation for release in the blood, γ is a destruction rate and β is the
maximal production rate. The stability of the unique positive equilibrium point of (1.3) has
been studied by several authors (see e.g. [7, 8, 9, 10, 11]).

For the last decades, a large number of generalizations of the hematopoiesis Mackey-
Glass equations has been suggested and analysed. For some detail about the biological
mechanisms of hematopoiesis, a review on hematological disorders and derivation of several
mathematical models, see the works of Bélair et al. [12], Mahaffy et al. [4], Haurie et al. [13],
Adimy et al. [14], Langlois et al. [15], and references therein. Namely, in [12] the authors
derived and studied a model for erythropoiesis (the process of production of red blood cells)
consisting of a system of two autonomous DDEs, one for the level of erythropoietin (the
hormone that stimulates reproduction of erythrocytes) and the other for the population of
mature erythrocytes, with two different delays: a first delay of 6-7 days for the time red
blood cells take to mature in the bone marrow, and a second delay of 120 days for the
lifespan of the mature cells in the bloodstream. As shown by the authors, their model
fits well with the experimental data referring to normal erythropoiesis, but not so well with
observed hematological disorders. More recently, in [15] again a system of autonomous DDEs
with two delays was deduced as a model for the normal and pathological dynamics of blood
platelets, and careful estimations of the parameters according to laboratory and clinical
data performed. In both [12, 15], the local stability of the unique positive equilibrium and
occurence of Hopf bifurcation were analysed.

It is however natural to claim that more realistic models are obtained with nonau-
tonomous DDEs, where the parameters are not fixed constants. Particularly important
are models with periodic coefficients and delays, since they allow us to take into account
the periodicity of the environment, which plays an important role in many biological and
ecological dynamical systems. In what concerns the blood cells in circulation, there are
several clinical experiments noting that its density undergoes through seasonal fluctuations,
due to temperature, weather and food supply, see [16] and references therein. Some results
on existence and/or attractivity of positive periodic solutions for periodic versions of (1.3)
can be found in [1, 17, 18, 19, 20]. See also [16, 21, 22], for more results, surveys on periodic
hematopoiesis delayed models of the Mackey-Glass type, as well as further references. On
the other hand, some evolutionary systems go through abrupt changes, due to predictable
or sudden external phenomena, such as radiation, drug administration or other forms of
stress in the case of blood cells, or weather, resource availability, or mating habits in popula-
tion dynamics processes. These phenomena are better described by the so-called impulsive
differential equations. For a discussion of the role of impulses, see e.g. [23, 24, 25]. The
modification of (1.3) according to a periodic environmental variation and subject to periodic
linear impulses reads as y′(t) + a(t)y(t) =

β(t)

1 + y(t− τ(t))n
, 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N,
(1.5)

where n ∈ (0,∞) and a, β, τ : R+ → R+ are periodic with a common period ω > 0, and the
sequences of the instants of impulses (tk) and impulsive coefficients (bk) are ω-periodic.

As shown in the aforementioned papers [12, 15], DDEs with two or more different de-
lays appear naturally in hematological models, as well as in other real-world physiological
phenomena; see [26] for an explanation of this situation in gene regulatory systems and
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stability results for a unimodal non-autonomous Mackey-Glass equation with two delays.
Since different blood cells take different times to mature in the bone marrow, production
functions with different time lags should be taken into consideration [16]. Moreover, from a
mathematical point of view, the treatment of the impulsive model (1.2) with several delays,
rather than a single delay as in (1.5), is more interesting and embracing of other processes.

We should mention that many authors have remarked that in real world applications
almost periodic effects are more frequent than periodic ones, thus almost periodic variants
of the models under consideration have been introduced. Recently, there has been a number
of studies concerning the existence of a positive almost periodic solution for almost peri-
odic hematopoiesis models [27, 28], however few authors have investigated almost periodic
Mackey-Glass-type models with impulses [29, 30]. Although not explored here, in fact our
technique can be used to study the global attractivity of a positive almost periodic solution
for almost periodic models (1.2), provided that such a solution exists. See further comments
in the last section of the paper.

In spite of the extensive number of works dedicated to DDEs of the Mackey-Glass-type
and their generalizations, as well as on alternative models of hematopoiesis, the literature
on periodic impulsive versions of (1.3) is almost non-existent. It is worthwhile to emphasize
the work of Sacker and Alzabut [24], where the particular case of system (1.5) with one
constant delay multiple of the period (i.e., τ(t) ≡ qω for some q ∈ N) and n ∈ {1, 2, . . . }
was studied, and sufficient conditions for the global attractivity of a unique positive periodic
solution derived. The model (1.2) without impulses was studied by Liu et. al. [18], where
the existence of a positive ω-periodic solution and its global attractivity (in the set of all
positive solutions) were guaranteed under some sufficient conditions, which differ for each
one of the situations 0 < n ≤ 1 and n > 1.

On the other hand, in [31, 32] the authors of this paper analysed the global asymptotic
stability of the zero solution for a very general class of scalar delay differential equations
with impulses. In this paper, the positive periodic solution y∗(t) of (1.2), whose existence
follows under some conditions in [1], is first translated to the origin and, inspired by the
conclusions drawn in [31, 32], new criteria for its global attractivity are obtained.

As in [18, 21], here the cases 0 < n ≤ 1 and n > 1 are studied separately: note that the
behaviour of the nonlinearity is quite different in each of these two situations, therefore it
is natural to treat them separately. To make this difference clearer, we recall that for the
non-impulsive autonomous version of (1.2),

y′(t) + ay(t) =

m∑
i=1

βi
1 + y(t− τi)n

(a, βi, τi, n > 0), (1.6)

the global asymptotic stability of the positive equilibrium y∗ has been proven for 0 < n ≤ 1
without further constraints; whereas for n > 1 several additional conditions have been
established in order to guarantee its global attractivity [11, 21]. For the periodic version of
(1.6) with n ∈ (0, 1], it remains an open question whether the positive ω-periodic solution
is always a global attractor of all the positive solutions. The non-impulsive version of (1.2)
with 0 < n ≤ 1 was further explored in a recent paper [33], so in terms of examples we will
focus here on several special cases of model (1.2) with n > 1.

We now describe briefly the contents of the paper. In Section 2, we introduce some
notation and recall some results on global attractivity, established by the authors in [31] for
a family of scalar impulsive DDEs more general than (1.1). For the case of periodic DDEs
with linear impulses, a stronger criterion is derived in Section 3. Section 4 is the core of
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the paper, where the stability of the positive periodic solution y∗(t) of (1.2) is addressed.
It begins with some preparatory propositions, where uniform lower and upper bounds for
y∗(t) are established. Then, the attractivity of y∗(t) of (1.2) is studied for both 0 < n ≤ 1
and n > 1 cases; special attention is given to hematopoiesis models (1.2) with delays which
are multiple of the period. Several models and relevant comparison with results in recent
literature are presented in Section 5. The paper ends with a short section of conclusions.

2 Notations and preliminary results

For model (1.2) under study, the following assumptions will be imposed:

(H1) the functions a(t), βi(t), τi(t) are continuous, nonnegative and ω-periodic (for some
constant ω > 0), with a(t), β(t) :=

∑m
i=1 βi(t) not identically zero, t ∈ R, i = 1, . . . ,m;

(H2) there is p ∈ N such that 0 < t1 < t2 < · · · < tp < ω and

tk+p = tk + ω, bk+p = bk, k ∈ N;

(H3) the constants b1, . . . , bp ∈ R satisfy bk > −1;

(H4)

p∏
k=1

(1 + bk) < e
∫ ω
0 a(t)dt .

As already mentioned, due to the biological interpretation of the model, only positive
solutions of (1.2) should be considered, therefore a suitable set of nonnegative functions will
be taken as the set of initial conditions. Note that hypothesis (H3) guarantees that solutions
which are positive before the impulsive point tk, i.e. with y(t−k ) = y(tk) > 0, remain positive
after the impulse at tk, i.e. y(t+k ) > 0, k ∈ N. Hypotheses (H1)-(H2) prescribe the ω-
periodic impulsive behaviour, whereas (H4) imposes that, on each interval of length ω, the
impulses cannot be too large when compared with the integral average of the nonnegative
instantaneous coefficient a(t) multiplied by the period ω.

The assumptions imposed on the impulses are significantly weaker than the ones often
found in the literature. In fact, instead of (H4), the strong constraint

p∏
k=1

(1 + bk) = 1 (2.1)

has been imposed; some authors have assumed that the function Θ(t) :=
∏
k:0≤tk<t(1 +

bk), t ≥ 0, is an ω-periodic function [24]. However, as remarked by Liu and Takeuchi [23],
if Θ(t) is ω-periodic, then both (2.1) and (H2) hold. Moreover, when the impulses are all
equal, bk = b for all k ∈ N, then (2.1) is satisfied only if b = 0, which means that there are
no impulses.

Under hypotheses (H1)-(H4), Faria and Oliveira [1, Theorem 3.1] have recently shown
that (1.2) has a positive ω-periodic solution:

Theorem 2.1. [1] Under (H1)-(H4), there exists at least one positive ω-periodic solution
y∗(t) of (1.2).

5



We now introduce a family of scalar impulsive DDEs more general than (1.1). We start
with an abstract setting to treat DDEs with impulses.

For a compact interval [α, β] ⊂ R, denote by PC([α, β];R) the space of bounded functions
which are piecewise continuous on [α, β] and left continuous on (α, β], equipped with the
supremum norm, ‖ϕ‖ = sup

θ∈[α,β]
|ϕ(θ)|. Now, consider a finite set of bounded continuous delay

functions τi : [0,∞)→ [0,∞), i = 1, . . . ,m, define

τ(t) = max
1≤i≤m

τi(t) and τ = sup
t≥0

τ(t),

and take the spaces PCi(t) := PC([−τi(t), 0];R), PC(t) := PC([−τ(t), 0];R) and PC :=
PC([−τ , 0];R). For x(t) defined on [−τ , α] and 0 ≤ σ ≤ α, we denote by xσ the function
defined by xσ(s) = x(s + σ) for s ∈ [−τ(σ), 0] and by xiσ the function defined by xiσ(s) =
x(s+ σ) for s ∈ [−τi(σ), 0], i = 1, . . . ,m.

