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Abstract

In this paper we prove a weak version of Lusin’s theorem for the space of
Sobolev-(1, p) volume preserving homeomorphisms on closed and connected
n-dimensional manifolds, n ≥ 3, for p < n − 1. We also prove that if p > n
this result is not true. More precisely, we obtain the density of Sobolev-(1, p)
homeomorphisms in the space of volume preserving automorphisms, for the
weak topology. Furthermore, the regularization of an automorphism in a
uniform ball centered at the identity can be done in a Sobolev-(1, p) ball
with the same radius centered at the identity.
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1. Introduction

J. E. Littlewood formulated the classic Lusin theorem by saying that
‘every measurable function is nearly continuous’. In the spirit of this formu-
lation, we prove that ‘every measurable volume preserving map is nearly a
Sobolev-(1, p) volume preserving homeomorphism’. More precisely, we prove
a weak version of Lusin’s theorem (see Theorem A in Section 4) for the
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space of Sobolev-(1, p) volume preserving homeomorphisms on closed and
connected n-dimensional manifolds, n ≥ 3, for p < n− 1.

This theorem generalizes for the Sobolev setting previous continuous ver-
sions proved by Oxtoby [10], White [12], Alpern [1] and Alpern and Ed-
wards [2].

The proof of Theorem A is based on a key perturbation result (Theo-
rem 3.1). This perturbation theorem is the Sobolev version of a classical
result proved by Oxtoby and Ulam [9] which, in rough terms, says that given
any ε > 0 and any two sets of distinct N points {Pi}Ni=1 and {Qi}Ni=1 in R

n

such that Pi is ε-close to Qi for all i we can construct a volume preserving
homeomorphism h ε-close to the identity which maps some neighbourhood
of Pi by simple translation onto a neighbourhood of Qi. An explicit con-
struction of h can be seen in [2, 3]. Yet, the strategy used in [2, 3] cannot
be applied in our Sobolev setting because we need to control the Lp-norm
of the partial derivatives of h. To obtain this control we define h as the
composition of 2N simpler perturbations, which locally is a composition of
just two perturbations.

Besides its intrinsic importance in Analysis, the weak Lusin theorem in
the volume preserving class was crucial in a proof given in [3] of the result of
Oxtoby and Ulam, that ergodicity is generic for measure preserving homeo-
morphisms of compact manifolds. Therefore, a Sobolev version of this theo-
rem could be useful in the study of dynamical properties in the Sobolev class.
Indeed, homeomorphisms on the Sobolev class gain significance presently in
applications to certain type of PDE’s in nonlinear elasticity (see the Ball-
Evans Problem in [7]), in ergodic theory (genericity of infinite topological
entropy in [5, 4] and also subjects correlated with the closing lemma (see
again [5]). We believe that building bridges connecting these two areas could
be of utmost interest both in applications and fundamental mathematics.

This paper is organized as follows. In Section 2 we introduce the space
of automorphisms and the space of Sobolev-(1, p) volume preserving home-
omorphisms. In Section 3 we prove the perturbation result (Theorem 3.1).
Finally, in Section 4, we prove a weak version of Lusin’s theorem (Theo-
rem A) for the space of Sobolev-(1, p) volume preserving homeomorphisms,
for p < n− 1 and we present a counterexample (see Example 4.1) for p > n.
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2. Preliminaries

Throughout the article X is a smooth closed connected Riemannian man-
ifold of dimension n and d is the geodesic distance on X. We denote the
Euclidean norm in R

n by | · |. We shall denote by λ the volume measure on
both X and R

n.

2.1. Automorphisms and homeomorphisms of (X, λ)

An automorphism of the underlying Borel measure space (X, λ) is a bi-
jection g : X → X such that both g and g−1 are measurable functions and
λ(B) = λ(g(B)) = λ(g−1(B)) for all measurable sets B. Automorphisms
which differ on a set of measure zero will be identified. We denote by G(X)
the space of automorphisms of (X, λ). We shall consider two topologies
on G(X): the weak topology given by the metric ρ(f, g) = inf{δ : λ{x :
d(f(x), g(x)) ≥ δ} < δ}, and the uniform topology defined by the metric
‖f − g‖∞ ≡ sup essx∈Xd(f(x), g(x)). The space G(X) is topologically com-
plete with the weak topology (see [6]) and complete with the uniform topol-
ogy. Thus, with each of these topologies, G(X) is a Baire space. We denote
by M(X) the subspace of all homeomorphisms in G(X), endowed with the
uniform topology. This space is topologically complete (see [11]). We shall
call volume preserving homeomorphisms of X the elements in M(X).

