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The most common route to produce aromatic chemicals – organic compounds
containing at least one benzene ring in their structure – is chemical synthesis. These
processes, usually starting from an extracted fossil oil molecule such as benzene,
toluene, or xylene, are highly environmentally unfriendly due to the use of non-
renewable raw materials, high energy consumption and the usual production of toxic
by-products. An alternative way to produce aromatic compounds is extraction from
plants. These extractions typically have a low yield and a high purification cost.
This motivates the search for alternative platforms to produce aromatic compounds
through low-cost and environmentally friendly processes. Microorganisms are able to
synthesize aromatic amino acids through the shikimate pathway. The construction of
microbial cell factories able to produce the desired molecule from renewable feedstock
becomes a promising alternative. This review article focuses on the recent advances
in microbial production of aromatic products, with a special emphasis on metabolic
engineering strategies, as well as bioprocess optimization. The recent combination of
these two techniques has resulted in the development of several alternative processes
to produce phenylpropanoids, aromatic alcohols, phenolic aldehydes, and others.
Chemical species that were unavailable for human consumption due to the high cost
and/or high environmental impact of their production, have now become accessible.

Keywords: aromatic compounds, metabolic engineering, microorganisms, process optimization, synthetic
biology, shikimate pathway

INTRODUCTION

The increasing demand for “natural” labeled products, the adoption of a healthy life style associated
with growing concerns about global warming and limited supplies of fossil fuels, promote the
development of alternative ways for producing fuels and commodity chemicals using renewable
feedstocks in eco-friendly processes. In this scenario, the use of biotechnological platforms for
their production is becoming a promising alternative (Sun et al., 2015; Braga et al., 2018a;
Milke et al., 2018; Park et al., 2018).
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An important class of petrochemical compounds that have
been considered as promising targets for biotechnological
production are aromatic compounds (Knaggs, 2003; Lee and
Wendisch, 2017; Noda and Kondo, 2017). They are typically
produced employing fossil feedstocks as raw materials and have a
wide range of industrial and commercial applications as building
blocks for the synthesis of polymer materials like functional
plastics and fibers, food and feed additives, nutraceuticals and
pharmaceuticals (Krömer et al., 2013; Averesch and Krömer,
2018). The economic importance of these compounds is quite
significant; in 2017 their global market size was USD185.9 billion
and it is expected that, in 2025, their global production volume
will reach 168,733.35 thousand tons (Averesch and Kayser,
2014), with the demand for aromatic compounds for gasoline,
pharmaceuticals and detergents as main driving force.

In the last decades, microorganisms have emerged as attractive
platforms for producing former petroleum-derived compounds
from renewable starting materials (Borodina and Nielsen, 2014;
Krivoruchko and Nielsen, 2015; Noda and Kondo, 2017). Until
now, several derivatives of BTX (benzene, toluene, and the three
isomers of xylene), such as styrene, hydroxystyrene, phenol and
vanillin, have been produced using microbial hosts by direct
bioconversion of precursors or via de novo synthesis (Wierckx
et al., 2005; Vannelli et al., 2007; Mckenna and Nielsen, 2011; Ni
et al., 2015). However, only a few compounds, such as vanillin and
resveratrol, have reached bio-based production at commercial
scale (Nakamura and Whited, 2003; Yim et al., 2011; Paddon
et al., 2013; Van Dien, 2013). Nevertheless, despite the efforts that
have been made until now, the production of benzene, toluene or
xylene in a renewable way has not been reported.

Microorganisms can grow with high growth rates and achieve
high biomass yields, in scalable cultivation and production
processes. They are also able to grow in diverse media, from
abundant and inexpensive feedstocks. However, they do not
naturally (over-)produce these compounds or, if they do, the
yields are very low. In order to enable production, it is necessary
to functionally integrate heterologous pathways or genetically
modify the microbial hosts (Rodrigues et al., 2015; Chouhan et al.,
2017; Gottardi et al., 2017; Milke et al., 2018; Wang J. et al., 2018).
Aromatic compounds are produced by microbial hosts via the
shikimate pathway, which leads to the production of aromatic
amino acids as well as other aromatic precursors (Herrmann,
1995; Maeda and Dudareva, 2012; Averesch and Krömer, 2018).
This can be achieved by the functional reconstruction of
naturally occurring pathways or by de novo pathway engineering
(Dhamankar and Prather, 2011; Wu et al., 2018). Escherichia coli
and Saccharomyces cerevisiae are the most commonly employed
microorganisms for aromatic compound production. However,
more recently, other hosts have also been explored due to their
peculiarities, such as Corynebacterium glutamicum, Lactococcus
lactis, Pseudomonas putida, and Streptomyces lividans (Sachan
et al., 2006; Gosset, 2009; Verhoef et al., 2009; Gaspar et al., 2016;
Kallscheuer et al., 2016, 2019; Dudnik et al., 2017, 2018; Braga
et al., 2018a; Tilburg et al., 2019).

This review presents an overview of recent advances in
microbial production of the most relevant aromatic compounds,
including vanillin, salicylic acid, p-hydroxybenzoic acid and

others strategies for strain design are compared with an emphasis
on the development of biosynthetic pathways, the application of
protein engineering, carbon flux redirection, use of alternative
substrates, engineering substrate uptake and optimization of
culture conditions. We present and explain some of the current
challenges and gaps that in our knowledge, must be overcome
in order to render the biotechnological production of aromatic
compounds, in an attractive and feasible way for the commercial
scale. Table 1 presents a summary of the recent reports (last
4 years) regarding the production of aromatic compounds in
engineered microbial hosts, comparing the used carbon source,
organism and strain, (over-)expressed and/or knocked out genes.

THE SHIKIMATE PATHWAY: A PATH FOR
AROMATIC COMPOUNDS PRODUCTION

In microorganisms, the production of aromatic compounds
is almost always obtained via the shikimate (SKM) pathway.
This route leads to the biosynthesis of aromatic amino acids,
L-tyrosine (L-Tyr), L-tryptophan (L-Trp) and L-phenylalanine
(L-Phe), and a wide range of aromatic precursors (Knaggs,
2003; Noda et al., 2016; Lai et al., 2017). The first reaction
in the shikimate pathway is the condensation of the central
carbon metabolism intermediates, phosphoenolpyruvate (PEP)
and erythrose-4-phosphate (E4P), to yield 3-deoxy-D-arabino-
heptulosonate-7-phosphate (DAHP). After that, six successive
enzymatic reactions lead to the production of chorismate (CHO),
the end product of the SKM pathway (Figure 1) and the
starter unit for the production of aromatic amino acids as well
as different aromatic compounds (phenylpropanoids, salicylic
acid, p-hydroxybenzoic acid, aromatic alcohols, vanillin, among
others) (Noda et al., 2016).

The first step for L-Phe and L-Tyr production is catalyzed by
chorismate mutase (CM), which converts CHO to prephenate
(PHA). After that, PHA undergoes decarboxylation and
dehydration yielding phenylpyruvate (PPY) or is oxidatively
decarboxylated to 4-hydroxyphenylpyruvate (4-HPP). The
reactions are catalyzed by prephenate dehydratase (PDT) and
prephenate dehydrogenase (PDH), respectively. The last step
comprises the transamination of PPY to L-Phe and of 4-HPP
to L-Tyr that is catalyzed by an aminotransferase (AT) (Tzin
et al., 2001; Figure 1). The pathway for L-Trp production from
CHO requires six steps. The first one is catalyzed by anthranilate
synthase (AS) that converts CHO to anthranilate (ANTH),
which is further converted to phosphoribosylanthranilate
(PA) by anthranilate phosphoribosyl transferase (PAT). The
third step in this pathway leads to the production of l-(O-
carboxyphenylamino)-l-deoxyribulose-5–phosphate (CDRP)
by phosphoribosylanthranilate isomerase (PAI). The fourth
enzyme of L-Trp biosynthesis is indole-3-glycerol phosphate
synthase (IGPS), which catalyzes the conversion of CDRP to
indole-3-glycerol phosphate (IGP). In the last two steps, IGP
is cleaved by tryptophan synthase (TS) into indole (ID) that is
ligated to L-serine to yield L-Trp (Figure 1; Priya et al., 2014).

One of the main bottlenecks in the microbial production of
aromatic compounds is the availability of the precursors PEP
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TABLE 1 | Summary of the literature on the production titer of some aromatic compounds obtained through metabolic engineering in microorganisms, in the last 4 years.

