
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

Triptych: Multi-objective Optimisation of Service
Deployment Costs, Application Delay and

Bandwidth Usage
Miguel Rocha1,2, Truong Khoa Phan2, Joao Reis2, David Griffin2, Miguel Rio2

1University of Minho, 2University College London
1mrocha@di.uminho.pt, 2{t.phan,joao.reis.16,dgriffin,miguel.rio}@ucl.ac.uk

Abstract—Advanced Internet services increasingly rely on
many components to implement their functionality. These com-
posite services have three important features: they are expensive
to deploy, components need to be placed intelligently close to the
users to improve quality of experience and they will potentially
consume significant amounts of bandwidth. This paper presents
Triptych, a multi-objective optimisation framework that tries
to optimise according these three dimensions to help the three
main stakeholders in the Internet ecosystem: users, application
providers and network providers. Triptych implements evolution-
ary computation approaches for this complex problem, which
simultaneously optimise service deployment costs, latency-based
user utility and network congestion. These algorithms provide
possible operating points, bringing important tools for network
managements and resource allocation. A large set of simulations
under different scenarios are provided to validate the algorithms.

I. INTRODUCTION

Emerging Internet applications such as virtual/augmented
reality (VR/AR), online gaming, wearable cognitive assistance
and edge analytics require tight constraints on quality of
service (QoS) [4], [8], [23]. These applications require extreme
low latency and high bandwidth consumption. The general
approach is to move computational resources closer to the
users to reduce network latency and bandwidth requirements
[10], [17], [18], [20], [30]. Therefore, placement policies will
play a key role in delivering good QoS for the end-users.

Finding optimal placement for services is an NP-hard prob-
lem [9], [20]. In this class of problems, a composite service
comprises several components potentially deployed by servers
in different locations. Those components need to be connected
in a pre-defined topology or workflow, which can be defined
as a combination of chain, parallel and/or loop structures [20].
A typical example of composite service is Network Functions
Virtualisation (NFV) paradigm where network functionality is
split up into multiple building blocks that need to be chained
together to provide the required functionality [11]–[13].

In this scenario, the key challenges of composite services
are: (a) how to optimally deploy services on different servers
in distinct locations; and, (b) how to find optimal routing
path connecting service instances as a pre-defined workflow.
Several studies have previously attempted to solve one of

these challenges without addressing both of them simultane-
ously. For instance, service placement optimisation has been
addressed in [1], [17], [18], [20], [30], [31]. On the other
hand, several optimal formulations and heuristic algorithms
have been proposed for routing issues [5], [6], [15].

In this paper, we first show that optimising service
placement only can cause serious network congestion (sec-
tion IV-C). Therefore we propose Triptych framework to
simultaneously optimise both network routing and service
placement decision. This combination significantly increases
the problem complexity, but it ensures user QoS while reduc-
ing operating costs for application and network providers.

In brief, the contributions of our work are as follows:
• We design a general-purpose definition of service topol-

ogy, which allows to address different composition struc-
tures and combinations of these structures.

• We optimise both network routing and service placement
at the same time. This combination helps to significantly
improve user QoS as well as reducing operational costs.

• We introduce a weighting scheme in the objective func-
tion, as an approach to allow selecting operating points
according to preferences of the application and the net-
work providers.

• We conduct extensive numerical studies under synthetic
datasets over real network topology. The simultion results
show significant improvements on user latency, network
congestion and operational cost.

The paper is organized as follows. In section II, we present
a literature review of related work on service placement and
routing optimisation. In section III, we design multi-objective
genetic algorithms to trade-off between deployment costs, user
latency and network congestion. We show evaluation results
of those algorithms in section IV and conclude the work in
section V.

II. RELATED WORK

A. Service composition

Optimising service placement and service selection is an
important research topic to improve QoS, as well as reducing
operational costs. In this trend, work has been done for
optimising atomic service performance [1], [17], [18], [24],ISBN 978-3-903176-16-4 c© 2019 IFIP

IFIP Networking 2019 1570511770

1

[30], [31]. Atomic service is a classical paradigm where all
the required functionality is built into a single component.
The authors in [17], [18] have introduced a novel utility-
based service placement algorithm to significantly improve
user utility compared with the classical closest-based place-
ment approach. On the other hand, DONAR [30] has been
proposed as a decentralised server selection method for cloud
services aiming to optimise both client performance and server
load. In this work, we consider to optimise several aspects
of composite services, which translates into a much more
complex problem than the atomic services one.

Service composition or composite services require multiple
components to be executed sequentially or concurrently. For
instance, recent work on NFV deployment has considered to
optimise chain structure where each component is executed
sequentially, thus the output of a component will be the input
for the next one [2], [3], [20], [27].

The authors in [20] have proposed a general framework
for maximising user utility in composite services. However,
a major limitation of that work is that it does not consider
the underlying network routing between service components.
This limitation can potentially cause network congestion, as
we show in our results (see Section IV-C).

