
Antimicrobial resistance three ways: healthcare crisis, major 

concepts, and the relevance of biofilms 

Paula Jorge*, Andreia Patrícia Magalhães*, Tânia Grainha, Diana Alves, Ana Margarida Sousa, Susana 

Patrícia Lopes, Maria Olívia Pereira** 

CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, 

University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal 

* Paula Jorge and Andreia Patrícia Magalhães should be considered joint first authors

** Corresponding author 

E-mail address: mopereira@deb.uminho.pt 

Tel.: +351 253 604 402 

Keywords 

Antimicrobial Resistance, Tolerance, Persistence, Biofilms, Quorum Sensing, Polymicrobial Infection 

Abstract 

Worldwide, infections are resuming their role as highly effective killing diseases, as current 

treatments are failing to respond to the growing problem that is antimicrobial resistance (AMR). The 

social and economical burden of AMR seems ever rising, with health- and research-related 

organizations rushing to collaborate on a worldwide scale to find effective solutions. Resistant 

bacteria are spreading even in first-world nations, being found not only in healthcare-related 

settings, but also in food and in the environment. In this mini-review, the impact of AMR in 

healthcare systems and the major bacteria behind it are highlighted. Ecological aspects of AMR 

evolution and the complexity of its molecular mechanisms are explained. Major concepts, such as 

intrinsic, acquired, and adaptive resistance, as well as tolerance and heteroresistance, are also 

clarified. More importantly, the problematic of biofilms and their role in AMR, namely its main 

resistance and tolerance mechanisms, is elucidated. Finally, some of the most promising anti-biofilm 

strategies being investigated are reviewed. Much is still to be done regarding the study of AMR and 

the discovery of new anti-biofilm strategies. Gladly, considerable research on this topic is generated 

every day and increasingly concerted actions are being engaged globally to try and tackle this 

problem. 
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Introduction 

Antibiotic discovery had an unprecedented role in medical advances, saving countless lives by 

mitigating infectious diseases, but the rapid global emergence of resistant bacteria over the last 

decades has been imperilling their worth (Martens and Demain 2017; WHO 2017a). Humankind is 

witnessing as antimicrobial resistance (AMR) becomes one of the biggest threats to medicine today, 

killing around 700 000 people worldwide each year (O’Neill 2014; Aslam et al. 2018). The aetiology 

of AMR is multifaceted, embracing (i) over consumption of antibiotics due to over prescription, self-

medication, or over-the-counter accessible antibiotics, (ii) absence of standardized guidelines for 

antibiotic usage, (iii) lack of sanitation/hygiene practices, and  (iv) access to counterfeit drugs 

(Morgan et al. 2011; Laxminarayan and Heymann 2012; CDC 2013; Nature Editorial 2013; Luyt et al. 

2014; Read and Woods 2014; Ventola 2015). Food is also an important source of AMR (Marshall and 

Levy 2011), due to the widespread use of antibiotics in animals, while the increased international 

human travelling and animal transportation aids in AMR spreading (EFSA 2018). 

In healthcare settings, the concurrence of factors such as high antibiotic consumption, vulnerable 

patients, invasive practices, and inflow of pathogenic species have contributed for the substantial 

health and economic burden of AMR (Golkar, Bagasra and Pace 2014; Roca et al. 2015). To mitigate 

the increasing rate of AMR, main stakeholders (i.e. policy makers, public health authorities, 

regulatory agencies, pharmaceutical companies, and the scientific community) were prompted to 

take a concerted action. Therefore, measures, such as (i) rational/prudent use of antibiotics 

(Lushniak 2014), (ii) effective infection control measures, (iii) mitigation of environmental exposure, 

(iv) better diagnostic tools (Michael, Dominey-Howes and Labbate 2014), (v) prevention/surveillance 

research, and (vi) development of new therapies (Roca et al. 2015) were proposed. 

Initiatives and programs raising awareness and promoting strategies to improve knowledge and 

reflections regarding AMR are key to fight its dissemination. Noteworthy, initiatives include the B-

Debate (https://www.bdebate.org), which fosters the dialogue amongst world-renowned 

multidisciplinary scientists on the growing threat of AMR at all health, animal, and environmental 

levels. In addition, the Joint Programming Initiative on Antimicrobial resistance 

(https://www.jpiamr.eu) has been defining a strategic research agenda under the assumption that 

only collaborative effort by an interdisciplinary team will afford the necessary critical mass and the 

scientific expertise to tackle AMR. Likewise, different agencies across the globe are engaged to make 

all efforts to control AMR. These agencies include the Global Antimicrobial Resistance Surveillance 

System (GLASS) (https://www.who.int/glass), the Centers for Disease Control and Prevention (CDC) 

(https://www.cdc.gov), the Food and Agriculture Organization (FAO) (http://www.fao.org), the 

European Centre for Disease Prevention and Control (ECDC) (https://ecdc.europa.eu/), the European 

Medicines Agency (EMA) (https://www.ema.europa.eu/), the World Alliance Against Antibiotic 

Resistance (WAAAR) (https://www.waaar.org/), the Global Health Security Agenda (GHSA) 

(https://www.ghsagenda.org/), and many others. Despite the proposed recommendations and 

resolutions, little progress has been made so far, and AMR shows no signs of decline. 
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Multidrug-resistant organisms: the “superbugs” 

AMR evolution is nothing but Darwinian selection. Microorganisms evolved to develop mechanisms 

to escape lethal effects of antimicrobials (Forsberg et al. 2014; Aslam et al. 2018). Notably, the 

aberrant use of antibiotics exerted a significant selective pressure for the development of multidrug-

resistant (MDR) organisms. These “superbugs” are able to resist multiple classes of antibiotics, 

evading the majority of current therapies (Stokes and Gillings 2011; Munita and Arias 2016) and 

spreading at an alarming rate, leading to abnormal rates of morbidity/mortality (Khameneh et al. 

2016). A recent 2018 study shows that “superbug” infections accounted for 33 000 annual deaths in 

Europe in 2015, a burden that has been compared to that of other diseases combined (e.g. 

tuberculosis, HIV, flu) (Cassini et al. 2018). 

MDR infections may be triggered by Gram-negative or -positive bacteria or even by fungal species. 

Staphylococcus aureus and Enterococcus species are among the most notorious “superbugs”, 

currently posing a pandemic threat (Watkins, David and Salata 2012; CDC 2013; Rossolini et al. 2014; 

Aslam et al. 2018). The most worrisome is the methicillin-resistant S. aureus (MRSA), whose ability to 

evolve and adapt to multiple settings (e.g. healthcare, community, livestock) has caused its rapid 

dispersal over the globe (Monaco et al. 2016). The spread of vancomycin-resistant enterococci 

(Golkar, Bagasra and Pace 2014) as well as the global epidemic of resistant Streptococcus 

pneumoniae and Mycobacterium tuberculosis (common respiratory pathogens) (Rossolini et al. 

2014) also represent serious threats. Similarly, the emergence of MDR Gram-negative pathogens, 

typically thriving in healthcare facilities, namely Enterobacteriaceae (mostly Klebsiella pneumoniae), 

Pseudomonas aeruginosa, Acinetobacter spp., extended-spectrum β-lactamase (ESBL)-producing 

Escherichia coli and Neisseria gonorrhoeae (Rossolini et al. 2014), is particularly worrying (CDC 2013; 

Golkar, Bagasra and Pace 2014). In 2017, the World Health Organization (WHO) issued a global 

priority pathogens list (PPLs) of antibiotic-resistant bacteria (WHO 2017a) to help in prioritizing the 

research and development of new and effective antibiotic treatments, updating the previous PPLs 

issued by the CDC in 2013 (CDC 2013). Accordingly, the WHO has stratified the resistant pathogens 

in three priority tiers: “critical”, “high”, and “medium”.  Table 1 summarizes the key features 

regarding these top bacterial threats. 