2.2. Sobolev maps

Let Ω be an open bounded subset of Rn with Lipschitz boundary and let
1 ≤ p ≤ ∞. Given a set A ⊆ R

n and δ > 0 we denote by Vδ(A) the set
{x ∈ R

n : infa∈A |x− a| < δ}.
Recall that a measurable map f = (f1, . . . , fn) : Ω→ R

n is in the Sobolev
class W 1,p(Ω,Rn) if, for all i = 1, . . . , n, fi and all its distributional partial
derivatives ∂fi/∂xj are in Lp(Ω).

We endow W 1,p(Ω,Rn) with the norm defined by

‖f‖1,p = ‖f‖p + ‖Df‖p, ∀f ∈ W 1,p(Ω,Rn) ,

where ‖f‖p = maxi ‖fi‖p and ‖Df‖p = maxi,j

∥∥∥ ∂fi
∂xj

∥∥∥
p
.

We shall be interested only on Sobolev maps that are continuous up to
the boundary. More precisely, we will consider the space

W 1,p(Ω,Rn) ∩ C0(Ω,Rn) .
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The (natural) norm in this space is equivalent to the one defined by

‖f‖∞ + ‖Df‖p ,

since C0(Ω,R) is compactly included in Lp(Ω).

Remark 2.1. If p > n then W 1,p(Ω,Rn) ⊆ C0(Ω,Rn) and the norms on
W 1,p(Ω,Rn) defined above are equivalent.

Finally we define the Sobolev space we are going to work with.

Definition 2.1. We define W1,p
λ (Ω) as the set of all volume preserving home-

omorphisms f : Ω→ Ω such that f ∈ W 1,p(Ω,Rn)∩C0(Ω,Rn). In this space
we consider the natural metric defined by

d
W

1,p
λ (Ω)(f, g) = ‖f − g‖∞ + ‖D(f − g)‖p,

for f, g ∈ W
1,p
λ (Ω). We shall call Sobolev-(1, p) volume preserving homeo-

morphisms of Ω the elements in W
1,p
λ (Ω).

For simplicity we will denote d
W

1,p
λ (Ω)(f, g) by ‖f − g‖∞;1,p .

Since Mλ(Ω) is topologically complete and W 1,p(Ω,Rn) ∩ C0(Ω,Rn) is
complete, we have the following.

Proposition 2.1. W
1,p
λ (Ω) is a Baire space.

Finally, we define a similar space for the manifold X. We denote by
W

1,p
λ (X) the space of volume preserving homeomorphisms on X which in all

local charts are Sobolev-(1, p) maps.

3. A key perturbation theorem: ellipsoids

In this section we prove a key perturbation result which is the main
ingredient to prove a volume preserving Sobolev weak Lusin theorem. Let
In = [0, 1]n stand for the n-dimensional unit cube.
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Theorem 3.1. Let n ≥ 3, ε > 0 and N ∈ N. Let {Pi}Ni=1 and {Qi}Ni=1 be
two sets of N distinct interior points of In such that |Pi −Qi| < ε, for all i.

If p < n − 1, then, for all k ∈ N there is Fk ∈ W
1,p
λ (In) such that, for

all i, Fk(Pi) = Qi, Fk sends a neighbourhood of Pi by translation onto a
neighbourhood of Qi, and

sup
k
‖Fk − Id‖∞ < ε, lim

k→∞
‖Fk − Id‖1,p = 0.

As a consequence, for k large enough, ‖Fk − Id‖∞;1,p < ε.
In addition, the functions Fk are C

∞ diffeomorphisms and equal to the
identity in a neighbourhood of the boundary of In.

Remark 3.1. Notice that, if p > n, the conclusion of this theorem is false
unless Pi = Qi, for all i. In fact, taking in mind Remark 2.1, if limk→∞ ‖Fk − Id‖1,p =
0 then also limk→∞ ‖Fk − Id‖∞ = 0. Hence, maxi=1,...,N |Qi − Pi| = 0.

