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ABSTRACT 

Diabetic Retinopathy (DR) is a common complication of diabetes, which is among the major causes 

of vision loss in the world. An early detection of the disease is the key to avoid the patient’s blindness. 

However, at the initial phase of the disease, the vision impairment is not easily percieved by the 

patient. Therefore, regular follow-up exams are recommended in order to detect anomalous patterns 

in the patient’s retina. Exudates are one of the most prevalent signs during the early stage of DR 

and, therefore, its early detection is vital to prevent the patient’s blindness. However, the manual 

detection of exudates by experts is laborious and time-consuming. Thus, automated screening 

techniques for exudate detection have great significance in saving cost, time and labor, allowing the 

ophthalmologists to make the treatment decision timely. In this sense, one of the main objectives of 

this thesis is to develop and compare different strategies to locally extract information of fundus 

images for detecting exudates. 

Several methods related to the automatic detection of exudates have been proposed in the literature 

however, these methods focus their efforts in the segmentation of exudates or require the extraction 

of features from a lesion candidate map. On the other hand, in the methodologies proposed in this 

thesis, the characterization of healthy and damaged retinal areas is performed by applying image 

descriptors in a local way, avoiding the segmentation step and the generation of candidate maps. 

A system based on local feature extraction and Support Vector Machine classification is used to 

develop and compare different strategies for automated detection of exudates. The main novelty of 

this work is allowing the detection of exudates using non-regular regions to perform the local feature 

extraction. To accomplish this objective, different methods for generating superpixels are applied to 

the fundus images of E-OPHTA database and texture and morphological features are extracted for 

each of the resulting regions. Finally, each region is classified according to healthy and pathological 

classes, during the classification stage.  

The strategies proposed in order to generate superpixels rely on applying the marker-controlled 

watershed transformation to a spatially regularized gradient. From these strategies, two different 

types of superpixels are created: c-Waterpixels and m-Waterpixels. In the end, an elaborated 

comparison between the proposed methods for generating m and c-waterpixels and the state-of-the-

art method for generating SLIC superpixels is performed. 

Additionally, a system based on Convolutional Neural Networks (CNN) is explored to discriminate 

between healthy and pathological regions in fundus images. Transfer learning is applied to fine-tune 
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some of the most important state-of-the-art CNN architectures. Exudates usually represent less than 

one percent of the total number of pixels that compose the retinal image. This is the reason why, in 

both the systems presented in this thesis, the fundus images are divided in superpixels and the 

classification is performed for each of the regions. 

Lastly, an exhaustive comparison between the two created systems to automatically detect exudates 

is performed. In other words, the classification results obtained through the system involving CNNs 

are compared with the ones obtained by applying the approach based on feature extraction and 

subsequent classification using machine learning algorithms.   
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RESUMO 

A Retinopatia Diabética (RD) é uma complicação da diabetes, que está entre as maiores causas de 

perda de visão no Mundo. A deteção da doença durante a sua fase inicial é a chave para evitar a 

cegueira do paciente. No entanto, a debilitação da visão é muitas das vezes impercetível para o 

doente durante esta fase. Por este motivo, é recomendado que pacientes com diabetes realizem 

exames de acompanhamento regulares de forma a detetar possíveis anomalias nas suas retinas. Os 

exsudatos são um dos sinais mais prevalentes durante a fase inicial da RD e, deste modo, a sua 

deteção precoce é vital para prevenir a cegueira do paciente. No entanto, a deteção manual destas 

lesões é trabalhosa e demorada. As técnicas que permitem a deteção automática de exsudatos 

desempenham então um papel importante na diminuição dos custos, tempo e trabalho, permitindo 

que os oftalmologistas atribuam o tratamento a tempo de evitar a cegueira do paciente. Neste 

sentido, um dos principais objetivos desta tese é o desenvolvimento de diferentes estratégias que 

extraiam informação localmente de imagens fundus, com o intuito de detetar exsudatos.  

Diversos métodos relacionados à deteção automática de exsudatos têm sido propostos na literatura. 

No entanto, esses métodos baseiam-se na segmentação de exsudatos ou exigem a extração de 

informação a partir de um mapa de candidatos. Por outro lado, nas metodologias apresentadas 

neste trabalho, a caracterização do tecido saudável e patológico é feita aplicando descritores de 

imagem localmente. Um sistema baseado numa extração local de características e posterior 

classificação é usado para desenvolver e comparar diferentes estratégias de deteção automatizada 

de exsudatos. O caracter inovador deste trabalho é permitir a deteção de exsudatos recorrendo a 

regiões não-regulares para realizar a extração local de características. Para atingir este objetivo, 

diferentes métodos para gerar superpixels foram aplicados às imagens da base de dados E-OPHTA 

e características texturais e morfológicas foram extraídas para cada uma das regiões resultantes. 

Por fim, cada região é classificada em patológica ou saudável durante o processo de classificação. 

As estratégias propostas para gerar superpixels consistem em aplicar a chamada watershed 

transformation a um gradiente espacialmente regularizado. A partir da referida estratégia, são 

obtidos dois tipos de superpixels: c-Waterpixels e m-Waterpixels. No final, é realizada uma 

comparação elaborada entre os métodos propostos para a geração de m e c-Waterpixels e o método 

estabelecido na literatura para gerar superpixels SLIC. 

Para além disso, é ainda explorado um método baseado em Redes Neurais Convolucionais (CNN) 

para detetar regiões patológicas e saudáveis em imagens da retina. A técnica de Transfer Learning 
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é usada para transferir conhecimento sobre o tecido da retina para alguns dos modelos mais 

relevantes pré-treinados com a base de dados ImageNet. Normalmente, os exsudatos representam 

menos de um porcento to número total de pixéis que compõem a imagem e este é o motivo pelo 

qual, em ambos os sistemas apresentados neste trabalho, as imagens são divididas em superpixeis 

e a classificação é feita para cada uma das regiões.  

Por fim, uma comparação exaustiva entre os dois sistemas criados para detetar automaticamente 

exsudatos é realizada. Isto é, os resultados de classificação obtidos através do sistema baseado em 

CNNs são comparados com os obtidos através da aplicação da abordagem baseada na extração de 

características e subsequente classificação usando algoritmos de Machine Learning. 
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1.1 CONTEXT AND MOTIVATION 

Diabetic Retinopathy (DR) is a common complication of diabetes, that is manifested in the retina. In 

fact, approximately 40% of diabetic patients suffer from DR which is an alarming factor since this 

disease is among the major causes of vision loss in the world. Although treatment is available, 

approximately 75 people lose vision each day as a consequence of DR [1]–[3]. This happens 

because, at the initial phase of the disease, the vision impairment is not easily perceived by the 

patient. For instance, in order to avoid the patients’ blindness, an early medical detection of the 

disease is required. Actually, the World Health Organization (WHO) estimates that 80% of the visual 

impairment cases could be avoided trough an early diagnose and treatment [4]. 

The key to the early recognition of DR is the detection of exudates on the retina. Exudates are one of 

the most prevalent signs during the early stage of DR. These lesions are formed due to the leakage 

of blood and its early detection can improve patients’ chances to avoid blindness [5]. However, 

manual detection of exudates by ophthalmologists is laborious and time-consuming. Also, it must be 

pointed out that the diagnosis is highly influenced by the inherent subjectivity of each expert. These 

are the reasons why an intensified effort has been undertaken in the last years in order to develop 

tools able to assist in the diagnosis of DR. Automated screening techniques for exudate detection 

have great significance in saving cost, time and labor, allowing the ophthalmologists to make the 

treatment decision timely [6]. In this sense, the main motivation of this thesis consists in developing 

an automated system able to discriminate between healthy and pathological areas in fundus images, 

in order to help the experts in the early diagnose of Diabetic Retinopathy.  

In the last years, several researches have been made in the computer vision field in order to describe 

the visual information contained in digital images. Systems involving feature extraction and machine 

learning methods, as well as systems based on deep learning techniques, have been proposed for 

the automatic image description and classification.  

Therewith, several methods related to the automatic detection of exudates have also emerged in the 

literature. In this thesis, two methodologies are presented to allow the classification of the retinal 

tissue in healthy or pathological. In the first one, image descriptors are applied in a local way and, 

subsequently, the classification of the retinal tissue is performed by making use of the extracted 

features and machine learning methods. One the other hand, in the second approach, a system 

based on Convolutional Neural Networks (CNN) is explored. Transfer learning is applied to fine-tune 

some of the most important state-of-the-art CNN architectures. 
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Exudates usually represent less than one percent of the total number of pixels that compose the 

retinal image. For this reason, in the methodologies presented in this thesis, the fundus images are 

divided in regions or patches and the classification is performed for each of the regions. Different 

methods to generate superpixels are presented as a strategy to create non-regular regions.  

Therefore, one of the main purposes of this work is to develop and compare different strategies to 

obtain regions of interest with the purpose of locally describing healthy and pathological retinal areas.  

Allowing the detection of exudates using non-regular regions is the main novelty of this work. 

 

1.2 OBJECTIVES 

The main goal of this work is to develop different local analyses strategies for the detection of 

exudates in fundus images. With this in mind, different methods to obtain regions of interest with the 

purpose of locally describing healthy and pathological retinal areas are developed and compared. 

With this it will be possible to understand the influence of using non-regular regions in the 

development of systems that allow the automatic classification of the retinal tissue. In order to 

accomplish this goal, several objectives had to be achieved, being the first the computation of 

waterpixels (the non-regular regions above-mentioned). As it will be detailed later in this thesis, 

waterpixels are superpixels created by applying the watershed transformation to a spatially 

regularized gradient.  

The extraction of relevant features from the visual information of the images represent the second 

objective. To accomplish this one, texture and morphological descriptors are studied and applied to 

the fundus images (the features are extracted for each of the waterpixels).  

The third and final objective of the first method proposed is the classification of each region (or 

waterpixel) according to healthy and pathological classes. To do so, the Support Vector Machines 

(SVM) classifier is fed with the features extracted during the feature extraction stage. 

The objective of the second method proposed is to understand the concepts involved in deep learning 

techniques and apply convolutional neural networks to perform the automatic classification of each 

waterpixel. 

Finally, the last objective is to establish a comparison between the different strategies presented in 

this thesis. 
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1.3 DISSERTATION STRUCTURE 

This thesis is structured in 5 chapters. This first chapter provides the reader with the context and 

motivation of the study. The main contributions behind the approaches presented in this thesis are 

also discussed, along with the objectives of the study.  

Thereafter, a theoretical chapter about the concepts and technologies related to this project is 

presented. To begin a theoretical section about the anatomical structures of the retina and diabetic 

retinopathy is provided, followed by a section dedicated to the concept of superpixels. A brief 

definition is presented along with the properties that superpixels should satisfy. A presentation of the 

existing superpixels generation methods of the state-of-the-art is also made. Finally, a discussion 

about whether or not the watershed transformation is well suited for superpixel generation is 

provided. The theoretical background of the image descriptors used to perform the feature extraction 

as well as about the Support Vector Machines (SVM) classifier is also presented in Chapter 2. The 

last section of this chapter is dedicated to the description of the most important concepts related to 

deep learning and, more specifically, to convolutional neural networks. 

In Chapter 3, the material and methods used to develop the automated detection systems presented 

in this work are presented. To begin, a strategy to create superpixels by applying the watershed 

transformation to a spatially regularized gradient is presented. From the strategy presented in this 

chapter, two different types of superpixels are created: c-Waterpixels and m-Waterpixels. 