Consider scalar impulsive delay differential equations of the form (see [31, 32])x′(t) + a(t)x(t) =

m∑
i=1

fi(t, x
i
t), 0 ≤ t 6= tk,

x(t+k )− x(tk) = bkx(tk), k ∈ N,
(2.2)

where: x′(t) is the left-hand derivative of x(t); 0 < t1 < t2 < · · · < tk < · · · and tk → ∞;
a : [0,∞)→ [0,∞) is continuous with

∫∞
0 a(t)dt =∞; (bk) is a sequence of real numbers; for

each i ∈ {1, . . . ,m}, fi is the restriction to [0,∞)×PCi(t) of a function Fi : [0,∞)×PC → R,

in the sense that Fi(t, ϕ̃) := fi

(
t, ϕ̃|[−τi(t),0]

)
= fi(t, ϕ), for t ≥ 0 and ϕ ∈ PCi(t), where by

ϕ̃ ∈ PC we mean the extension of ϕ defined by ϕ(−τi(t)) on [−τ ,−τi(t)]. In the sequel, we
always suppose that either Fi(t, φ) is continuous in (t, φ), or is piecewise continuous in (t, φ)
and continuous in the second variable. In these situations, we abuse the terminology and
simply say either that fi is continuous, or that fi is piecewise continuous and continuous in
ϕ. When uniqueness of solutions is required, we also impose that Fi(t, φ) is locally Lipschtiz
continuous in the second variable. For more details, see [34, 35].

For the impulsive DDE (2.2), we consider initial conditions of the form xt0 = ϕ, that is,

x(t0 + s) = ϕ(s), s ∈ [−τ(t0), t0], (2.3)

with t0 ≥ 0 and ϕ ∈ PC(t0). It is relevant to mention that these conditions together with
the set of assumptions imposed below imply that the solution x(t) = x(t, t0, ϕ) of the initial
value problem (2.2)-(2.3) exists and is defined on [t0,∞), see e.g. [34].

As mentioned in the Introduction, the study of the global asymptotic stability of a
positive periodic solution for the impulsive hematopoiesis model (1.2) is the major purpose
of this paper. We first recall some usual definitions for stability.

Definition 2.1. Let S ⊆ PC be a set of initial conditions, and suppose that 0 is an equi-
librium of (2.2). The solution x = 0 of (2.2) is said to be stable in S if for any ε > 0 and
t0 ≥ 0, there exists δ = δ(t0, ε) > 0 such that

||ϕ|| < δ ⇒ |x(t, t0, ϕ)| < ε, for t ≥ t0, ϕ ∈ S.
We say that x = 0 of (2.2) is globally attractive in S if all solutions of (2.2) with initial
conditions in S tend to zero as t → ∞. We say that x = 0 is globally asymptotically
stable (GAS) if it is stable and globally attractive. If it is clear which set S we are dealing
with, we may omit the reference to it.
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In previous papers [31, 32], we studied the global asymptotic stability of the zero solution
of impulsive DDEs (2.2) – in fact, more general impulses ∆x(tk) = Ik(x(tk)) given by
continuous functions Ik : R → R, k = 1, 2, . . . , were considered in [31, 32], but here we
restrict our attention to the situation Ik(u) = bku. Therefore, we want to insert (1.2) in the
framework provided by (2.2).

First, we fix the set of admissible initial conditions. Due to its biological motivation, we
only consider positive solutions, corresponding to initial conditions y0 = ϕ̃ ∈ PC+

0 , where
ϕ̃(s) = ϕ(s) for s ∈ [−τ(0), 0] and ϕ̃(s) = ϕ(−τ(0)) for s ∈ [−τ̄ , τ(0)], and

PC+
0 = {ϕ ∈ PC : ϕ(θ) ≥ 0 for θ ∈ [−τ̄ , 0] and ϕ(0) > 0} .

Even if not mentioned, only initial conditions in PC+
0 are to be considered; henceforth, the

stability and global attractivity of a solution of (1.2) will always refer to the set of initial
conditions PC+

0 . Secondly, we translate an ω-periodic solution y∗(t) to the origin by the
change of variables x(t) = y(t)− y∗(t). System (1.2) is transformed into an impulsive DDE
of the form (1.1), with each function gi : [0,∞)× R→ R (1 ≤ i ≤ m) defined by

gi(t, u) =
1

1 + [u+ y∗(t− τi(t))]n
− 1

1 + y∗(t− τi(t))n
, (2.4)

for t ≥ 0 and u ≥ −y∗(t − τi(t)), and e.g. gi(t, u) = gi(t,−y∗(t − τi(t))) for t ≥ 0 and
u < −y∗(t− τi(t)). Define the set S(t) by

S(t) = {ϕ ∈ PC(t) : ϕ(θ) ≥ −y∗(t+ θ) for − τ(t) ≤ θ < 0, ϕ(0) > −y∗(t)}.

Naturally, the set S = {ϕ ∈ PC : ϕ(θ) ≥ −y∗(θ) for θ ∈ [−τ , 0), ϕ(0) > −y∗(0)} is now
taken as the set of admissible initial conditions for the transformed equation. We should
note that (1.1) has the form (2.2) where t 7→ fi(t, x

i
t) may have jump discontinuities at points

t such that t− τi(t) = tk for k ∈ N.
As usual, the solution y∗(t) of (1.2) is said to be GAS in the set of solutions of (1.2)

with initial conditions in PC+
0 if and only if the zero solution of (1.1), with gi as in (2.4), is

GAS in the set of solutions of (1.1) with initial conditions in S.
For the present framework of DDEs with linear impulses (2.2), the assumption set

adopted in [31] can be summarized as follows:

(A1) the sequence Pn =
n∏
k=1

(1 + bk) is positive and bounded.

(A2) there exist piecewise continuous functions λ1,i, λ2,i : [0,∞)→ [0,∞) such that

−λ1,i(t)Mi
t(ϕ) ≤ fi(t, ϕ|[−τi(t),0]) ≤ λ2,i(t)Mi

t(−ϕ), t ≥ 0, ϕ ∈ PCi(t), (2.5)

where Mi
t(ϕ) = max

{
0, supθ∈[−τi(t),0] ϕ(θ)

}
, for i = 1, . . . ,m;

(A3) there exists T > 0 such that

l (α1, α
∗
1) l (α2, α

∗
2) < 1, (2.6)

where l :
{

(z, w) ∈ R2 : z ≥ w ≥ 0
}
→ R is defined by

l(z, w) =


wmin

{
1, z − w

2

}
, w ≤ 1

min
{
w, z − 1

2

}
, w > 1

, (2.7)
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and the coefficients αj := αj(T ) and α∗j := α∗j (T ) are given by

αj(T ) = sup
t≥T

∫ t

t−τ(t)

m∑
i=1

λj,i(s) e
∫ s
t−τ(t) a(u) du

Bi(s) ds, j = 1, 2 (2.8)

α∗j (T ) = sup
t≥T

∫ t

t−τ(t)

m∑
i=1

λj,i(s) e−
∫ t
s a(u) duBi(s) ds, j = 1, 2, (2.9)

and

Bi(t) := max
θ∈[−τi(t),0]

( ∏
k:t+θ≤tk<t

(1 + bk)
−1

)
, i = 1, . . . ,m. (2.10)

The above condition (A2), known as Yorke-type condition (see [36]), implies that fi(t, 0) =
0 for t ≥ 0 and i = 1, . . . ,m, thus x = 0 is an equilibrium of (2.2). In (2.10), the standard
convention that a product Bi(t) is equal to one if the number of factors is zero is used.

Applying the stability results in [31, 32] to (2.2), we obtain the following result:

Theorem 2.2. [31] Assume (A1)-(A3), where a(t) is a continuous, nonnegative function
with

∫∞
0 a(t) dt =∞ and fi is piecewise continuous and continuous in ϕ, for all i. Then the

zero solution of (2.2) is GAS.

We remind the reader that it is useful to have criteria to easily check whether (2.6) is
satisfied or not. The following result is given in [31, Theorem 3.2].

Theorem 2.3. [31] For l(z, w) as in (2.7) and constants αj , α
∗
j > 0 such that αj ≥ α∗j ,

j = 1, 2, the estimate (2.6) is satisfied if one of the following conditions holds:

(i) α∗1α
∗
2 < 1; (ii) α1α2 < (3/2)2.

From Theorem 2.2, a corollary for the case of DDEs without impulses is stated as follows:

Corollary 2.1. Let a(t) be a continuous, nonnegative function with
∫∞

0 a(t)dt = ∞ and
fi(t, ϕ), for 1 ≤ i ≤ m. Assume (A2)-(A3), with αj , α

∗
j , j = 1, 2, given by (2.8), (2.9) where

Bi(t) ≡ 1 for all i. Then the zero solution of

x′(t) + a(t)x(t) =
m∑
i=1

fi(t, x
i
t), t ≥ 0 (2.11)

is GAS.

3 Global stability for periodic models

In this section, we give some improvements of Theorem 2.2 for the case of periodic impulsive
DDEs (2.2), with possible extensions to other situations.

For periodic impulsive models, more precisely under the hypotheses (H1)-(H3), the re-
striction of (Pn)n∈N bounded in (A1) is equivalent to the condition

∏p
k=1(1 + bk) ≤ 1, which

is not convenient from a view point of applications. Our first goal is to replace (A1) by the
less restrictive constraint (H4). For that purpose, we observe that hypothesis (A1) was used
in [31, Theorem 3.1] only to prove that all non-oscillatory solutions x(t) of (2.2) converge
to zero as t → ∞. We recall that a solution x(t) is oscillatory if it is not eventually zero
and has arbitrarily large zeros; otherwise, x(t) is called non-oscillatory. In this way, to show
that Theorem 2.2 still holds with (A1) replaced by (H4), it suffices to prove the following
lemma:
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Lemma 3.1. Assume (H2)-(H4) and that, for each i = 1, . . . ,m, fi(t, ϕ) is piecewise con-
tinuous and continuous in ϕ, and satisfies

(A2*) for t ≥ 0 and ϕ ∈ PCi(t), fi(t, ϕ) ≤ 0 if ϕ ≥ 0 and fi(t, ϕ) ≥ 0 if ϕ ≤ 0.

If a(t) is a continuous nonnegative ω-periodic function not identically zero, then all non-
oscillatory solutions of (2.2) converge to zero as t→∞.