Another work in this topic is DRENCH [27], a semi-
distributed resource management framework for NFV based
service function chaining. DRENCH incorporates a traffic
load-balancing algorithm to estimate network function instance
loads. Then, each NFV node independently directs flows to
an appropriate least-loaded service instance. However, the
DRENCH framework is designed only for NFV chaining
which is the linear and the loop structures (see Figure 1
and Figure 3). In this work, we investigate a further step to
optimise for both service placement and underlying routing
between components, which is applicable for all kinds of
composite service structures, including, but not limited to,
linear, tree, loop structures or any combination of those (Sec-
tion III-A). Furthermore, we consider more realistic models of
cost and latency.

B. Network routing optimisation

Traffic engineering is an important approach to make ef-
ficient use of network resources with loose guarantees on
delay, loss and throughput for end users [5], [6], [15]. For
instance, Fortz et al. [5] proposed algorithms to optimise
weight setting for Open Shortest Path First (OSPF) routing
for better load balancing. In [6], the authors have proposed
algorithm to optimise OSPF routing for more efficient use
of network resources in traffic and network change scenarios.
In [7], [15], the authors have proposed optimal and heuristic
algorithms for finding routing solution in order to save network
power consumption. A hybrid traffic engineering approach of
application and network layers has been proposed to improve
network efficiency especially for large-scale streaming appli-
cations [19]. The authors in [22] have designed optimisation
and evolutionary meta-heuristic algorithms to find link weight
setting for link-state protocols such as Open Shortest Path

First (OSPF). Recently, machine learning has been applied to
Internet routing domain [21], [28], [29]. The authors in [28],
[29] show how routing be formulated as an machine learning
problem. Then they solve the problem using both super-
vised learning [14] and reinforcement learning [26]. Their
preliminary results show that supervised learning might be
ineffective if the traffic conditions do not exhibit very high
regularity. Then they suggest that applying deep reinforcement
learning to this context yields high performance. However, all
those aforementioned works assume the location of service
instances is fixed and they try to optimise network routing
only. In this work, by looking at both traffic engineering and
service placement, Triptych tries to simultaneously optimise
deployment cost, end-to-end latency and network congestion.

III. TRIPTYCH - MULTI-OBJECTIVE OPTIMISATION OF
COMPOSITE SERVICES

In this section, we first introduce three basic structures of
composite services. These structures can be combined to form
any complex composite service structures. We then formally
define the problem and design Triptych, an evolutionary algo-
rithm to simultaneously optimise cost, latency and congestion
for a general composite service structure.

A. Composite service structures

vTranscoder vCache vOriginServer
User

Fig. 1: Linear structure

One of the most common structures of composite service is
the chain or linear structure. As an example, a user needs to
watch a video on demand (VoD) content on his device (e.g.
smart phone, tablet or smart TV). In Figure 1, the three virtual
services vOriginServer, vTranscoder and vCache need to
be connected as a chain to deliver a video stream to the user.
The vOriginServer acts as the root server sending the stream
to the vTranscoder and the vCache. The vTranscoder is re-
sponsible for transcoding the video stream into varying levels
of quality to support adaptive streaming. The vCache is used
to cache/store encoded video streams so that it can serve users
quickly without connecting to the vOriginServer. For this
linear structure, the end-to-end latency will be accumulated
from each hop of the chain (including network latency and
processing delay at each node).

Transcoder

OriginServer Media Process
Engine

Translation
Engine

User
Live video stream

Fig. 2: Tree structure

Figure 2 shows an overview of the scenario covered by
the remote production in broadcasting use case. The on-site

2

reporter needs to send high quality content back to the media
process engine before being broadcasted. The encoded video
and the translated audio produced by the transcoder and the
translation engine will be merged at the media process engine
before sending out to the viewers. The translating step can
be done in parallel with the encoding step and the end-to-end
latency will be the longest of the two branches. This structure
forms a directed acyclic graph and is referred to as a tree or
a parallel structure.

Compare & Adjust Process Monitor output

feedback

User

Fig. 3: Loop structure

The third structure we are presenting is a cycle or a loop
structure. An example could be the closed loop system shown
in Figure 3. It is similar to the chain structure except there is a
loop to provide feedback for making decisions in subsequent
rounds. The end-to-end latency is accumulated from each hop.
Examples of this include services where components send any
sort of application feedback to the source.

B. Triptych problem definition

User 1

User 2

vOriginServer

vTranscoder

vCache

vCache Traffic
steering

S1
S4

S3

S2
R2

R1

Fig. 4: Optimisation of routing and placement for composite
services

We use the linear structure use case (Figure 1) as an
example of the optimisation problem addressed by Trip-
tych. In brief, high-quality communication paths between the
vOriginServer and the users are critical for VoD systems.
Performance of the system is related to available bandwidth,
latency of network links, computational capability and lo-
cation of servers where service instances are deployed. To
guarantee QoS, it may be necessary to modify the network
path (e.g. via a SDN controller) or select service instances
in different locations. In Figure 4, we show an example of
two users watching the same VoD stream. In this example,
there are several servers where we can deploy service in-
stances (vOriginServer, vTranscoder and vCache). We
need to create a linear structure (or VNF chain) to connect
between the vOriginServer, the vTranscoder, the vCache
and each of the users as a chain. To reduce operational costs,

TABLE I: Summary of key notations (alphabetical order)