Subsequently, the formulation necessary to apply the image descriptors, presented in Chapter 2, in 

the context of this work, i.e., in the extraction of relevant information from the retinal tissue, is 

provided. Later, an explanation about the classification strategy formulated is also exposed. Finally, 

the last section of this chapter is dedicated to the explanation of the proposed approach based on 

fine-tuning state-of-the-art CNN architectures to discriminate between healthy and pathological 

regions in fundus images. 

In Chapter 4, an elaborated comparison between the c-waterpixels, m-waterpixels and SLIC 

superpixels is performed through the analyses of the classification results obtained for each of the 

regions. In addition, the effect of using the original images or the same images but without blood 

vessels is evaluated. To finish, the results obtained through the deep learning approach are also 

presented along with a comparison between the different methods proposed in this thesis. 

Lastly, final conclusions and future work prospects are presented in Chapter 5.
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2.1 MEDICAL CONTEXTUALIZATION 

2.1.1 EYE ANATOMY 

Some people say that the eyes are the windows to the soul. Various emotions can be observed 

through the eyes (sadness, joy, confusion, among others), but their main function is to help us 

process and understand our world, becoming one of the main human senses with more than 70% 

of all the sensory receptors in the human body [7]. 

The eye is then an organ with an extremely complex structure, composed essentially by three layers 

or tunics: outer, middle and inner. The main structures of the referred layers are illustrated in Figure 

1. 

 

 

 

The fibrous outer ocular layer, which acts as eye protection, is composed of the sclera and the 

cornea. The sclera, formed by connective tissue, constitutes the majority of the external lining of the 

eye presenting a white and opaque color. The cornea, a transparent fibrous tissue, is the main 

refractive element in the eye's optical system, allowing light to enter the globe. The sclera and cornea 

together protect the other components of the eyes from infections and injuries [8], [9].  

Figure 1. Anatomical structures of the eye [8]. 
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The vascular middle layer (or uvea) includes the iris, ciliary body and choroid, each having separate 

functions but being interconnected. The main functions of the ciliary body are the production of liquid 

humor and the control of the shape of the lens (concave and convex) through the ciliary muscles. 

The choroid is a thin membrane with many blood vessels that supply the retina with nutrients and 

oxygen. The iris is an adjustable colored diaphragm present around the pupils, regulating the amount 

of light entering [8], [9]. 

Finally, the inner neural layer is the retina, the focus of this work since the studied pathology is 

manifested in this layer. The retina is a layer approximately 0.25 mm thick that has the function of 

turning a light stimulus into a nerve stimulus and sending it to the brain so that the images are 

processed. This neural layer contains numerous photoreceptor cells, about 120 million rods and 6 

to 7 million cones as well as several transmission cells. Rods are bipolar photoreceptor cells that are 

involved in low-light vision, whereas cones are responsible for daylight color vision. The color 

distinction is based on the number of different cones that the human being has, more concretely 

three different types of cones that respond to three different frequencies: blue light, green light and 

red light [10]–[12]. 

Three different components can be found in the retina: the macula, the fovea and the optic disc. The 

macula is a specialized area in the center of the retina responsible for clear vision, transmitting 90% 

of the visual information to the brain and exhibiting a high concentration of cones. The ultra-

specialized center of the macula is called the fovea and is the region of maximum visual acuity of 

the macula. The fovea, responsible for central vision, is a depression in the center of the macula, 

with a diameter of approximately 1.5 millimeters, where no rods are found but with the highest cones 

density throughout the retina [10], [11].   

The optic disc also serves as the input to the central retinal artery bringing in nutrients and oxygen, 

and as output to the central retinal vein carrying excretory products from retinal cells. Inside the eye, 

the central retinal artery spreads into various branches and blood then passes through the thin 

network of very small vessels called capillaries. After moving through this network of capillaries, blood 

enters the branches of the retinal veins that come together to form the central retinal vein that drains 

the blood from the eye. 
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2.1.2 DIABETIC RETINOPATHY 

Diabetes is a chronic disease caused by a deficient production of insulin (hormone produced by the 

pancreas) or by the ineffectiveness of the insulin produced. Both scenarios result in serious damages 

to the patient’s organism since the lack of insulin leads to high concentration of glucose in the blood 

[13].  

The most common diabetes-related health problems can be broadly categorized in two groups: 

macrovascular and microvascular complications. Macrovascular complications affect generally the 

heart, brain and legs of the patient, while microvascular complications are related to problems in the 

eyes, kidneys, feet and nerves [14]. 

The development of ophthalmic complications is very common in diabetic patients. Diabetic Macular 

Edema (DME), Ischemic Optic Neuropathy and Glaucoma are only a few examples. The most 

common and alarming ophthalmic complication of diabetes is Diabetic Retinopathy (DR). 

Approximately 80% of the patients who have been diabetic for more than 10 years will suffer from 

DR which is an alarming factor since this disease is among the major causes of vision loss in the 

world [15]. Although treatment is available, approximately 75 people lose vision each day as a 

consequence of DR [1]–[3]. This happens because, at the initial phase of the disease, the vision 

impairment is not easily perceived by the patient. For instance, in order to avoid the patients’ 

blindness, an early detection of the disease is required. Actually, the World Health Organization 

(WHO) estimates that 80% of the visual impairment cases could be avoided trough an early diagnose 

and treatment [13].  

Microaneurysms and exudates are the primary symptoms indicating diabetic retinopathy and, 

therefore, their early detection is essential to avoid the patient’s blindness [16]. Microaneurysms 

(MA) are small saccular dilatations of capillaries that appear as small, red dots in the superficial 

retinal layer. MA usually measure between 15 and 125 microns and they can rupture and leak blood 

into the retina. On the other hand, exudates are deposits of lipids and proteins in the retina which 

are typically manifested as random whitish/yellowish bright lesions of irregular edges. These lesions 

are caused by the breakdown of the blood-retina barrier, allowing the leakage of serum proteins, 

lipids, and protein from the vessels [17]. Microaneurysms and exudates are illustrated in Figure 2. 
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Figure 2. Exudates and microaneurysm in a fundus image. 

 

Diabetic Retinopathy has two main stages: non-proliferative and proliferative. Non-Proliferative 

Diabetic Retinopathy (NPDR) is the earliest stage of DR where there is no neovascularization (growth 

of abnormal blood vessels) in the retina. However, NPDR may evolve into Proliferative Diabetic 

Retinopathy (PDR) which, on the other hand, is characterized by the presence of neovascularization 

in the retina and may lead to serious visual consequences [18]. 

NPDR is initially characterized by microaneurysms that may end up leaking into the retina. Exudates, 

as well as hemorrhages, usually occur with the progression of NPDR [19]. 

PDR is defined by the growth of abnormal blood vessels and scar tissue on the retina. These ones 

usually attach to the back surface of the vitreous that will subsequently pull on the scar tissue. This 

can lead to the bleeding of the blood vessels into the vitreous cavity and consequently result in an 

immediate loss of the vision [20]. 

 

2.2 SUPERPIXELS 

As previously discussed, different methods to generate superpixels are presented in this thesis as a 

strategy to create non-regular regions. For this reason, this section is dedicated to the concept of 

Exudates 

Microaneurysm 
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superixels. A brief definition will be presented along with the properties that superpixels should 

satisfy. A presentation of the existing superpixels generation methods of the state-of-the-art will also 

be presented. Finally, the relationship between the watershed transformation and the computation 

of superpixels will be explored since the strategies to generate superpixels proposed in this work, rely 

on the marker-controlled watershed transformation. 

 

2.2.1 DEFINITION AND PROPERTIES 

Superpixels are regions resulting from a low-level segmentation of an image and they are 

characterized by their ability to capture image redundancy, to provide a convenient primitive from 

which to compute image features, and to greatly reduce the complexity of subsequent image 

processing tasks (see Figure 3 for an illustration). For this reason, superpixels are becoming 

increasingly popular in computer vision applications being frequently used as primitives for further 

analysis such as detection, segmentation, and classification of objects. The idea is to group together 

pixels in order to obtain a new semantic unit. As mentioned, the way to achieve such a partition is 

to perform a low-level segmentation of the image.  

 

 

Figure 3. Illustration of Superpixels. 

 

There are many approaches to generating superpixels, each with its own advantages and drawbacks 

that may be better suited to a particular application. There exist different variants of superpixels’ 
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properties in the abundant literature and, while it is difficult to define what constitutes an ideal 

approach for all applications, the following properties are generally required: superpixels should 

adhere well to the object boundaries in the image, i.e., the object boundaries should be included in 

the superpixels boundaries; the pixels of a given superpixel should present similar colors or gray 

levels; superpixels of a given image should present similar shapes and sizes, forming a regular 

pattern on the image; and, finally, superpixels should be fast to compute, memory efficient, and 

simple to use [21], [22]. In short, superpixels are regions that must present the following properties: 

1. Adherence to object boundaries 

2. Homogeneity 

3. Regularity 

4. Easiness of computation 

The first two properties - adherence to object boundaries and homogeneity - are required to ensure 

that a superpixel does not contain pixels belonging to different objects. On the other hand, regularity 

allows to perform pertinent comparisons of features values for learning. A good generation method 

must focus on finding a compromise between adherence to object boundaries and regularity since 

these properties are to a certain level oppositional. Lastly, the easiness of computation is frequently 

an essential aspect, once superpixels are generally only the first step of a potentially complex and 

time-consuming workflow [23].  

2.2.2 STATE-OF-THE-ART GENERATION METHODS 

Low-level segmentations have been used for a long time as a first step towards segmentation [23]. 

However, the term superpixels appeared later in the literature, established by X. Ren and J. Malik in 

[24]. Since then, this approach has generated an increasing interest and various methods to create 

regular and non-regular superpixels have appeared in the literature. Those can be broadly categorized 

as: graph-based algorithms; gradient ascent methods; or clustering methods. Of these, the latter has 

particular interest since the Simple Linear Iterative Clustering (SLIC) algorithm [25], which is an 

adaptation of k-means for superpixel generation, will play an important role during the evaluation of 

this work. 
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1. Graph-Based Algorithms 

In this type of algorithms, each pixel is treated as a node in a graph, and edge weight between two 

nodes are set proportional to the similarity between the pixels. In the end, the superpixel segments 

are extracted by effectively minimizing a cost function defined on the graph [21].  

One of the many graph-based segmentation schemes that have been used to generate superpixels 

is the Normalized cuts algorithm [26], in which image segmentation is treated as a graph partitioning 

problem. This algorithm recursively partitions a given graph using contour and texture cues. However, 

the algorithm is computationally expensive for large images. 

Another graph-based algorithm was presented in [27]. The algorithm presented by P. Felzenszwalb 

and D. Huttenlocher, performs an agglomerative clustering of pixel nodes on a graph, such that each 

segment is the shortest spanning tree of the constituent pixels. However, unlike the Normalized Cuts 

algorithm above presented, this algorithm doesn’t offer an explicit control over the number and 

compactness of the superpixels. 

On the other hand, A. Moore et al. [28] presented an algorithm that allows the control of the size, 

number, and compactness of superpixels. This algorithm generates superpixels by finding optimal 

vertical (horizontal) paths that cut the image, within vertical (horizontal) strips of pixels, using graph 

cuts on strips of the image. However, the quality and speed of the output depend on pre-computed 

boundary maps. 

 

2. Gradient-Ascent Algorithms 

Starting from an initial rough clustering, gradient ascent methods refine, during each iteration, the 

clusters from the previous iteration until a convergence criterion is met in order to produce 

superpixels [21]. 

D. Comaniciu and P. Meer [29] proposed a mode-seeking procedure for detecting local maxima of a 

density function. Mean shift is applied to find modes in the color or intensity feature space of an 

image. The superpixels are composed by the pixels that converge to the same mode Depending on 

the input kernel parameters, the obtained superpixels can be larger or smaller but there is no direct 

control over their number, size, or compactness [21]. 