The rest of this section is devoted to the proof of Theorem 3.1.

Let a, b, μ > 0 with a ≥ b and 0 < μ ≤ 1 and consider the ellipsoids

Σa,b =

{
x ∈ R

n :
(x1

a

)2
+

n∑
i=2

(xi

b

)2
≤ 1

}
, Σa,b,μ = Σ(1−μ)a,(1−μ)b.

Notice that λ(Σa,b) = wn a b
n−1, where wn is the volume of the unitary

sphere in R
n, and μλ(Σa,b) ≤ λ(Σa,b \ Σa,b,μ) ≤ nμλ(Σa,b).

For each a, b, μ, we will define a volume preserving C
∞ diffeomorphism of

R
n, Fa,b,μ, that is rigid in Σa,b,μ and is equal to the identity outside Σa,b. In

order to do that, we first consider a function hμ ∈ C∞(R), strictly decreasing
in ]1−μ, 1[ and constant in ]−∞, 1−μ] and in [1,+∞[. We let hμ be defined

by hμ(t) =
π e

μ
t−1

e
μ

t−1+e
μ

1−t−μ
, if 1− μ < t < 1, hμ(t) = 0, if t ≥ 1 and hμ(t) = π, if

t ≤ 1− μ.

Lemma 3.2. In the above conditions, hμ ∈ C∞(R) and
∣∣h′μ(t)∣∣ ≤ 2π

μ
, for all

t ∈ R.
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Proof. Since h1(
1
μ
(t − (1 − μ))) = hμ(t), t ∈ R, it is enough to show the

result for μ = 1. But

1
π
|h′1(t)| =

e−
1
t · e 1

t−1(
e−

1
t + e

1
t−1

)2
(
1

t2
+

1

(t− 1)2

)

=
e−

1
t

t2︸︷︷︸
≤4e−2

⎛
⎜⎝ e

1
t−1(

e−
1
t + e

1
t−1

)2
⎞
⎟⎠+

e
1

t−1

t2︸︷︷︸
≤4e−2

⎛
⎜⎝ e−

1
t(

e−
1
t + e

1
t−1

)2
⎞
⎟⎠

≤ 4e−2

e−
1
t + e

1
t−1

and the conclusion follows, since e−
1
t + e

1
t−1 ≥ 2e−

1
2t
+ 1

2(t−1) ≥ 2e−2, remem-
bering that the geometric mean of two numbers is less than or equal to their
arithmetic mean. �

Consider now the function Fa,b,μ : Rn → R
n defined by

Fa,b,μ(x) =
(
x1 cos(α(x))− a

b
x2 sin(α(x)),

b
a
x1 sin(α(x)) + x2 cos(α(x)), x̄

)
where x̄ = (x3, . . . , xn) and α : R

n −→ R .

x �→ hμ

(√(
x1

a

)2
+
∑n

i=2

(
xi

b

)2)
To be precise, we should write αa,b,μ, but we choose to drop the subscripts

as it will be clear in the context.
Note that

∣∣∣ ∂α∂x1

∣∣∣ ≤ 2π
μa

and
∣∣∣ ∂α∂xi

∣∣∣ ≤ 2π
μ b
, if i ≥ 2.

Lemma 3.3. In the above conditions, Fa,b,μ is a volume preserving C
∞ dif-

feomorphism, is equal to the identity in R
n \Σa,b and Fa,b,μ(x1, x2, . . . , xn) =

(−x1,−x2, x3, . . . , xn) in Σa,b,μ.
In addition, denoting Fa,b,μ by (F1, . . . , Fn), we have

∀x ∈ R
n

∣∣∣∣∂Fi

∂xj

(x)

∣∣∣∣ ≤ a

b
· 6π
μ
. (1)

Proof. If x ∈ Σa,b then α(x) = α(Fa,b,μ(x)) since(
x1 cos(α(x))− a

b
x2 sin(α(x))

)2
a2

+

(
b
a
x1 sin(α(x)) + x2 cos(α(x))

)2
b2

=
x2
1

a2
+
x2
2

b2
.
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Therefore, F−1a,b,μ is obtained by replacing α(x) by −α(x) in Fa,b,μ.
The function Fa,b,μ preserves the volume because the determinant of its

jacobian matrix is equal to the determinant of the jacobian matrix of (F1, F2),
which can easily be seen to be equal to 1. Indeed, for this calculation, we
do not need to use the expression of α but only that it is a function of(
x1

a

)2
+
∑n

i=2

(
xi

b

)2
.