Compound Microorganism Heterologous enzymes (source) Substrate/precursor Titer (mg L−1) References

Salicylic acid Escherichia coli pykF, pykA pheA, tyrA deleted
menF (E. coli)
pchB (Pseudomonas aeruginosa)

Glucose 11500 Noda et al., 2016

p-Hydroxybenzoate Corynebacterium
glutamicum

xylA, xylB, bglF, bglA, aroA, aroD, aroE, aroCKB,
araBAD, araE, tkt, tal overexpressed
aroG (E. coli)
ubiC (Providencia rustigianii)
ldhA, qsuB, qsuD, pobA, poxF, pyk, hdpA deleted

Glucose 36600 Kitade et al., 2018

Pseudomonas
putida

UbiC (E. coli)
aroGfbr

pobA, phA, trpE, hexR deleted

Glucose 1730 Krömer, 2016

S. cerevisiae Overexpression ARO4K229L

aroL, ubiC (E. coli)
ARO4fbr

ARO7, TRP3 deleted

Glucose 2900 Averesch et al., 2017

P. taiwanensis
VLB120

pobA and hpd deleted
fcs, ech and vhd (P. putida S12)
PAL (Rhodosporidium toruloides)
aroGfbr and tryfbr

overexpression ppsA and pgi

Glycerol 9900 Lenzen et al., 2019

p-Coumaric acid E. coli C4H (Lycoris aurea)
PAL (Arabidopsis thaliana)
overexpression pntAB

Glucose 25.6 Li et al., 2018

S. cerevisiae Aro10, pdc5 deleted
TAL (Flavobacterium johnsoniaeu)
Aro7fbr and Aro4fbr

aroL (E. coli)

Xylose 242 Borja et al., 2019

E. coli BL21 (DE3) TAL (Saccharothrix espanaensis)
tyrR and pheA deleted
aroGfbr and tyrAfbr

Glucose 100.1 Gyuun et al., 2016

S. cerevisiae Aro10, pdc5 deleted
TAL (Flavobacterium johnsoniaeu)
Aro7G141 and Aro4K229

aroL (E. coli)

Glucose 2400 Rodriguez et al., 2017

Caffeic acid E. coli BL21 (DE3) tyrR and tyrA deleted
TAL (Saccharothrix espanaensis)
aroGfbr and tyrAfbr

sam5 (S. espanaensis)

Glucose 138.2 Gyuun et al., 2016

S. cerevisiae Codon optimized hpaB (P. aeruginosa)
Codon optimized hpaC (Salmonella entérica)
TAL (Rhodosporidium toruloides)

L-Tyr 289.4 Liu et al., 2019a

E. coli tryR deleted
tyrAfbr aroGfbr

tktA and ppsA overexpressed
hpaBC (P. aeruginosa)
fevV (Streptomyces sp. WK-5344)

Kraft pulp 233 Kawaguchi et al., 2017

2-Phenylethanol E. coli aroGfbr and pheAfbr

kdc (S. cerevisiae)
overexpression yigB
Aro8 (S. cerevisiae)

Glucose 1016 Liu et al., 2018

S. cerevisiae YS58 ARO8 and ARO10 overexpressed L-Phe 3200 Wang et al., 2017

E. coli aroGfbr and pheAfbr

kdc (S. cerevisiae YPH499)
yigB overexpressed
aro8 (S. cerevisiae)

Glucose 1000 Guo et al., 2018

S. cerevisiae Gap1, ARO8, ARO10, Adh2, Gdh2 overexpressed Glucose 6300 Wang Z. et al., 2018

Vanillin E. coli top 10 fcs and ech (Amycolatopsis sp. HR) Ferulic acid 68 Chakraborty et al., 2016

E. coli fcs and ech (P. fluorescens BF13) Ferulic acid 4258.8 Luziatelli et al., 2019

frb, feedback-resistant; TAL, tyrosine ammonia lyase; PAL, phenylalanine ammonia lyase.
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FIGURE 1 | Pathway of aromatic amino acid biosynthesis. PPP, pentose
phosphate pathway; E4P, erythrose 4-phosphate; PEP, phosphoenolpyruvate;
DAHPS, DAHP synthase; DAHP, 3-Deoxy-D-arabinoheptulosonate
7-phosphate; DHQS, 3-dehydroquinate synthase; DHQ, 3-dehydroquinate;
DHQD, 3-dehydroquinate dehydratase; 3-DHS, 3-dehydroshikimate; SDH,
shikimate 5-dehydrogenase; SKM, shikimate; SK, shikimate kinase; S3P,
shikimate 3-phosphate; EPSPS, 5-enolpyruvylshikimate 3-phosphate
synthase; EPSP, 5-enolpyruvylshikimate-3-phosphate; CS, chorismate
synthase; CHO, chorismate; CM, chorismate mutase; PHA, prephenate; PDH,
prephenate dehydrogenase; 4-HPP, 4-hydroxyphenylpyruvate; AT,
aminotransferase; PDT, prephenate dehydratase; PPY, phenylpyruvate; AS,
anthranilate synthase; ANTH, anthranilate; PAT, phosphoribosylanthranilate
transferase; PA, phosphoribosylanthranilate; PAI, phosphoribosylanthranilate
isomerase; CDRP, l-(O-carboxyphenylamino)-l-deoxyribulose-5-phosphate;
IGPS, indole-3-glycerol phosphate synthase; IGP, indole-3-glycerol
phosphate; TS, tryptophan synthase; ID, indole. Solid lines indicate a single
step; dotted lines indicate multiple steps.

(produced during glycolysis) and E4P (derived from the pentose
phosphate pathway – PPP) (Suástegui et al., 2016; Noda and
Kondo, 2017; Averesch and Krömer, 2018; Wu et al., 2018).
Different strategies have been described in order to engineer the
central carbon metabolism into this direction (Leonard et al.,
2005; Papagianni, 2012; Nielsen and Keasling, 2016). In fact, the
available fluxes of both precursors differ considerably. Suástegui
et al. (2016) studied the E4P and PEP flux in S. cerevisiae using
metabolic flux analysis and observed that E4P was clearly the
limiting precursor. Therefore, establishing a balance between the
ratio of both precursors and increasing their availability appeared
to be the two main strategies to follow in order to increase
aromatic compounds production.

E4P can be produced from PPP or from sedoheptulose-1,7-
bisphosphate in a reaction that is probably favored when the
intracellular levels of sedoheptulose-7-phosphate (S7P)are high
(Nagy and Haschemi, 2013). S7P is an intermediate in non-
oxidative part of PPP, that is produced from xylulose 5-phosphate
and ribose 5-phosphate by transketolase. The most common
approaches to increase E4P production are the overexpression of
transaldolase and transketolase genes, to promote the conversion
of S7P and glyceraldehyde-3-phosphate (G3P) to E4P and
fructose 6-phosphate (F6P) (Bongaerts et al., 2001; Noda and

Kondo, 2017; Averesch and Krömer, 2018) and to enhance the
supply of E4P (Lütke-Eversloh and Stephanopoulos, 2007; Bulter
et al., 2003). Following this strategy, Knop et al. (2001) observed
an increase in the shikimic acid titer, an intermediate of the
SMK pathway, from 38 to 52 g L−1, after overexpression of
transketolase gene (tktA) in E. coli. The role of transaldolase
for the production of the PPP was analyzed by Lu and Liao
(1997) and Sprenger et al. (1998). They observed that the
overexpression of talB increases the production of DAHP
from glucose. Moreover, Lu and Liao (1997) concluded that
transketolase is more effective in directing the carbon flux to the
aromatic pathway than transaldolase. In fact, the overexpression
of the transaldolase gene in strains which already overexpress
the transketolase gene did not show a further increase in
production of aromatic compounds. This result may be related
with the saturation of E4P supply when tktA was overexpressed
(Lu and Liao, 1997). Nevertheless, the overexpression of the
transketolase gene proved to have a limited impact in the E4P
poll which can be correlated with the preference of this enzyme
for catalyzing the E4P consuming reaction (Curran et al., 2013).
Other efforts to increase the carbon flux in the PPP include
the overexpression of the gene coding for glucose-6-phosphate
dehydrogenase, that has been shown to increase the availability of
ribulose-5-phosphate (R5P) and E4P (Yakandawala et al., 2008;
Rodriguez et al., 2013) or the deletion of genes that encode
the phosphoglucose isomerase, that forces the cell to metabolize
the substrate completely via PPP (Mascarenhas et al., 1991).
However, the later approach blocks the oxidative shunt of the
PPP, which is the main source of the redox cofactor NADPH,
required by the shikimate dehydrogenase as well as by many
enzymes in downstream pathways (Zhang J. et al., 2015). The
use of other carbon sources that have different transporters,
such as hexoses (as sucrose and gluconate), pentoses (xylose
and arabinose) and glycerol (Kai Li and Frost, 1999; Ahn
et al., 2008; Martínez et al., 2008; Chen et al., 2012), is also
an alternative way to increase the E4P poll. In the last year,
Liu et al. (2019b) proposed a different strategy to increase the
scarcity of E4P in S. cerevisiae. They investigated a heterologous
phosphoketolase (PHK) pathway, including a phosphoketolase
from Bifidobacterium breve (Bbxfpk) and a phosphotransacetylase
from Clostridium kluyveri (Ckpta). Phosphoketolase is able to
split fructose-6-phosphate into E4P and acetyl-phosphate, and
the introduction of this pathway could, theoretically, divert
part of the carbon flux from glycolysis directly toward E4P.
The authors observed a 5.4-fold enhance in E4P concentration
in the BbXfpk-expressing strain. When compared with the
overexpression of the transketolase-encoding gene, this approach
resulted in a lower E4P availability (Liu et al., 2019b). However,
none of these strategies were able to efficiently divert carbon flux
from glycolysis toward E4P, to provide sufficient levels for the
biosynthesis of aromatic compounds.