Quick-shift [30] also is a mode-seeking algorithm, but in general this method is considerably faster 

than mean-shift. This algorithm can balance under and over-fragmentation of the clusters by the 

choice of a real parameter. However, like mean-shift, this algorithm doesn’t offer an explicit control 

over the size and number of superpixels.   
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A. Levinshtein et al. [31] proposed a geometric-flow-based algorithm to generate superpixels. The 

algorithm progressively dilates a set of seeds in the image plane to obtain the referred regions. The 

geometric flow aims to distribute the superpixel in a regular way in the image. The authors called the 

resulting regions turbopixels. The method is among the slowest algorithms examined and offers a 

poor boundary adherence [21]. 

Last but not least, the watershed algorithms are also included in this category. These algorithms 

generally perform gradient ascent starting from local minima in order to generate superpixels. 

However, the watershed algorithms often present a poor boundary adherence and the resulting 

superpixels are, generally, irregular in size and shape. L. Vincent and P. Soille [32] proposed a fast 

version based on queuing of pixels but the approach doesn’t offer control over the number and 

compactness of the resulting superpixels. On the other hand, V. Machairas et al. [23] proposed a 

strategy to create superpixels by applying the watershed transformation to a spatially regularized 

gradient. The resulting regions where called waterpixels. The method allowed to achieve a tunable 

trade-off between superpixels regularity and adherence to object boundaries.  

This last approach is of particular interest since the strategies to generate superpixels proposed in 

this thesis, rely on the marker-controlled watershed transformation. For this reason, the relationship 

between the watershed transformation and the computation of superpixels will be explored in the 

next section.  

 

3. SLIC Algorithm 

The Simple Linear Iterative Clustering (SLIC) algorithm is an adaptation of the k-means clustering 

applied in a feature space that includes both the spectral and spatial features of each pixel [33]. 

Compared to the k-means method, it presents the following improvements [21]: 

1. The number of distances calculated in the optimization process is reduced to decrease the 

complexity to be linear with the number of pixels and independent from the number of 

superpixels k. 

2. A weighted distance measurement is applied in order to control the size and compactness 

of the superpixels.  

The only parameter of the algorithm is k, the desired number of approximately equally sized 

superpixels. The input image is first divided into k blocks with a cluster center. Then, distance-limited 

clustering is performed iteratively until the clustering result converges. By limiting the search region, 

the complexity is reduced and the superpixels have regular sizes [34]. 
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This algorithm presents a considerably high computational speed that is linear with the number of 

pixels, good boundary recall properties, and is easily generalizable to multiple spectral bands [33]. 

 

2.2.3 SUPERPIXELS AND THE WATERSHED TRANSFORMATION 

The watershed transformation is a powerful tool for image segmentation [35]. It was introduced in 

image analysis by Beucher and Lantuéjoul [36], and several algorithms for its implementation have 

been proposed since then.  

The watershed transformation considers a two-dimensional image f as a topographic surface S and 

defines the catchment basins of f and the watershed lines by means of a flooding process. The 

watershed lines divide the image into catchment basins, so that each basin is associated with one 

minimum 𝑚𝑖(𝑓) in the image [37]. Let us imagine that each 𝑚𝑖(𝑓) of S is pierced and that S is 

plunged into a lake with a constant vertical speed. The water entering through the holes floods the 

surface S. During the flooding, to avoid that two or more floods coming from different minima merge, 

a dam is built on the points of S where the floods would merge (see Fig. 4). At the end of the process, 

only the dams, which define the watershed of the function f, emerge [38] [39]. 

 

 

The watershed transformation is typically applied to the gradient function of the image. Generally, 

this gradient has high values on the borders between objects and minima in the homogeneous 

regions. Therefore, if the crest lines in the gradient image correspond to the boundaries of the objects 

in the image, the watershed transformation partition the image into meaningful regions [37]. 

Figure 4. Topographic view of the watershed transformation [39]. 
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Usually, a watershed segmentation on the gradient image without any additional processing leads to 

oversegmentation, since every local minimum of the gradient results in a different region [37]. In the 

methodology presented in this thesis, as it will be discussed in Section 3.2., markers were used in 

order to reduce the number of local minima, avoiding the oversegmentation. 

After this brief explanation about the watershed transformation’s functioning, it is possible to 

conclude that, in principle, the watershed transformation is well suited for the superpixel generation, 

since:  

1. When computed on the image gradient, it produces a good adherence to object boundaries. 

2. It allows to control the number and spatial arrangement of the resulting regions through the 

choice of markers. 

3. The connectivity of the resulting regions is guaranteed. 

For these reasons, the watershed transformation has been used in many applications, inclusively in 

3D applications computationally intensive [40], [41], in order to produce low-level segmentations.  

Although some previous publications [21], [31] had defended that the watershed transformation 

wasn’t suitable for the generation of superpixels, some latest publications [42]–[44] have showed 

the opposite.  

V. Machairas et al. [23] proposed a strategy to create superpixels by applying the watershed 

transformation to a spatially regularized gradient to achieve a tunable trade-off between superpixels 

regularity and adherence to object boundaries. With this approach, the term “waterpixels” was 

introduced in the literature.  

 

2.3 IMAGE DESCRIPTORS 

The first system to automatically detect exudates developed in this work is based on performing a 

local feature extraction from fundus images and subsequently classify the retinal tissue using 

machine learning algorithms. The theoretical background of the image descriptors used during the 

feature extraction will be presented in this section.  

 

2.3.1 LOCAL BINARY PATTERN VARIANCE 

The Local Binary Pattern (LBP) operator was introduced in the literature by T. Ojala et al. in [45] and 

represents a powerful grey-scale texture operator that summarizes the local structure in an image by 
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comparing each pixel with its neighborhood. This first LBP operator introduced by the authors used 

a fixed 3 x 3 neighborhood. The operator labels the pixels of an image by thresholding the 

neighborhood of each pixel. In other words, the original 3 x 3 neighborhood is thresholded by the 

value of the center pixel - if the intensity of the center pixel is greater or equal its neighbor, the 

neighbor takes the value of 1, otherwise, the neighbor is denoted with 0. See Figure 5 for an 

illustration. As the neighborhood is composed by 8 pixels, a total of 28 different labels can be 

obtained. Then, the distribution of the labels is studied and used as a texture descriptor for 

classification purposes.  

 

 

Later the operator was extended to use neighborhoods of different sizes. T. Ojala et al. [46] conceived 

an operator that is invariant against any monotonic transformation of the gray scale. The authors 

accomplished that by starting from the joint distribution of gray values of a circular symmetric 

neighborhood set of pixels in a local neighborhood. Rotation invariance is achieved by recognizing 

that this grey-scale invariant operator incorporates a fixed set of rotation invariant patterns [46]. 

The operator was conceived for a general case based on a circularly symmetric neighbor set of P 

members on a circle of radius R. See Figure 6 for an illustration of the circularly symmetric 

neighborhood set (P=8, R=2). The parameter P controls the quantization of the angular space, while 

the parameter R determines the spatial resolution of the operator. 

 

Figure 5. Original LBP operator: 3 x 3 neighborhood thresholded by the value of the center pixel. 

Figure 6. Circularly symmetric neighborhood of P = 8 and R = 2. 
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The basic LBP version consists in assigning a label to each pixel (i, j) of the image, considering its 

local neighborhood: 

 

 
𝐿𝐵𝑃𝑃,𝑅(𝑖, 𝑗) = ∑ 𝑠(𝑔𝑝  −  𝑔𝑐)

𝑃 − 1

𝑝=0

 ∙  2𝑃 , 𝑠(𝑥)  = {
1  𝑖𝑓 𝑥 ≥ 0
0  𝑖𝑓 𝑥 < 0

 
 

(1) 

 

where P represents the number of samples on the symmetric circular neighborhood of radius R, 𝑔𝑐 

is the grey value of the center pixel (i, j) and 𝑔𝑝 is the grey value of each neighbor. The pixels of the 

neighborhood are thresholded with respect to 𝑔𝑐 giving rise to a binary pattern. It should be noted 

that, if the coordinates of the P neighbors do not fall in the center of the pixels, the 𝑔𝑝 values are 

calculated by interpolation. 

Using the 𝐿𝐵𝑃𝑃,𝑅 operator, 2𝑃 different binary patterns can be formed by the P pixels in the neighbor 

set. That means that a total of 2𝑃 different output values or labels can be obtained by the 𝐿𝐵𝑃𝑃,𝑅  

operator. However, rotating a particular binary pattern will naturally results in a different 

𝐿𝐵𝑃𝑃,𝑅 value since several binary strings may refer to the same pattern. For example, both the 

binary patterns 10000111 and 11000011 are different rotations of 11100001. Naturally, this 

doesn’t apply to patterns that are entirely composed by 0’s or 1’s. With the objective of removing the 

effect of rotation, a unique identifier to each rotation invariant local binary pattern is assigned as 

follows: 

 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 =  𝑚𝑖𝑛{𝑅𝑂𝑅(𝐿𝐵𝑃𝑃,𝑅 , 𝑡) | 𝑡 =  0, 1, . . . , 𝑃 − 1} (2) 

 

where ROR(x, t) performs t times a circular bit-wise right shift on the P-bit number x. 

Figure 7 represents the 36 unique rotation invariant local binary patterns that can occur in the case 

of P = 8. It is important to discuss the ability of discrimination of this operator. Certain local binary 

patterns have fundamental properties of texture, describing over 90% of the patterns present in the 

textures of their experiments [47]. Thus, it is possible to assume that some patterns may provide 

redundant information, compromising the ability of discrimination of the operator. To overcome this 

problem, T. Ojala et al. [46] introduced the ‘uniform’ patterns by defining a uniformity measure 

𝑈(𝐿𝐵𝑃𝑃,𝑅 ). This measure corresponds to the number of spatial transitions (bitwise 0/1 changes) 

in the pattern, i.e., if a binary pattern presents two 0/1 transitions, then its corresponding uniformity 
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U is 2. For example, the patterns 0 and 8 of Figure 7 have U = 0, while the other seven patterns of 

the first row have U = 2. For a better understanding of this concept, see Table 1. T. Ojala et al. 

designate patterns with a U value of at most 2 as ‘uniform’ and propose the following operator for 

gray scale and rotation invariant texture description instead of 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 : 

 

 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 = {

∑ 𝑠(𝑔𝑝 − 𝑔𝑐)     𝑖𝑓 𝑈(𝐿𝐵𝑃𝑃,𝑅) ≤ 2

𝑃−1

𝑝=0

𝑃 + 1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(3) 

  

where 

 

𝑈(𝐿𝐵𝑃𝑃,𝑅)  =  |𝑠(𝑔𝑃−1 − 𝑔𝑐) − 𝑠(𝑔0 − 𝑔𝑐)| + ∑ |𝑠(𝑔𝑃−1 − 𝑔𝑐) − 𝑠(𝑔𝑃−1 − 𝑔𝑐)|  𝑃−1
𝑝=1 (4) 

 

By definition, P+1 ‘uniform’ binary patterns can occur in a circularly symmetric neighbor set of P 

pixels and each of them is labelled in the range of 0 to P. The rest of the patterns are grouped in a 

‘non-uniform’ set labelled as P+1. In Figure 7, the labels of the ‘uniform’ patterns (first row) are 

denoted inside the patterns. 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 has P+2 distinct output values. 