What is AMR? 

Understanding the evolution, divergence, and spread of AMR, along with the mechanisms behind it, 

is the main step in predicting and preventing this threat. In addition, it is important to understand 

the underlying concepts of AMR, such as resistance, heteroresistance, and tolerance, to facilitate 

knowledge dissemination and integration in the development of novel strategies to defeat it. 

Resistance, although tolerance may fit some of the criteria, is mainly classified in three forms: 

intrinsic, acquired, or adaptive. Frequently, microorganisms exhibit more than one form of 

resistance simultaneously, greatly contributing to the difficulty in finding suitable treatments. As 

such, all these aspects are discussed next. 



Ecological evolution of AMR 
Since the beginning of the antibiotic age, with the introduction of penicillin in the 1940s (Gaynes 

2017), that researchers and physicians have been made aware of how strongly and quickly 

microorganisms fight back. Indeed, in 1941, penicillin was first administered and, in 1942, penicillin 

resistant bacteria were detected. Similarly, methicillin was introduced in 1960 and, in 1961, 

methicillin resistance was reported. With resistant strains propagating in this increasingly rapid pace, 

antibiotic utilization quickly led a golden era of Medicine to the current AMR crisis (Landecker 2016). 

Regardless of its clear impact in modern medicine, however, AMR is actually an ancient and natural 

phenomenon, as microorganisms always had to defend themselves against naturally occurring 

antibiotics, with AMR evolving alongside their production (Perry, Westman and Wright 2014). In 

reality, several studies have revealed the existence of resistance genes in microorganisms preceding 

the antibiotic era. For instance, genes encoding resistance to natural antibiotics, namely β-lactams, 

tetracyclines, and glycopeptides, were found in 5000 and 30000-year-old permafrost sediments 

(D’Costa et al. 2011; Perron et al. 2015). Surprisingly, resistance genes against modern semi-

synthetic antibiotics that do not occur naturally in microorganisms, namely amikacin, were also 

found (Perron et al. 2015). More recently, Paenibacillus sp. LC231 from a 4 Myr old isolated cave was 

found to harbour conserved resistance genes to most clinically used antibiotics (Pawlowski et al. 

2016). These studies demonstrate that AMR is a natural phenomenon preceding the modern 

selective pressure of antibiotics, which may be simply selecting for pre-existing, hence intrinsic, 

determinants in the resistome (i.e. the resistance genetic pool of all microorganisms). 

Besides its ancient intrinsicality, the major issue of AMR is its ability to spread from one 

microorganism to another. Although it was first believed that AMR was only inherited vertically 

within a resistant population, researchers quickly realized that bacteria were able to acquire 

resistant determinants from other bacteria by horizontal gene transfer, as further explained below. 

This ability to exchange genetic material has been the great source of bacterial genetic variation over 

time, in which the resistome acts as a widely available and sharable resource (Landecker 2016). 

Despite AMR dissemination being primordial, its frequency and distribution has suffered an 

anthropogenic impact and changed historically, driven and sustained by the scale of antibiotic usage 

in clinical, veterinary, husbandry, and agricultural settings. For example, due to the large use of 

antibiotics, host microbiota, although harmless, nowadays carries a high content of resistance genes 

specific for the antibiotics used in medical and food production settings of a given country (Forslund 

et al. 2014). This creates a genetic pool that facilitates microbial pathogens to acquire resistance 

determinants when in contact with the host. The rate of bacterial release and uptake of genetic 

material and genetic recombination is also accelerated in the presence of an external stress like 

antibiotics, but also heavy metals and disinfectants coming from industrial settings (Landecker 

2016). 

Resistance genetic elements originating from anthropogenic sources are not only spreading within 

host microbiota, but also to the environment, including remote areas with minimal antibiotic 

exposure (Bartoloni et al. 2004, 2009; Pallecchi et al. 2008; McCann et al. 2019), very likely due to 

waste streams emanating from human activity. In truth, a great portion of antibiotics used for 

humans and animals are excreted and released unchanged into the environment, either due to 



incomplete metabolization or due to disposal of unused drugs into the sewer, greatly contributing 

for the high load of antibiotics encountered in the environment today (Gillings and Stokes 2012). 

Intrinsic AMR 
Intrinsic AMR refers to the innate ability of microorganisms to resist to a specific antimicrobial due 

to genes in their genome encoding inherent structural or functional traits that provides them 

protection (Blair et al. 2015). This is evident in the disparate efficacies of most antibiotics against 

Gram-negative vs -positive bacteria due to their inherent distinct cell wall composition acting as 

barrier to the entrance of antibiotics into the cells (Arzanlou, Chai and Venter 2017; Petchiappan and 

Chatterji 2017). For instance, vancomycin, a common antibiotic in MRSA treatment, is effective 

against Gram-positives because it easily reaches their peptidoglycan cell wall. Due to constrains in 

overcoming the outer membrane of Gram-negatives, vancomycin is ineffective against these 

bacteria (Rice 2012). Similarly, daptomycin is active against Gram-positives, but it is unable to act 

against Gram-negative bacteria due to the lower proportion of anionic phospholipids in their 

cytoplasmic membrane (Randall et al. 2013). Several studies are tackling this issue by modifying 

existing compounds to make them active against Gram-negative bacteria. For example, a recent 

study was successful in optimizing arylomycins, a weak class of natural products, to produce a 

potent, broad-spectrum molecule, G0775, active against Gram-negative bacteria by inhibiting the 

essential bacterial type I signal peptidase (Smith et al. 2018). Another example is the conversion of 

the natural product deoxynybomycin, only active against Gram-positives, into an antibiotic able to 

accumulate inside and be active against Gram-negatives, with the help of computational modelling 

(Richter et al. 2017). 

High levels of AMR can be achieved through intrinsic restricted or selective outer membrane 

permeability, drug efflux pump systems, and/or expression of intrinsic antibiotic resistance genes 

(Blair et al. 2015). Bacteria can limit the entry of broad-spectrum drugs, e.g. carbapenems and 

cephalosporins, by reducing or replacing non-specific porin proteins by specific or more selective 

protein channels (Nikaido 2003; Fernandez and Hancock 2012). For instance, P. aeruginosa deficient 

in OprD porin, responsible for diffusion of small peptides, displays resistance to carbapenems 

(Pechère and Köhler 1999). This kind of bacterial mechanism is well studied and it has been reviewed 

previously (Kumar and Schweizer 2005; Langton, Henderson and Herbert 2005; Poole 2005). Drug 

efflux systems are protein complexes located in the cell wall of Gram-negative bacteria responsible 

for expelling toxic molecules as antibiotics. Several bacteria possess genes encoding efflux pumps, 

greatly contributing to AMR (Blair, Richmond and Piddock 2014; Sanchez-Romero and Casadesus 

2014). P. aeruginosa is a well-characterized example with clinically relevant efflux pumps such as the 

MexAB-OprM and MexXY/OprM(OprA) systems, which contribute to a stable and consistent 

resistance to a wide range of antibiotics and protection against molecules targeting the ribosomal 

machinery, respectively (Li et al. 1994; Li, Livermore and Nikaido 1994; Li, Nikaido and Poole 1995). 

Microorganisms can also be intrinsically resistant to antibiotics due to the expression of antibiotic 

resistance genes (Liu et al. 2010; Blake and O’Neill 2013; Xu et al. 2017; Peterson and Kaur 2018). 

