
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Paulo Ricardo Cunha Correia Araújo

Data Analytics in IoT
FaaS with DataFlasks

November 2018

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Paulo Ricardo Cunha Correia Araújo

Data Analytics in IoT
FaaS with DataFlasks

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Prof. Dr. José Orlando Roque Nascimento Pereira
Dr. João Tiago Medeiros Paulo

November 2018

A C K N O W L E D G E M E N T S

Terminada mais uma etapa da minha vida, resta apenas agradecer a todas as pessoas que fizeram

isto possível.

Aos meus pais Manuel e Rosa, a quem eu devo tudo. Obrigado por sempre estarem ao meu lado

e acreditarem em mim, apesar dos incontáveis erros.

À minha namorada Rebeca. Obrigado por todo o apoio dado durante o último ano e por mostrar-

me o que a vida tem de melhor para oferecer.

Aos meus amigos João Rodrigues, Fernando Mendes, Francisco Sousa, Tiago Dinis e Orlando

Costa. Pelos momentos passados que fizeram da universidade uma aventura incrível. Um agradec-

imento especial ao João e ao Fernando, por sempre me ajudarem a melhorar para estar ao nível

deles.

Aos meus amigos Nuno Francisco, Bruno Oliveira e Hélio Costa. Obrigado pela amizade e pelas

histórias que levo de Braga, das quais nunca me vou esquecer.

Ao resto da minha família e amigos. Obrigado por toda a felicidade que me dão cada dia.

A todo o HASLab e em particular ao GSD pelo bom ambiente de trabalho e entreajuda.

A todo o Departamento de Sistemas Distribuídos da TU Wien, por acolher-me como se fosse da

casa.

Aos professores José Pereira e Hong-Linh Truong, pelo conhecimento e experiência que sempre

se disponibilizaram a passar.

Aos doutores João Paulo e Francisco Maia, pelos valiosos conselhos que fizeram esta tese pos-

sível. Em particular, um obrigado especial ao doutor João Paulo, pela incansável ajuda e paciência,

assim como pela motivação para alcançar esta meta.

Finalmente, algumas instituições apoiaram o trabalho apresentado nesta dissertação. A Fun-

dação para a Ciência e Tecnologia (FCT) apoiou este trabalho através da bolsa de mestrado. O De-

partamento de Informática da Universidade do Minho, o HASLab - High Assurance Software Lab e

a TU Wien, ofereceram-me as condições necessárias para o desenvolvimento deste trabalho.

i

A B S T R A C T

The current exponential growth of data demands new strategies for processing and analyzing in-

formation. Increased Internet usage, as well as the everyday appearance of new sources of data, is

generating data volumes to be processed by Cloud applications that are growing much faster than

available Cloud computing power.

These issues, combined with the appearance of new devices with relatively low computational

power (such as smartphones), have pushed for the development of new applications able to make

use of this power as a complement to the Cloud, pushing the frontier of computing applications,

data storage and services to the edge of the network.

However, the environment in Edge computing is very unstable. It requires leveraging resources

that may not be continuously connected to a network and device failure is a certainty. The system

has to be aware of the processing capabilities of each node to achieve proper task distribution as it

may exist a high level of heterogeneity between the system devices.

A recent approach for developing applications in the Cloud, named Function as a Service (FaaS),

proposes a way to enable data processing in these environments. FaaS services adhere to the prin-

ciples of serverless architectures, providing stateless computing containers that allow users to run

code without provisioning or managing servers.

In this dissertation we present OpenFlasks, a new approach to the management and processing

of data in a decentralized manner across Cloud and Edge. We build upon these types of architec-

tures and other data storage tools and combine them in a novel way to create a flexible system

capable of balancing data storage and data analytics needs in both environments. In addition, we

call for a new approach to provide task execution both in Edge and Cloud environments that is able

to handle high churn and heterogeneity of the system.

Our evaluation shows an increase in the percentage of task execution success under high churn

environments of up to 18% with OpenFlasks relatively to other FaaS systems. In addition, it denotes

improvements in load balancing and average resource usage in the system for the execution of

simple analytics at the Edge.

ii

R E S U M O

O atual crescimento exponencial de dados exige novas estratégias para processar e analisar in-

formação. O aumento do uso da Internet, assim como o aparecimento diário de novas fontes de

dados, produz volumes de dados a ser processados por aplicações Cloud que crescem a uma maior

velocidade do que o poder de computação aí disponível.

Este problema, combinado com o surgir de novos dispositivos com poder computacional rela-

tivamente baixo (como smartphones), tem motivado o desenvolvimento de novas aplicações ca-

pazes de usar esse poder como complemento a Cloud computing, expandindo a fronteira dos

serviços de processamento e armazenamento de dados atuais para o limite da rede (Edge).

No entanto, o ambiente de Edge computing é muito instável. Requer a gestão de recursos que

podem não estar continuamente conectados à rede e a falha de dispositivos é uma certeza. O

sistema deve estar ciente das capacidades de processamento de cada dispositivo para obter uma

distribuição de tarefas adequada, dado que pode existir um alto nível de heterogeneidade entre os

dispositivos do sistema.

Uma abordagem recente para o desenvolvimento de aplicações de Cloud computing, denomi-

nada Function as a Service (FaaS), propõe uma forma de permitir o processamento de dados neste

tipo de ambientes. Os serviços FaaS aderem aos princípios de arquiteturas serverless, fornecendo

containers de computação que não mantêm estado e que permitem aos utilizadores executar código

sem a necessidade de instanciar e gerir servidores.

Nesta dissertação apresentamos OpenFlasks, uma nova abordagem para a gestão e processa-

mento de dados de forma descentralizada em ambientes Cloud e Edge. Baseamo-nos neste tipo

de arquiteturas, assim como outros serviços atuais de armazenamento de dados e combinamo-los

de forma a criar um sistema flexível, capaz de equilibrar o armazenamento e as necessidades de

análise de dados em ambos ambientes. Além disso, propomos uma nova abordagem para possi-

bilitar a execução de tarefas tanto em ambientes de Edge como de Cloud, capaz de lidar com o

elevado dinamismo e heterogeneidade do sistema.

A nossa avaliação mostra um aumento na percentagem de sucesso da execução de tarefas sob

ambientes de elevado dinamismo de até 18% relativamente a outros sistemas FaaS. Além disso,

denota melhorias na distribuição de carga e no uso médio de recursos do sistema para a execução

de data analytics simples em ambientes Edge.

iii

C O N T E N T S

1 I N T R O D U C T I O N 2

1.1 Motivation 3

1.2 Problem Statement 4

1.3 Objectives 5

1.4 Contributions 6

1.5 Document layout 7

2 R E L AT E D W O R K 8

2.1 Decentralized data storage 8

2.1.1 Dynamo 9

2.1.2 BigTable 10

2.1.3 Dataflasks 10

2.2 Distributed data processing 11

2.2.1 Apache Spark 11

2.2.2 AWS Lambda 12

2.2.3 Openwhisk 13

2.3 Discussion 14

3 A R C H I T E C T U R E 16

3.1 System overview 16

3.2 Request handling 17

3.3 Scaling and Handling Churn 18

3.4 Device discovery 19

3.5 Task distribution 20

3.6 Operation execution 22

3.7 Data management 23

3.7.1 Statefulness 23

3.7.2 Data Locality 23

3.7.3 Data Replication Across Environments 24

4 I M P L E M E N TAT I O N 26

4.1 Frameworks 26

4.1.1 Data storage - DataFlasks 27

4.1.2 Data processing - Openwhisk 29

4.1.3 Integration 33

4.2 Connecting Cloud and Edge 35

iv

Contents v

4.2.1 Dataflask’s group construction protocol 35

4.2.2 Cloud and edge group construction protocol 38

4.3 API 41

4.3.1 Operations 41

4.3.2 Creating an operation 42

4.3.3 Defining operation limits 43

4.3.4 Requesting an operation execution 44

4.4 Data pipeline 46

4.4.1 Consuming data 46

4.4.2 Tagging data 47

4.4.3 Storing data 47

4.4.4 Assumptions 48

4.5 Operation pipeline 49

4.5.1 Entering the system 50

4.5.2 Handling the request 50

4.5.3 Finding available nodes 51

4.5.4 Assigning the task 52

4.5.5 Executing the code 53

4.5.6 Storing the results 54

5 E VA L U AT I O N 55

5.1 Testing environment 56

5.2 Workload and Assumptions 57

5.3 Experiments 58

5.3.1 Group construction across environments 59

5.3.2 Operation distribution across environments 60

5.3.3 Churn handling 64

6 C O N C L U S I O N S 69

6.1 Discussion 69

7 A P P E N D I C E S 75

7.1 Appendix A - Operation example 75

L I S T O F F I G U R E S

Figure 1 Cloud and edge software for infrastructure maintenance. 3

Figure 2 Core Architecture. 17

Figure 3 Translating a user request into an executable operation. 18

Figure 4 Dissemination of peer information through the system. 19

Figure 5 Processing an operation request. 20

Figure 6 Operation Hub’s high level flow. 21

Figure 7 Executing an operation. 22

Figure 8 Data is replicated across both environments. 24

Figure 9 Overlay network formed by nodes and their views of the system. 28

Figure 10 Openwhisk’s high level architecture. 29

Figure 11 Openwhisk events, actions and triggers. 30

Figure 12 Openwhisk’s Controller flow upon request. 31

Figure 13 Issues when dispatching an action with Kafka. 32

Figure 14 Dataflasks within the architecture. 33

Figure 15 Openwhisk within the architecture. 34

Figure 16 Data to group mapping. 37

Figure 17 Dissemination of peer information through the system. 40

Figure 18 Data is produced at the edge, where it is tagged, stored and replicated. 48

Figure 19 Overview of the implementation. 49

Figure 20 Request translation with the given parameters. 50

Figure 21 Computing device needs to abide by the given restrictions. 51

Figure 22 Assining an operation execution request. 52

Figure 23 Processing a request on the Edge. 53

Figure 24 Overview of the testing environment. 58

Figure 25 Convergence of 1024 nodes running the cross environment version of the

group construction algorithm. 60

Figure 26 Convergence for the cross environment group construction algorithm un-

der churn. 61

Figure 27 Average RAM usage during operation execution by environment 62

Figure 28 Average CPU usage during operation execution by environment 62

Figure 29 Operation latency by environment 62

Figure 30 RAM usage during operation execution by host 63

Figure 31 Average latency of the system during operation execution by environment. 64

vi

List of Figures vii

Figure 32 Memory usage for each node over time by environment 64

Figure 33 Operation failure after each churn stage. 65

Figure 34 Average latency of the system during operation execution by environment. 66

Figure 35 Memory usage for each node over time by environment 67

Figure 36 Operation failure after each churn stage. 68

L I S T O F TA B L E S

Table 2 Survey of the existing solutions and our proposal. 14

Table 3 Request parameters/annotations. 44

Table 4 Parameter configuration for example operation. 49

Table 5 Virtual node configuration for evaluation. 56

viii

L I S T O F L I S T I N G S

4.1 Example of log entries. 42

4.2 Wsk: Create an operation. 42

4.3 Wsk: Response for operation creation. 43

4.4 Wsk: Listing created operations. 43

4.5 Wsk: List of created operations. 43

4.6 Wsk: Update an existing operation. 44

4.7 Wsk: Execute an operation. 45

4.8 Wsk: Operation execution response. 45

4.9 Wsk: Get operation result. 45

7.1 Example code for operation. 75

ix

A C R O N Y M S

API Application Programming Interface

AWS Amazon Web Services

BTS Base Transceiver Stations

CEU Computing Environment Unit

DHT Distributed Hash Table

DI Departamento de Informática

FaaS Function as a Service

GFS Google File System

HVAC Heating, ventilation, and air conditioning

IoT Internet of Things

MEI Mestrado em Engenharia Informática

MQTT Message Queuing Telemetry Transport

PMS Peer Management System

PSS Peer Sampling Service

RDBMS Relational Database Management System

RDD Resilient Distributed Dataset

UM Universidade do Minho

VM Virtual Machine

1

1

I N T R O D U C T I O N

The Big Data explosion that has been occurring over the last 15 to 20 years is a result not only

of the exponential increase in Internet usage by people around the world, but also the everyday

appearance of new devices able to produce a large amount of data that can prove itself valuable,

provided it’s properly processed [1].

In example, geosensor networks [2] consist of large sets of sensor nodes distributed across a geo-

graphic space. Each node consists of a computational unit and one or more configurable sensing

devices, programmed to retrieve and upload data according to the user’s analysis needs. These net-

works produce large numbers of real-time sensor data, which are streamed directly to the cloud for

analysis.

Such increase of data, not only in volume but also in velocity and variety, will in the near future

surpass the capacities of current IT architectures and infrastructure of enterprises and prevent

them from being able to act upon trend changes and making proper decisions [3].

Typically, since it is not economically sustainable for many organizations to perform large in-

vestments in hardware for in-house computing solutions, they resort to the power available in the

cloud to perform complex analytics on their data [4].

However, as data volumes to be processed by cloud applications grow, so does the cost of trans-

mitting the data to be stored and processed in the cloud [4].

Since the data usually has to be ingested by the servers composing the cloud before it can give

useful information, its real-time requirement will further stress the available computing capacity.

However, what if the data streamed to the cloud could already provide useful information after

being processed locally at the data producers?

These issues have pushed for the development of a new data processing approach. Namely, with

the appearance of new devices with relatively low computational power (when compared to the

power available in the cloud), such as smartphones, single-board computers, laptops, TV con-

nected boxes and smart-speakers, applications are starting to adapt so they can make use of this

power as a complement to the cloud, pushing the frontier of computing applications, data storage

and services to the edge of the network [5].

Edge computing presents an opportunity for data processing to occur near the source of the data.

These devices allow for data to be processed closer to the source, while significantly decreasing the

2

1.1. Motivation 3

data volume moved to the cloud and consequently improving latency and quality of service for

data analytics tools [6].

1.1 M O T I VAT I O N

Let us examine a real-world scenario. A Telco company maintains an IoT infrastructure (Figure

1) with thousands of Base Transceiver Stations (BTSs) that help monitor the equipment (HVAC,

backup electricity systems, electricity generators).

Figure 1: Cloud and edge software for infrastructure maintenance.

Each BTS includes an IoT gateway running on a Raspberry PI that connects to sensors interfac-

ing to the equipment, and is responsible for reading data from hardware sensors and sending the

data to the cloud through a MQTT (Message Queuing Telemetry Transport) broker. Management

services are thus able to control the equipment from the cloud by sending commands to the Rasp-

berry PI through the broker. The cloud is managed by a third-party company that is responsible

for scaling and provisioning of the servers.

There exist two scenarios for the way the Telco company handles their data.

In the first scenario, the company pushes critical data to the cloud as soon as it is produced. Man-

agement services continuously perform processing tasks on the cloud with a streaming platform

such as Apache Spark Streaming [7], adjusting equipment settings or deploying software patches

by issuing commands to the broker that are automatically executed at the specified BTSs.

Since all the data is processed in the cloud, a system like MongoDB [8] already fulfills the com-

pany’s requirements for data storage.

In the second scenario, the company doesn’t require data to be processed in real-time. The data

is not considered critical so it doesn’t have to be immediately pushed to the cloud. Therefore, it can

instead be temporarily stored closer to the source, at the Raspberry PIs which are able to provide a

simpler kind of analytics.

Even so, data must still be pushed to the cloud so it can also provide information through a

different kind of analytics, such as batch processing [9]. Since the data is represented by log files

1.2. Problem Statement 4

from the sensors, composed by entries of a variety of metrics over time, the cloud can provide

historic information about the equipment by analyzing the data at variable intervals of time (i.e.

10 in 10 minutes).

Such a scenario would require an infrastructure capable of combining several capabilities:

• Seamlessly handle and store data in both cloud and edge environments.

• Process data locally at the edge devices in a distributed manner, according to their capabili-

ties.

• Execute complex data analytics in the cloud.

A similar type of data management system such as MongoDB is needed to provide typical dis-

tributed storage properties (replication, fault tolerance, scalability). These kind of systems are

however too demanding in terms of computational resources to able to operate in edge environ-

ments, and rely on Distributed Hash Tables which have proven to be unsuited for highly dynamic

environments [10].

1.2 P R O B L E M S TAT E M E N T

Edge computing allows for data to be processed (or pre-processed) in the edge of the network, only

requiring its transfer to higher performance environments (such as the cloud) when in need for a

more resource demanding type of analytics.

By extending data analytics to edge devices and gateways, we’re able to act upon IoT events closer

to the physical source [11]. Their event driven nature works well in IoT scenarios, and applications

that execute code in response to sensor data, scheduled tasks or cognitive trends should benefit

from edge analytics capabilities.

