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A B S T R A C T

Additive manufacturing (AM) is a hot topic nowadays, having a first order in importance in research trends,
improving existent technologies and carrying them further. AM can be applied to ceramics, which have im-
portance in current technologies. Their capability to maintain functional properties for long time periods,
combined with the easiness to process and the abundance of raw materials, make them a fundamental part of
mankind development. Within ceramics, stoneware has a wide range of uses but in some conditions, it can be
affected by biofouling. Ti(O)N and Ag-Ti(O)N coatings over 3D printed stoneware, were presented as multi-
functional solution, linking aesthetical and antimicrobial properties. Films were developed by reactive direct
current (DC) magnetron sputtering and characterized physical, chemical and morphologically, as well as re-
garding their colour variation. Moreover roughness, wettability, antibacterial and antibiofouling were also
evaluated. The results revealed that the Ag doped coatings (with or without oxygen addition) had an enhanced
multifunctionality compared to control samples (without Ag). Ag nanoparticles addition created a surface with
potential antibacterial and antibiofouling activities, in order to resist outdoors and aqueous environments,
making these films able to be applied in architectural pieces as sculptures or other decorative parts, maintaining
their properties with good aesthetical properties.

1. Introduction

Additive manufacturing (AM) is a trend topic nowadays on research
and innovation. AM could be understood like layer-by-layer building
technique performed to obtain designed pieces with functional prop-
erties and optimized performance. Also, it will allow complex structures
with lower times and decreasing energy costs to be realized [1]. This
technology is adaptable and versatile because it can use various types of
materials: metals, polymers, ceramics and compounds. Selective laser
sintering (SLS), direct laser metal forming (DLMF), electron beam
melting (EMB), stereolithography (SLA) or fused deposition modelling
(FDM) are some AM technologies applied currently by many re-
searchers and in some cases, on a commercial scale [2,3].

The advent of AM brought unprecedented possibilities in different
areas, such as biomedicine, with sintered alloys and various polymers in

implants, soft tissue replacements, drug deliveries, among others [2];
aerospace industry, in reduced volume parts and replacements parts for
aircraft with advanced materials as aluminium alloys, titanium alloys,
nickel super-alloys and special steels; automotive industry, in the de-
velopment of some structural and engine parts; and tooling industry,
like moulds with complex refrigeration systems enabling better per-
formances and higher life time, [3].

Additive manufacturing, namely with metals and polymers, is no
longer the future, it is the unavoidable present, but the additive man-
ufacture of ceramic materials is still far from the desired maturity.
Abundance, easy manipulation, low cost, heat resistance and long life
time span are the main characteristics of ceramics [4] and across
human history, new technologies have enlarged its uses. Chemically,
ceramics can be considered as compounds formed between metallic and
non-metallic elements with predominant ionic bonding but having a
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covalent character [5]. Typically, traditional ceramics are made of clay
and water, which is formed and dried later. Thus, some AM technolo-
gies have been adapted to use ceramics in some specialized and ad-
vanced applications as Wei et al. [6] that used SLS to form complex
structural parts with Si3N4, known by its good dielectric and mechan-
ical properties. Unlike conventional methods to produce Si3N4, it is
possible to obtain ultra-high porosity with SLS, improving mechanical
strength for possible post-treatments [6]. Other example could be the
study developed by Dasan et al., where porous 3D printed akermanite
scaffolds from silicones by direct ink writing and firing treatment,
achieved some promising results, almost obtaining a crack-free and
phase pure material [7]. These works are very far from ancient times,
when first human civilizations, were using ceramics in common stuff as
pottery or recipients. Probably, architecture is the most antique and
major user of ceramics and nowadays, still has wide use in intelligent
windows, glazed titles, constructions bricks, buildings and reinforced
structures, opening new horizons and challenges for additive manu-
facturing using ceramics as base materials.

However, ceramics are not perfect and present problems or weak-
ness in other aspects as stiffness, low toughness and high porosity. The
last one, plays a crucial role promoting the biological attaching process
when ceramics are exposed to outdoor conditions [8]. Among the
biological agents studied are cyanobacteria, lichens, mosses, algae and
fungi [4]. All these agents can provoke a decay in aesthetic appearance,
which are key aspects in some ceramics' applications as architectural
pieces and artworks. In this context, several studies established the
influence of geographic location and climate aspects as important facts
to consider in the characterization of biofilms in nature [4].