For instance, β-lactam antibiotics have no action against M. tuberculosis because these bacteria 

inherently produce β-lactamases, such as BlaC, that hydrolyse the β-lactam ring inactivating this 

class of antibiotics (Smith, Wolff and Nguyen 2012). Another example of intrinsic resistance is the 

absence of a susceptible target site for an antibiotic to act on (Blair et al. 2015). For instance, the 



biocide triclosan is ineffective against P. aeruginosa because it carries the fabV gene encoding a 

triclosan-resistant enoyl-ACP reductase, the site of action of triclosan (Zhu et al. 2010). 

Acquired AMR 
Microorganisms can acquire or develop resistance, being this what most greatly contributes to the 

AMR crisis (Blair et al. 2015). Acquired resistance arises when an originally antibiotic-sensitive 

organism becomes resistant through the acquisition and incorporation of new genetic material (e.g. 

plasmids, transposons, integrons, naked DNA) from other microorganisms by horizontal gene 

transfer or as a result of mutations of chromosomal (intrinsic) genes (Arzanlou, Chai and Venter 

2017; Pang et al. 2019). The spread of β-lactam resistance among bacteria is the major example, as 

several species are able to acquire plasmids encoding β-lactamase genes leading to the emergence 

of, for e.g., ESBL- and metallo-β-lactamase-producing P. aeruginosa, ESBL-producing E. coli, 

Haemophilus influenzae, N. gonorrhoeae, Salmonella, Shigella, and Vibrio cholera (Rawat and Nair 

2010). 

In general, acquired resistance can be mediated by (i) reduced antibiotic uptake and (ii) increased 

antibiotic efflux, reducing its intracellular concentration, (iii) antibiotic modification or inactivation, 

and (iv) antibiotic target modification by genetic mutation or post-translational modification. Often, 

these mechanisms are combined, contributing to the expression of high levels of AMR, as is the case 

of increased resistance observed against β-lactams (Arzanlou, Chai and Venter 2017). As intrinsic 

resistance, acquired resistance is stable and transmitted vertically (Blair et al. 2015). This vast topic is 

only outlined here, but is reviewed in detail in (Nikaido 2009; Blair et al. 2015). 

Frequently, acquired and intrinsic mechanisms are closely related, as mutations can alter the 

expression of intrinsic resistance mechanisms. For instance, carbapenem resistance in 

Enterobacteriaceae generally involves the production of β-lactamases. Nevertheless, if mutations in 

porin production occur, bacteria can reduce or even end β-lactamase production (Wozniak et al. 

2012; Lavigne et al. 2013; Tangden et al. 2013). Another example is that mutations can enhance P. 

aeruginosa intrinsic antibiotic resistance through loss of oprD porin expression, via mutation in the 

oprD gene or its associated regulatory proteins, and de-repression of chromosomal AmpC β-

lactamase and MexAB-OprM multidrug efflux pump, conferring resistance to β-lactam antibiotics 

(Taylor, Yeung and Hancock 2014). Efflux pumps are one of the major contributors to intrinsic 

resistance that microorganisms can mobilize onto plasmids and transfer to other bacteria. For 

instance, IncH1 plasmid isolated from Citrobacter freundii includes genes encoding the New Delhi 

metallo-β-lactamase 1, but also a tripartite resistance nodulation division pump (Dolejska et al. 

2013). 

Adaptive AMR 
Adaptive AMR is one of the most complex forms of bacterial resistance (Fernández, Breidenstein and 

Hancock 2011). It consists in the ability to alter gene or protein expression very rapidly in response 

to an antibiotic insult or environmental cues, such as pH, temperature, nutrient, or oxygen limitation 

(Fernández, Breidenstein and Hancock 2011; Motta, Cluzel and Aldana 2015; Arzanlou, Chai and 

Venter 2017). Development of adaptive AMR in the presence of antibiotics is usually observed when 

cells are exposed first to non-lethal levels of such agents, but may escalate to where bacteria are 

able to survive otherwise lethal concentrations if they are consecutively exposed to increasing 

antibiotic doses. In fact, bacteria can increase their level of resistance gradually and across 



generations if the stimulus endures, indicating the existence of some type of resistance memory 

(Sandoval-Motta and Aldana 2016). 

Unlike intrinsic and acquired resistance, adaptive resistance is unstable, transient, highly dependent 

of the presence of antibiotics, and it cannot be vertically transmitted. After removal of the triggering 

factor, microorganisms revert to their “original state”, re-gaining susceptibility, although the original 

level of resistance may not be restored (Fernández, Breidenstein and Hancock 2011; Arzanlou, Chai 

and Venter 2017; Pang et al. 2019). Because of this, adaptive AMR has been linked with the 

phenomenon of MIC baseline creep seen in many bacterial species, in which the average minimum 

inhibitory concentration (MIC) increases from the moment of antibiotic introduction onward, making 

them more likely to achieve the resistance breakpoint over time (Fernández, Breidenstein and 

Hancock 2011). 

Because of its transient nature, adaptive resistance represents one of the biggest challenges in 

designing effective antimicrobial therapies, explaining the common differences found between in 

vitro and in vivo antibiotic susceptibilities (Fernández, Breidenstein and Hancock 2011). Adaptive 

resistance represents a crucial biological advantage and an intelligent survival mechanism since 

microorganisms do not pay the fitness costs associated with irreversible mutations (Motta, Cluzel 

and Aldana 2015), reverting to their “original state” when more advantageous (Andersson and 

Hughes 2010; Motta, Cluzel and Aldana 2015).  

There are several mechanisms of adaptive resistance, including epigenetic inheritance, population 

heterogeneity, mutability, gene amplification, efflux pumps, and biofilm formation (Sanchez-Romero 

and Casadesus 2014; Motta, Cluzel and Aldana 2015). The molecular mechanisms behind adaptive 

resistance are still poorly understood but apparently quite complex, involving intricate regulatory 

pathways. Moreover, adaptive resistance may interplay with intrinsic or acquired resistance 

(Fernández, Breidenstein and Hancock 2011) as the genetic mutations or epigenetic changes 

triggered by environmental conditions can influence the expression of intrinsic and acquired 

mechanisms of resistance (Sanchez-Romero and Casadesus 2014; Motta, Cluzel and Aldana 2015). A 

great example of this phenomenon is shown in a recent study, where a sub-population of E. coli cells 

with increased expression of efflux pumps were found to also have a higher mutability rate due to 

the decrease expression of a the DNA mismatch repair gene, which led to mutants with higher 

antibiotic resistance (El Meouche and Dunlop 2018). Biofilm formation is a “perfect” example of the 

interplay of the three types of resistance. Bacteria undergo genetic and phenotypic alterations to 

adhere and produce an exopolymeric matrix to bind to a surface and to other bacteria (Stewart 

2014; Donné and Dewilde 2015; Kumar et al. 2017).  

Resistance, heteroresistance, and tolerance 
Despite very commonly encountered in AMR studies, the concepts of resistance, heteroresistance, 

and tolerance are sometimes misused, being of importance to elucidate them. Resistance refers to 

the ability of microorganisms to survive and grow at increased antibiotic concentrations for long 

periods and it is quantifiable by assessing the MIC (Brauner et al. 2016). However, it sometimes 

happens that different antibiotic susceptibilities exist within the same bacterial population, which 

can include resistant subpopulations. This phenomenon is termed heteroresistance and, although 

generally disregarded in clinical settings, it is critical in foreseeing the success of a given 

antimicrobial therapy, since poor designed treatments may select for the resistant populations. 



Heteroresistance is usually detected in MBC, disc diffusion, or e-test assays when discrete colonies 

grown in the zone of inhibition, and can be confirmed by a population analysis profiling assay (El-

Halfawy and Valvano 2015). 