Ce capacity of link e ∈ E
Di demand of user i ∈ U
E set of links in the network
F f
kj fixed cost of service j at server k

F v
kj variable cost of service j at server k

G = (V,E) network topology
Le latency of link e ∈ E

Lfh
min min first hop latency

Lfh
max max first hop latency

Le2e
min min end-to-end latency

Le2e
max max end-to-end latency

Platency latency penalty
Pcost cost penalty

Pcongestion congestion penalty
P i
fh first hop latency penalty of user i

P i
e2e E2E latency penalty of user i
r root of the tree T
sT list of successors in the tree T
Sj servers are able to deploy service j

ServT list of distinct services in the tree T
SPO service placement optimisation only

T = (r, sT) composite service tree
ue utilisation of link e ∈ E

U = {i} set of users i
Umin min link utilisation
Umax max link utilisation
V set of nodes in the network topology

the vOriginServer and the vTranscoder instances can be
shared between the two chains as shown in Figure 4. However,
we assume that the link (R1 − R2) has limited bandwidth.
Therefore, Triptych decides to route traffic flows of the two
chains from S1 to S2 via different paths to avoid making the
link (R1 − R2) congested. On the other hand, to guarantee
low latency, the vCache needs to be located close to the
end user, thus Triptych deploys the two instances of the
vCache in S3 and S4 for the two users. To sum up, the
Triptych algorithm needs to take into account deployment cost,
application delay and network congestion in making decisions
on service instance placement and the corresponding underline
network routing.

In this section, we will firstly define the data structures
involved in the definition of the composite service structure.
Then, we will introduce the concepts related to service place-
ment and network routing optimisation and show how we
connect them in Triptych.

1) General-purpose tree definition: A given instance of
the composite service structure will be represented by a tree
where each node represents a service instance that needs to
be deployed in a suitable server and the tree will define
the dependencies between service instances. The branches on
the tree indicate services that can be executed in parallel,
while a linear chain of nodes indicates services that need
to be completed sequentially. We use nodes with replicated
identifiers to indicate the same service instance in the loop
structure (see Figure 5c). In this way, we have a general

representation scheme that allows to define different service
structures.

We show in Figure 5 how the three composite structures be
represented. In Figure 5b, the Transcoder and the Translation
Engine need to connect to the root which is the OriginServer.
Then they both connect to the Media Process Engine and the
tree is terminated at the user. Note that in Figure 5c the “Com
& Adj (1)” and “Com & Adj (2)” are the same “Compare
& Adjust” instance (with replicated identifier) in the loop
structure in Figure 3.

The tree is represented by a root node r and a function sT
that provides, for each node, the list of its successors in the
tree: T = (r, sT). Note that for a given service s, the list
sT (n) will provide the services that need to be completed in
order for s to be able to start. For a given service tree T , we
can also define ServT , which is the list of services in the tree,
i.e. the full set of services that appear at least once in the tree’s
nodes. |ServT | will therefore be used to denote the number
of distinct services.

2) Service placement optimisation: The optimisation algo-
rithm will define which servers to deploy service instances
for each user. This decision is made by trading off cost with
performance of the network, such as latency and congestion.
Each server skj ∈ Sj (Sj represents the set of all servers able
to deploy service j), will be defined by a tuple (F f

kj , F
v
kj)

containing, respectively, the fixed deployment cost (F f
kj) of

the service j at server k and its variable cost (F v
kj).

• Fixed cost: the cost of deploying the service instance for
the first time at a server. For example, this can be thought
as the cost of software installation in that server. The
fixed cost is incurred only once and does not vary with
the number/size of service instances at a certain location.

• Variable cost: this cost is proportional to the resources
used by the service instances. The more service instances
are deployed, the more resources are consumed and hence
the cost increases with the number of instances.

The service placement optimisation algorithm can be ex-
ecuted at various timescales, including initial service deploy-
ment and ongoing reconfiguration to migrate existing services,
instantiate new services, undertake service scaling as demand
patterns change. On the other hand, composite service optimi-
sation is used to determine which instances of services should
be interconnected to meet performance and cost objectives
for specific user session requests. This can be undertaken at
initial session establishment, as well as for the optimisation
of already running sessions/VNF forwarding graph (VNFFG)
instances.

3) Routing optimisation: In this work, we add the network
routing dimension to the problem. Thus, we will consider a
network defined as a directed graph G = (V,E), where V is
the set of nodes, while E represents links connecting them.
Each link e ∈ E has a capacity Ce defining the amount of
traffic it can accommodate. In addition, each link e ∈ E is
associated with a propagation delay Le. When demands are
allocated to the links in the network, the total amount of traffic

allocated over a link will be given by its load le. From the
link capacity and load, a link utilization ue is calculated as:
ue = le/Ce.

We assume that each user i ∈ U is connected to a node in
the network topology (see Figure 4). The routing optimisation
objective is to find an optimal end-to-end path connecting from
the first to the subsequent service instances in the composite
structure and finishing at the end-user. The optimal path
needs to take into account network latency and link loads.
In addition, the routing optimisation also provides feedback
to the service placement optimisation. For instance when the
placement optimisation receives feedback saying that the link
(R2, S2) in Figure 4 is congested, it should instantiate new
vTranscoder in another location to reduce the load on the
link (R2, S2). The Triptych optimisation algorithm needs to
take into account three dimensions in the formulation of the
objective function: latency, cost and network congestion. We
define, in the next subsection the multi-objective cost function
used in the Triptych algorithm.

