

STATEMENT OF INTEGRITY

I hereby declare having conducted my thesis with integrity. I confirm that I have

not used plagiarism or any form of falsification of results in the process of the thesis

elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the

University of Minho.

University of Minho,

Full name:

Signature:

Acknowledgments

First, and foremost, I want to thank my supervisor Professor João Lúıs Sobral for

supervising me during this long project and for his availability, all his insightful sug-

gestions, and wiliness to do meetings and presentations on weakly bases.

I would like to show my appreciation towards full Professor Alberto Proença for

the opportunity to do an internship at the University of Texas (Austin) to work with

a fantastic HPC group led by Professor Keshav Pingali. A special thanks to Professor

António Pina for the opportunity of lecturing the course of Computational Systems

and for the CPD talks. I also want to thank Professor Mário Martins and full Professor

João Fernandes for allowing me to contribute to the course of laboratory of Informatics

III. I would like mention to the Engineer Albano Serrano for his availability to meet

some of my requests regarding the cluster used on this work.

I want to take this opportunity to appreciate all the conversations with Rui Silva

and Professor António Esteves about work and life in general, and Filipe Liu for all

the co↵ee talks about the universe, science, politics, and HPC. I would like to express

my appreciation to Rui Gonçalves for all his insightful suggestions to improve my work

and also our technical discussions and heated discussions about economics and politics.

I also want to express my gratitude to my family and friends for all the emotional

support, and a special thanks to my girlfriend Rafaela Conceição, not only for her

emotional support but also for all her suggestions to improve my writing, and conse-

quent contributions to this thesis. I could not forget to mention Pantera for staying

up at night with me during the tight deadlines. Finally, last but definitely not least I

want to dedicate this work to my parents and to the memory of my Aunt Paula and

grandparents, José and Maria.

Bruno Silvestre Medeiros

Braga, January 2019

v

vi

This work was supported by FCT—Fundação para a Ciência e a Tecnologia (Por-

tuguese Foundation for Science and Technology) grant SFRH/BD/82495/2011, and by

ERDF—European Regional Development Fund through the COMPETE Programme

(operational programme for competitiveness) and by National Funds through the FCT

within project GAsPar PTDC/EIA-EIA/108937/2008.

A framework for heterogeneous many-core machines

Abstract

Software development is known for being a complex task, especially when parallelism

is involved. This complexity can, however, be reduced by dividing the software into

smaller manageable modules. This philosophy is embraced by modular programming,

which promotes the separation of concerns in well-defined modules. Unfortunately,

traditional parallel programming models (e.g., OpenMP and MPI) are typically non-

modular, leading to the mix of parallelism- and domain- related concerns. To aim

for maximum performance the parallel applications should be tuned to the charac-

teristics of the target architecture(s). However, in traditional approaches, this tun-

ing process leads to unceasing and invasive adjustments of the domain code since the

parallelism-related concerns are mixed directly in the domain code. This lack of modu-

larity increases the complexity of parallel programming and jeopardizes the application

maintenance. These problems are even more exacerbated in hybrid parallelism (i.e.,

combining shared and distributed memory), which aims to exploit hierarchical sys-

tems such as clusters of multicore machines. Hence, these hybrid systems increase the

complexity of the development of parallel applications even more, and consequently,

emphasize the need for modular approaches.

This thesis exploits the notion that modularity, pluggability (i.e., the ability to

(un)plug modules without modifying the base code), and composability are key prop-

erties to make the process of developing parallel applications less complex. The first

step towards achieving these properties is the separation of the parallelism-related

concerns from the domain concerns and consequent encapsulation in proper modules.

This thesis exploited the use of aspect-oriented programming (AOP) to achieve the

separation of parallelism-related concerns and combined it with a methodology based

on structured programming and design rules (i.e., designing the domain code accord-

ingly). The result is an aspect-oriented framework that enables the development of

modular parallel applications. This framework intrinsically supports the development

of applications with hybrid parallelism by composing, in a non-invasive fashion, sev-

eral parallelism-related modules with a given domain code. This framework shines

by combining the e�ciency and expressiveness of popular HPC parallel programming

models with the modular features of aspect- and object- oriented (OO) design.

vii

viii

As a result of studying AOP in the context of parallelism, we introduce the idea

of parallelism layers, which combines the simplicity of well-known OO concepts (i.e.,

class extension and method overriding) with the flexibility of AOP. On the one hand,

this combination enables the users of our framework to add parallelism to domain code,

using familiar concepts analogous to class extension and method overriding but without

the limitations of OO inheritance. On the other hand, programmers can exploit the

advanced features of AOP, which, among others, are helpful to extend the functionality

of the framework. Hence, parallelism layers provide a simple yet flexible approach for

the development of parallel applications. Finally, to reduce the complexity of parallel

programming even further, we enhanced the parallelism layers with a methodology

and a workflow to parallelize applications – including hybrid parallelizations – in an

incremental and structured manner.

We evaluated the performance and programmability of our framework in compari-

son to other approaches by using a set of case studies and executing them in a cluster

of multicores. We illustrated, using our framework and workflow, the entire process of

developing e�cient and modular parallelizations – from the sequential up to the hybrid

version. Moreover, we show that our framework and workflow help to find more e�-

cient parallelizations than the ones initially implemented. These results showed that

parallelism layers are ideal for the quick prototyping and testing of di↵erent parallel

strategies.

The results show that the parallelizations developed with the framework had a

performance comparable to the intrusive parallelizations and, at the same time, were

less verbose. With our approach, all the hybrid versions were seamlessly implemented.

These hybrids were always faster than the correspondent versions that only used MPI

processes, which emphasizes the potentiality of hybrid parallelizations in clusters of

multicores.

Framework para máquinas heterogéneas com múltiplos núcleos

Resumo

O desenvolvimento de software é conhecido por ser uma tarefa complexa, especial-

mente quando o software pretende suportar paralelismo. No entanto, esta complexi-

dade pode ser reduzida através da divisão do software em módulos mais pequenos e

fáceis de gerir. Esta filosofia é adotada pela programação modular, que promove a

separação de facetas em módulos bem definidos. Infelizmente, os modelos tradicionais

de programação paralela (e.g., OpenMP e MPI) não promovem o desenvolvimento de

software modular, levando à mistura de facetas referentes ao paralelismo e ao domı́nio.

Para tentar atingir o máximo de desempenho, as aplicações paralelas devem ser afi-

nadas de acordo com as caracteŕısticas da(s) arquitetura(s) alvo. No entanto, em

abordagens tradicionais, este processo de afinamento leva a ajustes constantes e in-

vasivos do código do domı́nio, uma vez que o paralelismo está diretamente misturado

com este. Esta falta de modularidade aumenta a complexidade da programação par-

alela e dificulta a manutenção da aplicação. Estes problemas são ainda mais veementes

em paralelismo h́ıbrido (i.e., a combinação de memória partilhada com memória dis-

tribúıda), que tem como objectivo explorar sistemas hierárquicos tais como clusters de

máquinas multinúcleo. Assim, estes sistemas h́ıbridos aumentam, ainda mais, a com-

plexidade do desenvolvimento de aplicações paralelas, e consequentemente, realçam a

importância de abordagens modulares.

Esta tese explora a ideia de que modularidade, plugabilidade (i.e., a capacidade

de (des)conectar módulos sem modificar o código base), e composabilidade são pro-

priedades fundamentais para que o processo de desenvolvimento de aplicações paralelas

seja menos complexo. O primeiro passo para atingir estas propriedades é a separação

da faceta referente ao paralelismo da faceta do domı́nio e o consequente encapsulamento

de cada faceta em módulos apropriados. Esta tese explorou o uso de programação

orientada aos aspectos (POA) para promover a separação de facetas referentes ao par-

alelismo e combinou-a com uma metodologia baseada em programação estruturada

e regras de desenho (i.e., o desenho do código do domı́nio de forma apropriada). O

resultado é uma framework orientada aos aspectos que permite o desenvolvimento de

aplicações paralelas modulares. Esta framework suporta intrinsecamente o desenvolvi-

mento de aplicações com paralelismo h́ıbrido através da composição, de forma não

ix

x

invasiva, de vários módulos de paralelismo com um dado código do domı́nio. Esta

framework sobressai por combinar a eficiência e expressividade dos modelos de pro-

gramação paralelas populares em HPC com as propriedades modulares de programação

orientada aos aspectos e orientada aos objetos (OO).

O estudo realizado nesta tese do uso da POA no contexto do paralelismo con-

duziu à introdução da ideia de camadas de paralelismo, que combina a simplicidade de

conceitos OO bem conhecidos (i.e., extensão de classes e reescrita de métodos) com a

flexibilidade de POA. Por um lado, esta combinação permite aos utilizadores da frame-

work adicionar paralelismo utilizando conceitos familiares, e análogos, à extensão de

classes e reescrita de métodos, mas sem as limitações de herança OO. Por outro lado,

os programadores podem tirar partido das funcionalidades avançadas de POA, que

entre outras, são úteis para estender a funcionalidade da framework. Assim, camadas

de paralelismo oferecem uma abordagem simples, mas flex́ıvel, para o desenvolvimento

de aplicações paralelas. Finalmente, para reduzir ainda mais a complexidade de pro-

gramação paralela, enriqueceu-se as camadas de paralelismo com uma metodologia e

um fluxo de trabalho para paralelizar aplicações – incluindo paralelizações h́ıbridas –

de forma incremental e estruturada.

O desempenho e programabilidade da framework foi avaliado comparando-a com

outras abordagens, usando um conjunto de casos de estudo que foram executados num

cluster de máquinas multinúcleo. Mostrou-se usando a framework e fluxo de trabalho,

o processo completo de desenvolvimento de paralelizações modulares e eficientes –

da versão sequencial até à h́ıbrida. Para além disso, mostrou-se que a framework e

fluxo de trabalho ajudaram a encontrar paralelizações mais rápidas do que aquelas

desenvolvidas inicialmente. Estes resultados mostram que camadas de paralelismo são

ideais para a rápida prototipagem e teste de diferentes estratégias de paralelização.

Os resultados mostram que as paralelizações desenvolvidas com a framework ob-

tiveram um desempenho comparável às paralelizações intrusivas, e ao mesmo tempo

com menos verbosidade. Com a abordagem proposta todas as versões h́ıbridas foram

facilmente implementadas. Estas versões h́ıbridas foram sempre mais rápidas do que

as versões correspondentes que só utilizaram processos MPI, facto que realça a poten-

cialidade das paralelizações h́ıbridas em clusters de máquinas multinúcleo.

Contents

1 Introduction 1

1.1. Motivation . 2

1.2. Goals . 4

1.3. Outline . 5

2 Parallel architectures, programming models and languages 6

2.1. Shared Memory . 6

2.1.1. Hardware . 6

2.1.1.1. UMA . 6

2.1.1.2. NUMA . 7

2.1.1.3. Multicores . 8

2.1.2. Programming model . 9

2.1.2.1. OpenMP . 9

2.1.2.2. Java language support for parallelism/concurrency . . . 13

2.2. Distributed Memory . 14

2.2.1. MPI . 14

2.3. Hybrids . 16

2.4. Performance considerations . 18

3 Aspect Oriented Programming 20

3.1. Overview . 20

3.2. Tangling and scattering in parallel programming 23

3.3. AspectJ . 25

3.3.1. Join point model . 25

xi

xii Contents

3.3.2. Pointcuts . 27

3.3.2.1. Call vs. Execution . 29

3.3.3. Advices . 30

3.3.4. Static crosscutting . 31

3.3.5. Aspects . 33

3.3.6. Weaving . 35

3.4. Aspects reusability . 36

4 Related Work 41

4.1. Libraries, frameworks and languages . 41

4.1.1. SM and annotation-based approaches 42

4.1.2. DM . 44

4.1.3. PGAS and Hybrids (SM + DM) 45

4.2. OO mechanisms and skeletons . 47

4.3. AOP . 48

4.3.1. AspectJ extensions . 48

4.3.2. AOP and Parallelism-related concerns 50

5 Proposed Approach 52

5.1. Requirements . 52

5.1.1. Core requirements . 53

5.1.2. Additional requirements . 56

5.2. Conceptual overview . 57

5.3. Description . 60

5.3.1. Illustrative example . 62

5.3.2. Overview of the Framework . 67

5.3.3. Design rules . 78

5.3.4. Shared Memory Library . 81

5.3.4.1. Execution model and computational transformations . . 81

5.3.4.2. Data model and data-related transformations 83

5.3.5. Distributed Memory Library . 86

5.4. Implementation . 90

5.4.1. The reasoning behind the design rules 90

5.4.1.1. Computational-related design rules 90

Contents xiii

5.4.1.2. Data-related design rules 94

5.4.2. Shared Memory Library . 96

5.4.2.1. Execution model and computational transformations . . 96

5.4.2.2. Data model and data-related transformations 99

5.4.3. Distributed Memory Library . 102

6 Validation and Results 106

6.1. Benchmark Environments and Methodology 109

6.2. Case Study : MOLDYN . 111

6.2.1. Shared Memory . 114

6.2.1.1. Dealing with synchronization overhead 114

6.2.1.2. Dealing with load balancing 122

6.2.2. Distributed Memory . 124

6.2.3. Hybrids: Composing the Best SM and DM Layers 126

6.2.4. Performance evaluation . 126

6.3. Case Study : Matrix Multiplication . 131

6.3.1. Programmability evaluation . 134

6.3.2. Performance evaluation . 138

6.4. Case Study : JGF Benchmarks . 142

6.4.1. Introduction of the case studies 142

6.4.2. Performance and programmability evaluation 146

6.4.2.1. Improvements . 146

6.4.2.2. Framework evaluation 152

6.4.2.3. C vs Java . 169

6.5. Design rules . 172

6.6. Class Extension and Decorator Pattern 173

7 Conclusion and Future Work 178

7.1. Future Work . 182

A MD : Code and Explanations 184

B MD : Results 187

C MM : Results 194

xiv Contents

D MM : Code and Figures 199

E JGF Benchmark : Results 202

F JGF Benchmark : Code and Profiling results 216

Bibliography 231

List of Figures

2.1. Example of OpenMP annotations. 10

3.1. An example of tangling and scattering problems in parallel programming. . 23

3.2. Conditional statements join points before refactoring. 27

3.3. Conditional statements join points after refactoring. 27

3.4. Examples of Pointcuts. 28

3.5. Accessing array through methods. 28

3.6. Examples of Advices. 31

3.7. The use of inter-type declarations in a checkpointing example. 32

3.8. An overview of an example with abstract aspects and pointcuts. 37

3.9. Marker interface example (abstract aspect). 38

3.10. Marker interface example (concrete aspect). 38

3.11. Example of using generics (abstract and concrete aspects). 39

3.12. Example of using annotations (abstract and concrete aspects). 39

3.13. Improved checkpointing example. 40

5.1. A high-level overview of the parallelism layers approach. 58

5.2. The three main components for those developing parallel applications. . . . 60

5.3. MD - Code snippet of the MD class. 62

5.4. MD - Code snippet of the Particles class. 62

5.5. MD - The for design rule in the MD class. 63

5.6. MD - The for design rule in the Particles class. 63

5.7. MD - The parallel for constructor with pointcuts. 63

5.8. MD - Applying the method design rule to use the critical constructor. . . . 64

5.9. MD - Pointcut of the critical constructor. 64

5.10. MD - The OpenMP parallelization with the use of the critical constructor. . 65

xv

xvi List of Figures

5.11. MD - The parallel for constructor with annotations. 65

5.12. MD - The DM initial parallelism layer. 66

5.13. Framework and approach detailed view. 67

5.14. The mapping between parallelism-related constructors and the base code

join points. 70

5.15. Example of the composition of the parallelism-related code transformations

with the base code. 71

5.16. Use of class extension and method overriding OO features to extend the

functionality of the base code. 74

5.17. Before applying the object creation design rule. 79

5.18. After applying the object creation design rule. 79

5.19. Before applying the set/get performance design rule. 80

5.20. After applying the set/get performance design rule. 80

5.21. AOmpLib - Parallel region pointcut example. 81

5.22. AOmpLib - Parallel region annotation example. 81

5.23. AOmpLib - Sections pointcut example. 82

5.24. AOmpLib - Method pointcuts example. 84

5.25. AOmpLib - Set/Get pointcut DRT example. 84

5.26. AOmpLib - Private object pointcut and annotations example. 85

5.27. AOdmLib - User-defined for pointcut. 87

5.28. AOdmLib - Data partitioning specialized module. 87

5.29. AOdmLib - Customization of the scatter and gather constructors. 89

5.30. AOdmLib - Communication example. 89

5.31. Method refactoring problematic example. 90

5.32. Method refactoring clean example. 90

5.33. For design rule : Extracting the loop body using explicitly the step sign. . 93

5.34. Example of data-related code transformation. 95

5.35. AOmpLib - Code snippet of the parallel region implementation. 97

5.36. AOmpLib - Code snippet of the dynamic parallel for implementation. . . . 98

5.37. AOmpLib - Overview of a DRT using the method pointcuts approach. . . . 99

5.38. AOmpLib - Overview of a DRT using the set/get pointcuts approach. . . . 100

5.39. AOmpLib - Example of a DRT using the private object pointcut and anno-

tations approach. 101

5.40. AOdmLib - The method data from the data partitioning module. 102

List of Figures xvii

5.41. AOdmLib - Example to showcase the advantages of method call vs. pointcuts.103

5.42. AOdmLib - Example of an all reduce using method call approach. 104

5.43. AOdmLib - The end result of apply the method call approach. 105

6.1. Workflow of implementing the di↵erent versions of the case studies. 108

6.2. MD - The execution call graph (two levels deep). 111

6.3. MD - The diagram of the sequential version of the force calculation. 112

6.4. MD - Illustration of the force calculation between pairs of particles. 113

6.5. MD - Pointcuts to lock the accesses to the array indices. 115

6.6. MD - Pointcuts and aspects to create private objects. 117

6.7. MD - The speedups of the strategies to deal with data dependency in SM. . 117

6.8. MD - Code snippet of the approach with ThreadLocal variables. 118

6.9. Particles - Code snippet of the approach that uses arrays to replicate the

forces. 118

6.10. MD - Code snippet of the intrusive private objects approach. 120

6.11. MD - Code snippet of OpenMP parallelization of the best (so far) SM layer.120

6.12. MD - Speedups of the strategies to deal with load balancing in SM. 123

6.13. MD - DM parallelization with two processes. 124

6.14. MD - Speedups of the strategies to deal with load balancing in DM. 125

6.15. MD - Speedups of the SM/DM versions. 127

6.16. MD - Comparing parallel implementations in SM and DM environments. . 127

6.17. MD - Scalability of the DM and Hybrid versions in 8 machines. 128

6.18. MD - Hybrids vs. DM versions running in 8 machines. 129

6.19. MD - Comparing parallel versions in DM/Hybrid with 8 machines. 130

6.20. MM - Tiling illustration. 131

6.21. MM - Relevant code of the sequential version. 132

6.22. MM - Application of the SM design rules. 134

6.23. MM - The best SM layer using annotations. 134

6.24. MM - Dynamic intrusive fors in the SM Java intrusive version. 135

6.25. MM - The DM design rules in the MM object constructor. 136

6.26. MM - Comparing di↵erent implementations of the sequential, SM, and DM

versions. 138

6.27. MM - Speedups of di↵erent implementations of the SM and DM versions. . 139

6.28. MM - Speedups of hybrids and DM versions with 8 machines. 140

xviii List of Figures

6.29. MM - Hybrids vs. DM versions with 8 machines. 140

6.30. MM - Comparing parallel versions in DM/Hybrid with 8 machines. 141

6.31. JGF - Sparse Kernel. 144

6.32. JGF - The gains of improvements in the sequential versions. 146

6.33. JGF - SOR Kernel. 147

6.34. JGF - Gains of the improved SM versions. 147

6.35. JGF - Gains of the improved DM versions. 149

6.36. JGF - Series Kernel. 150

6.37. JGF - The gains of the sequential code with and without design rules. . . . 154

6.38. JGF - The gains of the Aspects vs. JOMP. 157

6.39. JGF - The gains of the Java intrusive vs. Aspects in SM. 158

6.40. JGF - LUFact main kernel. 160

6.41. JGF- The best DM layer of the LUFact case study. 161

6.42. JGF - The gains of the Java intrusive vs. Aspects in DM. 163

6.43. JGF - The speedups of the best Java intrusive parallel versions. 164

6.44. JGF - RayTracer and Series: The speedups of the DM/Hybrid with 8

machines. 165

6.45. JGF - RayTracer and Series : The gains of the Hybrids vs. DM with 8

machines. 166

6.46. JGF - RayTracer : The gains of the Java vs. Aspects in DM/Hybrid with

8 machines. 167

6.47. JGF - The gains of the C vs. Java in sequential versions. 169

6.48. JGF - The gains of the C vs. Java in SM versions. 170

6.49. JGF - The gains of the C vs. Java in DM versions. 171

6.50. MD - Diagram of classes of using extension to implement layers. 173

6.51. MD - Code snippet of the Particles SM class of the SM implementation. . . 174

6.52. MD - Diagram of classes after the implementation of decorator pattern. . . 174

6.53. MD - Problems with decorator pattern. 175

A.1. MD - Applying the object creation design rule. 184

A.2. MD - Creation of an array of locks using an OpenMP/Intrusive approach. . 184