 

 

Figure 7. The 36 unique rotation invariant binary patterns that can occur in the circularly symmetric neighbor set of 

𝐿𝐵𝑃8,𝑅
𝑟𝑖  . Black and white circles correspond to bit values of 0 and 1, respectively. The first row contains the 

9 “uniform” patterns and the numbers inside them correspond to their unique 𝐿𝐵𝑃8,𝑅
𝑟𝑖𝑢 codes. 
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Table 1. Uniformity of different Local Binary Patterns. 

LBP Pattern Uniformity 

11111111 0 

00000100 2 

11111100 2 

10011101 4 

01010101 8 

 

When LBP is used for texture description it is common to include a contrast measure by defining the 

Rotational Invariant Local Variance (VAR) as: 

 

 
𝑉𝐴𝑅𝑃,𝑅(𝑖, 𝑗)  =  

1

𝑃
 ∑(𝑔𝑝 − 𝜇)2, 𝜇 =

1

𝑃

𝑃−1

𝑃=0

∑ 𝑔𝑝

𝑃−1

𝑝=0

 
 

(5) 

 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 and 𝑉𝐴𝑅𝑃,𝑅  are complementary measures and the combination of both is expected to be 

a powerful descriptor for detecting abnormal retinal patterns. For this reason, in this thesis, 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 

and 𝑉𝐴𝑅𝑃,𝑅  operators are locally computed for each pixel of the green channel of the retinal image. 

As a result, LBP and VAR images are obtained. These resulting images are divided into waterpixels 

regions and normalized histograms are computed for each region combining the information 

provided by both images, as it will be explored in Section 3.3.2. 

 

2.3.2 GRANULOMETRY 

Mathematical Morphology is a theory, introduced by G. Matheron and J. Serra [48], that provides 

useful tools for image processing and analysis.  As its name suggests, this theory aims at analyzing 

the shape and size of objects. As a matter of fact, mathematical morphology is not only a theory but 

also a powerful image analyses technique that has wide application in texture analysis, image 

segmentation and object recognition. This technique has become increasingly relevant in the image 

processing essentially due to its versatility and rigorous mathematical description. The main idea 

behind mathematical morphology is to analyze geometric information by “probing” an image with a 

structuring element (mask with given shape and size). This idea, although simple, provided a new 

approach for processing visual information [49]. 
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Granulometry is one of the most interesting techniques based on mathematical morphology. This 

technique was initially developed to extract size distribution from binary images and was then 

extended to function operators to analyze and extract texture features from greyscale images [50]. A 

morphological granulometry is essentially computed using a serial of morphological openings 

(closings) with increasing size of the structuring element (SE) in order to obtain a size distribution of 

the objects in the image. In ordered textures, the obtained size distribution provides shape and size 

information, otherwise, granulometry extract the degree of granularity. As previously mentioned, the 

SE is a mask with given shape and size, being, generally, a disk or a line giving place to an isotropic 

or angular granulometry, respectively. At each opening, the finer details are successively eliminated, 

and the volume of the input image is reduced. Successive openings create a decreasing sequence 

of images. The image volume remaining after each opening constitutes a decreasing sequence which 

eventually reaches zero [51]. This technique can be computed on binary or grey-scale images 

providing signatures that, when applied to a classifier, can be used to identify several patterns or to 

distinguish different textures. In the context of this thesis, granulometry is proposed as a descriptor 

to detect exudates, one of the first signs related to diabetic retinopathy. 

Let f be a grey-level image, f ∈ F(E,T) such that f(x) : E → T where x = (x, y) ∈ E is the pixel position 

and E ⊆ 𝑍2. T is an ordered set of grey-levels. After the selection of a fixed set B ⊆ E, the two 

elementary operations of erosion (𝜖𝐵 (𝑋)) and dilation (𝛿𝐵 (𝑋)) can be composed together to 

generate a new set of grey-level operators given by the grey-level opening ( 𝛾𝐵 ) and closing ( 𝜑𝐵 ): 

 

 𝛾𝐵(𝑓)(𝑥)  =  (𝑓 ○ 𝐵)(𝑥)  =  𝛿𝐵(𝜖𝐵(𝑓))(𝑥) (6) 

 

 𝜑𝐵(𝑓)(𝑥)  =  (𝑓 • 𝐵)(𝑥)  =  𝜖𝐵(𝛿𝐵(𝑓))(𝑥) (7) 

 

Let  𝛾𝑖(𝑓) be an opening applied to an image f with a SE of size i. The opening can be computed by 

an erosion followed by a dilation. When a series of openings with SE of increasing size (λ) are 

sequentially computed on the image, a morphological opening pyramid is obtained, and it can be 

defined as: 

 

 𝛱𝛾(𝑓) = {𝛱𝛾𝜆: 𝛱𝛾𝜆 = 𝛾𝜆(𝑓), ∀𝜆 ∈  [0, . . . , 𝑛𝑚𝑎𝑥]} (8) 

 

where  𝑛𝑚𝑎𝑥 represents the maximum size of the structuring element. 
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By duality, when a series of closings with SE of increasing size (λ) are sequentially computed on the 

image, a morphological closing pyramid  Πφ is obtained: 

 

 𝛱𝜑(𝑓) = {𝛱𝜑𝜆: 𝛱𝜑𝜆 = 𝜑𝜆(𝑓), ∀𝜆 ∈ [0, … , 𝑛𝑚𝑎𝑥]} (9) 

 

A shape descriptor can be defined using the morphological pyramids above described. Let m(f) be 

the Lebesge measure of a discrete image f. The granulometry curve, or pattern spectrum of f with 

respect to Γ is defined as: 

 

 
𝑃𝑆𝛤(𝑓, 𝑛) =  𝑃𝑆(𝑓, 𝑛)  =

𝑚(𝛱𝛾𝑛(𝑓)) − 𝑚(𝛱𝛾𝑛+1(𝑓))

𝑚(𝑓)
, 𝑛 ≥ 0 

 

(10) 

 

PSΓ(𝑓, 𝑛) maps each size n to some measure of the bright image structures with this size: loss of 

bright image structures between two successive openings. Therefore, the pattern spectrum 

PSΓ(𝑓, 𝑛) is a probability density function (a histogram) in which a large impulse in the pattern 

spectrum at a given scale indicates the presence of many image structures at that scale [52]. 

By duality, this concept extends to the anti-granulometry curve PSϕ(𝑓): 

 

 
𝑃𝑆ϕ(𝑓, −𝑛) =  𝑃𝑆(𝑓, −𝑛)  =

𝑚(𝛱𝜑𝑛(𝑓)) − 𝑚(𝛱𝜑𝑛−1(𝑓))

𝑚(𝑓)
, 𝑛 ≥ 0 

 

(11) 

 

The pattern spectrum PSϕ(𝑓, −𝑛) characterizes the size of dark image structures.  

 

2.4 SUPPORT VECTOR MACHINES  

The Support Vector Machines (SVM) is one of the most widely used machine learning algorithms. 

Some of the reasons that made SVMs a successful modeling and prediction tool for a variety of 

applications are: their ability to learn well with only a very small number of free parameters; their 

robustness against several types of model violations and outliers; and their computational efficiency 

compared with several other methods [53]. 

This classifier generates a classification model based on the information of features and labels of the 

training set, able to predict the correct class of new samples belonging to the test set. With this 
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purpose, SVM maximizes the distance between the hyperplanes defined by the support vectors with 

the aim of finding the optimal separation between classes [54]. In other words, SVM is a 

discriminative classifier formally defined by a separating hyperplane. In a two-dimensional space, 

this hyperplane is a line that divides the plane in two parts - each class lays in a different side. When 

the linear separation is not possible, they can work in combination with the technique of ‘kernels’, 

that automatically realizes a non-linear mapping to a feature space. The hyperplane found by the 

SVM in feature space corresponds to a non-linear decision boundary in the input space. 

Let us consider a training sample (xI, yi)
𝑁, i = 1, …, N, where xI is the input pattern and  yI Є 

{+1, −1}𝑡 is the corresponding label (desired output). The hyperplane that does the separation of 

classes can be defined as: 

 

 𝑤𝑇𝑥𝑖 + 𝑏 =  0  (12) 

 

where w is the normal vector to the hyperplane solution and b is the intersection. 

From the proposed hyperplane, the space is separated into two regions: a positive (w𝑇 xI  > 0) and 

a negative (w𝑇 xI  < 0) one. The samples belonging to the positive class are contained in the first 

region, while the samples that correspond to the negative class belong the second region. See Figure 

8 for an example. In the referred figure, the green and red samples correspond to the negative and 

the positive class, respectively. The highlighted samples in the image correspond to the support 

vectors that define the two hyperplanes (h− and h+) parallel to the hyperplane solution. Note that 

the hyperplane solution is given by the maximization of the distance d+ + d−. The classification 

function can be expressed as: 

 

 𝑓(𝑥)  =  𝑠𝑔𝑛(𝑤𝑇𝑥𝑖 + 𝑏) (13) 

 

The hyperplanes h+ and h−  are defined as w𝑇xI + b = 1 and w𝑇xI + b = -1, respectively. 

Consequently, a sample has to satisfy the condition w𝑇xI + b ≥ 1 to be labelled as positive and the 

condition w𝑇xI + b ≤ 1 to be labelled as negative. 
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The complexity of the hyperplane can be bounded in terms of another quantity called margin [55], 

which can be computed as the distance between the hyperplanes in which the support vectors are 

included: 

 

 
𝑚𝑎𝑟𝑔𝑖𝑛 =  𝑑+ +  𝑑− = 2 (

|𝑤𝑥 + 𝑏|

||𝑤||
) = 2

1

||𝑤||
 

 
(14) 

 

The objective of the SVM algorithm is to maximize the margin value, obtained by Equation 14. This 

can be achieved by minimizing the inverse function:  

 

 
𝛷(𝑤) =

1

2
||𝑤||2 

 
(15) 

   

where ||𝑤||2 = 𝑤𝑇𝑤. The hyperplane solution will be obtained solving the minimization problem 

and computing the optimal w and b parameters. 

A linear-separable training set was assumed at the beginning of the explanation. However, the 

datasets extracted from real applications do not generally meet this particularity. In these cases, the 

problem can be reformulated as:  

 

 
 
1

2
||𝑤||2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

𝑤,𝑏,𝜉
𝑚𝑖𝑛  

 
(16) 

Figure 8. Illustration of the SVM classification process. 
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subject to 

 𝑦𝑖(𝑤𝑇𝛷(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 (17) 

 

where w represents the normal vector to the hyperplane; 𝜉𝑖 are slack variables responsible for 

determining the degree of misclassification; C is the penalty parameter of the error term; and 𝛷(𝑥) 

is the function responsible for transforming the input vectors 𝑥𝑖 into a higher dimensional space. 

SVM finds a linear separating hyperplane with the maximal margin in this higher dimensional space. 

In cases where no linear separation is possible, SVM can be used in combination with kernels, that 

automatically realize a non-linear mapping to a feature space. A non-linear function (𝛷) is used for 

mapping non-linear separable data points in the original space ∑, into a higher dimensional space 

in which the data is linearly separable. When this hyperplane of separation is projected back to the 

input space (∑), it has the form of a non-linear curve. The kernel function is defined as 𝐾(𝑥𝑖, 𝑥𝑗) =

𝛷(𝑥𝑖)
𝑇𝛷(𝑥𝑗) and the most commonly used kernels are presented in Table 2 [55]. 

 

Table 2. Commonly used Kernel Functions. 