The availability of the other precursor, PEP, is also an
important factor that needs to be considered when designing
a strategy to construct a strain able to produce aromatic
compounds (Rodriguez et al., 2013; Noda and Kondo, 2017).
PEP is required for the simultaneous uptake and phosphorylation
of glucose (PEP:glucose phosphotransferase system – PTS)
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and it is also involved in reactions catalyzed by the enzymes
phosphoenolpyruvate carboxylase and pyruvate kinase that
catalyzes the ATP-producing conversion of PEP to pyruvate. The
glucose transport by PTS is the main PEP consuming activity
and for this reason the construction of PTS-deficient strains is
one of the most common approaches to increase PEP availability
and therefore, aromatic compounds yield from glucose (Gu et al.,
2012, 2013). However, the main problem of this strategy is the
low cellular growth rate. The use of a non-PTS system which
does not consume PEP is an alternative way to allow high
PEP availability (Sprenger et al., 1998; Chandran et al., 2003).
For example, glucose can be transported by galactose permease
(encoded by galP) and further phosphorylated by glucokinase
(encoded by glk) (Yi et al., 2003; Balderas-hernández et al.,
2009). Additionally, Yi et al. (2003) described the utilization of
a glucose facilitator from Zymomonas mobilis (encoded by glf ),
that transports glucose by facilitated diffusion, in combination
with plasmid-localized Z. mobilis glk (encoded glucokinase),
attaining a 3-dehydroshikimic acid (a key intermediate for
aromatic compounds production) production of 60 g L−1, in
E. coli. In 2011, Ikeda et al. (2011) identified a new non-PTS
system, a myo-inositol-induced transporter (encoded by iolT1) in
C. glutamicum. Furthermore, an increase in the PEP availability
has been achieved by modulation of the carbon flux from PEP
to the tricarboxylic acid cycle (TCA) by inactivation of pyruvate
kinase genes (Gosset et al., 1996; Chandran et al., 2003; Escalante
et al., 2010) and PEP carboxylase (Tan et al., 2013). On the
other hand, the overexpression of the genes that encode PEP
synthetase which catalyzes the conversion of pyruvate into PEP,
enhanced its level (Patnaik and Liao, 1994; Tatarko and Romeo,
2001). PEP carboxykinase catalyzes the formation of PEP from
oxaloacetate. The overexpression of the gene that encodes it –
pckA – has also been proposed as a strategy to increase the yield
of aromatic amino acids (Gulevich et al., 2006). An interesting
approach to enhance the PEP availability is the attenuation of
CsrA, a protein that regulates transcription of genes involved
in carbon metabolism and energy metabolism (Wang et al.,
2013). It was found that the absence of CsrA could enhance
the metabolic flow of gluconeogenesis, contributing to the
accumulation of PEP. Tatarko and Romeo (2001) knocked out the
csraA gene and observed an increase in the PEP concentration.
The overexpression of csrB, a small untranslated RNA from the
carbon storage regulator, also improves the availability of PEP in
E. coli (Yakandawala et al., 2008).

Notwithstanding the progress achieved, the industrial
application of these strategies still poses some problems. The
redirection of the carbon flux into a desired pathway usually
results in a reduced cell growth rate and/or production of
unwanted by-products (Patnaik et al., 1992) which usually ruins
the economic viability of an eventual industrial process as will be
further discussed (section “Discussion”).

After the establishment of an adequate supply of precursors
it is essential to redirect this carbon toward the SKM pathway
and remove limiting steps to increase the production of target
compounds. The SKM pathway is highly complex. It is mainly
regulated at the transcription and enzymatic activity level. As
previously described, the first step of the SKM pathway is the
DAHP production, catalyzed by DAHP synthases. This is one

of the most strictly regulated steps in this route (Figure 1). In
fact, DAHP synthase activity is regulated by the concentration
of the downstream reaction products of the SKM pathway,
the aromatic amino acids. This mechanism is a clever way
for cells to make just the right amount of product. When the
concentration of aromatic amino acids is high, they will block
the DAHP synthase activity, preventing its production until
the existing supply has been used up (Bongaerts et al., 2001;
Gosset, 2009; Gottardi et al., 2017). In S. cerevisiae, two DAHP
synthase isozymes (encoded by ARO3 and ARO4 genes) are
feedback inhibited by L-Phe and L-Tyr, respectively (Paravicini
et al., 1989). E. coli has three different DAHP synthase isozymes
(encoded by aroF, aroG, aroH), and each one is vulnerable to
inhibition by an aromatic amino acids: L-Phe, L-Tyr and L-Trp,
respectively (Hu et al., 2003; Gu et al., 2012). In addition to
the allosteric inhibition, it is also necessary to take into account
the transcriptional repression mediated by the protein TyrR
(tyrosine repressor). This can repress aroF and aroG, whereas
the transcription of aroH is controlled by the protein TrpP
(tryptophan repressor) (Pittard et al., 2005; Keseler et al., 2013).
In C. glutamicum, the DAHP synthase isozymes are encoded by
aroG and aroF. AroG is feedback inhibited by L-Phe, chorismate
and prephenate, whereas aroF is feedback inhibited by L-Tyr and
L-Trp (Lee et al., 2009).

To overcome this natural limitation, different strategies have
been described, such as the use of DAHP synthase which is
not sensitive to feedback-inhibition (feedback-resistant – fbr)
(Frost and Draths, 1995). Shumilin et al. (1999) determined
a 3D structure of DAHP synthase co-crystallized with PEP,
demonstrating the possible nine binding sites of L-Phe for
feedback-inhibition. Random or directed mutagenesis at these
specific amino acids residues, such as Asp146Asn, and Pro150Leu
(Kikuchi et al., 1997), is the most common approach used
to generate feedback-resistant variants of DAHP synthase.
Hartmann et al. (2003) determined the crystal structure of
Aro4p and demonstrated that with a single lysine-to-leucine
substitution at position 229, the protein is L-Phe and L-Tyr
insensitive. In combination with the deletion of ARO3, this
strategy led to a 4-fold increase in the flux through the
aromatic amino acid-forming pathway (Luttik et al., 2008).
Similarly, the introduction of a tyrosine-insensitive ARO4 allele
(ARO4 G226S) was also reported by Schnappauf et al. (1998).
In E. coli a similar approach was also described with the
introduction of feedback-resistant derivatives of aroFfbr and
aroGfbr, using either plasmids or chromosomal integration for
expression of the modified encoding genes (Ger et al., 1994;
Jossek et al., 2001). In this context, the reactions catalyzed by
3-dehydroquinate synthase, shikimate kinase and shikimate 5-
dehydrogenase are also considered rate-limiting (Dell and Frost,
1993; Kramer et al., 2003; Oldiges et al., 2004; Juminaga et al.,
2012). Different strategies have been applied to overcome these
limitations, such as: the overexpression of the genes that encode
these enzymes by plasmid-cloned genes, their chromosomal
integration, promoter engineering by chromosomal evolution, or
co-expression of the genes in a modular operon under control
of diverse promoters (Chandran et al., 2003; Lütke-Eversloh and
Stephanopoulos, 2005; Escalante et al., 2010; Rodriguez et al.,
2013; Cui et al., 2014).
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Another regulatory point is present at the chorismate branch,
at which the chorismate mutase and prephenate dehydratase
are feedback regulated by the end products, L-Phe and L-Try
(Lütke-Eversloh and Stephanopoulos, 2005; Reifenrath et al.,
2018). The most common strategies to overcome this bottleneck
are the application of mutations that confer feedback resistance
to chorismate mutase-prephenate dehydratase or the utilization
of evolved genes (pheAev) (Báez-Viveros et al., 2004; Lütke-
Eversloh and Stephanopoulos, 2005; Ikeda, 2006; Sprenger,
2007; Luttik et al., 2008). Backman et al. (1990) used a
recombinant E. coli strain carrying pheAfbr and aroFfbr for L-Phe
production and achieved a titer of 50 g L−1 with a yield of
0.25 (mol L-Phe mol glucose−1) after 36 h. This is the highest
titer reported so far. Furthermore, Báez-Viveros et al. (2004)
observed that the overexpression of evolved genes (pheAev)
had a positive and significant impact on L-Phe production
in E. coli, showing a 3–4-fold improvement, when compared
with equivalent strains expressing pheAfbr. The use of L-Tyr-
or L-Phe-overproducing strains for the production of some
aromatic compounds, derived from aromatic amino acids, has
been reported by many authors. For their construction, the
most common approaches include overexpression of aroGfbr and
tyrAfbr and in some cases ppsA, tktA and the deletion of tyrR
(Kang et al., 2012; Lin and Yan, 2012; Santos et al., 2012; Huang
et al., 2013), achieving L-Phe and L-Try titers of 50 and 55 g
L−1, respectively (Patnaik and Liao, 1994; Ikeda, 2006; Sprenger,
2007). However, most of the studies that have been performed,
reported the expression and/or regulation of key genes, under
the control of constitutively expressed or inducible promoters in
plasmid-cloned operons. Nevertheless, this approach has several
drawbacks, ranging from structural and segregational instability
to metabolic burden of plasmid replication (Noack et al., 1981;
Bentley et al., 1990). To overcome these drawbacks, Cui et al.
(2014) developed a plasmid free methodology for shikimic acid
production, an important intermediate of the SKM pathway, in
E. coli. AroGfbr, aroB, aroE, and tktA genes were chromosomally
integrated by tuning the copy number and expression using
chemically induced chromosomal evolution with triclosan. They
also overexpressed the ppsA and csrB genes to enhance the
PEP/pyruvate pool. Finally, pntAB or nadK genes were also
chromosomally overexpressed in order to increase the NADPH
pull. The final strain was able to produce 3.12 g L−1 of
shikimic acid with a glucose yield of 0.33 mol mol−1. They also
demonstrated that the overexpression of pntAB or nadK genes
increase the NADPH availability. This is the first report of an
engineered shikimic acid producing strain of E. coli that lacks
both a plasmid and an antibiotic marker.