However, the environment in edge computing is very unstable. It requires leveraging resources

that may not be continuously connected to a network and device failure is a certainty. The system

has to be both aware of the processing capabilities of each node to achieve proper task distribution

as it may exist a high level of heterogeneity between the system devices. These devices may have

different computing power and available storage, as well as different network connectivity, which

can impair their ability to communicate with the rest of the system.

Current data analytics applications do not support execution of tasks both at the edge and in

the cloud without global knowledge of the system. Task allocation is heavily reliant on system

knowledge and device monitorization [12, 13], even for the the execution of simple analytical tasks

that do not perform operations on data, being unsuited for dynamic environments. In addition,

distributed data processing requires high expenditure of the available bandwidth, as applications

usually have to transfer data to the processing hosts before they are able to act on it, causing an

increase on processing tasks latency.

1.3. Objectives 5

Since current systems require global knowledge in order to support data processing applications,

they must operate in a stable computing environment, where devices are connected most of the

time and failure is expected but manageable.

Although current efforts seemingly converge to the goal of enabling seamless data processing

both on the edge and the cloud, applications currently running on IoT devices and gateways are

still lagging behind the modern methods and tools available in cloud computing.

A recent approach for developing applications in the cloud proposes a way to enable data pro-

cessing in these environments. Unlike traditional architectures, FaaS services [12] (such as AWS

Lambda) adhere to the principles of serverless architectures, providing stateless computing con-

tainers (usually ephemeral and managed by a 3rd party) that allow users to run code without pro-

visioning or managing servers, requiring only for the user to upload code.

As FaaS systems do not currently support complex data processing (such as map-reduce), they

do not rely on node availability and communication between computing nodes, therefore not re-

quiring high system stability. Furthermore, these systems do not provide a service for managing

data, as their current architecture design is aimed at being stateless. However, as each container

aims to act as a lightweight independent unit of data processing, they can be suitable for both

cloud and edge environments.

We argue that by combining several currently existing techniques and tools in a novel way, we

are able to design a flexible system capable of balancing data storage and data analytics needs in

both cloud and edge and provide a solution to our use case.

We look into how FaaS systems behave when supported by an underlying data management

platform that enables them to access local state, replicated both across the edge and cloud envi-

ronments. In addition, we provide these systems with an algorithm for decentralized node organi-

zation so they can execute tasks and replicate data in a reliable manner. Finally, we provide a task

distribution algorithm for better mapping of tasks to nodes according to their current resources

and state, in order to maximize usage of system resources across the network.

1.3 O B J E C T I V E S

We propose an architecture for the execution of function based analytics in a decentralized manner

across cloud and edge devices, such that users can adequately execute data processing tasks in

highly dynamic environments. By combining different protocols of proven solutions for similar

situations, we extract the best of different worlds. Our goal is thus to design a distributed analytics

architecture capable of operating in IoT environments, employing the following principles:

• Usage of peer-to-peer protocols to provide a framework for decentralization of system knowl-

edge. These serve as the basis for a flexible and lightweight distributed storage system for IoT

data, and are able to progress on highly dynamic environments. Moreover, these protocols

provide an alternative for current distributed storage systems [14] that is able to function

1.4. Contributions 6

both on commodity hardware as well as high-end servers, enabling different data process-

ing solutions depending on the device’s computing power and stored data.

• Design that accounts for heterogeneity of the devices and task distribution, taking into ac-

count device load and capabilities. Moreover, task distribution is to be based on the same

peer-to-peer [15] protocols that support data storage and management, thus not requiring

global system knowledge.

• Integrate the versatility of FaaS systems for remote function execution in lightweight con-

tainerized environments with a node churn resistant data management application, provid-

ing a way for data to be processed locally where the data is and according to the environment

capabilities.

Taking back from our motivation use-case, a system that implements this architecture enables

companies like the previous one to retrieve recent information about their equipment by period-

ically executing functions closer to the source of the data. Since data is stored as log files at the

Raspberry PIs located near each BTS, management services would need only to define file process-

ing code able to read the file structure and act on the obtained results.

This means that critical data would be pushed to the cloud for real-time processing, whilst non-

critical data would be available on the edge for information extraction through simple user-defined

functions. The cloud would adopt a different role in the management of the equipment, being re-

sponsible for executing more complex analytics on the data as well as store earlier sensor readings

for big data knowledge extraction.

We consider the various issues associated with the design of a system capable of operating in

such dynamic and heterogenic contexts, advocating the applicability of FaaS systems in provid-

ing simple analytics at the edge and the need for a decentralized data management protocol that

makes available system data in both cloud and edge environments. Namely, we call for a new ap-

proach to provide task execution both in edge and cloud environments that is able to handle high

churn and heterogeneity of the system.

1.4 C O N T R I B U T I O N S

We propose an architecture for the execution of function based analytics in a decentralized manner

across cloud and edge devices, such that users can adequately execute data processing tasks in

highly dynamic environments.

By supporting the execution of user defined functions in lightweight software containers, sys-

tems following our architecture are able to run data processing code upon files stored on low pow-

ered devices, as well as more complex analytics on cloud computing environments.

We make five main contributions:

1.5. Document layout 7

• An abstract architecture for function based analytics in a decentralized manner across cloud

and edge devices.

• A gossip-based algorithm for scalable and decentralized organization of system nodes (cloud

and edge) into replication groups that doesn’t demand global knowledge of the system and

is able to progress even under massive node failure.

• A novel task distribution algorithm capable of mapping tasks to nodes according to their

current load and overall computing power.

• An extension to current FaaS approach that allows for data to be accessed locally on comput-

ing nodes.

• A functioning prototype of our architecture, named OpenFlasks, and its experimental evalu-

ation.

1.5 D O C U M E N T L AY O U T

The document is structured as follows.

Chapter 2 explores the state of the art in data analytics across IoT environments, divided by

fields of study. First section displays a background on large scale distributed storage as well as

current solutions. The section that follows describes related work on data processing techniques

and frameworks currently being used on large scale distributed systems, with preference for FaaS

architectures.

Chapter 3 presents our main contribution to the problems presented. It details an architecture

for data processing across edge and cloud environments, agnostic to the tools used to instantiate

it, that attempts to fulfill the requirements of the presented use-case.

Chapter 4 goes further into the architecture, describing the implementation of OpenFlasks, an

usable prototype using the tools we’ve deemed most suitable when exploring the state of the art.

OpenFlasks is then tested and benchmarked in chapter 5. We simulate our use-case environ-

ment and perform a stack of tests similar to the work our solution would undergo in the presented

use-case scenario.

Finally, chapter 6 discusses the results of our work and draws some conclusions about possible

improvements and problems.

2

R E L AT E D W O R K

The problem of efficiently managing and processing massive sensor-network data generated by

sensor networks has received significant attention during the last 15 years [16].

In addition, decentralized systems, more specifically data storage and data processing for IoT

and Cloud environments, have been widely explored in literature. Several approaches [17, 18, 3, 6]

have been developed in order to mitigate current needs of the majority of businesses. However, we

believe most of these approaches do not take advantage of the potential of edge computing.

Although during the last decade we have witnessed a surge of proposals for new cloud com-

puting systems, each one suitable for a significant number of these tasks, they are still unable to

provide a solution that is capable of fully taking advantage of the power of IoT. To the best of our

knowledge, current systems are still not capable of adequately process unstructured data under

high churn heterogeneous environments, failing to connect both cloud and edge seamlessly.

Our use-case presents the need for a more elastic system and in order to meet the requirements

for data processing and availability, the system must be able to store sensor-data in a distributed

and available manner and operate under highly dynamic environments. In addition, it must be

able to distribute the data processing tasks between heterogeneous system nodes and maintain

data locality to reduce latency and bandwidth usage, whilst maintaining the prospect of high scal-

ability.

Our problem thus meddles between multiple sub-fields of study. Therefore, we choose to sub-

divide our research into two widely studied subjects in the field of cloud computing so we can

evoke a clearer vision of the different components presented in our solution.

2.1 D E C E N T R A L I Z E D D ATA S T O R A G E

Traditional replicated relational database systems focus on the problem of guaranteeing strong

consistency to replicated data. These systems are however limited [19] in scalability and availabil-

ity, not being capable of handling network partitions due to strong consistency guarantees.

On account of those limitations, in the recent decade a new kind of databases referred to as

NoSQL [20] have become popular. They’re able to store and replicate data in distributed systems,

even across data-centers, achieving scalability and high availability at the expense of consistency.

8

2.1. Decentralized data storage 9

Such work is intrinsically related with ours as we look for data storage solutions able to offer relaxed

consistency models that suit very dynamic environments.

In addition, these highly scalable systems can adjust themselves to the changing data volume

by simply adding or removing nodes. This requires a mechanism to dynamically partition data

over the nodes in the system. Here we present three systems that do it in very different ways and

compare their applicability to our use case.

2.1.1 Dynamo

Dynamo is Amazon’s [21] highly available and scalable distributed storage system. It consists of a

fully managed NoSQL key-value store and aims to provide underlying storage system inside their

platform, where it currently being used by the internal services as an ’always available’ data store.

Dynamo as proved to able to scale to deployments of hundreds of nodes and it is characterized

by its symmetry and decentralization, where every node has the same set of responsibilities as its

peers, ensuring no single point of failure.

Moreover, it can be suitable to support data processing tasks by integrating with other Amazon

services like Kinesis or EMR. It is also able to account for heterogeneity by applying the concept

of virtual nodes, where each node is accountable for a number of virtual nodes proportional to its

capacity. Furthermore, Dynamo employs gossip-based [22] protocols to manage membership and

failure detection. Each node contacts a peer chosen at random every second and the two nodes

exchange their membership data.

However, this scalable system’s applicability is still limited when applied to edge computing sce-

narios. Dynamo uses a technique called consistent hashing to organize nodes and distribute data

among them. Every node in the system is assigned to one or more points on a fixed circular space

called “ring” and data items are assigned to nodes based on the hash value of its key. Dynamo

replicates each data object at N nodes, where N is a user-defined parameter.

Multiple systems employ this technique for data replication and partitioning, such as Facebook’s

Cassandra [23] and Chord [24]. The main advantage of this technique is that addition or removal of

a node only affects its immediate neighbors and other nodes remain unaffected, which is effective

for moderately stable systems but greatly impacts the performance and availability of systems with

high node churn [25].

Finally, even though it is lightweight enough to operate on edge nodes and low resource ma-

chines, its inability to identify the environment to which it belongs prevents data processing frame-

works from taking full advantage of its local resources.

2.1. Decentralized data storage 10

2.1.2 BigTable

Just like Amazon built Dynamo for their internal use, Google developed BigTable [26]. BigTable

consists of a distributed storage system for managing structured data and it is designed to scale to

very large table sizes.

Relatively to Dynamo, BigTable implements a more flexible data model - multidimensional sorted

map. The map is indexed by a row key, column key, and a timestamp, and ordered by a row key,

allowing Google’s applications to access data either by row key or by range of row keys.

BigTable works with Google File System (GFS) [27] as a storage platform, which is able to handle

huge files by dividing them into chunks and replicating each chunk across multiple machines.

Although both Dynamo and BigTable achieve high availability, reliability and durability by repli-

cating data on multiple hosts, the techniques they use for replication and partitioning are very

different. In contrast with Dynamo’s DHT method, BigTable has a master node responsible of split-

ing ranges of rows into multiple servers when the tables grow big enough, storing the meta-data in

a special table.

Moreover, in contrast with Dynamo’s gossip-based protocol for failure detection, where each

node contacts a peer chosen at random every second and the two nodes exchange their mem-

bership data, BigTable identifies failed servers with regular handshakes between the master and

remaining nodes.

Although Big table has been shown to be able to efficiently managing massive sensor-network

data generated by large-in-size sensor networks [28], it is clearly very limited to stable environ-

ments due to its centralized nature where a single master node maintains all system meta-data.

2.1.3 Dataflasks

DataFlasks [29] is a key-value store developed at INESC TEC that is able to scale to several thou-

sands of nodes while, at the same time, cope with very high levels of node churn in highly unstable

environments. It shares the focus on peer-to-peer protocols as Dynamo and Cassandra and main-

tains their principles of symmetry and eventual consistency, while using an unstructured approach

to avoid the pitfalls caused by DHTs.

Contrary to these systems, DataFlasks implements a decentralized peer-to-peer solution to at-

tain scalability, where each node relies on its local knowledge of the system, making progress with-

out any kind of global knowledge. Dataflasks uses solely epidemic [30] (gossip-based) protocols

to provide data persistence guarantees even in highly dynamic, massive scale systems. There is

no distinction between nodes and every node runs the same set of algorithms, without any hier-

archy or structure of any kind, as opposed to the more structured approach executed by Dynamo,

Cassandra and BigTable.

2.2. Distributed data processing 11

DataFlasks provides a custom group construction algorithm [29] responsible for dividing nodes

into groups in order to distribute and replicate data. Each node is able to understand which kind of

data it should hold and to where it should replicate it, solely based on its partial view of the system.

It presents a very promising solution to data management on edge environments, although it

still lacks integration with other data processing tools and needs further validation with real-world

applications. However, since it is built in a modular way, integrating with other systems is easily

achievable.

2.2 D I S T R I B U T E D D ATA P R O C E S S I N G

Data storage and data analytics come closely related. Data analytics are essential in order to

plan and create decision support systems able to optimize business infrastructures. However, the

amount of data produced by businesses provides several challenges [3], not only relative to the size

of the data, but also their structure, velocity and real-time needs.

In order to provide better service, not only in terms of availability but latency as well, data pro-

cessing systems often replicate data across multiple servers (even in different geographical loca-

tions).

Taking advantage of the system resources has an increased complexity on dynamic environ-

ments, as node availability and computing power can fluctuate greatly. In addition, other com-

putational challenges arise when optimizing for performance, such as adequately provision the

platform according to incoming request rate (elasticity). Data processing systems often maintain

their computing nodes up the entire time even when very few tasks are being triggered, when they

could allocate resources on-the-fly to handle requests according to current demand.

Multiple vendors [31] are delivering services for data processing with the intent of providing a

scalable way to process all this data, presenting a collection of tools for on-line data collection,

cloud hosted databases and map reduce processing.

We present different architectures for on-line and batch data processing of massive volumes

of sensor data, and study their applicability to edge environments and our use-case. A system

capable of properly utilizing the processing capabilities of the edge has to be able to not only adapt

itself to the dynamism experienced in the overall edge environment, but also to its heterogeneity. It

has to be aware of the processing capabilities of each device and make the most of what resources

each one has to offer.

2.2.1 Apache Spark

Apache’s Spark [32] is a high performance parallel computing framework designed to efficiently

deal with iterative computational procedures that recursively perform operations over the same

2.2. Distributed data processing 12

data. It is an open source project by the Apache Software Foundation and a flagship product in big

data analytics.

Resilient distributed datasets (RDD) [33] are the main abstraction that Spark provides in order to

parallelize data processing in a fault tolerant manner. These are a distributed, immutable and fault-

tolerant memory abstractions that collect a set of elements in which operations can be applied.

Yet, the main advantage to RDDs is that they can be rebuilt if a partition is lost. A handle to an

RDD contains enough information to compute the RDD starting from data in reliable storage. If

a node crashes in the middle of an operations, the cluster manager is able to detect the malfunc-

tioning node, and tries to assign another node to continue processing. This node will be told to

operate on the particular partition of the RDD and the series of operations that the crashed node

was executing.

Spark also uses this mechanism to guarantee exactly-once processing, as operations on RDDs

can create other RDDs or give a result value, meaning that RDDs originated from operations are

also recoverable.

Although Spark is able to avoid repeated processing of datasets and losing data on node fail-

ure, the framework is not well suited for highly unstable environments, acting very similarly to

Hadoop’s Map-reduce [4] in terms of data processing.

Both Hadoop and Spark are data analytics frameworks, the key difference between them being

in the way they approach processing. Spark can do it in-memory, while Hadoop MapReduce has to

read from and write to a disk. As a result, the speed of processing differs significantly – Spark may

be up to 100 times faster. However, the volume of data processed also differs: Hadoop MapReduce

is able to work with far larger data sets than Spark.

Both these frameworks have a master-slave based architecture, which goes away from our ideal

of decentralization as they typically require structure and hierarchies between nodes. These types

of architectures split devices between a small subset of master nodes (one or many) and a larger

subset of slave nodes responsible for executing tasks which the master nodes coordinate.

Even though data locality can theoretically be achieved on Apache Spark by implementing RDDs

with a data store that provides such features, node heterogeneity and system dynamism are still an

issue with both frameworks, as node failure severely affects data processing performance and they

are designed to work on high resource machines.

2.2.2 AWS Lambda

Lambda [34] is a serverless compute service, in this case known as Function as a Service [35], from

Amazon Web Services that runs code in response to events and automatically manages the under-

lying compute resources. It enables customers to execute code on demand without any dedicated

infrastructure by adhering to the serverless architecture paradigm and it aims at being the next

evolution in cloud computing.