The conditions on the partial derivatives of Fa,b,μ are simply a consequence
of the hypotheses on a, b, μ and of the inequalities | cos(α(x))|, | sin(α(x))| ≤
1, |x1| ≤ a, |xi| ≤ b, for i ≥ 2. �

A similar result can be obtained for ellipsoids in general position in the
space.

Corollary 3.4. Let a, b, μ ∈ R, with a ≥ b > 0, 0 < μ < 1. If Fa,b,μ,T =
T ◦Fa,b,μ ◦ T−1, where T : Rn → R

n is a rotation, there exists a constant C0,
independent of a, b, μ, such that

∀x ∈ R
n ∀i, j = 1, . . . , n

∣∣∣∣∂ (Fa,b,μ,T )i
∂xj

(x)

∣∣∣∣ ≤ C0
a

bμ
. (2)

Therefore, if a′ ≥ b′ > 0, 0 < μ′ < 1, T ′ : Rn → R
n is a rotation and

G = Fa′,b′,μ′,T ′ ◦ Fa,b,μ,T then

∀x ∈ R
n ∀i, j = 1, . . . , n

∣∣∣∣∂Gi

∂xj

(x)

∣∣∣∣ ≤ C1
a

bμ

a′

b′μ′
, (3)

where C1 = nC2
0 .

The following results will provide important ingredients for the proof of
Theorem 3.1.

Proposition 3.5. Let n ≥ 3, ε > 0 and P,Q be two points in the interior of
In such that |P − Q| < ε. Let δ > 0 be such that U = Vδ(PQ) is compactly
included in the interior of In. If p < n − 1, then, for all k ∈ N there exists
Fk = Fk,P,Q ∈ W

1,p
λ (In) such that Fk(P ) = Q, Fk sends a neighbourhood of

P by a rotation of angle π onto a neighbourhood of Q, is the identity outside
U and

sup
k
‖Fk − Id‖∞ < ε, lim

k→∞
‖Fk − Id‖1,p = 0.

In addition, the functions Fk are C
∞ diffeomorphisms.
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Proof. If P = Q we choose Fk = Id. Assume otherwise. The properties
that we want to prove are invariant relative to the choice of axis. Therefore,
we can assume that the origin is the middle point of the line segment PQ and
that there exists c > 0 such that P = (−c, 0, . . . , 0) and Q = (c, 0, . . . , 0).
Consider c < a < ε/2, 0 < b ≤ a such that the ellipsoid Σa,b is contained in
U . Choose μ > 0 such that (1 − μ)a > c and therefore P,Q ∈ Σa,b,μ. We
fix a and μ and so we drop them from the indexes, denoting Fb = Fa,b,μ.
Of course we have ‖Fb − Id‖∞ ≤ 2a < ε. We will prove that ‖Fb − Id‖1,p
converges to 0 when b tends to 0. Notice that ‖Fb−Id‖p = ‖Fb−Id‖Lp(Σa,b) ≤
ε (λ(Σa,b))

1/p = ε(wn a b
n−1)1/p. For the partial derivative we have, by Lemma

3.3,

∥∥∥∥∂(Fb − Id)i
∂xj

∥∥∥∥
Lp(In)

≤
∥∥∥∥∂ (Fb)i

∂xj

∥∥∥∥
Lp(Σa,b)

+ ‖1‖Lp(Σa,b)

≤ a
b
6π
μ
λ(Σa,b)

1/p + λ(Σa,b)
1/p

≤ 6π a
μb
· (wnab

n−1)1/p + (wnab
n−1)1/p.

Then

‖Fb − Id‖1,p ≤ ε(wn a b
n−1)1/p + n2

(
6π a
μb
· (wnab

n−1)1/p + (wnab
n−1)1/p

)
and the conclusion follows since n−1

p
> 1. �

One can prove that, if p ≥ n−1 then the construction in previous propo-
sition does not work. Of course we only need to consider p = n− 1. In this
case if (for example)

U =

⎧⎨
⎩x ∈ R

n : 1− μ

2
≤
√√√√(x1

a

)2
+

n∑
i=2

(xi

b

)2
≤ 1− μ

4
, x1, . . . , xn ≥ 0

⎫⎬
⎭

then there exists C, independent of a, b, μ such that
∥∥∥∂(F−Id)1

∂xn

∥∥∥
Lp(U)

≥ C an

μn−2 .