Despite the efforts that have been made, it is also important to
study different strategies to minimize carbon loss to competing
pathways. Gu et al. (2012) reported an increase in L-Trp
concentration after a knock out in the gene tnaA, which codes
for a tryptophanase to avoid product degradation. On the
other hand, the modification of aromatic compounds transport
system, as the inactivation of permease genes aroP, mtr and
tnaB to avoid product re-internalization, or the overexpression
of genes that encodes exporter proteins (e.g., yddG), can also
be used as interesting approaches to increase its production

(Liu et al., 2012; Wang et al., 2013). Rodriguez et al. (2013)
demonstrated that the inactivation of ydiB (coding for shikimate
dehydrogenase/quinate dehydrogenase) leads to a decrease in
byproduct formation, improving the carbon flux toward the
desired aromatic compound production.

STRATEGIES FOR PRODUCTION OF
AROMATIC COMPOUNDS

In the last decade, several attempts to implement the production
of aromatic compounds in cells have been reported (Bongaerts
et al., 2001; Dias et al., 2017; Lee and Wendisch, 2017; Beata
et al., 2019). The first studies focused on the identification of
the microorganisms that are able to produce, natively, aromatic
compounds, such as 2-phenylethanol, and/or metabolites that are
biosynthetic precursors or derivatives of aromatic compounds,
such as SKM, chorismate (CHO), and aromatic amino acids
(L-Phe, L-Tyr and Trp), with high efficiency. Then, engineered
strains were developed and the production processes optimized
in order to raise the product titer to g L−1-scale. Nowadays,
microbial hosts are able to produce a large spectrum of target
products, including chemicals they do not naturally produce
(Pandey et al., 2016; Wang et al., 2016).

In this section, we will focus on illustrating the current
strategies described for producing aromatic compounds,
beginning with the products that are considered industrial
building blocks, as salicylic acid, p-hydroxybenzoic acid,
p-coumaric acid, cinnamic acid, ferulic acid and 2-phenylethanol.
A brief overview of some relevant aromatic compounds that
are widely used as fine chemicals, such as vanillin, will be
further presented.

Salicylic acid (SLA) (2-hydroxybenzoic acid) is a valuable
aromatic compound that can be obtained from CHO (Lin
et al., 2014; Jiang and Zhang, 2016). SLA is an important
drug precursor mainly used to produce acetylsalicylic acid,
widely applied as a non-steroidal anti-inflammatory drug, in
the treatment of fever, pain, aches and inflammations (Vane
and Botting, 2003). Isochorismate synthase (ICS) converts CHO
to isochorismate and then isochorismate pyruvate lyase (IPL)
converts isochorismate into SLA (Serino et al., 1997; Figure 2).
Lin et al. (2013) attained an SLA titer of 158 mg L−1 in
E. coli after the expression of entC from E. coli (ICS step)
and pfpchB from P. fluorescens (IPL step), as an operon. Lin
et al. (2014) further improved the metabolic flux toward SLA
using a medium copy number plasmid, pCA-APTA, to express
aroL, ppsA, tktA and aroGfbr, under the control of an IPTG-
inducible promoter (PLlacO1), attaining an SLA titer of 1.2 g
L−1, using glycerol as carbon source. Noda et al. (2016) reported
the highest SLA titer to the date, 11.5 g L−1 (Table 1), with a
yield of 41.1 % from glucose, after enhancing the availability of
PEP in E. coli. They removed the endogenous PEP consuming
PTS, that was replaced by GalP/Glk system, as well as the
genes responsible for the conversion of PEP to pyruvate (pykF
and pykA). Finally, the strain was further modified by the
introduction of menF from E. coli (ICS step) and pchB from
P. aeruginosa (IPL step). In that report, an 8-fold increase in SLA
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FIGURE 2 | Biosynthesis of different aromatic compounds derived from the extended shikimate pathway. DHQS, 3-dehydroquinate synthase; DHQD,
3-dehydroquinate dehydratase; 3-DHSD, 3-dehydroshikimate dehydratase; CAR, carboxylic acid reductase; PCAD, protocatechuic acid decarboxylase; O-MT,
O-methyltransferase; ICS, isochorismate synthase; CHOPL, chorismate pyruvate lyase; IPL, isochorismate pyruvate lyase; 4-HBAH, 4-hydroxybenzoic acid
hydroxylase; CM, chorismate mutase; KDC, phenylpyruvate decarboxylase; ADH, alcohol dehydrogenase; PAL, phenylalanine ammonia lyase; C4H, cinnamate
4-hydroxylase; TAL, tyrosine ammonia lyase; FCS, feruloyl-CoA synthetase; ECH, feruloyl-CoA hydratase/lyase; C3H, p-coumarate 3-hydroxylase; AT,
aminotransaminase. Solid lines indicate a single step; dotted lines indicate multiple steps.

concentration (from 1.4 to 11. 5 g L−1) was attained after the
process scale up to 1-L jar fermenter. These findings demonstrate
the importance of balancing the plasmid copy number and the
impact of deleting the genes from SKM pathway in cell growth
and production titers. However, the SA toxicity toward the
producing cell remains a challenge, and it is necessary to develop
more resistant strains or explore alternative chassis that naturally

exhibit high tolerance toward toxic compounds, as Pseudomonas
aeruginosa (Jiménez et al., 2002; Nikel and de Lorenzo, 2018).
The microbial production of p-hydroxybenzoic acid (PHBA)
can also be achieved from CHO by chorismate pyruvate lyase
(Figure 2). This aromatic compound is used as a building block
for liquid crystal polymers and for antibacterial parabens – a
key group of compounds used as food preservatives (Barker and
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Frost, 2001), with an estimated market value of $150 million
per year (Krömer et al., 2013). Nowadays, PHBA is chemically
synthesized from benzene via cumene and phenol (Heinz-
Gerhard and Jurgen, 2012). The biotechnological production
of PHBA has already been described in plants, like tobacco
(Nicotiana tabacum L.) and potato (Solanum tuberosum L.)
(Köhle et al., 2003), in E. coli (Barker and Frost, 2001), Klebsiella
pneumoniae (Müller et al., 1995), C. glutamicum (Kallscheuer
and Marienhagen, 2018), and P. putida (Verhoef et al., 2007),
using glucose as carbon source or with complex mixtures such
as sugar cane (Mcqualter et al., 2005). Barker and Frost (2001)
reported PHBA production in E. coli after overexpression of
aroFfbr (feedback-inhibition resistant DAHP synthase), as well
as the genes involved in the SKM pathway (tktA, aroA, aroL,
aroC, and aroB) and encoding chorismate pyruvate lyase (ubiC,
that was expressed in a plasmid under the control of a tac
promoter). A PHBA yield of 12 g L−1 was obtained in a fed-batch
fermentation. The application of an E. coli–E. coli co-culture
system was recently reported by Zhang H. et al. (2015) for
PHBA production from glucose and xylose, a sugar mixture that
can be derived from lignocellulose. The authors reported a 8.6-
fold improvement in PHBA production when its biosynthesis
was switched from the monoculture strategy to the co-culture
strategy. Finally, a fed-batch bioreactor was used to scale up
the PHBA production and under this new condition its titer
was improved to 2.3 g L−1. The production of this aromatic
compound in yeast was described for the first time by Krömer
et al. (2013). The authors reported a PHBA titer of 90 mg L−1