2.2. Distributed data processing 13

With Lambda, users do not have to pay for server use when the server is not executing any func-

tion. Users upload code snippets packaged as a function that executes a specific task and the code

only runs when triggered by an event. Users are then billed on a pay-per-use basis, determined by

the number of requests served and the compute time needed to run the code.

This programming model constitutes a good match for micro-services and IoT as users get inher-

ent auto-scaling and load balancing out of the box without having to manually configure clusters

and load balancers, and with the benefit of almost zero administration, meaning that all of the

hardware, networking and software is maintained by Amazon.

Lambda allows the addition of custom logic to other resources (such as DynamoDB [36]), making

it easy to apply computations to data as it is enters or moves through the cloud.

However, since serverless architectures are stateless [35] in nature, data locality primitives are

not achievable with Lambda. The system doesn’t provide the user with any kind of data locality

awareness when executing tasks, meaning that data oriented processing requests are not available

unless the data is passed to each Lambda instance upon each request, which is not ideal for net-

works with limited bandwidth.

It has built-in fault tolerance and is designed to provide high availability for both the service

itself and for the functions it operates, enabling predictable and reliable operational performance.

In addition, Lambda invokes code only when needed and automatically scales to support the rate

of incoming requests without requiring extra configuration.

Although the positives of AWS Lambda far surpass its downsides, its applicability to edge com-

puting can still be improved. Highly dynamic environments still pose a threat to the system, as it

is designed to run on stable servers hosted by Amazon, heterogeneous in nature. Due to that, it is

unable to link cloud and edge seamlessly and provide a solution for our use-case.

2.2.3 Openwhisk

OpenWhisk [37] is a distributed and event-driven compute service, currently being developed as

an Apache Incubator Project by IBM. Similarly to AWS Lambda, which is a more mature project,

Openwhisk belongs to the category of FaaS platforms and allows users to run application logic in

response to events or direct invocations from web or mobile applications over HTTP.

The main differences to Lambda is that it is open-sourced and can be triggered by any external

API-driven event, such as new items that appear in an RSS feed, meaning that organizations can

set up their own serverless platform.

It is common practice to deploy multiple VMs or containers to be resilient against outages. How-

ever, OpenWhisk offers a model with no resiliency-related cost overhead, where tasks are executed

only at one node, but more nodes are automatically provisioned according to the tasks trigger rate.

The on-demand execution of tasks provides inherent scalability and optimal utilization.

2.3. Discussion 14

Similarly to Lambda, Openwhisk is stateless in nature and lacks from the same data locality prim-

itives. Fault tolerance is not as developed as in Lambda, providing message queues and automatic

scaling but lacking proper handling of execution failures.

2.3 D I S C U S S I O N

As previously mentioned, we base our work upon existing systems that allow us to satisfy the re-

quirements of our use-case. Table 1 presents an overview of some of the tools we’ve studied and

compares them according to our architecture needs.

Comparison Dynamo BigTable D.Flasks A.Spark A.Lambda O.Whisk O.Flasks
Decentralized 3 7 3 7 3 3 3

Data processing 7 3 -- 7 3 3 3 3 --

Handles churn 7 7 3 3 -- 7 3 -- 3

Data locality 7 7 7 3 -- 7 7 3

Heterogeneity 3 3 -- 3 3 -- 3 3 3

Cloud and edge 7 7 7 7 7 7 3

Open Source 7 7 3 3 7 3 3

Table 2: Survey of the existing solutions and our proposal.

Most of these systems only provide a design that supports either the distribution or the process-

ing of data across different nodes.

Our use-case depends primarily on the ability of these systems to adapt to different environ-

ments whilst providing data locality primitives in order to optimize the processing of data over a

limited network bandwidth.

We value decentralized systems where every node has the same responsibilities over the master-

slave architectures applied by systems such as BigTable and Apache Spark, as they’ve been shown

not to scale well in highly dynamic environments. Similarly, decentralized systems that depend on

consistent hashing for replication and partitioning such as Dynamo or Cassandra are not suited

for these kind of environments.

These applications only consider analytics either on the cloud or at the edge of the network,

failing to differentiate the analytics that can be performed on the cloud and on the edge. Some

applications are able to process data on the edge but fail to consider the power available in each

device, as well as the power available in the cloud for more complex computations.

In order to process data on the edge we thus assert that FaaS platforms are the best alternative to

current cloud computing solutions, as they provide support for operating in heterogenic devices

and basically reverse the way we think about processing data, taking the computation to where the

data is and not the other way around.

2.3. Discussion 15

Dataflasks presents a very promising solution to data management on edge environments, al-

though it still lacks integration with data processing tools. However, since it is built in a modular

way, integrating with other systems is easily achievable.

Its peer-to-peer basis presents possibilities for both data locality and heterogeneity support, as

it enables the exchange of system and data information between servers in an epidemic way. Com-

pared to Dynamo, Cassandra and BigTable, we believe it is the most suited data store to seamlessly

connect both edge and cloud environments whilst supporting the management of unstructured

data and heterogenic nodes.

On the data processing side, AWS Lambda and Openwhisk can be fitting to provide a resource

aware data processing platform, since they make no assumptions of the kind of hardware it will be

provisioned in, being open and adaptable to different environments or on premise.

Even so, the applicability of these systems to edge environments is yet to prove. We build upon

these systems and provide solutions for the missing capabilities that deprive them of successfully

operating between environments.

In the next sections, we present a new combination of well known solutions that seeks to fulfill

the current gap in data management and processing solutions. We show how our solution tackles

all these challenges and show how our architecture can be adapted to integrate with other existing

systems that are also missing certain capabilities.

3

A R C H I T E C T U R E

In this section we present the basic architecture for our function based data analytics system. A

system capable of operating in such dynamic environments has to comprise several functional-

ities (handle node churn, handle heterogeneity, be able to scale) in order to adequately retrieve

knowledge from the data.

Our architecture intends to follow the design of current FaaS host-side platforms, providing fast

allocation of resources for function execution, while remaining completely decentralized in terms

of device management and task distribution.

3.1 S Y S T E M O V E R V I E W

Figure 2 shows an high-level overview of the system, which is divided into 2 main modules: the

controller module and the computing device module.

The controller is responsible for receiving user requests, allocating computing tasks and return-

ing the results to the users. The computing device module must run in every device that intends

to execute computing tasks and it is responsible for replying to execution requests made by the

controller and executing tasks assigned by it.

Both of these modules can be deployed independently in different machines or in the same one.

Since the controller modules manage user requests, they should run on devices capable of han-

dling the expected request load (i.e. cloud or in-premises devices with considerable computing

power). The computing device modules can however be instantiated at the cloud or edge.

Each module possesses several components that play a precise role in the overall architecture.

Upon receiving a request (2) in the controller from an user (1), a Request Translator (a) processes

the request and translates it (3) into an executable operation that can be carried out by computing

devices. The translated operations are managed by an Operation Hub (b) responsible for choosing

the nodes best suited for their execution and send them the operation (9) through a Dispatcher (c)

component.

The controller module is able to find and manage available nodes by communicating (4, 8) with

a Peer Management System (d) component that is also available in every computing device mod-

16

3.2. Request handling 17

Figure 2: Core Architecture.

ule. This component manages (5, 7) system information and disseminates knowledge about the

devices in a decentralized manner.

Devices are able to organize themselves into replication groups in both edge and cloud envi-

ronments by using the information managed by the Peer Management System and feeding (6) it

to a Group Manager (g) component that provides the device with knowledge about which data it

should hold, which in turn also allows for it to be processed locally.

Finally, upon receiving instructions to execute a task (10), computing devices create Computing

Environment Units (CEUs)(e). These units can execute tasks upon files stored in the local storage

component (f) and store the results locally.

3.2 R E Q U E S T H A N D L I N G

Regarding our use-case, management services would submit a function (code) through a user-

interface (that we consider as implicit in the Controller), usually a HTTP reverse proxy server. The

Request Translator (Figure 3) is responsible for translating user requests to code that can be exe-

cuted at the computing devices, in the form of a function F that takes (or not) a given data tag Da,

which refers to the identifier of the data associated with the request (i.e. the name of a file that

holds the data).

The code is translated into an executable task Op (named operation) that, along with the code

itself, contains all the necessary parameters to be computed. In order for the system to be able to

3.3. Scaling and Handling Churn 18

translate requests into operations, management services must provide execution meta-data along

with the code to be executed, related to the required resources needed to execute the requested

operation, such as minimum available memory, minimum available CPU, as well as related data

to the request, in case the request needs data locally available in the device’s storage in order to be

successfully executed.

Figure 3: Translating a user request into an executable operation.

Operations are deployed as FaaS units (or functions), containing all their dependencies for proper

execution, on dedicated FaaS runtimes. This versatility allows the management services to submit

their own modular application code, therefore enabling them to process data as needed, not only

by usual data analytics standards. After translating the operation, the Request Translator passes

the operation information to the Operation Hub, along with the operation meta-data.

3.3 S C A L I N G A N D H A N D L I N G C H U R N

Our architecture is able to perform under highly dynamic environments and reach high scalability

by using the Peer Management Service (PMS) to manage system knowledge. This service is respon-

sible for managing the connections between the devices in the system and the information they

share with each other.

Since it is impossible to attain global knowledge in highly dynamic systems, this knowledge must

be decentralized. Edge devices usually offer the possibility of peer-to-peer communication, creat-

ing an opportunity to use peer-to-peer and gossip-protocols [38] to spread information through

the system. These protocols work by making each node spread their knowledge about the sys-

tem to a random subset of its known neighbors in short intervals of time, meaning that each node

maintains an up to date view of a subset of the nodes available. Figure 4 details what information is

transfered through the network. Each device holds information about the environment on which

it operates, its local view of the system and its computing and storage capabilities, propagating it

to the nodes in its localview, which is composed of cloud and edge nodes.

A decentralized peer management service is obtainable employing these kind of protocols, such

that each peer is able to advance without depending on a central information repository or a com-

plete view of the system. Furthermore, these protocols do not assume the existence of reliable com-

munication channels and are fault tolerant, enabling the system to support high levels of churn

3.4. Device discovery 19

Figure 4: Dissemination of peer information through the system.

and still be able to operate. The system is able to quickly adapt to changes in the network after

each node stabilizes its localview of the system.

The PMS is instantiated in each device and maintains information about a subset of the system,

such that each device on the system is able to find any other device. In addition, the PMS is in-

stanced in the controller as well and provides a connection between the Operation Hub and the

rest of the system. This allows for the dissemination of operation request messages in order to find

available devices that are capable of computing a given operation.

3.4 D E V I C E D I S C O V E R Y

The Operation Hub is responsible for managing the ongoing operations in the system, from the mo-

ment they are translated until they are assigned to the computing devices. It stores the operation

information along with the related meta-data, and cooperates with a Peer Management System

component in order to find the devices best suited to execute it.

Upon receiving an operation, the Operation Hub builds an Operation Request message that en-

capsulates the requirements a device must fulfill in order to execute the associated operation and

disseminates it through every node in the system by passing it to its local PMS. These requirements

are obtained from the meta-data given by the management services, and are composed of both

3.5. Task distribution 20

pure system metrics a device must possess, such as available memory/storage/CPU, and dynamic

device traits that each device relates to, such as the environment it belongs to (edge or cloud) and

the data it currently holds.

Figure 5: Processing an operation request.

When receiving an operation request message from its local PMS, each computing device evalu-

ates its own capabilities against the requirements included in the message (Figure 5). We assume

each device is able to gather the knowledge of himself relative to each requirement, i.e. a device

knows if it operates in the cloud or in the edge. The device interacts with its local Group Manager

in order to find if it holds the required file (or files) to be used in the operation. Moreover, it checks

its current available computing power regarding the aforementioned metrics.

Hence, if the operation requires the local presence of a certain file in the device, and to be ex-

ecuted in a more powerful device (i.e. cloud), only cloud devices that store that file will respond

to the controller’s message. Devices that meet the requirements to execute the operation related

to the request are able to respond directly to the Controller’s PMS, which is reachable since the

operation request message contains its network profile (i.e. the IP address), indicating their ability

to compute the operation and providing further information about their current status, such as

system metrics and current load.

3.5 TA S K D I S T R I B U T I O N

After N responses to the PMS (N being defined by the management services per request) or within

a given time limit, the PMS gives back this information to the Operation Hub, which selects the

devices that are going to execute the computing task based on their current status (Figure 6).

This approach means that when asked to execute a given request there will be two main steps

in doing so: finding devices able to execute the request and dispatch said request to those devices.

3.5. Task distribution 21

Figure 6: Operation Hub’s high level flow.

When compared to the alternative of flooding the network with the entire payload of the request,

we believe our proposed protocol brings several advantages over its alternative when performing

in dynamic environments.

The more obvious one would be bandwidth saving, since the prior dissemination of Operation

Request messages can be considerably lighter than disseminating the entire packaged code pay-

load through the system, considering the payload ’weight’ that data processing code can have. The

more complex the task, the bigger it is the code package.

Moreover, we argue that by allowing the Operation Hub to select the most appropriate devices

to execute a given task, better task placement can be achieved, which will in turn warrant the

system to achieve higher performance, better load balancing between the devices and cheaper

data locality (since we are sure the nodes that receive the code are the ones able to compute it).

For instance, the Operation Hub may give preference to a device with only 3GB of memory and

no ongoing tasks rather than one with 10GB and 50% load for a task which requires 2GB of mem-

ory to perform. The device selection protocol to be employed depends however on the preferred

implementation for it, since different systems can have different requirements for task placement.

By decentralizing system knowledge and making configurable the amount of nodes that must

respond to each request, we make a trade-off between better request response time and the ability

to operate in a highly scalable manner across both edge and cloud environments (availability).

This means that the PMS’s response to the Operation Hub is not immediate, and an operation

request must first be disseminated through the system, avoiding the maintenance of a central peer

information repository at the controller. By letting the user configure the minimum ’level of avail-

ability’ he desires, we’re opening the possibility for users to pay for more resources in order to

achieve better availability primitives for the execution of more important tasks.

3.6. Operation execution 22

3.6 O P E R AT I O N E X E C U T I O N

The Operation Hub selects the most appropriate devices from the set of responses obtained af-

ter issuing the Operation Request Message, and uses the Dispatcher component to forward the

operation to the selected devices. Since each device responds to the Operation Hub with the nec-

essary information for the Dispatcher to access it directly (such as their IP address), bandwidth

usage overhead is reduced and there is no need for extra message dissemination throughout the

network.

Operations are executed in encapsulated task processing environments, such as containers, named

Computing Environment Units (CEU). CEUs allow for the operations to be executed safely and in

an isolated manner, whilst having access to their data locally (typically the device’s filesystem).

Each device can host multiple CEU’s, according to its ability to do so. For each received opera-

tion, a new CEU is spawned and the operation code is injected and executed with the associated

parameters. As a result, each device is able to process different operations simultaneously in a con-

trolled way and is aware of the power each CEU shall be authorized to use in order to execute a

given operation.

Figure 7: Executing an operation.

Figure 7 briefly details the actions taken by a Computing device when receiving an operation

execution task. After processing the request payload, the device provisions a CEU able to compute

the request, which means that the CEU will have access to the resources required by the operation,

such as the minimum memory needed to complete it, as well as access to the local storage.

In addition, since the request code can be written in different languages, the CEU is also provi-

sioned with the required installment of that language, so the code can be ran. The request payload

is then injected into the CEU, which will process it and return the result, which in turn will be sent

to the controller.

After function execution, the CEU is destroyed. CEU are suitable for use in the IoT environment,

since the execution of tasks under it usually require minimal initialization overhead and low re-

sponse times.

3.7. Data management 23

3.7 D ATA M A N A G E M E N T

Our architecture intends to follow the design of current FaaS host-side platforms. However, we

employ a different set of data management techniques in order to allow data storage locally at the

devices. We use a protocol that allows for data to be stored across environments and processed

locally within the storing devices, lowering latency and improving general system usage.

3.7.1 Statefulness

Typical FaaS systems employ the principles of stateless computing, where calls are usually indepen-

dent from each other and the input data to be used is sent along with the request, which means

they have no need for an underlying storage layer. However, we allow for file storage with the goal

of processing data locally on computing devices.

Each file is stored in the device’s storage layer and it is identifiable by its name/description and

source/owner. Operations code is able to access these files just as it would if executed on the user’s

computer.

Introducing statefulness in a previously stateless paradigm offers different use-cases for this new

capability, each with a different level of complexity. Statefulness is not only about allowing opera-

tions to be able to access the result of previous operations.

In example, a read-only approach to statefulness can consist in allowing nodes to hold data in

local storage so operations can perform data analysis tasks on it without the need for data transfer

upon each invocation, saving bandwidth and improving the average latency of those operations.