The key ingredients when we evaluate the integral are the monotonicity of
the derivative of hμ in ]1 − μ

2
, 1[ and the fact that hμ(1 − μ

4
) and hμ(1 − μ

2
)

do not depend on μ.

Next result is an upgrade of Proposition 3.5 towards the proof of Theorem
3.1.
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Proposition 3.6. Let n ≥ 3, ε > 0, P,Q,R be distinct interior points of In

with |P−Q|, |P−R|, |Q−R| < ε. Consider δ > 0 such that U = Vδ(PR∪RQ)
is compactly included in the interior of In and diam(U) < ε. Let p < n− 1.

The function Hk = Fk,R,Q◦Fk,P,R, where Fk,R,Q, Fk,P,R are given by Propo-
sition 3.5 satisfies Hk(P ) = Q, sends a neighbourhood of P by translation
onto a neighbourhood of Q, is equal to the identity in R

n \ U , and

sup
k
‖Hk − Id‖∞ < ε, lim

k→∞
‖Hk − Id‖1,p = 0.

Proof. Let c = |P−R|
2

, c′ = |Q−R|
2

and a, a′ be such that c < a < c +
δ, c′ < a′ < c′ + δ, a, a′ < ε/2. Consider T, T ′ : R

n → R
n rotations

such that T (−c, 0, . . . , 0) = P , T (c, 0, . . . , 0) = R, T ′(−c′, 0, . . . , 0) = R,
T ′(c′, 0, . . . , 0) = Q.

Consider 0 < μ, μ′ < 1 such that (1−μ)a > c and (1−μ′)a′ > c′ and, for
0 < b, b′ < δ, the ellipsoids Ea,b = T (Σa,b) and Ea′,b′ = T ′ (Σa′,b′), which are
contained in U .

Then, since a, a′, μ, μ′, T, T ′ are fixed we will drop them from the in-
dexes. If Fb = Fa,b,μ,T and Gb′ = Fa′,b′,μ′,T ′ and Hb,b′ = Gb′ ◦ Fb, we have
‖Hb,b′ − Id‖∞ < diam(U) < ε and

‖Hb,b′ − Id‖Lp(In) ≤ ‖2ε‖Lp(Ea,b∪Ea′,b′ )
= 2ελ(Ea,b ∪ Ea′,b′)

1/p .

Hence, using Corollary 3.4 and noticing that Hb,b′ = Gb′ outside Ea,b, we
obtain

∥∥∥∥∂ (Hb,b′ − Id)i
∂xj

∥∥∥∥
Lp(In)

≤
∥∥∥∥∂ (Hb,b′)i

∂xj

∥∥∥∥
Lp(Ea,b∪Ea′,b′ )

+ ‖1‖Lp(Ea,b∪Ea′,b′ )

≤
∥∥∥∥∂ (Hb,b′)i

∂xj

∥∥∥∥
Lp(Ea,b)

+

∥∥∥∥∂ (Gb′)i
∂xj

∥∥∥∥
Lp(Ea′,b′\Ea,b)

+ ‖1‖Lp(Ea,b∪Ea′,b′ )

≤ C1
a

bμ

a′

b′μ′
λ(Ea,b)

1/p + C0
a′

b′μ′
λ(Ea′,b′)

1/p + λ(Ea,b ∪ Ea′,b′)
1/p

≤ C1aa
′

bb′μμ′
(
wn a b

n−1)1/p + C0a
′

b′μ′
(
wn a

′ b′n−1
)1/p

+ λ(Ea,b ∪ Ea′,b′)
1/p.

Choosing s such that 0 < s < n−1
p
−1 and b′ = bs then the conclusion follows

letting b converge to 0.
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Since, by Proposition 3.5, Fb restricted to a neighbourhood of P and Gb′

restricted to a neighbourhood of R are rotations of angle π on the plane
defined by P , R and Q, then Hb,b′ = Gb′ ◦ Fb is locally a translation around
P . �

We can now prove Theorem 3.1.