In turn, tolerance refers to the ability of microorganisms to survive a transient exposure to increased 

antibiotic concentrations, even those above the MIC. However, unlike resistance, tolerance is only 

temporary, as it just takes more time for the antibiotic to kill bacteria. Tolerance can be due to slow 

growth, which in turn can be inherent, i.e. characteristic of a given species or strain, or non-inherent, 

i.e. caused by poor growth conditions (e.g. biofilms), stress factors (e.g. antibiotics), or by bacterial 

stationary growth phase. Tolerance, however, may also be due to antibiotic application to a bacterial 

population in the lag growth phase, in which they are transitioning from growth-arrest to an 

exponential growth phase (Brauner et al. 2016; Balaban et al. 2019). For more detailed information 

about resistance and tolerance definitions, the two cited reviews are recommended. In the next 

section, focus will be given to biofilms and their resistance and tolerance traits. 

Biofilm resistance and tolerance 

What are biofilms? 
Contrary to the typical idea of single-species free-floating bacteria, microorganisms naturally reside 

in groups, establishing complex and dynamic consortia called biofilms.  The ability of microorganisms 

to persist and thrive within biofilms is an important feature denoting critical concern in clinical 

settings. Indeed, biofilms play a significant role in microbial survival and persistence in natural 

ecosystems, thus being ubiquitous in Nature and considered an ancient form of microbial 

adaptation. Remarkably, it is speculated that the transition of microorganisms to the biofilm mode 

of growth established the first multicellular life form as an adaptive response to the extreme 

conditions encountered in early Earth (de la Fuente-Núñez et al. 2013).  

Biofilms are usually characterized as well-organized structures of microorganisms attached to biotic 

or abiotic surfaces and whose cells are encased and protected by a self-produced polymeric matrix. 

Typically, the biofilm life cycle encompasses three stages, namely (i) attachment, (ii) maturation, and 

(iii) dispersion. The first stage initiates by the reversible binding of bacteria to a surface followed by 

their irreversible attachment. Next, bacterial growth and matrix production take place, leading to 

increased biomass and maturation of the biofilm. At this stage, biofilms develop microenvironments 

dependent on nutrient and oxygen gradients, with cells developing different phenotypes depending 

on their spatial organization. Finally, biofilms eventually disperse, allowing cells to migrate and 

colonize other areas (Bjarnsholt et al. 2013). 

Concerning the impact of biofilms in healthcare settings, it is important to realize that the vast 

majority infections are actually biofilm-mediated (Høiby et al. 2015). Biofilm infections can be 

device-related (e.g. catheters, implants, contact lenses, prosthetic valves and joints) or tissue-related 

(e.g. endocarditis, chronic otitis media, lung infections in cystic fibrosis, chronic wounds) (Lebeaux, 

Ghigo and Beloin 2014). In these infections, the physiological features of biofilm cells and the matrix 

surrounding them contribute to their higher resistance/tolerance to external stresses, including the 

action of antimicrobials and the immune system, allowing the establishment of persistent/chronic 

infections (Grant and Hung 2013; Donné and Dewilde 2015; Kumar et al. 2017). Moreover, most 



biofilm infections normally have a polymicrobial aetiology, with phylogenetically different 

microorganisms co-existing (Peters et al. 2012; Giaouris et al. 2015; Costa-Orlandi et al. 2017). The 

polymicrobial nature of most biofilm-mediated infections can lead to the chronic scenario of 

infection (Stacy et al. 2016), as the interactions amongst the resident species may augment the 

severity of the infection and contribute for the recalcitrance towards conventional therapy (Wolcott 

et al. 2013; Schroeder, Brooks and Brooks 2017). Biofilms employ different yet concerted resistance 

and tolerance mechanisms illustrated in Figure 1 and further detailed in the next sections. 

Extracellular matrix 
Microorganisms living in a biofilm are surrounded and encased by a majorly self-produced matrix, 

which can comprise over 90% of the total mass of the biofilm (Flemming and Wingender 2010). The 

biofilm matrix is a complex and intricate amalgamation of different hydrated extracellular polymeric 

substances (EPS), including polysaccharides, proteins, nucleic acids, and lipids. These molecules offer 

biofilms their structure and mechanical stability by forming a three-dimensional network that 

supports biofilm adherence and cell immobilization (Flemming and Wingender 2010). The matrix and 

its constituents make up the first barrier to the entry and diffusion of foreign substances into the 

biofilm, often impeding them from reaching the cells, thus greatly prompting biofilm antimicrobial 

resistance (Figure 1). Yet, and despite its significance, antimicrobial penetration hindrance does not 

fully explain the resistance phenomena seen in biofilm scenarios, with some antibiotics rapidly 

reaching the biofilm cells while failing at compromising their viability (Hall & Mah, 2017). As 

explained in the next sections, the mechanisms through which resistance and tolerance appear in 

biofilms is complex. 

A major and important matrix component is extracellular DNA (eDNA), ubiquitous to almost all 

biofilms and with structural and cell-to-cell interconnecting functions (Whitchurch et al. 2002; 

Barken et al. 2008). eDNA has shown to confer protection from aminoglycosides to P. aeruginosa 

biofilms, most likely due to its electrostatic interaction with positively charged antibiotics (Chiang et 

al. 2013). Notably, the presence of an antimicrobial can itself promote the eDNA release by the 

biofilm cells to the matrix. For instance, biofilms of Staphylococcus epidermidis doubled their 

amount in eDNA when treated with vancomycin, thus benefiting from its affinity for the positively 

charged antibiotic, which was prevented from reaching the cells and exerting its activity 

(Doroshenko et al. 2014). eDNA has also been shown to induce the expression of resistance genes. 

This occurs by chelating cations such as Mg2+ and by creating an acidic micro domain around itself, 

two environmental signals that activate signalling pathways linked to antimicrobial resistance, such 

as the PhoPQ and PmrAB two component systems in S. Typhimurium (Johnson et al. 2013) and P. 

aeruginosa (Wilton et al. 2016). Furthermore, eDNA has also been related with increased horizontal 

gene transfer in biofilms, serving as vehicle for resistance genes and causing the rapid spread of 

resistance between competent biofilm cells (Okshevsky and Meyer 2015). 

Other matrix components affecting biofilm resistance are polysaccharides, crucial matrix 

components influencing biofilm adhesion and structure while also offering protection against 

antimicrobials. For example, the polysaccharide Psl from P. aeruginosa has shown to provide 

resistance to colistin, polymyxin B, tobramycin, and ciprofloxacin probably via electrostatic 

interactions, and this protective effect was extended to non Psl-producing species, such as E. coli 

and S. aureus (Billings et al. 2013). The biofilm matrix can also contain secreted antibiotic-modifying 

enzymes. For instance, secreted β-lactamases were able to degrade the antibiotic ampicillin in K. 



pneumoniae biofilms, impeding it from reaching the cells in the biofilm (Anderl, Franklin and Stewart 

2000). 

Nutritional constraints and persister cells 
Biofilms are a complex architectural conglomerate, not only due to their diverse composition in 

terms of EPS but also for possessing heterogeneous microhabitats caused by the establishment of an 

oxygen and nutrient gradient. This gradient derives from the faster oxygen and nutrient 

consumption compared to their diffusion rates through the biofilm, causing biofilm cells to appear 

stratified according to oxygen and nutrient availability. Remarkably, oxygen and nutrient depletion in 

lower layers can cause biofilm cells to adopt a low metabolic state or even cause cell death 

(Flemming et al. 2016). This gradient phenomenon partially explains the physiological heterogeneity 

encountered in most biofilms, characterised by cells with diverse gene expressions, metabolic 

activities and phenotypes, which translates into different AMR and tolerance abilities. 

A great example of how nutritional constraints affect biofilm tolerance to antimicrobials is the case 

of cells that reduce their metabolic activity and enter a slow growth or dormancy state when 

nutrients and oxygen are low or absent, achieving the phenotype of persisters (Hall and Mah 2017). 