Obviously, biological agents' attachments (better known as bio-
fouling) on ceramics surfaces means high maintenance costs, and, ad-
ditionally in cases where pieces are considered as cultural heritage, the
maintenance cost or a possible restoration can be incommensurable. For
instance, Ortega et al. [9] performed a study about how cyanobacteria
attached to the walls of two cathedrals (Spain and Sweden), promoting
physical harm. Across observations, authors noted that the walls ex-
hibited significant damage with grains detaching, and in some parts, up
to some millimetres into the walls. The authors demonstrated as cya-
nobacterial-algal communities damaged the walls owing to the high
porosity of the stone that composed the walls, keeping always humidity
caught inside it, and so facilitating the biofilm growth. In addition,
Bastian et al. [10] performed a study on how microbiology affected the
Lascaux cave (France). The algae and fungi biofilms were formed in
ceiling and walls respectively influenced by arthropods and human
intervention, causing a potential damage in Palaeolithic paintings
found inside the cave. But not only cultural heritages have been stu-
died, Assets as private houses have been studied too as the case of Et-
tenauer and collaborators [11].

In order to preserve good conditions on ceramics surfaces, process
as glazing, cooking or coatings are widely used and in the latter case,
painting is the most common protection procedure applied as a fin-
ishing stage for its availability, ease of application and relative low cost.
However, when we are talking about biofouling, paints do not avoid it
altogether and it is necessary to apply some more advanced surface
modification's technologies. Recent studies have tried to find some so-
lutions for this problem applying photocatalytic layers [12,13], “cool”
paints [14–16], silica-containing paints [17] and silver nanoparticles
suspension [18]. These techniques have been applied on ceramics
trying to contribute against climate changes and finding sustainable
built processes to obtain multifunctional coatings and enlarge possibi-
lities for new uses. In future scenarios, self-cleaning behaviour, anti-
biofouling and outdoor conditions resistance are always searched in
order to maintain materials integrity, reducing maintenance costs. In
addition to the mentioned topics, aesthetic properties are also a quite
important point for the architectural field.

Therefore, the present study aims to obtain a coating that in-
corporates all the desired properties and additionally, can be simply

customised with a significative colour variation in 3D printed stone-
ware samples, using a physical vapor deposition technique in order to
achieve the desired multifunctionality (aesthetic and antibiofouling) for
potential architectural pieces. It is important to highlight the im-
portance of the current study since it opens the possibility of integrating
a PVD process and additive manufacturing technologies (as 3D
printing) in order to obtain a higher performance in ceramic pieces,
which is possibly applicable to other substrates. Other studies were
focused in obtaining antibiofouling properties in marine applications
[19,20], medical implants [21,22] or water treatments [23], until now,
none has studied how to integrate aesthetic and antibiofouling prop-
erties as part of a multifunctional applied solution.

2. Experimental

The coatings were developed by direct current (DC) magnetron
sputtering technique, using a reactive atmosphere of Ar + N2 + O2.
The Ti and Ag targets (200 × 100 mm2) are vertically aligned in op-
posed position arranged in closed field configuration with a substrate
holder placed under rotation (7 rpm) in the centre at 70 mm distance.
All films were sputtered onto stainless steel 316L, (100) silicon wafer
and 3D printed stoneware 130-MP. The substrates were cleaned in
distilled water, acetone and ethanol sequentially for 10 min in an ul-
trasonic bath in order to remove any impurity or contamination. After
ultrasonic cleaning, stoneware samples were heated at 100 °C for 1 h to
remove any absorbed humidity. Additionally, prior to coating deposi-
tion, substrates were cleaned by etching with an argon plasma (75 sccm
Ar flow rate) for 15 min, using a pulsed direct current power source at
0.3 A, 1536 ns reverse time and 200 kHz pulse frequency.