Kernel 𝐾(𝑥𝑖 , 𝑥𝑗) 

Linear 𝑥𝑖
𝑇 ∙ 𝑥𝑗  

Polynominal ((𝑥𝑖
𝑇 ∙ 𝑥𝑗) + 𝑐)𝑑 

Radial Basis Function (RBF) 𝑒𝑥𝑝(−𝛾||𝑥𝑖 − 𝑥𝑗||2), 𝛾 > 0 

Sigmoid 𝑡𝑎𝑛ℎ(𝛾(𝑥𝑖
𝑇 ∙ 𝑥𝑗) + 𝑐) 

 

where 𝛾, c and d are kernel parameters. 
 

2.5 DEEP LEARNING 

Deep learning is a form of Machine Learning (ML) that enables computers to learn from experience 

by imitating the functioning of the human brain. The recognition task is one of the first skills 

developed by a person since the birth moment. When children are learning how to recognize a 

particular animal, for instance, they are not told by their parents that they should measure the 

contours of its body. They learn by being shown multiple examples and being corrected when they 

made a wrong guess. Let us imagine that when we are born, our brain provides us with a model that 
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takes in our sensory inputs and makes a guess about what we are experiencing. If someone confirms 

that guess, our model is reinforced. On the other hand, if someone says that our guess was wrong, 

this new information is incorporated in our model. Machine Learning is built on this idea of learning 

from examples [56].  

Deep Learning (DL) emerged when researches in Machine Learning attempted to build models that 

resemble the structures used by the human brain. The need to create these models occurred while 

attempting to solve more complex problems, such as object recognition. Currently, deep learning is 

the focus of most computer vision researches since it not only far surpasses other ML algorithms, 

but also rival the accuracies achieved by humans [56]. 

Several types of Deep Neural Networks (DNNs) exist in the DL domain. Each one solves a specific 

problem in a better way than the others. Convolutional Neural Networks (CNNs) have been 

successfully used in object recognition tasks. As previously discussed, the recognition task is one of 

the first skills developed by a person. When we see an image, we are immediately able to identify 

each of the objects that compose it. This capability is provided by the human visual cortex. Therefore, 

the recognition task is not easily performed by computers. However, in the last years, CNNs have 

proved to be a powerful tool in the automatic detection of objects. It is important to remark that CNNs 

are inspired by the human visual cortex. This one is characterized by cell regions sensitive to specific 

areas of the visual field, i.e., different cell regions react to different visual stimuli, such as edges or 

colors. It’s the combination of the different responses to a particular stimulus that make the visual 

perception possible. The neurons of the visual cortex are organized by a columnar architecture [57]. 

CNN architectures for recognition tasks emerged based on these facts. 

In this work, convolutional neural architectures are fine-tuned to detect exudates. Therefore, the 

following subsections are dedicated to the description of the most important concepts related to 

CNNs. 

 

2.5.1 CNN ARCHITECTURE 

Convolutional Neural Networks are composed by several hidden layers. Each of these layers is 

composed by a set of neurons that are fully connected to all the neurons in the previous layer. The 

neurons in the same layer, function completely independently and do not share any connections. 

This subsection is dedicated to exploring the principles of each of the hidden layers that compose a 

CNN architecture. 
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1. Convolutional Layer 

The convolutional layer is the first layer of the CNN and its input is an image of dimensions N × M × 

3. This layer’s parameters consist of a set of filters (also referred to as kernels) that will slid (or 

convolve) across all the areas of the input image as a sliding window with a specific step. The kernel 

must have the same depth of the input image being its dimensions k × k × 3. The set of pixels 

involved within the sliding window in each step is called receptive field [58].  

The kernels are defined by weights and, as the kernel is sliding across the image, those weights are 

multiplied by the original pixel values of the image. The mathematical operation between the kernel 

and the receptive field is called convolution. The above-mentioned multiplications are all summed up 

in order to obtain a single number (Figure 9). By applying each kernel over all the pixels of the input 

image we obtain an activation map. 

 

 

As it can be observed in Figure 9, the dimensions of the input image aren’t preserved, which will 

result in a loss of information. In order to preserve the spatial size of the input volume a zero-padding 

can be performed. Let us imagine that we have an image of dimensions N × M × 3. If we want to 

preserve these dimensions, it is necessary to perform a zero-padding before the convolution. 

Remember that K is the kernel’s height and width. In the end, the output of the convolutional layer 

is an activation map of dimensions N × M × Z, where Z is the number of kernels (Figure 10). 

Figure 9. A 3 x 3 filter applied to an input image and the corresponding activation map obtained after the convolution. 
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The kernels weights are the key element in the automatic learning process. Each of the kernels can 

be thought of as feature identifiers. Intuitively, the network will learn how to highlight edges, curves 

and other shapes of the image by using the appropriate kernel weights. 

 

2. Activation Layer 

After each convolutional layer, a nonlinear layer, known as activation layer, is applied. The purpose 

of this type of hidden layers is to provide nonlinearity to the network in order to improve its 

robustness. The introduction of the mentioned nonlinearity is important since the network has just 

been computing linear operations (multiplications and summations) during the convolutional layers.  

Nonlinear functions, such as hyperbolic tangent or sigmoid (Figure 11), have been used in the past 

but V. Nair and G. Hinton [59] found out that Rectified Linear Units (ReLu) layers allow the network 

to train faster without altering the accuracy of the classification. The ReLU layer applies the function 

𝑓(𝑥) = max(0, 𝑥) to all of the values in the input volume (output of the previous convolutional 

layer). In other word, this layer changes all the negative activations to 0 [60]. 

Figure 10. Output volume of a convolutional layer. 
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3. Pooling Layer 

A CNN architecture commonly includes a pooling layer between convolutional layers. This layer 

progressively reduces the spatial dimensions (width and height) of the input volume. Several methods 

exist to do so but the most common procedure is known as maxpooling. This technique consists in 

keeping the value of a specific neighborhood.  

In short, the pooling layer operates on every depth slice of the input and resizes it spatially, generally 

using the maxpooling procedure. Typically, filters of size 2 x 2 are applied to the input volume with 

a stride of 2, decreasing the weights of the filters by 75%. Note that the filter is applied in every depth 

slice along both width and height and thus the depth dimension remains the same [61]. Figure 12 

illustrates the above described procedure. 

Figure 11. Activation functions used in Neural Networks. 
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As it can be observed in Figure 12, the spatial dimension of the input volume is drastically reduced. 

This is good for two reasons: the computational cost is reduced since the amount of weights is 

reduced by 75%; and, the overfitting is controlled. These are the main purposes of including pooling 

layers in a CNN architecture. 

 

4. Fully Connected Layer 

The purpose of a fully connected layer is to convert an input volume (the output of a convolutional, 

activation or pooling layer) into an N dimensional vector where N is the number of classes. The 

output vector gives the probability of any of the classes to be true.  

To do so, this layer applies the 1D convolution to the flatten volume of the last 2D filter, reducing the 

number of activations to the number of classes (Nc). Thereafter, it is possible to map the activations 

into the final probabilities by using an appropriate activation function sush as softmax. This function 

normalizes the outputs of the previous layer to be between zero and one and divide each so that they 

sum up to one. Therefore, the output of this function gives the probability of any of the classes to be 

true. 

Figure 12. Example of the maxpooling procedure where a filter of size 2 x 2 is applied to the input volume with a stride 
of 2. 
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2.5.2 TRAINING AND TESTING 

When children are born, their minds are unable to distinguish between a dog and a cat. The same 

happens when a CNN is created, the kernels weights are randomly initialized. The low-level filters do 

not know how to look for an edge or a curve and the high-level filters don’t have any knowledge about 

colors or about a particular object on the image. However, and as it was already discussed, as they 

grow older, children acquire knowledge thanks to what they are learned by their parents and other 

people. A common way of teaching children is to show them images and tell them what’s on it. This 

idea of showing and image and offer the answer (corresponding label), is the principle of the training 

stage of a CNN.  

The overall training process of a CNN can be divided in the following steps [58]: 

 

1. Forward Propagation 

In this step, a training image is provided to the network and goes through it, crossing all its layers. 

Remember that the kernels weights are randomized when the CNN is created. For this reason, the 

CNN can not assign a correct prediction to the input image and the output will not give preference 

to any class in particular, i.e., it will return the same probability for all the classes.  

 

2. Loss Function 

A CNN with random weights cannot make any reasonable prediction in the first iteration, but a label 

is provided to the system. Therefore, the CNN will learn by updating the weights of its filters according 

to the loss function. The loss function can be defined in several ways but the most common on is 

using the Mean Squared Error (MSE): 

 

 
𝐸𝑡𝑜𝑡𝑎𝑙 =  ∑

1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2 

 
(18) 

 

3. Backpropagation 

At each iteration of the training stage, the goal is to minimize the loss function in order to obtain a 

predicted label (output of the CNN) equal to the training label provided to the system. To do so, it is 

first necessary to find out which weights most directly contributed to the loss registered by the loss 

function. Additionally, the optimal way to adjust these weights must be established in order to 
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decrease the loss. This step is known as backpropagation and it mathematically consists on the 

computation of the derivative of the loss function with respect to the weights of the filters (dL/dW). 

 

4. Weight Update 

Afterward, the weights of the filters must be updated in order to make them change in the opposite 

direction of the gradient: 

 

 
𝑤 = 𝑤𝑖 − 𝜂

𝑑𝐿

𝑑𝑊
𝐸𝑡𝑜𝑡𝑎𝑙 

 
(19) 

 

where w are the updated weights, 𝑤𝑖 are the initial weights and η is the learning rate. The learning 

rate is a parameter that must be chosen by the network designer. A high learning rate propitiate 

larger jumps in the updating process which will probably result in a decreasing of the time needed 

for the model to converge on an optimal set of weights. However, it is important to have in mind that 

a learning rate that has too high values can result in too large jumps and therefore, never reach the 

global minimum of the loss function (where weights are optimal). 

It is important to note that the above described steps are part of the same training iteration and that 

the process will be repeated for each set of the training images (also known as batch) during all the 

epochs. The number of batches and their size, as well as the number of epochs are parameters 

chosen by the network designer.  

The creation of the model is concluded when the last batch of the training set is processed in the 

last epoch and the weights are updated. Finally, to understand how well the model predicts, the 

same must be evaluated using the testing set (which can not contain any image used to perform the 

training). 

 

2.5.3 TRANSFER LEARNING 

Due to the availability of large-scale annotated datasets, remarkable progresses have been made in 

the image recognition field. The most popular image dataset used in computer vision is ImageNet 

[62]. This dataset offers more than 14 million images belonging to more than 1000 classes. The 

CNN models trained upon this database serve as support for significantly improving many object 

detection and image segmentation problems using other datasets [63]. This happens since training 

a Convolutional Network (ConvNet) from scratch using a small dataset significantly affects the 
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ConvNet’s ability to generalize, resulting in overfitting. This is very important in the medical field 

where the reduced amount of data is the biggest limitation when applying CNNs, since expert 

annotation is expensive and time-consuming, and the diseases (e.g., lesions) are scarce in the 

datasets [64]. In practice, it is very rare to have a dataset of sufficient size to train a ConvNet from 

scratch. Instead, it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet) and 

then use the ConvNet either as an initialization or a fixed feature extractor for the task of interest 

[61].  

Transfer Learning has then emerged as a powerful technique to overcome the problem of the small 

amount of data. This technique consists in creating a model to solve a specific classification problem 

by using a pretrained model. In other words, transfer learning uses the knowledge acquire by the 

model trained with large image datasets (e.g. ImageNet), to reduce the amount of data necessary to 

create the new model.  