This type of persistence is known as time-dependent persistence or “tolerance by slow growth” 

(Brauner et al. 2016). Typically, most antimicrobials act best on fast-growing metabolically active 

cells. For example, β‑ lactams act by preventing the reassembly of the peptidoglycan layer bonds 

during bacterial growth, causing cell lysis (Horne and Tomasz 1977), whilst fluoroquinolones inhibit 

DNA gyrase, causing DNA damage (Crumplin and Smith 1976). Persisters are able to diminish the 

antimicrobial effectiveness of these and other antimicrobials without any genetic changes by simply 

stopping their metabolism and growth (Olsen 2015). 

Persistence is characterized by occurring only in a subset of cells that usually comprise less than 1% 

of the microbial population of a biofilm, with antimicrobials only effectively killing the remainder of 

the biofilm cells (Brauner et al. 2016). As such, the persister phenotype is a major reason why certain 

antimicrobials are ineffective despite being able to reach the cells within a biofilm and is one of the 

main contributors to biofilm infection relapsing, as the surviving cells can regrow after antimicrobial 

treatment and maintain the infection (Conlon 2014). Gladly, efforts are being made to target these 

specific and troublesome bacterial subpopulations. For example, a recent study was successful in 

achieving total persister eradication by activating the ClpP protease with the acyldepsipeptide 

antibiotic (ADEP4). This made the protease non-specific, leading to persister cells self-digestion. 

Furthermore, ADEP4 combination with rifampicin was able to completely eradicate an in-vivo S. 

aureus biofilm infection (Conlon et al. 2013). 

Unlike resistant bacterial populations, persistence is characterized by a biphasic killing curve, which 

translates the different rates that bacteria are killed within the same population. Also, persistent 

bacteria, unlike resistant ones, are unable to replicate in the presence of an antimicrobial, a 

characteristic that also differentiates this phenomenon from the one of heteroresistance (Balaban et 

al. 2019). Despite its importance, the molecular mechanisms behind the changes from susceptible to 

persister phenotypes are still being unravelled. Persisters have also been linked to ATP depletion in 

S. aureus (Conlon et al. 2016), E. coli (Shan et al. 2017), and P. aeruginosa (Cameron et al. 2018). A 

more recent study showed that the msaABCR operon, previously linked to virulence, biofilm 

development and antibiotic resistance, is involved as well (Sahukhal, Pandey and Elasri 2017). 



Another recent finding shows that the presence of antimicrobials can induce the persister 

phenotype, namely through the putative de-N-acetylase DnpA after P. aeruginosa biofilm exposure 

to fluoroquinolones (Khandekar et al. 2018).  

Interestingly, it has been recently described the occurrence of persister cell memory, by which cells 

of E. coli, Acinetobacter radioresisten, S. Typhimurium, S. epidermidis and Bacillus subtilis retain their 

persister phenotype up to weeks after being removed from biofilm cultures (Miyaue et al. 2018). 

Persister are characterized by presenting temporary thus reversible tolerance towards antimicrobial 

treatment, but the length in which cells remain in a persistent state due to the described memory 

effect gives them an extra advantage for surviving in antimicrobial-containing environments. For 

more detailed information about persister cells, the reviews by Conlon, Rowe and Lewis 2015, 

Brauner et al., 2016, Van den Bergh et al., 2017, Fisher et al., 2017, and Balaban et al. 2019 are 

recommended. 

In addition to causing the described phenotypic changes in biofilm cells, low availability of oxygen, or 

hypoxia, has been also related to the expression of resistance related genes. Specifically, the mexEF-

oprN and mexCD-oprJ efflux pump genes are upregulated in P. aeruginosa in low oxygen conditions 

(Schaible, Taylor and Schaffer 2012; Tata et al. 2016). Additionally, hypoxia may further protect 

biofilms from antimicrobials by impairing the formation of reactive oxygen species (ROS), which have 

been linked to cell killing by bactericidal antibiotics (Hall and Mah 2017). Low nutrient concentration, 

specifically amino acids, may also enhance biofilm tolerance through the stringent response, in 

which an accumulation of uncharged tRNAs triggers the production of the alarmone stress signal 

guanosine tetraphosphate (ppGpp). This response causes an induction of a lag phase (transient 

growth arrest), which has been showed to improve tolerance to antibiotics (Brauner et al. 2016; Hall 

and Mah 2017). Of notice, a recent study as show that low pH, another environmental factor, has 

been proven to cause the latter effect (Vulin et al. 2018). 

Quorum sensing 
The mechanisms by which microorganisms within a biofilm regulate their activities are coordinated 

through a cell-to-cell communication system known as quorum-sensing (QS). QS is used by bacteria 

(and fungi) to sense population density and regulate gene expression accordingly, serving as channel 

for intra- and inter-species communication, allowing the establishment of intimate relationships of 

competition or cooperation, but also for communication between the microorganisms and its host 

(Li and Tian 2012; Grandclément et al. 2016). Microorganisms regulate these activities by releasing, 

sensing, and responding to small QS signal molecules termed auto-inducers (AI). When AI 

concentration reaches a threshold due to an increase in population density, these signal molecules 

activate receptors with the ability to alter gene expression, promoting beneficial behaviours under a 

particular condition, such as virulence factor expression, motility, and biofilm formation 

(Grandclément et al. 2016; Hawver, Jung and Ng 2016; Knecht et al. 2016). Using QS, 

microorganisms can switch from acting as individual cells to operating in a concerted multicellular 

fashion, thereby switching to the biofilm mode of growth and accommodating to or escaping from 

antimicrobial stresses (Filkins and O’Toole 2015; Passos da Silva et al. 2017). 

QS plays a key role in biofilm AMR, although the mechanisms behind it are still being unravelled. QS 

influences the production of EPS, which are key players in biofilm resistance, as described above. For 

example, the PqsABCDE/PqsR QS system in P. aeruginosa stimulates the production of eDNA (Pérez-



Pérez et al. 2017), which is highly related with AMR in biofilms, as described previously. QS as also 

been linked to the upregulation of resistance genes, as is the case of oxacillinase 51, AmpC, AdeA 

and AdeB in Acinetobacter baumannii (Dou et al. 2017). More recently, Chromobacterium violaceum 

was reported to use QS to increase its resistance to bactobolin, a Burkholderia thailandensis 

antibiotic, by increasing transcription of a putative antibiotic efflux pump (Evans et al. 2018).  

As stated, QS may serve inter-species communication, with the AI from one species interfering with 

signalling pathways of other species present in the same biofilm, thus altering gene expression or 

directly affecting the physiology of the co-habitants (Schertzer, Boulette and Whiteley 2009; Elias 

and Banin 2012). The role of inter-species communication in biofilm resistance is further explored 

next. 

Inter-species interactions 
Most of the research on biofilm resistance has been focused on single-species biofilms. However, 

these simple laboratory models do not illustrate the true nature of biofilm communities, since most 

of biofilm-mediated infections are actually polymicrobial (Wolcott et al. 2013; Gabrilska and 

Rumbaugh 2015). The inclusion of the multispecies factor in AMR studies is pivotal, as it is becoming 

increasingly clear that interactions between different species can modulate the overall consortium 

behaviour, resulting in enhanced AMR and infection severity (Dalton et al. 2011; Peters et al. 2012; 

Murray et al. 2014; Bowen et al. 2018).  

By enclosing multiple species, biofilms obtain numerous ecological advantages, with established 

interactions, either cooperative or competitive, usually resulting in a beneficial outcome to the 

biofilm. A cooperative interaction is, for example, the metabolite cross-feeding between 

Aggregatibacter actinomycetemcomitans and Streptococcus gordonii that benefits the latter while 

also enhancing A. actinomycetemcomitans virulence (Ramsey, Rumbaugh and Whiteley 2011). 