Two sets of coatings were deposited in the present study: set 1 —
TiN based system with oxygen addition in order to obtain different
colours; set 2 — Ag-TiN based system with oxygen addition to obtain
multifunctional coatings with colour variation and biofouling resistance
with the inclusion of silver nanoparticles inside the film or over the top
layer. To achieve proposed coatings in the sputtering process, reactive
atmosphere and some parameters were varied according to the sche-
matic representation shown in Fig. 1 and Table 1, and taking account
the silver content cannot raise up 5 at.% in order do not degrade the
mechanical properties as achieved in previous results [24,25]. During
deposition, the temperature and the base pressure were kept constant at
450 K and around 4 × 10−4 Pa, respectively. For silver containing films
the current density applied to the Ti target was 10 mA/cm2 and to the
Ag target 0.6 mA/cm2. While the Ti target was connected to a direct
current power supply, the Ag target was operated with a pulsed direct
current power supply at a frequency of 200 kHz and a reverse time of
1536 ns. For Ti(O)N, and Ag-Ti(O)N coatings, an additional TiN inter-
layer was deposited for 5 min before the final film. For O2 addition in a
controlled manner, a reactive gas pulsing process (RGPP) controlled by
software was used, wherein is possible set different duty cycles in order
to avoid poisoning. The duty cycle used in this work was already well
described in previous studies [26–30]. To perform oxygen pulses in
cyclic waves into the deposition chamber, it was modified the cycle
period (T = tON + tOFF) and the signal shape in order to achieve the
desired characteristics. According with Carvalho et al. [31], the duty
cycle percentage (α) will be equal to the time when the signal is at the
maximum flow allowed (tON) divided by the cycle period (α = tON / T).
For the present study, was used a 45 s period in a square wave. O2 duty
cycle set-ups were 40 and 80% (corresponding to tON equals to 18 and
36 s respectively), meaning that the oxygen flowing towards the
chamber was present in the sputtering process just in a percentage of
deposition time. In both sets, the minimum oxygen intake (qmin) al-
lowed in duty cycle was 0 sccm. The maximum oxygen flows (qmax) and
times are exposed in Table 1.

The film morphology as well as film thickness and the chemical
composition have been measured on films deposited on Si substrates in
the same deposition run using a FEI Nova 200 scanning electron
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microscope (SEM) equipped with an EDAX Pegasus X4M detector for
energy-dispersive X-ray spectroscopy (EDS) at 15 kV and a working
distance of 5 mm.

Three measurements were taken on each obtained coating to assess
the surface uniformity. All SEM micrographs were processed in ImageJ
software and each length or diameter measure was made 10 times in
order to obtain a consistent value.

Phase configuration and structures on coatings were assessed by X-
ray diffraction (XRD) in a Bruker D8 Discover with CuKα
(λ = 1.5406 Å) radiation operated at 40 kV and 40 mA with 0.04° step
size on 316L stainless steel substrates. Pseudo-Voigt function was used
to fit all measurements, obtaining the full width at half-maximum
(FWHM) for grain size calculations by Scherrer formula.

Ceramic samples with coatings were submitted to colour study in
the CIE L*a*b* colour space with a commercial MINOLTA CM-2600d
portable spectrophotometer under the standard CIE illuminant D65.
The obtained measurements (average of 3 measurements) were dis-
played in the 1976 CIE L*a*b* colour space. Also, wettability behaviour
was assessed on Dataphysics OCA20 equipment. The water contact
angle (WCA) was measured using a 2 μl syringe with ultrapure water
(99,99%) at room temperature. Also, samples roughness was estimated
through atomic force microscopy (Icon Dimension, Bruker) with a
conductive Si cantilever in the contact mode. The average roughness
(Ra) was obtained after three independent measurements, holding a
2.5 × 2.5 μm2 area. The antibacterial activity of obtained coatings was
tested against Staphylococcus epidermidis (ATCC 12228 obtained from
American Type Cell Collection). Zone of Inhibition tests, adapted from
Kirby-Bauer method [32], were performed to evaluate the antibacterial

activity of samples. Initially, the inoculation of a single colony was
carried out in 20 ml Tryptic soy broth (TSB, Merck) culture and in-
cubated at 37 °C overnight at 120 rpm. The cell suspension obtained
was adjusted to an optical density (OD) of 0.8 at 620 nm and properly
diluted in culture media to 1 × 106 CFU/ml. An aliquot of cellular
suspension (300 μl), was spread in Tryptic Soy Agar (TSA, Merck) petri
dishes. After medium solidification, the samples (previously sterilized
by exposure of± 1 h to UV light) were placed separately on the top of
the agar plate, placing the side with treatment in contact with the agar
and incubated for 24 h at 37 °C. After the incubation period, the halo
(zone of transparent medium, which means that there is no bacteria
growth) formed around the sample was measured and photographed to
record the results (images captured with Image Lab™ software). All
experiments were repeated in at least three independent assays.