In this work, a transfer learning strategy called fine-tuning was used in order to overcome the above-

mentioned problems that may result from training a CNN from scratch using a small dataset. The 

first step involved in the process of fine-tuning is the transfer of the weights from a pre-trained network 

to the network we wish to train. Except for the last fully connected layer that is commonly replaced 

with a new fully connected layer that has as many neurons as the number of classes in the new 

target application [64]. For example, in the particular study of this work we have two classes 

(“pathological” and “healthy”) therefore, the new fully connected layer has two neurons. 

It is possible to fine-tune all the layers of the CNN or to fine-tune only the higher-level layers, keeping 

the earlier layers fixed. This procedure is commonly used since the earlier layers contain more 

generic features (e.g. edges or curves) that are usually useful for several applications. On the other 

hand, the higher-level layers become more specific to the details of the classes contained in the 

original dataset [61]. The most popular state-of-the-art CNN architectures have been trained using 

the ImageNet dataset and the resulting weights are publicly available.  
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Material and Methods 

 
 

3.1 MATERIAL 

The database chosen to validate the methods proposed in this thesis was the E-OPHTHA public 

database [65]. This database of fundus images was specifically designed for the screening of diabetic 

retinopathy and it results from the extractions of the examinations gathered during years 2008 and 

2009 through the OPHDIAT network (a telemedical network to screen for diabetic retinopathy). To 

be more exact, 25.702 examinations were extracted, each one containing at least four images (two 

per eye). Additionally, contextual data is also provided for each examination, such as the patient’s 

age, the number of years of diabetic retinopathy and the diabetic retinopathy level for each eye, 

among others.  

In order to provide correct and accurate information to the research community, 500 examinations  

were chosen and two supplementary reading were performed for each of them. Thus, three expert 

opinions will be available for each examination. Additionally, in order to simplify the development of 

lesion detection methods, the lesions (exudates and microaneurysms) were manually annotated on 

some images by an ophthalmologist. These annotations were later confirmed by a second expert.  

The resulting database is then divided in two subsets: e-ophtha EX and e-ophtha MA. The first one is 

composed by 47 images containing 12.278 exudates (Pathological_EX) and 35 images without 

lesions (Healthy_EX). On the other hand, e-ophtha MA subset provides 148 images containing 1306 

microaneurysms (Pathological_MA) and 233 images without lesions (Healthy_MA). As previously 

mentioned, both exudates and microaneurysms, were manually annotated by experts and the 

ground-truth is also provided along with the pathological images. Figure 13 shows an image of the 

e-ophtha database and the corresponding ground-truth mask. It is important to mention that several 

images among the healthy ones contain structures, such as reflections and anatomical structures, 

which can easily mislead lesion detection methods.  

All the retinal images of this database were obtained using a field of view angle of 40º. The spatial 

resolutions of the images are reported in Table 3. 

It is important to note that only the e-ophtha EX subset was used to develop the systems presented 

in this work. 
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Table 3. Distribution of the images of e-ophtha database according to their resolutions. 

Image Resolution 1440 x 960 1504 x 1000 2048 x 1360 2544 x 1696 

Pathological_EX 13 2 9 23 

Pathological_MA 54 5 17 72 

Healthy_EX 17 0 5 13 

Healthy_MA 96 39 1 97 

 

 

 

 

a. 

b. 

Figure 13. Original image and corresponding ground-truth mask. (a) e-ophtha EX image, (b) exudates mask. 
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3.2 COMPUTATION OF WATERPIXELS 

There are two main stages associated with the computation of waterpixels and with most watershed-

based segmentation methods: the definition of the markers - from which the flooding starts - and the 

definition of the gradient, which corresponds to the image to be flooded. The watershed 

transformation enables to obtain a low-level segmentation which, alone, already shows good 

adherence to object boundaries. In this work, the waterpixel-generation method was designed in 

order to enforce the regularity of the resulting regions while keeping a reasonable trade-off between 

boundary adherence and regularity, therefore, it involved the following steps: 

1. Creation of a grid of regular cells. 

2. Computation of the morphological gradient of the image. 

3. Selection of one marker per cell of the grid defined in 1. 

4. Computation of a spatially regularized gradient to guarantee a compromise between 

boundary adherence and regularity. 

5. The watershed transformation is performed on the spatially regularized gradient defined in 

4, starting the flooding from the markers defined in 3. 

These steps are developed in the following subsections and illustrated in Figure 14. 
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3.2.1 CREATION OF THE GRID AND DEFINITION OF THE GRADIENT 

The first step consists in computing a grid of regular cells 𝐶𝑖. A grid of hexagons is created with the 

size of the input image (see Figure 15). Note that the hexagon side s is a tunable parameter. The 

smaller s is, the smaller the resulting waterpixels and the higher the number of resulting regions. 

The distance between adjacent hexagon centers is denoted as σ and it plays a normalization role in 

the waterpixel computation process.  

 

Figure 14. Illustration of m-Waterpixels generation. (a) Original image, (b) Morphological gradient of the original image, 
(c) Regular grid of hexagonal cells (s = 32), (d) Selected markers within the regular grid, (e) Spatially regularized gradient, 
(f) m-Waterpixels. 
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At this stage, the computation of the morphological gradient g from the input image f : D (where D 

is a rectangular subset of ℤ2) is performed (see Figure 16 for an illustration). The morphological 

gradient can be defined as: 

 

 𝑔(𝑓) = 𝛿𝐵(𝑓) − 휀𝐵(𝑓) (20) 

 

where δ and ε are, respectively, the operators dilation and erosion and B is a unitary structuring 

element. 

 

 

3.2.2 SELECTION OF THE MARKERS 

The selection of markers allows us to control the number and regularity of the resulting waterpixels:  

the number of markers is equal to the number of waterpixels in the final partition; to obtain regions 

Figure 15. Regular grid of hexagonal cells (s = 32). 

Figure 16. Morphological gradient of the original image. 
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which are similar in shapes and sizes, it is necessary to select the markers in a way that they are 

regularly spaced out over the image. Taking this into account, a unique marker per cell is selected 

to obtain total control over the number of waterpixels, and a strong impact on their size and shape. 

During this procedure, it is necessary to have in mind that the ideal is to find a marker that enables 

to obtain the best performance in terms of boundary adherence and regularity.  Therefore, two 

approaches are tested:  selecting the centers of the grid cells as markers (c-Waterpixels) and selecting 

one minimum of the gradient per cell as markers (m-Waterpixels). In the second approach, each cell 

𝐶𝑖 of the grid defines a region of interest where the content of g is analyzed to select a unique marker, 

taking into account the following considerations: 

• if there exist more than one minimum of g inside 𝐶𝑖, the one with the highest surface 

extinction value [23] is selected. 

• if there is no minimum of g inside 𝐶𝑖, the center of the cell in question (𝐶𝑖) is defined as 

marker. 

• if there is a unique minimum of g inside 𝐶𝑖, this minimum is obviously selected as marker. 

It should be noted that the decision to add a marker for the cell in the second case is made in order 

to keep regularity. Figures 17 and 18 illustrate the markers selected in order to compute c-

Waterpixels and m-Waterpixels, respectively. 

 

 

 

 

Figure 17. Selected markers within the regular grid in order to generate c-Waterpixels. 
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3.2.3 SPATIAL REGULARIZATION OF THE GRADIENT AND WATERSHED 

A spatially regularized gradient 𝑔𝑟𝑒𝑔 is computed to guarantee a compromise between boundary 

adherence and regularity:  

 

 𝑔𝑟𝑒𝑔 = 𝑔 + 𝑘𝑑𝑄 (21) 

 

where g is the gradient of the image and k is the spatial regularization parameter, which, in this work, 

is set to 1. Let 𝑄 = {𝑞𝑖}1≤𝑖≤𝑁 be a set of N connected components of the image f.  For all p ∈ D, 

the distance 𝑑𝑄 is defined as: 

 

 
 ∀𝑝 ∈ 𝐷, 𝑑𝑄(𝑝) =

2

𝜎
min 𝑑(𝑝, 𝑞𝑖) 

(22) 

 

where σ is the grid step defined in the subsection 3.2.1. Figures 19 and 20 represent the spatially 

regularized gradient obtained in order to compute c and m-Waterpixels, respectively. 

 

 

 

 

 

Figure 18. Selected markers within the regular grid in order to generate m-Waterpixels. 
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Finally, the watershed transformation is performed on the spatially regularized gradient 𝑔𝑟𝑒𝑔, starting 

the flooding from the markers. This allowed the partition of the image into waterpixels regions. 

Figures 21 and 22 show the resulting c and m-Waterpixels, respectively. 

 

 

 

 

 

 

Figure 19. Spatially regularized gradient obtained in order to compute c-Waterpixels. 

Figure 20. Spatially regularized gradient obtained in order to compute m-Waterpixels. 
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3.3 SYSTEM BASED ON TRADITIONAL METHODS 

3.3.1 INTRODUCTION 

Several methods related to the classification of the retinal tissue have been proposed in the literature, 

these can be grouped in: thresholding-based [66], [67], region growing-based [5], [68] and 

morphological-based classification [69]. These methods focus their efforts in the exudates 

segmentation, however, these approaches are characterized by presenting a high false-positive rate. 

For this reason, in the methodology proposed in this thesis the segmentation step is avoided and the 

Figure 21. c-Waterpixels. 

Figure 22. m-Waterpixels. 
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characterization of healthy and pathological tissue is performed by applying image descriptors in a 

local way. Methods involving feature extraction and classification of the retinal tissue have been 

studied in the literature. The most common procedure requires the extraction of features from a 

lesion candidate map generated by different techniques, such as: mathematical morphology [6], 

[67]; background subtraction [70]; clustering [71]; or using banks of filters and applying a low 

adaptive threshold [72], [73]. The strategies proposed in this thesis do not require the previous 

segmentation of exudates or the generation of candidate maps. Texture and morphological features 

are extracted from the fundus images through powerful descriptors.  

It is important to note that, through the method presented in the previous section, the image is 

divided in non-regular regions (waterpixels) before the feature extraction step since the exudates 

usually represent less than one percent of the total number of pixels that compose the retinal image. 

Thus, during the feature extraction, texture and morphological features vectors are extracted for each 

region through LBP and granulometry, respectively. Finally, during the classification stage, each 

region is classified in “healthy” or “pathological” using the SVM classifier. 

The regions containing optic disk pixels are not considered during the feature extraction stage. To 

detect the optic disk, the method proposed in [74] is used. Figure 23 illustrates the results obtained 

by applying this method.  
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3.3.2 FEATURE EXTRACTION  

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 and 𝑉𝐴𝑅𝑃,𝑅 operators are locally computed for each pixel of the green channel of the 

retinal image, using the public implementation1 of the operators. It should be noted that the green 

channel was selected since it provides a better contrast between the lesions and the background 

[75]. LBP and VAR images of dimensions 𝑀1 ×  𝑀2 are obtained, as a result. These resulting 

images are divided into waterpixels regions and normalized histograms are computed for each region 

combining the information provided by both images. It is worth noting that the texture descriptor is 

applied locally since usually exudates represent less than one percent of the total number of pixels 

in the retinal image. 

LBP variance (LBPV) histogram [76] accumulates the 𝑉𝐴𝑅𝑃,𝑅 value for each 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 label inside 

the waterpixel: 

                                                 
1 http://www.ee.oulu.fi/~gyzhao/LBP_Book.htm 

a. 

b. 