Proof. Let x(t) be a non-oscillatory solution of (2.2) and assume that x(t) > 0 for t � 0
(the situation is analogous if x(t) < 0 for t� 0). Consider the nonnegative jump function

Θ(t) :=
∏

k:0≤tk<t
(1 + bk), t ≥ 0. (3.1)

From [35, Lemma 3.1], the function

y(t) = Θ(t)−1x(t), t ≥ 0, (3.2)

is continuous and satisfies

y′(t) + a(t)y(t) = Θ(t)−1
m∑
i=1

fi(t, x
i
t), t ≥ 0, t 6= tk. (3.3)

Consequently, y(t) > 0 for large t and, from (3.3) and (A2*), y′(t) + a(t)y(t) ≤ 0 for
t� 0, t 6= tk. Define

A(t) =

∫ t

0
a(u) du. (3.4)

Clearly, A(∞) :=
∫∞

0 a(u)du =∞. As t 7→ y(t) eA(t) is continuous, positive, and
(
y(t) eA(t)

)′ ≤
0 for t� 0, t 6= tk, there is w ≥ 0 such that eA(t)y(t)↘ w as t→∞.

On the other hand, denoting by [t/ω] the integer part of t/ω > 0, from (H2), (H3), (3.2)
and the conditions imposed on a(t), for large t we have

eA(t) y(t) = eA(t) Θ(t)−1x(t)

=

(
eA(ω)

p∏
k=1

(1 + bk)
−1

)[t/ω]

exp

(∫ t

[t/ω]ω
a(u)du

) ∏
k:[t/ω]ω<tk<t

(1 + bk)
−1

x(t)

≥
(

eA(ω)
p∏

k=1

(1 + bk)
−1

)[t/ω](
min

1≤j≤p

j∏
k=1

(1 + bk)
−1

)
x(t).

From (H4), we have

lim
t→∞

(
eA(ω)

p∏
k=1

(1 + bk)
−1

)[t/ω]

=∞

and (H3) implies that

min
1≤j≤p

j∏
k=1

(1 + bk)
−1 > 0.

Finally, as limt→∞ y(t) eA(t) = w ∈ R, we conclude that limt→∞ x(t) = 0.
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Now, from [32, Theorem 2.2], [31, Theorem 3.1] and the above previous lemma, we obtain
the announced improvement of Theorem 2.2 as follows:

Theorem 3.1. Assume the hypotheses (H2)-(H4), (A2), (A3), with a(t) 6≡ 0 a continuous
nonnegative ω-periodic function and fi piecewise continuous and continuous in ϕ, for all i.
Then the zero solution of (2.2) is GAS.

The above proof of Lemma 3.1 can be applied to equations (2.2) with a(t) not necessarily
periodic, as far as limt→∞ eA(t) Θ(t)−1 = ∞. This observation and again [32, Theorem 2.2]
lead to the following statement:

Theorem 3.2. Consider (2.2) where: 0 ≤ t1 < t2 < · · · < tk → ∞, bk > −1, k ∈ N; a(t)
is continuous and nonnegative; fi are piecewise continuous and continuous in ϕ, for all i.
Assume the hypotheses (A2), (A3) and

lim
t→∞

eA(t) Θ(t)−1 =∞, (3.5)

where Θ(t), A(t) are defined by (3.1), (3.4). Then the zero solution of (2.2) is GAS.

In the case of DDEs with linear impulses, a simple change of variables allows us to
transfer the impulses to the “growth functions” fi, and therefore to reduce (2.2) to a DDE
without impulses as in (2.11). Next, in view of our purposes, we restrict the scope of our
analysis to models with time-dependent discrete delays of the form (1.1). In particular, we
shall see that hypothesis (H4) can in fact be eliminated.

Theorem 3.3. Consider (1.1), where a : [0,∞)→ [0,∞) is a continuous ω-periodic function
with a(t) 6≡ 0, βi, τi : [0,∞)→ [0,∞) are continuous with τi(t) bounded, gi : [0,∞)×R→ R
is piecewise continuous and continuous in the second variable, 1 ≤ i ≤ m, and (bk)k∈N ⊂ R.
Assume (H2),(H3) and

(A2’) there exist piecewise continuous functions λ1,i, λ2,i : [0,∞)→ [0,∞) such that

−λ1,i(t) max{u, 0} ≤ βi(t)gi(t, u) ≤ λ2,i(t) max{−u, 0}, t ≥ 0, u ∈ R; (3.6)

(A3’) condition (A3) is satisfied with Bi(t) in (2.10) replaced by

Bi(t) :=
∏

k:t−τi(t)≤tk<t
(1 + bk)

−1, i = 1, . . . ,m. (3.7)

Then the zero solution of (1.1) is GAS.

Proof. For the jump function Θ(t) defined above, the change of variables (3.2) transforms
(1.1) into a DDE in PC with no impulses of the form (2.11), with fi given by

fi(t, ψ) = Θ(t)−1βi(t)gi

(
t,Θ(t− τi(t))ψ(−τi(t))

)
,

for t ≥ 0, ψ ∈ PCi(t), 1 ≤ i ≤ m. Since Θ(t) > 0, clearly Mi
t

(
Θ(t − τi(t))ψ

)
= Θ(t −

τi(t))Mi
t

(
ψ
)
. Now, for t ≥ 0 and ψ ∈ PCi(t), we have ψ(−τi(t)) ≤Mi

t(ψ) and −ψ(−τi(t)) ≤
Mi

t(−ψ). By the assumption (3.6), each fi satisfies (A2) with λj,i(t) replaced by µj,i(t) =
Θ(t)−1Θ(t− τi(t))λj,i(t) = Bi(t)λj,i(t), where Bi(t) is as (3.7), for 1 ≤ i ≤ m, j = 1, 2. Now,
Corollary 2.1 gives the result.
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The above Theorem 3.2 concerns equations which are not periodic. Observe also that for
models with no impulses the constraint (3.5) reduces to

∫∞
0 a(t) dt =∞. For (1.1) with a(t)

not necessarily periodic, it is clear that Theorem 3.3 holds true as far as
∫∞

0 a(t) dt =∞.

Theorem 3.4. Consider (1.1), where a, βi, τi : [0,∞) → [0,∞) are continuous with τi(t)
bounded, gi : [0,∞)×R→ R is piecewise continuous and continuous in the second variable,
1 ≤ i ≤ m, and bk ∈ (−1,∞), k ∈ N. Assume (A2’), (A3’) and

∫∞
0 a(t) dt = ∞. Then the

zero solution of (1.1) is GAS.

Remark 3.1. As an important illustration of more general models, keep in mind that
Theorem 3.4 can be applied to almost periodic impulsive models of hematopoiesis.

4 Stability of the impulsive hematopoiesis model

In this section, we study the stability of an ω-periodic solution y∗(t) of (1.2). We start with
some uniform lower and upper bounds for y∗(t).

4.1 Uniform estimates for periodic solutions

Assume (H1)-(H4), and let y∗(t) be a positive ω-periodic solution of (1.2), whose existence
is given in Theorem 2.1. Denote

y∗ := inf
t∈[0,ω]

{y∗(t)} and y∗ := sup
t∈[0,ω]

{y∗(t)}. (4.1)

Usually, it is not possible to explicitly compute periodic solutions, thus it is important to
obtain estimates for uniform bounds of y∗(t) which do not depend on its a priori knowledge.
For this purpose, in the next results we present some upper and lower uniform bounds for
y∗(t), based either on the integral averages of the functions a(t) and β(t) :=

∑m
i=1 βi(t), or

on the ratio β(t)/a(t). In fact, the first result below recovers the estimates for the periodic
solution established in [18] in the case of the non-impulsive model.

Proposition 4.1. Assume (H1)-(H4). Then any positive ω-periodic solution y∗(t) of (1.2)
satisfies

m1 :=
e−A(ω)MBβ

1 +
(
MβB

)n ≤ y∗(t) ≤MβB =: M1, ∀t ≥ 0, (4.2)

where

B = min
{

1,

j+l−1∏
k=j

(1 + bk)
−1 : j = 1, . . . , p, l = 0, . . . , p

}
,

B = max
{

1,

j+l−1∏
k=j

(1 + bk)
−1 : j = 1, . . . , p, l = 0, . . . , p

}
,

M =

(
p∏

k=1

(1 + bk)
−1 − e−A(ω)

)−1

, and

β =

∫ ω

0

m∑
i=1

βi(s)ds, A(ω) =

∫ ω

0
a(u)du. (4.3)
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Proof. Let y∗(t) be a positive ω-periodic solution of (1.2) and consider z∗(t) := Θ(t)−1y∗(t),
where as before we write Θ(t) =

∏
k:0≤tk<t(1 + bk). From [35, Lemma 3.1], we know that

the function z∗(t) is continuous and satisfies

z∗′(t) + a(t)z∗(t) = Θ(t)−1
m∑
i=1

βi(t)

1 + y∗(t− τi(t))n
, t ≥ 0, t 6= tk.

Fix t 6= tk. For A(t) as in (3.4), multiplying by eA(t) and integrating over [t, t+ω], we obtain∫ t+ω

t

[
z∗(s) eA(s)

]′
ds =

∫ t+ω

t
Θ(s)−1

m∑
i=1

βi(s) eA(s)

1 + y∗(s− τi(s))n
ds,

which is equivalent to

Θ(t+ ω)−1y∗(t+ ω)eA(t+ω)−Θ(t)−1y∗(t) eA(t)

=

∫ t+ω

t
Θ(s)−1

m∑
i=1

βi(s) eA(s)

1 + y∗(s− τi(s))n
ds.

As y∗(t) and a(t) are ω-periodic functions and (H2) holds, we obtain

y∗(t) eA(t) Θ(t)−1

[(
p∏

k=1

(1 + bk)
−1

)
eA(ω)−1

]

=

∫ t+ω

t
Θ(s)−1

m∑
i=1

βi(s) eA(s)

1 + y∗(s− τi(s))n
ds,

and consequently

y∗(t) =

(
eA(ω)

p∏
k=1

(1 + bk)
−1 − 1

)−1 ∫ t+ω

t

 ∏
k:t≤tk<s

(1 + bk)
−1

 m∑
i=1

βi(s) e
∫ s
t a(u)du

1 + y∗(s− τi(s))n
ds.(4.4)

On the one hand, we deduce

y∗(t) ≤
(

eA(ω)
p∏

k=1

(1 + bk)
−1 − 1

)−1

B eA(ω)

∫ t+ω

t

m∑
i=1

βi(s)

1 + y∗(s− τi(s))n
ds

≤
(

p∏
k=1

(1 + bk)
−1 − e−A(ω)

)−1

B

∫ t+ω

t

m∑
i=1

βi(s)ds = MBβ.