C. Multi-objective cost function

1) Latency: We consider latency which includes both net-
work latency and processing time at the server where service
instances are deployed. Also, some services require an extreme
low latency between the users and the first hop service
instance. For example, users should connect to a low-latency
rendering component in an online game service to reduce lag
as the player moves viewpoint, while the game simulation
engine itself could be located more remotely, if the positions
of other players do not change rapidly and so a longer latency
would not impact game play. Therefore, along with the end-
to-end latency, we also consider the first hop latency as a
component of the cost function when deploying a composite
service.

Inspired by the utility function from the work [18], we
define a minimum and the maximum first hop and end-to-
end latency thresholds. Hence, each user request, i ∈ U ,
will be defined by a tuple (Di, L

fh
min, L

fh
max, L

e2e
min, L

e2e
max),

which define, respectively, the user demand, and the minimum
and maximum required first hop and end-to-end latency. The
minimum and maximum latency thresholds are used to capture
the nature of the penalty imposed over the performance for
services. For some services, if the latency is less than Lmin,
the improvement is not perceived by the users of that service,
thus the penalty is always zero. For instance, in high-quality
voice over IP service, if latency is less or equal to Lmin = 20
ms, the users get a feeling of real voice communication [25].
Therefore, there is no need to consider any penalty (P = 0 -
Figure 6) when the latency is less or equal to Lmin. On the
other hand, 150 ms is about the limit for keeping the user’s
attention focused. Therefore, a huge penalty needs to set if the
latency is more than Lmax = 150 ms. We show in Figure 6 a
graph of penalty vs. metric, where the metric X in this case
refers to latency.

4

vOriginServer: vTranscoder
vTranscoder: vCache
vCache: User

(a) Linear structure

OriginServer: Transcoder, Translation Engine
Transcoder: Media Process Engine
Translation Engine: Media Process Engine
Media Process Engine: User

(b) Tree structure

Com & Adj (1): Process
Process: Monitor
Monitor: Com & Adj (2)
Com & Adj (2): User

(c) Loop structure

Fig. 5: Example of composite service representation

Xmin Xmax

Y

0

Penalty

Metric

Fig. 6: Penalty function p used to normalize the latency and
cost metrics

Platency =
1

2 ∗ |U |
∑
i∈U

(P i
e2e + P i

fh) (1)

where P i
e2e and P i

fh represent the penalties for end-to-end
and first-hop latencies for user request i, being obtained by
applying the penalty function p depicted in Figure 6 to the
computed values of the respective latencies (Y is set to 10 in
our experiments), given an assignment of services to servers.
Note that in the current model, we do not consider the impact
of network congestion on the latency. For example, congestion
on a link can increase queuing delay which in the end impacts
on the overall latency. We plan a future work to incorporate
queuing delay into the general latency model.

2) Deployment costs: We optimise both the fixed cost
and the variable costs (see section III-B2) in the Triptych
algorithm. So the total cost TC of a solution (an assignment of
services to specific servers) is calculated by TC = FC+V C,
summing the fixed costs (FC) incurred in the used servers and
the variable costs (V C) for all user requests. The fixed cost
is, thus, calculated as follows:

FC =
∑

j∈ServT

∑
k∈Sj

bjk × F f
kj (2)

where bjk is a binary variable, taking value 1 if the server sk
is used to deploy service j, and 0 otherwise.

On the other hand, the variable costs are calculated as:

V C =
∑
i∈U

∑
j∈ServT

∑
k∈Sj

bjki × F v
kj ×Di (3)

where bjki is a binary variable, taking value 1 if the server
sk is used to deploy service j processing the user request i,
which has a total demand of Di.

To be able to create a unified cost function, we also
normalise the cost penalty - Pcost = p(TC) - using the convex
piecewise linear function as shown in Figure 6. The penalty
cost is zero if the sum of fixed cost and variable cost are less
or equal than a defined minimum budget Costmin, and we
set a fast growing penalty for total costs above a threshold
Costmax. In our experiments, Costmin was calculated as the
minimum possible cost to satisfy all demands, while Costmax

was set to be equal to 2× Costmin.
3) Network congestion: In this work, we use the congestion

measure proposed by Fortz and Thorup in their seminal
paper [5]. It is defined by a cost (or penalty) Φ which is
the sum of the cost function Φe(ue) for each link e ∈ E.
This is a convex piecewise linear penalty function, which has
a low growth for small link utilisations, but increases more
quickly with the link utilisation (see the piecewise convex
penalty function in [5]). It has the advantage over metrics
as maximum link utilisation of considering all links in the
network, while also penalising heavily overloaded links.

As proposed in the original publication, this metric can be
normalized over distinct network topologies, computing Φ∗,
which divides the penalty Φ over the minimum load in the
network, obtained by routing over shortest paths with link
weights set to 1. In this case, the optimal theoretical value
of the objective function is 1.