Figure 23. Optic disk detection results. (a) Waterpixels, (b) Optic disk regions. 
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𝐿𝐵𝑃𝑉𝑃,𝑅(𝑘) = ∑ ∑ 𝑤(𝐿𝐵𝑃𝑃,𝑅(𝑖, 𝑗), 𝑘), 𝑘 ∈ [0, 𝐾]

𝑀2

𝑗=1

𝑀1

𝑖=1

 
 

(23) 

 

where 

 𝑤(𝐿𝐵𝑃𝑃,𝑅(𝑖, 𝑗), 𝑘) =  {
𝑉𝐴𝑅𝑃,𝑅(𝑖, 𝑗), 𝑖𝑓 𝐿𝐵𝑃𝑃,𝑅(𝑖, 𝑗) = 𝑘 

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(24) 

 

 

where K is the maximal LBP label. 

In the end, feature vectors of ten (P+2) components are locally extracted from the green channel of 

the fundus images.  

Additionally, granulometry is used in this work by applying a series of morphological opening (closing) 

operations with increasing size structuring elements (SE) defined by a specific step (s = 2) and a 

maximum value (𝑛𝑚𝑎𝑥= 22), to obtain a local description of the shape and size of the retinal 

exudates. As explained, SE is a disk or a line giving place to an isotropic or angular granulometry, 

respectively. In the end, four feature vectors are obtained: two regarding the isotropic granulometry 

(opening and closing operations) and two regarding the angular granulometry. Thus, these pattern 

spectrums are combined giving place to the morphological feature vector composed by 44 elements. 

Note that angular granulometry is computed in the directions 0◦, 45◦, 90◦ and 135◦. 

 

3.3.3 CLASSIFICATION OF THE RETINAL TISSUE 

After the feature extraction step, the SVM classifier is used to classify each region in healthy or 

pathological. However, before applying this classifier, some other steps where involved in the creation 

of the machine learning method used to classify the retinal tissue. 

To begin, an external K-fold cross validation is performed to provide robustness to the decision 

system and to guarantee that all the instances are used in the creation of the model and in the 

prediction stage. A different partition is selected as test subset while the rest of the partitions are 

used to train the model. 

As it was previously discussed, exudates represent only a small percentage of the total number of 

pixels that compose the retinal image, which results in a very unbalanced dataset when the feature 
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extraction is performed. Training the classifier with this dataset can result in an overfitting to the 

class “healthy”. 

To avoid this problem, the set of all healthy samples is randomly permuted and partitioned into 𝑇 =

𝑟𝑜𝑢𝑛𝑑 (
𝑀

𝑁
) subsets, being M and N the number of healthy and pathological samples, respectively. 

After that, a set of T classifiers is trained using all pathological training samples and each partition 

of healthy training samples. Finally, during the test stage, testing samples are evaluated for each of 

the T models and soft majority voting is applied to the output probabilities as the final criterion. If the 

obtained probability is higher than a given threshold δ, the region is assigned to the class 

“pathological”.  

The classification of the regions according to healthy and pathological classes was then performed 

using the Support Vector Machines (SVM) classifier. Radial Basis Function (RBF) kernel is employed 

when the SVM algorithm is applied. RBF kernel non-linearly maps samples into a higher dimensional 

space so, unlike the linear kernel, it can deal with datasets in which the relation between the class 

labels and features is nonlinear. The referred kernel is characterized by two parameters (C, 𝛾). The 

parameter C trades off misclassification of training examples against simplicity of the decision surface 

while the parameter 𝛾 defines how far the influence of a single training example reaches. The linear 

kernel is a specific case of RFB since it presents the same performance as the RBF kernel with a 

particular couple of values for the parameters C and 𝛾. It should be noted that the RBF kernel is 

employed in this thesis because it is highly suitable when the number of attributes is not very large 

[54]. 

For a given problem, the best C and 𝛾 parameters are unknown, and the objective is to identify the 

optimal (C, 𝛾) using the training set, so that the classifier can accurately predict unknown data (i.e. 

testing data). Internal cross-validation is used in the experiments involving SVM with RBF kernel in 

order to “grid search” the optimal parameters. Several pairs of (C, 𝛾) values are tried and the one 

with the highest cross-validation accuracy is selected. C = 2-5, 2-3, ..., 215 and 𝛾 = 2-15, 2-13, ..., 23 

are the sequences used in the SVM classification of healthy and pathological tissue. 
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3.4 SYSTEM BASED ON DEEP LEARNING 

3.4.1 INTRODUCTION 

In the previously described system, image descriptors were used in order to extract features from 

the visual information of retinal images. Subsequently, using the extracted features, a classification 

algorithm was applied in order to identify exudates. However, the success and reliability of this type 

of detection system is conditioned by the descriptors used to perform the feature extraction. The 

aforementioned descriptors are usually not dedicated to solving a specific problem, being applicable 

to most computer vision tasks and, as such, each application is highly dependent on the optimal 

selection of the descriptors parameters. 

The choice of suitable descriptors is dependent on the researcher's experience and the help of 

medical specialists may also be fundamental to understand which descriptors may best define the 

pathology to detect or classify. Therefore, it is possible to say that this task is characterized by a 

subjective character. 

The above-mentioned facts motivated the study of a different technique able to automatically extract 

relevant features of the image without the need of determining the optimal descriptors by the 

researchers. This new approach will be explored in the following subsection and it focus on the 

detection of exudates using Convolutional Neural Networks (CNNs).  

 

3.4.2 CNN FOR EXUDATE DETECTION 

As in the previous system, the images of the E-OPHTHA database are divided in irregular regions, 

through the methodology presented in Section 3.2. Additionally, to the earlier mentioned reasons, 

the division of the original images is also important to allow the acquisition of a significantly larger 

dataset since hundreds of regions are obtained from each of the 47 images of the E-OPHTHA 

database. This point is extremely decisive for the obtainment of a robust model that isn’t overfitting. 

Remember that the number of resulting waterpixels depends on the tunable parameter s, as it was 

explained in Section 3.2.1. The smaller s is, the smaller the resulting waterpixels and the higher the 

number of resulting regions. In the experiments presented in this dissertation, the parameter s was 

set to 32.  
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Before the computation of the waterpixels, the 47 images of the E-OPHTHA database are divided in 

two subsets: one for training (containing 80% of the images) and the other one for testing (containing 

20% of the images). As its name suggests, the first one is responsible for training the neural network 

while the testing subset is used to evaluate the performance of the model, i.e., how well the model 

discriminates between healthy and damaged retinal tissue. It is relevant to mention that the testing 

set does not contain any image used to perform the training. 

Subsequently, the training dataset is divided in training (80%) and validation (20%). The validation 

set is used during the training to provide an unbiased evaluation of the model while finding the 

optimal model hyperparameters.  

After the creation of the three datasets (training, validation and testing), the images are divided in 

waterpixels, through the methodology detailed in Section 3.2. Additionally, the images containing the 

medical specialists’ annotations, i.e., the ground-truth, are looped in order to obtain the 

corresponding label (“healthy” or “pathological”) for each waterpixel. As expected, the number of 

healthy waterpixels is way larger than the number of pathological ones, resulting in very unbalanced 

datasets. To overcome this problem, all the pathological regions were used, and the same number 

of healthy regions was randomly selected. Figure 24 shows some of the healthy and pathological m-

waterpixels provided to the CNN.  

 

 

Shortly, the final dataset is composed by three main subsets - training, validation and testing – and 

each of these subsets contain a healthy and a pathological dataset. This final dataset is then provided 

to the CNN architecture to be fine-tuned in order to create a system able to classify the retinal tissue 

 a  b 

Figure 24. m-Waterpixels extracted from the E-OPHTHA database and provided to the CNN. (a) m-Waterpixels belonging 
to the class ”healthy”, (b) m-Waterpixels belonging to the class ”pathological”. 
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in healthy or pathological. As previously discussed, the main obstacle in medical applications is the 

reduced amount of labelled data since the pixel-wise annotation is expensive and time-consuming. 

Therefore, fine-tuning is applied in order to transfer the knowledge of healthy and pathological retinal 

tissue to some of the most relevant state-of-the-art models pre-trained on the ImageNet dataset. More 

precisely, InceptionV3 [77], Xception [78], ResNet50 [79], VGG16 and VGG19 [80] architectures, as 

well as their corresponding weights, are obtained through the Keras Applications module.  

It is important to mention that the weights from the pre-trained network trained with the ImageNet 

database are transferred to the CNN architecture, except for the last fully connected layer. This one 

is replaced with a new fully connected layer that has as many neurons as the number of classes in 

our application, which is two – “healthy” and “pathological”. After the initialization of the CNN with 

the publicly available weights, the neural network was shallow-tuned, i.e., the weights related to the 

first layers were frozen while the last layers were set to “learnable” (that means that only the last 

layers are fine-tuned). Before the training process, data augmentation was performed by rotating, 

flipping and scaling the waterpixels. 
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4.1 EVALUATION METRICS 

In order to evaluate the classification performance of the experiments, the following metrics, which 

are commonly used in machine learning and of extreme relevance in the medical field, were used: 

accuracy, sensitivity and specificity. Accuracy shows how correct a diagnostic test identifies and 

excludes a given condition. It is calculated as the sum of correct predictions divided by the total 

number of cases. Sensitivity, also known as True Positive Rate (TPR), measures the proportion of 

positive cases that are correctly identified as such. On the other hand, Specificity or True Negative 

Rate (TNR) measures the proportion of negative cases that are correctly recognized. 

In addition to the above-mentioned metrics, the area under the Receiver Operating Characteristic 

(ROC) curve (AUC) was also studied in order to evaluate the performance of the proposed methods. 

The ROC curve is a plot of the TPR against the False Positive Rate (1-TNR). Thus, AUC is an effective 

way to summarize the overall diagnostic accuracy of the test. The greater the AUC, the more accurate 

the test - a perfect test has an area under the ROC curve of 1. A diagnostic test in the medical field 

with an AUC of 0.5 suggests no ability to diagnose patients. On the other hand, an AUC between 0.7 

and 0.8 is considered acceptable, between 0.8 and 0.9 is considered excellent, and bigger than 0.9 

is considered outstanding [81]. 

 

4.2 SYSTEM BASED ON TRADITIONAL METHODS 

The experiments presented in this section are performed using the first system proposed in this 

work, i.e, the system based on traditional methods: feature extraction and posterior classification of 

the retinal tissue using machine learning algorithms. The referred experiments focus on establishing 

a comparison between the two proposed strategies for generating waterpixels (c-Waterpixels and m-

Waterpixels) and the state-of-the-art SLIC superpixels.  

 

4.2.1 COMPARISON OF THE SUPERPIXELS GENERATION METHODS 

Two different strategies to obtain waterpixels (c-Waterpixels and m-Waterpixels) were presented in 

this work. In this first experiment, these regions are used to perform a local feature extraction, and, 

subsequently, the procedure explained in Section 3.3.3. is used to train a classification model able 

to classify the retinal tissue of each region. With the purpose of comparing the strategies presented 



   RESULTS AND DISCUSSION 

59 

in this work with another state-of-the-art method, the same procedure is applied using the SLIC 

algorithm to generate superpixels. In Figure 25 the three different types of superpixels being 

compared in this experiment are illustrated. It must be highlighted that, to allow a fair comparison 

between the different strategies, the K-fold procedure and the random permutation for balancing the 

data, used during the classification stage as explained in Section 3.3.3., are performed using a fix 

seed. 

 

 

Figure 25. Types of superpixels being compared. (a) m-Waterpixels, (b) c-Waterpixels, (c) SLIC Superpixels. 

 

The tunable parameters involved in the different stages of the exudate detection system were set 

according to the Table 4. 

 

 

Table 4. Tunable parameters involved in the different stages of the exudate detection system. 