However, in this approach two consecutive operations that make changes on the same data are

not guaranteed to operate on the most updated version of that data, since that would require the

distributed system to have data replication capabilities that would enable it.

Adjacent to this is the read-write approach to statefulness. This approach enables consecutive

operations to access the most update version of a given data item, allowing data processing opera-

tions to save results locally that can be later accessed in replicas of the executing node. Operations

executed after state-changing operations should be able to operate and access that new state.

Maintaining state across invocations has however considerable architectural implications. This

characteristic must be provided by the underlying data storage solution / filesystem / application.

Applications that employ weak data consistency primitives may fail to provide such consistency

guarantees.

3.7.2 Data Locality

In addition to meta-data related to the computing requirements for operation execution, man-

agement systems can also specify information related to data their code pretends to access. As

3.7. Data management 24

previously mentioned, files are labeled by their source before entering the system. Upon submit-

ting a request, management systems can specify the file(s) their operation code intends to access

by specifying the file(s) label on the operation request.

Therefore, to avoid unnecessary data transfer, operations with associated data to be processed

can only be executed by devices that store this data. This means that during request dissemination

across the system, request messages carry information about related data to be processed, and

only nodes that currently store that data will respond positively to those requests.

3.7.3 Data Replication Across Environments

Besides nodes communicating using peer-to-peer and gossip protocols, they should be able to

organize themselves in a way that ensures data is replicated through the cloud and edge environ-

ments. For instance, a data item Da should be stored both in edge devices and cloud devices, so

that it is available for processing under both environments. Since usually data will enter the system

through edge nodes, the first requirement is fulfilled.

However, for the second requirement to be obtained, edge nodes should transfer incoming data

to the cloud, such that data is available for the execution of more complex analytics. In the same

way, results of functions that are executed in edge devices and stored in those same devices must

be propagated to cloud devices as well.

Figure 8: Data is replicated across both environments.

By making each device identify itself as operating in a cloud or edge environment, and commu-

nicating that information through the network, we enable nodes to maintain a view of the system

composed of both edge and cloud nodes. State changes should be notified to the peers on this view

so they can update their state in case they currently replicate this data.

3.7. Data management 25

Data is thus replicated to both environments, enabling nodes to organize themselves in an het-

erogeneous manner. Edge nodes communicate directly with cloud nodes for data replication and

data is constantly available at both environments.

Figure 8 briefly illustrates the process of inter-environment operation execution. Nodes are or-

ganized in groups that hold the same data and are composed by edge and cloud nodes. Upon

receiving an operation request that perfoms changes on the local data, the nodes propagate that

change to every node in its group, which in turn will do the same. The change is propagated to

every replica until all nodes hold again a subset of the same data.

4

I M P L E M E N TAT I O N

Having described the core components of our architecture, it remains to show how we prototype

and test it. We detail the implementation of OpenFlasks and the tools we use, highlighting the

most important aspects that enable our solution to manage and process data. The end result is

open-source and available on Github.

Since our work is based upon existing frameworks for data management and processing, we first

detail how they work and what keeps them from achieving our architectural goals. After establish-

ing the basis for our prototype development, we denote the most important changes we’ve made

to these frameworks so they conform to our architecture and describe how the solution matches

our use-case, describing step-by-step how data is handled and how tasks are performed across the

platform.

4.1 F R A M E W O R K S

Our analysis of the existing data processing and management tools helped us come to the under-

standing that our use-case currently lacks an appropriate solution. However, even though current

solutions are not completely able to fulfill our requirements, they do provide a set of solid solutions

for other problems from where we can build upon. This section details the current state of these

tools, so that we can understand why they currently do not conform to our architecture and what

they lack in order to do so.

In order to implement OpenFlasks, we apply our architecture over an existing cloud-first dis-

tributed event-based programming service (Openwhisk), and expand its node management com-

ponent in order to be able to operate under high churn environments. In addition, we enable this

system to maintain state and read local data by connecting it to a data management layer built

upon Dataflasks, which is able to operate under highly dynamic environments and account for

node heterogeneity.

26

https://github.com/prccaraujo/openwhisk/

4.1. Frameworks 27

4.1.1 Data storage - DataFlasks

DataFlasks [29] is a key-value store that is able to scale to several thousands of nodes while, at the

same time, cope with very high levels of node churn in highly unstable environments. It shares the

same focus on peer-to-peer protocols as Dynamo and Cassandra and maintains their principles of

symmetry and eventual consistency, using an unstructured approach to avoid the pitfalls caused

by DHTs.

Contrary to these systems, DataFlasks implements a decentralized peer-to-peer solution to at-

tain scalability, where each node relies on its local knowledge of the system, making progress with-

out any kind of global knowledge. DataFlasks uses solely epidemic (gossip-based) protocols [15]

to provide data persistence guarantees even in highly dynamic, massive scale systems. There is no

distinction between nodes and every node runs the same set of algorithms, without any hierarchy

or structure of any kind.

Data Partitioning

DataFlasks implements a novel group construction protocol that facilitates data partitioning and

replication, and is able to organize thousands of nodes into groups in a robust and scalable way.

The protocol provides eventual consistency properties to DataFlasks by updating replicas asyn-

chronously.

Data is divided by group, and nodes in the same group have the same set of data. Every node

is able to learn to which group it belongs, solely based on its partial view of the system and the

size of the groups to construct. The protocol provides for each node an estimation of the number

of groups needed to satisfy the configured group size and, from those groups, the group the node

belongs to.

The protocol is specially relevant to our architecture, as it forms the basis for the Group Manager

we designed to fit our requirements. Although the protocol fits our needs for supporting data par-

titioning on highly dynamic environments, it is yet unable to link cloud and edge seamlessly as it

doesn’t provide the operating nodes with any awareness of their environment.

Membership

Another important feature we take advantage of is Dataflask’s Peer Management Service (PMS)

algorithm, named Cyclon [30]. For the group construction protocol to work, every node needs to

know a set of other nodes in the network (the local view).

Cyclon’s peer-to-peer/gossip nature perfectly matches our problem as it allows each node to

advance without global knowledge of the system. Not only that, it supports our Group Manager

component with information about the system, meta-data related to the surrounding nodes and

easy integration of new nodes in the system.

4.1. Frameworks 28

Figure 9: Overlay network formed by nodes and their views of the system.

Cyclon is in itself a gossip protocol that enables nodes to share information on a random set of

peers, which the Group Manager operates upon. It works by periodically exchanging messages

(Figure 9) containing a set of random node references from the network, which contain the infor-

mation needed to contact the corresponding nodes. The Group Manager takes advantage of these

messages and performs a set of actions each time a random set of peers is received, converging to

the desired group configuration over time.

In contrast with Dynamo and Cassandra, whom maintain a global view of the system and are

capable of knowing the nodes to which each data item belongs to, DataFlask’s view consists of only

a partial view of the entire system in order to surpass the limits to scalability imposed by the DHTs.

Request Handling

DataFlasks epidemically propagates requests between nodes (each node tries to propagate requests

to as many nodes as possible), and any node may receive requests for store (put) and retrieve (get)

operations. Various versions of each object are possible for a single key. When a get is received, if

the node holds the value correspondent to the requested key-version pair, it replies to the client.

In the case of a put operation, the node can locally decide whether to store the data or not.

Nodes decide to store or discard data according to the group they belong to. When a node stores

the data locally in is storage component, it also propagates the request to the other members of the

group for replication. Whenever a node is not able to satisfy a request, such request is epidemically

disseminated to the other nodes.

Storage

Because DataFlasks is modular, it abstracts the medium to which data is persisted, which may vary

for convenience. This means that each node in the system can choose if it is going to store the

data in memory and risk losing it in case of node failure, or persist the data in disk and be able to

4.1. Frameworks 29

retrieve it once/if the node recovers. The first approach may seem like it doesn’t make sense, but

in reality it can make sense for various situations.

For instance, since DataFlasks group construction protocol guarantees that always exists at least

one node ”alive” in each group, data that must be processed in real time and fits in the available

memory space could be stored in memory, in order to reduce the overhead occurred when persist-

ing to disk. However, when the stream of incoming data exceeds available memory space, it needs

to be persisted to disk.

4.1.2 Data processing - Openwhisk

Openwhisk is an open source implementation of a distributed event-driven compute service. It

abides by the serverless paradigm, which means that developers can run code in response to events

or direct invocations without having to explicitly provision servers. Load balancing, auto-scaling,

cluster configuration and other complex aspects are abstracted away so that developers can focus

entirely on building the logic of their software.

This programming model is a perfect match for micro-services, mobile and IoT, as developers

only pay for hours of processor time when the server is running and serving requests.

Figure 10: Openwhisk’s high level architecture.

4.1. Frameworks 30

In order to form a serverless event-based service, OpenWhisk integrates with multiple consoli-

dated projects, such as Nginx, Kafka, Docker and CouchDB (Figure 10). These individual units of

logic come together to handle events in a distributed way and from different sources.

Action Requests

Openwhisk refers to the execution of tasks as Actions, executing them in response to events. Ex-

amples of events include changes to database records, IoT sensor readings that surpass a given

threshold or even simple HTTP requests (Figure 11).

Figure 11: Openwhisk events, actions and triggers.

Actions can be multiple things in Openwhisk, such as code written in different languages or cus-

tom binary code embedded in a Docker container. These actions are instantly deployed whenever

a trigger fires, which means that when no trigger fires, there is no action running and consequently

there is no cost to the user.

Action Management

The goal of an action invocation in Openwhisk is thus to execute code that the user has fed into

the system and return the results of that execution.

The entry point into the system is through Nginx, which acts as an HTTP and reverse proxy server.

Nginx main use is to forward appropriate HTTP calls to the next component, in this case the Con-

troller. These calls are performed against Openwhisk’s Restful HTTP API, where users submit and

invoke action code, both in a synchronous and asynchronous manner.

The Controller provides the actual REST API implementation and serves as the interface for ev-

erything a user can do. The Controller (Figure 12) first disambiguates what the user is trying to

do by translating the received HTTP request depending on the HTTP method used. In example, a

POST request to an existing action translates to an invocation of that action.

Next, the Controller verifies if the user is authenticated (a feature we chose to remove from our

prototype for simplification), by checking that the user has privileges to invoke the action in Open-

Whisk’s database (CouchDB).

4.1. Frameworks 31

Figure 12: Openwhisk’s Controller flow upon request.

After the Controller verifies that the user is allowed to invoke the action, it loads its code from

CouchDB and prepares it for execution with the parameters passed on the request, merged with

the default parameters stored in the database.

Node Management and Selection

The Controller chooses the nodes where the action is going to be executed by exchanging infor-

mation with the Load Balancer (which is a module inside the Controller). The Load Balancer has

a global view of the system and knows which nodes are available by checking their health status

continuously. It maintains this view by pinging each node every second, which in turn respond

by saying if they are or not functioning correctly (or they do not respond at all). Upon a controller

request for a node, the Load Balancer responds with information about a node from its view, which

selects in a round-robin manner from the set of healthy nodes in the system.

Although the Load Balancer component is able to successfully operate within stable environ-

ments, the way it manages information is not applicable to highly dynamic environments. By cen-

tralizing information and requiring a constant response from its registered nodes, the Load Bal-

ancer makes itself incapable of handling churn in an effective manner when operating in highly

scalable systems. In example, a system comprised of ten thousand nodes would require heavy

bandwidth use to manage, since the Controller would produce the same amount of health requests

per second. As we’ve seen with Dynamo, centralizing the management of system information dis-

ables systems from reaching high scalability over time.

Moreover, node selection does not account for current available resources at the node nor past

node usage, making task distribution uneven across the system. Openwhisk assumes the system

is homogeneous in nature and makes no effort in order to optimize resource usage.

Action Dispatching

Upon retrieving the node in charge of executing a task, Openwhisk needs to dispatch it to the node.

In order to do so, it relies on Kafka, a distributed publish-subscribe messaging system. Controller

and Invoker solely communicate through messages buffered and persisted by Kafka, ensuring the

messages are not lost in case the system crashes.

To pass the action to the Invoker, the controller publishes a message to Kafka, containing the

code and parameters of the action. Kafka is in charge of buffering the message and addresses it to

4.1. Frameworks 32

the Invoker. Since Openwhisk does not account for current node load, this can cause additional

latency (Figure 13) if the node is not capable of executing the task at that moment, even if there are

other nodes which can do so.

Figure 13: Issues when dispatching an action with Kafka.

Once Kafka confirms that the Invoker receives the message, and if the action is being executed

asynchronously, it responds to the controller with an ActivationId, which is returned to the user so

he can access the results of the invocation later on. After the task finishes executing, the invoker

returns the results of that invocation to the controller, which saves them in CouchDb.

In case the action is being executed synchronously, the invocation is blocked until the invoker

returns the results for that invocation to the controller, which in turn returns them to the user.

An user can choose whether to perform an action synchronously or asynchronously upon each

request by passing an extra argument to the request.

Action Execution

The core computing unit in Openwhisk is named Invoker, whose main duty is to invoke an action.

For each action, invokers setup a new self-encapsulated environment, which in summary consists

of a Docker container upon which the action code gets injected together with the action parame-

ters. After the code gets executed, the invoker obtains its result and the container gets destroyed.

A lot of performance optimization is done to reduce the overhead of instantiating new containers

and make low response times possible. Each container is created from a base image containing

the SDK for the programming language the code is written with.

4.1. Frameworks 33

The result obtained by the invoker is then returned to the controller, which gets the resulting

JSON object back from the action, grabs the log written by docker and stores it as an action activa-

tion in the CouchDB database.

The final record contains both the returned result and the logs written, as well as meta-data

obtained from the execution, such as the start and end time of the invocation of the action.

4.1.3 Integration

In order to conform both DataFlasks (Figure 14) and Openwhisk (Figure 15) to our architecture,

some changes were made.

DataFlasks

In terms of behavior, the Group Construction protocol was modified so it would group nodes ac-

cording to more properties than just their position, such as the environment they are operating in.

This means that the behavior of the PMS was modified in order to enable the exchange of more

information through gossip to the entire system.

Figure 14: Dataflasks within the architecture.

In order to simplify data storage for our use-case, we store and read data directly from the node’s

filesystem. In contrast to Dataflasks key-value storage, we intend to take a file based approach,

where we store data directly as separate files on the system, which can then be read and processed

individually.

Finally, our implementation comprises an union of both DataFlasks and Openwhisk. The first is

developed in Java and the latter in Scala. As to standardize both platforms, we migrated DataFlasks

to Scala and implemented it using the Actor pattern, present in highly scalable languages such as

Erlang. To facilitate testing, deploying and versioning, we’ve dockerized this new implementation

of DataFlasks.

4.1. Frameworks 34

Openwhisk

The Openwhisk system mainly consists of only two custom components, the Controller and the

Invoker. However, for it to conform to our prototype, several changes where made.

Figure 15: Openwhisk within the architecture.

One of the main scaling limitations for the system is how the Controller manages the Invokers

(by heartbeat). In order to overcome this, we’ve integrated DataFlask’s PMS into every Invoker and

Controller and removed the heartbeat, so system information is decentralized and every node has

a partial view of the system but is still able to advance in dynamic environments. Task execution

requests are also disseminated epidemically through the system, without the need to maintain a

constantly updated view of it.

Since Openwhisk distributes tasks without accounting for Invoker load or task complexity, we’ve

implemented a more capable Load Balancer for it, able to distribute tasks more evenly across the

resources available in the system by taking into account several node metrics, such as the number

of invocations and current available resources. This also aims to improve the average latency of a

request being buffered by Kafka, since nodes are more likely to be able to execute the task at the

moment of invocation.

In addition, we’ve also augmented the current API to handle the data dependent operations,

enabling users to perform operations on data already stored at the computing nodes.

Finally, we’ve added execution fault tolerance by making multiple invokers perform a single task.

This capability is also tunable per task, so users can decide the amount of resources to spend on a

single invocation of that task.

4.2. Connecting Cloud and Edge 35

4.2 C O N N E C T I N G C L O U D A N D E D G E

One of the most important requirements for our use-case consists of enabling the connection be-

tween edge and cloud environments seamlessly through appropriate data replication and task dis-

tribution, meaning that both environments should be able to process data stored in the platform

without additional overhead for data transportation during task execution. We aim at bringing the

tasks to the data and not the other way around, making the data available to both environments.

We have mentioned that Dataflasks presents a very promising solution to data management on

edge environments and opens the possibilities for both data locality and heterogeneity support.

Seeing that we use it as a data management framework to our implementation, we further explore

the applicability of its capabilities to our use-case.