A.3. MD - The explanation of the total statements needed for the lock per par-

ticle approach. 184

A.4. MD - A possible implementation of the intrusive lock approach. 185

List of Figures xix

A.5. MD - Application of the set/get performance design rule. 185

A.6. MD - The explanation of the total statements needed for the set/get approach.185

A.7. MD - Example of the MDFactory class. 186

A.8. MD - The explanation of the total statements needed for the best SM Layer.186

B.1. MD - Scalability of the DM/Hybrid with 8 machines. 193

D.1. MM - Sequential cache L3 packing of matrix B into sub-matrix bb. 199

D.2. MM - Application of the for design rule in the packingCacheL3 method. . . 199

D.3. MM - L3 packing of matrix B into sub-matrix bb. 200

D.4. MM - The parallel region in the SM Java intrusive version. 200

D.5. MM - The best SM layer using pointcuts. 200

D.6. MM - The explanation of the total statements needed for the SM layer. . . 201

D.7. MM - The explanation of the total statements needed for the DM layer. . . 201

E.1. JGF - Series: The tests in multi-machines, including the C implementations.213

F.1. JGF - LUFact : Assembly snippet of the daxpy method of the sequential

code with and without design rules. 221

F.2. JGF - Sparse : Assembly snippet of the sparse kernel loop with and without

the for method design rule. 222

F.3. RayTracer - The best SM layer using annotations. 229

F.4. SOR - The best SM layer using pointcuts. 229

F.5. RayTracer - The best DM layer using pointcuts. 230

F.6. MC - The best DM layer using pointcuts. 230

List of Tables

5.1. AOmpLib - The summary of data-related transformations. 85

6.1. MD - The number of statements needed to implement the lock approach. . 116

6.2. MD - The number of statements needed to implement the set/get approach. 119

6.3. MD - The number of statements needed to implement the (so far) best SM

layer. 121

6.4. MD - The number of statements needed to implement the DM Layer. . . . 125

6.5. MM - The number of statements needed to implement the SM Layer. . . . 136

6.6. MM - The number of statements needed to implement the DM Layer. . . . 137

6.7. JGF - Summary of the design rules applied. 152

6.8. JGF - Constructors of best SM Layers. 155

6.9. JGF - The number of statements needed to implement the best SM Layers. 155

6.10. JGF - Constructors of best DM Layers. 159

6.11. JGF - The number of statements needed to implement the best DM Layers. 161

B.1. MD - Input sizes. 187

B.2. MD - Execution times of data dependency strategies with AOmpLib. 187

B.3. MD - Scalability of the data dependency strategies with AOmpLib. 188

B.4. MD - Max speedups of the data dependency strategies with AOmpLib. . . 188

B.5. MD - Execution times of load balancing strategies with AOmpLib/AOdmLib.189

B.6. MD - Speedups of the load balancing strategies with AOmpLib/AOdmLib. 189

B.7. MD - Execution times of the di↵erent sequential versions. 189

B.8. MD - Comparison gains between di↵erent sequential versions. 190

B.9. MD - Execution times of the best SM/DM versions. 190

B.10.MD - Speedups of the best SM/DM versions. 190

B.11.MD - Comparison gains between di↵erent versions. 191

xx

List of Tables xxi

B.12.MD - Execution times of the DM/Hybrid with 8 machines. 191

B.13.MD - Speedups of the DM and Hybrid with 8 machines. 191

B.14.MD - Comparison gains between versions for the DM/Hybrid with 8 machines.192

B.15.MD - Gains of the Hybrid vs. DM with 8 machines. 192

B.16.MD - Comparison between new and old Hybrid versions with 8 machines. . 192

B.17.MD - Gains of new and old Hybrid vs. DM with 8 machines. 193

C.1. MM - Input sizes. 194

C.2. MM - Total of iterations. 194

C.3. MM - Execution times of the sequential versions. 195

C.4. MM - Comparison gains between di↵erent sequential versions. 195

C.5. MM - Execution times of the di↵erent versions. 195

C.6. MM - Time spent during communication over 8 machines. 196

C.7. MM - Comparison gains between di↵erent versions. 196

C.8. MM - Speedups of the di↵erent SM versions. 197

C.9. MM - Speedups of the di↵erent DM versions. 197

C.10.MM - Execution times of the DM and Hybrid with 8 machines. 197

C.11.MM - Speedups of the DM and Hybrid with 8 machines. 197

C.12.MM - Comparison of the DM and Hybrid with 8 machines. 198

C.13.MM - Gains of the Hybrid vs. DM with 8 machines. 198

E.1. JGF - Number of elements of the inputs. 202

E.2. JGF - Input sizes. 202

E.3. JGF - Execution times of the sequential versions. 203

E.4. JGF - Improvements over the sequential versions. 203

E.5. JGF - Fastest execution times of the SM versions. 204

E.6. JGF - Fastest execution times of the DM versions. 205

E.7. JGF - Improvements over the SM versions. 205

E.8. JGF - Improvements over the DM versions. 206

E.9. JGF - Java vs. Aspects in di↵erent versions. 207

E.10.JGF - Aspects vs. JOMP. 208

E.11.JGF - Gains of the first touch approach and NUMA flag. 209

E.12.JGF - C vs. Java in di↵erent versions. 210

E.13.JGF - Speedups of the SM implementations. 211

xxii List of Tables

E.14.JGF - Speedups of the DM implementations. 212

E.15.JGF - Ray : Execution times of the DM and Hybrid with 8 machines. . . . 212

E.16.JGF - Ray : Speedups of the DM and Hybrid with 8 machines. 212

E.17.JGF - Series : Execution times of the DM and Hybrid with 8 machines. . . 214

E.18.JGF - Series : Speedups of the DM and Hybrid with 8 machines. 214

E.19.JGF - Ray : Gains of the Hybrid vs. DM with 8 machines. 214

E.20.JGF - Series : Gains of the Hybrid vs. DM with 8 machines. 215

E.21.JGF - Ray : Comparison gains between versions for the DM and Hybrid

with 8 machines. 215

E.22.JGF - Series : Comparison gains between versions for the DM and Hybrid

with 8 machines. 215

F.1. JGF - RayTracer : Profiling of the sequential versions. 216

F.2. JGF - SOR Part 1 : Profiling of the Java sequential versions. 217

F.3. JGF - SOR Part 2 : Profiling of the Java sequential versions. 217

F.4. JGF - SOR Part 1 : Profiling of the original and improved Java SM versions.218

F.5. JGF - SOR Part 2 : Profiling of the original and improved SM versions. . . 218

F.6. JGF - LUFact : Profiling of the design rules gains. 219

F.7. JGF - SOR Part 1 : Profiling of the intrusive and AOmpLib SM versions. . 219

F.8. JGF - SOR Part 2 : Profiling of the intrusive and AOmpLib SM versions. . 220

F.9. JGF - Crypt Part 1 : Profiling AOmpLib vs. JOMP. 220

F.10.JGF - Crypt Part 2 : Profiling AOmpLib vs. JOMP. 223

F.11.JGF - Sparse Part 1 : Profiling AOmpLib vs. JOMP. 223

F.12.JGF - Sparse Part 2 : Profiling AOmpLib vs. JOMP. 224

F.13.JGF - Crypt Part 1 : Profiling Intrusive vs. AOmpLib. 224

F.14.JGF - Crypt Part 2 : Profiling Intrusive vs. AOmpLib. 225

F.15.JGF - Crypt Part 1 : Profiling C vs. Java (sequential). 226

F.16.JGF - Crypt Part 2 : Profiling C vs. Java (sequential). 226

F.17.JGF - LUFact Part 1 : Profiling C vs. Java (sequential). 227

F.18.JGF - LUFact Part 2 : Profiling C vs. Java (sequential). 227

F.19.JGF - Execution times of MPI Communication in C vs. Java. 228

List of Tables xxiii

Abbreviations

AOP Aspect-Oriented Progamming

API Application Programming Interface

CCC Cross Cutting Concerns

CPU Central Processing Unit

DM Distributed Memory

DRC Domain-Related Concerns

DRT Data-Related Transformations

DSL Domain-Specific Languages

DSM Distributed Shared Memory

GPU Graphic Processing Unit

ILP Instruction Level Parallelism

ITD Inter-Type Declaration

JGF Java Grande Forum

JNI Java Native Interface

NUMA Non Uniform Memory Access

MD Molecular Dynamics

MM Matrix Multiplication

MPI Message Passing Interface

MPMD Multiple Programs Multiple Data

OpenCL Open Computing Language

OpenMP Open Multi-Processing

OOP Object-Oriented Programming

PP Parallel Programming

PRC Parallel-Related Concerns

RMA Remote Memory Access

SM Shared Memory

SMP Symmetric MultiProcessing

SPMD Single Program Multiple Data

Chapter 1

Introduction

Ever since the beginning of the computer history, from the vacuum tube computers to the

present day, that computer systems have increased in performance and capacity. For the past

half century, the number of transistors has been growing significantly. To keep up with the

performance demands, in addition to increasing the clock rate, hardware designers have also

developed several other techniques, such as superscalar execution, branch prediction and spec-

ulative execution to name a few. However, these techniques eventually hit their peak, and end

up reaching a point of diminishing returns [Sta12]. One of the primary sources of performance

growth was the increase in clock rate. Unfortunately, this increase made processors reach speeds

that led to power consumption and heat dissipation problems, among others.

Packing multiple processing cores into a single chip (i.e., multicore) arose as an approach that

could e↵ectively exploit the growing number of transistors while keeping a sustainable balance

between performance and power consumption. The goal of this hardware design is to achieve

a higher overall system performance by enabling the system to run more tasks simultaneously.

Instead of increasing the clock rate, this design increases the number of processing units per

chip to improve performance, circumventing the heat dissipation issues [Sta12].

Naturally, with the increase in system performance, applications could become more complex

and demanding. Parallel programming (PP) started to be used extensively to meet the demands

of high-performance computing since it allows the division of tasks into smaller tasks that can

be executed in parallel (a process known as parallelization). The performance gains depend on

how much work is e�ciently performed in parallel; therefore, these gains are highly dependent

on how algorithms are designed and tuned. In PP, programmers are responsible for the applica-

tion parallelization and ensuring the correct communication/synchronization among sub-tasks,

which can be a hard task since it introduces several new potential bugs (e.g., race conditions).

Moreover, from the performance point of view, the programmer is also responsible for tuning

the parallelization according to the characteristics of the target architecture to e�ciently use

underlying compute resources.

1

2 1. Introduction

There are two broad classes of PP paradigms: shared memory (SM) and distributed memory

(DM), where OpenMP and MPI are the most relevant standards for each PP paradigm, respec-

tively. With the improvements made on multicores, it is unsurprising that clusters are evolving

to clusters of multicores. Hence, it is expected that the number of applications using hybrid

parallelization (e.g., SM + DM) will increase in the future. Combining MPI with OpenMP is a

commonly used hybrid strategy to exploit clusters of multicore machines. However, e�ciently

utilizing those clusters adds new challenges to software design.

1.1 Motivation

The shift towards multicore systems has pushed PP into mainstream programming. Moreover,

the use of multicores in computer clusters requires a change in the way that software is devel-

oped and maintained. Software developers who aim to extract the maximum performance of

the newer parallel architectures are not only compelled to choose competitive parallelism ex-

ploitation strategies for each of these architectures but also to further tune their software to the

particularities of the target architecture. High performance is hard to achieve with a single base

version, so programmers might have to develop multiple versions. These versions contain a lot

of code replication among them, and only a portion of it is specific to a given platform. The

fact that this interdependence between hardware and parallel concerns is expressed directly in

the base code means that the programmers will have to unceasingly and invasively adjust their

applications to keep up with architecture evolution and new performance requirements.

Developing high-performance parallel applications is an extremely complex task, not only

because high-performance is not easy to achieve but also because current platforms combine

multiple levels of parallelism. Hybrid systems, such as clusters of multicore machines, add an

extra layer of complexity. In these systems, developers have to decompose the parallel tasks/data

hierarchically. Moreover, when multiple paradigms are combined (e.g., SM + DM), developers

have to deal with the complexity and potential side e↵ects of mixing parallel languages, in

addition to dealing with the peculiarities of each one.

Modularity, pluggability, and composability are central properties to achieve, simultaneously,

high-performance and manage the complexity of PP. Parallelism-related concerns (PRC) from

di↵erent PP paradigms should be encapsulated into separate modules (modularity) that can

be composed together (composability) to provide hybrid solutions – while keeping the domain

code oblivious to this process (pluggability). To reduce the complexity of PP, programmers

should first develop the domain-related concerns (DRC) independently from the PRC and only

after should the PRC be (incrementally) added. The parallelism itself should follow a similar

approach; programmers start with a simple parallelism exploitation strategy and then build

sophisticated ones as needed by replacing, tuning and composing PRC modules.

1.1. Motivation 3

Object-oriented (OO) programming languages, such as Java, materialize one of the most

currently used software design philosophies, OO modular programming. However, OO falls

short of modularizing crosscutting concerns (CCC), and unfortunately, PRC are known for

being CCC [Har06]. Thus, it is common to mix them up with domain application concerns,

jeopardizing the application maintenance and evolution. The situation is even more grotesque

in some low-level PP codes where performance is the primary, and practically the exclusive goal.

This mix of concerns threatens modularity and consequently composability.

Most PP standards (e.g., OpenMP and MPI) provide appropriate abstractions to deal with

the parallelism requirements of their programming model. To take advantage of hybrid envi-

ronments, one might have to program with di↵erent PP languages and combine them. That

not only increases the complexity of software design and the likelihood of bugs but also leads to

even more code tangling and scattering issues. The parallelization of legacy code using such an

approach will, most likely, result in a considerable amount of code rewriting.

Influenced by research done on the modularization and composition of concurrency concerns

[Ber94, Lop97], Aspect-Oriented Programming (AOP) [Kic96] aims to solve the issues related to

CCC. With AOP it is possible to encapsulate the CCC into units similar to classes, and later on,

apply the CCC behavior to the domain code in a non-invasive fashion. AOP can, therefore, be

used in conjunction with OO to complement it with an extra layer of transversal modularization.

Previous work has explored the AOP concepts to modularize PRC [Har06, Sob06, ABVM10,

PSR13, CV13, DM14, CL15]. To the best of our knowledge, none has provided an in-depth

study of AOP and PRC that ended with a complete aspect-oriented Java framework (including

a programming methodology) able to compose and modularize SM and DM PRC.

4 1. Introduction

1.2 Goals

The non-modular approach for the development of parallel applications, imposed by traditional

PP approaches, increases the complexity of PP and impacts software evolution and maintenance.

Typically, traditional PP approaches focus exclusively on performance gains, ignoring, or even

sacrificing, several other fundamental software qualities (e.g., modularity). Moreover, in these

approaches, PRC from di↵erent PP paradigms and DRC are tightly mixed, making it hard to

reason about any of these concerns. In some applications, PRC are even treated as the dominant

concern over the DRC. This thesis aims to deal with the previously mentioned problems by:

1. Reducing the complexity of PP through the development of a modular approach capable

of developing e�cient parallel applications. We believe that modularity, pluggability, and

composability are fundamental properties for reducing the complexity of PP. Separation

of concerns (e.g., separating domain- and parallelism- related concerns) is the first big step

towards developing a system with those properties. We aim to exploit the potential of AOP

regarding the separation, encapsulation, and composition of concerns and to understand

its impact in the context of parallelism;

2. Developing an aspect-oriented framework that combines the expressiveness and e�ciency

of traditional PP models (i.e., OpenMP and MPI) with the support of modularity, plugga-

bility, and composability properties. This framework aims to promote a more structured,

modular and less complex development of parallel applications. The programmer should

be able to compose seamlessly di↵erent parallelism-related modules with the domain code.

We argue that a framework with these characteristics enables the quick testing, tuning,

and development of di↵erent parallel strategies and facilitates the composition of multiple

levels of parallelism (i.e., hybrid parallelizations);

3. Validating our approach with a set of case studies, which include legacy code and tuned

code. The validation is performed by comparing the programmability and e�ciency of the

framework with traditional approaches;

4. Providing methodologies and strategies that take advantage of AOP, to guide the develop-

ment of parallel applications using our framework and to attenuate (potential) weaknesses

of AOP.

1.3. Outline 5

1.3 Outline

Chapter 2 presents the main parallel architectures and programming models relevant to

this work. It describes SM and DM programming models, namely multithreading and message-

passing, and their most popular standards, OpenMP and MPI, respectively. Additionally, it

touches on Java support for parallelism and concurrency. Moreover, it presents hybrid paral-

lelizations, with the main focus on the combination of MPI with OpenMP. Finally, this chapter

concludes with performance considerations for achieving high-performance parallel applications.

Chapter 3 starts with the AOP background, its main motivations and the use cases where

it is commonly employed. It illustrates the problems of mixing the PRC with DRC, using a

hybrid parallelization as an illustrative example. It describes, in some detail, the concepts and

functionalities of AspectJ (i.e., an AOP extension for Java) most relevant for the understanding

of this work. It finishes with a description of strategies and patterns used to create reusable

aspects, most of which also were used in our aspect framework.

Chapter 4 shows an overview of the related work. It describes relevant libraries, frame-

works, and languages for SM, DM and hybrid parallelism. Moreover, it references OO mech-

anisms and skeletons frameworks. Finally, it revises the most relevant AOP work regarding

PRC.

Chapter 5 presents the proposed approach and describes the requirements, conceptual

overview and detail description of the AOP framework, concluding with a discussion about the

work developed.

Chapter 6 shows the performance and programmability validation of our framework. It

describes in great detail, for two case studies, our workflow for developing e�cient and modular

parallelizations, starting with their (sequential) domain code and finishing with their hybrid

parallelizations. Finally, it shows the validation work done for a set of case studies from the

well-known Java Grande benchmark suite (JGF) [SBO01].

Chapter 7 draws conclusions about the work displayed in this thesis, showcases the main

contributions and presents potential researching paths for future work.

Chapter 2

Parallel architectures, programming

models and languages

2.1 Shared Memory

In a SM hardware, also known as tightly-coupled, processors can access a global shared memory,

via some interconnection network (e.g., a shared bus), which can be used by the processors to

communicate with each other through memory reads and writes. Usually, in the literature, SM

architectures are categorized according to the time that processors take to access the global

shared memory [Sta12] or according to their memory organization [ERAEB05, DSK05]. Based

on the processors’ global memory accessing time SM architectures can then be divided into

either UMA (uniform memory access) or NUMA (non-uniform memory access).

2.1.1 Hardware

2.1.1.1 UMA

Symmetric multiprocessing (SMP) is one of the most common types of SM systems. SMP has a

common centralized memory that takes the same time to be accessed by processors, regardless.

Hence, this design falls into the UMA category. In fact, in the literature, SMP is sometimes

used interchangeably with UMA (e.g., [ERAEB05, EGCSY03]) or used to categorize a UMA

system with a bus-based interconnect network (e.g., [Ale00, Tan01, Vin99]).

In a UMA system the processors are usually connected to the memory modules through a

shared bus [Ale00] or a switching network (e.g., crossbar [SM07] or multistage [LSB88]). The

former scheme scales the least, but it is the most flexible (i.e., easy to attach more processors to

the bus) and the simpler of the two [Sta12]. The latter scheme is regarded as consuming more

energy [Pad11], being more complex and still not scalable enough [DSK05].

6

2.1. Shared Memory 7

The bus organization su↵ers from scalability issues because it is shared among processors

and contention will eventually occur when multiple processors try to access the main memory

[Tan01]. An increase in the number of processors increases the likelihood of processors blocking

when accessing the main memory, waiting for the bus to become idle. This factor reduces the

scalability of the bus organization and makes it dependent on the bandwidth of the bus [DSK05].

The use of cache memory can increase the scalability of SM systems, but it requires the

use of protocols. These protocols use the interconnection network to perform its routines (e.g.,

dealing with cache misses). Increases in the number of processors will likely increase the overall

cache misses and lead to higher tra�c passing through the interconnection network [BDGS92].

2.1.1.2 NUMA

The issues underlying the interconnection network, the cache coherency protocols and the sin-

gle centralized SM limit the scalability of UMA systems – NUMA architecture [GTM96] was

designed to solve these limitations. In the literature, NUMA is categorized as being either a dis-

tributed shared memory (DSM) architecture [DSK05, EGCSY03], specifically a hardware-based

approach of DSM [Vin99], or a SM architecture [Sta12, PH13]. Some divide NUMA further into

CC-NUMA [Sta12, DSK05] if it uses cache coherency or NC-NUMA [Tan01] otherwise. This

work covers only CC-NUMA (henceforth simply NUMA), and treat it as a SM architecture.

In NUMA, in contrast to UMA, processors do not access a unique centralized memory.

Instead, processors are arranged in groups (i.e., NUMA nodes), each with its main memory. The

NUMA nodes are connected through a high-speed interconnector and processors within those

nodes access their local main memory using an interconnection network. This design relieves

the contention and memory bandwidth issues of UMA and, consequently, increases scalability.

Since NUMA nodes are connected processors can access the main memory of their local node

and the main memory of the other nodes (designated remote memory). In contrast to UMA,

where all processors spend about the same amount of time to access memory, in NUMA it is

slower to access remote memory than local memory. Hence, the performance in NUMA is more

dependent on data allocations than in UMA [DSK05].

Most NUMA architectures use cache memory attached to each processor. However, cache

coherent protocols [Law98] in NUMA are typically more complex than UMA, because of the

dimension (e.g., more processors/caches) and the di↵erent accessing times between local and

remote memory [Sch01]. NUMA architectures such as Cray T3D [CCS95] that do not use

hardware cache coherent protocols rely on additional software to ensure cache coherence.