Proof. (of Theorem 3.1) Let P = {Pi, Qi : i = 1, . . . , N} and J = {i : Pi �=
Qi}. Let {Ri}i∈J be a set of distinct points of the interior of In not in P
such that PiRi ∩PjRj = RiQi ∩RjQj = ∅, if i �= j, |Pi−Ri|, |Ri−Qi| < ε/2
and

PiRi ∩RjQj =

⎧⎨
⎩

Ri if i = j
Pi if Pi = Qj

∅ otherwise .

This can be done by a step by step argument. To avoid overweight of no-
tation, we suppose that J = I. First we choose R1 in a small ball around
the midpoint P1+Q1

2
and such that (P1R1 ∪R1Q1)∩P = {P1, Q1}. Then, for

i = 2, . . . , N , we choose Ri in a small ball around the midpoint Pi+Qi

2
and

such that (PiRi ∪RiQi) ∩ (P ∪⋃i−1
j=1 PjRj ∪RjQj) = {Pi, Qi}.

Let δ > 0 be such that, if L1, L2 are two line segments, each one of the
form PiRi or RjQj, then Vδ(L1) ∩ Vδ(L2) = ∅ if and only if L1 ∩ L2 = ∅ (see
Figure 1).

For each i ∈ I, consider ellipsoids Ei and Ẽi such that PiRi ⊆ Ei ⊆
Vδ(PiRi) and RiQi ⊆ Ẽi ⊆ Vδ(RiQi).

Let Gk,i = Fk,Pi,Ri
and Hk,i = Fk,Ri,Qi

be given by Proposition 3.5, if
i ∈ I, and Gi = Hi = Id, otherwise.

Define Gk = Gk,1 ◦ · · · ◦ Gk,N , Hk = Hk,1 ◦ · · · ◦Hk,N and Fk = Hk ◦ Gk.
We have that,

Fk − Id =
∑
i,j

χEi∩G−1
k,i(Ẽj)

(Hk,j ◦Gk,i − Id) +
∑
i

χEi\(∪jG
−1
k,i(Ẽj)) (Gk,i − Id)

+
∑
j

χẼj\(∪iEi)
(Hk,j − Id) .

Notice that, when applying the function Fk − Id to a point, at most one of
the terms is non-zero. Then, by the choice of the points Ri, we have that

‖Fk − Id‖∞ = max
i,j
{‖Hk,j ◦Gk,i − Id‖∞, ‖Gk,i − Id‖∞, ‖Hk,j − Id‖∞} < ε .
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P1 = Q3

P3 = Q2R3

R1 P2 = Q1

R2

P11 = Q11

P10 = Q10

P9

R9

Q9

P4 = Q5

R5

P5 = Q4

R4

P6 = Q8

R6

P8 = Q7

R8

P7 = Q6

R7

Figure 1: An illustrative example of the setting of Theorem 3.1.

Furthermore,

‖Fk − Id‖1,p ≤
∑
i,j

‖Hk,j ◦Gk,i − Id‖1,p

+
∑
i

‖Gk,i − Id‖1,p +
∑
j

‖Hk,j − Id‖1,p.

Hence, the conclusion follows from the previous proposition. �

4. Volume preserving Sobolev weak Lusin theorem

In this section we prove a volume preserving weak Lusin theorem for the
Sobolev class W1,p

λ (X), for p < n− 1 and show that if p > n the result is not
true.

11



Theorem A (Volume preserving Sobolev weak Lusin theorem). Let
X be a closed connected n-dimensional manifold, n ≥ 3. Let ε > 0 and
g ∈ G(X) with ‖g − Id‖∞ < ε.

Let 1 ≤ p < n− 1. Then given any weak topology neighbourhood W of g,
there exists f ∈W

1,p
λ (X) such that f ∈ W and ‖f − Id‖∞;1,p < ε.

In addition, f ∈W
1,∞
λ (X).

Since any smooth closed connected n-manifold can be obtained from In

by making boundary identifications, it follows, using a Moser’s result [8], that
the proof of Theorem A reduces to the proof on the unit cube. For this, we
will follow the strategy of the proof of [3, Theorem 6.2], adapting it to the
Sobolev setting. As a key step, we will prove that a dyadic permutation of In

can be approximated by a Sobolev-(1, p) volume preserving homeomorphism
of In, in the sense described in Theorem 4.1.