On the other hand, from (4.4) and the previous estimate, we have

y∗(t) ≥
(

eA(ω)
p∏

k=1

(1 + bk)
−1 − 1

)−1 ∫ t+ω

t

 ∏
k:t≤tk<s

(1 + bk)
−1

 m∑
i=1

βi(s) e
∫ s
t a(u)du

1 + (MBβ)n
ds

≥

(
p∏

k=1

(1 + bk)
−1 − e−A(ω)

)−1

e−A(ω)B

1 + (MBβ)n

∫ t+ω

t

m∑
i=1

βi(s)ds =
M e−A(ω)Bβ

1 + (MBβ)n
.
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Proposition 4.2. Assume (H1)-(H4) with a(t) > 0, β(t) :=
∑m

i=1 βi(t) 6≡ 0, and define
c1 ≥ 0, c2 > 0 by

c1 = min
t∈[0,ω]

β(t)

a(t)
, c2 = max

t∈[0,ω]

β(t)

a(t)
. (4.5)

A positive ω-periodic solution y∗(t) of (1.2) satisfies the estimates

m2 ≤ y∗(t) ≤M2, t ≥ 0,

where

M2 = c2 e−A(ω)MB(eA(ω)−1), m2 = c1 e−A(ω)MB
eA(ω)−1

1 + M2
n , (4.6)

where B,B,A(ω) and Mare as in Proposition 4.1.
In particular, for the equation without impulses

y′(t) + a(t)y(t) =

m∑
i=1

βi(t)

1 + y(t− τi(t))n
, t ≥ 0, (4.7)

with a(t), βi(t), τi(t) as above, it holds

c1

1 + cn2
≤ y∗(t) ≤ c2, t ≥ 0.

Proof. One proceeds as in the above proof, noting that in (4.4) one can use the estimate∫ t+ω

t

m∑
i=1

βi(s) e
∫ s
t a(u)du

1 + y∗(s− τi(s))n
ds ≤ c2

∫ t+ω

t
a(s) e

∫ s
t a(u)du ds = c2(eA(ω)−1).

A similar argument is applied to obtain the uniform lower bound m2, so computations are
omitted.

Combining the above two propositions, new estimates are obtained as follows:

Proposition 4.3. Assume (H1)-(H4) with a(t) > 0 and β(t) :=
∑m

i=1 βi(t) 6≡ 0. With the
notations in Propositions 4.1 and 4.2, set

M = min{M1,M2}, m =
e−A(ω)MB

1 + Mn
max{β, c1(eA(ω)−1)}. (4.8)

Then, a positive ω-periodic solution y∗(t) of (1.2) satisfies the estimates

m ≤ y∗(t) ≤M, t ≥ 0.

To proceed with the study of the asymptotic behaviour of solutions to (1.2), as explained
in Section 2, we consider (1.1) with gi defined by (2.4). The next step is to find functions
λ1,i(t), λ2,i(t) such that the Yorke condition (3.6) holds for each function gi, i = 1, . . . ,m.
In this way, in order to choose adequate functions λj,i(t), it is convenient to consider the
situations n ≤ 1 and n > 1 separately.
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4.2 Case n ∈ (0, 1]

Lemma 4.1. Assume (H1)-(H4). If n ∈ (0, 1], then the functions gi defined in (2.4) satisfy
the Yorke conditions (3.6), for i = 1, . . . ,m, with λ1,i, λ2,i : [0,∞)→ [0,∞) given by

λ1,i(t) =
nβi(t)y

∗(t− τi(t))n−1

[1 + y∗(t− τi(t))n]2
, λ2,i(t) =

βi(t)y
∗(t− τi(t))n−1

1 + y∗(t− τi(t))n
, t ≥ 0.

Proof. For each i = 1, . . . ,m and gi : [0,∞)× R→ R as in (2.4), we have

∂gi
∂u

(t, u) = − n(u+ y∗(t− τi(t)))n−1

[1 + (u+ y∗(t− τi(t)))n]2
< 0, ∀t ≥ 0, ∀u > −y∗(t− τi(t)), (4.9)

and

∂2gi
∂u2

(t, u) =
n(u+ y∗(t− τi(t)))n−2 [1− n+ (1 + n)(u+ y∗(t− τi(t)))n]

[1 + (u+ y∗(t− τi(t)))n]3
. (4.10)

Consequently, for each t ≥ 0 and i = 1, . . . ,m, the function u 7→ gi(t, u) is decreasing on

[−y∗(t− τi(t)),∞) and, as n ∈ (0, 1],
∂2gi
∂u2

(t, u) > 0 for all u > −y∗(t− τi(t)). Now it is clear

that

0 ≥ gi(t, u) ≥ ∂gi
∂u

(t, 0)u = − ny∗(t− τi(t))n−1

[1 + y∗(t− τi(t))n]2
u, ∀t ≥ 0, ∀u ≥ 0,

and

0 ≤ gi(t, u) ≤ gi(t,−y∗(t− τi(t)))
−y∗(t− τi(t))

u = − y∗(t− τi(t))n−1

1 + y∗(t− τi(t))n
u, ∀t ≥ 0, ∀u ∈ [−y∗(t−τi(t)), 0].

Hence, (3.6) is satisfied with λj,i(t) (j = 1, 2 and 1 ≤ i ≤ m) as in the statement of the
lemma.

This lemma shows that gi(t, u) satisfies (3.6) for t ≥ 0, u ∈ [−y∗(t − τi(t)),∞), hence
(A2’) holds. Therefore, by Theorem 3.3 we obtain the following stability criterion:

Theorem 4.1. Assume (H1)-(H4) and n ∈ (0, 1] in (1.2). In addition, suppose that there is
T > 0 such that l(α1, α

∗
1)l(α2, α

∗
2) < 1, for l(z, w) defined by (2.7) and the coefficients αj and

α∗j given by αj := αjT = sup
t≥T

αj(t) and α∗j := α∗j T = sup
t≥T

α∗j (t) and αj(t) = α∗j (t) e
∫ t
t−τ(t) a(u)du

,

j = 1, 2, where

α∗1(t) =

∫ t

t−τ(t)

m∑
i=1

nβi(s)y
∗(s− τi(s))n−1

[1 + y∗(s− τi(s))n]2
Bi(s) e−

∫ t
s a(u) du ds

α∗2(t) =

∫ t

t−τ(t)

m∑
i=1

βi(s)y
∗(s− τi(s))n−1

1 + y∗(s− τi(s))n
Bi(s) e−

∫ t
s sa(u) du ds

and Bi(t) is given by (3.7). Then the positive ω-periodic solution y∗(t) of (1.2) is GAS (in
PC+

0 ), i.e., y∗(t) is stable and any positive solution y(t) of (1.2) satisfies lim
t→∞

(y(t)−y∗(t)) =

0.
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Remark 4.1. As the ω-periodic solution y∗(t) is usually unknown, it is desirable to have
some estimates not depending on y∗(t), in order to apply the stability result in Theorem 4.1.

Since s 7→ nsn−1

(1+sn)2
and s 7→ sn−1

1+sn are decreasing on (0,∞) and m ≤ y∗ by Proposition

4.3, then λ1,i(t), λ2,i(t) defined in Lemma 4.1 satisfy the inequalities

λ1,i(t) ≤
nβi(t)y

∗n−1

[1 + y∗n]2
≤ nβi(t)m

n−1

[1 + mn]2
, λ2,i(t) ≤

βi(t)y
∗n−1

1 + y∗n
≤ βi(t)m

n−1

1 + mn
, (4.11)

t ≥ 0, i = 1, . . . ,m. Hence, one can replace α∗1(t), α∗2(t) in Theorem 4.1 by

α∗1(t) =
nmn−1

[1 + mn]2
B(t), α∗2(t) =

mn−1

1 + mn
B(t), (4.12)

respectively, where

B(t) :=

∫ t

t−τ(t)

m∑
i=1

βi(s)Bi(s) e−
∫ t
s a(u) du ds, (4.13)

and obtain the same conclusions. Now, note that the ω-periodicity of the functions a(t), βi(t),
Bi(t) and τ(t) implies that B(t) is ω-periodic, hence supt≥T B(t) = supt∈[0,ω] B(t).

Corollary 4.1. Under (H1)-(H4) and for n ∈ (0, 1] in (1.2), if

mn−1√n
[1 + mn]3/2

B < max

{
1,

3

2
e−A

}
, (4.14)

where

A : = sup
t∈[0,ω]

∫ t

t−τ(t)
a(u)du

B : = sup
t∈[0,ω]

∫ t

t−τ(t)

m∑
i=1

βi(s)Bi(s) e−
∫ t
s a(u) du ds,

(4.15)

then the positive ω-periodic solution y∗(t) is GAS (in PC+
0 ). Moreover, the above statements

also hold with m replaced by y∗ or any other uniform lower bound for y∗(t).

Proof. With α∗j (t) given by (4.12), as before take αj(t) = α∗j (t) e
∫ t
t−τ(t) a(u) du

. With the

notations αj = sup
t≥T

αj(t), α
∗
j = sup

t≥T
α∗j (t) (j = 1, 2), we have αj ≤ α∗j eA (j = 1, 2) and it is

clear that
√
α∗1α

∗
2 ≤

√
nmn−1

[1+mn]3/2
B. Thus (4.14) implies that either α∗1α

∗
2 < 1 or α1α2 < (3/2)2.

The result follows now from Theorem 2.3.

Remark 4.2. In the above corollary, observe that the effect of the impulses is shown in the
definition of B, whereas the effect of the delays appears in both A,B.

Remark 4.3. If a(t) is a positive function and c := maxt∈[0,ω]

(∑m
i=1 βi(t)Bi(t)

)
/a(t), one

deduces that
B ≤ c(1− e−A), (4.16)

for A,B as in (4.15). Also, for c2 = max
t∈[0,ω]

β(t)

a(t)
as in (4.5) and B0 := max

1≤i≤m
max
t∈[0,ω]

Bi(t), one

obtains B ≤ c2B0(1− e−A).
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4.3 Case n > 1

We now consider the impulsive delayed hematopoiesis model (1.2) with n > 1.