As with UMA, the scalability of NUMA will be, at some point, limited due to contention on

the interface connecting processors to memory (further aggravated with the cache protocols),

main memory bandwidth, and the penalty of remote memory access. These problems are, in

fact, chronic to the SM architectures [DSK05].

8 2. Parallel architectures, programming models and languages

2.1.1.3 Multicores

In the previous decades, hardware designers were able to utilize the ever increasing number of

transistors to improve the overall performance of computer systems. At the time, the trend was

to build single-core processors with higher clock frequency and equip them with sophisticated

techniques to increase the number of instructions performed per cycle. These techniques focus

mainly on increasing instruction-level parallelism (ILP) [Sta12]. It was an attractive trend for

non-HPC programmers because an application could be designed without too much emphasis

on performance and hopefully, it would execute faster as a result of hardware improvements.

At a certain point, the trend of increasing ILP and clock frequency was no longer scaling

satisfactorily. The increase of clock frequency eventually led to power consumption and heat

dissipation issues. Moreover, the strategies to increase ILP started to become prohibitively com-

plex and giving diminishing returns. In addition to these issues, memory became a performance

bottleneck because it did not improve at the same rate as the processor, making this trend un-

helpful for memory-bound algorithms. The answer for this scalability sluggishness was to build

more, but simpler, parallel processors [ONH+96] that would rely on explicit PP to scale further.

In the last decade, SM architectures have experienced a new trend entitled multicores, or

chip multiprocessor [Sta12, Tan01], in which the SMP/NUMA design is applied at the core/chip

level. There are some slight di↵erences between multiprocessors and multicores, however, for

simplicity reasons, one can think of multicores as a combination of “two or more processors

(called cores) on a single piece of silicon (called a die)” [Sta12]. The operating system treats

both cores/processors as the same. However, one relevant di↵erence is that in multicores it is

common to share not only the main memory among cores but also the last level of cache.

K. Olukotun et al. in [ONH+96] argued that multicores were inevitable due to two major

forces, namely a technology push and an application pull. Regarding the technology, Olukotun

foresaw that the superscalar execution model (a technique used to increase ILP) would eventually

stagnate. The application argument was based on the study [Wal91] that divided parallelism in

applications into two groups. Both groups would benefit performance-wise from a low latency

inter-core communication chip with simpler cores that could achieve high clock rates.

Multicores o↵ers lower latencies compared with the traditional multiprocessors because in the

latter processors needed to go o↵-chip to communicate with each other. Moreover, multicores

can exploit the lower latencies of communication on-chip by sharing the last level of cache

among them. Hence, parallel applications can scale better in multicores than in multiprocessors,

especially when these applications exploit fine-grained parallelism [ONH+96].

In the literature, the term processor is context sensitive and sometimes is used interchange-

ably with the term core [Sta12, PH13, Tan01]. Therefore, to avoid ambiguities, and henceforth,

in the scope of this thesis, the terms core and processor will be used interchangeably. Conse-

quently, the term SMP will be referring to symmetric multiprocessors/multicores.

2.1. Shared Memory 9

2.1.2 Programming model

In simple terms, from a software perspective, SM can be defined as when parallel tasks can com-

municate with each other using shared variables. Although SM hardware and SM programming

models appear to be tightly-coupled, in reality, SM programming models are an abstraction that

can be applied to DM architectures as well (e.g., DSM [Vin99]). This semblance of SM, in the

DSM systems, can be implemented through additional software [BZS93, KCDZ94], by using the

hardware itself [GTM96] or a combination of the two [MD09].

Multithreading is a common SM model used in machines with multicores and the focus of

this thesis. In this model, multiple threads run in parallel and communicate with each other

through shared variables. Besides sharing a heap, threads also have their (own) stack, ID, and

private state. This model is generally used to divide a common bigger task into smaller ones

(e.g., loop iterations) that will be assigned to threads.

Programmers can create/manage threads and related features either by explicitly calling

library routines [BFN13] or by declaring directives that will instruct the compiler to do so

[DM98]. In both cases, the programmer is responsible for dealing with the issues arising from

parallelizing an application with SM multithreading approach. Programming languages such as

C/C++ have at their disposal a panoply of frameworks, libraries and language extensions for

multithreading parallelization, such as Intel-TBB [Phe08], OpenMP [DM98], POXIS Threads

[BFN13]. Some of these libraries (e.g., OpenMP) provide higher-level mechanisms that deal with

the lower-level details of multithreading parallelization (e.g., thread creation) mitigating some

of the programmers’ e↵orts. With other libraries (e.g., POXIS Threads), the programmer is

responsible for both high and low-level specifics. The choice between these two types of libraries

is a trade-o↵ between less programming e↵ort at the cost of expressiveness and flexibility [Bre09].

2.1.2.1 OpenMP

OpenMP is a standard to implement SM parallelism through compiler directives, library rou-

tines, and environment variables. With OpenMP programmers use language annotations, named

pragmas, in strategic points of the source code, to communicate to the compiler that PRC (e.g.,

parallel for) should be inserted in these points. OpenMP was released in 1997 and was initially

intended for CPUs only. However, in 2013, with version 4.0 [apivb], the OpenMP standard

introduced new directives especially aimed at coprocessors, which provide some of the features

of OpenACC1[CEtPG11]. The last o�cial release of the OpenMP standard, before the expan-

sion to the coprocessor, was 3.1 in 2011 [apiva]. This thesis covers in more depth this version,

specifically the C/C++ sections because most of the features of the SM library of our framework

are based on that standard.

1OpenACC follows a similar philosophy of OpenMP but applied to coprocessors.

10 2. Parallel architectures, programming models and languages

The OpenMP parallelism is mainly specified through pragmas, as shown in Figure 2.1. The

directive is applied to the block of code right below the pragma, which can be a single state-

ment or multiple ones within brackets. At compile-time, the compiler reads the directives and

generates the code necessary to produce the desired result. In the example of Figure 2.1, the

compiler generates code to assign the for loop iterations to the threads.

1 #pragma omp parallel for
2 for(int i = 0; i < N; i++) {...}

Figure 2.1: Example of OpenMP annotations.

The OpenMP directives are only interpreted by the compiler if the code was compiled with

a specific flag. This behavior allows for some programs to be executed in multi- and single- core

machines without any code modifications. However, there are codes parallelized with OpenMP

that due to their nature produce di↵erent results when running in parallel or sequential [EBFJ16].

OpenMP 3.1 focus on parallel regions, work-sharing constructors, tasks, synchronization

mechanisms, and data environment directives. The execution model of OpenMP starts with a

single thread named initial thread [apiva]. Whenever this thread encounters a parallel region, it

requests a team of threads and becomes the master of that team. The master thread has the ID

0 while the remaining threads have IDs ranging from 1 to N� 1, where N is the total number of

threads within the team. To each thread is assigned an implicit task, which represents the code

enclosed by the parallel region. If nested parallelism is active and a thread of a team encounters

a new parallel region, this thread repeats the process previously mentioned of requesting a new

team. If nested parallelism is disabled, which it is by default due to the additional overhead

that it introduces, then the inner parallel regions are ignored.

The creation of a team of threads to execute a given block of code per se is not very powerful.

The user would have to explicitly divide and assign work to threads to reduce the application

execution time. Therefore, OpenMP o↵ers work-sharing constructors that are used (in conjunc-

tion with parallel regions) to divide work among threads. The OpenMP 3.1 standard for C/C++

defines three di↵erent work-sharing constructors, namely single, sections and loop. All of them

plus the parallel region by default have an implicit barrier at the end of their execution. This

barrier works as a synchronization point among threads of the same team. Nonetheless, the user

can disable these implicit barriers by adding the clause nowait to the constructor annotation.

The single constructor restricts a block of code to be executed once, and only by the first

thread that reaches it. The sections directive specifies, within a parallel region, multiple blocks

of code that can be executed by di↵erent threads in the team. The loop constructor assigns

blocks of iterations (called chunks) of a for loop, with a specific structure2, to threads. In

the loop constructor, the user can choose the chunk size as well as how should these chunks be

2The for loop structure imposed by the OpenMP standard can be found on page 40 of the OpenMP 3.1
standard document [apiva].

2.1. Shared Memory 11

distributed among threads (i.e., statically or dynamically). Moreover, it is possible to parallelize

consecutive loops by using the collapse clause. The iterations of the collapsed loops are treated

as a unique set of iterations that will be distributed among threads.

The loop constructor provides some predefined distributions, namely static, dynamic, guided,

auto and runtime. The static, commonly used by default3, divides the iterations into chunks and

assigns them in a round-robin fashion using the thread ID in ascending order [apiva], whereas

in the dynamic the assignment is performed on a first-serve basis. When the user does not

define the chunk size its value is the corresponding default value according to the distribution

chosen. For the dynamic, the default is one, whereas for the static is (approximately4) the

number of iterations divided by the number of threads. The guided scheduling works similar

to the dynamic, however, every time a chunk is assigned it decreases its size until it reaches

a particular value, remaining the constant from that point forward. Finally, with auto, the

compiler will choose how to distribute the loop iterations, while with runtime the scheduling

scheme and chunk size are read from environment variables at runtime.

Dynamic scheduling o↵ers, potentially, better distribution of work among threads than static

scheduling, however, it also has a higher overhead. This additional overhead comes from the

use of a locking mechanism during the assignment of work. Moreover, another advantage of the

static over the dynamic scheduling is related to NUMA node locality. If two or more parallel

loops have the same iteration range, chunk size and are working with the same data (e.g., array),

then threads will be working with the same data regions in-between loops. Hence, threads will

most likely work with data that is already in their node. This fact is especially useful when

applying the first-touch memory technique [Lam13].

OpenMP by itself does not solve data dependencies and race conditions, however, it o↵ers

synchronization constructors, explicit locks and data environment directives to do so. The

synchronization constructors control the execution of threads in a team. For instance, the

master directive restricts code to be only executed by the master thread. Other directives

include critical region and explicit barriers. The former enforces mutual exclusion, meaning

that only one thread at a time can execute a given section of code. The latter specifies a

synchronization point, at which threads wait for all threads in the team to reach that point.

Finally, the user can explicitly create and manage locks as well as use a set of atomic operations.

Data environment directives control the data scope inside parallel regions and work-sharing

constructors. Data directives allow the user to instruct the compiler on how specific data, created

before a given constructor, should be handled inside the scope of that constructor. Furthermore,

data directives also allow to express how, and if, the data should be updated after the execution

of the constructor. Data can be either shared among threads or private to each one of them.

3The default value can be changed using the internal control variable def-sched-var.
4If the blocks cannot have the same size, the di↵erence between them should be, at most, one loop iteration.

12 2. Parallel architectures, programming models and languages

For shared data, the most commonly applied clauses are private, firstprivate, lastprivate and

reduction. The first clause creates a private copy of a variable per thread ignoring the initial

value of that variable, the second and third clauses do the same as the first but dealing with

the initial and final values of the variable before and after entering a given constructor region,

respectively. Finally, the reduction clause creates a copy of a variable per thread and at the end

of the constructor reduces these copies based on the chosen reduction function.

The programmer can change the visibility of variables by using the data environment direc-

tives. However, there are some restrictions over their usage. In the context of this thesis, the

most important are:

• the shared clause can only be used in private data, whereas the reduction and private-

related clauses can only be used in shared data;

• reference types must not be used in shared and private-related clauses;

• when an instance of a class is used in private-related clauses that class should have “an

accessible, unambiguous default constructor” [apivb].

In OpenMP 3.1 only local variables of primitive data-type can be used in the reduction

clause. However, in OpenMP 4.5 it is possible to reduce arrays (statically allocated) and to

create user-defined reductions that allow the reduction of heterogeneous data-types as structures.

Unfortunately, it is still not possible to reduce dynamically allocated data.

The OpenMP API allows users to explicitly call functions and set environment variables to

be read at compile-time. Most of these functions fall under the set/get type category, such as

setting/getting the number of threads within a team. However, not all functionality is exposed,

for instance, users cannot access the thread pool directly. Nevertheless, the possibility to make

explicit calls to the API provides useful flexibility.

From OpenMP 3.1 to 4.5 a panoply of new features was introduced, echoing the recent trend

to support coprocessors and providing greater expressiveness. Some of these features target

performance in multicore machines, for instance, thread a�nity within a parallel region and

the support for SIMD parallelism. Others such as specifying data dependencies, user-defined

reductions, and the possibility of canceling a constructor during its execution – similar to the

semantics of a break – target correctness. Additionally, the task constructor functionality was

also extended to allow, among others, to turn the iterations of a loop into tasks to be queued.

A large amount of functionality was added from OpenMP 3.1 to 4.5, but the biggest jump

was felt from 3.1 to 4.0, where the standard roughly doubled its number of constructors [Car].

With the most notable change being, arguably, the introduction of o✏oading capabilities tackling

some of the goals of OpenACC5.

5In 2013, year of the release of OpenMP 4.0, OpenACC released its 2.0 version.

2.1. Shared Memory 13

2.1.2.2 Java language support for parallelism/concurrency

In Java, the class Thread, available since JDK 1.0, allows the creation of a new thread inside a

given application. This class implements the functional interface named Runnable that requires

the implementation of the run method, which provides the thread with the code to execute. The

programmer can provide the concrete implementation of the run method either by creating a

Runnable object and passing it to the Thread constructor or by extending the class Thread itself

and overriding its run method. If the main goal is only to provide the thread with the code to be

executed, and not to extend or alter its functionality, then it is preferable to pass the Runnable

object instead of extending the class Thread. To create the Runnable object, which will be passed

to the Thread object, the programmer can use one of the following commonly used approaches

(sorted from the most to the least verbose): - creating a new class that implements the Runnable

interface; - creating the Runnable as an anonymous class; - using lambda expressions (a feature

introduced in Java 1.8).

With the increasing adoption of multithreading, Java evolved in the direction of providing

higher-level abstractions on top of the class Thread. Creating threads is a computationally de-

manding operation [Oak14], therefore, in some scenarios, it might be desirable to reuse them.

Hence, Java 1.5 added the possibility of creating di↵erent types of thread pools (e.g., new-

FixedThreadPool and newCachedThreadPool), which can be further tuned to satisfy di↵erent

requirements.

Java 1.7 introduced a new type of thread pool named ForkJoinPool that is suitable for

divide-and-conquer type algorithms [Oak14]. This type of parallelism, typically, results in a large

number of parallel tasks that are handled by a smaller number of threads [Oak14]. Moreover,

often the completion of some of these tasks depends on other tasks results.

ForkJoinPool allows threads to suspend one task in favor of another task, a feature that does

not exist in older thread pools. Furthermore, ForkJoinPool has a work stealing mechanism that

enables threads to steal work from the queues of other threads. Naturally, the choice between

the di↵erent types of thread pools depends on the specific needs of the application.

Besides the API to create threads and execute tasks in parallel, Java also provides con-

current features to deal with the correctness of multithreaded applications. These features

include semaphores (e.g., Semaphore), locks (e.g., ReentrantReadWriteLock), concurrent collec-

tions (e.g., ConcurrentMap), thread-safe variables with atomic operations (e.g., AtomicInteger)

and so on. Regarding concurrency, Java 1.8 has come with several new features [Ora18] and

with the promise of parallelization of a few methods (e.g., Arrays.parallelSort).

14 2. Parallel architectures, programming models and languages

2.2 Distributed Memory

Distributed memory (DM) architectures, also known as message-passing systems [ERAEB05,

Pad11] or loosely coupled, can be an alternative to SM hardware. In a DM architecture pro-

cessors have their local private memory, instead of a shared one, and are connected among each

other through some interface network. Processors can work independently, without the concern

that changes to their memory may a↵ect other processors. This hardware approach is commonly

used in parallel supercomputers [UIT94, HOF+12] and clusters of machines [PH13]. Naturally,

the overhead of communication among processors from di↵erent machines is higher than among

processors from the same machine.

Parallel applications running in DM hardware usually use multiple processes, each mapped

to a di↵erent processor. These parallel applications can be programmed using di↵erent ap-

proaches to take advantage of DM hardware, such as task-farming [CKPD99, ABG02], SPMD

(i.e., Single Program Multiple Data)[PB04, CD01] and MPMD (i.e., Multi Programs Multiple

Data)[CCvEK97]. In a DM system, each process can execute its (own) program or di↵erent

execution paths of the same application. Specific interfaces (e.g., sockets) are used to estab-

lish a communication channel among processes. The programmer is responsible for explicitly

defining when and how the communication among processes should be performed [ERAEB05].

Message-passing is one of the most used models to exchange data between processes, with MPI

[For94] being one of the most used standards [WPH03] and considered to be de facto standard

for message-passing [GHD00, LSM11].

In a DM task-farming model, also known as the master/slave model, one process (master)

controls and distributes work to the remaining processes (slaves). Usually, in this model, the

master process decomposes a bigger task into smaller ones and assigns them to the slaves.

The task distribution can be performed statically or dynamically, and usually, the exchange of

messages occurs only between the master and the slaves [MEB99]. In the SPMD approach, each

process runs an instance of the same application but work only with a code/data subsection of

that application. In the MPMD approach, processes run di↵erent applications. This approach is

commonly used in applications with irregular communication patterns and computations loads

[CCvEK97].

2.2.1 MPI

MPI is the most used standard to implement the message-passing model [WPH03, GLS14,

DMCN12] with its first version released in 1994 [For94]. The standard initially included the

programming languages C, C++, and FORTRAN. However, after version 3.0, published in 2012

[For12], the C++ bindings were removed. Nevertheless, it is possible to find MPI implementa-

tions even for the languages not supported by the standard. For instance, OpenMPI [GFB+04],

2.2. Distributed Memory 15

one of the most popular MPI implementations [VGRS16], o�cially supports Java bindings.

OpenMPI Java [VGRS16] relies on the Java Native Interface (JNI) to bind the Java and the C

libraries and implements most of the MPI 3.1 standard.

The MPI 3.1 standard o↵ers several features [GLS14, GHTL14] to build sophisticated and

high-performance parallel applications, such as collective communication, the specification of

process topologies, the grouping of processes and remote memory accesses (RMA) [HDT+15].

Although MPI provides several advanced features, as stated in [GLS14] the majority of the

MPI programs can be implemented using a set of only six routines, namely: - MPI process

initialization and termination; - getting the process ID and the number of processes; - the send

and receive of messages between two processes. Nevertheless, the remaining features are useful

to develop more robust, flexible and e�cient parallel applications [GLS14].

All MPI processes created during the execution of an application are part of a global group.

Nonetheless, the user can create additional groups with di↵erent sets of processes. This feature

can be useful, for instance, to restrict communication to the processes belonging to a specific

group. Each MPI process within a group has a unique ID (i.e., rank in MPI terminology) that

ranges from 0 to N� 1, where N is the total number of processes in the group.

MPI o↵ers three types of communication, namely point-to-point, collective and one-sided.

The first type refers to communications between two processes (e.g., send/recv), the second type

to communications that involve all processes in a group (e.g., all reduce), and the third type to

a process accessing the memory of another process through well-defined MPI operations (e.g.,

put, get and update). In MPI the content of a message does not have to be a contiguous data

structure. For non-contiguous data structures, the user can use the MPI derived datatypes and

explicitly define the data layout, or can, alternatively, copy that data into a contiguous data

structure and use it as the message.

To use point-to-point communication routines (e.g., MPI Send andMPI Recv) it is necessary

to specify, among several parameters (including the message and its size) the ranks of the

sender/receiver processes. Nonetheless, MPI also allows a process to receive a message from

unspecified processes. This option is particularly handy on the task-farming model, where the

master might not know in advance the process that will request work next. MPI provides

blocking and non-blocking versions of the point-to-point communications.

Collective communications provide a convenient way of communication among all processes

within a group. Without this feature, for example, to send the same message from the mas-

ter to all the other processes, every single pair of point-to-point communication between the

master and the remaining processes would have to be explicitly defined. MPI provides collec-

tive routines to split/merge data structures (e.g., MPI Scatter and MPI Gather), which are

ideal for domain decomposition parallelism. Moreover, there are routines to perform global

synchronization (e.g., MPI Barrier), to send the same data from one process to the remaining

16 2. Parallel architectures, programming models and languages

processes (e.g., MPI Bcast) and to apply a collective operation on the transferred data (e.g.,

MPI Allreduce and MPI Scan). The collective communications can be divided according to the

number of processes that send and receive the messages, namely: - one-to-all (e.g., MPI Bcast

and MPI Scatter); - all-to-one (e.g., MPI Reduce); - all-to-all (e.g., MPI Allgather). For some

of the collective communications, MPI provides also blocking and non-blocking versions of them.

Communicator is an important MPI concept that defines a communication space where a

subset of processes can communicate with each other. The MPI standard defines two di↵erent

categories of communicators, namely intra- and inter-communicators. The former defines com-

munication among processes belonging to the same group and the latter between processes from

di↵erent groups. In the context of this thesis we are only interested in intra-communicators,

henceforth, named communicators. Communicators are composed by a group of processes, con-

text6 and (optionally) the virtual topology [GLS14]. The concept of di↵erent communication

spaces helps to distinguish between message exchanges from di↵erent contexts. This concept

allows the development of MPI applications/libraries that can work cooperatively at the same

time, without the risk of their messages being intercepted by undesirable processes. Indeed, one

of the goals of MPI was to ease the creation of libraries on top of MPI implementations [GLS14].