Antibiofouling test was performed in a medium prone to biofouling
formation. Water from an aquarium with fishes and without additional
cleaning (e.g. filtering or chemically cleaning) was removed every week
(half of the total volume, which was replaced by fresh water in the
aquarium) and placed in 6 well-plates containing the samples as shown
Fig. 2 (every time, half on the volume (2 ml) was removed and the new
amount of water from the aquarium was placed). The experiment lasted
2 months. Later, the samples were carefully washed three times in
distilled water and dehydrated by immersion in increasing ethanol
concentration solutions with 70, 95 and 100% (v/v) for 10, 10 and
20 min respectively, and placed in a sealed desiccator. Afterwards, the
samples were mounted on aluminium stands with carbon tape, sputter
coated with gold and observed with a NanoSEM — FEI nova200
equipment. In order to assess the extent of biofouling formation in each

Gas atmosphere: Argon (55
sccm)

Ti current density: 5 mA/cm2

Time: 900 s

Ti interlayer

Substrate

Top layer

Gas atmosphere: Argon (55 sccm) + Nitrogen (7.5 sccm) +
Oxygen (0, 1.2 or 1.5 sccm)

Ti current density: 10 mA/cm2 – Ag current: 0,12 A (Pulsed)
Time: 5400 s (with Ag) or 7200 s (without Ag)

Gas atmosphere: Argon (55
sccm) + Nitrogen (7.5 sccm)

Ti current density: 10 mA/cm2

Time: 300 s

Duty
cycle

Fig. 1. Schematic representation and parameters of deposited films.

Table 1
Layers applied for all depositions on present study.

Top layer Ti interlayer TiN interlayer O2 flow Duty cycle time

Set 1
Ti(O)N

TiN ✓ ✕ ✕ ✕

TiON-DC40 ✓ ✓ ✓ (1.5 sccm) 18 s
TiON-DC80 ✓ ✓ ✓ (1.5 sccm) 36 s

Set 2
Ag-Ti(O)N

Ag-TiN ✓ ✓ ✕ ✕

Ag-TiON-DC40 ✓ ✓ ✓ (1.2 sccm) 18 s
Ag-TiON-DC80 ✓ ✓ ✓ (1.2 sccm) 36 s
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sample, three fields were used for image analysis.

3. Results and discussion

3.1. Chemical and morphology characterization

Regarding to the chemical composition, Table 2 shows a resume of
the films composition through EDS analysis. The results depicted that as
expected increasing the duty cycle (DC) on the O2 flux, it is possible to
increase the oxygen content and obviously decrease the nitrogen con-
tent for both sets of samples (example, compare TiON-DC40 with TiON-
DC80). In regard to silver addition (set 2), a maximum of 3 at.% was
reached. Regarding the Ag-Ti(O)N films, no a meaningful silver varia-
tion was observed related to an O/N ratio increase.

Through the deposition time and coatings thickness, estimated by
SEM analysis, it was possible to determine the deposition rate (Table 3).
One aspect that can be highlighted is that the deposition rate is clearly
increased with addition of silver on the coatings, even for very low
atomic content. Since Ag show higher sputtering yields comparing with
Ti (3.12 and 0.51, when bombarded with Ar at 0.5 keV, respectively
[33]), the deposition of this element results in higher deposition rates.

The top-view and cross-section morphologies of the Ag-Ti(O)N
coatings are presented in Fig. 3a)–f) as sections I and II, respectively.

The Ti(O)N coatings' surface has flake-shaped mounds with few
column border definitions for low O2 flow rates (low duty cycle). For
higher oxygen content, the films become denser and with a decrease on
the roughness. This trend is similar as expected for both sets, even if
with silver incorporation densification becomes less evident or even
retarded. In fact, Ag-TiN coating presents three-sided pyramidal shaped
grains, uniformly on a more open surface, induced by the grow of a
second silver phase. For samples with silver and high oxygen content it
is possible to see the presence of Ag clusters and some aggregates on the
surface as it has been reported in other studies [34–36]. The formation
of Ag nanoparticles is related to the immiscibility of Ag in the Ti(O)N
matrix. It was reported for Lopes et al. [37] that Ag-TiNx coatings were
composed of Ag clusters segregated from the TiN cubic grain bound-
aries, which appear as bright spots in the SEM micrographs. Several
authors have reported that silver clusters are able to diffuse in the base
coating, which leads to a non-uniform Ag distribution along the coating
thickness. In order to clarify these findings, the morphology of the
coatings was analyzed by cross-sectional SEM micrographs of fractured
samples. The cross-section of the samples shows a columnar-type
structure common in this type of films with relative low deposition
temperature according with Thornton diagram [38], even with a den-
sification promoted with the oxygen incorporation. All depositions with
Ag, presented nanoparticles in the boundaries of the columns quite well
distributed along the coating thickness. Other important fact revealed
by the cross-section images was the accommodation of Ag nanoparticles
in the Ag-TiN coatings, embedded uniformly across the film. This ac-
commodation in the film could be the cause of the dramatical change in
the coating growth, promoting the non-uniform top profile sighted in
the Fig. 3 section II e).