Lemma 4.2. Assume (H1)-(H4).
If n > 1, then hypothesis (A2’) holds for gi defined by (2.4) and λ1,i, λ2,i : [0,∞) →

[0,∞), i = 1, . . . ,m, given by one of the following situations:

(i)


λ1,i(t) =

nβi(t)y
∗(t− τi(t))n−1

[1 + y∗(t− τi(t))n]2

λ2,i(t) = βi(t)ρn

, for the case y∗ ≥
(
n− 1

n+ 1

) 1
n

;

(ii)


λ1,i(t) = βi(t)ρn

λ2,i(t) =
nβi(t)y

∗(t− τi(t))n−1

[1 + y∗(t− τi(t))n]2

, for the case y∗ ≤
(
n− 1

n+ 1

) 1
n

.

(iii) λ1,i(t) = λ2,i(t) = βi(t)ρn, for all cases,

where ρn := (n+1)2

4n

(
n−1
n+1

)n−1
n

and y∗, y∗ are defined by (4.1).

Proof. For each i = 1, . . . ,m, consider gi(t, u) defined on [0,∞) × R as in (2.4). We have
∂gi
∂u

(t, u) < 0 for all t ≥ 0 and u > −y∗(t − τi(t)), and consequently, for each t ≥ 0, the

function u 7→ gi(t, u) is decreasing on [−y∗(t − τi(t)),∞). Since n > 1, from (4.9) and

(4.10) we conclude that u0(t) := −y∗(t− τi(t)) +

(
n− 1

n+ 1

) 1
n

is the unique inflection point of

u 7→ gi(t, u) on (−y∗(t− τi(t)),∞) with
∂2gi
∂u2

(t, u) > 0 for u > u0(t), and
∂2gi
∂u2

(t, u) < 0 for

u ∈ (−y∗(t− τi(t)), u0(t)) (see Figure 1).

Next, consider the case (i), that is, assume that

(
n− 1

n+ 1

) 1
n

≤ y∗. In this situation, the

inflection point u0(t) is nonpositive, for all t ≥ 0, thus

0 ≥ gi(t, u) ≥ ∂gi
∂u

(t, 0)u = − ny∗(t− τi(t))n−1

[1 + y∗(t− τi(t))n]2
u, ∀u ≥ 0,

and

0 ≤ gi(t, u) ≤ ∂gi
∂u

(t, u0(t))u = −ρnu, ∀u ∈ [−y∗(t− τi(t)), 0]. (4.17)

Hence, each gi satisfies the Yorke condition (3.6) with λ1,i(t), λ2,i(t) defined by (i).

Analogously, in the case y∗ ≤
(
n− 1

n+ 1

) 1
n

, we can prove that each gi satisfies the Yorke

condition (A2’) with λ1,i(t), λ2,i(t) defined by (ii).
We further observe that in any situation

∂2gi
∂u2

(t, u)(u− u0(t)) > 0, ∀u ∈ (−y∗(t− τi(t)),∞) \ {u0(t)}.
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Consequently

0 ≥ gi(t, u) ≥ ∂gi
∂u

(t, u0(t))u = −ρnu, ∀u > 0

and

0 ≤ gi(t, u) ≤ ∂gi
∂u

(t, u0(t))u = −ρnu, ∀u ∈ [−y∗(t− τi(t)), 0),

thus each gi satisfies (3.6) with λ1,i(t), λ2,i(t) defined by (iii).

The figure below illustrates the situation in Lemma 4.2(i).

gi(t, u)

u

u0(t)

−λ1,i(t)u

g(t,−y∗(t− τi(t)))

−y∗(t− τi(t))

−λ2,1(t)u = −βi(t)ρnu

Figure 1: Graph of the functions u 7→ gi(t, u), u 7→ −λji(t)u, and u 7→ −βi(t)ρnu for
situation (i) with t > 0 fixed; u0(t) is the inflexion point of u 7→ gi(t, u).

We now use the previous lemma and apply Theorem 3.3 to (1.2) with n > 1.

Theorem 4.2. Consider (1.2) with n > 1 and assume (H1)-(H4). For T > 0, define the

coefficients γ = γT = sup
t≥T

γ(t), γ∗ = γ∗T = sup
t≥T

γ(t) e
−

∫ t
t−τ(t) a(u)du

and α = αT = sup
t≥T

α(t),

α∗ = α∗T = sup
t≥T

α(t) e
−

∫ t
t−τ(t) a(u)du

, where

γ(t) = ρn

∫ t

t−τ(t)

m∑
i=1

βi(s)Bi(s) e
∫ s
t−τ(t) a(u) du

ds, (4.18)

and

α(t) =

∫ t

t−τ(t)

m∑
i=1

nβi(s)y
∗(s− τi(s))n−1

[1 + y∗(s− τi(s))n]2
Bi(s) e

∫ s
t−τ(t) a(u) du

ds, (4.19)

for ρn = (n+1)2

4n

(
n−1
n+1

)n−1
n

and Bi(t) as in (3.7). Let l(z, w) be as in (2.7). Then, there exists

a unique positive ω-periodic solution y∗(t) of (1.2), which is GAS if one of the following
conditions holds:

(i) l(α, α∗)l(γ, γ∗) < 1 and y∗ ≥
(
n− 1

n+ 1

) 1
n

;

(ii) l(α, α∗)l(γ, γ∗) < 1 and y∗ ≤
(
n− 1

n+ 1

) 1
n

;

(iii) l(γ, γ∗) < 1.
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Remark 4.4. In case y∗ and y∗ are unknown, but either m ≥
(
n−1
n+1

) 1
n

or M ≤
(
n−1
n+1

) 1
n

,

for m,M defined as in (4.8), we can proceed as follows. For n > 1, the function s 7→ sn−1

(1+sn)2

is increasing on
[
0,
(
n−1
n+1

) 1
n
]

and decreasing on
[(

n−1
n+1

) 1
n
,∞
)

. Thus, if m ≥
(
n−1
n+1

) 1
n

, then

y∗ ≥ m from Proposition 4.3, and therefore

λ1,i(t) ≤
nβi(t)y

∗n−1

[1 + y∗n]2
≤ nβi(t)m

n−1

[1 + mn]2
, t ≥ 0, i = 1, . . . ,m, (4.20)

for λ1,i(t) defined in Lemma 4.2 (i). Analogously, if M ≤
(
n−1
n+1

) 1
n

, then y∗ ≤M and

λ2,i(t) ≤
nβi(t)y

∗n−1

[1 + y∗n]2
≤ nβi(t)M

n−1

[1 + Mn]2
, t ≥ 0, i = 1, . . . ,m, (4.21)

for λ2,i(t) defined in Lemma 4.2 (ii). Consequently, reasoning as for the proof of Corollary
4.1, the following results are derived. The details are omitted.

Corollary 4.2. Assume (H1)-(H4) with n > 1 in (1.2), let y∗(t) be the positive ω-periodic
solution of (1.2) and define A,B as in (4.15). Then y∗(t) is GAS (in PC+

0 ) if one of the
following conditions holds:

(i)

√
nρnmn−1

1 + mn
B < max

{
1,

3

2
e−A

}
and m ≥

(
n−1
n+1

) 1
n

;

(ii)

√
nρnMn−1

1 + Mn
B < max

{
1,

3

2
e−A

}
and M ≤

(
n−1
n+1

) 1
n

;

(iii) ρnB < max
{

1, 3
2 e−A

}
.

Naturally, these stability criteria also hold if, instead of m and M, other lower and upper
uniform estimates for y∗(t), respectively, are used. Remark 4.2 applies to this case as well.

4.4 Case of delays multiple of the period

Now, we pursue our analysis with the situation of (1.2) with time independent delays multiple
of the period, τi(t) ≡ qiω, where qi are positive integers, i = 1, . . . ,m: y′(t) + a(t)y(t) =

m∑
i=1

βi(t)

1 + y(t− qiω)n
, 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N.
(4.22)

See [24] for the case m = 1 and n ∈ N. As before, the cases 0 < n ≤ 1 and n > 1 are treated
separately.

For q := max
1≤i≤m

qi, we have τ(t) = qω,A = qA(ω) and the constants αj , α
∗
j , defined in

Theorem 4.1, j = 1, 2, satisfy

αj = α∗j eq
∫ ω
0 a(u)du = α∗j eqA(ω) . (4.23)

In what follows we establish upper estimates for the coefficients α∗1, α
∗
2 in Theorem 4.1.
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Theorem 4.3. Assume (H1)-(H4) with n ∈ (0, 1] and τi(t) = qiω (qi ∈ N). Then there is a
positive ω-periodic solution y∗(t) of (4.22), which is GAS (in PC+

0 ), if

y∗n−1√n√
1 + y∗n

E < max

{
1,

3

2
e−qA(ω)

}
, (4.24)

where

E := By∗
(

1− e−qA(ω)
)[

1−
(

1− e−A(ω)
)−1

p∑
k=1

min{bk, 0}
]
, (4.25)

B0 =
∏p
k=1(1 + bk)

−1, B = max
{
Bq

0, B
q

0

}
, q = max

1≤i≤m
qi, q = min

1≤i≤m
qi, A(ω) =

∫ ω
0 a(u)du,

and y∗, y∗ are defined by (4.1).
In particular, if there are no impulses or the impulses b1, b2, . . . , bp are all nonnegative,

then y∗(t) is GAS if

y∗n−1√n√
1 + y∗n

y∗
(

1− e−qA(ω)
)
< max

{
1,

3

2
e−qA(ω)

}
.

Proof. From (H2) and (H3), for t ≥ 0, 1 ≤ i ≤ m and Bi(t) as in (3.7), we have

Bi(t) =
∏

k:t−qiω≤tk<t
(1 + bk)

−1 ≡ Bqi
0 ≤ B.