Regarding competitive interactions, a great example is the one established between P. aeruginosa 

and S. aureus. P. aeruginosa produces the enzyme LasA that selectively lysis S. aureus, whose 

content in iron is used for P. aeruginosa growth, increasing its pathogenic potential under low-iron 

conditions (Mashburn et al. 2005). However, S. aureus growth is not completely inhibited by P. 

aeruginosa, with the latter inducing expression of virulence factors and facilitating the emergence of 

small colony variants in S. aureus (Mitchell et al. 2010). This phenotype allows S. aureus to survive 

in proximity with P. aeruginosa, being linked to infection persistence, establishment of intracellular 

infections, and lower antimicrobial susceptibility due to their reduced metabolic state (Garcia et al. 

2013; Proctor et al. 2014). These interactions raise a healthcare concern, as polymicrobial biofilm 

infections are typically more severe and recalcitrant to treatment (Wolcott et al. 2013). For instance, 

P. aeruginosa and S. aureus co-infection delayed wound healing and triggered host inflammatory 

responses (Pastar et al. 2013). Also, P. aeruginosa displayed higher virulence when grown with 

Gram-positive bacteria in vivo (Korgaonkar et al. 2013).  

Regarding specifically AMR, several works have emphasized the increasing resistance to antibiotics 

in multispecies biofilms (Adam, Baillie and Douglas 2002; Lopes et al. 2012; Lee et al. 2014; 

Magalhães, Lopes and Pereira 2017) and some examples are presented in Table 2. The studies 

reviewed suggest that mechanisms, such as interspecies signalling, biofilm matrix production, and 

horizontal gene transfer are major contributors to the increased multispecies biofilm resistance. 



Since much is still unknown, it is imperative to continue the study of interspecies interactions (from 

a molecular standpoint) that lead to the increased AMR of biofilms.  

Anti-biofilm strategies 

A comprehensive knowledge of AMR mechanisms is crucial to find suitable anti-biofilm strategies. So 

far, these essentially belong to three different approaches, i.e. inhibition of bacterial attachment to 

surfaces, interference with signal molecules that modulate biofilm formation, and disruption of the 

biofilm architecture (Parrino et al. 2019), for which examples are given in Table 3. 

As bacterial adhesion is the first step in biofilm formation, a number of surface modifications have 

been developed to prevent bacterial attachment and/or kill adhered bacteria through the 

immobilization of antimicrobials (Desrousseaux et al. 2013; Hasan, Crawford and Ivanova 2013; 

Alves et al. 2016). Among the antimicrobial agents explored in surface functionalization, 

antimicrobial peptides, enzymes, bacteriophages, and essential oils stand out as promising 

alternatives to antibiotics. These natural bactericidal compounds are considered to have a low 

propensity for the development of AMR due to their mechanisms of action (Glinel et al. 2012). For 

instance, antimicrobial peptides target the bacterial membrane, so their activity does not require 

cells to be metabolically active (Kumar, Kizhakkedathu and Straus 2018), allowing them to effectively 

kill cells that are dormant or non-growing, such as persister cells (Batoni, Maisetta and Esin 2016; 

Grassi et al. 2017). In turn, bacteriophages are natural bacterial predators, comprising a promising 

option to overcome biofilm barriers when used in combined therapies or after being genetically 

engineered with new functions to overcome biofilm obstacles (Pires et al. 2017). 

Another anti-biofilm strategy is the interference with signal molecules that modulate biofilm 

development, where QS along with intracellular signalling by bis-(3’-5’)-cyclic-dimeric guanosine 

monophosphate (c-di-GMP) have been the subject of great attention (LaSarre and Federle 2013; 

Parrino et al. 2019). QS interference can be achieved by degrading AI or inhibiting their production, 

limiting the activity of QS signal receptors, or mimicking AI using structurally synthetic compounds. A 

number of compounds targeting QS using these approaches have been identified, such as quorum 

sensing inhibitors that block the action of AI and quorum quenching enzymes that degrade signalling 

molecules (Hirakawa and Tomita 2013; Rémy et al. 2018; Kalia et al. 2019). It is postulated that 

resistance to these anti-QS strategies would develop slowly, making them promising alternatives to 

traditional antibiotics (Turkina and Vikström 2018). In turn, c-di-GMP has been described as a key 

mediator of biofilm formation, especially in Gram-negative bacteria, by stimulating the biosynthesis 

of adhesins, adhesive pili, and EPS, and by inhibiting bacterial motility. Since c-di-GMP is not 

essential for bacterial growth, its inhibition should not promote resistance, therefore being a good 

target for the development of anti-biofilm compounds (Valentini and Filloux 2016).  

After bacterial attachment to a surface, large amounts of EPS are produced. Given its role in biofilm 

resistance, as described above, a promising strategy to dismantle established biofilms relies on the 

use of enzymes targeting EPS (Alves and Pereira 2014). Matrix disruptive enzymes, such as alginate 

lyase (Ramsey and Wozniak 2005), DNase I (Sugimoto et al. 2018), lysozyme (Ragland and Criss 

2017), dispersin B (Kaplan et al. 2003), and lysostaphin (Bastos, Coutinho and Coelho 2010) have 

been extensively investigated with this aim, many times in combination with other antimicrobials 



(Jorge, Alves and Pereira 2019). Another strategy to target established biofilms relies on the 

stimulation of the natural stage of biofilm dispersal. Although this comprises a survival strategy of 

biofilms to colonize new areas, the dispersed and free cells are technically more susceptible to 

antimicrobials and host defences (Kostakioti, Hadjifrangiskou and Hultgren 2013). For instance, it has 

been demonstrated that a low concentration of c-di-GMP leads to biofilm self-destruction. As such, 

c-di-GMP should be considered as a good target for a biofilm dispersion strategy (O’Toole and Ha 

2015).  Despite promising results, most of these strategies fail to be tested and validated using in 

vivo models, so the development of strategies to fight biofilms are still urgently needed (Magana et 

al. 2018). 

Conclusion 

The solution for the hitches caused by one of the smallest life forms on this planet, i.e. bacteria, 

remains an unsolved riddle, as these microorganisms do not cease to amaze with their ability to 

circumvent every “curve ball” thrown their way. Their capability to evolve and adapt has led to a 

modern healthcare crisis as they become resistant to most, and sometimes all, available antibiotics. 

The complex issue of AMR, it seems, is a “many-fronts battle”, with biofilm formation being a 

substantial portion of the problem. This ancient form of bacterial adaptation is itself a form of AMR 

that escalates when resistant bacteria are its originators, making antibiotics forced to not only 

surpass bacterial resistance mechanisms (e.g. efflux pumps, cell-wall modifications) but also biofilm 

specific constrains (e.g. EPS matrix, persister cells). 

The engagement from health-and research-related organizations worldwide is being put to the test, 

with many believing that only a concerted global action will result in AMR mitigation. In order to do 

so, unravelling the molecular mechanisms behind this phenomenon is pivotal in order to elaborate 

new effective antimicrobial strategies. Although much has yet to be done, substantial research is 

created every day to tackle this problem. Innovative solutions, such as surface functionalization to 

prevent biofilm formation, discovery of compounds that interfere with bacterial communication, and 

enzyme application to disperse grown biofilms are just a few examples. Slowly but surely we will 

come to a solution; let us hope it is not too late! 
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Figure 1. Biofilm resistance and tolerance mechanisms. Main resistance and tolerance mechanisms 

(in black) are characterized as intrinsic, acquired, or adaptive. Different geometric forms and colors 

denote different bacterial species. Nutrient and oxygen gradients are illustrated as a downwards 

triangle going from high (green top) to low (red bottom) concentration. Inability of antimicrobials to 

act upon the cell if represented as a red cross sign. Dormant or persister cell is depicted in gray. 