3.2. Structural analysis

XRD analysis was performed in order to understand the evolution of
the structure with the incorporation of oxygen and silver elements on
the TiN base matrix. The XRD patterns are presented in Fig. 4 and the
reference peaks were obtained from the International Centre for Dif-
fraction Data (ICDD) database and the main crystalline phase was

Fig. 2. Representation of biofouling tests.

Table 2
Composition of the samples obtained corresponding to every deposition set-up.

Sample name Color Ti 
(at. %) 

N 
(at. %) 

O 
(at. %) 

Ag 
(at. %) 

O/N 
ratio 

Set 1 
Ti(O)N

TiN  52 ± 0.26 48 ± 0.62 - - - 
TiON-DC40*  49 ± 0.25 29 ± 0.48 22 ± 0.66 - 0.76 
TiON-DC80**  48 ± 0.26 14 ± 0.36 38 ± 0.83 - 2.71 

Set 2 
Ag-Ti(O)N

Ag-TiN  52 ± 0.25 45 ± 0.61 - 3 ± 0.07 - 
Ag-TiON-DC40*  45 ± 0.23 27 ± 0.44 28 ± 0.67 1 ± 0.04 1.04 
Ag-TiON-DC80**  44 ± 0.24 17 ± 0.37 38 ± 0.77 1 ± 0.04 2.23 

*Duty cycle 40%.
**Duty cycle 80%.

Table 3
Thickness and deposition rates of achieved coatings over Si (100) wafers.

Sample
name

Interlayer
thickness
(μm)

Total thickness
(μm)

Deposition rate
(μm/h)

Set 1
Ti(O)N

TiN 0.08 0.7 ± 0.1 0.4
TiON-DC40 – 0.8 ± 0.1 0.4
TiON-DC80 0.10 1.2 ± 0.1 0.5

Set 2
Ag-Ti
(O)N

Ag-TiN 0.17 2.3 ± 0.2 1.3
Ag-TiON-
DC40

0.24 1.7 ± 0.2 0.9

Ag-TiON-
DC80

0.20 1.8 ± 0.1 1.0
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identified with the pattern no. 00-038-1420 (titanium nitride). The
differences in chemical composition correlate well with the differences
observed in the developed structure. It is important to highlight that no
significative changes were observed for intermediate oxygen contents,
in agreement also with functional properties. TiN based coatings (with

or without Ag) showed the typical peaks from (111), (200), (220) and
(311) planes characteristics of rock-salt (face cubic centred) structure as
has been reported on previous works about this system [30,39–44].
Also, a Ti peak was noticed from (002) plane according the pattern no.
00-051-0631, that corresponds to the adhesion interlayer.

2 μm

2 μm 2 μm2 μm

Ti
(O

)N
Ag

-T
i(O

)N

Oxygen increasing

)c)b)a

)f)e)d

1 μm

2 μm 1 μm1 μm

Ti
(O

)N
Ag

-T
i(O

)N

Oxygen increasing

)c)b)a

)f)e)d

1 μm 0.5 μm

b)

e)