Since y∗(t) is an ω-periodic solution of (1.2), then

(y∗)′(t) + a(t)y∗(t) =
m∑
i=1

βi(t)

1 + y∗(t)n
=

β(t)

1 + y∗(t)n
, for 0 ≤ t 6= tk, (4.26)

for β(t) =
∑m

i=1 βi(t). Recalling that y∗(t) has possible jumps at the points tk, for α∗1 = α∗1T
defined in Theorem 4.1, from (4.26) we derive

α∗1 = n sup
t≥T

∫ t

t−qω

m∑
i=1

βi(s)y
∗(s)n−1

[1 + y∗(s)n]2
Bi(s) e−

∫ t
s a(u) du ds

≤
nBy∗n−1

1 + y∗n
sup
t≥T

∫ t

t−qω

d

ds

[
y∗(s) e

∫ s
t a(u) du

]
ds

=
nBy∗n−1

1 + y∗n
sup
t≥T

y∗(t)(1− e−qA(ω)
)
−

∑
k:tk∈[t−qω,t)

bky
∗(tk) e

−
∫ t
tk
a(u) du

 . (4.27)

Let b−k = max{−bk, 0} = −min{bk, 0}. We have∑
k:tk∈[t−qω,t)

b−k y
∗(tk) e

−
∫ t
tk
a(u) du

=

 ∑
k:tk∈[t−ω,t)

b−k y
∗(tk) e

−
∫ t
tk
a(u) du

(1 + e−A(ω) + · · ·+ e−(q−1)A(ω)
)

≤ y∗
(

p∑
k=1

b−k

)
1− e−qA(ω)

1− e−A(ω)
. (4.28)
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The estimates (4.27) and (4.28) yield

α∗1 ≤
nBy∗n−1y∗

1 + y∗n

(
1− e−qA(ω)

)[
1−

(
1− e−A(ω)

)−1
p∑

k=1

min{bk, 0}
]

=
ny∗n−1

1 + y∗n
E =: σ∗1.

In a similar way, for α∗2 = α∗2T defined in Theorem 4.1 we also obtain

α∗2 ≤ By∗n−1y∗
(

1− e−qA(ω)
)[

1−
(

1− e−A(ω)
)−1

p∑
k=1

min{bk, 0}
]

= y∗n−1E =: σ∗2.

Clearly, condition (4.24) is equivalent to

σ∗1σ
∗
2 < max

{
1,

9

4
e−2qA(ω)

}
. (4.29)

As αj = α∗j eqA(ω) (see (4.23)) for αj defined in Theorem 4.1, j = 1, 2, condition (4.29)
implies that

α∗1α
∗
2 < 1 or α1α2 <

9

4
. (4.30)

Now, the conclusion follows from Theorem 4.1 because, by Theorem 2.3, (4.30) implies
l(α1, α

∗
1)l(α2, α

∗
2) < 1.

Observe also that with bk ≥ 0 (1 ≤ k ≤ p), then B ≤ 1 and b−k = 0 (1 ≤ k ≤ p).

As already mentioned, we emphasize that other stability criteria are deduced if in (4.24)
and (4.25), we replace y∗ and y∗ by m and M or any other lower and upper estimates for
y∗(t), respectively (see Subsection 4.1).

Remark 4.5. Consider (4.22) with no impulses, a(t) positive, c2 as in (4.5) and 0 < n ≤ 1.
With the above notations, one has E = ȳ∗(1−e−q̄A(ω)), c1(1−e−q̄A(ω)) ≤ B ≤ c2(1−e−q̄A(ω)).
For the constants

C1 :=
y∗n−1√n

[1 + y∗n]3/2
B, C2 :=

y∗n−1√n√
1 + y∗n

E ,

one deduces the estimates

C1 ≤
c2

ȳ∗[1 + y∗n]
C2 and C2 ≤

ȳ∗[1 + y∗n]

c1
C1 ≤

c2

c1
[1 + y∗n]C1.

Therefore, the constraints C1 < max
{

1, 3
2 e−q̄A(ω)

}
, imposed by (4.14) in Corollary 4.1, and

C2 < max
{

1, 3
2 e−q̄A(ω)

}
, imposed by (4.24) in Theorem 4.3, are not always comparable –

so one should check which one is more convenient to use. Of course, for the autonomous
case without impulses, in which y∗(t) ≡ y∗ is a positive equilibrium, C1 = C2 and the two
criteria coincide.

Similarly to the case 0 < n ≤ 1 studied above, consider now (4.22) with n > 1. The
coefficients γ, γ∗ and α, α∗ in Theorem 4.2 satisfy γ = γ∗ eqA(ω) and α = α∗ eqA(ω), with α∗

now given by

γ∗ =ρn sup
t≥T

∫ t

t−q̄ω

m∑
i=1

βi(s)Bi(s) e−
∫ t
s a(u) du ds

α∗ = sup
t≥T

∫ t

t−q̄ω

m∑
i=1

nβi(s)y
∗(s)n−1

[1 + y∗(s)n]2
Bi(s) e−

∫ t
s a(u) du ds

(4.31)
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Arguing as in the proof of Theorem 4.3, below we establish alternative upper estimates
for γ∗, α∗ which are easier to check.

Theorem 4.4. Assume (H1)-(H4) with n > 1 and τi(t) = qiω (qi ∈ N). Then the positive
ω-periodic solution y∗(t) of (4.22) is GAS (in PC+

0 ) if one of the following conditions holds:

(i)

√
ρn(n− 1)

n−1
n (1 + y∗n) E < max

{
1, 3

2 e−qA(ω)
}

and y∗ ≥
(
n−1
n+1

) 1
n

;

(ii)
√
nρny∗n−1 E < max

{
1, 3

2 e−qA(ω)
}

and y∗ ≤
(
n−1
n+1

) 1
n

;

(iii) ρn(1 + y∗n) E < max
{

1, 3
2 e−qA(ω)

}
,

where ρn = (n+1)2

4n

(
n−1
n+1

)n−1
n

, A(ω) =
∫ ω

0 a(u)du, E is defined by (4.25), and y∗, y∗ are

defined by (4.1). In particular, if there are no impulses or the impulses b1, b2, . . . , bp are all
nonnegative, then y∗(t) is GAS if either (i), (ii) or (iii) holds with E = y∗

(
1− e−qA(ω)

)
.

Moreover, in (i), (ii) and (iii) one can replace y∗ and y∗ by any other uniform lower and
upper bounds for y∗(t), respectively.

Proof. Again, take B0 =
∏p
k=1(1 + bk)

−1, B = max
{
Bq

0, B
q

0

}
. Since y∗(t) is an ω-periodic

solution of (1.2), for γ∗ defined as in (4.31),

γ∗ ≤ ρnB(1 + y∗n) sup
t≥T

∫ t

t−qω

m∑
i=1

βi(s)

1 + y∗(s)n
e−

∫ t
s a(u) du ds

= ρnB(1 + y∗n) sup
t≥T

∫ t

t−qω

d

ds

[
y∗(s) e

∫ s
t a(u) du

]
ds

and, arguing as in the proof of Theorem 4.3, we conclude that

γ∗ ≤ ρn(1 + y∗n)E =: σ∗γ . (4.32)

For α∗ given in (4.31), we also have

α∗ ≤ nB sup
t≥T

∫ t

t−q̄ω

y∗(s)n−1

1 + y∗(s)n

m∑
i=1

βi(s)

1 + y∗(s)n
e−

∫ t
s a(u) du ds

and, since s 7→ sn−1

1+sn is increasing on
[
0, (n− 1)

1
n

]
and decreasing on

[
(n− 1)

1
n ,∞

)
, we

conclude that

α∗ ≤ B(n− 1)
n−1
n sup

t≥T

∫ t

t−q̄ω

d

ds

[
y∗(s) e

∫ s
t a(u) du

]
ds if y∗ ≥

(
n− 1

n+ 1

) 1
n

and

α∗ ≤ nB y∗n−1

1 + y∗n
sup
t≥T

∫ t

t−q̄ω

d

ds

[
y∗(s) e

∫ s
t a(u) du

]
ds if y∗ ≤

(
n− 1

n+ 1

) 1
n

.

At this step, we can perform computations as in the proof of Theorem 4.3, so details are
omitted. In this way, we obtain

α∗ ≤ (n− 1)
n−1
n E =: σ∗1 if y∗ ≥

(
n− 1

n+ 1

) 1
n
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and

α∗ ≤ ny∗n−1

1 + y∗n
E =: σ∗2 if y∗ ≤

(
n− 1

n+ 1

) 1
n

.

Finally, in case y∗ ≥
(
n−1
n+1

) 1
n

, condition (i) is equivalent to

σ∗γσ
∗
1 < max

{
1,

9

4
e−2qA(ω)

}
(4.33)

which implies that

α∗γ∗ < 1 or αγ <
9

4
, (4.34)

for α = α∗ eqA(ω) and γ = γ∗ eqA(ω). Consequently l(α, α∗)l(γ, γ∗) < 1 and the conclusion
follows from Theorem 4.2.

Analogously, in case y∗ ≤
(
n−1
n+1

) 1
n

, condition (ii) is equivalent to

σ∗γσ
∗
2 < max

{
1,

9

4
e−2qA(ω)

}
which again implies that l(α, α∗)l(γ, γ∗) < 1. With similar arguments, if (iii) holds, then
γ∗ < 1 or γ < 3/2, and the global asymptotic stability of y∗(t) folows from Theorem 4.2.

Remark 4.6. Whenever the results in Subsections 4.2-4.4 require the a priori knowledge of
a uniform lower or upper bound for y∗(t), of course one can apply previously Propositions
4.1, 4.2 or 4.3 to obtain such uniform bounds. Nevertheless, in Subsections 4.3 and 4.4, the
above criteria involving only γ or γ∗ in conditions (iii) are much easier to apply. In Section 5,
we shall however consider an example where (iii) is not satisfied, still the global asymptotic
stability of y∗(t) can be derived by application of either (i) or (ii). The remark below also
emphasizes the importance of these alternative criteria.

Remark 4.7. Note that limn→∞ ρn =∞, limn→1+ ρn = 1, and that M defined by (4.8) and
B defined by (4.15) are independent of n. Below, we stress two situations where Corollary
4.2(iii) is not applicable, however either the criterion in (i) or in (ii) can be invoked. These
ideas will be exploited in more detail with a numerical example, see (5.13) in Section 5.

1. If M ∈ (0, 1), it is clear that condition (iii) in Corollary 4.2 fails for n > 1 sufficiently
large, whereas condition (ii) holds, because

lim
n→∞

(
n− 1

n+ 1

) 1
n

= 1 and lim
n→∞

√
nρnMn−1

1 + Mn
= 0.