We recall that a dyadic permutation of In of order m is a bijection
P : In → In which permutes by simple translation the dyadic open cubes
that are products of intervals of the form ]k/2m, (k + 1)/2m[.

Theorem 4.1. Let ε > 0 and P be a dyadic permutation of the cube In,
n ≥ 3, with ‖P − Id‖∞ < ε.

Let 1 ≤ p < n − 1. Then given any γ > 0, there is f ∈ W
1,p
λ (In),

with ‖f − Id‖∞;1,p < ε, and equal to the identity on a neighbourhood of the
boundary, satisfying

λ{x : P(x) �= f(x)} < γ .

In addition, f ∈W
1,∞
λ (In).

Proof. Without loss of generality we can suppose that P is a permutation
of dyadic cubes σi, i = 1, . . . , N , with diameter less than (ε−‖P−Id‖∞)/3.
For 0 < β < 1, we denote by σβ

i the cubes concentric to σi with parallel faces
and such that λ(σβ

i ) = β λ(σi). We denote by Pi the center of the cube σi

and let Qi = P(Pi), i = 1, . . . , N . By hypothesis, |Pi − Qi| < ε for every
i. Since ‖P − Id‖∞ < 1

3
ε+ 2

3
‖P − Id‖∞, applying Theorem 3.1 to the sets

{Pi}Ni=1 and {Qi}Ni=1, we obtain a volume preserving C∞ diffeomorphism of
In equal to the identity on a neighbourhood of the boundary of In and

‖F − Id‖∞;1,p <
1
3
ε+ 2

3
‖P − Id‖∞. (4)

12



Furthermore, since F sends a neighbourhood of Pi by translation onto a
neighbourhood of Qi, there exists 0 < α < 1 such that F = P on σα

i , for
every i. Consequently, λ{x : P(x) �= F (x)} ≤ 1 − α. If 1 − α < γ, the
Theorem is proved taking f = F . Otherwise, it is clearly enough to obtain
a map f which coincides with P on the cubes σβ

i , for some β such that
β > 1−γ. Fix β > 1−γ. To obtain f we first define a map T : In → In (not
volume preserving) which leaves each cube σi invariant in the following way:

T sends σα
i radially onto σβ

i , with constant Jacobian matrix JT = n

√
β
α
.Id,

and sends σi \ σα
i radially onto σi \ σβ

i , with constant Jacobian matrix JT =
n

√
1−β
1−α .Id.

Finally, we define the map f := TFT−1. This map satisfies the following:

(i) λ{x : P(x) �= f(x)} < γ , by construction.

(ii) Jf(x) = JF (T−1(x)), except in the boundary of σi, σ
α
i and σβ

i . For
this, just notice that x ∈ ∪i int(σ

β
i ) if and only if f(T−1)(x)) ∈ ∪i int(σ

α
i ) .

(iii) f is volume preserving. Since, by (ii), Jf(x) = JF (T−1(x)), except in
the boundary of σi, σ

α
i and σβ

i , we have that det Jf(x) = 1.

We will now obtain the control of ‖f − Id‖∞;1,p. By Theorem 3.1, we
have that ‖f − Id‖∞ ≤ ‖F − Id‖∞ + 2‖T − Id‖∞ < ε.

Furthermore, using (ii), the change of variables defined by T−1 and the
fact that F = P in σα

i , we obtain that

∑
j,k

∥∥∥∥∂(f − Id)k
∂xj

∥∥∥∥p
p

=
∑
j,k

∫
In

∣∣∣∣∂(F − Id)k
∂xj

(T−1(x))

∣∣∣∣p dx

=
∑
j,k

∫
In

∣∣∣∣∂(F − Id)k
∂xj

(x)

∣∣∣∣p det JT (x) dx
=
∑
j,k

∫
In\∪σα

i

∣∣∣∣∂(F − Id)k
∂xj

(x)

∣∣∣∣p det JT (x) dx
=

1− β

1− α

∑
j,k

∫
In\∪σα

i

∣∣∣∣∂(F − Id)k
∂xj

(x)

∣∣∣∣p dx

≤ 1− β

γ

∑
j,k

∥∥∥∥∂(F − Id)i
∂xj

∥∥∥∥p
p

.

Hence, taking β large enough, the conclusion follows. �
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We can now complete the proof of Theorem A.