Fig. 3. Section I. SEM top-view images as function of the Oxygen increase and also with silver incorporation. a) TiN, b) TiON-DC40, c) TiON-DC80, d) Ag-TiN, e) Ag-
TiON-DC40, f) Ag-TiON-DC80.
Section II. SEM cross-section images as function of the oxygen increase and also with silver incorporation. a) TiN, b) TiN surface profile detail denoted in the zone
from image a), c) TiON-DC80, d) Ag-TiN, e) Ag-TiN surface profile detail denoted in the zone from image d), f) Ag-TiON-DC80.
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Fig. 4a) displays the structural evolution of TiN coatings with O
addition. The decrease on the peaks' intensities with oxygen addition
could be interpreted as a crystallinity loss on films, turning to an
amorphous structure [30]. Comparing TiN and TiON-DC40 films, lattice
parameter decreased from 0.422 nm to 0.419 nm, which means a
structure contraction by oxygen substitution on TiN lattice [30]. Also,
applying the Scherrer formula to the TiN (111) plane reflections, the
grain size was 10 nm for the TiN film and with the oxygen incorpora-
tion, this value decreased to 5 nm in TiON-DC40 film. As the O2 flow
was rising, the peaks displayed on diffractograms corresponded to
substrate, confirming the crystallinity loss aforementioned. The samples
with silver incorporation (Fig. 4b) also exhibit a polycrystalline struc-
ture typical TiN structure reflection on abovementioned planes. In the
Ag-TiN film, it can be observed a slight shift to 2θ higher positions in
TiN peaks that could be promoted by a residual oxygen content into the
coating. Unlike Ti(O)N films, Ag doped coatings shown a substantial
rising in 38°, so that it was performed an inset in this position displayed
in Fig. 4c). According with the inset, in the Ag-Ti(O)N films were found
a sum of some silver phases peaks in closer positions. FCC-Ag (111) and
Ag2O (101) peaks were noticed regarding to ICDD patterns 00-004-
0783 and 00-019-1155 respectively. Despite the low content, it can be
noticed the evolution of silver into Ag doped films with the oxygen
incorporation. As oxygen content was rising, Ag (111) plane peak de-
cays up to be imperceptible in the Ag-TiON-DC80 coating and mi-
grating to a more stable phase, Ag2O. In fact, the appearance of Ag2O
phase in Ag-Ti(O)N films is coherent with the results found by Ferreri
et al. [35], where they achieved antibacterial activity in Ag-ZrCN
coatings and their XPS spectra disclose the presence of silver oxides in
the surface of these films. This fact could be meant a shift in the

functional behaviour against bacteria, as it will be discussed later.

3.3. Roughness and wettability

Wettability of the coatings to water (WCA) in room temperature its
average roughness (Ra) and root mean square roughness (Rq) are
summarized in Fig. 5 sections I and II. The stoneware without any
coating was considered as control.

Roughness measurements were performed on the Ti(O)N films dis-
played a reduction of surface roughness parameter in order to be near
to hydrophobic behaviour in TiON-DC80 coating. Also, in the AFM
images can be noted, like aforementioned in morphology character-
ization (Fig. 3 section I), the evolution of the compactness when the
oxygen incorporation was rising. In the Ag-Ti(O)N samples exhibited a
significant increasing in surface roughness parameters up to achieve a
superhydrophilic surface and with the oxygen incorporation, surface
turned more compact like the Ti(O)N system. According with these
results, silver promoted an increase on the roughness due first, to the
presence of silver nanoparticles on the surface of the thin film and
second, to formation of an open morphology as can be noted in Fig. 5
section II. The dense samples show a decrease in the roughness (TiON-
DC80 and Ag-TiON-DC80). Both tendencies were confirmed by the SEM
images.

According to the Wenzel model, water drops cover vacancies caused
by irregularities on surface and promote a quick “absorption”, unlike
Cassie-Baxter model that contemplate air entrapments among drop and
surface irregularities [45,46]. The first model is better to explain what
happened on surfaces for this study because the major part of the ob-
tained coatings was hydrophilic and according to the Wenzel model, the

a)

c)

b)

Fig. 4. XRD patterns obtained from developed films. a) Ti(O)N, b) Ag-Ti(O)N, and c) Ag-Ti(O)N. Inset denoted in image b) displaying Ag phases.
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Fig. 5. Section I. Surface images from AFM with Ra and Rq parameters and water contact angle (WCA) measurements on films of Ti(O)N deposited over stoneware in
coatings.
Section II. Surface images from AFM with Ra and Rq parameters and water contact angle (WCA) measurements on films of Ag:Ti(O)N deposited over stoneware in
coatings.
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b) c)

Fig. 6. Obtained colours over stoneware of all coatings according reactive gas flows with or without Ag doping (A) and colorimetric parameters of TiN (B) and Ag:TiN
(C) systems as function of Oxygen atomic percentage content.

Oxygen increasing
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(O

)N
Ag

-T
i(O

)N
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Fig. 7. Halo test performed with
Staphylococcus epidermidis. Blue squares cor-
respond to each sample and red dashed
squares exhibit the inhibition zones by the
formed halo. a) TiN, b) TiON-DC80, C)
Control sample, d) Ag-TiN and E) Ag-TiON-
DC80. (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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mechanism for this behavior correspond to the drop spreading on all
surface irregularities without let air stay caught between drop/sample
interface. As it is well known, a hydrophilic surface has a strong affinity
to water, otherwise a hydrophobic surface always will try to repel water
[47]. According some authors [45,47–50], the surface nature corre-
spond to specific WCA range values. A surface could be considered as
superhydrophobic when its WCA is higher than 150°, hydrophobic
when the WCA is among 90° and 150°, hydrophilic when the WCA is
among 10° and 90° and the last one, superhydrophilic when the surface
has a WCA < 10°.