4.2.1 Dataflask’s group construction protocol

Dataflask’s replication algorithm (Alg. 1) is based on a class of gossip-based protocols that enable

nodes to be grouped and organized in a robust and scalable way for data distribution and repli-

cation. Data is replicated by groups, such that nodes in the same group store the same data. The

algorithm provides for each node an estimation of the number of groups needed to satisfy the con-

figured group size and, from those groups, the group the node belongs to.

Algorithm 1 Gossip group construction algorithm.

input: g r oupsi ze, i d

Data: f loat pos ← r andom() . random number in]0,1]
Data: ng r oups ← 1 . every node starts assuming only 1 group
Data: g r oup ← 1 . estimation for current group
Data: set local vi ew ← {}

1: upon reception of m ← set o f (i d , pos) from PSS:
2: foreach peer i n m do . add new peers to localview
3: if g r oup(peer .pos, ng r oups) == g r oup then

local vi ew = local vi ew
⋃

{peer } . possibly rewriting peer

4: foreach peer i n local vi ew do . clean localview
5: if g r oup(peer .pos, ng r oups)! = g r oup then

local vi ew = local vi ew \ {peer }

6: if |local vi ew | < g r oupsi ze then . need to merge or split

7: if ng r oups > 1 then . should merge
ng r oups ← ng r oups / 2

8: if |local vi ew | > g r oupsi ze then . should split
ng r oups ← ng r oups ∗ 2

9: g r oup ← g r oup(pos, ng r oups) . recalculate group

4.2. Connecting Cloud and Edge 36

The algorithm receives the size of the groups (replication factor) to construct as input, as well

as an id that uniquely identifies it. Every node in the network learns the same group size at start-

up. The algorithm is suitable for decentralization since it independently estimates the number of

groups needed to satisfy the required group size and the group the node belongs to.

Moreover, upon starting, each node generates a position pos, which is a number in the interval

]0, 1] that remains constant during its lifetime. The number is calculated using a random uniform

number generator that evenly generates numbers for the system nodes across the interval. It is

thus trivial to calculate the group to which the node belongs (Alg. 2), according to his estimation

of the number of groups.

Algorithm 2 Group calculation method.

1: function GROUP(posi t i on,ng r oups)
2: g r oup ←dposi t i on ∗ng r oupse
3: return g r oup

When a node first starts, it considers the system as being a single group in which it is contained.

As the protocol runs, the estimation of ngroups converges towards a number that divides the sys-

tem into groups of groupsize nodes.

Nodes are able to estimate the number of existing groups by storing a view of the system that

consists of the nodes that belong to his group. Upon each iteration, they compare the size of their

view to the required group size and adjust their number accordingly.

Data is replicated throughout the system and each node is able to determine to which group a

certain data (identifiable by a database key) belongs by mapping it to a position in a predetermined

hash range.

By mapping data to a limited interval, it is straightforward to calculate the group a key belongs

to. Following this procedure data is distributed and balanced throughout the platform and every

node is capable of determining if it belongs in its data store.

Each time a node changes group it needs to perform state transfer procedures. In order to min-

imize state transfer between nodes, the algorithm is designed to always consider the number of

groups to be a power of two (Figure 16), resulting in a well defined set of possible group configu-

rations. The mapping between the key and group is stable as the level increases and nodes do not

need to transfer any data.

Algorithm 3 Determining to which group a certain key-value pair belongs.

1: function GROUP(ke y)
2: ke y_hash ← hash(ke y)
3: ke y_posi t i on ← ke y_hash / hash_max_value
4: g r oup ←dke y_posi t i on ∗ng r oupse
5: return g r oup

4.2. Connecting Cloud and Edge 37

Figure 16: Data to group mapping.

The group construction protocol works as a passive thread that awaits for messages from the

Peer Sampling Service (Cyclon) with information about other nodes in the system, which include

the node position.

Cyclon works by periodically exchanging messages containing a set of random node references

from the network. Each time a PSS message containing a random set of peers from the network is

received, a copy of this message is delivered to the algorithm. DataFlask’s considers that nodes are

completely connected through lossy communication channels [29].

Upon the reception of a message, the protocol performs four tasks on the local node:

• For each node in the message, add its reference to the localview if the node belongs to the

same group as the local node.

• Check if every reference in the localview still belongs to the local node group (important

when group changes occur).

• Adjust the estimation for the number of groups in the system according to the current lo-

calview size.

• Recalculate the group it belongs to.

With the continuous arrival of PSS messages the protocol continuously improves the estimation

for ngroups.

However, the group construction protocol must ensure data is stored both on edge and cloud

nodes, to allow for the different types of processing described in the previous chapter. Although

4.2. Connecting Cloud and Edge 38

having a large number of devices in the system increases the probability that data will be replicated

to both environments, this assumption is not sufficient to validate the requirement. Dataflasks

protocol does not ensure replication of data by environment, which limits the applicability to our

use-case. Moreover, the information currently disseminated though the system with Cyclon is not

sufficient to enable this behavior.

Nonetheless, DataFlask’s group management presents a very solid base to work with, since its

gossip-based nature allows us to adapt it into a protocol that fits our needs.

4.2.2 Cloud and edge group construction protocol

In order to surpass these limitations, we have extended DataFlask’s group construction algorithm

to accommodate the ability to differentiate between cloud and edge nodes. Our version of the

algorithm is based on the same scalability principles that allow DataFlasks to operate on highly

dynamic environments and uses the same PSS mechanism.

One of the initial issues with the original protocol is the group size requirement. Small changes in

group sizes can easily affect the group number of a node, which could cause excessive bandwidth

usage in order to transfer the data to the appropriate nodes in the system. Fortunately, this issue

was also addressed in the original protocol, by replacing the fixed grouped size requirement for a

ranged group size, much more appropriate for dynamic environments.

The main distinction between the original protocol and our own (Alg. 4) is on how nodes are

perceived when forming a group. Similarly to the identifier, to each node is assigned an additional

identification parameter, which corresponds to the environment upon which the node operates.

This allows for a simple but effective classification of the power available and expected latency at

each node without having to rely on fairly complex benchmarking mechanisms to classify nodes,

enabling the original algorithm to replicate data to both environments. In addition, this new clas-

sifier allows other nodes to gain knowledge of the environment on which a particular instance

operates.

Each node still generates a position pos, which is a number in the interval]0, 1] that remains

constant during its lifetime, and we maintain the simplicity of the original algorithm in calculating

the group to which a node belongs (Alg. 5).

Since we want our nodes to be able to replicate data across environments, the original algorithm

had an increase in complexity in order to accommodate this new capability. The algorithm now

stores node information in different structures, according to their environment, such that nodes

are simultaneously in both environments. This does not mean that nodes are actually simulta-

neously operating in both environments, but that they belong to one group in each of the envi-

ronments and they replicate data to both of those groups. Each node still has only one position so

group composition is similar in both environments, and data storage follows similar trends in both

environments as well (Figure 17).

4.2. Connecting Cloud and Edge 39

Algorithm 4 Gossip group construction algorithm.

Const: env s ← cloud ,ed g e
input: i d , env
input: mi n_g r oup_si ze_ed g e, max_g r oup_si ze_ed g e
input: mi n_g r oup_si ze_cloud , max_g r oup_si ze_cloud

Data: f loat pos ← r andom() . random number in]0,1]
Data: set local vi ew_cloud ← {}
Data: set local vi ew_ed g e ← {}
Data: ng r oups_cloud ← 1 . assuming only 1 group for cloud env
Data: ng r oups_ed g e ← 1 . assuming only 1 group for edge env
Data: g r oup_cloud ← 1 . estimation for current edge group
Data: g r oup_ed g e ← 1 . estimation for current cloud group

1: upon reception of m ← set o f (i d , pos, env) from PSS:
2: foreach peer i n m do . add new peers to the localview according to their env
3: if g r oup(peer .pos, ng r oups_{peer .env}) == g r oup_{peer .env} then

local vi ew_{peer .env} = l ocal vi ew_{peer .env}
⋃

{peer }

4: foreach env i n env s do . clean localview for both envs
5: foreach peer i n local vi ew_{env} do
6: if g r oup(peer .pos, ng r oups_{peer .env})! = g r oup_{peer .env} then

local vi ew_{env} = local vi ew_{env} \ {peer }

7: foreach env i n env s do . need to merge or split for each env
8: if |local vi ew_{env}| < mi n_g r oup_si ze_{env} then

9: if ng r oups_{env} > 1 then . should merge
ng r oups_{env} ← ng r oups_{env} / 2

10: if |local vi ew_{env}| > max_g r oup_si ze_{env} then . should split
ng r oups_{env} ← ng r oups_{env} ∗ 2

11: foreach env i n env s do . recalculate the group for both envs
12: g r oup_{env} ← g r oup(pos,ng r oups_{env})

Upon starting, just as in the original algorithm, the system is considered as having just a single

group for both environments. As the protocol runs, the estimation of ngroups both for Cloud and

Edge converges towards a number that divides the system into groups of nodes with a number of

elements between min_groupsize and max_groupsize.

We keep the same technique presented in the original algorithm to minimize state transfer proce-

dures between nodes, so the algorithm is designed to always consider the number of groups to be a

power of two, resulting in a well defined set of possible group configurations for both environments.

The mapping between the key and group is stable as the level increases for both environments and

nodes do not need to transfer any data.

Nodes are able to estimate the number of existing groups for both environments by storing two

different views of the system, consisting of the nodes that belong to his group for each environment.

4.2. Connecting Cloud and Edge 40

Algorithm 5 Group calculation method.

1: function GROUP(posi t i on,ng r oups)
2: g r oup ←dposi t i on ∗ng r oupse
3: return g r oup

Figure 17: Dissemination of peer information through the system.

Upon each iteration, they compare the size of each view to the required group size for the related

environment and adjust their number accordingly.

Data is replicated throughout the system and across environments, and each node is able to

determine to which groups a certain data (identifiable by a database key) belongs by mapping it to

a position in a predetermined hash range (Alg. 6).

Algorithm 6 Determining to which group a certain key-value pair belongs.

1: function GROUP(f i le_t y pe)
2: f i le_t y pe_hash ← hash(f i le_t y pe)
3: f i le_posi t i on ← f i le_t y pe_hash / hash_max_value
4: g r oup ←d f i le_posi t i on ∗ng r oupse
5: return g r oup

Notice that this new algorithm representation differs from the original one only in the parameter

that is passed to it. This is due to our goal of storing similar data items close to each other, in this

case at nodes in the same group. Data is tagged with a data type, which can be the owner of that

data concatenated with a tag for the type of data and an unique identifier, i.e. username_tag_id.

With this we intend to achieve a distribution of stored data where items that belong to the same

owner are stored in the same group.

The new group construction protocol works as a passive thread that waits for messages from the

same Peer Sampling Service used with the original protocol, with more information about other

nodes in the system, such as node position and environment.

Upon the reception of a message, the protocol performs four tasks on the local node:

• For each node in the message, add its reference to the localview relative to its environment

if the node belongs to the same group as the local node.

4.3. API 41

• Check if every reference in that localview still belongs to the local node group (important

when group changes occur).

• Adjust the estimation for the number of groups of that environment in the system according

to the current localview size.

• Recalculate the group it belongs to for that environment.

With the continuous arrival of PSS messages the protocol continuously improves the estimation

of ngroups for each environment.

In summary, this extension of the original protocol aims to provide a way for data to be repli-

cated across environments and still provide data availability under heavy system churn. Group

calculation is done very similarly to the original protocol, the main difference being in how nodes

are classified during the algorithm flow. The algorithm assumes the availability of system nodes

for both environments and the transfer of data about the environment the nodes are inserted in by

the PSS.

4.3 A P I

The main purpose of FaaS systems is to provide a platform that allows developers to deploy, run

and manage application functionalities without the complexity of building and maintaining the

application’s infrastructure. OpenFlasks offers an API based on Openwhisk’s API but that focuses

on the creation and execution of data processing operations, allowing developers to process data

and business logic both in edge or cloud environments in a fault-tolerant manner.

4.3.1 Operations

Developers can load task code and execute it against existing data in the system, in response to

events or HTTP calls.

The core logic for executing a task is encapsulated in an abstract concept named Operation. An

operation is in its most basic form a stateful function that executes arbitrary code provided by a

user. This code can be written in different languages and have several purposes, such as detecting

the faces in an image, perform a task on a set of files or post a Tweet.

Developers can create an operation which can be explicitly invoked or ran in response to events.

Operation requests can be invoked asynchronously, providing the user with an operation request

ID such that he can check the result of the operation execution afterwards, or synchronously, where

the user expects a response as a result of the operation execution.

4.3. API 42

4.3.2 Creating an operation

In order to display the basic capabilities of our API, we’re going to follow the creation and execution

of an operation, ending by analyzing the returned results. As an example, let’s take a look at a code

snippet defined at ’example.py’ (Appendix 7.1), related to our motivation case. Let’s say we want

to execute it in some edge node currently available within our network.

The code executes a simple data processing operation on a locally available BTS log file, which

contains sensor readings (1 per line) with the following structure:

• id

• reading_time

• value

• station_id

• parameter_id

In example we can see two lines of these logs on Listing 4.1.

6378219112 ,2017 -10 -23 12:00:42 ,24 ,1161114049 ,116
6378219113 ,2017 -10 -23 12:00:43 ,226 ,1161114049 ,121

Listing 4.1: Example of log entries.

These readings provide information about the value of a given parameter measured by a local

sensor. One useful operation in this context would be to know the average value of a given pa-

rameter during a given interval of time. Since this operation can be performed directly on the

BTS which stands on the Edge of the network, data transfer to the cloud is not needed and we can

obtain information directly from the data available at the edge.

The first step to execute this code within OpenFlasks is to create the operation in our system.

As previously mentioned, Openwhisk has an HTTP API. However, it also provides a command line

tool that takes arguments and builds the HTTP requests, sending them to the instantiated Nginx

server. For simplicity, we’re going to define our example using this tool, as it shows in a more clear

way what we’re trying to accomplish in each step. In order to create our operation, we use the

command on Listing 4.2.

wsk operation create example example.py

Listing 4.2: Wsk: Create an operation.

4.3. API 43

which returns the following response from the platform (Listing 4.3):

ok: created operation example

Listing 4.3: Wsk: Response for operation creation.

We can check the list of operations present in our system by executing Listing 4.4:

wsk operation list

Listing 4.4: Wsk: Listing created operations.

which in this case retrieves Listing 4.5:

operations
example

Listing 4.5: Wsk: List of created operations.

This step creates the operation within the system, but it does not execute it. This step merely

registers the operation code within the system so it can now be called as many times as we want

with different parameters.

4.3.3 Defining operation limits

The goal of the above operation is to execute the defined code given some valid parameters. How-

ever, we are yet to bound the operation in terms of execution limits. We’ve previously mentioned

the need to define upper and lower bounds for resource usage upon operation execution so task

distribution is optimized by a load balancer. Since we want to execute this operation on an edge

node and that node has to have the file to be processed, we have to tell the system only to execute

the code in nodes that fulfill these conditions. This is possible since that in our architecture, nodes

that execute an operation are only able to do so if they meet the requirements defined at the time

of the execution request.

This information can be defined by making use of Openwhisk’s annotation capabilities. By ex-

tending Openwhisk’s current behavior, these parameters passed on operation creation let us attach

meta-data to an operation that will be accessible by our Load Balancer on each execution and will

ultimately affect how the operation is distributed and executed. Table 3 lists the annotations we

consider when bounding the nodes that are able to execute a given operation.

So in this example, we want our operation to be executed on the edge, and in a node that stores

files with the tag ’bts-log-*’ that belongs to the user ’man_services’. In addition, let’s say we want

our operation to be executed in 3 different nodes (assuming there’s at least 3 different nodes that

4.3. API 44

Annotation Description Unit Default
tag Identifier for the file(s) to be processed - -
minMem Lower bound to the necessary execution memory MB -
opTimeout Timeout value to consider an operation as failed Seconds 60
env Environment for execution [EDGE, CLOUD] CLOUD
exec_num Min. number of executors Integer 2

Table 3: Request parameters/annotations.

satisfy these conditions). All of these restrictions can be defined by passing an annotation to the

operation creation command. Since we have already created this operation, let’s update it instead

with Listing 4.6:

wsk operation update example example.py -a tag ’man_services -bts -log
-*’ -a env ’EDGE ’ -a exec_num 3

Listing 4.6: Wsk: Update an existing operation.

4.3.4 Requesting an operation execution

The operation code is now loaded on the system, where it is stored in CouchDB. As an example,

we’ll invoke the operation synchronously by passing the –blocking flag to the command. At this

point, either the execution takes less than 60 seconds and the result of the execution is returned, or

the execution continues processing in the system and an activation ID is returned to the user, so

that he may check for the results later, which will be stored in CouchDB as well. This activation ID

is also what gets returned when the operation is invoked asynchronously (without the –blocking

flag).