2.3 Hybrids

A cluster connecting several multicore machines (i.e., nodes) allows the scaling of hardware

to thousands of cores. Nowadays, these nodes are usually NUMA with multiple sockets that

provide several cores. Two common strategies to develop applications scalable in those clusters

are the use of a: - DM model only; - a hybrid solution that combines SM and DM models.

The simplest method to explore parallelism in a cluster of multicores is to use message-

passing with one MPI process per core. Another approach is to use a hybrid of MPI with some

SM library/extension (e.g., OpenMP). Recently, with the introduction of SM capabilities in the

MPI 3.0 standard, it is possible to find implementations (e.g., [HDB+13]) where MPI is used

to provide both the DM and SM models. For instance, using message-passing and the MPI SM

programming API respectively for inter- and intra- node communication.

In this thesis we focus on one of the most common hybrid approaches, the combination of MPI

with OpenMP [BM08, RHJ09, JJM+11, MLAV10, ZMWK17], henceforth, just designated as

hybrids. The simplest way to implement hybrid parallelizations is to use OpenMP in specific hot

spots of the code (e.g., parallelizing computationally demanding loops) while the MPI routines

are called sequentially either by just performing them outside the parallel regions or by restricting

them to only one thread (e.g., master or single). A second approach is to use threads, not only

to parallelize chunks of code but also to overlap communication with computation [MLAV10].

6Meta-data generated by the MPI implementation to distinguish between di↵erent communicators [MCS00].

2.3. Hybrids 17

In such implementations, one or more threads perform the communications while the remaining

threads execute computation in parallel. Naturally, there are advantages and disadvantage to

both approaches. The first one is simpler to implement, easier to maintain and debug, whereas

the second has the potential to scale more than the first.

Concerning MPI and multithreading, the standard o↵ers four possible levels of thread sup-

port, however not every MPI implementation provides them7. To use MPI in a multithreaded

application, the programmer has to explicitly notify the MPI library of the level of thread sup-

port that the hybrid parallelization will need. The supported levels are: - single (the default

value), the application is not multithreaded; - funneled, the application is multithreaded but only

the master thread does the MPI calls; - serialized, any thread can perform the MPI calls but

not concurrently; - multiple, threads can concurrently make MPI calls. These levels establish a

contract between the application and the MPI implementation so that the latter can work with

a set of assumptions to provide a correct and e�cient implementation. From all the levels the

last one has the highest overhead since MPI has to take extra measures to ensure correctness.

A hybrid approach requires a greater programming e↵ort than using simply MPI, so its use

is only justified if it can increase performance. Some of the disadvantages of hybrids compared

with the MPI only approach are: - requires a higher level of expertise [LW17], and is harder to

implement, debug and maintain since programmers have to be knowledgeable about the SM and

DM programming models; - the need for multithreading support by the MPI implementation

[LW17]; - the introduction of additional overheads from the SM model. On the other hand,

the advantages of the hybrid approach are: - the reduction in memory consumption; - the

improvement of load balancing; - the reduction in messages exchanged; - being more suitable for

fine-grained parallelism; - the fact that it conceptually mirrors the hardware hybrid structure.

Typically, a hybrid approach consumes less memory than the MPI only approach, because

there is less data replication among processes, particularly in MPI parallelizations using the

Ghost cell pattern [KS10], and less memory reserved for the MPI bu↵ers. Moreover, threads use

less memory than processes, especially in Java where each MPI process will execute an entire

JVM. The works in [SJF+10] and [IJ11] present case studies with memory footprints that were

considerably reduced after moving from MPI only to a hybrid approach.

Hybrids can improve the load balancing by exploiting the OpenMP dynamic scheduling

[RHJ09]. Also, they can improve the load balancing of applications with processes that can

have di↵erent workloads or/and that are executed in machines with di↵erent capabilities, by

tuning the number of threads of each process accordingly. It is possible to implement dynamic

scheduling in MPI, however, compared with OpenMP, its implementation requires a greater

programming e↵ort since by default it is not provided by the MPI standard, and (usually) with

a higher overhead. The works [HT00, RHJ09] show the contribution of hybrids to load balancing.

7MPI standard compliance implementations are not obliged to provide multithreading support.

18 2. Parallel architectures, programming models and languages

Besides improving memory consumption and load balancing, hybrids can also improve per-

formance by reducing the exchange of messages and the number of processes participating in

collective communication routines [LW17]. The performance of these collective routines is highly

depended on the hardware and its MPI implementation. The reduction of the ratio of commu-

nication to computation leads to the increase in the granularity of the parallelism, and con-

sequently, its scalability. Applications that are limited by the number of processes, that scale

poorly in MPI but well in OpenMP, or that have two levels of parallelism (e.g., domain decom-

position among processes and threads) can also benefit from hybrids. Finally, hybrids can also

help when hardware constraints restrict the scalability of a MPI parallelization, for instance, the

latency and number of ports of the network, memory constraints of the machines and so on.

Hybrids can be implemented by starting with the MPI version and then adding OpenMP

on it and vice-versa. For maximum performance, it is paramount to develop e�cient MPI

and OpenMP parallelizations before combining them. The mapping of processes to resources

in a hybrid parallelization can vary depending on the algorithm and hardware topology. This

mapping consists, usually, in one or more processes either per machine (with threads sharing

the node memory) or per socket (with threads sharing the socket memory).

2.4 Performance considerations

Libraries, frameworks, and standards provide guidelines and abstractions to help the program-

mer with the technical details of SM/DM PP. However, the programmer still has to consider

performance issues, and some of these issues are transversal to the SM and DM models. This

section covers only performance issues of the multithreading and message-passing models. To

extract performance from applications, the programmer needs to consider, details such as load

balancing, task granularity, and synchronization/communication overhead.

A good load balancing aims for distributing the work among processes/threads in a manner

that minimizes their execution time. Unfortunately, sometimes is not enough to just statically

divide the total of parallel tasks evenly among processes/threads. Applications may be running

in machines with di↵erent work rates, to deal with such variability the programmer can use

a dynamic work distribution. Libraries such as OpenMP and TBB o↵er dynamic scheduling

mechanisms. However, this is not the case for the MPI standard.

Naturally, a dynamic scheduler has a higher overhead than a static scheduler. Thus, pro-

grammers should ensure that the performance gain of using a dynamic scheduler overcomes its

additional communication/synchronization overhead. Furthermore, a dynamic scheduler might

also be less cache-friendly than a static scheduler, because it promotes irregular data access

patterns. In applications running in homogeneous environments, where the parallel work can be

quantitatively determined upfront, the use of static distribution might be preferable. However,

2.4. Performance considerations 19

with a static approach, the performance might su↵er if the application is migrated to di↵erent

environments. Load balancing is also influenced by factors such as the nature of the workload,

the parallel implementation, and the task granularity.

Task granularity can be defined as the time it takes a process/thread to execute a single task.

In the literature [ERAEB05, RJ14, MEB99] terms such as fine, medium, and coarser granularity

are sometimes used to categorize the task size, along with some formulas to calculate it. The

principle is simple; tasks should have enough granularity to overcome the overhead of the paral-

lelism. Moreover, granularity should also promote load balancing. Often choosing the task size is

a trade-o↵ between the number of parallel tasks and communication/synchronization overhead.

A decrease in the task size leads to an increase in the number of parallel tasks, which makes it

easier to achieve a better load balancing. However, an increase in the number of parallel tasks

might increase the communication/synchronization overhead, especially with dynamic sched-

ulers. Moreover, an increase of the task size might reduce the communication/synchronization

overhead, but it can lead to load imbalance. Usually, parallel tasks in a DM parallelization

should have a larger granularity than in the SM parallelization, because of the overhead of

communication between processes.

In a SM model, threads share variables that can be concurrently updated; without proper

handling, the state of these variables can become inconsistent. Therefore, programmers need

to deal with data dependencies inside the parallel regions and ensure the consistency of the

application state. To ensure the correctness of parallel applications, OpenMP and languages

such as Java, o↵er synchronization mechanisms (e.g., locks). However, coordinating threads

have the disadvantages of locking overhead/contention, restraining some compiler optimiza-

tions and reducing the amount of code executed in parallel. If there is too much synchroniza-

tion between parallel tasks, the application may perform worse than a comparable sequential

one [PBB+06]. Nevertheless, sometimes the programmer can use finer-grained synchronization

mechanisms (e.g., atomic operations and read/write locks) or even replace the synchronization

altogether with private copies of the problematic share data.

Performance in DM can be a↵ected by the communication overhead and the dependency

on the hardware used to establish this communication. The programmer should aim to reduce

the number of messages exchanged and the time spent waiting for them. Whenever possible,

the programmer should try to overlap communication with computation, for instance, using

asynchronous communication instead of synchronous. However, the use of asynchronous com-

munication makes the parallelization complex and error-prone, and it might not be easy to

achieve a good overlap ratio. In some cases, it is faster if the process itself performs the work,

rather than wait for the result of another process. Finally, when possible, collective communi-

cation routines should be used instead of point-to-point communication, since the former can

be specially tuned for communication among several processes.

Chapter 3

Aspect Oriented Programming

3.1 Overview

Software development is known for being a complex and multidisciplinary process, which typi-

cally involves the cooperation of people with di↵erent backgrounds. With the aim to improve

the software development process an extensive range of methodologies, programming languages

tools and so on, have been researched and proposed.

Modular programming [Par72a], currently widely used, is one of the most advertised software

design approaches. This approach advocates for the division of software into smaller and more

manageable modules. Ideally, these modules are independent, interchangeable and cope with

a well-defined responsibility (i.e., single responsibility principle [Mar03]). Consequently, these

individual modules when integrated together fulfill the desired requirements [SWS12].

Most applications are, indeed, composed by a set of modules that work cooperatively to

address a variety of requirements and follow some of the modular programming guidelines.

However, in complex systems, frequently these guidelines are hardly followed, and consequently,

the application modules end up containing mixed responsibilities [GL03].

Modularity in object-oriented programming (OOP) is achieved through the concept of ob-

ject, which represents an entity with state (e.g., variables), behavior (e.g., methods) and the

responsibility to cope with a given concern1. However, some concerns in OOP cannot be encap-

sulated in a specific object; instead, they are spread transversely across distinct objects. Those

kinds of concerns are named in the literature as cross-cutting concerns (CCC). Some of the most

well-known CCC are:

1“A concern is some functionality or requirement necessary in a system, which has been implemented in a
code structure” [GL03].

20

3.1. Overview 21

Reliability logging [CG02], profiling [Kis02] and checkpointing [MS11, AB08];

Security authentication and authorization [B.04, JBo];

Performance caching [Lad09, Kis02], concurrency [CSM06] and parallelism [MS11];

Correctness business rule implementation [CJ03] and synchronization [HNP98].

In the checkpointing example, the operation of saving the application state in the disk can

include the checkpointing of di↵erent objects in di↵erent execution points. Consequently, some

objects are polluted with an additional concern di↵erent than the one that they were initially

supposed to handle. This mixing of concerns results in scattered and tangled code [GL03], which

decreases the software quality, reusability and scalability.

In the context of OOP, techniques such as dynamic proxies and configuration files have been

diligently used to solve the CCC issues [Lad03]. Dynamic proxies have the drawbacks of being

inflexible [BS03], intrusive, complex [Lad03] and of introducing high overheads [BS03] (typical

of a reflection-based techniques). A XML deployment descriptor (i.e., a configuration file) has

been used, for instance, in the JavaBeans framework to segregate CCC (e.g., authentication

and transaction management) from the business logic. However, such an approach is domain-

specific/dependent [Lad03] and, consequently, not portable across di↵erent domains and CCC.

Furthermore, the XML files have to be painstakingly specified since they are highly error-prone.

To make matters worse, if the framework accesses a field that the programmer either mistyped

or forgot to write runtime errors may occur [ST15].

In 1997, following the line of reasoning of approaches such as Composition Filters [ABV92],

DEMETER (adaptive programming) [LR88] and Subject-Oriented Programming [HO93], Gre-

gor Kiczales and his colleagues proposed the AOP to modularize the CCC [Kic96].

AOP introduces an extra layer of modularity, abstractly a layer of transversal functionality

with the creation of aspects. In OOP languages aspects are tantamount to the notion of classes,

in the sense that they can be interpreted as modules. Analogously, AOP is a modular approach

to CCC as OOP is a modular approach to common concerns. Studies (e.g., [BH08, Ml07]) have

shown that AOP benefits software design with:

• an increasing of code legibility;

• the reduction of the amount of code;

• the improvement of application maintenance and evolution;

• a reduction of the cost and software development time;

• the enhancing of code reusability.

22 3. Aspect Oriented Programming

The concepts of AOP can be applied to di↵erent programming paradigms besides OOP (e.g.,

functional [DWWW05, SW07]). An AOP system, according to Filman and Friedman [FF00],

must have two features, namely quantification and obliviousness. AOP relies on a mechanism

(i.e., pointcut) to attach additional behavior to multiple execution points in a base program

(i.e., quantification) in a way that the base program is unaware of that additional behavior

(i.e., obliviousness). However, in the past years, with the AOP community growth and research

development, some authors [KG02, CRB04, Fab05, RM06] have questioned the restrictiveness

of the properties empowered by Filman and Friedman. First, regarding the terminology itself,

according to C. Clifton [Cli05] non-invasiveness is being preferably used instead of obliviousness

since the former is less restricted than the latter. Both terms imply that AOP can introduce ad-

ditional behavior to the program without invasively introducing code to that program. However,

non-invasiveness does not imply obliviousness by the base program of that additional behavior.

In other words, obliviousness implies non-invasiveness but not the other way around. Second,

the inelasticity of the properties themselves. For instance, Awais R. et al. [RM06] argue that,

although desirable, aspects are more about abstraction, modularity, and composability than

quantification and obliviousness.

Controversy aside, literature has shown that one can see quantification and obliviousness

as desirable features but not as strict rules [RM06]. Some may not want/obtain obliviousness

[RC03] or even quantification for that matter [CRB04]. What most people would agree upon

with is that abstraction, modularity, and composability, among others, are the holy grail of

software design. In fact, such software properties are the motivation behind the work presented

in this thesis. Moreover, there are in literature other classifications besides the ones provided by

Filman and Friedman [KM99, RM06]. For example, Ramnivas L. [Lad09] presents an informal

model with features that an AOP system should have. According to this model an AOP system

should match several of the following features: - the ability to identify and select execution

points of a given application; - the ability to change the application execution flow and/or its

static structure; - and, following the same philosophy of OOP, the ability to encapsulate the

CCC into specific modules (referred in AOP by aspects).

There are several proposed AOP extensions for di↵erent programming languages, for in-

stance, AspectJ [KHH+01] (Java extension), AspectC++ [SGSP02] (C++ extension), AspectH

[Meu97] (Haskell extension). Moreover, AOP concepts have also been implemented with frame-

works [PSR05], such as JBossAOP [JBo] and SpringAOP [Spr].

3.2. Tangling and scattering in parallel programming 23

3.2 Tangling and scattering in parallel programming

Tangling occurs when the same block of code (e.g., method and class) is used to implement more

than one concern, while scattering occurs when the code to implement one concern is spread

across multiple modules. Both symptoms (i.e., tangling and scattering) are related and are a

menace to the fundamentals of OOP [GL03]. Furthermore, these symptoms make the code less

legible, reduce the software modularity, and consequently, reduce the software quality. AOP

aims to decrease the tangling and scattering phenomenon, through the modularization of CCC

into modules (coined as aspects in AOP terminology).

1 ... class MD implements ... {
2 IParticle [] particles = ...
3 int numThreads = ...
4 ThreadPool threadPool = ...
5 ...
6 public void forceCalculation (...){
7 try{
8 final int processID = MPI.COMM WORLD.getRank();
9 final int numProcess = MPI.COMM WORLD.getSize();

10 // Adding work to the Pool
11 for(int threadID = 1; threadID < numThreads; threadID++)
12 threadPool.execute(() -> forceParallel(...));
13

14 forceParallel(...); // Master Work
15 processDataReduction(...);
16 }
17 catch (MPIException e){...}
18 }
19

20 private void forceParallel(...){
21 int globalID = threadID + processID * numProcess;
22 int totalWorkers = numProcess * numThreads;
23 for(int pA = globalID pA = 0; pA < NParticles; pA += totalWorkers pA++)
24 for(int pB = pA + 1; pB < NParticles; pB++)
25 particles[pA]. forcePairParticles(particles[pB], ...);
26

27 threadPool.callBarrier();
28 threadPool.threadDataReduction(...);
29 threadPool.callBarrier();
30 }
31 }
32 ... class Particle implements IParticle{
33 double fx , fy , fz; // forces
34 ThreadLocal <Double> threadLocalFx = ThreadLocal.withInitial(() -> 0.0);
35 ...
36 public void forcePairParticles(IParticle particleB , ...){
37 ...
38 if(distance(this , particleB) < radius){
39 forceABx = ...;
40 fx = fx + forceABx;
41 particesB.fx = particesB.fx - forceABx; // Newton ’s 3rd Law
42 ...
43 threadLocalFx.set(threadLocalFx.get() + forceABx);
44 particesB.threadLocalFx.set(particesB.threadLocalFx.get() - forceABx);
45 ...
46 }
47 }
48 }

Figure 3.1: An example of tangling and scattering problems in parallel programming.

24 3. Aspect Oriented Programming

The tangling problem is common in parallel programming models that introduce the PRC

invasively in the base code and is even more pronounced when di↵erent types of parallelization

are combined (e.g., SM + DM). One of the main goals of parallelization is performance, so it is

common to duplicate data structures to minimize synchronization overhead, resulting in more

complex tangling issues. Furthermore, multiple parts of an application might be parallelized,

consequently resulting in scattering problems. To illustrate the tangling and scattering issues, let

us use the code of a simplified hybrid parallelization of a molecular dynamic (MD) simulation

presented in Figure 3.1. To parallelize the MD simulation intrusive changes to the MD and

Particle classes were made. The lines of code colored with black, orange and red represent the

sequential (i.e., base code), SM and DM concerns, respectively. The grey lines are sentences

that existed in the sequential version but had to be excluded from the parallel version.

The code of Figure 3.1 calculates the forces between pairs of particles (line 25) within a given

radius (line 38). The force calculation between a particle and the remaining is assigned in a

round-robin fashion to every thread, across all processes (line 23). Additionally, to avoid data

races during the update of forces (lines 40 and 41), each thread has a local copy of the forces

(line 34). In the end, within each process, threads synchronize and reduce their local forces

(lines 27 to 29) so that, afterward, the master thread of each process can reduce the force local

data among processes (line 15).

The intrusive introduction of the PRC (lines of code colored as orange and red) made the base

code more complex and harder to understand. It is worth to mention that the code related to the

creation, termination, and synchronization of threads/processes was omitted. Thus, the tangling

in this example is even more grotesque in practice. To test di↵erent tuned optimizations, for

instance, to deal with load unbalancing (e.g., dynamic) or data races (e.g., atomics) the code has

to be rewritten. Moreover, if these optimizations were applied elsewhere any future modification

to their reasoning would provoke code modifications in di↵erent locations of the application.

In Figure 3.1 the PRC (e.g., task creation and work assignment) are scattered across di↵erent

base classes (MD and Particle). This approach is undesirable in systems with a large number

of classes. These problems, among others, expose the inherent lack of modularity of OOP

to address PRC. The previously mentioned problems also restrict the use of some of the OO

features. For instance, if the class Particle or MD were to be extended and their methods to

calculate the force overridden, the parallelism-related code could be lost. Another problem is

the use of Java interfaces, for example, a particle can be represented by an interface with several

implementations, and therefore the PRC would have to be injected in all these implementations.

A better solution than intrusively adding the PRC into the domain code is to modularize

these concerns by encapsulating them into separate independent modules that can be composed

with the domain code. This strategy is explored in this thesis with AspectJ, where the CCC

can be modularized using aspects.

3.3. AspectJ 25

3.3 AspectJ

A team of researchers from Xerox corporation led by Gregor Kiczales decided to create a Java

extension named AspectJ [KHH+01]. Later on, the AspectJ project was transferred to the open

source community at eclipse.org [Lad03] and today is led by Adrian Colyer. The AspectJ 1.0,

released in 2002, was a significant combustion source for the explosion of AOP in the 2000s

decade, reaching its hype peak around 2004 [Lad09]. In the years that followed, the hype

decreased with the natural dissipation of its exoticism, but the language maturation and the

community acceptance followed the opposite trend. Many were the factors that contributed to

this acceptance growth, namely:

• the IBM investment on the technology [Lad09] and its use on the Websphere framework;

• the introduction of annotations with Java 5, which enabled an easy, clear and transparent

approach for the join point selection. An approach used by the project AspectWerkz

[Bon04], which was merged with AspectJ (AspectJ 5) [AtJF]. Thus, allowing AspectJ

users to also take advantage of annotations [Lad09];

• compilation process optimizations, new weaving models (e.g., load-time weaving) and bet-

ter language development tools (e.g., IDE integration) [Lad09];

• and the integration of the technology by the Spring framework [Lad09, SK10].

Nowadays, AspectJ is no longer in an embryonic stage, is well established in the community

and is regarded by many as the most predominant implementation of the AOP concepts [GL03,

Kis02, Lad09]. Hence, it is widely accepted as a de facto standard for AOP [SC12]. So, it

is not uncommon to see the terms AOP and AspectJ used interchangeably in the literature.