In the set 1, it is possible to confirm that the stoneware surface
wettability is not significantly influenced by the coatings. In fact, the
stoneware generally is considered hydrophilic (WCA < 60°) and al-
most all coatings show a moderate hydrophilic character (60°– 90°),
where the oxygen addition promotes slightly a higher water repellence
(TiON-DC80 — WCA 85°).

Although, a strong decrease in the water contact angle from 75°
(TiN) down to 10° for Ag-TiN, was achieved. This superhydrophilic
behaviour can be associated to the open morphology of this sample
(Fig. 3 section II e), with their higher roughness and imperfections that
could promoted drop spread. Another point to highlight is the Ag na-
noparticles embedded on TiN columns, particularly on super-
hydrophilic films, even having a low Ag content, the clusters were
enough to promote spaces in the morphology (as it was observed in
Fig. 3), being able to alter the surface wettability behaviour.

It is well known that Ag integration on films is always focused on
antibacterial improvements [35,51–53], however in some cases, Ag has
been studied as a wettability agent. For instance, Skovager et al. [54]
obtained TiN and Ag/TiN through unbalanced magnetron sputtering
over stainless steel, and besides antibacterial test, the authors studied
roughness and wettability properties. In the TiN film, the Ra was equals
to 13.2 nm and WCA was equal to 28.3°, but with the silver in-
corporation (8.6 at.%), the roughness and WCA changed to 15.1 nm and
16.6° respectively. Other study case was performed by Thukkaram et al.
[55] which fabricated Ag-doped TiO2 in order to obtain antibacterial
properties. They revealed that with the silver incorporation into the
films, Ra and WCA has shown opponent behaviour. Ag doped films

displayed a hydrophilic behaviour with increasing Ra. These results
show that the Ag implementation to increase the roughness and its
contribution to the WCA decreasing, is consistent with the reported by
Calderon et al. [25] in order to explain the change in the morphology
due to the silver addition; when the silver amount is large enough, the
roughness is affected significantly, changing the surface profile but if
the silver content is not enough in the coating, the effect over the
roughness could be the opposite. In the study case, Ag contributed to
reduce WCA values significantly promoting Ra increasing, as well as a
significant change on the morphology where voids appeared along to
the film and facilitating the drop spreading. Otherwise, when the
morphology was more compact, Ra was lower and WCA was higher.
According to previous studies, superhydrophilic surfaces as Ag-TiN film
obtained, probably could achieve a self-cleaning behaviour with stag-
nant water regime as it was achieved by Yoon and collaborators [45].

3.4. Colour

Although by eye, it was clearly possible to see the colour variation
on samples (Fig. 6a), the colour was measured by spectrophotometry in
the 1976 CIEL*a*b* space (Fig. 6b and c). All cases show intrinsic
colours without interference phenomenon. Associating basic stoneware
colour results (L* = 79.65; a* = 1.76; b* = 11.95) with all deposited
films, it can be sighted a decrease trending on brightness (L* values). In
TiN system, films varied colour as O content was raising. The colour
changed from golden (characteristic in TiN) to dark purple tone (TiON-
DC80). When Ag was added, the colour was different and started with
dark golden in Ag:TiN sample and turned dark blue tone when had
higher O content. In both systems (with or without Ag), O2 flow pro-
moted changes to darker colour close to blue (b* in negative values and
a* near zero), this behavior is coherent compared with results described
in other studies [30,51]. It is possible to confirm that with direct cur-
rent reactive magnetron sputtering technique, the film colour change
can be achieved with relative easiness just changing O2 flow while the
deposition is performed, making this technology suitable to obtain
surfaces with desirable aesthetic properties.

Oxygen increasing
Ti

(O
)N

Ag
-T

i(O
)N

Control sample

Fig. 8. SEM images of antibiofouling test accomplished in stoneware substrates. a) TiN, b) TiON-DC80, c) stoneware (control samples), d) Ag-TiN, e) Ag-TiON-DC80
coatings and f) magnification of diatoms found (the great oval shapes) on surfaces.
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3.5. Antibacterial and antibiofouling tests

Nevertheless, in order to demonstrate that obtained surfaces resist
to biofouling, the following tests were performed.