2. With c1 as in (4.5) and m as in (4.8), if

1 +
e−A(ω)MB

1 + M
max{β, c1(eA(ω)−1)} > B

max{1, 3
2 e−A} > 1,

then, for n > 1 close enough to 1, condition (iii) fails and condition (i) holds, in Corollary
4.2. In fact, on the one hand, B > max{1, 3

2 e−A} and limn→1+ ρn = 1 imply that condition
(iii) fails for n > 1 close to 1. On the other hand, since

lim
n→1+

√
nρnmn−1

1 + mn
B =

B

1 +
e−A(ω)MBmax{β, c1(eA(ω)−1)}

1 + M

< max

{
1,

3

2
e−A

}
,
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lim
n→1+

(
n− 1

n+ 1

) 1
n

= 0 and lim
n→1+

m > 0, then condition (i) holds for n > 1 close enough to 1.

5 Particular models

With the choice of some particular models below, we discuss our results within the context
of recent literature. We shall see that our approach leads to sharper criteria than the few
ones found in previous works, even in the case of models without impulses.

5.1 The case n = 1

Consider (1.2) with n = 1, assume (H1)-(H4) with a(t) positive and define β(t) :=
∑m

i=1 βi(t).
Let y∗(t) be a positive ω-periodic solution, whose existence is asserted in Theorem 2.1.
Consider also the previous terminology for A(ω), B,A,B, E , etc.

From Corollary 4.1, if

1

[1 + y∗]3/2
B < max

{
1,

3

2
e−A

}
,

then y∗(t) is GAS; in particular, this holds true if B ≤ max
{

1, 3
2 e−A

}
. From Remark 4.2,

we also conclude that

max
t∈[0,ω]

(
β(t)

a(t)

)
B(1− e−A) ≤ max

{
1,

3

2
e−A

}
(5.1)

is a sufficient condition for the global attractivity of the positive ω-periodic solution y∗(t).
For the special case y′(t) + a(t)y(t) =

m∑
i=1

βi(t)

1 + y(t− qiω)
, 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N,
. (5.2)

with qi ∈ N, Theorem 4.3 implies that y∗(t) is GAS if

1

[1 + y∗]1/2
E < max

{
1,

3

2
e−qA(ω)

}
,

and this condition is satisfied if E ≤ max
{

1, 3
2 e−qA(ω)

}
. For the nonimplusive DDE

y′(t) + a(t)y(t) =
m∑
i=1

βi(t)

1 + y(t− qiω)
, t ≥ 0,

with qi ∈ N, ω > 0 and a : [0,∞) → (0,∞), βi : [0,∞) → [0,∞) ω-periodic continuous with

β(t) :=
∑m

i=1 βi(t), Proposition 4.2 implies that y∗ ≤ maxt∈[0,ω]

(
β(t)
a(t)

)
. Either using again

Theorem 4.3, or simply from (5.1), it follows that

max
t∈[0,ω]

(
β(t)

a(t)

)
(1− e−qA(ω)) ≤ max

{
1,

3

2
e−qA(ω)

}
or equivalently

max
t∈[0,ω]

(
β(t)

a(t)

)
≤ max

{
eqA(ω)

eqA(ω)−1
,

3
2

eqA(ω)−1

}
is a sufficient condition for the global asymptotic stability of y∗(t).
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5.2 Models with one delay multiple of the period

Consider a periodic hematopoiesis model with one discrete delay multiple of the period: y′(t) + a(t)y(t) =
β(t)

1 + y(t− qω)n
, 0 ≤ t 6= tk,

y(t+k )− y(tk) = bky(tk), k ∈ N,
. (5.3)

where n ∈ (1,∞), q ∈ N, (tk)k∈N is an increasing unbounded real sequence, and a, β :
[0,∞)→ (0,∞) are ω-periodic continuous functions with ω > 0. To the best of our knowl-
edge, few researchs have been devoted to the study of the global asymptotic stability of a
periodic solution to a delayed hematopoiesis model with impulses, the work [24] being an
exception. Note however that (5.3) was studied in [24] only for the case n ∈ N.

Applying Theorems 2.1, 4.1 and 4.2(iii) to (5.3), we obtain the following result:

Theorem 5.1. Consider ω-periodic continuous functions a, β : [0,∞) → (0,∞), for some
ω > 0, and a real sequence (bk), for which hypotheses (H2)-(H4) are satisfied. Let B0 =∏p
k=1(bk + 1)−1, ρn = (n+1)2

4n

(
n−1
n+1

)n−1
n

and m given by (4.8). Assume that:

(a) either n > 1 and there exists T ≥ 0 such that

ρnB
q
0 sup
t≥T

∫ t

t−qω
β(s) e−

∫ t
s a(u)du ds < max

{
1,

3

2
e−q

∫ ω
0 a(u)du

}
; (5.4)

(b) or 0 < n ≤ 1 and there exists T ≥ 0 such that

√
nBq

0 sup
t≥T

∫ t

t−qω
β(s) e−

∫ t
s a(u)du ds ≤ mmax

{
1,

3

2
e−q

∫ ω
0 a(u)du

}
. (5.5)

Then (5.3) has a positive ω-periodic solution y∗(t) which is GAS.

Proof. For the model (5.3), with B(t) = B1(t) in (3.7), we have B(t) :=
∏
k:t−qω≤tk<t(bk +

1)−1 ≡ Bq
0. Suppose first that n > 1. The function γ(t) defined by (4.18) assumes the form

γ(t) =

∫ t

t−qω
ρnβ(s)B(s) e

∫ s
t−qω a(u)du ds = ρnB

q
0 eq

∫ ω
0 a(u)du

∫ t

t−qω
β(s) e−

∫ t
s a(u)du ds.

Condition (5.4) implies that either γ := supt≥T γ(t) < 3
2 or

γ∗ := ρnB
q
0 sup
t≥T

∫ t

t−qω
β(s) e−

∫ t
s a(u)du ds < 1.

From Theorem 2.3, we have l(γ, γ∗) < 1 and the conclusion follows from Theorem 4.2.
For 0 < n ≤ 1, from (4.12) and (4.13), rough estimates give

α∗1(t) ≤ nBq
0m
−1

∫ t

t−qω
β(s) e−

∫ t
s a(u)du ds, α∗2(t) ≤ Bq

0m
−1

∫ t

t−qω
β(s) e−

∫ t
s a(u)du ds,

and with α∗i := supt≥T α
∗
i (t), i = 1, 2, the result follows again from Theorem 2.3.
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Remark 5.1. We observe that in [24] Saker and Alzabut assumed hypotheses (H1), (H3) and
the requirement that the impulsive function t 7→∏

k:tk∈[0,t)(bk + 1) is ω-periodic. As already

mentioned, this latter condition is very restrictive, since it implies (H2) and
∏p
i=1(1 + bk) =

1. Under these requirements, in [24, Theorem 4.7] Saker and Alzabut proved the global
attractivity of the positive ω-periodic solution y∗(t) of (5.3), only for the cases n = 1, 2, . . .
and with an additional “3/2-type condition”, as follows:

ρnq

∫ ω

0
β(s)ds <

3

2
e−q

∫ ω
0 a(u)du . (5.6)

Of course, if B0 :=
∏p
i=1(1 + bk) = 1, then (5.4) reduces to

ρn sup
t≥T

∫ t

t−qω
β(s) e−

∫ t
s a(u)du ds < max

{
1,

3

2
e−q

∫ ω
0 a(u)du

}
,

which obviously is less restrictive than (5.6). In conclusion, Theorem 5.1 significantly im-
proves the stability criterion established in [24, Theorem 4.7].

5.3 Models with n > 1 and no impulses

To deepen the discussion of our results within the context of the literature, we consider the
model (1.2) without impulses, that is,

y′(t) + a(t)y(t) =

m∑
i=1

βi(t)

1 + y(t− τi(t))n
, t ≥ 0, (5.7)

with n > 1. As mentioned, the case of (5.7) with n ≤ 1 has been further analysed in
[33]. Recall that, for models without impulses, our setting holds with B(t) = Bi(t) ≡ 1 for
i = 1, . . . ,m. The result below is an immediate consequence of Corollary 4.2(iii).

Theorem 5.2. Consider (5.7) with n > 1 and assume (H1). If

ρn sup
t∈[0,ω]

∫ t

t−τ(t)

m∑
i=1

βi(s) e−
∫ t
s a(u)du ds < max

{
1,

3

2
e−A

}
, (5.8)

where ρn = (n+1)2

4n

(
n−1
n+1

)n−1
n

and A := supt∈[0,ω]

∫ t
t−τ(t) a(u)du, then the positive ω-periodic

solution of (5.7) is GAS.

Remark 5.2. For the case n > 1, in [18, Theorem 3.1] the global asymptotic stability of
the positive ω-periodic solution of (5.7) was obtained assuming

(n− 1)
n−1
n

eA(ω)

eA(ω)−1

∫ ω

0

m∑
i=1

βi(s)ds ≤ 1, (5.9)

where A(ω) =
∫ ω

0 a(u) du. However, the present authors have shown in [33] that∫ t

t−τ(t)

m∑
i=1

βi(s) e−
∫ t
s a(u)du ds ≤ eA(ω)

eA(ω)−1

∫ ω

0

m∑
i=1

βi(s)ds.

Moreover, one can easily check that ρn < (n − 1)
n−1
n for any n > 1, thus condition (5.8)

is less restrictive than (5.9). This shows that Theorem 5.2 strongly improves the stability
criterion presented in [18, Theorem 3.1] for (5.7) with n > 1.
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Corollary 5.1. Consider (5.7) with n > 1 and assume (H1) with a(t) a positive function
and β(t) :=

∑m
i=1 βi(t) 6≡ 0.

If either (a)

ρn sup
t∈[0,ω]

∫ t

t−τ(t)
β(s) ds ≤ max

{
1,

3

2
e−A

}
, (5.10)

or (b)

ρn max
t∈[0,ω]

(
β(t)

a(t)

)
<

1

1− e−A
max

{
1,

3

2
e−A

}
, (5.11)

where ρn = (n+1)2

4n

(
n−1
n+1

)n−1
n

and A = supt∈[0,ω]

∫ t
t−τ(t) a(u) du, then the positive ω-periodic

solution of (5.7) is GAS.