Note that the definition of this objective function follows the
same principles of the two previous ones. Since the optimal
value in this case is 1, we set Pcongestion = 1 − Φ∗. In this
way, network congestion can be combined with latency and
cost in the multi-objective formulation.

4) Overall cost function: Here, we consider two scenarios:
in the first, which we will denote by service placement
optimisation only (SPO), we address the optimisation of the
assignment of the required services for all user requests
seeking to minimize Platency and Pcost, while in the latter
(our Triptych algorithm) we will consider also routing in the
network, and therefore will add a third objective (Pcongestion)
to the optimisation framework.

In this work, we consider an aggregation of the different
cost functions through a sum of their values, weighted by
considering individual parameters for each component. Thus,
our objective will be to minimize P , defined as:

P = αPlatency + βPcost + γPcongestion (4)

As a way to further normalize the results, we will consider
only cases where (α + β + γ = 1). In the case of SPO, we
will consider γ to be set to 0.

Notice that as the latency, cost and congestion values are
normalized, the optimal value of each of the components of the
cost function is 0, and therefore this will also be the theoretical
optimal value of P , although this might not be achievable
given the specific instances. In addition, when we set α =
β = γ = 1/3, the three components are considered in the
optimization process with the same priority.

D. Evolutionary Algorithm

1) Overall structure of the EA: We address the optimisation
problem formulated in the previous section through the use
of Evolutionary Algorithms (EAs). These are justified in this
case by the complexity of the underlying optimisation problem
and by the numerous cases where they have shown success
in related tasks [20], [22]. We present in Figure 7 a general
flowchart showing the main steps of the EA. We implemented
the EA based on the inspyred package in Python1, following
the default structure of the provided EA.

Initial population

Current population

Select parents

Crossover & mutation to
produce offsprings

New population

Determine the fitness Stop evolution

Final solution
YES

NO

random solutions

min [αPlatency + βPcost + γPcongestion]

Fig. 7: Evolutionary algorithm flow chart

Next, we explain in detail the steps of the EA:
• Initialisation: The initial population is a set of potential

solutions to the problem. Each solution contains a list
of integers, each being randomly generated within the
allowed range for each position.

• New population: after each generation, a new population
is created by the following steps until reaching the
stopping criterion:

– Selection: select parents from a population according
to their fitness (the lower the fitness, the higher
chance to be selected).

– Crossover: using the selected crossover operator,
create new individuals (offspring) from the selected
parents.

– Mutation: over the generation, use the selected mu-
tation operators to change part of their genes.

– Reinsertion: the newly generated offspring will be
combined with some individuals selected from the
previous population to create the next population.

1https://pypi.org/project/inspyred/

• Stop: if the termination criterion is reached (maximum
number of solution evaluations), the algorithm stops, and
returns the best solution in the current population.

2) Solution representation and evaluation: A solution for
the considered optimisation problem is represented as an
individual in the EA, and is encoded as a list of integer
values. This list encompasses two parts, the first represents
the assignment of the services to specific servers, for each
user request, while the latter represents the way routing is
done in the network, through the definition of weights for each
network link, used to route the traffic using an intra-domain
routing protocol as OSPF. Notice that in the SPO case, only
the first part of the solutions exists.

Regarding the first part, the service-server assignment, the
length is given by |U |× |ServT |. Thus, for each user request,
all services defined in the structure have an assigned server.
The integer value at each position will specify the index of
the server assigned to deploy that specific service for that
user request. This part of the solution is decoded into a finite
function indexed by user identifier. For each user, another finite
function from service to server identifier keeps the assignment
for that specific user request.

Regarding the second part, encoding routing weights, the
length is given by the number of links in the network. Each
value specifies the weight of a link, to be used in the shortest
path calculation for each demand, using the defined intra-
domain routing protocol (e.g. OSPF). The range of the values
in this part of the individual is the set [1, MaxW]. In the
experiments, MaxW was considered to be 20.

Each individual is evaluated by first decoding its genome
(list of integer values) into a service-server assignment for each
user, and if routing is optimised into the OSPF weights, as
described. The service-server assignment is used to compute
the penalties for latency and costs, as described in Sections
III-C1 and III-C2. The routing weights are used to compute
the full paths for each user request, from those the respective
link loads and utilisations, and finally compute the congestion
penalty (see Section III-C3). The fitness of each individual
is given by the overall penalty P , computed as given by the
Equation 4.

3) Genetic operators: The EA implemented in this work,
makes use of both crossover and mutation operators. Regard-
ing the crossover, we use a single operator provided by the
inspyred package, namely the one-point crossover. This takes
two parents, cuts in a random position and combines the genes
alternating from each parent, generating two new solutions
(individuals).

Regarding mutation, we make use of three different op-
erators: random mutation, an operator from the inspyred
package which randomly changes the value of a given gene
for another in the allowed range for that position (given a
probability per position); increment mutation, which changes
a randomly selected gene adding or subtracting one; and, an
intelligent mutation, which works as random mutation but
only accepts the change if it leads to a higher fitness value,

6

being the process repeated Nmut times (in the experiments,
we considered its value to be 20).