Nevertheless, AOP refers to a paradigm whereas AspectJ is an implementation of the concepts

underlying that paradigm. One can see the relationship between AOP and AspectJ with the

same eyes that one sees the relationship between OOP and Java.

Next, we present some of the basic concepts and features of AspectJ, namely: - its join point

model; - pointcuts; - advices; - inter-type declaration; - and finally aspects.

3.3.1 Join point model

The concept of join point refers to an identifiable point in the execution control flow. AspectJ

restricts the granularity and the types of join points that can be selected. Limiting the access to

more stable constructors allows for better control of the complexity and side e↵ects of using a

broader join point model [Lad09]. For simplicity purposes, in the context of this thesis when we

refer to join points, we are referring only to those available in the AspectJ’s join point model.

26 3. Aspect Oriented Programming

It is out of the scope of this work to explain all the peculiarities of the AspectJ design decisions.

Nonetheless, we will present some of its features, starting with the most relevant join points2

for the understanding of this thesis, namely: - method call and execution and field get and set.

AspectJ di↵erentiates between a call and an execution of a method. The di↵erence between

these two is directly related to its location. The call join point is located in the class that

invokes the method whereas the execution join point is located in the class where resides the

actual method implementation. In the code of Figure 3.1, the call and execution join points of

forcePairParticles method are in lines 25 and 36, respectively. This distinction, besides a↵ecting

the way the matching of join points is performed, when dealing with inherited and overridden

methods may have what some call unintuitive [BTF04], surprising [AHO+07] or strange behavior

[Mil04]. These di↵erences are explained in the next section. Nevertheless, such behavior is well

defined and is related to AspectJ own designing strategies [AESC08].

The AspectJ join point model includes also reads/writes to fields of objects (i.e., field get

and set join points). The instruction fx = fx + forceABx; (line 40 of Figure 3.1) contains a set (fx

= ...) and a get (... = fx + ...) join point of the field fx. When the fields are objects themselves

(e.g., an array) their get/set join points only include the reads/writes of their memory references.

For instance, the instruction particles[pA] = particles[pB]; contains a get but no set join point3.

With AspectJ, it is not possible to intercept the accessed indexes of an array or the value

assigned to them, even though works such as [CC07] proposed strategies to do so. Moreover,

AspectJ also does not contemplate join points such as loop parameters (i.e., begin, end, and

stride), if/else conditionals, and primitive local variables. The work in [HG06] proposed an

extension to the AspectJ join point model to include loops and conditionals and the work in

[JMOA08] to include local variables. The AspectJ join model uses a conservative approach; the

previously mentioned join points are not part of that model for reasons such as, not being useful

enough, too complex or inflexible to be implemented and too sensitive to insignificant changes

in the base code [Ecl18a]. For example, let us imagine that AspectJ can uniquely identify the

conditional statements from lines 1 and 2 of Figure 3.2. One developer uses AspectJ to intercept

the evaluation of the if statement, days later a second developer decides to make the code more

readable4 by changing it to the one in Figure 3.3. Although the codes of Figures 3.2 and 3.3 are

semantically the same the result of the join point intercepted by AspectJ is not. Normally, Java

programmers do not expect if/else statements to be used as hook points to add functionality.

2The complete list of join points can be seen in [Sema].
3To be considered a set the instruction would have to change the actual memory reference of the object, for

example, particles = new Particle[N];.
4This is a hypothetical scenario. We do not claim that one style is more readable than the other.

3.3. AspectJ 27

1 if(list != null && !list.isEmpty) {...} // action 1
2 else {...}// action 2

Figure 3.2: Conditional statements join points before refactoring.

1 if(list == null || list.isEmpty) {...} // action 2
2 else {...}// action 1

Figure 3.3: Conditional statements join points after refactoring.

3.3.2 Pointcuts

The join point model defines which points in the execution flow can be intercepted but to

capture them AspectJ provides a mechanism, named as pointcut. A pointcut captures and

exposes (limited) context of the join points. The pointcut is as follows:

pointcutname([parameters]) : designator(ajoinpoint); 5

To correctly identify di↵erent types of join points, AspectJ provides appropriate desig-

nators. From these designators, the most relevant for this thesis are call/execution (pat-

tern) and get/set (pattern), where pattern is the criteria chosen to select the desirable join

points. These patterns can be, among others, signatures of methods (e.g., call(public int Parti-

cle.forcePairParticles(...))).

AspectJ o↵ers the possibility to select patterns through the use of wildcards such as the

character ’*’. For example, the signature call(private int ClassX.*()) will intercept all the

private methods, without arguments, that returns an integer and belong to the class ClassX.

It is also possible to use wildcards to abstract the number of arguments (e.g., “..”), to match

subtypes throughout a hierarchy of classes (e.g., ’+’) and so on [GL03].

Besides the previously mentioned designators, AspectJ also provides additional designators

that can be combined with the above ones:

• program text-based [GL03, Semb], also known as lexical-structure based [Lad09] (e.g.,

within and withincode);

• control flow-based [GL03, Semb, Lad09] (e.g., cflow);

• state-based [GL03, Semb] that are in [Lad09] subdivided into two categories: execution-

object (e.g., this and target) and arguments (e.g., args).

5Syntax transcript from [GL03].

28 3. Aspect Oriented Programming

Logical operators such as && (and), k (or) and ! (not) can be used to combine or negate

join points/pointcuts.

Control flow-based designators are the only ones that receive as an argument another pointcut

(e.g., cflow (pointcut)). Pointcuts that use these designators cannot be fully determined at

compile-time, which might result in additional runtime overhead [BHMO04]. Therefore, those

concerned with performance should use this pointcut sparingly.

The pointcuts within(Type) and withincode(Method/Constructor) intercept join points that

exist inside a given type and method/constructor, respectively. The pointcut this(Type) filters

join points according to the object type currently being executed, whereas the target(Type)

filters according to the type of the target object. Besides filtering the join points to be matched

based on some object, these pointcuts also expose that object, which allows the programmer to

access the content of that object. Finally, the args(set of arguments) pointcut filters join points

according to a set of arguments and at the same time exposes these arguments.

In AspectJ terminology, pointcuts that capture join points that can be ascertained

at compile-time are named as statically determinable pointcuts (e.g., call/execution and

set/get)[GL03, Lad09], consequently pointcuts that rely on dynamic context (e.g., cflow, this/-

target and args) are excluded from this category. The list of AspectJ pointcuts and designators

[Semb] is fairly extensive to be fully described in this thesis. Notwithstanding, Figure 3.4 illus-

trates some examples of pointcuts (based on the code of Figure 3.1).

1 pointcut getBarrier () : call (public void ThreadPool.callBarrier ());
2

3 pointcut getParticleB(IParticle particleB) :
4 execution(public void forcePairParticles(IParticle , ..)
5 && args(particleB , ..);
6

7 pointcut getBarrierInMD () : getBarrier () && within(MD);
8

9 pointcut getFx () : (get(* double Particle.fx) || set(* double Particle.fx))
10 && withincode(public void IParticle.forcePairParticles (..));

Figure 3.4: Examples of Pointcuts.

The first pointcut intercepts the calls to the callBarrier method of the class ThreadPool,

whereas the third pointcut further restricts these interceptions to calls that happen inside the

class MD. The second pointcut intercepts the execution of the forcePairParticles method and

exposes its first argument, whereas the fourth pointcut intercepts, within the forcePairParticles

method, the join points resulting from the reads and writes to the field fx of the class Particle.

1 void setArray(int index , int value) {array[index] = value ;}
2

3 int getArray(int index) {return array[index];}

Figure 3.5: Accessing array through methods.

3.3. AspectJ 29

As noted in [HG06] pointcuts to intercept the loop range and the accessed array positions

would be useful for parallelism. The programmer is restricted to AspectJ join point granularity

and the expressiveness of the pointcut designator. To intercept join points that are not part

of the AspectJ join point model either additional extensions have to be used (e.g., LoopsAJ

[HG06] for loops and [CC07] for arrays) or code refactors that expose these join points have

to be made. The former approach has the disadvantage that those extensions are not o�cially

supported by the language or might not even exist for the desired join points. In most cases, the

latter approach only requires method refactoring [cat]. For instance, to intercept the accessed

array indexes and their content, the programmer can perform these accesses through method

calls (e.g., Figure 3.5). Because the index and the value to be assigned are parameters of a

method AspectJ can intercept and expose them.

3.3.2.1 Call vs. Execution

There are some di↵erences between the call and execution pointcuts that are worth to be ex-

plained in more detail. Arguably, the most important is how these pointcuts match the join

points to be intercepted. If the method declaration, used in these pointcuts, does not contain

the object type where the method call/execution occurs (e.g., execution(public void forcePair-

Particles(..)) then these pointcuts intercept the call/execution of the methods that match the

method declaration. However, when an object type is also specified (e.g., call(public void Thread-

Pool.callBarrier())), let us labeled that type T, the call pointcut only considers the methods

in objects with the same static type as T or its subtypes, whereas the execution pointcut does

the same but using the dynamic type instead. Furthermore, regarding the method signature,

the execution pointcut only tries to match it with methods of the class T or its subtypes, while

the call pointcut also matches with those from the super-type of T [AESC08]. More in-depth

analysis with illustrative examples can be found in [AESC08]. Nevertheless, defining the type T

in a target pointcut instead of the method declaration allows, for instance, to use a call pointcut

that evaluates the dynamic type of T, instead. For example, using call (public void callBarrier())

&& target(ThreadPool) instead of call (public void ThreadPool.callBarrier()).

Also worth mention that a call pointcut does not intercept explicit super calls (e.g., super.f).

Moreover, while this and target objects are the same in the join points intercepted by the

execution pointcut, the same might not be the case with a call pointcut. For example, the this

object of the pointcut getBarrierInMD (line 7 of Figure 3.4) is an instance of the class MD

whereas its target object of the class ThreadPool. The withincode pointcut matches join points

that exist inside a method, therefore it does not make sense to combine it with an execution

pointcut. However, combining withincode and call pointcuts might be useful, for example, to

intercept recursive method calls call(void fib(int)) && withincode(void fib(int)).

30 3. Aspect Oriented Programming

3.3.3 Advices

Pointcuts capture join points with the aim of adding actions to them. These actions are applied

through the use of AspectJ’s mechanism termed advices. In literature [Lad09] the resemblance

between methods and advices is commonly used to ease the grasp of this new concept. Indeed,

advices share many characteristics with methods, namely signatures (e.g., a pointcut), may or

may not have arguments, can declare local variables, return values, throw exceptions, call other

methods, and so forth [Lad09]. Nonetheless, advices, unlike methods, cannot be called explicitly,

do not have access type modifiers, are nameless mechanisms6, to name a few di↵erences.

In AspectJ, there are three types of advices, before, around, and after that can be distin-

guished by the moment when they enter in action relatively to join points. Ergo, before, around,

and after define actions to be executed before, instead, and after a specific pointcut is triggered,

respectively. The advice around is the only one that can return a value and use the proceed,

which allows the execution of the original join point. The reasoning behind this syntax is that

unlike the before and the after that execute additional actions besides the original join point,

the around advice will execute a di↵erent action instead of the original join point. Hence, the

necessity to provide a mechanism that allows the execution of the original join point, if needed.

As a matter of fact, with proceed the programmer can execute the original join point multiples

times and even with di↵erent context.

An around advice has a returning type that matches the ones from its advised join points.

The same applies to the returning type of the proceed since it corresponds to the execution of

the original join point. Moreover, the proceed receives the same number and types of arguments

as the advice itself. However, it is not mandatory that these arguments have the same values,

which gives the programmer the possibility to change some of the advised join point contexts.

Advices can access join points context either by a pointcut that exposes their context and

passes it to the advice or by AspectJ reflection API. This API provides the advices with static

and dynamic information stored in special objects (e.g., thisJoinPoint). The advantage of

this API over directly using pointcuts to expose context is that it provides more information

and the possibility of developing more flexible solutions. On the other side, reflection-based

techniques are known for their high overhead, and this case is not an exception [Lad09]. However,

the runtime overhead is relatively low if the sought context is only of static nature [Kis02].

Nevertheless, if for a given problem the context provided by the pointcuts is enough, reflection

should be avoided because, apart from being more costly performance-wise, it is also more

verbose and does not provide static type checking [Lad03].

6This remark is partially true since it is possible to label an advices using annotations (e.g., @Advice-
Name(advice name)) [Lad09].

3.3. AspectJ 31

Figure 3.6 presents three examples of advices; the first two use the pointcuts defined in

Figure 3.4, and the last one uses an anonymous pointcut. The first advice prints the line in the

source code corresponding to the call of the callBarrier method of the class ThreadPool before

that method is executed. The second advice intercepts the forcePairParticles execution and

re-executes it with a di↵erent argument value. Finally, the last advice logs a message after the

execution of the processDataReduction method.

1 before () : getBarrier (){
2 System.out.println(thisJoinPoint.getSourceLocation ());
3 }
4

5 void around(IParticle particleB) : getParticleB(particleB){
6 proceed(new Particle (...));
7 }
8

9 after() :(execution(private void processDataReduction ())){
10 log("Reduction among processes finish");
11 }

Figure 3.6: Examples of Advices.

With AspectJ, not only can the programmer modify the application execution flow but

also the application static structure (e.g., class hierarchy). The former type of modification is

known as dynamic crosscutting and is performed with pointcuts and advices, whereas the latter

is known as static crosscutting and is accomplished through the use of inter-type declaration

[Lad09, KHH+01].

3.3.4 Static crosscutting

Dynamic crosscutting allows to intercept and add behavior to join points belonging to a specific

target type (e.g., class) without polluting the domain code. However, in some situations, to

correctly implement the CCC with aspects, the programmer might require state and functional-

ities that are lacking from the target types. Therefore, and since it is desirable that the domain

types do not contemplate state and functionalities related with CCC, AspectJ provides static

crosscutting that enables the insertion of new state and functionalities into target types without

invasively changing them. Static and dynamic crosscutting work cooperatively to enable the

encapsulation of CCC and the development of domain code unaware of aspects’ requirements.

AspectJ provides static crosscutting features such as inter-type declarations (ITDs) and aspect

precedence (detailed in Section 3.3.5).

32 3. Aspect Oriented Programming

ITDs can add extra functionality and state to types such as classes, interfaces, and aspects.

With ITDs, it is possible to add methods (e.g., concrete and abstract) and fields to all those

types, and constructors to both classes and aspects. Furthermore, ITDs also allow type-hierarchy

modifications (e.g., declare parents : ...), such as declaring that a given type extends another

type or implements a particular interface [GL03].

1 declare parents : Particle implements Serializable;
2

3 public int Particle.counter = 0;
4

5 public void Particle.saveDataInDisk(Particle a) { ... }

Figure 3.7: The use of inter-type declarations in a checkpointing example.

Let us imagine that the programmer wants to save an object into a disk after a specific

method within this object has been executed a certain number of times. Figure 3.7 shows the

sketch of a possible solution for this example using ITDs, where Particle is the object to be saved.

In the lines 1, 3 and 5 AspectJ makes the class Particle implement the interface Serializable, adds

to that class a new instance variable and a method to perform the checkpointing, respectively.

This solution removes the checkpointing CCC code from the class Particle and also encapsulates

into an aspect all the required behavior and state to accurately represent the checkpointing

CCC. Furthermore, this aspect can be expanded to checkpoint other classes as well, and thus

centralizes the checkpointing CCC into a single location easily modifiable and maintainable.

The members (e.g., fields and methods) introduced with ITDs are treated as if they have

been declared directly in the target type [GL03]. However, their access specifiers are tied to

the aspect that declared them [Lad09]. The access specifiers of the members can only be either

private or public. With the former members can only be accessed by the aspect that declared

them, whereas with the latter members can be accessed by other types as well. In the example of

Figure 3.7, the saveDataInDisk method can, for instance, be explicitly called by other methods

of class Particle. However, such situation introduces interdependence between domain classes

and aspects, which, among others, will inevitably a↵ect modularity.

The functionality and the state added by ITD, for the most part, respect Java own design

rules (e.g., overriding methods). The introduction of concrete methods to interfaces was one of

the exceptions between what was allowed by Java and what was possible with AspectJ. However,

with Java 1.8 that is no longer the case; thus, one can add concrete methods to interfaces also

with plain Java.

3.3. AspectJ 33

3.3.5 Aspects

A class is the modularization unit of Java, which, in a broader sense, holds information about the

state, behavior and how objects (i.e., instances of that class) are created. Similarly, AspectJ has

its modularization unit labeled aspects, designed to encapsulate join points, pointcuts, advices,

static crosscutting constructors, and so on. Aspects and classes share several characteristics,

namely, aspects can: - extend abstract aspects or classes, and implement interfaces; - have

variables, methods, and nested aspects (defined as static); use the same access specifiers as

classes, and these specifiers follow the same Java rules as well.

Aspects resemble classes in many ways; however, there are di↵erences between the two con-

cepts. Aspects, according to R. Laddad [Lad09], di↵er from classes mainly on their instantiation

model, inheritance restrictions and the possibility of using the privileged access specifier. Un-

like classes, aspects cannot be explicitly instantiated. Moreover, aspects can extend abstract

aspects but not concrete ones, and aspects can extend classes but not the other way around.

Aspects by default, as well as classes, cannot directly access private members of another class.

However, it is possible to declare an aspect as privileged and allow it direct access to classes’

private members without using intermediate methods to do so. Nevertheless, privileged aspects

should only be used when strictly necessary, since it establishes a dependency between aspects

and classes (i.e., changes to the classes might forces changes to the aspects). Thus, in literature,

some authors recommend for the moderate use of privileged aspects [GL03, Lad09, CCHW04]

and some regard it as bad style [MF04].

When not declared otherwise, AspectJ creates only one instance per aspect, hence, by default

aspects are singletons. Although aspects cannot be explicitly instantiated (e.g., with the keyword

new), it is possible to create multiples instances of the same aspect. These non-default aspect

instantiation mechanisms are useful to replicate state and associate it with an event or object.

For instance, instead of creating a hashmap to associate an object with the state to be replicated,

the programmer can rely on AspectJ to do so. Providing mutual exclusion of an object is a classic

example [Lad09, CCHW04] of the usefulness of aspect instantiation per object. The programmer

creates an aspect with a lock and methods to acquire and release that lock, and then associates

this aspect with the desirable object to provide mutual exclusion.

An AspectJ application might be composed by advices that intend to work with the same join

points (e.g., two or more pointcuts that intercept the same method call). These advices might

be in the same aspect or spread across di↵erent aspects. Therefore, foreseeing such scenario,

AspectJ has rules to deal with intra- and inter-aspect advice precedence. The precedence of

conflicting advices in the same aspect is ascertain based on their type and lexical order in the

aspect [Lad09], namely:

34 3. Aspect Oriented Programming

• “If either are after advice, then the one that appears later in the aspect has precedence over

the one that appears earlier” [pre];

• Otherwise, then the one that appears earlier in the aspect has precedence over the one that

appears later. [pre].

Naturally, all the before and after advices will be executed before and after the join points

that they advice regardless of their order in the aspect, respectively [Lad09]. However, if there

is an advice around that does not call proceed from all the advices to be executed next, only

those with a higher precedence than that advice around will be executed.

When advices matching the same join points belong to di↵erent aspects, their precedence

will depend on the precedence of their aspects. For aspects precedence the only rule is that

derived aspects have a higher precedence than their base aspect, allowing these derived aspects

to override the behavior of their base aspect [GL03]. For the remaining situations, the prece-

dence is unpredictable [Lad09, GL03]. Nevertheless, the programmer can deal with undefined

precedences by declaring himself the desirable precedence (e.g., declare precedence : A, B, ...).

Declaring that an aspect A has precedence over an aspect B means that, when advising the

same join points, all the advices from A have precedence over those from B. This implies that:

- all the before advices from A are executed before those from B ; - all the around advices from

A encloses those from B ; - and all the after advices from A are executed after those from B.

The lexical order of the advices within an aspect might conflict with the precedence rules of

AspectJ causing a “circular advice precedence” error [LHBL06]. Similar issues can also happen

with the precedence among aspects. Nevertheless, the AspectJ notifies the programmer of such

problems at compile-time and some IDE (e.g., Eclipse) even before compilation. Although the

intra-aspect precedence rules look complex at first, in practice they are not. In our experience,

coding the aspects to have their advices before in the beginning, followed by the arounds and the

afters helps to reason about the order in which the advices will be applied. With that approach,

the programmer can look at the lexical order of the advices in the aspect to understand their

execution order. Such an approach is especially useful when building a library of aspects because

it might not be possible to foresee which join points will be advised in the future.

From the inter-aspect precedence rules, we can anticipate that aspects with many advices

might become a problem. The programmer may want that only a subset of advices from one as-

pect takes precedence over the advices from another aspect. Thus, in some cases, it is preferable

to create more and smaller aspects with fewer advices to easily manage possible precedences.

3.3. AspectJ 35

3.3.6 Weaving

The AOP concepts were designed to be employed as a complement to a base language, providing

mechanisms to encapsulate CCC into independent modules. The concepts are provided as

extensions (e.g., AspectJ) of a base language (e.g., Java), allowing the independent development

of domain code and aspects. These extensions inject the code from the aspects into the desirable

join points in the domain code [HH04].

In AspectJ, aspects are merged with Java classes through a process designated as weaving.