The above operation requires 4 input parameters to execute the code. The input parameters are

passed as a JSON object parameter to the main function. In this case, since it is a Python operation,

the code takes the parameters passed by the user upon the invocation of the operation as a python

dictionary. In detail, these parameters are:

• the time interval to consider when processing data (from, to)

• the BTS parameter to process (param_id)

• the BTS that produced the reading (station_id)

Since the BTS stores readings from different days in different log-files, the code loads the entire

file for that day and loops through each entry.

4.3. API 45

The parameters can be passed upon each invocation of the operation and are set with the flag

–param followed by the name of the parameter and the value for it. Thus, assuming the operation

is completed within 60 seconds and all parameters are valid, the command on Listing 4.7:

wsk operation invoke --blocking --param from ’2017-10-23 00:00:00 ’ --
param to ’2017-10-23 13:00:00 ’ --param param_id ’121’ --param
station_id ’1161114049 ’ example

Listing 4.7: Wsk: Execute an operation.

returns the activation ID for the operation and the result returned by the operation itself (Listing

4.8):

ok: invoked example with id 09bc4bd6aab7441234242a30bc140e5b

{

"result": {

"response": "216.00"

},

"status": "success",

"success": true

}

Listing 4.8: Wsk: Operation execution response.

The operation ID in this case is useful to check any logs generated by the invocation (Listing 4.9),

but could also be used to check the result of the invocation in case it was executed asynchronously.

wsk operation result 09 bc4bd6aab7441234242a30bc140e5b

Listing 4.9: Wsk: Get operation result.

The result in this case is the string ’216.00’ returned by the Python operation, referring to the

average value of the captured metrics by the BTS with the given station_id.

In summary, operations can be blocking or nonblocking and are identified by a unique activa-

tion ID. OpenFlasks returns an activation ID (in the case of a non-blocking invocation) to confirm

that the invocation was received. If there’s a network failure or other failure which interrupts the

flow before returning an HTTP response, it is possible that OpenFlasks received and processed the

request.

An operation takes a dictionary of key-value pairs as input, and returns a dictionary of key-value

pairs as a result, where the key is a string and the value a valid JSON value. Data processing opera-

tions must be able to be mapped to devices that locally store the associated data. These ability to

4.4. Data pipeline 46

ensure data locality upon operation execution requires some user-provided meta-data along with

with the code to be executed and other execution context parameters.

Unlike common most implementations of serverless architectures, we allow for the implemen-

tation of operations to be stateful if necessary, meaning that the execution of an operation can

change the state of the device that executed it. However, we do not yet guarantee that the changes

are correctly replicated throughout the system.

We exchange processing capability (since users have to define their own code) with the versatility

of operating in multiple environments. We also lack support for parallel execution of the same

operation in different nodes, so each operation is confined to the limits of single-node execution.

4.4 D ATA P I P E L I N E

Typical FaaS systems have significant architectural restrictions regarding state, as they advocate

that operations should be stateless. Our solution delves into the limits of this property and explores

the possibility of statefulness within FaaS.

Openwhisk does not enforce this property as it doesn’t guarantee that any state maintained by

an operation will be available across invocations, which would open up the possibility to integrate

Dataflask’s data replication mechanism.

OpenFlasks focuses on the read-only use-case of our architecture and does not currently support

data replication and therefore stateful operation across invocations. We use each node’s filesystem

as a stateful but not fully replicated storage system, which means that operations can read and

write data from the node’s filesystem, but written data is not available on the remaining group

nodes.

4.4.1 Consuming data

We describe the flow of the data to be stored in the system, from the moment it is produced until it

is stored and replicated.

Following our use-case, we assume data is mostly produced at the edge by non-web devices,

such as BTS’s. Therefore, we consider data to enter the system through the local device before it is

disseminated and replicated to its appropriate storage space.

Upon the production of new data, which in this case we consider to be a constant stream of sys-

tem metrics from the sensors, the Dataflasks instance located on the BTS node enables its proper

storage with the correct meta-data tagging that will define where the data will be stored. This ba-

sically means that DataFlasks stores the item with the meta-data as the key and the data as the

value.

4.4. Data pipeline 47

Data is replicated throughout the system, both on edge and cloud nodes, which are discovered

using the improved algorithm presented before. This ensures data is available both for light pro-

cessing on the edge as well as for more complex analytics on the cloud.

4.4.2 Tagging data

One of the primary goals of tagging the data is to be able to distribute data in a way we can ef-

fectively map data type to node group. Dataflasks original algorithm determined to which nodes

a certain data belonged by hashing the data key and uniformly distribute it along a range ([0,1]),

multiplying this value by the number of groups. However, this is not ideal for our use-case, as we

believe similar data should be stored closer to each other.

In order for us to be able to implement the node data preference primitive, we first need to decide

which entity decides where the data is placed. In order to solve this, we assumed that each node is

capable of identifying the data it is producing, labeling it according to some data type standard.

Algorithm 7 Determining to which group a certain key-value pair belongs.

1: function GROUP(f i le_t y pe)
2: f i le_t y pe_hash ← hash(f i le_t y pe)
3: f i le_posi t i on ← f i le_t y pe_hash / hash_max_value
4: g r oup ←d f i le_posi t i on ∗ng r oupse
5: return g r oup

Algorithm 7 shows a variation of Dataflask’s algorithm for mapping data to node groups, which

takes into account the file label given by the producing node. We employ a deterministic hash

which gives closer values to similar semantic types, fulfilling our initial primitive of data closeness.

The algorithm outputs to which group a file belongs by mapping his meta-data to groups of nodes.

4.4.3 Storing data

In order to better understand how the storage and replication mechanism works, we consider a

stream of data from a sensor being stored in an example data file Df at a given BTS node (Figure 18).

For simplicity, the file is identifiable and tagged with the id of the owner of that data concatenated

with a timestamp of its creation. After a while, the stream of data is interrupted and the file must be

stored, so the node first verifies if Df should be locally stored, by performing the above algorithm

against the generated file tag.

The output of this function is the group id where the node data should be stored. This informa-

tion is then compared with the group id currently guessed by the local group construction manager.

In case they have the same value, Df is stored locally and the process of replication begins. The

device disseminates Df and Df’s meta-data to its known nodes of the system, which in turn will

4.4. Data pipeline 48

Figure 18: Data is produced at the edge, where it is tagged, stored and replicated.

perform the same described procedure until the data is stored in the appropriate device(s) across

the entire platform.

For simplicity, we opted to store the data as a file in the device filesystem so it can be accessible

for later processing by the CEUs without the need for an extra layer of data storage access logic

embedded in the code, and without requiring the provisioning of database capabilities. The goal is

that the code from the operations is able to access the file as it would in a local computer running

the same OS. Since meta-data is representable by strings, this can be easily stored as the data file-

name, or in a separate file in the device’s filesystem. However, in practice, the storage backend can

be whatever best suits the situation.

4.4.4 Assumptions

In order for this approach to be successful, some assumptions about the behavior of each storage

device were made.

Since we rely on an hash to distribute data through the system, we assume each storage device

is capable of storing various types of different data coming from different users/producers.

Also, note that this solution can cause that a file produced locally is not stored locally, causing

inefficient use of bandwidth through the entire platform. An optimized hashing mechanism could

be developed in order to minimize Dataflasks usage of bandwidth for replication purposes, by

mapping data to the sensors most likely to produce it.

The system is designed to operate in very large environments, with thousands of nodes. There-

fore, we assume there is always a device capable of storing new incoming data. In addition, there

are enough different users/producers and data types to achieve an almost uniform distribution of

data across system devices.

Each node stores data according to its capacity. If new data comes to be stored in a low storage

capacity device, the oldest data should be overwritten to make space for the new data. This ulti-

mately means that devices with higher storage capacity (typically cloud devices) will be the ones

to hold the oldest data, since edge devices are expected to operate on most recent data. We view

4.5. Operation pipeline 49

the system as a processing platform for code snippets, and do not provide guarantees for data

persistence for an unlimited amount of time.

4.5 O P E R AT I O N P I P E L I N E

Finally, in order to we explain how all the components of OpenFlasks work together, we trace an in-

vocation of an operation through the system. As an operation sample, we are going to use the same

example described in the API section (Appendix 7.1), instantiated with the same configuration pa-

rameters, but also limited by the minimum memory that nodes must have available to perform the

operation:

User man_services
File tag bts-log-*
Environment EDGE
Minimum memory 256MB
Blocking Yes
Min. number of executors 3

Table 4: Parameter configuration for example operation.

For this, we assume the action is already persisted in CouchDB, where the associated code and

default parameters are stored. Figure 19 displays an overview of the implementation, with all the

components from both Openwhisk and Dataflasks that are included in our solution, together with

our custom components that make them able to work together.

Figure 19: Overview of the implementation.

Note: The functionality of various parts of the system is implemented and deployed in differ-

ent docker containers, which means that our system is modular, simple to distribute and easy to

provision. In example, Nginx, Couchdb, Kafka and every Invoker are each deployed on their own

4.5. Operation pipeline 50

container. In addition, the PMS is deployed together with the Group Manager module, as their

responsibilities are closely intertwined. Finally, the logic from the Controller (Request Translator

and Operation Hub) are deployed together as well in another container.

4.5.1 Entering the system

In order to provide an user-facing API we built on top of Openwhisk’s API, which is completely

HTTP based and follows a RESTful design. Luckily, since the local client mentioned in the API

section is basically a wrapper for HTTP requests, we didn’t have to change it for it to be applied to

our use-case, so all of our adaptations we’re internal to the core code-base of Openwhisk. Requests

enter the system through Nginx, which is also the default HTTP server for Openwhisk.

4.5.2 Handling the request

Each request is forwarded to the Controller’s Scala-based API implementation, to be translated

into an executable operation (Figure 20). What this step does is to basically fetch the code stored

in the CouchDB database related to the invocation and map its parameters to the meta-data sent

through the HTTP request (the invocation parameters). These parameters are then merged with

the request specific parameters, such as the file tag that represents the data that is going to be

operated on and the number of devices that should perform the operation.

Figure 20: Request translation with the given parameters.

When this step finishes, the translated request is passed to the Controller’s Operation Hub, which

stores it in memory along with other currently active invocations. The Operation Hub maintains

the state of every active invocation, such as the code and parameters related to the invocation and

the nodes that are (or are going to be) executing it.

Since the request is blocking, the connection is maintained until the task is executed and the

result is returned to the user. In case the request were to be executed in a non-blocking manner an

unique id for the request would be generated and returned to the calling user once the Controller

was able to assign the operation to a device.

4.5. Operation pipeline 51

4.5.3 Finding available nodes

Upon receiving the request and promptly storing it, the Operation Hub then builds an Opera-

tionRequest message, which contains the requirements that the computing devices must fulfill

in order to perform this request.

This message is disseminated through Cyclon, the PSS we adopted from DataFlasks, which en-

ables our prototype to scale in dynamic environments, replacing the original ’heartbeat’ approach

used by OpenWhisk. The PSS follows the implementation pattern of the rest of the platform, and

is deployed in a separate container together with the Group Manager implementation. This con-

tainer is deployed in each of the computing devices as well as in the Controller’s host, and commu-

nicates with the Controller through HTTP requests.

To put it simply, the OperationHub ’asks’ the PMS for nodes in the system that fulfill the given

requirements, passing it the OperationRequest message. Cyclon then takes that message and dis-

seminates it through its local view. A simple way to think about it is to see the Controller as just

another device in the network, that maintains a view of the system and is able to communicate

with every node in the system by epidemically disseminating messages.

Starting from the nodes in the Controller’s host local view, the message is disseminated one hop

at a time through the entire system, with added information about the Controller so that each

node can directly reach it. Each node evaluates its current resources (Figure 21) against the ones

specified in the OperationRequest message, and builds an OperationResponse message in case it

is able to execute the operation.

Figure 21: Computing device needs to abide by the given restrictions.

This message contains information about the current locally available resources such as the

available memory, and is sent by the computing device’s local Cyclon implementation to the Cy-

clon instance running at the Controller’s device. While the request is being disseminated through

4.5. Operation pipeline 52

the system, the Cyclon instance at the Controller is waiting for at least N OperationResponse mes-

sages, N being the minimum amount of executors defined by the user for this particular invocation

of the operation (3 in this example).

The OperationHub regularly pools the PMS for the set of nodes able to compute the operation,

with a set timeout of 15 seconds before it responds to the user that it is not possible to execute the

operation due to a lack of executors for it. In this case, let’s say there are more than 3 nodes that

respond. So, when pooling the PMS for nodes, it returns a set of 3 nodes and information about

their current available resources.

4.5.4 Assigning the task

The Operation Hub has now all the information necessary about which devices in the system can

execute the operation, and can contact them directly to transfer the operation’s code without the

overhead bandwidth usage of disseminating the code through the entire network.

In case Cyclon provides the same number of nodes as the minimum set by the user, the Con-

troller will attempt to send the operation to everyone, and the first to provide a valid response to

the execution is the one considered to have executed the operation. Note that the goal for this user

defined parameter is not to distribute the operation load over several nodes, but to provide some

reliability under a very dynamic environment. Since system churn is high on the edge of the net-

work, this parameter should also be high for that environment, as to provide better success rate for

operation requests. In contrast, for cloud environments this parameter can be lowered in order to

save resource usage, as the environment is much more stable and reliable.

Since the Controller has information about every device that has ever executed operations, we

are also able to provide a simple but effective task distribution protocol in case the devices returned

by the PMS exceed in number the ones required by the user. For simplicity, each device returned by

Cyclon that is able to execute the operation is compared by average memory spent per invocation.

So, the N devices that have the lowest value of device_memory / device_invocations are the ones

used to perform our task.

However, simply sending the operation information to the devices is not enough, since the sys-

tem can crash, losing the information of the operation’s invocation.

Figure 22: Assining an operation execution request.

4.5. Operation pipeline 53

For this reason, we use Kafka as the Dispatcher component, which is the same publish-subscribe

messaging system used by Openwhisk to reliably establish communication between controller and

devices. This way, when assigning an operation, the controller and the computing devices commu-

nicate through messages buffered and persisted by Kafka, lifting the burden of buffering in mem-

ory by the Controller and devices, and making sure that the messages are not lost in case the system

crashes.

In order to get the operation passed to each device (Figure 22), which contains the operation

to execute and the parameters associated with that invocation, the controller sends a message to

Kafka, addressed to the chosen devices that responded earlier to the OperationRequest message.

In case the operation is asynchronous, so the HTTP request form the user is responded to with an

activation id, which he can use later on to access the operation results.

The controller then awaits the first successful operation response from the set of operation exe-

cution requests sent to Kafka.

4.5.5 Executing the code

For each incoming operation, a computing device instantiates a Docker container in order to ex-

ecute the associated code (Figure 23). The containers are setup in a fast, isolated and controlled

way, and upon unpacking the operation message, the computing device injects into the spawned

container all the necessary data for it to be executed. In our implementation, the containers share

a docker volume on the filesystem from where they can read the data needed to compute the oper-

ation.

Figure 23: Processing a request on the Edge.

In our example, the spawned container is first provisioned with a base image with the necessary

tools to execute Python code. The code and operation parameters are then injected into it, the

operation is executed and the result is extracted. Finally, the computing device saves the execution

logs and destroys the container again, until a new Python operation is requested.

4.5. Operation pipeline 54

4.5.6 Storing the results

Finally, the result is obtained from the container and returned to the Controller, where it is stored

in CouchDB under the activation id created earlier and promptly returned to the user. In case the

operation was called asynchronously, the user can check the result by using the the activation ID

assigned to the execution of the operation.

In this specific case, the computing device gets the resulting JSON object back from the operation

execution and returns it to the Controller together with the logs from the Docker container.

5

E VA L U AT I O N

Having described our prototype for the architecture, in this section we present a set of experiments

that aim to validate the requirements set during the motivation of our use-case. The infrastructure

that hosts our prototype has to be able to:

• Seamlessly handle and store data in both cloud and edge environments.

• Process data locally at the edge devices in a distributed manner, according to their capabili-

ties.

• Execute complex data analytics in the cloud.

OpenFlasks is mainly comprised of two components: the data management component oper-

ated by Dataflasks and the data processing component operated by Openwhisk. Since our work

stands on the shoulders of these already evaluated tools, we focus our assessing on the core con-

cepts we introduce with OpenFlasks, such as multi-environment group construction and reliable

distribution and execution of tasks across heterogeneous environments.

To test the extent of the system capabilities in providing proper data processing under highly

unstable and heterogeneous environments, we intend to simulate a distributed system comprised

of semi-realistic nodes where to instantiate OpenFlask’s components. Moreover, to prove the ef-

fectiveness of our approach, we aim to simulate nodes with different resources and different task

execution capabilities.

The system will also be put under heavy stress with processing tasks whose execution require-

ments vary in memory consumption.