in S. cerevisiae after overexpression of an ubiC from E. coli
and deletion of ARO7 and TRPp3, avoiding the biosynthesis
of aromatic amino acids. To increase the flux to chorismate,
they expressed ARO4K229L and aroL. This strain was then used
and allowed a PHBA formation from CHO, with a titer of
2.9 g L−1 and yield of 3.1 mg gglucose

−1, in a fed-batch process
(Averesch et al., 2017). To date, the highest PHBA titer was
reported by Kitade et al. (2018) in C. glutamicum (Table 1).
This was achieved by chromosomal integration of aroG from
E. coli and wild-type aroCKB from C. glutamicum, encoding
chorismate synthase, shikimate kinase, and 3-dehydroquinate
synthase. In order to convert CHO to HPBA a highly HPBA-
resistant chorismate pyruvate lyase (encoded by ubiC) from the
intestinal bacterium Providencia rustigianii was used. In order
to increase product formation, the synthesis of by-products was
also reduced by deleting hdpA and pyk. The final strain produced
36.6 g L−1 of PHBA from glucose after 24 h, with a glucose
yield of 40 % (mol mol−1). Despite the efforts that have been
made to increase the production yields and concentration of
PHBA, the obtained results still fall behind those benchmarks
from an industrial perspective. In fact, PHBA itself could also
be toxic to the cells at high concentrations and the application
of in situ product removal (ISPR) strategies will lead to a
continuous PHBA removal from the fermentation broth. An
interesting approach was presented by Johnson et al. (2000)
that applied an in situ product removal technique for PHBA
production with E. coli using Amberlite IRA-400 as adsorbent,
and observed an increase in the PHBA titer from 6 to 22.9 g
L−1. In the future, further improvements in the biotechnological

process will be necessary, such as the utilization of low-cost
substrates, as residues and wastes, as well as the development of
a “green” downstream process, to pique the industry interest in
these processes.

Hydroxycinnamic acids are an important class of
hydroxylated aromatic acids that contain a phenol ring and
at least one organic carboxylic acid group. This group of
compounds includes p-coumaric acid, caffeic acid and ferulic
acid, among others. p-Coumaric acid is an important platform
chemical used as monomer of liquid crystal polymers for
electronics (Kaneko et al., 2006), as well as precursor for the
synthesis of polyphenols (Rodriguez et al., 2015). The route
for their production starts with L-Phe and L-Tyr deamination
to further produce the phenylpropanoid cinnamic acid and
p-coumaric acid, respectively, by the activity of phenylalanine
ammonia lyase (PAL) (MacDonald and D’Cunha, 2007) and
tyrosine ammonia lyase (TAL) (Nishiyama et al., 2010; Figure 2).
The enzyme P450 monooxygenase cinnamate 4-hydroxylase
(C4H) can further oxidize the cinnamic acid yielding the
p-coumaric acid (Rasmussen et al., 1999; Achnine et al., 2004).
The heterologous expression of TAL and PAL/TAL encoding
genes allowed the p-coumaric acid production in E. coli,
S. cerevisiae, Streptomyces lividans and P. putida (Table 1;
Nijkamp et al., 2007; Trotman et al., 2007; Vannelli et al., 2007;
Kawai et al., 2013; Rodriguez et al., 2015; Vargas-Tah and Gosset,
2015). However, due to their low activity, first studies reported
its production from culture medium supplemented with L-Phe
or L-Tyr (Ro and Douglas, 2004; Hwang et al., 2003; Watts et al.,
2004; Jendresen et al., 2015; Mao et al., 2017). Efforts have also
been made to find enzymes from different sources with higher
PAL or TAL activity (Nijkamp et al., 2005, 2007; Vannelli et al.,
2007; Kang et al., 2012; Jendresen et al., 2015). p-Coumaric acid
production from a simple carbon source, such as glucose, is
desirable. In order to achieve this, S. cerevisiae was genetically
modified (Vannelli et al., 2007). The encoding PAL/TAL gene
from Rhodotorula glutinis (expressed under the control of the
galactose promoter) was used due to its higher affinity toward
L-Tyr compared to L-Phe. The heterologous expression of a
C4H gene from Helianthus tuberosus allowed its production
via the PAL route. More recently, Li et al. (2018) proposed the
p-coumaric acid production from glucose via phenylalanine in
E. coli. They expressed the C4H-encoding gene from Lycoris
aurea and PAL1 of Arabidopsis thaliana, under a trc promoter
induced by IPTG, attaining a titer of 25.6 mg L−1 in shake flasks,
after the regulation of the intracellular level of NADPH. The
authors observed that the level of intracellular NADPH has a
strong impact on the conversion of trans-cinnamic acid into
p-coumaric acid and different strategies were tested in order to
increase the level of intracellular NADPH. When pntAB, that
encodes a membrane-bound transhydrogenase that catalyzes the
NADH to NADPH conversion, was overexpressed under the
control of a T7 constitutive promoter and the synthetic small
regulatory RNA (srRNA) anti(SthA) was used to specifically
repress the translation of the soluble transhydrogenase SthA, a
synergetic positive effect was observed on the de novo production
of p-coumaric acid. To date, the highest p-coumaric acid titer,
2.4 g L−1, has been achieved in S. cerevisiae after overexpression
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of the encoding TAL gene from Flavobacterium johnsoniae;
overexpression of aroL from E. coli, under control of the P-TEF
promoter; overexpression of Aro7G141S and Aro4K229L from
S. cerevisiae under control of the promoters P-TEF and P-PGK1,
respectively and deletion of Aro10 and Pdc5 genes (Rodriguez
et al., 2017; Table 1). However, it is also important to explore
the application of other raw materials derived from biomass as
carbon sources – see section “Discussion.” Vargas-Tah and Gosset
(2015) managed to produce cinnamic acid and p-coumaric acid
in E. coli using lignocellulosic hydrolysates as complex carbon
source. However, other strains that grow naturally on complex
carbon sources were also used in the production of these
hydroxycinnamic acids, such as Streptomyces lividans (Noda
et al., 2011, 2012; Kawai et al., 2013) with product concentrations
ranging from 130 to 736 mg L−1. In the last year, Borja et al.
(2019) constructed a S. cerevisiae strain that uses xylose as sole
carbon source for p-coumaric acid production, attaining a titer
of 242 mg L−1, that represents a 45-fold increase over their
condition with glucose (5.25 mg L−1) (Table 1). To construct
this strain, they knocked out Aro10 and Pdc5 genes, in order to
reduce the byproduct formation, and overexpressed the encoding
TAL gene from F. johnsoniae and aroL from E. coli. To increase
the carbon flux through the aromatic amino acid pathway
they overexpress Aro7fbr (feedback-inhibition resistant DAHP
synthase) and Aro4fbr (feedback-inhibition resistant chorismite
mutase). Another important issue detected in these studies is
the toxic effect of p-coumaric acid to the producing cells. An
alternative strategy was proposed by Huang et al. (2013), that
involves pulse feeding to avoid the accumulation of p-coumaric
acid to a toxic level. The resistance to toxic compounds can
also be increased using membrane transport engineering as a
method to decrease the intracellular concentration of a toxic
compound. In E. coli, the overexpression of aaeXAB gene,
that encodes an efflux pump for several aromatic compounds,
resulted in a twofold increase in tolerance to p-coumaric acid
(Dyk et al., 2004; Sariaslani, 2007). Caffeic acid is another
important intermediate of the phenylpropanoid metabolism. It
serves as a precursor for the synthesis of caffeoyl alcohol and
3,4-dihydroxystyrene (monomer for plastic synthesis) (Zhang
and Stephanopoulos, 2013). Caffeic acid is biosynthesized
by hydroxylation of p-coumaric acid through p-coumarate
3-hydroxylase (C3H) (Berner et al., 2006; Figure 2). First
studies have reported microbial caffeic acid production with
medium supplementation of the precursors such as L-Tyr and
p-coumaric acid (Sachan et al., 2006; Choi et al., 2011). In order
to produce it directly from p-coumaric acid, it is necessary
to express the genes that encode enzymes with suitable ring
3-hydroxylation activity (Berner et al., 2006; Furuya et al.,
2012). In fact, one of the major difficulties in the heterologous
expression of genes of the plant phenylpropanoid pathway in
E. coli is the lack of cytochrome P450 reductase activity making
the search for alternative strategies essential. Choi et al. (2011)
identified that the sam5 gene from Saccharothrix espanaensis
encodes C3H, that is a FAD-dependent enzyme. This enzyme
was then used to produce caffeic acid in E. coli, demonstrating
the feasibility of this two-step pathway to produce caffeic acid
using alternative enzymes. It was also demonstrated that a