Legend: SCV – small-colony variant. 



Table 1. The top MDR bacteria: WHO categorization and key features. 

WHO 

categorization 
Bacterial pathogens Key features References 

Critical 

Acinetobacter baumannii, 

carbapenem-resistant 

Most associated with HAIs worldwide, 

accounting for up to 20% of ICU infections 

worldwide. 

Causes pneumonia and bloodstream and 

wound infections, particularly in 

mechanically ventilated patients. 

Around 45% isolates are MDR, including 

resistance to last-resort carbapenems most 

often linked to the production of 

carbapenemases. 

Potron, Poirel and 

Nordmann 2015; Harding, 

Hennon and Feldman 2017; 

Lee et al. 2017 

Pseudomonas aeruginosa, 

carbapenem-resistant 

Common cause of HAIs, including 

pneumonia, bloodstream, urinary tract, and 

surgical-site infections. 

Carbapenem resistance mostly related to 

porin (OprD) deficiency. 

Invasive isolates resistant to carbapenems 

were 17.8% in Europe (2015) and 19.2% in 

the USA (2014). 

Potron, Poirel and 

Nordmann 2015; WHO 

2017b 

Enterobacteriaceae, 

carbapenem-resistant, 3rd 

generation 

cephalosporin-resistant 

Enterobacteriaceae include K. pneumonia, E. 

coli, Enterobacter spp., Serratia spp., Proteus 

spp., Providencia spp, and Morganella spp. 

K. pneumoniae invasive isolates resistant to 

carbapenems were reported from all WHO 

regions, with some countries reporting up to 

50%. 

Human isolates resistant to colistin, a last 

resort antimicrobial against carbapenem-

resistant Enterobacteriaceae, were already 

reported. 

10–20 % of Enterobacteriaceae isolated in 

the USA are resistant to ceftazidime. 

Arizpe et al. 2016; 

Castanheira et al. 2016; 

WHO 2017b 

Mycobacteria tuberculosis 

M. tuberculosis infection is the precursor to 

tuberculosis disease, responsible for 1.5 

million deaths/year. 

Aerial dissemination, with infection typically 

occurring in the lungs. 

Sometimes treatable with first-line drugs 

(isoniazid, rifampicin) but mostly resistant to 

a several antibiotics (fluoroquinolones), and 

to second-line injectable drugs (amikacin, 

capreomycin, and kanamycin). 

WHO 2018 



High 

Enterococcus faecium, 

vancomycin-resistant 

Most commonly isolated Gram-positive 

nosocomial pathogen worldwide with highly 

flexible genome that enables rapid adaption. 

Vancomycin-resistant isolates rose from 0% 

to more than 80% from 1980 to 2007, in the 

USA. 

Vancomycin resistance arises from reduced 

vancomycin-binding affinity, involving 

alterations in the peptidoglycan synthesis 

pathway. 

Arias and Murray 2012; 

Gao, Howden and Stinear 

2018 

Staphylococcus aureus, 

methicillin-resistant 

(MRSA) 

Among the most frequent of all antibiotic-
resistant threats and leading cause of 
bacteremia. 

Outstanding versatility in adapting to 
different epidemiological settings 
(healthcare, community, animal). 

Characteristically MDR, with infections 
spreading across the globe. 

Infections commonly involve the skin, soft 
tissue, bone, joints, and indwelling catheters 
or prosthetic devices. 

Monaco et al. 2016; 

Hassoun, Linden and 

Friedman 2017 

Staphylococcus aureus, 

vancomycin- 

intermediate (VISA) and 

resistant (VRSA) 

VISA (MIC = 4-8 µg/mL) appeared in MRSA 
infected patients due to mutations during 
prolonged vancomycin therapy. 

VISA are associated with persistent 
infections, vancomycin treatment failure, 
and poor clinical outcome. 

VRSA (MIC ≥ 16 µg/mL) appeared by 
acquisition of plasmid-borne copies of the 
transposon Tn1546, from vancomycin-
resistant E. faecalis.

VRSA infection numbers are still limited to 
date (14 in the USA). 

Gardete and Tomasz 2014 

Helicobacter pylori, 

clarithromycin-resistant 

Most successful human gastric pathogen 

able to resist stomach acids, colonizing over 

50% of the population. 

Related to gastritis, peptic ulcers, gastric 

adenocarcinoma, iron deficiency anemia, 

idiopathic thrombocytopenic purpura, and 

vitamin B12 deficiency. 

Sequential, bismuth quadruple, and non-

bismuth quadruple therapies seam effective 

in high clarithromycin-resistance countries. 

Alba, Blanco and Alarcón 

2017; Goderska, Agudo 

Pena and Alarcon 2018 

Campylobacter spp., 

fluoroquinolone-resistant 

Leading cause of foodborne illnesses, 

majorly gastroenteritis, primarily caused by 

Campylobacter jejuni. 

Antibiotic treatment is only recommended in 

vulnerable patients, as the young, the 

Bolinger and Kathariou 

2017 



elderly, and patients with weakened 

immunity. 

Macrolides (e.g. erythromycin and 

azithromycin) are considered as 

fluoroquinolone alternatives. 

Salmonella spp., 

fluoroquinolone-resistant 

Leading cause of foodborne 

illnesses/diarrheal diseases, namely 

gastroenteritis. 

Antibiotic treatment is only recommended in 

vulnerable patients, as the young, the 

elderly, and patients with weakened 

immunity. 

Kim et al. 2016; WHO 

2018b 

Neisseria gonorrhoeae, 3rd 

generation cephalosporin-

resistant, fluoroquinolone-

resistant 

Causes gonorrhea, an obligate human 

infection, usually transmitted during sexual 

activity, often resulting in urethritis in men 

and cervicitis in women. 

Gonorrhea is rising, with 18.6% increase 

during 2016–2017 and 75.2% increase since 

2009 in the USA.  

Asymptomatic men (two-thirds of infected 

men) constituting the principal source of 

dissemination. 

CDC 2017; Rice et al. 2017 

Medium 

Streptococcus 

pneumoniae, penicillin-

non-susceptible 

Encapsulated bacteria causes meningitis, 

septicaemia, and pneumonia, but also milder 

infections, such as sinusitis and otitis media. 

Major cause of morbidity and mortality 

worldwide, mainly in poor countries and in 

children under the age of two. 

There are two available vaccines that target 

the most prevalent serotypes. 

WHO 2014 

Haemophilus influenzae, 

ampicillin-resistant 

Serotype b, an obligate human pathogen, is 

the most pathogenic, responsible for 

respiratory infections, ocular infection, 

sepsis, and meningitis. 

Leading worldwide cause of meningitis 

morbidity and mortality in unimmunised 

populations. 

Highly related to Chronic Obstructive 

Pulmonary Disease, a leading cause of 

morbidity and mortality worldwide. 

3rd generation cephalosporins are the 

empiric treatment of choice. 

ECDC 2017; Sriram et al. 

2018 

Shigella spp., 

fluoroquinolone-resistant 

Causes Shigellosis, a major cause of 

diarrhoea affecting mainly children under 

the age of five. 

(ECDC 2017b; CDC 2018) 



Between 80–165 million cases of shigellosis 

occur annually worldwide, majorly in 

developing countries. 

Note: HAIs – hospital acquired infections; ICU – intensive care unit. 



Table 2. Examples of inter-species interactions leading to increased AMR in polymicrobial biofilms for selected 
antimicrobial agents. 