The data workloads for data processing tasks are be composed of heavy sized datasets of un-

structured data extracted from real IoT devices such as temperature sensors, to be operated on

and processed.

Moreover, to corroborate the viability of our solution under very dynamic environments, the

system will be subject to forced node failures in order to test the reliability of the processing tasks

and its ability to recover from possible churn spikes.

55

5.1. Testing environment 56

RAM CPUs Avail. storage Data Latency Quantity

Cloud 4096 MB 2 10 GB 1GB 80-100 ms 8
Edge 2048 MB 1 6 GB 512 MB 25-45 ms 24

Table 5: Virtual node configuration for evaluation.

Finally, we compare our implementation with one that emulates the capabilities of the vanilla

version of Openwhisk under a similar testing environment and discuss the advantages and trade-

offs for each one.

We trace and measure the ongoing system calls in order to profile the final prototype according

to our requirements, presenting evidence of our results.

The code for the computing platform can be found on Github.

5.1 T E S T I N G E N V I R O N M E N T

We setup a distributed testbed to test our implementation in a semi-realistic setting, creating an

IoT infrastructure that instantiates our prototype and performs data management and processing

tasks.

Since we do not have sufficient machines at our disposal for the scale we target within our mo-

tivation scenario, the testbed is composed of VVMs with different capabilities (differentiated by

the metrics we described, such as CPU, memory and disk space), which emulate several simplified

Base Transceiver Stations that do not monitor equipment neither collect data, but are in turn al-

ready instantiated with it. We chose to directly populate the hosts with data (in the form of files

stored directly in the filesystem) not only because we do not have at our disposal an environment

to gather data through sensors that is realistic enough, but also because our goal is to test the

processing protocol for the data, not how it is collected. The simulated BTS’s will perform data

processing tasks sent by the controller, acting as the computing devices of our architecture.

In order to be able to simulate such an environment, we used a machine with an AMD Opteron

6172 (24 core at 2.1GHz) and 128GB of memory. The machine runs a Linux based OS (CentOS 7),

which allows us to use tools such as KVM to create several virtual machines that serve as nodes

for our evaluation. Each of these nodes is instantiated with a minimized version of the popular

Ubuntu 14.04 LTS OS. Each node is provisioned with enough resources to simulate the environ-

ment on which it is active, which means that virtual hosts that simulate cloud nodes have more

available resources than their edge nodes counterpart. For metrics, each host runs Dstat, a tool

able to capture system metrics over time and log them for later analysis.

In our experiments we ran 32 nodes populated with the computing component of our architec-

ture, each one with a set of the workload data.

Table 5 details the resources and provisioning of the hosts, according to their environment. We

chose to maintain a ratio of 2 cloud nodes for each 7 edge nodes, as we advocate that our moti-

https://github.com/prccaraujo/openwhisk/tree/distributed_flasks

5.2. Workload and Assumptions 57

vation is set on the idea that edge environments, although less resourceful, have a considerably

higher number of hosts than cloud environments. As a result, we’re able to validate our guarantees

at a medium scale environment while providing a Scala prototype that is ready for deployment in

a real scenario.

The prototype itself is installed using Ansible to deploy Docker containers with the different com-

ponents.

The group construction algorithm and PSS operate as a micro-service that is deployed in a sep-

arate container on each node where the OpenFlask’s Controller and Invokers (responsible for han-

dling execution requests at the computing devices) operate. Both the controller and invokers are

also implemented in separate containers and all these modules communicate through HTTP re-

quests.

Both the invokers and the CEUs have configured docker volumes which allow them to access

where the data is stored, in this case ’/tmp/’.

The controller is instantiated in the same network as the computing devices and on a more pow-

erful VM than the ones available for computing devices, having roughly double the sources avail-

able at cloud nodes (8GB of RAM, 20GB of available storage and 2 CPUs). The remainder of Open-

Flask’s components, namely Nginx, Couchdb and Kafka are also instantiated each in a separate

container on the same VM as the controller.

Figure 24 represents the final testing environment that will execute our proposed workload.

5.2 W O R K L O A D A N D A S S U M P T I O N S

The data workload is composed of a collection of sensor readings kindly provided by Dr. Hong-

Linh Truong, a professor at TU Wien. These readings come from a real IoT infrastructure from

BachPhu, a company developing an IoT solution in Vietnam, with thousands of Base Transceiver

Stations (BTSs), very similar to our own use-case.

For our test workload, we’re going to use two datasets:

• readings from various alarm sensors, which contain information about parameters whose

values are above a threshold. These readings follow the format: id, station_id, alarm_id,

parameter_id, start_time, end_time, value, threshold.

• readings from various stations, which contain information about several parameters (sen-

sors). These readings follow the format: id, reading_time, value, station_id, parameter_id.

As previously mentioned, the environment is set to emulate a real dynamic and heterogeneous

environment, which means that we have to implement some characteristics of it that are not

present on a machine simulated one.

Some of the tests are subject to different levels of churn in order to test the reliability of our

platform. Churn is implemented by removing a node (a VM host in this case), preserving the posi-

5.3. Experiments 58

Figure 24: Overview of the testing environment.

tion distribution of the other nodes. In addition, unless specified, nodes subject to churn will be

exclusively edge nodes.

Every test assumes that the underlying storage layer, in this case Dataflasks, is correctly and

effectively replicating data to its group nodes, meaning that tasks always operate under the most

recent version of the data.

Finally, since every host is simulated on the same physical machine, network latency is not being

considered. Several articles [39, 40, 41] suggest that a good measurement for induced latency is

between 80-100ms for cloud nodes and 25-45ms for edge nodes, which we’ll induce on the hosts

upon every call.

5.3 E X P E R I M E N T S

We validate our requirements by executing three different tests, each validating a particular require-

ment. In order to prove that our system is able store data in both cloud and edge environments,

we isolate the group construction algorithm from the rest of the system and run it in a thousand

simulated nodes to confirm that we can achieve stable replication groups even under heavy churn.

5.3. Experiments 59

Moreover, to test the systems ability in distributing tasks according to node load, we execute

a set of operations with different resource needs against an heterogeneous testing environment

and analyze each node’s load for the duration of the workload. Finally, we run the same workload

against this environment but introducing node churn to test its ability to operate under dynamic

environments with reduced operation failure.

5.3.1 Group construction across environments

The original group construction mechanism provided by DataFlasks has proved to be successful in

arranging nodes into replication groups under heavy churn. In order to validate the convergence

of our algorithm, we have performed similar simulations as depicted in the original DataFlasks

paper.

However, even though we’ve developed our prototype in Scala using lightweight threads (fibers)

and we can isolate the group construction module from the rest of the system, due to having lim-

ited resources we can only instantiate 1024 nodes on a network (in this case all on the same ma-

chine), limiting the memory usage for each OpenFlasks process. Nodes communicate through

UDP sockets and since they are all on the same machine, we allow the nodes to contact each other

by the port they are listening to on the local host.

In this particular scenario, we are instantiating 128 cloud nodes and 896 edge nodes in order to

follow the same rate of cloud to edge nodes previously mentioned. We induce the same latency as

described before, depending on the environment, and analyze the output of each node to deter-

mine if it operates in the correct group or not. Each node outputs its current group and estimation

of the number of groups, and we parse those logs into a spreadsheet that allows us to compare the

results with our expected ideal group organization.

For simplicity, we’ve adopted a similar configuration to the one that presented positive results

in the original DataFlasks paper. The group construction protocol is configured with a minimum

groupsize of 5 and maximum groupsize of 15 for edge nodes and a minimum groupsize of 2 and

maximum groupsize of 6 for cloud nodes, so nodes should estimate roughly an average of 90 edge

groups and 32 cloud groups in the system. Cyclon messages are sized to contain 40 node references

and each node starts operating with a localview populated with references to 2 other random nodes

in the system. Since we have a relatively small quantity of nodes, we’ve configured their position

(]0,1]) to be somewhat uniform over the interval, so the group construction protocol is not affected

by the lack of nodes. Cyclon is configured to exchange message every 2 seconds and the active

group construction mechanism every 10 seconds for both environments.

Figure 25 depicts the group construction achieved over time for both environments over 2500

iterations of the PMS. We can verify from the results that the protocol quickly converges to the

desired configuration in both environments when instantiated over a stable system. We gather that

edge nodes take a bit longer to converge due to the induced latency upon each cycle and the higher

5.3. Experiments 60

Figure 25: Convergence of 1024 nodes running the cross environment version of the group construction
algorithm.

number of nodes. This delay would be even greater if we would reduce the number of references

passed on each cycle between nodes, since each node would need more time to complete its view

of the system and would suffer even more from the induced latency.

To test that it is also able to handle churn properly, around iteration 500 we simulate a system

outage of 50% of the nodes in the system. In order to handle node departure, we introduced the

same aging mechanism has in the original protocol, so each node is tagged with an age property

that increases each cycle in case it is not renewed by a newer PSS message. An active thread peri-

odically checks for nodes with an age over 30 and marks them obsolete.

Figure 26 shows the evolution of group configuration in the system over time, detailing the per-

centage of nodes with an incorrect estimation of the number of groups in the system over time.

We force the system outage by making 50% of the nodes for each environment exit the program

after they hit cycle 500. The number of expected groups is now 45 for edge nodes and 16 for cloud

nodes. As we can see, the protocol quickly converges to the desired configuration, since the num-

ber of remaining nodes is lower, but message size stays the same.

The code for this experiment can be found at https://github.com/prccaraujo/actorflasks/

tree/test-1.

5.3.2 Operation distribution across environments

One of the main advantages of our system compared to vanilla Openwhisk is its ability to perform

load-aware task distribution over multiple nodes for each operation. Therefore, we want to mea-

sure if we can achieve proper task distribution over both environments for a given set of operations.

https://github.com/prccaraujo/actorflasks/tree/test-1
https://github.com/prccaraujo/actorflasks/tree/test-1

5.3. Experiments 61

Figure 26: Convergence for the cross environment group construction algorithm under churn.

In order to measure the impact that better task distribution primitives have in the overall picture,

we’re going to perform the operation presented in the API section of the Implementation chapter

over the provided datasets. However, this time we are going to vary the minimum memory param-

eter over the range of 200MB to 600MB, so that the task distribution problem is not reduced to the

problem of assigning the same number of operations to every node. In addition, the minimum

number of nodes is going to be increased from 2 to 3, so we can better measure the impact that

the duplication of task execution has over the system. For simplicity, the datasets are present in

every node and we’ve forced every node to accept operation execution messages if they have the

necessary resources, regardless of the data they hold. With a size of 200MB that have to be parsed

on each operation, nodes locally hold a dataset big enough to provide considerable stress. In con-

trast with the blocking execution method used in the previous sections, we’ll now asynchronously

request the execution of the operation, so OpenFlasks can process them in parallel without the

need to wait for each individual result.

Figures 27 and 28 show the progress in resource usage of 200 execution calls for each environ-

ment over an interval of 8 minutes (600 task executions per environment). Resource metrics were

obtained from the exported Dstat output during execution and filtered to get the resource usage

in 10 second intervals. Latency metrics were obtained at the end of the execution directly from

CouchDB which stores the logs for operation execution.

Memory allocation suffers some spikes related to the instantiation of docker containers that are

executing the requests, which are much more noticeable on cloud nodes since they are fewer, so

each node has a greater impact on the graphical representation. We can also see that the first

operations start being executed almost instantly on the cloud, since the latency between nodes is

much smaller when compared to the one we simulate on the edge.

5.3. Experiments 62

Figure 27: Average RAM usage during operation execution by environment

Figure 28: Average CPU usage during operation execution by environment

Around the 7 minute mark (400-420 seconds) we can see that memory usage starts decreasing

for edge nodes, since the workload is near completion. However, the workload in cloud nodes

is maintained. Obviously, one could argue that realistically, cloud nodes would have a lot more

power than the ones we simulated. This test however is about proving that task distribution over

environments works and that the execution of simple tasks over the edge of the network is not only

feasible but advantageous.

Figure 29: Operation latency by environment

The induced latency provokes a greater impact on operation distribution than expected even

when there are more edge nodes available than cloud nodes, and the reduced amount of available

CPUs on each node causes not only a slower execution of tasks (Figure 29) but also a much slower

instantiation of the docker containers that are supposed to execute them. We’ve come to realize

that the container instantiation not only can take a lot of time, but can also vary greatly for each

execution.

5.3. Experiments 63

We can see that on average, more operations are allocated to the edge nodes by minute, since in

total they have roughly double the available power present in the cloud nodes. Although through-

put is significantly higher on each cloud node, overall edge nodes provide a greater amount of

finished tasks, despite the increased latency. Latency metrics are displayed as an average execu-

tion time (in seconds) it took to perform one operation on one node for a host, so we can see that

cloud nodes are on average quite faster to compute an operation since they have almost double

the available resources.

Additionally, we can also note that on average memory usage is not optimal and nodes never

quite reach their limit. We identified this issue as being due to an incorrect estimation of the mem-

ory needed to compute our operation. Since we vary the minimum memory parameter over the

[200-600]MB range, a lot of memory is never really used since the real memory needed to compute

the operation is around 200MB. CPU usage is mainly affected by the instantiation of the containers,

since the operation is not very demanding in that aspect.

Figure 30: RAM usage during operation execution by host

We gather from this test that cloud nodes are more able to execute tasks due to a lower network

latency and higher resources, not being so affected by the overhead of container instantiation and

despite the longer time to complete the workload. However, we also gather that edge nodes are

able to execute various operations on locally available data, so a lot of previously unused resources

are now reachable and capable of providing useful business data if properly used.

Finally, we note that are a couple of noticeable outliers in terms of resource usage during the

workload (in this case at around the 140, 170 and 330 second marks in figure 30). We repeated this

workload several times and concluded that they are caused by the simultaneous destruction of all

the current working containers in that instance.

We can see that on a stable system, node load only suffers from a few outliers throughout the en-

tire execution, maintaining a steady rate of memory usage throughout the workload. As opposed

to the scenario observed in Openwhisk, where tasks are assigned in a round-robin manner to avail-

able nodes causing unbalanced load distribution throughout the system for a scenario where oper-

ations have different load needs, we can now distribute relatively evenly the load of the operations

through the network and avoid improper resource usage. The spikes we see on decreased memory

usage are due to the overhead of killing and instantiating a new container to execute the next op-

eration. A lot of performance optimization could be done to reduce the overhead of instantiating

5.3. Experiments 64

a container for each operation, such as maintaining the container active across multiple requests,

in case they are done in a consecutive manner.

5.3.3 Churn handling

We want to observe how churn affects our system’s performance and how reliable it really is in ex-

ecuting operations under a heavy churn environment. Similarly to the previous test, we are going

to asynchronously perform the operation presented in the API section over the provided datasets,

varying the minimum memory parameter over the range of 200MB to 600MB. However, we now in-

troduce churn in the system by simulating an outage of 30% of the set of available edge nodes every

minute, up to 3 outages. Remember that each operation is executed by 3 nodes according to our

configuration, so probabilistically we have around a 60% chance that an operation is successful

during a churn period.

Figure 31: Average latency of the system during operation execution by environment.

Figure 31 shows the progress for 200 execution calls for each environment. As we could ex-

pect, the overall latency of the system increases every time a heavy node failure occurs, as overall

throughput decreases and less nodes are available for operation execution.

Individual nodes however, are unaffected by system churn as execution. This is manly due to the

usage of Kafka which can buffer requests while nodes do not yet have available sufficient resources

to execute them.

Figure 32: Memory usage for each node over time by environment

Figure 32 shows that node load is stable throughout the execution. However, the average through-

put of the system is affected since each operation is technically executed 3 times, so the Kafka

5.3. Experiments 65

buffer is getting filled with messages to execute the same operation while waiting for the nodes to

be available. It can even happen that a node receives a message to execute an operation long after

another node successfully responded to the controller with its result, in cases where an operation

execution took longer than expected. Our Load Balancer algorithm diminishes the issue, but a

wrong classification of operation load combined with node local issues can cause unexpected load

on the network, which is a problem that still needs more work.

Figure 33: Operation failure after each churn stage.

We can see on Figure 33 that node failure does not have a big impact on the overall operation

success. The figure shows that a total of 14 operations failed after the workload was completed,

only 2 of them being during the first phase of induced system churn. Even though a considerable

percentage of available system nodes fail, on average (of 3 runs of the workload) the success of op-

eration execution only begins to be severely affected when fewer nodes are available in the system

and there is a higher probability that nodes that compute the same operation are affected by the

outage.

This probability of failure diminishes with the increase of computing nodes per operation, trad-

ing off execution reliability for spent resources per operation. We can thus enable the trade-off

5.3. Experiments 66

between resource usage and operation success rate under heavy churn environments, as opposed

to the single execution model applied by vanilla Openwhisk.