Proof. (of Theorem A) Let ε > 0 and g ∈ G(In) with ‖g − Id‖∞ < ε. Let
δ, γ > 0. We will obtain f ∈ W

1,p
λ (In), with ‖f − Id‖∞;1,p < ε and equal to

the identity on the boundary of In, satisfying λ{x : |g(x)− f(x)| ≥ δ} < γ.
The automorphism g ∈ G(In) can be weakly approximated by a dyadic

permutation R with ρ(g,R) small. This follows from the denseness of dyadic
permutations in G(In), in the weak topology (see [2, §2] or [3, Lemma 6.4]).

Furthermore, the dyadic permutation R can be weakly approximated by
another dyadic permutation P such that λ{x : |g(x)−P(x)| ≥ δ} < γ and
‖P − Id‖∞ < ε. The technique for this approximation is described in the
proof of [3, Theorem 6.2, p. 46].

Set γ0 := γ − λ{x : |g(x) −P(x)| ≥ δ}. Applying Theorem 4.1 to the
permutation P we obtain a map f ∈ W

1,p
λ (In), with ‖f − Id‖∞;1,p < ε,

and equal to the identity on a neighbourhood of the boundary, satisfying
λ{x : P(x) �= f(x)} < γ0 . Hence, λ{x : |g(x)− f(x)| ≥ δ} < γ . In addition,
f ∈W

1,∞
λ (In). �

Example 4.1 (Counterexample to Theorem A for p > n). Consider p >
n and g any continuous element of G(In) different from the identity. Let
ε0 > 0 and x0 ∈ In be such that

|g(x0)− x0| = ‖g − Id‖∞ = ε0.

For k > 0 let Dk =
{
x ∈ In : |x− x0| < 1

k
, |g(x)− g(x0)| < 1

k

}
. Notice that

δk = λ(Dk) > 0, since Dk is a non-empty open set.
If the weak Lusin Theorem was valid for W

1,p
λ (In) then, for k ∈ N there

would exist fk ∈W
1,p
λ (In) such that

‖fk−Id‖∞;1,p < ε0+
1
k
, λ (Ak) < δk, where Ak = {x ∈ In : |fk(x)− g(x)| ≥ δk}.

By construction Dk �⊆ Ak. Consider x1 ∈ Dk \ Ak. Then

‖fk − Id‖∞ ≥ |fk(x1)− x1| ≥ |g(x1)− x1| − |g(x1)− fk(x1)| ≥ ε0 − 2
k
− δk.

Since ‖fk − Id‖∞;1,p = ‖fk − Id‖∞ + ‖D(fk − Id)‖p, we obtain ‖D(fk −
Id)‖p ≤ 3

k
+ δk. As fk = Id on the boundary of In we conclude that the

sequence (fk)k∈N converges to Id in W 1,p(In). Moreover, as p > n then
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(fk)k∈N converges to Id in C0(In) which is absurd because ‖fk − Id‖∞ ≥
ε0 − 2

k
− δk.

We observe that, this example also shows that Theorem A is not valid for
C

0,α
λ (In), for all 0 < α ≤ 1. Indeed, as before, we obtain fk ∈ C

0,α
λ (In) such

that

‖fk − Id‖∞ ≥ ε0 − 2
k
− δk, sup

x 
=y

|(fk − Id)(x)− (fk − Id)(y)|
|x− y|α < 3

k
+ δk.

Choosing y such that fk(y) = y we have |(fk−Id)(x)| <
(
3
k
+ δk

)
(diam(In))α,

which is a contradiction.
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Tecnologia’, through Centro de Matemática e Aplicações (CMA-UBI), Uni-
versidade da Beira Interior, project UID/MAT/00212/2013.

References

[1] Steve Alpern, Approximation to and by measure preserving homeo-
morphisms, J. London Math. Soc., 18(2) (1978), 305–315.

[2] Steve Alpern and Robert D. Edwards, Lusin’s theorem for measure
preserving homeomorphisms, Mathematika, 26(1) (1979), 33–43.

[3] Steve Alpern and Vidhu S. Prasad, Typical Dynamics of Volume Pre-
serving Homeomorphisms, Cambridge Tracts in Mathematics, 2000.

[4] Edson de Faria, Peter Hazard, Charles Tresser, Infinite entropy is
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