Antimicrobial Species Interaction outcome References 

Amoxicillin 
Moraxella catarrhalis, 
Streptococcus pneumoniae 

M. catarrhalis secreted β-lactamases 
protected S. pneumonia from amoxicillin 
treatment. 

Perez et al., 
2014 

Ampicillin 
Haemophilus influenzae, Moraxella 
catarrhalis 

M. catarrhalis secreted β-lactamases 
protected H. influenzae from ampicillin 
treatment. 

Armbruster et 
al. 2010 

Azithromycin 
Moraxella catarrhalis, 
Streptococcus pneumoniae 

S. pneumoniae protected M. catarrhalis 
from azithromycin treatment a signaling 
molecule AI-2 independent mechanism. 

Perez et al., 
2014 

Benzalkonium 
chloride 

Listeria monocytogenes, 
Pseudomonas putida 

L. monocytogenes increased P. putida 
resistance to benzalkonium chloride. 

Giaouris et al., 
2013 

Cefotaxime 
Dolosigranulum pigrum, Inquilinus 
limosus, Pseudomonas aeruginosa 

P. aeruginosa increased I. limosus and D. 
pigrum resistance to cefotaxime. 

Lopes et al., 
2012 

Chloramphenicol 
Dolosigranulum pigrum, Inquilinus 
limosus, Pseudomonas aeruginosa 

P. aeruginosa increased I. limosus and D. 
pigrum resistance to chloramphenicol. 

Lopes et al., 
2012 

Chlorine 

Enterobacteriaceae cloacae, 
Escherichia coli, Pseudomonas 
aeruginosa, Stenotrophomonas 
maltophilia 

Multi-species biofilms of the four 
bacteria displayed increased resistance 
to chlorine. 

Schwering et 
al. 2013 

Ciprofloxacin 
Inquilinus limosus, Pseudomonas 
aeruginosa, Staphylococcus aureus, 
Stenotrophomonas maltophilia 

P. aeruginosa increased S. aureus, I. 
limosus, and S. maltophilia resistance to 
ciprofloxacin. 

Magalhães et 
al., 2017 

Clarithromycin 
Haemophilus influenzae, Moraxella 
catarrhalis 

H. influenzae signalling molecule AI-2 
induced M. catarrhalis resistance to 
clarithromycin. 

Armbruster et 
al. 2010 

Clindamycin 
Dolosigranulum pigrum, Inquilinus 
limosus, Pseudomonas aeruginosa 

P. aeruginosa increased I. limosus and D. 
pigrum resistance to clindamycin. 

Lopes et al., 
2012 

Colistin 
Pseudomonas aeruginosa, 
Stenotrophomonas maltophilia 

S. maltophilia increased P. aeruginosa 
resistance to colistin. 

Ryan et al., 
2008 

Essential oils of 
citronella and lemon 

Escherichia coli, Staphylococcus 
aureus 

S. aureus and E. coli increased resistance 
to citronella and lemon essential oils 
when co-cultured. 

Millezi et al., 
2012 

Gentamicin 
Enterococcus faecalis, Finegoldia 
magna, Pseudomonas aeruginosa, 
Staphylococcus aureus 

P. aeruginosa increased resistance to 
gentamicin when co-cultured with S. 
aureus, E. faecalis, and F. magna.  

Dalton et al., 
2011 

Hydrogen peroxide 
Pseudomonas aeruginosa, 
Staphylococcus aureus 

P. aeruginosa induction of pigment 
synthesis and catalase upregulation in S. 
aureus increased its resistance to 
hydrogen peroxide. 

Antonic et al., 
2013 



Ofloxacin Candida albicans, Escherichia coli 

C. albicans -1,3-glucan, a matrix 
component, increased E. coli  resistance 
to ofloxacin by acting as a barrier to its 
diffusion in the biofilm. 

De Brucker et 
al., 2015 

Ortho-phtalaldehyde 
acid 

Bacillus subtilis, Staphylococcus 
aureus 

B. subtilis ypqP gene protected S. aureus 
from biocide action of ortho-
phtalaldehyde acid. 

Sanchez-
Vizuete et al., 
2015 

Peracetic acid 
Bacillus subtilis, Staphylococcus 
aureus 

B. subtilis ypqP gene protected S. aureus 
from biocide action of peracetic acid 
acid.. 

Sanchez-
Vizuete et al., 
2015 

Polymyxin B 
Pseudomonas aeruginosa, 
Staphylococcus aureus 

P. aeruginosa induction of pigment 
synthesis and catalase upregulation in S. 
aureus increased its resistance to 
polymyxin B. 

Antonic et al., 
2013 

Rifampicin 
Dolosigranulum pigrum, Inquilinus 
limosus, Pseudomonas aeruginosa 

P. aeruginosa increased I. limosus and D. 
pigrum resistance to rifampicin. 

Lopes et al., 
2012 

Sodium dodecyl 
sulphate (SDS) 

Pseudomonas fluorescens, 
Klebsiella pneumoniae, 
Pseudomonas aeruginosa 

P. fluorescens increased resistance to SDS 
when co-cultured with K. pneumoniae 
and P. aeruginosa. 

Lee et al., 2014 

Tobramycin 
Pseudomonas aeruginosa, 
Stenotrophomonas maltophilia 

P. aeruginosa alginate protected S. 
maltophilia from tobramycin treatment- 

Pompilio et al., 
2015 

Trimethoprim - 
sulfamethoxazole 

Haemophilus influenzae, Moraxella 
catarrhalis 

H. influenzae signalling molecule AI-2 
induced M. catarrhalis resistance to 
trimethoprim – sulfamethoxazole. 

(Armbruster et 
al. 2010) 

Vancomycin P. aeruginosa, S. aureus 
P. aeruginosa HQNO increases S. aureus 
resistance to vancomycin. 

Orazi and 
O’Toole, 2017 



Table 3. Examples of anti-biofilm molecules and their mechanisms of action, according to different 

strategies. 

Anti-biofilm 
strategy 

Mechanism of 
action 

Molecules References 

Inhibition of 
bacterial 
attachment to 
surfaces 

Anti-adhesive 
surface 
properties 

Hydrophilic polymers and surfaces with 
micro and nanoscale topography 

Huang et al., 2002; Hsu et al., 
2013; Kang et al., 2016 

Antimicrobial 
surface 
properties 

Antimicrobial peptides, essential oils, 
metallic nanoparticles, bacteriophages 

Agnihotri et al., 2013; Wang et 
al., 2016; Zaltsman et al., 2017; 
He et al., 2018 

Interference with 
signal molecules 
modulating biofilm 
formation 

AI degradation Lactonases, acylases and oxidoreductases 
Wang et al., 2004; Lade et al., 
2014; Chan et al., 2015 

AI synthesis 
inhibition 

Halogenated furanone compounds, 
quercetin, cycloleucine, nickel and cadmium 

Kim et al., 2008; Vega et al., 
2014; Yadav et al., 2014; Gopu 
et al., 2015 

AI antagonization  

AHL analogues (cyclic sulfur compounds, 
phenolic compounds), AI-2 analogues 
(ursolic acid, isobutyl-4,5-dihydroxy-2,3-
pentanedione (isobutyl-DPD) and phenyl-
DPD), AIP analogues (cyclic peptides, RNA 
III) 

Brackman and Coenye, 2015; 
Hossain et al., 2017 

c-di-GMP 
signalling system 
inhibition 

LP 3134, LP 3145, LP 4010, LP 1062 
Bachovchin et al., 2009; 
Sambanthamoorthy et al., 
2014 

Disruption of 
biofilm architecture 

EPS/matrix 
degradation 

Polysaccharide-degrading enzymes 
(dispersin B, endolysins), nucleases (DNase 
I), proteases (proteinase K, trypsin) 

Kaplan et al., 2003; Sugimoto 
et al., 2018 

Biofilm dispersion 
Nitric oxide, cis-2-decenoic acid (CDA), 
EDTA, lactoferrin 

Banin et al., 2005, 2006; 
Barraud et al., 2009; Kumar 
Shukla and Rao, 2013; 
Marques et al., 2015 