bacterial cytochrome P450 CYP199A2, from Rhodopseudomonas
palustris, was able to efficiently convert p-coumaric acid to caffeic
acid (Hernández-Chávez et al., 2019). Some microorganisms,
harboring genes encoding the two sub-units of the enzyme
4-hydroxyphenylacetate 3-hydroxylase (4HPA3H), have proved
to be able to act on aromatic compounds (Galán et al., 2000). It
was also observed that 4HPA3H is able to convert p-coumaric
acid into caffeic acid. Based on this Furuya and Kino (2014)
expressed the 4HPA3H gene from Pseudomonas aeruginosa in
E. coli and a caffeic acid production of 10.2 g L−1 was obtained
after repeated additions of p-coumaric acid (20 mM each pulse),
in a medium with glycerol as carbon source. For caffeic acid
biosynthesis from L-Tyr an additional step of non-oxidative
deamination, catalyzed by TAL (Rodrigues et al., 2015) is needed,
and the first approach is the search for alternative enzymes from
different sources. TAL from R. glutinis proved to be the most
active TAL identified (Vannelli et al., 2007; Santos et al., 2011).
However, the production of this compound from simple carbon
sources is much more desirable and the production of caffeic acid
from glucose and xylose was described (Lin and Yan, 2012; Zhang
and Stephanopoulos, 2013). The use of renewable feedstocks,
such as lignocellulosic biomass, was also evaluated using E. coli
as producing host (Kawaguchi et al., 2017). A maximum caffeic
acid concentration of 233 mg L−1 (Table 1) was produced
from kraft pulp using a tyrosine-overproducing E. coli strain
harboring the hpaBC gene from P. aeruginosa and fevV gene
from Streptomyces sp. WK-5344. Ferulic acid is a component
of lignocellulose (De Oliveira et al., 2015). This O-methylated
hydroxycinnamic acid is biosynthesized from caffeic acid by
caffeic acid O-methyltransferase (COMT) (Figure 2). However,
there are few reports about the heterologous production of
ferulic acid in microbial hosts. Choi et al. (2011) reported the
production of ferulic acid in E. coli by expression of sam5, a TAL
gene from S. espanaensis and a COMT gene from A. thaliana,
under the control of a T7 promoter, attaining a titer of 0.1 mg
L−1 from L-Tyr. Later, Kang et al. (2012) engineered an E. coli
strain capable of producing 196 mg L−1 of ferulic acid from
glucose, after introduction of COMT from A. thaliana in a caffeic
acid-over-producing strain, containing a codon optimized tal
gene, under the control of a T7 promoter. This aromatic acid
can also be used as substrate for vanillin and coniferyl alcohol
biosynthesis (Hua et al., 2007; Lee et al., 2009; Chen et al., 2017).
Research efforts have been made in order to make the microbial
production of hydroxycinnamic acids a competitive process.

Another important class of aromatic compounds is the
aromatic flavors class. The two most popular benzenoid flavors
are 2-phenylethanol (2-PE) and vanillin. 2-PE is an aromatic
alcohol with a delicate fragrance of rose petals widely used
in flavor and fragrances industries (Burdock, 2010; Carlquist
et al., 2015). It was recently identified as a potent next
generation biofuel (Keasling and Chou, 2008). Furthermore, 2-
PE can also be used as raw material to produce other flavor
compounds (2-phenylethyl acetate and phenylacetaldehyde)
and styrene (Etschmann et al., 2002). Microorganisms can
naturally produce 2-PE as part of their amino acid metabolism
(Etschmann et al., 2002). This benzoid flavor can be produced
through the SKM pathway or via Ehrlich pathway from L-Phe
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(Albertazzi et al., 1994; Carlquist et al., 2015; Figure 2).
Through the Ehrlich pathway, L-Phe is firstly converted to
phenylpyruvate by transamination, which is then transformed
to phenylacetaldehyde by decarboxylation. Then, the derivative
aldehyde is reduced to 2-PE by an alcohol dehydrogenase
(Etschmann et al., 2002; Figure 2). This is the fastest pathway
to produce 2-PE, however cheaper precursors than L-Phe should
be used to achieve a more competitive process (ÄYräpää,
1965; Kim T.Y. et al., 2014; Zhang et al., 2014). Thus, de
novo production of 2-PE has been described in different
microorganisms: Kluyveromyces marxianus (Kim T.Y. et al.,
2014), E. coli (Guo et al., 2018; Liu et al., 2018), and Enterobacter
sp. (Zhang et al., 2014; Table 1). The 2-PE production from the
SKM pathway is achieved from its end product phenylpyruvate,
that is decarboxylated to phenylacetaldehyde, followed by a
dehydrogenation that leads to 2-PE production (Etschmann et al.,
2002; Carlquist et al., 2015; Figure 2).

Nonetheless, the de novo synthesis is inefficient since glycolysis
and PPP are mainly used for cell growth, producing very low
2-PE concentrations. The most common strategies employed
for strain constructions focus on increasing phenylpyruvate
decarboxylase and alcohol dehydrogenase activities, which
are the rate-limiting enzymes in de novo synthesis pathway,
in combination with feedback-resistant DAHP synthase and
chorismate mutase. Kim B. et al. (2014) overexpressed the Aro10,
that encodes a transaminated amino acid decarboxylase and
Adh2, encoding an alcohol dehydrogenase, from S. cerevisiae in
K. marxianus BY25569, under the control of the constitutive
promoter ScPGK1/ScTEF1. Then, serial subcultures with an
L-Phe analog, p-fluorophenylalanine, were conducted in order
to obtain an evolved strain resistant to the L-Phe analog.
Finally, the expression of aroGfbr from Klebsiella pneumoniae,
that encodes a feedback-resistant mutant of DAHP synthase,
was also performed. This genetically modified strain was able
to produce 1.3 g L−1 of 2-PE from glucose without addition of
L-Phe. More recently, Liu et al. (2018) constructed a heterologous
pathway from Proteus mirabilis in E. coli and the recombinant
strain was able to produce 1.2 g L−1 of 2-PE without L-Phe
supplementation (Table 1).

Another challenge in the biosynthesis of 2-PE is its toxicity.
Different strategies were investigated in order to improve the
process yield and productivity, being the most common the
optimization of medium composition, operational conditions
and application of ISPR techniques (Chung et al., 2000; Hua
et al., 2010; Cui et al., 2011; Celińska et al., 2013; Mihal’
et al., 2014). 2-PE production is highly dependent on media
composition and culture conditions (Garavaglia et al., 2007).
The utilization of an interesting alternative carbon source
was reported by Celińska et al. (2013). They use glycerol
as carbon source in bioconversion of L-Phe to 2-PE by
Yarrowia lipolytica NCYC3825, reaching a 2-PE production
of 0.77 g L−1 after 54 h. Another recent approach for this
flavor production was reported by Martínez-Avila et al. (2018).
In the proposed system, K. marxianus ATCC10022 used the
available nutrients from a residue-substrate (sugarcane bagasse)
supplemented with L-Phe, achieving a 2-PE production of
10.21 mg g−1 (mass of product per mass of solid) in a

fed-batch system. The application of alternative modes of
operation, such as fed-batch and continuous, that allow the
possible removal or dilution of 2-PE in the medium, are also
interesting approaches recently reported. Last year, de novo
production of 2-PE by Metschnikowia pulcherrima NCYC373
reached higher titers in continuous mode operation, than in
batch and fed-batch cultures (Chantasuban et al., 2018). In
continuous fermentation, 2-PE concentration levels reached 1.5 g
L−1, before it became too toxic and caused the flush out
(Table 1). Even with the efforts to optimize the culture medium
and cultivation conditions, and choose the most producing
microorganism, product inhibition is still the major problem of
2-PE biosynthesis (Carlquist et al., 2015). Some strategies, such
as ISPR techniques, have been developed to reduce the 2-PE
toxicity in the fermentation medium, increasing its production
(Carlquist et al., 2015). Recently, Chantasuban et al. (2018)
reported the application of oleyl alcohol as an extraction phase
in the 2-PE production by M. pulcherrima NCYC373. The
production levels were enhanced with the application of this
ISPR technique, achieving a 2-PE concentration of 1.96 g L−1