This process will produce bytecode as a result of applying the aspect code into the join points of

the classes that it a↵ects [Lad09]. The AspectJ compiler (e.g., ajc) receives classes and aspects

in either source code or bytecode format. The advices and the pointcuts filled with the join

points to be intercepted indicate to the weaver what crosscutting behavior to add and where to

add it, respectively. The most commonly weaving approaches used with AspectJ are:

• compile-time weaving [GL03, PSR05, Wea] also known as build-time source code weaving

[Lad09];

• post-compile weaving [Wea] also known as link-time weaving [GL03] and build-time binary

weaving [Lad09];

• load-time weaving [GL03, Wea, Lad09];

Compile-time and post-compile weaving combine aspects, both in source form or bytecode,

with Java classes before execution. However, the former approach uses the source code of

the classes whereas the latter uses the bytecode. Furthermore, the former approach is simpler

[GL03, BH02] but requires the presence of the application source code. The load-time weaving

occurs when Java’s classloader is loading the classes. With the load-time technique, the weaving

process is delayed until it is strictly necessary (unlike the first two approaches). With AspectJ, it

is possible to combine multiple weaving approaches (e.g., weaving some aspects at compile-time

and others at load-time).

AspectJ weaving process allows the application of the AOP concepts on top of Java without

the need to design an entirely new language from scratch. This fact, along with the variety of

weaving models, makes it easier for the Java developers to adopt the AOP.

36 3. Aspect Oriented Programming

3.4 Aspects reusability

The concept of reusing knowledge is transversal and of utmost importance to various fields,

including software development. During the software development process, one might reuse

and combine di↵erent trustworthy software instead of creating solutions from scratch [Kru92].

Software reusability can occur in many forms, namely functions, strategies (e.g., design patterns

[GHJV95]), libraries [CA08], and so on.

Reusing software improves the reliability of the application (the programmer can reuse code

that is stable and proven to be correct), accelerates the development process, reduces software

related costs, among others. However, the development of reusable software is harder than non-

reusable, since the programmer has to deal with an additional set of requirements [Som10]. For

instance, the code has to be abstract enough to work on di↵erent projects, preferably without

introducing too much complexity, and at the same time having an acceptable e�ciency.

AspectJ allows the modularization of CCC into aspect modules; therefore, it is paramount

that such knowledge can be reused in di↵erent applications, typically through the use of libraries

[CSM06] and frameworks [JBo, Spr]. However, AspectJ also introduces its own set of challenges

to software reusability [HU01, Wam06, CSM06, KAB07, Byn11], because of the intrinsic nature

of its compositional mechanisms. The developer of reusable aspects has to reason about the

expected interfaces (i.e., the join points to be intercepted), the grouping and coordination of

advices/aspects, the parts of the code that should (or not) be extensible, and how to manage the

state related with the CCC. Naturally, developing libraries capable of providing SM parallelism

adds additional challenges. The developer has to understand, among others, how to handle the

internal state of the aspects in a multithreaded environment, and possibly add synchronization

to ensure the correctness [CSM06]. Moreover, because the aim of parallelism is performance,

the developer must also reason about the trade-o↵ between flexibility and performance of some

AspectJ features (e.g., cflow).

Typically, the development and use of reusable aspects have to take into consideration three

phases, namely the development of reusable aspects itself, the preparation of the target applica-

tion and the connection between the reusable aspects and the target application. According to

Maarten et al. [Byn11], there are three main properties that define the quality of the reusable

aspects, namely stability, versatility, and easy configuration. Thus, reusable aspects should be:

- independent from the target application as much as possible, so that aspects and base code

can evolve independently without compromising each other (stability); - abstract enough to be

reusable across di↵erent applications (versatility); - easy to be adapted to the base code, even by

non-AspectJ experts (easy configuration). The developer should identify the join point interface

on which the reusable aspects will rely. Ideally, that interface should be abstract and stable

enough to provide greater reusability and stability [Wam06]. Preferably, no change in the target

3.4. Aspects reusability 37

application should be made, however, due to the granularity of the AspectJ join point model,

sometimes modifications to the base code are needed to expose the desirable join points (e.g.,

transform specific statements into methods).

There is in the literature work dedicated to identifying strategies to rationalize and sys-

tematize the use and development of reusable aspects [Byn11, HS03, GK01, LJ06, NSPB07]

(e.g., idioms). Common idioms include: - abstract pointcuts [HU01, HS03]; - marker interfaces

[HC02, HS03]; - annotations [Wam06, Lad09, CSM06]; - among others [HE08, Lad09]. These

idioms can be used individually, or combined, to abstract reusable aspects from the application’s

join points. Maarten [Byn11] provides a comprehensive system of patterns to build stable, ver-

satile and easy to configure reusable aspect libraries. The author explains and suggests which

and when di↵erent idioms should be used and or combined.

Base	
Program	

Concrete	Aspect	
Parallel	Region	

Abstract	Aspect	
Parallel	Region		

	:	abstract	pointcut	parallel();	
	:	public	int	wait()	{return	true;}	

extends

Abstract	Aspect		
Synchroniza@on	

:	abstract	pointcut	cri@cal();	
:	public	String	name(){	return	…};	

	

Concrete	Aspect	
Synchroniza6on	

extends

Abstract	SM	Aspect	

extends extends

Figure 3.8: An overview of an example with abstract aspects and pointcuts.

With AspectJ the programmer can use and combine mechanisms such as inheritance, ab-

stract aspects/pointcuts, generics, marker interfaces and so on to develop reusable aspects. For

example, as shown in Figure 3.8, the programmer can develop abstract aspects (e.g., Parallel

Region) with abstract pointcuts (e.g., parallel) to encapsulate and share behavior and state

transversal to their sub-aspects [HU01, HS03]. Later on, for each application, these abstract

aspects are extended by concrete ones that encapsulate state and behavior specific to the target

application. The mapping between the abstract pointcuts and the join points to be intercepted

(e.g., pointcut parallel() : call (public void forceCalculation(..)) is defined in the concrete aspect

(e.g., Parallel Region). The concrete aspect works as a bridge between the core of the library

of aspects and the target application [GHJV95, Wam06].

38 3. Aspect Oriented Programming

The upper levels of the aspect hierarchy (e.g., Abstract SM Aspect) can also share point-

cuts with their sub-aspects (e.g., parallel region and synchronization). Hence, the sub-aspects

can build pointcuts upon definitions created in the upper levels. A pattern, known as elemen-

tary pointcut [LJ06, BLJT07], can be applied to reduce pointcut complexity and increase their

reusability, consisting of defining a given pointcut as the aggregation of simpler ones that can be

defined in the sub-aspects. Another common strategy to increase aspect reusability is to apply

the template method pattern [GHJV95] into the advices’ code [HS03]. With this pattern, advices

are composed of methods that can be overridden to satisfy di↵erent conditions. In Figure 3.8,

by default, threads wait at the end of the parallel region, however that behavior can be changed

by overriding the wait method in the concrete aspect.

Marker interfaces [GHJV95] can be used to signal that a class has join points of interest.

Marker interfaces can be useful when the join points to be intercepted can be selected based on

the datatype alone. Let us assume that the Synchronization aspect of Figure 3.8 synchronizes all

the public method calls of a certain class to make it thread-safe. To be reusable that mechanism

can use a marker interface (e.g., IThreadSafe) that signals the classes with methods to be

synchronized (Figure 3.9). Hence, that mechanism can be used in any class as long as the class

implements the marker interface. The specification of the classes that will implement the marker

interface can be done non-invasively in the concrete aspects using ITD (Figure 3.10).

1 abstract aspect Synchronization {
2 pointcut synchronizeMethods () : call (public * IThreadSafe .*(..));
3 ...
4 }

Figure 3.9: Marker interface example (abstract aspect).

1 aspect SynchronizationConcrete extends Synchronization {
2 declare parent : Particle implements IThreadSafe;
3 }

Figure 3.10: Marker interface example (concrete aspect).

Marker interfaces can also be useful when the join points to be intercepted by ITD or

pointcuts are from aspects that are not connected (i.e., cannot share the same pointcut or ITD

definition). To exemplify those scenarios, let us use the example of Figure 3.7. As we can

see that code is not reusable since it is tightly coupled to a concrete class from the domain

(Particle). However, abstracting that concrete class with a marker interface7 (e.g., ICheckpoint)

would make the code reusable. Checkpoint could be provided to di↵erent classes by making them

implement the appropriate marker interface instead of duplicating the code of Figure 3.7. Let

us assume that for fear of deadlocks8 checkpointing is performed before the synchronization of

methods by the Synchronization aspect. Without marker interfaces, the appropriate pointcuts

7The classes implementing that interface will be the target of the inter-type declaration. Hence, will have the
variable counter and the saveDataInDisk method.

8This scenario is unrealistic it is just to illustrate the point.

3.4. Aspects reusability 39

from the Synchronization and checkpointing aspects would be filled with the same method calls.

However, with marker interfaces, the checkpoint aspect can internally make all the classes that

implement IThreadSafe also implement ICheckpoint.

1 abstract aspect Synchronization <T> {
2 pointcut synchronizeMethods () : call (public * T.*(..));
3 }

1 aspect SynchronizationConcrete extends Synchronization <Particle >{...}

Figure 3.11: Example of using generics (abstract and concrete aspects).

AspectJ 5 introduced generics and annotations that, as marker interfaces, can be applied to

join points that can be selected based on their target type. The class thread-safe example could

have also been implemented with generics (Figure 3.11) or annotations (Figure 3.12).

1 @Retention (...) public @interface IThreadSafe {}
2

3 abstract aspect Synchronization {
4 pointcut synchronizeMethods () : call (public * (@IThreadSafe *) .*(..));
5 }

1 aspect SynchronizationConcrete extends Synchronization {
2 declare @type: Particle : @IThreadSafe;
3 }

Figure 3.12: Example of using annotations (abstract and concrete aspects).

There are scenarios where annotations or generics can be preferably used instead of marker

interfaces [Byn11]. Annotations can be applied to di↵erent elements besides only types (e.g.,

methods and fields) and allow to conveniently pass metadata (e.g., @parallel(nowait=false)). In

cases where a pointcut needs to match multiple types (e.g., call (public * T.*(..)) && within(Y))

instead of marker interfaces generics can be used to more accurately represent the relationship

among these types. In such cases, the problem of using marker interfaces (and annotations

as well) is that they are defined individually and alone they are meaningless, whereas with the

generic aspect the relationship among types is explicitly expressed (e.g., aspect callofTinY <

T, Y >). Also, the approach with generics would be less error-prone since all the participating

types have to be explicitly defined, which is not the case with marker interfaces. There are

also situations where annotations or generics cannot be used, for instance, AspectJ does not

allow annotations or generics to be used as targets of ITD [Ecl18b] as the case of the checkpoint

example (lines 3 and 5 of Figure 3.7). Nevertheless, that code could still be improved by

combining generics with either annotations or marker interfaces. In an improved version, as

shown in Figure 3.13 that combines generic and marker interfaces, the user should not have to

care about which interfaces to implement, all of these details are handled internally by the aspect.

Regarding annotations, a more in-depth explanation of their advantages and disadvantages will

be provided later in the context of programmability and maintainability.

40 3. Aspect Oriented Programming

1 abstract checkpointing <T>
2 {
3 interface ICheckpoint {} // Marker interface
4

5 declare parents : T implements ICheckpoint , Serializable ;
6

7 public int ICheckpoint.counter = 0;
8

9 public void ICheckpoint.saveDataInDisk(Particle a) { ... }
10 }

Figure 3.13: Improved checkpointing example.

Reusable aspects not only have to define the appropriate abstractions to expose the join point

but (might) also need to manage state and behavior (e.g., methods) that is tightly connected

with these join points. For instance, in the checkpoint example, the variable counter and the

saveDataInDisk method are, respectively, state and behavior that is tightly connected to the

classes that implement the ICheckpoint interface.

By default, aspects are singletons and cannot be explicitly instantiated. Nonetheless, it is

possible to create (implicitly) instances of the same aspect. AspectJ o↵ers mechanisms (i.e.,

aspect instantiation) to map the creation of aspects instances to objects, types, and control

flows (e.g., a certain method execution). With AspectJ, it is possible to add state to objects

through both ITD and aspect instantiation per object. However, the former provides state to all

instances of a given object, whereas in the latter it is possible to narrow the subset of a↵ected

objects to only these that match the join points intercepted by the pointcut used as a parameter

of the aspect instantiation mechanism. R. Laddad stated that aspect instantiation per object

may be preferable to introduction when developing reusable aspects (arguing that the former

might provide a more elegant solution) and that the choice between the two approaches is a

“balance between elegance and simplicity” [Lad09].

In some cases, it is desirable to restrict the state and behavior to be added to only a subset

of objects or during a specific event. In such cases, some authors considered the use of ITD as

being a code smell (labeled Aspect Laziness), since its e↵ects are felt in all instances of a given

object and last for their entire lifespan [MF05]. Some authors also suggest replacing ITD with

aspects that map the state and behavior to the proper join points, a detail description of this

refactoring can be found in [Mon04]. Although the aspect instantiation mechanism o↵ers (to a

certain extent) a solution for the mapping between state/behavior and join points, we favor the

use of internal structures in the reusable aspects to do so. The latter o↵ers to the programmer of

reusable aspects more control of the structure used to perform the mapping. In some scenarios,

a simple hashmap will be su�cient while on others synchronized structured might be needed

(e.g., concurrent hashmap)9.

9Until 2013 the aspect instantiation mechanism was not thread-safe [Bug].

Chapter 4

Related Work

4.1 Libraries, frameworks and languages

Multicore systems are widely available in desktop machines, and it is expected that the number of

cores in these systems continues to grow over the next decades. To answer to the ever increasing

of parallelism capabilities provided by the hardware manufacturers, popular languages such as

C/C++ and Java were extended to support that parallelism. Some of the extensions are low-

level and provide only a minimal set of constructors to exploit parallelism (e.g., POXIS Threads

and Java Thread API). With low-level extensions, the programmer can develop applications

with higher performance but at the cost of more programming e↵ort and a greater level of

expertise in both the domain- and parallelism- related concerns. Typically, these highly tuned

codes are synonymous with high complexity and low software legibility, reusability, and often

maintainability. Nevertheless, these trade-o↵s are acceptable in highly tuned domain-specific

libraries (e.g., BLAS [BPP+02]), since the user can transparently benefit from the performance

of these optimized implementations. Unfortunately, in many domains, it is not possible to pack

these optimized implementations into libraries and programmers have to develop their (own)

implementations.

Unsurprisingly, the increase in popularity of PP, and consequent use by non-experts, in-

creased also the demand for higher-level abstractions that can be used to parallelize code of

di↵erent domains more easily. Libraries, frameworks, and even programming languages can pro-

vide these higher-level abstractions (e.g., OpenMP and Intel Threading Building blocks (TBB)).

This trend of moving from lower to higher-level abstractions was also felt in the evolution of

programming languages themselves to meet the increase of machine power, and consequently

software complexity.

41

42 4. Related Work

4.1.1 SM and annotation-based approaches

TBB is a C++ template-based library that provides abstractions for SM parallelism without

the need for special compilers. Some of TBB strongest points are its sophisticated work-stealing

scheduler, cache-aware memory allocator, concurrent collections (e.g., hashmap and vectors),

parallel patterns [MRR12] (e.g., sort, reduce and for), and the flow graph interface. However,

TBB does not support alternative scheduling strategies [KSG09], as OpenMP does1. Further-

more, the TBB scheduler is suitable for applications with load balancing issues [Rei07], however,

in applications without these issues, it might be slower than a static scheduler [CM08].

In TBB to parallelize for loops, these have to be turned into method calls (e.g., parallel for)

that receive the loop range (i.e., begin, end and stride) and body as parameters. Before the

introduction of lambdas in C++, this loop method transformation was considered to be a great

hindrance to learn TBB2 because of the warping of the loop body as a functor [Rei]. Since then,

lambdas have reduced the amount of logic needed to define the functor making it more legible.

TBB hides from the programmer some of the lower-level PRC (e.g., explicit thread manage-

ment and work distribution), increases the level of abstraction by relying on C++ templates and

promotes a more structured programming style. However, this requires more program design,

which can be cumbersome in legacy code [KSG09]. In TBB, as in traditional PP approaches,

the PRC are mixed up with DRC a↵ecting code maintainability and evolution. Hence, making it

harder for the programmer to reason about or debug the (sequential) domain code in isolation.

Finally, to run the code sequentially, the programmer has to explicitly disable the parallelism

through a method call to the TBB library, unlike OpenMP where parallelism can be disabled

by simply omitting a compilation flag.

OpenMP hides several lower-level PRC and provides a certain degree of customization of

these concerns both through parameterizable annotations. Compared with other intrusive ap-

proaches (e.g., TBB), annotations allow for a better separation between domain and PRC,

reduce the code complexity and intrusiveness of the PRC. OpenMP promotes an incremental

development approach, where PRC are inserted into the source code as annotations without

changing the domain code [VGS13]. This last advantage, in particular, makes annotation-based

approaches especially suitable for legacy code. However, the main drawback of annotations is

that they are restricted to a set of constructors and most of their parameters have to be known

at compile-time. Moreover, sophisticated parallelism-related strategies force the use of explicit

constructors, such as threads ids, object locks and so on. Consequently, the benefits of anno-

tations are lost in those sophisticated strategies, and the PRC are explicitly mixed with DRC.

Finally, OpenMP, as well as TBB, are limited to SM parallelism which limits their scalability.

1A comparison between the OpenMP and TBB constructors can be found in [V.11].
2James R. said in 2009 that “It was the toughest thing to teach about using Intel TBB” [Rei].

4.1. Libraries, frameworks and languages 43

The OpenMP standard does not o�cially support Java, but there are in the literature ex-

amples of Java implementations, namely JOMP [BK00], Pyjama [VGS13] and JaMP [KBVP07]

(or cluster ClusterJaMP [VBP11]). The last two proposals extend their implementations to

contemplate, among others, GUI applications and cluster environments, respectively. In these

proposals, the parallelism is expressed through special directives that mimic as much as pos-

sible the OpenMP pragmas. These directives are special Java comments that are interpreted

by appropriate intermediate software (e.g., precompiler) that injects the desirable parallelism-

related constructors. These constructors are injected into the base code in JOMP and Pyjama

by their source-to-source precompilers that transform the code accordingly (including calls to

their respective runtime libraries) and in JaMP by using the Jackal framework [VHBB01].

Although, JOMP, Pyjama, and JaMP implement, to some degree, the OpenMP standard

(varying from version 2.0 to 3.0) they lack some relevant features for parallelism in Java

[KVBP08]. In that list, one can include, among others, the extension of the OpenMP data

directives to objects and their fields, user-defined reductions, parallelization of loops over Java

collections (for each) and task parallelism. Moreover, as with OpenMP and TBB, JOMP and

Pyjama are limited to SM parallelism. JaMP, however, o↵ers DSM parallelism since it is built

on top of the Jackal framework. JaMP o↵ers the OpenMP constructors and Jackal ensures

that, through their own modified Java compiler [MMPS09, VHBB01], the resulting multithread

applications run in a cluster [VHBB01]. However, unlike JOMP and Pyjama that are pure

Java, JaMP lacks portability because of relying upon the Jackal framework [TRE+13]. These

OpenMP proposals for Java su↵er from the same limitations presented earlier for OpenMP.

Java annotations mechanism introduced in Java 1.5 o↵ers a more robust alternative to

comment-like directives. Annotations are an inbuilt Java feature and o↵er, among other ad-

vantages, a more reliable support, do not require extra precompilers to interpret them and can

be easily extended by the users. The downside of annotations compared with directives is that

their use is limited to well-known code structures (e.g., classes and methods). Hence, imple-

menting OpenMP constructors based on Java annotations, typically, would impose some code

restructuring (e.g., method refactoring). Works such as PAL [DPV+08] and Jconqurr [GSBW09]

use Java annotations to express parallelism. The former focus on asynchronous method3 paral-

lelism, whereas the latter combines both annotations and directives to provide parallelism. In

Jconqurr the directives are static method calls that, among others, are used to signal mean-

ingful information. For instance, to parallelize a loop for, the method enclosing the loop is

annotated (e.g., @ParallelFor) and the loop is labeled by having a directive call right before it

(e.g., Directives.forLoop();). The directive is used to distinguish the loops that should (or not)

be parallelized.

3In PAL those methods are not allowed to change object state [DPV+08].

44 4. Related Work

4.1.2 DM

Arguably, the main advantage of MPI over OpenMP is that it can run in both SM and DM

architectures4. However, MPI typically requires more programming e↵ort and changes to the

base code than OpenMP. Most work to implement the MPI standard in Java falls into two

categories [TRE+13, TTD03]: - pure Java (e.g., MPJ Express [SCB09] and F-MPJ [TTnD12]);

- using an intermediate layer that performs JNI calls to a native MPI implementation (e.g.,

mpiJava [BCF+99] and OpenMPI [VGRGS13]). The former has the benefit of portability but

at the potential cost of performance [TRE+13] and requires more work to adapt these imple-

mentations to upcoming features of the MPI standard. The latter is less portable but can easily

evolve along with the native implementation and can, potentially, have a performance close to

the native MPI implementation. There is also work that implements their own message-passing

constructors (e.g., PCJ [NB12]). However, using an established and well-known standard such

as MPI o↵ers more reliability and an increase in user acceptability.

OpenMPI, besides being one of the most popular implementations of MPI [VGRS16], also

supports Java [VGRGS13] using a JNI-based approach. The Java implementation provides

most of the features from MPI 3.1 standard, however, in our opinion, it could be extended to

contemplate additional higher-level features that are very handy for programming MPI in Java.