 Computation of Waterpixels Feature Extraction Classification 

 m-Waterixels c-Waterpixels LBP Granulometry SVM 

Parameters s = 32 

 

s = 32 

 

R = 1 

P = 8 

s = 2 

𝑛𝑚𝑎𝑥 = 22 

RBF Kernel 

 

 

Table 5 contains the Area Under ROC Curve (AUC), accuracy, sensitivity and specificity (as well as 

the standard deviation associated with each of these metrics) of the resulting classification processes, 

taking into account the ground-truth provided by the ophthalmologists. The results of accuracy, 

sensitivity and specificity were obtained using a decision threshold of 𝛿 = 0.5. 

 

 

 



RESULTS AND DISCUSSION 

60 

Table 5. AUC, accuracy, sensitivity and specificity related to the exudate detection on the original images (OI) of the E-
OPHTA database, using a linear kernel, for each of the region of interest developed: m-waterpixels, c-Waterpixels and 
SLIC superpixels. 

 m-Waterpixels c-Waterpixels SLIC Superpixels 

AUC 0.7999 ± 0.0317 0.7937 ± 0.0325 0.7987 ± 0.0311 

Accuracy 0.6514 ± 0.1093 0.6650 ± 0.0870 0.7635 ± 0.0238 

Sensitivity 0.7779 ± 0.0987 0.7651 ± 0.0477 0.6567 ± 0.0824 

Specificity 0.6363 ± 0.1295 0.6546 ± 0.0990 0.7736 ± 0.0305 

 

 

During the evaluation of the different techniques it is important to remember the importance of 

obtaining a good trade-off between the sensitivity and specificity. Additionally, in the context of this 

thesis, sensitivity plays a major role since this measure represents the ability of our system to detect 

exudates. Having that in mind, and through the analysis of Table 5, it is possible to conclude that 

the waterpixels approaches outperform the SLIC [25] method when it comes to generate the most 

appropriate regions to detect exudates. 

 

4.2.2 INFLUENCE OF THE BLOOD VESSELS REMOVAL  

In this secound experiment, the impact of applying the inpainting technique2 in order to remove the 

blood vessels from the fundus images is evaluated. With this in mind, and as in the previous 

experiment, texture and morphological features are extracted for each of the irregular regions through 

LBP and granulometry, respectively, and SVM with RBF kernel is applied as classification algorithm, 

following the classification strategy detailed in Section 3.3.3. It should be noted that the retinal vessel 

removal is performed before the local feature extraction. 

Several tests using the original images (OI) of the E-OPHTHA_EX database and the same images but 

without the blood vessels (W/V) are performed for each of the strategies to generate irregular regions 

to perform the local feature extraction. Once again, to allow a fair comparison between the different 

strategies, the K-fold procedure and the random permutation for balancing the data, used during the 

classification stage, are performed using a fix seed.  

Table 6 contains the Area Under ROC Curve (AUC), accuracy, sensitivity and specificity (as well as 

the standard deviation associated with each of these metrics) of the resulting classification processes, 

                                                 
2 https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans 
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taking into account the ground-truth provided by the ophthalmologists. Once again, the results of 

accuracy, sensitivity and specificity, presented on Table 6, were obtained using a decision threshold 

of 𝛿 = 0.5. 

 

Table 6. AUC, accuracy, sensitivity and specificity related to the exudate detectionon the original images (OI) and 
images without vessels (W/V) for each of the region of interest developed: m-Waterpixels, c-Waterpixels and SLIC 
superpixels. 

 m-Waterpixels c-Waterpixels SLIC Superpixels 

 OI W/V OI W/V OI W/V 

AUC 0.7998 ± 

0.0317 

0.8287 ± 

0.0246 

0.7937 ± 

0.0325 

0.8277 ± 

0.0199 

0.7987 ± 

0.0311 

0.8169 ± 

0.0299 

Accuracy 0.6514 ± 

0.1093 

0.7585 ± 

0.0676 

0.6650 ± 

0.0870 

0.7545 ± 

0.0679 

0.7635 ± 

0.0238 

0.8037 ± 

0.0222 

Sensitivity 0.7779 ± 

0.0987 

0.7216 ± 

0.0834 

0.7651 ± 

0.0477 

0.7496 ± 

0.0295 

0.6567 ± 

0.0824 

0.6656 

±0.0634 

Specificity 0.6363 ± 

0.1295 

0.7595 ± 

0.0789 

0.6546 ± 

0.0990 

0.7539 ± 

0.0757 

0.7736 ± 

0.0305 

0.8175 ± 

0.0273 

 

 

As it can be observed through the analysis of Table 6, the values of accuracy improve, for each of 

regions of interested developed, when the inpainting technique is applied in order to remove the 

blood vessels from the original images.  

The ROC curves for each of the tests performed with the images without vessels are represented in 

Figure 26. As it can be observed, the c-Waterpixels outperform the other methods for lower false 

positive rates while the m-waterpixels exceed the c-Waterpixels and SLIC superpixels for highest false 

positives rates. 
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4.3 SYSTEM BASED ON DEEP LEARNING 

The experiments presented in this section are performed using the second system proposed in this 

work, i.e, the system based on deep learning techniques. The referred experiments focus on 

establishing a comparison between the different fine-tuned CNN architectures used.  

 

4.3.1 COMPARISON OF THE FINE-TUNED CNN ARCHITECTURES 

In this experiment, the inpainting technique is applied in order to remove the blood vessels of the 

images of the E-OPTHA database. Subsequently, m-Waterpixels are computed (through the 

methodology presented in Section 3.2.) and provided to the CNN architecture to be fine-tuned along 

with their corresponding labels (“healthy” or “pathological”). Fine-tuning is then applied in order to 

transfer the knowledge of healthy and pathological retinal tissue to some of the most relevant state-

of-the-art models pre-trained on the ImageNet dataset. More precisely, InceptionV3, Xception, 

ResNet50, VGG16 and VGG19 architectures, as well as their corresponding weights, are obtained 

through the Keras Applications module and fine-tuned, following the strategy detailed in Section 

3.4.2.  

Table 7 contains the accuracy, sensitivity and specificity (as well as the standard deviation associated 

with each of these metrics) obtained for each fine-tuned model. Table 8 illustrates the optimizer used 

for each of the models, in order to obtain the results presented in Table 7. Several optimizers were 

Figure 26. ROC curves for the different superpixels generation methods. 
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tested for each of the models, but the ones indicated in Table 8 were the ones that allowed better 

results. Additionally, several tests were performed with different numbers of epochs, batch sizes and 

learning rates. But the results exhibit in Table 7 were obtained using 100 epochs, a batch size equal 

to 16 and a learning rate of 1 × 10−4 to perform the training process. 

 

Table 7. AUC, accuracy, sensitivity and specificity related to the exudate detection, for each fine-tuned state-of-the-art 
architecture. 

 

 

 

 

Table 8. Optimizer used for each each fine-tuned state-of-the-art architecture. 

Model Optimizer 

InceptionV3 Nesterov Adam 

Xception Nesterov Adam 

ResNet50 RMSprop 

VGG16 Stochastic Gradient Descent 

VGG19 Stochastic Gradient Descent 

 

 

Through the analyses of Table 7, it is possible to conclude that, generally, the second approach 

presented in this thesis outperforms the first one. In other words, the approach involving CNNs 

presents considerably better results than the one based on feature extraction and posterior 

classification using machine learning algorithms. 

In addition, from all the tested CNN architectures, InceptionV3 is the best candidate to solve the 

problem under study. If the objective is to maximise the sensitivity, in other words, the ability of the 

model for recognizing abnormal tissue, the most appropriate models are InceptionV3 and ResNet50.  

 InceptionV3 Xception ResNet50 VGG16 VGG19 

Accuracy 0.9254 0.9104 0.8881 0.7985 0.7090 

Sensitivity 0.9701 0.9254 0.9701 0.8209 0.7910 

Specificity 0.9646 0.9231 0.9643 0.8125 0.7500 



 

 
 

 

 

 

 

 

5 CONCLUSIONS 



Conclusions 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CONCLUSIONS 

66 

The main objective of this work was to develop and compare different local analysis strategies for 

exudate detection in fundus images. Therefore, different strategies to obtain regions of interest were 

developed with the purpose of locally describing healthy and pathological retinal areas. 

Contrary to most approaches found in the literature, in the methodologies proposed in this thesis, 

the characterization of healthy and damaged retinal areas was performed by applying image 

descriptors in a local way, avoiding the segmentation step and the generation of candidate maps. 

A system based on local feature extraction and Support Vector Machine classification was used to 

develop and compare different strategies for the automated detection of exudates. The main novelty 

is allowing the detection of exudates using non-regular regions to perform the local feature extraction. 

To accomplish this objective, different strategies for generating superpixels were applied to the 

fundus images of the E-OPHTA database. Those strategies relied on applying the marker-controlled 

watershed transformation to a spatially regularized gradient. From these strategies, two different 

types of superpixels were created: c-Waterpixels and m-Waterpixels.  

Local binary patterns and granulometric profiles were used to extract texture and morphological 

features from each waterpixel. Subsequently, the SVM classifier was fed with the features extracted 

in order to classify the retinal tissue of each region into healthy or pathological. This process was 

performed using the c-waterpixels, m-waterpixels and the state-of-the-art SLIC superpixels to partition 

the original images of the E-OPTHA database. 

Through the analyses of the classification results obtained using the SVM classifier, it was possible 

to conclude that the watershed-based approaches lead to a better detection of pathological areas. In 

other words, the waterpixels approaches presented in this thesis outperform the state-of-the-art SLIC 

method when it comes to generate the most appropriate regions to detect exudates. 

The above described process was performed an additional time but using the images without blood 

vessels. This experiment allowed to conclude that applying the inpainting technique to remove the 

blood vessels is essential to obtain a more accurate detection of exudates.  

Additionally, a system based on Convolutional Neural Networks (CNN) was explored to discriminate 

between healthy and pathological regions in fundus images. Transfer learning was applied to fine-

tune some of the most important state-of-the-art CNN architectures. In this approach, the fundus 

images were divided in m-waterpixels and the classification was performed for each of the regions.  

Through the analyses of the classification results obtained with this approach it was possible to 

conclude that, from all the tested CNN architectures, InceptionV3 is the best candidate to solve the 

problem under study. Comparing the classification results obtained through the system involving 
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CNNs and the ones obtained applying the approach based on feature extraction and subsequent 

classification using machine learning algorithms, it was possible to conclude that the CNN approach 

outperforms the first system presented to automatically detect exudates.  

In both the systems presented in this thesis, the characterization of healthy and pathological retinal 

tissue was performed in a local way, i.e., the classification models were trained using partitions of 

the image (superpixels). This fact provides the computer-aided diagnosis system with a high precision 

in the lesion identification. 

Despite the positive results obtained, there is still space to investigate in this field. To begin, future 

work will allow the detection of other lesions related to DR, such as microaneurysms and 

hemorrhages. As the amount of data is extremely decisive for the obtainment of a robust model that 

isn’t overfitting, the systems developed will be trained using a larger database. Additionally, the 

system based on deep learning will be performed using c-waterpixels and SLIC superpixels in order 

to understand which of the different strategies to obtain regions of interest allows a more accurate 

detection of exudates. Still regarding the deep learning approach, changing and study the parameters 

like the number of epochs, the batch size or even the amount of clinical information can also be 

interesting. Regarding to the method based on image description and classification algorithms, as 

future work, other advanced classification algorithms will be tested in order to improve the image-

wise detection of exudates. Additional information will also be extracted from the retinal background 

in order to increase the precision in the identification of DR lesions. Finally, an approach to classify 

both lesions and anatomical elements is a further direction since the methodologies proposed require 

the previous segmentation of the blood vessels and the optic disk, which is not error-free. 
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