4) Other parameters: In the EA, the selection of the parents
to undergo recombination is based on ranking selection, where
individuals are ranked and selection is made based on val-
ues calculated from the ranking position. The recombination
scheme is generational, being replaced in each generation 80%
of the individuals in the population, with an elitism value of 2
(i.e. the two best individuals are always kept). The population
size was set to 100, and the termination criterion is based on a
maximum number of solutions evaluated (set to 20000 in the
experiments).

In the objective function, the default values for the weights
were the following: α = 0.4, β = 0.3, γ = 0.3. For SPO, both
α and β were set to 0.5.

IV. EVALUATION

A. Simulation setup

We evaluated Triptych’s performance testing with three
composite structures: the linear (Figure 1), the tree (Figure 2),
and the loop (Figure 3).

We use the Geant network as the core topology, which
contains 22 nodes and 36 links, as shown in Figure 8 [16].

Fig. 8: Geant network topology

Over this network core, we simulated a set of problem
instances, by generating realistic values of user demands,
server costs and latency requirements (end-to-end and first-
hop). We considered 2 distinct levels of latency requirements
and of overall demands (named A and B) to create distinct
levels of difficulty (where A is the easier and B the more
difficult scenario). For instance, latency thresholds Lmin and
Lmax in A are bigger than those in B. As a result, there is
more chance for finding good solutions in A than in B.

Users and servers are randomly placed in network nodes,
although the proportion of nodes that can deploy servers was
considered to be 30% of the whole set. All generated instances
have an average of 5 user requests per network node.

B. Algorithm convergence

We show in Figure 9 how the EAs converge over 250
generations, corresponding to 20000 solution evaluations in a
selected set of cases which are representative of the whole set
of simulations. We show the convergence of SPO and Triptych
algorithms for the linear, the tree and the loop structures. As
SPO is simpler than Triptych in terms of algorithm complexity,
SPO has better fitness values in the first generations. However,

the two algorithms quickly converge to stable fitness values
in less than 100 generations. The other observation is that
computational complexity increases from the linear to the
tree and the loop structures. As a result, the linear structure
converges in less than 50 generations while it takes around
100 generations for the loop structure to reach its point of
convergence.

To benchmark Triptych, one would argue that we need
to design an optimal formulation (e.g. using integer linear
program) and compare Triptych’s result with the optimal one.
Recall that Triptych tries to minimize the fitness function P
(Equation 4) where P ≥ 0. Therefore, we can derive the
optimal fitness value which is Poptimal ≥ 0. As shown in
Figure 9, the fitness values in all the three structures converge
to a value which is close to zero (see Figure10, Table II and
Table III for the exact value of P). In other word, we can
see that Triptych algorithm performs well and is able to find
near-optimal solutions.

C. Triptych vs. service placement optimisation only

In this section, we show a comparison between Triptych and
the service placement optimisation only (SPO). The full results
are shown in Table II. Column T stands for the topology - L
(linear), T (tree) and P (loop). Columns D and L represent the
two levels of demands and latency requirements, respectively
(see section IV-A). The other columns represent the results
of the EA for the three components of the objective function.
Each EA was run 5 times and the mean of the results for the
best solution are shown in the table. Notice that for SPO the
penalty regarding the congestion is not optimised and is shown
to illustrate the values of congestion obtained when this is not
taken into account.

TABLE II: Results for the Triptych algorithm vs SPO.

T D L SPO Triptych
Plat Pcost Pcong Plat Pcost Pcong

L A A 2.09 0.30 2708.8 2.23 1.92 0.61
L A B 4.13 0.53 2178.8 4.42 1.91 0.57
L B A 2.08 0.30 2899.0 2.34 2.22 0.84
L B B 4.11 0.49 2475.4 4.52 2.21 0.88
T A A 0.86 0.26 1963.8 0.75 1.24 1.22
T A B 2.27 0.32 1779.3 2.91 1.26 1.06
T B A 0.44 0.30 2196.2 1.10 1.43 2.10
T B B 1.92 0.30 2117.9 3.16 1.41 1.85
P A A 4.88 0.12 2920.5 4.95 2.25 0.90
P A B 7.89 0.17 2944.7 8.01 2.26 1.00
P B A 4.88 0.10 3240.3 5.28 2.49 1.73
P B B 7.87 0.15 3168.0 8.30 2.41 1.59

The first conclusion we may take from the analysis of these
results is that the SPO provides good results for latency and
costs in the tested instances, but by not taking into account
the routing in the network it causes unacceptable levels of
congestion in the network, with values for Pcong around 2000,
which means that there are several highly overloaded links in
the network.

On the other hand, the Triptych algorithm provides accept-
able results for the three objectives in all instances. Of course,

7

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

Fi
tn

es
s

Generations

SPO
Triptych

(a) Linear structure

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

Fi
tn

es
s

Generations

SPO
Triptych

(b) Tree structure

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250

Fi
tn

es
s

Generations

SPO
Triptych

(c) Loop structure

Fig. 9: Convergence of SPO and Triptych

0	

2	

4	

6	

8	

L1	 L2	 L3	 L4	

Pe
na

lty
	

Objective	(P)	
P_cost	
P_latency	
P_congestion	

(a) Linear structure

0	

1	

2	

3	

L1	 L2	 L3	 L4	

Pe
na

lty
	

Objective	(P)	
P_cost	
P_latency	
P_congestion	

(b) Tree structure

0	

5	

10	

15	

L1	 L2	 L3	 L4	

Pe
na

lty
	

Objective	(P)	 P_cost	
P_latency	 P_congestion	

(c) Loop structure

Fig. 10: Triptych with different delay configuration L1 - L4

with more constraints on the solution space, Triptych has, in
most cases, slightly higher penalties on cost and latency, as
compared to SPO. Still, these are normally not very significant,
being still on a range of quite acceptable values, are largely
compensated by major improvements on network congestion.