Namely the ability to send/receive objects between processes, scatter and gather of some Java

collections, among others.

Java, unlike C/C++, does not allow to explicitly manipulate pointers, which makes the

building of the messages to be exchanged among processes more cumbersome and complex.

In some cases, the programmer has to resort to workarounds (e.g., wrapping primitive data

types into an array), or use specific routines (e.g., slice), to correctly wrap the message. In MPI

applications, it is common to express parallelism by scattering/gathering data across processors.

In this pattern, normally the gather and scatter functions are isomorphic (scatter.gather =

gather.scatter). Therefore, instead of manually, and separately, defining the scattering and

gathering of the data, the programmer could merely provide the desired distribution type, and

the rest would be handled transparently. Especially, since some of these distributions are very

verbose and complex (e.g., distribution of matrices by columns) and because frequently the

programmer only wants to split/collect the data evenly among/from processes. All of these

small, cumbersome, and error-prone technicalities can be hidden behind a high-level API that

exploits Java method overload capabilities to extend the functionality while keeping some of the

names from the MPI standard routines. Providing the previously mentioned abstractions on

top of OpenMPI improves the programmability, reduces bugs and retains the high performance

of the low-level OpenMPI implementation.

4There are works (e.g., [BME07]) that tried to extend OpenMP to run in DM architectures as well, but
o�cially the OpenMP standard does not support these architectures.

4.1. Libraries, frameworks and languages 45

Regarding the tangling and scattering problems, these tend to be more accentuated in MPI

than in OpenMP applications. While in OpenMP the parallelism is commonly localized in some

specific spots in the domain code, in MPI the parallelism tends to cut across several classes. This

issue mainly happens because OpenMP is frequently used for loop-level and task parallelism,

whereas MPI for explicit data decomposition. Hence, typically MPI parallelizations require more

code design and restructuring.

4.1.3 PGAS and Hybrids (SM + DM)

The Partitioned global address space model (PGAS) implements a DSM model, which aims to

combine the scalability of the DM model with the programmability of the SM model [YBC+07].

Usually, the PGAS model implements a SM abstraction over message-passing systems, creating

an illusion of global shared memory space. Typically, in the implementations of this model, there

is a middle layer that transparently performs the communication among processes. This model

is sometimes used as an alternative to hybrid implementations such as MPI with OpenMP.

Titanium [YSP+98], UPC [EGCSY03], Chapel [CCZ07], and X10 [CGS+05] are implemen-

tations of the PGAS model. Titanium is a Java-based language, UPC is a C extension, Chapel

and X10 (Java-derived) are new PP languages. All of them aim for high performance and pro-

ductivity, and (excluding UPC) follow the OO paradigm. From the programmability point of

view, one of the main advantages of these technologies is their unified syntax to represent SM

and DM concerns. Furthermore, the programmer can seamlessly access memory from other

processes without having to perform any explicit communication. However, since some of the

communications are performed implicitly, extra care has to be taken to not degrade performance

as a result of too many remote memory accesses. Hence, even without explicitly performing the

communications the programmer might have to reason about them. Even though some of the

communications are performed underneath the system, the programmer sometimes (still) has to

explicitly perform some form of it (e.g., UPC upc all reduce).

Languages such as Chapel and X10 provide high-level constructors and follow the tendency

of more modern languages, which have compact syntaxes that help to write concise code. Some

of these high-level constructors include parallel loops embedded in the language (e.g., coforall)

and global synchronization among all threads from all processes. For instance, the global syn-

chronization o↵ers a cleaner solution than performing the synchronization explicitly in a hybrid

MPI with OpenMP implementation. Hiding parallelism behind the language loops attenuates,

to a certain extent, the tangling and scattering problems. Even though such languages hide

several low-level parallelism-related details, the programmer still has to invoke some form of

thread/process5 (e.g., Locales[...] in Chapel and Places.places() in x10). Furthermore, locality

5In some of those languages, the concept of thread/processor was replaced by higher abstracts (e.g., tasks
and places).

46 4. Related Work

is important for performance, particularly in the PGAS model and is up to the programmer

to handle it explicitly. For instance, UPC o↵ers an extended (parallel) for that besides the

typical parameters also receives the a�nity (e.g., upc forall(i=0; i <N; i++; i)). Moreover,

PGAS models, as with SM, can have race conditions; therefore explicit synchronization might

have to be used. In the end, the PRC are still tightly mixed with the DRC. Furthermore, even

though PGAS o↵ers a global view of memory across di↵erent processes, SM and DM concerns

are still tangled with each other. For instance, in Chapel one have to explicitly di↵erentiate

between parallelization inside a target architecture (e.g., coforall) and across di↵erent targets

(e.g., Locales[...]).

Despite the developments made in PGAS languages several works still rely on hybrid ap-

proaches to combine the simplicity and e�ciency of multithreading with the scalability of

message-passing. The Parallel Java (PJ) library is an example of such work. PJ relies only

on Java to provide features inspired by the OpenMP and MPI standards [Kam07]. The main

advantages of PJ are: - having a unified API to express SM and DM PRC; - promotes OO pro-

gramming style, where some of the parallel constructors are expressed by creating methods and

objects (e.g., execute (0, n - 1, new IntegerForLoop()); - o↵ers additional useful features, such

as parallelization of some for each loops, user-defined reductions, exchange of objects between

processes; - and being pure Java. The last advantage makes PJ portable and facilitates extend-

ing the library by users. However, since PJ is pure Java its message-passing implementation

can, potentially, be slower than a Java MPI implementations that use a JNI approach.

One of the disadvantages of PJ is that it requires significant code refactoring. Commonly,

in PJ to use a parallel loop, it is necessary to create three objects (new ParallelTeam(), new

ParallelRegion() and new IntegerForLoop()), override two methods (the runs from the parallel

region and parallel for) and call two methods (one with the parallel region as a parameter and

the other with the body of the loop to parallelize). This refactoring resembles the creation of a

typical parallel region in Java using executors and runnables. Although that last remark can be

interpreted as an advantage, since the programming style is natural to Java programmers, in the

end, several intrusive lines of code have to be introduced. On the positive side, PJ abstracts from

some of the low-level details from the PRC. Notwithstanding, the programmer still explicitly

creates a team of threads and assigns them work. Although, PJ facilitates the use of debugging

tools (since it is pure Java), debugging and reasoning about the domain code in isolation is

simply not possible. Finally, although PJ is inspired in some of the MPI features, it uses its own

API making its adoption di�cult [TRE+13].

4.2. OO mechanisms and skeletons 47

4.2 OO mechanisms and skeletons

Traditional approaches su↵er from tangling and scattering problems since the PRC are explicitly

mixed with DRC. These issues are especially problematic in applications written in OO languages

since parallelism can crosscut multiple classes. These problems impose strong limitations on

independent development, long-term maintenance, ability to debug and reason about the DRC

in isolation, among others.

A natural choice to implement PRC in OO systems is to use pure OO mechanisms, namely en-

capsulating these features using inheritance (e.g., white-box frameworks as ParadisEO [CMT04])

or decomposition (e.g., black-box). Both have their pros and cons, but most importantly, both

require changes to the base code and still mix DRC with PRC. Two alternatives to introducing

the PRC directly in the domain code is to use inheritance (i.e., subclassing) or composition

through the use of the decorator pattern. Both techniques can be used to reuse and extend func-

tionality. For instance, the PRC could be integrated with the domain classes by extending or

composing these classes with modules providing di↵erent parallelism models (e.g., multithread-

ing and message-passing). Some of the disadvantages of the subclassing approach in Java are: -

inflexibility because of the impossibility of extending multiples classes; - not scaling when it is

necessary to compose multiple features (e.g., hybrid parallelization); - and having to statically

modify the classes hierarchy with features that might not be semantically related with the do-

main code. The decorator pattern provides a more flexible and scalable solution than subclassing.

However, this approach can lead to a considerable amount of boilerplate code (e.g., forwarding

methods and smaller objects). Moreover, in some cases it is hard to implement without major

refactoring (e.g., code relying on concrete types), making it hard to debug and reason about

the code (e.g., multiple decorators combined in a chain). Although, these approaches reduce

the number of PRC mixed with the domain code they still introduce some traces of it. These

approaches are presented in more detail in the next chapters.

Lithium [ADT03] and JaSkel [FSP06] are Java frameworks based on the concept of Skeletons

[Col91, GVL10], which encapsulate the details of certain parallelism patterns and provide com-

positional properties. These frameworks require the creation of classes to represent the tasks to

be performed and the instantiation of a particular skeleton to coordinate the execution of these

tasks. This approach has three main limitations: - the base code is polluted with sca↵olding code

to redirect the execution to the skeleton framework; - skeletons only encapsulate simple paral-

lelism models (e.g., farm); - it would be di�cult to implement multiple parallelism alternatives

on top of this approach, as execution issues are delegated to the skeleton framework. YaSkel

[NS09], the successor of JaSkel, ameliorates the last limitation by using dependency injection

[CI05] to delay the provision of the concrete skeleton implementation until load-time.

48 4. Related Work

4.3 AOP

AOP and FOP [Pre97, BSR04] are programming paradigms based on rewriting mechanisms

that can be used to modularize the CCC. AOP provides e↵ective mechanisms to encapsulate

individual features, and class refinement6 [NC08] is a simple but powerful enough mechanism.

The main advantage of class refinement is that it is based on well-known OO concepts, which

o↵ers a smoother transition and a shorter learning curve. Some argue that those paradigms

(i.e., AOP and FOP) can be combined to complement each other [Ape07]. We do not disagree

with that point of view; however, we believe that to build a framework for parallelism some of

the AOP weaknesses can be attenuated with proper structure and that most of these weaknesses

do not a↵ect so much the framework user but more its developer. Moreover, we also believe

that some of these weaknesses are not so pronounced in the context of parallelism.

Among others, our framework should be easy to use and maintain, while at the same time

flexible. We believe that using a single technique (e.g., AOP) with stable tools and a big

community behind it helps to increase the chances of achieving that goal. Hence, we favor the

use of AOP, in this context, but acknowledging that using FOP or a combination of the two

could also be a suitable solution but with its own set of challenges.

4.3.1 AspectJ extensions

[MK03, AE06, Har06, CC07, JMOA08, XHG09, ACN09, CV13, DM14] proposes extensions to

the AspectJ join point model some of which could impact the implementation of parallelism-

related modules.

[Har06] proposed a join point for loops, and suggested an ad hoc pointcut to intercept array

accesses and indices. That work also used tailor-made aspects for the parallelization of some

case studies. [DM14] proposes a pointcut for loops that detect if some of these loops are paral-

lelizable, however, because of the intrinsic complexity of automatically detecting parallelizable

loops the applicability of that pointcut is very limited. A pointcut for loops looks, at first glance,

promising but there are several technical problems associated with it. For instance, the identi-

fication of di↵erent loops within a method, dealing with loops with ambiguous returning types,

fragility (i.e., minor changes to the base code can a↵ect a loop pointcut), and performance (i.e.,

intercepting each loop iteration can introduce a significant overhead). We argue that turning a

parallelizable loop into a method provides a simpler solution, which avoids many of the problems

of pointcut for loops. The “inconvenience” of creating the loop method is insignificant compared

with the problems previously mentioned. Although this approach may appear drastic at first, in

reality, languages such as TBB and UPC follow the same strategy. Notwithstanding, exposing

6In this work, we use the same definition used by S. Chiba et al. in the paper [NC08] to define class refinement,
namely: “The term ”refinement” is generally used in the context of formal methods. However, in this paper, it is
used as a language mechanism for the extension to an existing class.”.

4.3. AOP 49

loops is the key to enable aspect modules to inject and compose di↵erent loop distributions

(e.g., combining static DM with dynamic SM loop distributions). B. Harbulot in [Har06] also

recognizes the value of method loops for parallelism-related aspects in AspectJ.

In the context of parallelism, pointcuts to intercept arrays indexes/values [CC07] would be

helpful, in our opinion, mostly in certain MPI parallelization patterns (i.e., the mapping between

the copy and original indices of an array scattered among processes). Possibly, such pointcut

could also be used to implement a PGAS model. However, without any additional logic to

remove unnecessary interception of indices (e.g., compiler optimization), this approach would

most likely introduce a huge overhead. In the context of parallelism, it is not clear to us the

main practical advantages of such a fine grain join point. Moreover, using the same reasoning

of the loop method, the accesses to the arrays to be intercepted can be performed through

setters/getters methods, which, among others, have the benefit of hiding implementation details.

Furthermore, Java provides collections (e.g., ArrayList) with proper accessor methods that can

be used instead of arrays. Regarding pointcuts for local variables [JMOA08], we fell that it

could be useful in specific scenarios of SM parallelizations. However, in Java, the variables most

relevant for parallelism are (usually) those belonging to object fields (more details are provided

in Chapter 5). Therefore, the practical benefit of that pointcut, in the context of parallelism,

is somewhat limited as well. Nonetheless, having such pointcut would be handy since, in some

cases, turning local variables into fields can be considered as a code smell [Qub, FBB+99].

[XHG09, ACN09] proposed pointcuts to intercept synchronized blocks and entire blocks of

code as join points, respectively. The former pointcut would not be useful in the context of our

work since our main goal is to remove PRC from the base code, including synchronization blocks

as well. If all the PRC are encapsulated into proper modules, there is no need to have a pointcut

that intercepts synchronization blocks. In the latter pointcut to intercept a given code region,

the programmer has to specify the beginning and end of that region (e.g., between two method

calls). This pointcut has several limitations, namely: - it can only intercept certain block regions

due to dependencies between instructions; - the programmer has to define the region boundaries

explicitly; - its fragility. For the most part, this pointcut tries to intercept a block of code that

could have been a method, but it is not. Applying method refactoring is by far less complex

than defining the limits of the code region to be intercepted. Moreover, typically these methods

make the code more readable.

[AE06, CV13] propose the use of special annotations to make statements of the base code

interceptable by AspectJ. These annotations, to some extent, work as hook methods but are

more explicit in their intentions. This approach imposes the extension of the Java annotation

API and the AspectJ pointcut language and requires the use of a precompiler to convert the

annotations into AspectJ code. Some of the advantages pointed out in [AE06] is that annotations

avoid the use of empty methods and the overhead of method calls. However, this annotation

50 4. Related Work

approach also leads to several empty annotations interfaces, and nowadays these calls to empty

method will likely be inlined. Finally, as acknowledged in [AE06] “annotations require intrusive

(nonoblivious) changes to the base program and do not completely modularize concerns.”.

Pointcut fragility [SG05] is a known problem in AOP and certainly would not be attenuated,

most likely the opposite, with the introduction of finer grain and less stable join points. These

join points would, most likely, require complex and fragile pointcuts that are hard to maintain

[KAB07]. These issues may be some of the reasons why such pointcuts were never o�cially

supported by AspectJ. Method call join point o↵ers a more stable abstraction that can be

used to inject the PRC. Furthermore, Java programmers are familiarized with the concept of

extending behavior based on method calls (e.g., with method overriding).

4.3.2 AOP and Parallelism-related concerns

AOP is the central theme of several publications and is used both in academic and enterprise

environments [HJ09]. AspectGrid [Asp] and JEColi [EMR09], both developed at the University

of Minho, are two examples of projects developed using AOP technology, specifically AspectJ.

AspectGrid creates modules that adapt scientific applications to grid computing environments.

This implementation uses AspectJ to provide distributed execution services, fault tolerance

mechanisms [SM11], dynamic adaptation to resources [MS11], among others, through plugging

the respective aspects. The works [PS+10] and [PSR13] used AspectJ to develop parallel versions

of the JEColi framework where the parallelism-related code was moved into proper aspects.

[SLB02, TUSF03, CT04] and [Ban07] used AspectJ and AspectC++, respectively, to sepa-

rate distribution concerns from domain code. For instance, [SLB02] used AspectJ to implement

distribution and persistence requirements in the information system Health Watcher. The au-

thors concluded that AspectJ provided a more robust implementation than with plain Java.

[ABVM10] introduced the concept of asynchronous advice, a technique to delay the execution

of the code associated with a pointcut. The idea is similar to delay execution of certain blocks

of code, which can also be used to introduce parallelism. [SMC06, Sob06] discusses the use of

AspectJ to modularize and separate from the domain code di↵erent categories of PRC (e.g.,

concurrency and partitioning). Based on that work, reusable libraries for concurrency [CSM06,

CS07], partitioning [SCM07], and DM [GS12] were developed. [SM08, GS09] proposes a domain-

specific language (DSL) [VDK02] that generates AspectJ code (needed for the PRC), hiding it

from the user [GS12], and o↵ers improved support for the composition of aspects. However,

those DSL do not support AOP quantification, “su↵ers a code bloat problem similar to that

of C++ templates” [SM08], and knowledge about AspectJ is still required when the developer

needs to extend or add functionality. A survey of DSL for aspect languages can be found in

[FDNT15] including the advantages and disadvantages of such an approach.

4.3. AOP 51

We build upon the knowledge from previous work but di↵ering from it, by providing a com-

plete framework of reusable aspects for clusters of multicores instead of only domain-specific

[PS+10, PSR13], SM [CSM06, CS07], or DM [SCM07, GS12] PRC. The framework provides

two libraries, based on well-known standards (i.e., OpenMP and MPI), with competitive per-

formance and easy composability – enabling the development of hybrid parallelizations. These

libraries are enhanced with additional parallelism-related features (e.g., object reduction and

DM dynamic scheduler). The framework relies solely on AspectJ and Java without resorting

to pointcut extensions or DSLs. The framework was developed to attenuate, from the per-

spective of the framework user, the composition problems of AspectJ, and the majority of its

constructors rely on a smaller subset of AspectJ pointcut language. Furthermore, the parallelism-

related constructors of our framework can be expressed with annotations and pointcuts. The

former o↵ers an elegant solution and the latter adds the flexibility necessary for sophisticated

parallelism-related constructors. Unlike [CS07], our annotations are injected using ITDs, which

avoid mixing these annotations with the domain code. Finally, the framework o↵ers guidelines

and design rules to reduce the likelihood of falling for the pitfalls of programming with AspectJ.

Chapter 5

Proposed Approach

5.1 Requirements

In the past few decades, the increase of hardware performance opened a world of new possibilities,

and software complexity grew, hand in hand, with that of the hardware. Nowadays, parallel

machines are mainstream and require new software programming techniques to manage the PRC.

These PRC add additional complexity to the software development process since programmers

have to be concerned about the implementation of the core (i.e., domain) functionality and

techniques to e↵ectively exploit parallelism across multiple target platforms [MS13a].

Our primary goal is to provide an approach to reduce the complexity of PP while still

achieving competitive performance. We believe that such an approach should promote the

development of parallel applications with the following characteristics (core requirements):

1. E�ciency;

2. Modularity;

3. Pluggability;

4. Composability.

We want to develop a complete framework to support the development of parallel applications

with the previously mentioned characteristics and, additionally, that framework should provide

the following traits (additional requirements):

1. Usability;

2. Extensibility;

3. Reusability.

52

5.1. Requirements 53

5.1.1 Core requirements

E�ciency

The first requirement is self-explanatory – the approach should enable the development of e�-

cient parallel applications and e�ciently support commonly used parallelism-related abstractions

(e.g., loop distributions), or otherwise, it would defeat the entire purpose of parallelism. Al-

though e�ciency is the primary goal, we do not believe that it should be achieved at all costs.

We are willing to trade-o↵ some performance if it leads to a decrease in the complexity of the

software development process. Nonetheless, the parallelism-related constructors should have

performance competitive with equivalent intrusive implementations (e.g., OpenMP and MPI).

Modularity and Pluggability

A key concept, transversal to many sciences, is the reduction of the complexity of a task by

splitting it into smaller manageable tasks. “The technique of mastering complexity has been

known since ancient times: divide et impera ...” [Dij79]. Following the suggestion of D. Parnas

[Par72a], a system should be divided into modules that encapsulate complex or likely-to-change

design decisions. Moreover, those modules should be independent, interchangeable and cope

with a well-defined responsibility (i.e., single responsibility principle [Mar03]). Therefore, the

PRC should be encapsulated into well-defined modules that can be easily changed (i.e., mod-

ularity). For instance, synchronization and data replication are commonly used approaches to

deal with data races. A well-designed modular system provides proper modules to, for example,

encapsulate multiple strategies to deal with data races. Such a system would enable the users

to tune the parallelization by changing, testing, and choosing the most appropriate module. In

some cases using a module that provides synchronization capabilities is enough; in others, the

use of a module that replicates data per thread is more appropriate.

The modularization of the PRC into well-defined modules that perform a specific task pro-

motes the development of parallel applications with higher cohesion1 modules. Consequently,

providing structure and abstraction, promoting correctness (i.e., it is easy to debug smaller and

highly cohesive modules) and enabling independent development (i.e., programmers can work

independently on di↵erent modules).

The parallelism-related modules should not be tightly-coupled with the base code and vice-

versa (i.e., reducing the coupling between parallelism- and domain- related modules). To achieve

that goal, a common ground between the base code and the parallelism-related modules should be

established, where both communicate through a proper interface. Furthermore, the parallelism-

related modules should be (un)plugged surreptitiously from the base code, ideally, without

1Measures the “degree to which the elements inside a module belong together”[YC79]. The higher the module
cohesion, the better.