in the aqueous phase and an overall production of 3.13 g
L−1. Gao and Daugulis (2009) reported a highly significant
enhancement in the 2-PE production, using a solid-liquid two-
phase partition bioreactor with polymer beads as the sequestering
immiscible phase. The batch mode system reached a final 2-
PE concentration of 13.7 g L−1 (88.74 g L−1 in the polymer
phase and 1.2 g L−1 in the aqueous phase), whereas the fed-
batch achieved an overall titer of 20.4 g L−1 (97.0 g L−1

in the polymer phase and 1.4 g L−1 in the aqueous phase).
During the last years, great improvements have been achieved
in the bioproduction of 2-PE leaving its industrial application
closer. In fact, 2-PE concentrations of 21 g L−1 were reached
(Mihal’ et al., 2014), in an hybrid system that consists of a
fed-batch stirred tank bioreactor and a hollow fiber membrane
module immersed at the bottom of the bioreactor, where 2-
PE is continuously extracted from the fermentation broth using
pentane as the organic phase.

Vanillin (4-hydroxy-3-methoxybenzaldehyde), a widely used
flavor compound in different industries, is the primary
component of the extract of the vanilla bean. The economic
importance of this plant natural product is quite significant; it
was reported that synthetic vanillin has a price of around US$
11 kg−1, while biotech vanillin is sold for a price of around
US$ 1000 kg−1 (Schrader et al., 2004). Over the last years,
vanillin production through biotransformation of ferulic acid,
isoeugenol, lignin, was reported, with vanillin titers that range
from 0.13 to 32.5 g L−1 (Huang et al., 1993; Priefert et al.,
2001; Zhao et al., 2005; Kaur and Chakraborty, 2013). Furuya
et al. (2015) reported a vanillin concentration of 7.8 g L−1 from
ferulic acid in a two-stage process with an E. coli carrying two
expression plasmids harboring fdc from Bacillus pumilus and
cso2 from Caulobacter segnis. However, the vanillin production
through these pathways has several bottlenecks that include the
price of precursors, the formation of undesired side-products and
the cytotoxicity of the precursors (Gallage and Møller, 2015).
Based on this, its production by de novo biosynthesis from cheap
and more available carbon sources is much more attractive.
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In the pathway from 3-dehydroshikimate (3-DHS) to
vanillin, the first step is the dehydration of 3-DHS to
protocatechuic acid, catalyzed by 3-dehydroshikimate
dehydratase, that is further converted to protocatechuic
aldehyde, by carboxylic acid reductase; and, the final step
is catalyzed by an O-methyltransferase leading to vanillin
(Hansen et al., 2009; Figure 2). Li and Frost (1998) were the
first to report an engineered pathway for vanillin production
in E. coli. Here, protocatechuic acid was converted to vanillic
acid by catechol-O-methyltransferase, and further reduced
to vanillin by an aryl aldehyde dehydrogenase. Hansen et al.
(2009) explored for the first time the vanillin production in
the yeasts Schizosaccharomyces pombe and S. cerevisiae. The
authors introduced a DHS dehydratase (3DSD) from Podospora
pausiceta, an aromatic carboxylic acid reductase (ACAR) from
Nocardia sp., a phosphopantetheinyl transferase (PPTase) from
C. glutamicum to activate ACAR, and an O-methyl transferase
(OMT) from Homo sapiens, allowing a vanillin production
of 45 mg L−1. More recently, Kunjapur et al. (2014) used an
E. coli strain with decreased aromatic aldehyde reduction activity
as a host for the biosynthesis of vanillin. A vanillin titer of
119 mg L−1 was achieved using an E. coli strain expressing a
Bacillus thuringiensis 3-dehydroshikimate dehydrogenase gene
(asbF), a H. sapiens O-methyltransferase gene (Hs-S-COMT)
and Nocardia iowensis carboxylic acid reductase gene (car),
that are codon optimized and expressed in a plasmid. They also
introduced a feedback-resistant DAHP synthase (encoded by
aroG) and a phosphopantetheinyl transferase (encoded by sfp)
from B. subtilis, which have been shown to activate CAR.

However, de novo vanillin production in recombinant bacteria
and yeasts still has challenges that are not only related with
product formation itself but also the product toxicity. The major
hurdle in the biotechnological production of vanillin is the
strong inhibitory effect that this flavor has on microorganism
growth (Gallage et al., 2014; Ma and Daugulis, 2014). An
interesting approach was proposed by Brochado et al. (2010),
in which the natural pathway for vanillin production in plants
was mimicked and assembled in S. cerevisiae. To overcome the
toxicity of vanillin, a gene encoding an uridine diphosphate–
glucose glycosyltransferase (UGT) from Arabidopsis thaliana was
expressed in S. cerevisiae. This UGT catalyzes the glycosylation
of vanillin and produces a less toxic final product, vanillin-β-
d-glucoside (VG). The same strategy was implemented by Ni
et al. (2015) allowing a VG production of 500 mg L−1, with a
yield of 32 mg gglucose

−1, that is 5-fold higher than the 45 mg
L−1 reported by Hansen et al. (2009). A different strategy was
presented by Yoon et al. (2007) for vanillin production from
ferulic acid using an E. coli strain harboring a plasmid with fcs
(feruloyl-CoA synthase) and ech (enoyl-CoA hydratase/aldolase)
genes from Amycolatopsis sp. strain. To reduce the vanillin
toxicity, they improved the vanillin-resistance of this strain
using NTG mutagenesis as well as a XAD-2 resin to remove
the vanillin from the medium. When 50 % (w/v) of XAD-
2 resin was used with 10 g L−1 of ferulic acid, the vanillin
production with the NTG-VR1 mutant strain was 2.9 g L−1,
which was 2-fold higher than that obtained without resin.
Recently, Luziatelli et al. (2019) reported, for the first time, the

vanillin production from ferulic acid using a plasmid free E. coli
strain, after chromosomal integration of fcs and ech genes from
Pseudomonas. In addition, they also performed an optimization
of the bioconversion conditions (namely stirring speed and initial
substrate concentration) using a response surface methodology.
At the same time, the authors used a two-phase (solid-liquid)
system where the substrate was incorporated in a gel matrix
(agarose-gel) in order to perform a fixed volume fed-batch
approach, for controlled release of ferulic acid. Using this two-
phase system, a vanillin titer of 4.3 g L−1 was attained in the liquid
phase – one of the highest found in the literature for recombinant
E. coli strains (Table 1).

DISCUSSION

The production of aromatic compounds through plant extraction
or chemical synthesis is a profitable business that’s been in place
for quite a few years, now. In order to replace these industrial
processes by fermentation based biotechnological processes,
these must have clear economic, environmental and/or product
wise advantages. From an economic point of view, the advantages
have to be significant enough to justify the investment on new
industrial equipment.

In general, these processes have a lower environment impact
and are able to produce high quality final products when
compared to their plant extraction and/or chemical synthesis
counterparts (Thompson et al., 2015; Dudnik et al., 2017;
Kallscheuer et al., 2019).

One of the advantages of fermentation based processes is the
low-cost and abundance of the raw materials – low added value
sugars. However, in order to achieve this advantage, the processes
must not consider the supply of expensive precursors, antibiotics,
inducers, etc... The optimization of the microorganisms in order
to produce the desired aromatic compound directly form the
substrate is usually a requirement to achieve economic feasibility.
This is supported by Li et al. (2018) and Liu et al. (2018)
studies – among other examples previously presented (Table 1) –
showing that the strain engineering toward deregulation of the
aromatic amino acids metabolism and an optimal connection
of the heterologous pathways to the host metabolism enable
aromatic compounds production starting from glucose without
any need for supplementation of precursor metabolites.

In recent years, some research effort has been put into
replacing the hydrocarbon source for these fermentation
processes by residues and waste materials (Vargas-Tah and
Gosset, 2015; Martínez-Avila et al., 2018; Borja et al., 2019).
Sugars like glucose are abundant low-cost raw materials. On
the other the use of waste materials in large scale industrial
processes implies assuring a reliable constant supply and usually
a pre-treatment step that may add a significant cost to the
process. Nevertheless, whenever there is a need to process these
wastes in order avoid their environmental impact, a fermentation
process that converts them to higher added value products is an
alternative worth considering.