Indeed, Triptych significantly improves on the congestion
path. Note that as SPO does not consider routing, we assume
that shortest path is used between two service instances. For
example, in Figure 4, if using SPO the routing between S1 and
S2 for the two flows will always be [S1−R1−R2−S2] which
causes serious congestion on the link R1 − R2. Therefore,
Triptych is far better in term of routing flexibility to overcome
congested links.

D. Triptych results for instances with different latency require-
ments

One of the observations from the results in the previous
section is that the levels of latency requirements seem to affect
heavily the results. We show in this section how Triptych reacts
with different latency levels. We consider one of the instances
for each topology and vary the latency requirements in four
levels (L1−L4), from the hardest to the easiest. As shown in
Figure 10, the cost, latency and congestion penalties reduce
from the L1 to L4 scenarios. This observation is true in all the
composite service structures. This shows some consistency in
the results of the algorithm, and demonstrates it can be used
over a large range of possible scenarios.

E. Triptych results with different weighted parameters

One of the main advantages of Triptych is that the weights
defined for each component of the cost function provides
flexibility to network operators to choose different operating
points with distinct trade-offs of the objectives.

To illustrate this, we show in Table III how Triptych reacts
with different weights in the objective function described in
section III-C4, for a selected instance (in this case, using
the linear structure). We vary α, β and γ which respectively
control the importance of latency (including first-hop and end-
to-end latency), cost (including fixed and variable costs) and
congestion in the objective function. Recall that α+β+γ = 1,
and thus we take the default configuration and try variants
where one (or two) of these weights is increased or reduced,
being this compensated by the other one(s).

If we set α > β, the Triptych algorithm tends to reduce
latency, but potentially increases the cost. For instance, when
we increase α in the configurations w1−w12 and as a result,
the latency penalties tend to be reduced. A similar observation
can be found for β and γ.

However, as we are dealing with the three weights (α, β and
γ) at the same time, changing one of them also has impact on
the others. For example, the weight settings w10, w11 and w12
have the same α value, but the latency penalties are different as
we change β and γ. Finding the correlation between the three
weights is important as it helps to decide suitable operating
points. For example, based on these results, if one needs to
minimise the cost while having congestion penalty to be less

TABLE III: Results for the Triptych algorithm with different
weights configurations

Weight Weights Results
config. α β γ P Plat Pcost Pcong

default 0.4 0.3 0.3 1.85 2.34 2.22 0.84
w1 0.2 0.5 0.3 1.82 2.70 1.91 1.10
w2 0.2 0.3 0.5 1.56 2.57 2.24 0.74
w3 0.2 0.4 0.4 1.66 2.44 2.17 0.72
w4 0.3 0.2 0.5 1.50 2.31 2.42 0.65
w5 0.3 0.5 0.2 1.85 2.34 1.84 1.15
w6 0.4 0.45 0.15 2.01 2.38 1.89 1.34
w7 0.4 0.15 0.45 1.54 2.20 2.50 0.63
w8 0.5 0.1 0.4 1.65 2.34 2.44 0.59
w9 0.5 0.4 0.1 1.95 2.17 1.79 1.53

w10 0.6 0.1 0.3 1.78 2.21 2.47 0.70
w11 0.6 0.3 0.1 1.92 2.07 1.80 1.42
w12 0.6 0.2 0.2 1.93 2.19 2.11 0.97

than 1, the weight setting w12 should be used. In summary, by
changing the weights, Triptych can provide an approximation
of the Pareto front of the trade-off between the three objectives
(latency, cost and congestion).

V. CONCLUSIONS

In this paper, we propose Triptych, a multi-objective opti-
misation framework for deployment of cost, application delay
and bandwidth usage for composite services. Since this is
an NP-hard problem, we design an evolutionary algorithm
for solving the problem. Based on simulation results on
several realistic instances, we show that comparing to service
placement optimisation only, Triptych significantly improves
network congestion, while keeping relatively fair penalties
on cost and latency. In addition, Triptych reacts well with
different levels of network configuration.

In future work, we plan to further develop online algo-
rithms to dynamically change placement/routing solutions on-
demand. Also, the exploration of alternatives for multiobjec-
tive optimisation based on EAs specifically designed for this
purpose will be pursued.

ACKNOWLEDGMENT

This work has been supported by the US Army Research
Laboratory and the UK Ministry of Defence (agreement
number W911NF-16-3-0001) and has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 761699 (5G-MEDIA).