The choice of samples to be tested was based on two aspects: i) the
coating colour and ii) the Ag content. To this end, samples with golden
(TiN) and dark purple (TiON-DC80) colours and dark golden with Ag
content of 3 at.% (Ag-TiN) and dark blue with 1 at.% (Ag-TiON DC80)
were evaluated.

Fig. 7 shows the halo test performed on the different coatings. The
Halo test results demonstrate a strong influence of Ag nanoparticles
avoiding bacterial growth in the sample's surfaces after 24 h of exposure
— the halo, i.e. zone of inhibition, is due to silver ion release from the
surface. It is possible to observe a clear halo surrounding the samples
with silver, with dimensions of 1.9 ± 0.3 mm and 4.1 ± 0.4 mm for
Ag-TiON-DC80 and Ag-TiN respectively, enhancing the antibacterial
activity for the highest silver content. Meanwhile, control sample and
coatings without Ag (control samples) were colonized by bacteria.
These results are ascribed to silver diffusion through the agar [56] and

are in agreement with the chemical composition of the samples pre-
sented on Table 2. The halo around the sample is larger on the sample
containing a higher amount of silver (Fig. 7d). The results of anti-
bacterial activity are in accordance with SEM images presented before
in Fig. 3, where Ag nanoparticles are present in the film or on the
samples surface, contributing for the inhibition of bacteria growth.

Fig. 8 shows the biofouling formation on samples surfaces after
2 months of immersion in water removed from an aquarium. A reduc-
tion of diatoms (microalgae) (microorganisms found in larger quan-
tities) was observed in the coatings with Ag (Fig. 8d and e), as also
verified in the antibacterial tests (Fig. 7). The sample with the highest
amount of silver, Ag-TiN showed the greatest reduction. These results
agree with the antibacterial activity observed in these coatings, and
with the results of Tendero et al. [57] which also obtained a decrease in
biofouling formation on a nanocomposite thin film of Ag nanoparticles
embedded in amorphous Al2O3 immersed for one week in riverine
waters.

Fig. 9. Functional prototypes in 3D stoneware immersed by 60 days in aquarium water, a) uncoated and b) Ag-TiN coated.
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4. Conclusion

TiN and Ag:TiN films with oxygen variation through duty cycle
were performed with reactive DC magnetron sputtering technique ob-
taining a large range of thicknesses (0.73–2.30 μm). SEM micrographs
revealed that oxygen increasing in TiN coatings influenced the mor-
phology shift to a more compact structure up to display a thick film and
with Ag incorporation, nanoparticles appeared on the surface or em-
bedded in the coating. In the cross-section views, it was possible to
observe a typical columnar growth profile in all coatings. XRD showed
the typical peaks for TiN system (FCC) and a strong loss of crystallinity
with higher oxygen amounts. Also, the shift to higher 2θ positions in
Ag-Ti(O)N system was sighted. This behavior corresponded to the
oxygen content, established by EDS results and, particularly in Ag-TiN
films, it was influenced by the residual oxygen inside the coating, as can
exhibited in the diffractograms. The silver incorporation into the films
was evidenced with Ag and Ag2O diffraction peaks, despite that the
samples had a low silver content, there was enough to impact the
crystallinity of coating. Roughness and Wettability results demon-
strated, in Ag doped films, a significant WCA decrease until achieving
superhydrophilic surfaces. The colours achieved in this study for TiN
system corresponded to golden tone, passing through purple tones with
oxygen increasing. In Ag-Ti(O)N system, the starting film displayed a
dark brown tone (Ag-TiN). Dark blue was the final colour with the
highest oxygen content no matter the system. Antibacterial and anti-
biofouling tests proved that Ag doped systems inhibited S. epidermidis
and microalgae growth. Comparing to naked eye the colours before and
after of antibiofouling test, all samples keep the same tones without
significant changes.

So, the present study suggests that Ag-TiN system have multi-
functional properties capable to resist in outdoors or aqueous en-
vironments. Based on aforementioned results, a functional prototype
was coated with Ag-TiN and it was exposed during 60 days to stagnant
aquarium water along with an uncoated prototype, just like the bio-
fouling test. The prototypes were manufactured in 3D printed stone-
ware as the samples used in this study. After the immersion, was clear
that Ag-TiN coating provides a better protection against surface for-
mation as it can be seen in Fig. 9. This last test can demonstrate that the
coatings developed by the present study can be easily tuneable to the
desirable decorative purposes with antibacterial and antibiofouling
potential effects, making these films an option to be applied in archi-
tectural stoneware parts made by AM.
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