Proof. First, it is clear that (5.10) implies (5.8). Next, observe that

ρn sup
t∈[0,ω]

∫ t

t−τ(t)
β(s) e−

∫ t
s a(u)du ds = ρn sup

t∈[0,ω]

∫ t

t−τ(t)

β(s)

a(s)

d

ds

(
e
∫ s
t a(u) du

)
ds

≤ ρn max
t∈[0,ω]

(
β(t)

a(t)

)
sup
t∈[0,ω]

(
1− e

−
∫ t
t−τ(t) a(u) du

)
= ρn max

t∈[0,ω]

(
β(t)

a(t)

)(
1− e−A

)
Hence, (5.11) implies (5.8) and the conclusion follows from Theorem 5.2.

Remark 5.3. Consider the nonimpulsive model (5.7) with m = 1:

y′(t) + a(t)y(t) =
β(t)

1 + y(t− τ(t))n
, t ≥ 0, (5.12)

For (5.12) with n > 1, Berezansky et. al. [21, Theorem 6.2] established that the positive
ω-periodic solution of (5.12) is GAS if one of the following conditions holds:

(a) ρn sup
t∈[0,ω]

∫ t

t−τ(t)
β(s)ds < 1 + e−1; (b)

ρnβ

a
< 1,

where a = min
t∈[0,ω]

a(t) and β = max
t∈[0,ω]

β(t). Since 1
1−e−A

max
{

1, 3
2 e−A

}
> 1, the stability

criterion presented in Corollary 5.1(b) strongly improves condition (b) described above. On
the other hand, if 3

2 e−A > 1+e−1 i.e., if A ≤ log 3
2(1+e−1)

≈ 0.0922, Corollary 5.1(a) improves

condition (a) given in [21].

To illustrate the feasibility and efficiency of some of our results, a concrete example is
now studied.

Example 5.1. Consider (5.7) with m = 3 and the delay functions τi(t) = Di+cos(2πt), i =
1, 2, 3, withD1 = 6, D2 = 7, D3 = 15. Choose a(t) = 1+1

2 cos(2πt), β1(t) = η1

(
1 + 1

2 cos(2πt)
)
,

β2(t) = η2

(
1 + 1

2 sin(2πt)
)
, β3(t) = η3

(
1 + 1

2 cos(2πt)
)

with η1, η2, η3 > 0. Eq. (5.7) assumes
the form

y′(t) = −
(

1 +
1

2
cos(2πt)

)
y(t) +

η1

(
1 + 1

2 cos(2πt)
)

1 + y(t− 6− cos(2πt))n
+

η2

(
1 + 1

2 sin(2πt)
)

1 + y(t− 7− cos(2πt))n

+
η3

(
1 + 1

2 cos(2πt)
)

1 + y(t− 15− cos(2πt))n
, t ≥ 0, (5.13)
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which is a 1-periodic model.
For (5.13), we take any n > 1 and define β(t) = β1(t) + β2(t) + β3(t), β =

∫ 1
0 β(t) dt =

η1 + η2 + η3, and the constants M,m, c1, c2,A,B as in the previous sections.

It is easy to see that M = min{M1,M2} = min

{
η1 + η2 + η3

1− e−1
, c2

}
, η1 + 11

5 η2 + η3 ≤

c2 ≤ η1 + 23
10η2 +η3, m =

1

1 + Mn
max

{
η1 + η2 + η3

e−1
, c1

}
, η1 + 2

5η2 +η3 ≤ c1 ≤ η1 + 1
2η2 +η3,

A(1) = 1, A = 16, which implies that 1 > 3
2 e−A, and

B :=
(
η1 + η3 + η2

1

e−1

)
(1− e−16) ≤ B ≤

(
η1 + η3 + η2

1

1− e−1

)
(1− e−16) =: B.

All the inequalities given below in this section are easily proven through elementary
arguments of calculus. Some however require long computations, which are omitted.

Now, take η1 = 0.03, η2 = 0.43 and η3 = 0.001. For these values, we claim that the
1-periodic positive solution of (5.13) is GAS (in the set of positive solutions) for all values
of n ∈ (1,∞). In fact, for n ∈ (1, 5] we have

ρnB ≤ ρnB = ρn

[
0.031(1− e−16) + 0.43

1− e−16

1− e−1

]
< 1

and the conclusion follows from (iii) of Corollary 4.2. For n ≥ 3, M = M1 < 0.729 <(
n−1
n+1

) 1
n

; also, for any n > 1,√
nρnM

n−1
1

1 + Mn
1

[
0.031(1− e−16) + 0.43

1− e−16

1− e−1

]
< 1⇒

√
nρnMn−1

1 + Mn
B < 1.

Thus, for n ≥ 3 the conclusion follows from (ii) of Corollary 4.2.
On the other hand, from Proposition 4.3, the 1-periodic solution of (5.13), y∗(t), is in

the interval (m,M) =
(

0.268
1+0.729n , 0.729

)
. For example, if we choose n = 3, we obtain that

y∗(t) ∈ (0.193, 0.729) for all t ≥ 0; however, from numerical simulations (Figure 2) we expect
that y∗(t) oscillates in the interval (0.38,0.50).

We emphasize that the above conclusions could not be derived from previous works. In
fact, for e.g. all n ≥ 2.7, the results in [18] do not guarantee that the positive 1-periodic
solution attracts all positive solutions: in this case, condition (5.9) reads as

Cn :=
0.461(n− 1)

n−1
n

1− e−1
≤ 1.

Since one can show that Cn increases for n ≥ 2 and C2.7 > 1.01, we conclude that the criterion
given by Liu et al. in [18] cannot be applied for n ≥ 2.7.

We now set η1 = 1.1, η2 = 0.03 and η3 = 0.001 in equation (5.13). For this situation, we
assert that the positive 1-periodic solution of (5.13) attracts all positive solutions for any
n ∈ (1, 3]. First, for n ∈ [1.04, 3] one can show that

ρnB ≤ ρnB = ρn

(
1.101(1− e−16) + 0.03

1− e−16

1− e−1

)
< 1
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Figure 2: Numerical simulation of three solutions of (5.13) where η1 = 0.03, η2 = 0.43,
η3 = 0.001, and n = 3, with initial condition ϕ(θ) = 0.4(1

2 sin(θ) + 1), ϕ(θ) = 0.8 eθ, and
ϕ(θ) = 0.2 eθ, for θ ∈ [−16, 0], respectively.

and the conclusion follows from condition (iii) of Corollary 4.2. But, for n ∈ (1, 1.04], we

get ρnB ≥ ρnB = ρn

(
1.101(1− e−16) + 0.031−e−16

e−1

)
> 1 and condition (iii) does not hold.

However, for n ∈ (1, 1.04], we obtain

m =
1

1 + Mn
max

{
1.131

e−1
, c1

}
≥ 1

1 + Mn
max

{
1.131

e−1
, 1.113

}
=

1.131

1 + cn2
>

1.131

1 + 1.167n
>

(
n− 1

n+ 1

) 1
n

.

Recalling that s 7→
√
sn−1

1+sn is decreasing on
[(

n−1
n+1

) 1
n
,∞
)

for all n > 1 and m := 1.131
1+1.167n , we

have√
nρnmn−1

1 + mn
B ≤

√
nρnmn−1

1 + mn
B =

√
nρnmn−1

1 + mn

(
1.101 +

0.03

1− e−1

)
(1− e−16) < 0.72 < 1.

Thus the conclusion follows from condition (i) of Corollary 4.2.
Finally, we remark that simple calculations show that for these values of η1, η2, η3 condi-

tion (5.9) is never satisfied for any n > 1, therefore the criterion in [18] can not be invoked.

6 Conclusions

Blood contributes to maintaining homeostasis: a relatively steady state of internal physical
and chemical conditions, controlled by living systems through a self-regulating process, in
spite of the necessary adjustments for survival. This process involves negative feedback
loops, to face changes, and is crucial to sustain life. Mathematically, homeostasis can be
translated as the stability of some equilibrium or periodic state.

For Mackey-Glass equations (1.3), (1.4), as well as for autonomous generalizations of such
models, there is an extensive number of works on the existence and stability of a positive
equilibrium. For periodic versions, an a priori goal is to find sufficient conditions for the
existence and global attractivity of a positive periodic solution. Although there are some
recent contributions, the literature on this subject is still very scarce.

Here, we study the impulsive periodic hematopoiesis model (1.2), where linear impulses
were introduced – which is in accordance with drug administration or radiation in the treat-
ment of hematological diseases. Under sufficient conditions that ensure its existence, we give
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Figure 3: Numerical simulation of three solutions of (5.13) where η1 = 1.1, η2 = 0.03,
η3 = 0.001 and n = 1.03, with initial condition ϕ(θ) = 0.67, ϕ(θ) = 0.65(1 + 0.02 cos(θ)),
and ϕ(θ) = 0.69(1 + 0.02 sin(θ)), for θ ∈ [−16, 0], respectively.

new criteria for the global asymptotic stability of a positive periodic solution of (1.2). We
hope that these results can be used in applications, namely in the use of impulses to treat
hematopoiesis disorders. The main results are given in Theorems 4.1 and 4.3, respectively
for the cases n ∈ (0, 1] and n ∈ (1,∞), although the criteria in Corollaries 4.1 and 4.2 are
easier to apply.

In Section 5, we study several models, with and without impulses, and conclude that our
achievements enhance the few previous criteria set up by other authors.

Linear impulses seem to fit well with the clinical procedure. The constraints imposed
here on the linear impulses are weaker than the requirements often found in the literature,
nevertheless we would like to generalize our techniques to DDEs with nonlinear impulses.

We note that the study of the global attractivity of a periodic solution for (1.2) relies on
the results in Section 3, where a broad family of scalar impulsive DDEs (1.1) was considered
and sufficient conditions for the GAS of its zero solution established. It is apparent that the
technique employed here can be used for almost periodic models (1.2), rather than periodic,
provided that a positive almost periodic solution exists: in fact, the arguments in Subsections
4.2 and 4.3 do not make use of the periodicity of (1.2); of course, in this case one should
replace supt∈[0,ω] by supt≥0 in the definition of A,B in Corollaries 4.1 and 4.2.
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