Over three runs of this workload, we’ve obtained an average of 93% of successful operation exe-

cutions on the Edge, even under heavy churn, which can arguably be improved by augmenting the

minimum number of nodes that execute each request with the trade-off of increasing the overall

resources that each operation is going to use.

Comparison to the original Openwhisk

Finally, we want to compare the results of the previous experiment to the ones that could be ob-

tained when the workload is applied to the original version of Openwhisk, so we can measure the

improvement in churn handling that our solution provides when executing operations under a

heavy churn environment.

However, this is not a fair comparison since these two systems do not operate under the same

data processing model and have different levels of maturity. Instead, we compare our implemen-

tation with a modified version of itself, configured to emulate what we can expect from vanilla

Openwhisk.

In order to do this, we removed the load balancing and multi-environment capabilities of our im-

plementation and instead assign operations to nodes on a round-robin basis from a set of available

nodes. We also removed the PMS from which our implementation obtained available nodes and

pass instead a set of available node information (in this case their IP address) upon instantiating

the system.

Nodes still have access to the local data so the workload can be the same for both implementa-

tions. We execute each operation only once instead of the previously user defined value.

Similarly to the previous test, we are going to asynchronously perform the operation presented

in the API section over the provided datasets. The minimum memory parameter is now ignored

by the internals of our application since tasks are not distributed according to their requested re-

sources. We introduce the same churn in the system by simulating an outage of 30% of the set of

available edge nodes every minute, up to 3 outages. Node failure is emulated by reducing the set

of available nodes during these simulated outages.

Figure 34: Average latency of the system during operation execution by environment.

5.3. Experiments 67

Figure 34 shows the progress for 400 execution calls to be executed by every node in the system.

We can see that the overall latency of the system has decreased, which is due to various reasons. Re-

quests do not have to pass through our PMS, so the initial request dissemination is not performed.

Since we’re now only executing each operation once, the real system workload is one third the

size than the one detailed on the previous experiment.

Figure 35: Memory usage for each node over time by environment

Node load continues stable throughout the execution (Figure 35). We can see that memory usage

for each node is very similar to the results obtained on the previous experiment. Since we’re execut-

ing the same operation (with the same load) on every node and operations are assigned to nodes

on a round-robin manner without accounting for load or environment, operations are spending

as much resources as possible on each node as they enter the system. This however means that

cloud nodes receive on average less tasks than on the previous experiment, since each node in the

system is assigned requests on a round robin manner, which causes the memory usage in those

nodes to be reduced on average.

However, Figure 36 shows us that node churn as a significant impact on overall operation success.

Running the same workload, we can see an increase in operation failures of up to 18% on the Edge

when compared to the results obtained for the configuration of the previous experiment, with a

total of 49 operation failures. As opposed two the previous experiment, now the first phase of

induced churn is the one that causes more operation failures, with a total of 22. Each operation

is only executed once, so if a node fails when executing that single invocation, the operation fails

by default. Since the first phase of churn is the one that induces greater churn (in terms of failed

nodes), it is also the one that provokes more operation failures.

5.3. Experiments 68

Figure 36: Operation failure after each churn stage.

6

C O N C L U S I O N S

In this thesis we presented Openflasks, a system for execution of function based analytics in a

decentralized manner across cloud and edge devices, such that users can adequately execute data

processing tasks in highly dynamic environments.

We explore the capabilities of serverless computing services in providing an agile and responsive

solution for the processing of IoT-based workloads in a scalable and reliable manner, whilst taking

advantage of data locality and epidemic propagation of system information to improve bandwidth

usage and overall task distribution.

We hope our results shed light into the capabilities of edge devices in providing a more scalable

computing environment, that doesn’t depend so much in organizational structures and that allows

users to be able to manage their data in their own devices.

By supporting the execution of user defined functions in lightweight software containers, sys-

tems following our architecture are able to run data processing code upon files stored on low pow-

ered devices, as well as more complex analytics on cloud computing environments.

6.1 D I S C U S S I O N

Overall, there are several positive aspects of our architecture that we can comment on. Namely, we

were able to provide better reliability for the execution of tasks across dynamic and heterogeneous

environments. In addition, overall resource usage has improved significantly and we are able to

make use of devices that were previously unusable. Finally, we decentralized the node manage-

ment protocol and the system is now more resilient to outages than its vanilla counterpart.

There are however some aspects of our implementation that could be improved. Our way of

executing tasks on the edge causes overhead for the tasks we want to execute there, which are

lightweight in nature. By having to instantiate working containers for each task execution, we lose

the advantages that data locality and decentralization gave us in improving resource and band-

width usage. Optimizations can be done in this aspect, such as maintaining containers across

frequent operations that require similar resources to be executed.

69

6.1. Discussion 70

Information dissemination throughout the system can also be improved. Even thought we cur-

rently guarantee that information is passed to every node in the system by flooding the network,

some optimizations could be considered in order to minimize the impact this decentralized option

has, such as preferential dissemination of messages by enabling nodes to save the computing state

of their view (for instance the computing resources and information about the data they hold). As

another example, each node can maintain an average of the available power of its view, and dis-

seminate it. This would improve the routing algorithm and provide the Load Balancer with hot

spots to choose the first nodes for dissemination, avoiding the dissemination of requests to nodes

that are a great amount of hops farther from available nodes.

Node classification by Edge and Cloud is yet simplified and can be improved by enabling each

node to benchmark itself according to the global standard of the network. By producing a clearer

description of each node’s power, we can form a system where node power is seen as a spectrum

and not as binary.

The group construction algorithm needs further validation. Since data is now mapped to nodes

according to its data tag, we may be losing some of the properties of the original algorithm due to

the reduced randomness of the new mapping. In example, an unbalanced distribution of file tags

in the system can cause an unbalanced distribution of data on the entire platform.

We believe to be have obtained a very positive outcome from our work, presenting a basis for de-

centralized data management and data processing whilst following the principles of FaaS. Our sys-

tem is open for optimization and opens the path for several relevant research topics, such as data

locality on FaaS systems and decentralized data processing under dynamic and heterogeneous en-

vironments.

B I B L I O G R A P H Y

[1] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. Inter-

net of Things (IoT): A vision, architectural elements, and future directions. Future Generation

Computer Systems, 29(7):1645–1660, 2013.

[2] Silvia Nittel. Real-time sensor data streams. SIGSPATIAL Special, 7(2):22–28, 2015.

[3] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile Networks and Applica-

tions, 19(2):171–209, 2014.

[4] Abinav Pothuganti. Big Data Analytics: Hadoop-Map Reduce & NoSQL Databases. ., 2015.

[5] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo Higashino,

Adriana Iamnitchi, Marinho Barcellos, Pascal Felber, and Etienne Riviere. Edge-centric Com-

puting: Vision and Challenges. ACM SIGCOMM Computer Communication Review, 45(5):37–

42, 2015.

[6] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Computing and Its Role

in the Internet of Things. Proceedings of the first edition of the MCC workshop on Mobile cloud

computing, pages 13–16, 2012.

[7] Advanced Database Systems. Data Stream Management Systems : Apache Spark Streaming

Seminar : “ Advanced Database Systems ”. Seminar: Advanced Database Systems, 2017.

[8] Mongo. MongoDb. MongoDB for GIANT Ideas: https://www.mongodb.org/; 2015, 2015.

[9] Armando Fox, Randy Katz, Andy Konwinski, and Gunho Lee. Above the Clouds: A Berkeley

View of Cloud Computing. ., 2009.

[10] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling Churn in a DHT.

Proceedings of the annual conference on USENIX Annual Technical Conference, 36(June):10–

10, 2004.

[11] Andreas Moregård Haubenwaller and Konstantinos Vandikas. Computations on the edge in

the internet of things. Procedia Computer Science, 52(1):29–34, 2015.

[12] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. Occupy the

Cloud: Distributed Computing for the 99%. Proceedings ofSoCC ’17, Santa Clara, CA, USA,

September 24–27, 2017, pages 445–451, 2017.

71

Bibliography 72

[13] Per Persson and Ola Angelsmark. Calvin-merging Cloud and IoT. Procedia Computer Science,

52(1):210–217, 2015.

[14] Rick Cattell. Scalable SQL and NoSQL data stores. ACM SIGMOD Record, 39(4):12, 2011.

[15] Francisco Maia, Miguel Matos, Ricardo Vilac, and Etienne Rivi. D ATA F LASKS : an epidemic

dependable key-value substrate. Dsn’13, 2013.

[16] Hlabishi I. Kobo, Adnan M. Abu-Mahfouz, and Gerhard P. Hancke. A Survey on Software-

Defined Wireless Sensor Networks: Challenges and Design Requirements. IEEE Access,

5(c):1872–1899, 2017.

[17] Dilpreet Singh and Chandan K Reddy. A survey on platforms for big data analytics. Journal of

Big Data, 2(1):8, 2015.

[18] Abdul Ghaffar Shoro and Tariq Rahim Soomro. Big Data Analysis: Apache Spark Perspective.

Global Journal of Computer Science and Technology, 15(1), 2015.

[19] Salome Simon. Brewer’s CAP Theorem. CS341 Distributed Information Systems, page 6, 2012.

[20] Jing Han, E. Haihong, Guan Le, and Jian Du. Survey on NoSQL database. Proceedings - 2011

6th International Conference on Pervasive Computing and Applications, ICPCA 2011, 6(4):363–

366, 2011.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash

Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.

Dynamo. ACM SIGOPS Operating Systems Review, 41(6):205, 2007.

[22] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten van

Steen. Gossip-based peer sampling. ACM Transactions on Computer Systems, 25(3):8–es, 2007.

[23] Avinash Lakshman and Prashant Malik. Cassandra. ACM SIGOPS Operating Systems Review,

44(2):35, 2010.

[24] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank

Dabek, and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for Internet

applications. IEEE/ACM Transactions on Networking, 11(1):17–32, 2003.

[25] J. Burez and D. Van den Poel. Handling class imbalance in customer churn prediction. Expert

Systems with Applications, 36(3 PART 1):4626–4636, 2009.

[26] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Bur-

rows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable. ACM Transactions on

Computer Systems, 26(2):1–26, 2008.

Bibliography 73

[27] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. Proceedings

of the nineteenth ACM symposium on Operating systems principles - SOSP ’03, page 29, 2003.

[28] Byunggu Yu, Alfredo Cuzzocrea, Dong Jeong, and Sergey Maydebura. On managing very large

sensor-network data using bigtable. Proceedings - 12th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing, CCGrid 2012, pages 918–922, 2012.

[29] Francisco Maia, Miguel Matos, Ricardo Vilaça, José Pereira, Rui Oliveira, and Etienne Rivière.

DATAFLASKS: Epidemic store for massive scale systems. Proceedings of the IEEE Symposium

on Reliable Distributed Systems, 2014-Janua:79–88, 2014.

[30] Spyros Voulgaris, Daniela Gavidia, and Maarten Van Steen. CYCLON: Inexpensive member-

ship management for unstructured P2P overlays. Journal of Network and Systems Manage-

ment, 13(2):197–216, 2005.

[31] Mariam Kiran, Peter Murphy, Inder Monga, Jon Dugan, and Sartaj Singh Baveja. Lambda

architecture for cost-effective batch and speed big data processing. Proceedings - 2015 IEEE

International Conference on Big Data, IEEE Big Data 2015, pages 2785–2792, 2015.

[32] Matei Zaharia, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, Ion Stoica,

Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui

Meng, Josh Rosen, and Shivaram Venkataraman. Apache Spark: a unified engine for big data

processing. Communications of the ACM, 59(11):56–65, 2016.

[33] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, and Ankur Dave. Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster computing. Nsdi, pages 2–2,

2012.

[34] Amazon Inc. AWS Lambda - Serverless Compute, 2018.

[35] Mike Roberts. Serverless Architectures, 2016.

[36] Scalable Nosql Database. Amazon DynamoDB, 2018.

[37] Ioana Baldini, Paul Castro, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick Mitchell, Vinod

Muthusamy, Rodric Rabbah, and Philippe Suter. Cloud-native, event-based programming for

mobile applications. Proceedings of the International Workshop on Mobile Software Engineer-

ing and Systems - MOBILESoft ’16, pages 287–288, 2016.

[38] Etienne Rivière and Spyros Voulgaris. Gossip-based networking for internet-scale distributed

systems. Lecture Notes in Business Information Processing, 78 LNBIP:253–284, 2011.

Bibliography 74

[39] Keith R. Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas Cholia, John

Shalf, Harvey J. Wasserman, and Nicholas J. Wright. Performance Analysis of High Perfor-

mance Computing Applications on the Amazon Web Services Cloud. 2010 IEEE Second Inter-

national Conference on Cloud Computing Technology and Science, pages 159–168, 2010.

[40] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.

Benchmarking cloud serving systems with YCSB. Proceedings of the 1st ACM symposium on

Cloud computing - SoCC ’10, page 143, 2010.

[41] Sharon Choy, Bernard Wong, Gwendal Simon, Catherine Rosenberg, Sharon Choy, Bernard

Wong, Gwendal Simon, Catherine Rosenberg, The Brewing, Sharon Choy, Bernard Wong, and

Catherine Rosenberg. The Brewing Storm in Cloud Gaming : A Measurement Study on Cloud

to End-User Latency To cite this version : The Brewing Storm in Cloud Gaming : A Measure-

ment Study on Cloud to End-User Latency. Proceedings of the 11th Annual Workshop on Net-

work and Systems Support for Games, pages 2:1—-2:6, 2013.

7

A P P E N D I C E S

7.1 A P P E N D I X A - O P E R AT I O N E X A M P L E

import sys
import logging
from datetime import datetime

def main(args):
Read the arguments
from_str = args.get("from")
to_str = args.get("to")

param_id = args.get("param_id", 1)
station_id = args.get("station_id", 1)

logging.info(f"Calculating avg value of {param_id} for {station_id
} between {from_str} and {to_str}")

from_time = datetime.strptime(from_str , ’%Y-%m-%d %H:%M:%S’)
to_time = datetime.strptime(to_str , ’%Y-%m-%d %H:%M:%S’)

Load the file from the filesystem
local_file = open(f"/tmp/man_services -bts -log -{ from_time.strftime

(’%Y-%m-%d ’)}")
logging.info(f"Able to load file man_services -bts -log -{ from_time.

strftime(’%Y-%m-%d ’)}")

Iterate and filter through the entries
values = []

for reading in local_file.readlines ():
split_reading = reading.split(",")
param_reading = split_reading [4]

75

7.1. Appendix A - Operation example 76

station_reading = split_reading [3]

if param_reading == param_id and station_reading == station_id
:
timestamp_reading = datetime.strptime(split_reading [1], ’%

Y-%m-%d %H:%M:%S’)

if timestamp_reading > from_time and timestamp_reading <
to_time:
value = int(split_reading [2])
values.append(value)

local_file.close ()

Average the metric values
result = sum(values)/float(len(values))

Return the result
logging.info(f"Result computed: {result}")

return {"response": result}

Listing 7.1: Example code for operation.

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Objectives
	1.4 Contributions
	1.5 Document layout

	2 Related Work
	2.1 Decentralized data storage
	2.1.1 Dynamo
	2.1.2 BigTable
	2.1.3 Dataflasks

	2.2 Distributed data processing
	2.2.1 Apache Spark
	2.2.2 AWS Lambda
	2.2.3 Openwhisk

	2.3 Discussion

	3 Architecture
	3.1 System overview
	3.2 Request handling
	3.3 Scaling and Handling Churn
	3.4 Device discovery
	3.5 Task distribution
	3.6 Operation execution
	3.7 Data management
	3.7.1 Statefulness
	3.7.2 Data Locality
	3.7.3 Data Replication Across Environments

	4 Implementation
	4.1 Frameworks
	4.1.1 Data storage - DataFlasks
	4.1.2 Data processing - Openwhisk
	4.1.3 Integration

	4.2 Connecting Cloud and Edge
	4.2.1 Dataflask's group construction protocol
	4.2.2 Cloud and edge group construction protocol

	4.3 API
	4.3.1 Operations
	4.3.2 Creating an operation
	4.3.3 Defining operation limits
	4.3.4 Requesting an operation execution

	4.4 Data pipeline
	4.4.1 Consuming data
	4.4.2 Tagging data
	4.4.3 Storing data
	4.4.4 Assumptions

	4.5 Operation pipeline
	4.5.1 Entering the system
	4.5.2 Handling the request
	4.5.3 Finding available nodes
	4.5.4 Assigning the task
	4.5.5 Executing the code
	4.5.6 Storing the results

	5 Evaluation
	5.1 Testing environment
	5.2 Workload and Assumptions
	5.3 Experiments
	5.3.1 Group construction across environments
	5.3.2 Operation distribution across environments
	5.3.3 Churn handling

	6 Conclusions
	6.1 Discussion

	7 Appendices
	7.1 Appendix A - Operation example