REFERENCES

[1] A. Ascigil, T. K. Phan, V. Sourlas, I. Psaras, and G. Pavlou. On
Uncoordinated Service Placement in Edge Clouds. In IEEE Int. Conf.
on Cloud Computing Technology and Science (CloudCom), 2017.

[2] M. Bouet, J. Leguay, and V. Conan. Cost-based Placement of Virtu-
alized Deep Packet Inspection Functions in SDN. In IEEE Military
Communications Conference (MILCOM), 2013.

[3] M. Bouet, J. Leguay, and V. Conan. Cost-based Placement of vDPI
Functions in NFV Infrastructures. In IEEE NetSoft, 2015.

[4] J. Cho, K. Sundaresan, R. Mahindra, J. Merwe, and S. Rangarajan.
ACACIA: Context-aware Edge Computing for Continuous Interactive
Applications over Mobile Networks. In ACM CoNEXT, 2016.

[5] B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing
OSPF Weights. In IEEE INFOCOM, 2000.

[6] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS Weights in a Changing
World. IEEE Journal on Selected Areas in Communications, 2002.

[7] F. Giroire, J. Moulierac, and T. K. Phan. Optimizing Rule Placement in
Software-defined Networks for Energy-aware Routing. In IEEE Global
Communications Conference (GLOBECOM), 2014.

[8] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan.
Towards Wearable Cognitive Assistance. In ACM MobiSys, 2014.

[9] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis, and
A. Bestavros. Distributed Placement of Service Facilities in Large-scale
Networks. In IEEE INFOCOM, 2007.

[10] J. Li, T. K. Phan, W. K. Chai, D. Tuncer, G. Pavlou, D. Griffin,
and M. Rio. DR-Cache: Distributed Resilient Caching with Latency
Guarantees. In IEEE INFOCOM, 2018.

[11] M. Mechtri, C. Ghribi, and D. Zeghlache. A Scalable Algorithm for the
Placement of Service Function Chains. IEEE Transactions on Network
and Service Management, 2016.

[12] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz. Service Function Chaining in Next Generation Networks:
State of the Art and Research Challenges. IEEE Communications
Magazine, 2016.

[13] H. Moens and F. D. Turck. VNF-P: A Model for Efficient Placement
of Virtualized Network Functions. In CNSM, 2014.

[14] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine
Learning. The MIT Press, 2012.

[15] J. Moulierac and T. K. Phan. Optimizing IGP Link Weights for Energy-
efficiency in Multi-period Traffic Matrices. Computer Communications,
2015.

[16] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. SNDlib 1.0–
Survivable Network Design Library. Networks, 2010.

[17] T. K. Phan, D. Griffin, E. Maini, and M. Rio. Utility-maximizing Server
Selection. In IFIP Networking, 2016.

[18] T. K. Phan, D. Griffin, E. Maini, and M. Rio. Utility-centric Network-
ing: Balancing Transit Costs with Quality of Experience. IEEE/ACM
Transactions on Networking, 2018.

[19] T. K. Phan, J. Moulierac, C. N. Tran, and N. Thoai. Xcast6 Treemap Is-
lands: Revisiting Multicast Model. In ACM CoNEXT Student Workshop,
2012.

[20] T. K. Phan, M. Rocha, D. Griffin, and M. Rio. Utilitarian Placement
of Composite Services. IEEE Transactions on Network and Service
Management, 2018.

[21] J. Reis, M. Rocha, T. K. Phan, D. Griffin, F. Le, and M. Rio. Deep Neural
Networks for Network Routing. In International Joint Conference on
Neural Networks (IJCNN), 2019.

[22] M. Rocha, P. Sousa, P. Cortez, and M. Rio. Evolutionary Computation
for Quality of Service Internet Routing Optimization. In Workshops on
Applications of Evolutionary Computation (LNCS), 2007.

[23] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos. Edge Analytics in the Internet of Things. IEEE
Pervasive Computing, 2015.

[24] P. Simoens, D. Griffin, E. Maini, T. K. Phan, M. Rio, L. Vermoesen,
F. Vandeputte, F. Schamel, and D. Burstzynowski. Service-centric Net-
working for Distributed Heterogeneous Clouds. IEEE Communications
Magazine, 2017.

[25] M. Stone and B. Moore. Tolerable Hearing Aid Delays. Est. of Limits
Imposed by the Auditory Path Alone using Simulated Hearing Losses.
Ear and Hearing, 20(3), 1999.

[26] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[27] A. G. Tasiopoulos, S. G. Kulkarni, M. Arumaithurai, I. Psaras, K. Ra-
makrishnan, X. Fu, and G. Pavlou. DRENCH: A Semi-Distributed
Resource Management Framework for NFV based Service Function
Chaining. In IFIP Networking, 2017.

[28] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning to
Route. In ACM Workshop on Hot Topics in Networks (HotNets), 2017.

[29] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning To
Route with Deep RL. In Conference on Neural Information Processing
Systems (NIPS), 2017.

[30] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. DONAR:
Decentralized Server Selection for Cloud Services. In ACM SIGCOMM,
2010.

[31] Z. Zhang, Y. Hu, M.Zhang, R.Mahajan, A. Greeberg, and B. Christian.
Optimizing Cost and Performance Online Service Provider Networks. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2010.

9