Another possible bottleneck for the industrialization of these
processes is the cost of the purification step. Microorganisms tend
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to produce a mixture of by-products where the compound of
interest may be in higher or lower concentration. Although the
amount of research put into this field is not always as significant
as one would expect, the search for higher titers and the use of
ISPR techniques has direct impact on the economic sustainability
of these processes (Van Hecke et al., 2014). Moreover, it will also
be interesting to study the synergetic application of engineered
strains, able to use wastes and residues as substrates, in systems
using ISPR techniques, as well as the product recovery and
purification (Braga et al., 2018b; Kallscheuer et al., 2019).

Different microorganisms have been used to produce
aromatic compounds. The most commonly used hosts are
E. coli, S. cerevisiae and C. glutamicum. However, tolerant and
thermotolerant microorganisms, as well as a broad spectrum of
bacteria were also employed as aromatic compound producers
(Table 1). The choice of the microorganism employed is always
a determinant factor for the outcome of any research project in
this field. The exploitation of well established platform organisms,
for which metabolic engineering tools are available, is the most
common approach. However, it is also important to explore
non-model organisms that can naturally produce the desired
compounds, even though the available genetic tools are still
scarce. For example, the metabolic versatility of Pseudomonas
as well as it inherent tolerance to toxic compounds, offers an
excellent starting point for suppressing the hurdles of using and
producing toxic compounds of natural or heterogeneous origin
(Krömer, 2016; Lenzen et al., 2019; Table 1).

Some aromatic compounds are toxic for the producing host.
In order to tackle this obstacle, several alternative strategies
have been proposed such as: starting the fermentation with a
lower substrate concentration and further additions following its
consumption rate (step-wise fed-batch); the use of in situ product
removal strategies and the application of adaptive evolution to
obtain strains with enhanced resistance to toxic products. Aiming
at industrial scale operation, the reduction of the production
costs is always crucial. In order to reduce the medium cost,
chromosomal integration of heterologous genes avoid the use of
expensive antibiotics and inducers for plasmid maintenance and
inducible expression (Cui et al., 2014).

Nowadays, the microbial production of aromatic compounds
is already implemented at industrial scale in economically
viable process. Evolva, for instance, has launched a process for
vanillin production from glucose with a genetically modified
Schizosaccharomyces pombe (Vanilla, 2014). Similarly, Solvay has
a process for vanillin production with Streptomyces setonii from
ferulic acid (Muheim et al., 2001). In these cases, the product
titers attained are in the order of a hundred g per L, and
the methodologies for product separation and purification are
well established. However, despite the efforts that have been
made to increase the production titers with microbial hosts,
the concentrations obtained for more complex compounds are
still too low (mg and µg per L) for an industrial process
(Table 1), and these molecules are still produced by extraction
from natural sources or by chemical synthesis. In fact, it has
been predicted that the market value of a bulk chemical is less
than $10 kg−1. On the other hand, fine chemicals are produced
in limited volumes (<1000 tons per year) but at relatively

high prices (>$10kg−1) (Joshi and Ranade, 2016). Based on
this, at least for now, the commercialization of fine aromatic
compounds will emerge with more successes (Cao et al., 2019).
The current challenges that still need to be addressed are the
metabolic imbalances in the producer strain, the availability of
the metabolites required for biomass formation and the product
extraction and purification. In a near future it can be expected
that with the application of novel synthetic biology approaches,
such as CRISPR/Cas9, rational strain engineering, adaptive
laboratory evolution and high-throughput screening approaches,
it will be possible to render the microbial production of additional
aromatic compounds and its derivatives economically viable.

FINAL REMARKS

Production cost is, by far, the main obstacle to overcome in
order to industrialize the production of aromatic compounds
through fermentation. This explains the two main research
goals mentioned throughout this review: the maximization
of product titers and the removal of expensive fermentation
media ingredients.

The main challenges to address are still the low availability
of precursor molecules by the microbial metabolism, the
elimination of complex pathway regulations, disruption of
competing pathways and the low activity of heterologous
enzymes in the microbial hosts. It is expected that with recent
technological innovations the engineering of microbial host
strains will be faster providing more precursor molecules to
increase aromatic compound synthesis. Identification of the most
suitable enzymes and their further improvement will also be
an important step toward the production of different aromatic
chemicals, avoiding the accumulation of undesired intermediates
that can be toxic to the microbial host and leading to an increase
in the final product titer. Metabolic engineering, system and
synthetic biology tools for strain design, together with process
engineering strategies have been and will continue to be the
main resources applied. In addition, the identification of novel
enzymes that catalyze non-natural reactions, or novel synthetic
pathways not found in nature, allow the production of the desired
molecule with a high yield or a non-natural compound with
possibly superior or new therapeutic properties.

Overall, the paradigm moves toward the development of better
microbial chassis and new metabolic pathways that allow the
shift from producing aromatic compounds from fossil resources
to a bio-based production. The authors consider that now, the
biotechnological production of aromatics is not a question of
whether or not it is theoretically possible, but of when will it
become technically and economically feasible.
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Beata, Ż, Niemczyk, E., and Lipok, J. (2019). Metabolic relation of cyanobacteria
to aromatic compounds. Appl. Microbiol. Biotechnol. 103, 1167–1178. doi: 10.
1007/s00253-018-9568-2

Bentley, W. E., Mirjalili, N., Andersen, D. C., Davis, R. H., and Kompala, D. S.
(1990). Plasmid-encoded protein: the principal factor in the “metabolic burden”
associated with recombinant bacteria. Biotechnol. Bioeng. 35, 668–681. doi:
10.1002/bit.260350704

Berner, M., Krug, D., Bihlmaier, C., Vente, A., Mu, R., and Bechthold, A. (2006).
Genes and enzymes involved in Caffeic acid biosynthesis in the actinomycete
Saccharothrix espanaensis. J. Bacteriol. 188, 2666–2673. doi: 10.1128/JB.188.7.
2666

Bongaerts, J., Krämer, M., Müller, U., Raeven, L., and Wubbolts, M. (2001).
Metabolic engineering for microbial production of aromatic amino acids and
derived compounds. Metab. Eng. 3, 289–300. doi: 10.1006/mben.2001.0196

Borja, G. M., Rodriguez, A., Campbell, K., Borodina, I., Chen, Y., and Nielsen,
J. (2019). Metabolic engineering and transcriptomic analysis of Saccharomyces
cerevisiae producing p-coumaric acid from xylose. Microb. Cell Fact. 18, 1–14.
doi: 10.1186/s12934-019-1244-1244

Borodina, I., and Nielsen, J. (2014). Advances in metabolic engineering of yeast
Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 9, 609–620.
doi: 10.1002/biot.201300445

Braga, A., Ferreira, P., Oliveira, J., Rocha, I., and Faria, N. (2018a). Heterologous
production of resveratrol in bacterial hosts: current status and perspectives.
World J. Microbiol. Biotechnol. 34:122. doi: 10.1007/s11274-018-2506-2508

Braga, A., Silva, M., Oliveira, J., Silva, A. R., Ferreira, P., Ottens, M., et al. (2018b).
An adsorptive bioprocess for production and recovery of resveratrol with
Corynebacterium glutamicum. J. Chem. Technol. Biotechnol. 93, 1661–1668.
doi: 10.1002/jctb.5538

Brochado, A., Matos, C., Møller, B. L., Hansen, J., Mortensen, U. H., and Patil, K.
(2010). Improved vanillin production in baker’s yeast through in silico design.
Microb. Cell Fact. 9:84. doi: 10.1186/1475-2859-9-84

Bulter, T., Bernstein, J. R., and Liao, J. C. (2003). A perspective of metabolic
engineering strategies: moving up the systems hierarchy. Biotechnol. Bioeng. 84,
815–821. doi: 10.1002/bit.10845

Burdock, G. A. (2010). Flavor Ingredients, 6th Edn. Boca Raton, FL: Fenaroli’s
Handbook CRC Press.

Cao, M., Gao, M., Suastegui, M., Mei, Y., and Shao, Z. (2019). Building microbial
factories for the production of aromatic amino acid pathway derivatives: from
commodity chemicals to plant-sourced natural products. Metab. Eng. doi: 10.
1016/j.ymben.2019.08.008 [Epub ahead of print],

Carlquist, M., Gibson, B., Yuceer, Y. K., Paraskevopoulou, A., Sandell, M.,
Angelov, A. I., et al. (2015). Process engineering for bioflavour production with
metabolically active yeasts – a mini-review. Yeast 32, 123–143. doi: 10.1002/yea.
3058
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