54 5. Proposed Approach

requiring any change to it (pluggability2 [SCM07, GS09, MS11]). The base code is oblivious

to the presence of the pluggable modules (obliviousness). Hence, these parallelism modules

are optional, meaning that the base code works correctly without them. Pluggable modules

facilitate the use of the design for change principle introduced by D. Parnas [Par79], that

advocates for the development of software that can be extended with new functionality in a

non-invasive fashion [Ape07]. Pluggability also helps with correctness, since the programmer

can e↵ortlessly (dis)connect di↵erent PRC by (un)plugging the correspondent modules which

facilitates debugging. Furthermore, modularity and pluggability enable the support of sequential

semantic3[MRR12]; the user can unplug all the parallelism-related modules, and the application

will correctly execute sequentially. By providing a modular system with pluggability capabilities,

we can further aim for composability.

Composability

Composability is highly dependent on modularity. Initially, a big system should be divided

into smaller modules, which can later be composed/combined, in di↵erent orders, to provide

solutions to a given problem. It is common to combine multiple PP paradigms (e.g., SM + DM)

to exploit hybrid environments as clusters of multicore machines, which increases the complexity

of PP even more. Therefore, it is paramount that modules, from di↵erent PP paradigms, can be

composed with a given base code with minimal intervention from the programmer. Otherwise,

for instance, to distribute the iterations of a loop across threads from multiple processes the

programmer would have to code the entire logic behind it. Such an approach besides being

inflexible to changes is also monotonous and error-prone. Whenever the programmer wants to

test di↵erent combinations of distributions among threads and processes, the code has to be

adapted again. Oppositely, in a system that encapsulates these low-level details into modules

which can be seamlessly composed with the base code, the programmer would only be responsible

for choosing the type of SM and DM loop distribution to be combined. The entire compositional

process of the two loop distributions would be performed in the background by the system. Thus,

this reduces the complexity and likelihood of bugs and improves software maintenance. Once

proven that the SM and DM loop distributions can be correctly composed with the base code,

regardless of the loop range, this heuristic can be reused reliably in di↵erent applications. The

same reasoning can be applied to other combinations of parallelism-related constructors of hybrid

parallelizations.

The composition should not be only attained among di↵erent PP paradigms, but also within

those paradigms themselves. More than just being able to compose modules from multiple PP

paradigms, the user should also be able to compose the (smaller) modules from a specific PP

2In the context of this thesis, we defined pluggability as the ability to add and remove modules from a base
code in an oblivious manner.

3Means that a program maintains the same semantics regardless of running sequentially or in parallel [MRR12].

5.1. Requirements 55

paradigm (e.g., SM). By providing a panoply of composable modules enhanced with pluggability

properties, the system promotes a flexible composition approach. Consequently, to parallelize

an application, the user is not forced to apply the same rigid composition structure (e.g., having

to add always the same paradigm-related module). Instead, the user has the flexibility of adding

multiples, a single or even no parallelism-related module(s).

Consequential properties from the core requirements

After guaranteeing that the framework enables the development of parallel applications with the

desirable properties (e.g., modularity and pluggability) we argue in favor of incremental develop-

ment [Dij79, BSR04, Sob06] to tackle the di�culty of PP. The programmer should break-down

the PP complexity by first separating between domain- and parallelism- related concerns. Ini-

tially, the programmer should focus mainly on implementing the DRC in a well-designed, main-

tainable and understandable manner. The programmer should first guarantee the application

correctness and only then focus on performance. Afterward, parallelism can be incrementally

added to the base code to speed up the application. The phase of adding parallelism itself

should be divided into multiple development steps as well, such as finding the hotspots to insert

parallelism, dealing with data dependencies, task granularity, load balancing and so on. It is

preferable to have an application that does what it was meant to do, even if with a lower per-

formance, then the other way around. With incremental and structured development not only

does the programmer break down the complexity of PP but also makes it easier to debug. The

programmer can separately and gradually debug di↵erent phases of the software development

and narrow down the sources of bugs and hazards.

Languages such as OpenMP and MPI4 provide abstractions that can be transparently

mapped to di↵erent architectures. This philosophy helps to reduce the complexity of PP and

also promises performance portability. The idea is that programmers can express parallelism

for di↵erent hardware (e.g., CPU and GPU) using a single syntax and the compiler generates

e�cient code for each target platform. However, achieving performance portability for di↵erent

platforms with this approach can be very hard. Most likely the user will have to make, at a cer-

tain point, versions which are tuned to specific target platforms. For instance, a parallel for with

a static block distribution will likely be suitable to a system with multicores since it is cache

friendly. However, it will su↵er a performance penalty in GPUs because of memory coalesce

[FPS15] problems. Modularity and pluggability in conjunction with composability, facilitate

performance portability. Di↵erent sets of modules can be swapped to meet the performance

constraints of the target architectures and composed to exploit hybrid environments. Moreover,

the user can change the parallelization based on the target platform (e.g., changing from a SM

to a DM parallelization) without adjusting the base code.

4With the SM and one-side communication features.

56 5. Proposed Approach

5.1.2 Additional requirements

Usability

Usability can be hard to measure especially because this depends on the users’ background. For

instance, a C++ programmer (typically) will learn TBB faster than a FORTRAN programmer

would. Nevertheless, the framework should try to minimize the set of new concepts that a

programmer with prior knowledge of OO programming, multithreading and messaging-passing

should learn. Furthermore, methodologies should be provided to the user to ease not only the

learning curve of the framework but also the task of PP.

Popular programming systems such as OpenMP and TBB o↵er high-level abstractions to

reduce the complexity of PP. Those abstractions hide some of the low-level details of PP (coined

by J. Reinders as the “assembly of parallelism” [Rei07]). Accordingly, it is also critical for the

reduction of the complexity of PP that the framework hides the low-level details of parallelism

from the programmer. The average programmer should not have to worry, for instance, about

implementing schedulers and thread pools from scratch but focus on the high-level details,

instead. Hence, the framework should provide commonly used high-level parallelism-related

abstractions so the programmer can concentrate on the essential.

Extensibility

Ideally, the framework would provide all the constructors that a user would ever need, how-

ever, that is an unrealistic scenario. Therefore, the framework should provide configurable

constructors to adapt to specific needs. As previously mentioned, the framework should provide

high-level constructors that hide most of the low-level details. Nonetheless, we acknowledge that

in some scenarios, (advanced) users should be allowed to access finer grain constructors to build

their tuned versions (e.g., a customized loop distribution). Users might frequently encounter

the same domain-specific parallelism-related constructors that by default are not provided by

the framework. Hence, users should be able to extend the framework with their own set of

constructors.

Reusability

The framework can achieve reusability by providing a set of reusable libraries, one per PP

paradigm, with commonly used PP abstractions. Furthermore, the user should be able to reuse

his/her customized modules in di↵erent applications. Based on the core requirements, one

question that arises is whether it is possible to create reusable libraries, which can be used in a

base code oblivious to their presence.

5.2. Conceptual overview 57

5.2 Conceptual overview

Modularity and pluggability are two essential properties used in this work to achieve compos-

ability, which consequently enables incremental and independent development. As pointed out

by S. Apel, “A module is a device to implement a concern and modularity is a consequence of

separation of concerns.”[Ape07]. Unfortunately, the traditional approach of mixing PRC with

DRC limits modular software development and has strong implications for software maintenance

and evolution. By tightly coupling the PRC with the DRC, in addition to obscuring the do-

main code, it also makes it harder for the programmer to reason and isolate parts of the code.

Consequently, changing either the DRC or PRC without them a↵ecting each other also becomes

harder. Annotations-based approaches and OO mechanisms (e.g., class extension) o↵er cleaner

solutions but do not completely avoid the mixing of domain- and parallelism- related concerns.

To deal with the problems previously mentioned we introduce parallelism layers, an idea

built upon the concepts of class refinement [NC08] and mixin layers [SB02]. Class refinement

is inspired by well-known OO concepts (i.e., class extension and method overriding), making

it familiar to OO programmers. With class refinement, one can add functionality and state

to a base class in a similar way to subclassing. Moreover, a class refinement can, just like a

subclass, access state and behavior from the base class. Nevertheless, class refinement, unlike

subclassing, does not alter the class hierarchy (i.e., extension), which avoids the scalability

problems of OO inheritance (e.g., exploding class hierarchy) [Kuc04]. These class refinements

can be seen as program transformations that can add additional behavior which the domain

code is oblivious to. Those simple, yet powerful, characteristics make class refinement suitable

to solve the tangling problems (detailed in Section 3.2) in a modular and pluggable manner.

Even though class refinement can be used to separate PRC from DRC, and consequently

solve the tangling problem, the PRC will still be spread across di↵erent class refinements, which

leads to scattering issues. Furthermore, with class refinement, multiple refinements can be

applied to the same class, but the same refinement cannot be applied to multiple classes. A

layer overcomes those problems by grouping related refinements together and by enhancing class

refinement with a mechanism to apply the same refinement to multiple classes (e.g., a mixin).

58 5. Proposed Approach

We aim to inject parallelism into applications through a framework based on the concept of

parallelism layers. These layers encapsulate a set of class refinements that can be non-invasively

attached to specific points of the base code (i.e., extension points5). These class refinements

work as code transformations, which the base code is oblivious to. Modularity is achieved by

encapsulating those code transformations into proper modules that will, in turn, be aggregated

into layers. Each layer represents a specific PP paradigm (e.g., SM Layer and DM Layer in

Figure 5.1) and each module represents a certain kind of code transformation (e.g., Parallel

region). Pluggability – an intrinsic property of class refinements – comes from the combination

of modularity and the fact that layers can be seamlessly added/removed to/from the base code.

Base	Code	

Par+cles	 MD	

SM	Layer	 DM	Layer	

Parallel	Region	

For	distribu+on	

Cri+cal	Region	
	

For	distribu+on	

Reduc+on	
	

Workflow	

Base	Code	

SM	Layer	

DM	Layer	

Hybrids	

Figure 5.1: A high-level overview of the parallelism layers approach.

Figure 5.1 shows a high-level overview of the parallelization of a program with two base classes

using our approach (for simplicity their methods/state are omitted). The green, blue, orange and

red rectangles represent the workflow of using the parallelism layers to parallelize applications,

the base code, the parallelism layers, and the parallelism-related modules, respectively. The

parallelization of an application is materialized by adding one or more layers, each composed of

one or more modules that in turn can encapsulate one or more code transformations.

5Points of the base code that are used to inject the PRC using our framework are labeled by us as extension
points.

5.2. Conceptual overview 59

With our approach, the programmer starts by developing and composing the SM layer6 with

the base code; inside that layer, the programmer includes the modules to be applied. In the

example of Figure 5.1, the programmer intends to inject a parallel region, a for distribution

and a critical region into extension points of the classes MD and Particles. After guaranteeing

the correctness of the SM parallelization, the programmer can then develop the DM layer using

the same process. At the end of the workflow, the SM and DM layers can both be composed

with the base code to provide a hybrid solution. Since the PRC are not tangled with the DRC,

the programmer only has to unplug the undesirable layer(s) to execute the base code without

parallelism or with only one PP paradigm. The modularity and pluggability, and consequently

composability, properties of the parallelism layers make this abstraction perfect for the quick

prototyping of di↵erent parallelism-related strategies. For instance, the programmer can test

di↵erent loop distributions and lock strategies just by swapping the appropriate modules or by

creating new layers with di↵erent parallelizations. Furthermore, with these properties, one can

aim for performance portability (i.e., layers can be (un)plugged based on the target architecture).

Modularity and pluggability do not come for free – to have both properties in addition to

o↵ering modules that encapsulate the PRC, the parallelism layers should also provide an explicit

interface. The designing of reusable and pluggable parallelism-related modules that can be

applied to di↵erent base codes without modifying either side is a surreal task. Consequently, the

parallelism and base code modules have to agree on some interface, which is a standard protocol

in some OO languages (i.e., di↵erent modules should communicate via interfaces [Par72b]).

The units of extensibility of our approach are method calls and accesses to fields, which are the

parallelism layers’ expectable interface. Coming back to the example of Figure 5.1, in that case,

the programmer would have to ensure that the points to be extended in the MD and Particles

classes are method calls. The next subsection presents a more detailed illustration of this process.

Limiting extensible points to only methods and fields accesses restricts the parallelism interface,

which eases its use by programmers, promotes more structure and reduces complexity. So far

the creation of the parallelism layers has only required the materialization of concepts commonly

known to OO programmers. Analogously, the creation of the method extension points and the

selection of PRC modules follows the same reasoning of creating a method to be overridden in

the future and creating classes in OO, respectively.

6Technically, the programmer could have also started with the DM layer.

60 5. Proposed Approach

5.3 Description

AOP provides an excellent background for materializing the concept of parallelism layers. AOP

has, among others, mechanisms that can: - emulate class refinements; - group related class

refinements together; - apply the same class refinement to multiple classes. Hence, avoiding the

tangling and scattering problems.

We have used AspectJ and its mechanisms, such as advices, aspects, and pointcuts, to

materialize the concepts of parallelism layer. From an empirical point of view, advices and

aspects can be seen as mechanisms capable of emulating class refinements and encapsulating

sets of related class refinements, respectively. The pointcuts establish the mapping between

refinements and the (base) classes where these refinements will be applied.

Framework	

extends
extends

injects injects

SM	Library	 DM	Library	

Concrete	SM	Layer		 Concrete	DM	Layer		

Base	Code	

Figure 5.2: The three main components for those developing parallel applications.

From programmer’s point of view, our materialization of parallelism layers with AspectJ

can be divided into three main components (illustrated in Figure 5.2), namely the libraries of

aspects, the concrete aspect layers, and the base code. All of these three components work

in a decoupled manner. Accordingly, our libraries of aspects were designed to be independent

of the join points of a specific base code. The libraries are composed of abstract aspects that

encapsulate behavior and state, transversal to their sub-aspects, and also composed of abstract

pointcuts without explicitly defined join points. To create a parallelism layer with these libraries,

the programmer extends the abstract aspect layer of the corresponding library (e.g., SM) into

a concrete one. Inside these concrete layers, the programmer selects the parallelism-related

5.3. Description 61

modules (e.g., parallel region). This selection process consists of the creation of (concrete) inner

aspects that extend the corresponding (abstract) ones from the library of aspects (e.g., abstract

parallel region). These concrete aspects encapsulate state and behavior specific to the base

code. Finally, the mapping between the abstract pointcuts and the join points to be intercepted

is also defined in the concrete aspects. Alternatively, instead of creating the inner aspects,

the programmer can use inter-type declarations (ITDs) combined with our annotations and

insert them directly into the concrete layer. By using ITDs, these annotations are not added

(intrusively) into the base code, but rather centralized in the concrete layer. The customization

of the parallelism-related constructors (e.g., chunk=2) with a pointcut approach is performed

through method overriding, whereas with annotations it is done using the annotation parameters.

Unfortunately, annotations are not as flexible as pointcuts. Hence, their use is limited to a set

of constructors.

The concrete aspect layer works as a bridge between the library’s core and the base code, re-

sembling the use of XML configuration files in the Spring AOP framework [Lad09]. Finally, from

the application’s point of view, sometimes it is necessary to expose join points (i.e., extension

points) using our design rules (explained in more detail in Section 5.3.3). This kind of approach

is known in requirements engineering as sca↵olding [CGS+09, Byn11]. In our framework, the

PRC are injected into method calls and fields. Hence, our design rules are mainly about turn-

ing join points from base code into points (e.g., method calls) that can be interceptable by

our framework constructors. Additionally, in some cases, it is expected that extra context is

provided, for example, the for loop body range (i.e., begin, end and step).

Programmers can choose from a panoply of parallelism-related code transformations. The

framework provides several commonly used parallelism-related constructors for both SM and

DM, most of them based on the OpenMP and MPI standards, respectively. Nevertheless, just as

with OpenMP and MPI parallelizations, sometimes di↵erent or more tuned code transformations

might be needed. Typically, such a situation would not be a problem because the programmer

could always use explicit calls to the API and customize their code transformations (e.g., a

handmade loop distribution). However, our framework philosophy is to not insert PRC directly

into the base code. Therefore, our framework provides specialized modules to support additional

code transformations, such as injecting behavior before and after a method call [KAB07, ea09],

manipulating arguments of a method, and creating user-defined loop distributions. In case these

additional transformations are still not enough, advanced users can always extend the libraries

with their own aspects, pointcuts, and advices to express their customized code transformations.

62 5. Proposed Approach

5.3.1 Illustrative example

This section uses the MD example of Figure 5.1 to show how the framework can be used to

parallelize applications. This example is based on the MD of the Java Grande benchmark suite

[SBO01] and it is also exploited in more detail in Section 6.

1 public class MD {
2 private final Particles particles;
3 private double epot, vir;
4 private int interactions;
5 ...
6 protected void updateControlVar(double e, double v, int i){
7 this.epot += e;
8 this.vir += v;
9 this.interactions += i;

10 }
11 protected void cicleForcesNewtonsLaw (){
12 epot = vir = 0.0;
13 particles.calculate_force(this);
14 }
15 ...
16 }

Figure 5.3: MD - Code snippet of the MD class.

1 public class Particles {
2 private final double fx[],fy[],fz[]; // forces
3 ...
4 Particles(final int size){
5 fx = new double [size];
6 ...
7 }
8 protected void calculate_force(final MD md){
9 for(int i = 0; i < totalParticles; i++)

10 forceNewtonsLaw(md, i);
11 }
12 ...
13 private void forceNewtonsLaw(final MD md, int pA){
14 ...
15 /** Save MD local variables values **/
16 double epot = 0.0, vir = 0.0;
17 int interactions = 0;
18 for (int pB = pA + 1; pB < totalParticles; pB++){
19 ...
20 if(/** pB inside the radius of pA**/){
21 ...
22 /** Calculating thirds Newton ’s law */
23 fx[pB] -= tmpFx;
24 fy[pB] -= tmpFy;
25 fz[pB] -= tmpFz;
26 ... // update local epot , vir interactions
27 }
28 }
29 /** Update of the force of Particle A **/
30 fx[pA] += fxAcc;
31 fy[pA] += fyAcc;
32 fz[pA] += fzAcc;
33 /** MD control variables actualization */
34 md.updateControlVar(epot , vir , interactions);
35 }
36 }

Figure 5.4: MD - Code snippet of the Particles class.

5.3. Description 63

Figures 5.3 and 5.4 present the most relevant code of the two main classes of the MD

case study, MD and Particles, respectively. For now, it is only relevant to know that the SM

parallelization adds a parallel region and a for distribution to the calculate force method call

in the class MD (line 13 of Figure 5.3) and critical regions to the class Particles. These critical

regions are added to the update of forces between two particles (inside the forceNewtonsLaw

method) and to the call of the updateControlVar method (line 34 of Figure 5.4). All those class

refinements (e.g., for distribution) were illustrated previously in Figure 5.1.

After having identified the constructors to use, it is time to apply the necessary design rules

(e.g., method refactoring). The programmer starts with the introduction of the for method

design rule (shown in Figures 5.5 and 5.6). Additionally, the programmer merely has to expose

the loop range of the for loop of the calculate force method (line 9 of Figure 5.4).

11 protected void cicleForcesNewtonsLaw (){
12 epot = vir = 0.0;
13 particles.calculate_force (0, particles.getTotalParticles (), 1, this);
14 }

Figure 5.5: MD - The for design rule in the MD class.

8 protected void calculate_force(int begin , int end , int step , final MD md) {
9 for(int i = begin; i < end; i += step)

10 forceNewtonsLaw(md, i);
11 }

Figure 5.6: MD - The for design rule in the Particles class.

After having applied the for method design rule, the programmer develops the SM layer by

first creating an aspect that extends the abstract SM layer (line 1 of Figure 5.7). Afterward,

the programmer creates concrete aspects that extend the parallel region (line 5) and the for

distribution (line 9) abstract aspects, chooses the desirable code transformations (i.e., parallel

and for static) and identifies the appropriate extension points (lines 6 and 10). The programmer

also customizes some for constructor options (lines 12 and 14).

1 aspect MD_SM extends SM_Layer
2 {
3 pointcut hotSpot (): call(protected void Particles.calculate_force(int ,int ,int ,MD));
4

5 static aspect parallel_Region extends Sm_Parallel{
6 pointcut parallel () : hotSpot ();
7 }
8

9 static aspect worksharing extends Sm_For{
10 pointcut for_static () : hotSpot ();
11

12 @Override public boolean no_wait () {return true;}
13

14 @Override public int chunk () {return 1;}
15 }
16 }

Figure 5.7: MD - The parallel for constructor with pointcuts.

64 5. Proposed Approach

After having applied the parallel for constructor, the programmer adds the critical regions.

Those regions required the use of the method design rule (shown in lines 26 and 30 of Figure

5.8) over the update of the forces. This design rule encapsulated lines 23 to 25 and 30 to 32 of

Figure 5.4 into a method (lines 35 to 39 of Figure 5.8). Finally, there is no need for additional

design rules to apply a critical region over the updateControlVar method call.

25 ... /** Calculating thirds Newton ’s law */
26 forceUpdate(pB , -tmpFx , -tmpFy , -tmpFz); // <--- Design Rule
27 }
28 }
29 /** Update of the force of Particle A **/
30 forceUpdate(pA , fxAcc , fyAcc , fzAcc); // <--- Design Rule
31 /** MD control variables actualization */
32 md.updateControlVar(epot , vir , interactions);
33 }
34

35 ... void forceUpdate(int p, double tFx , double tFy , double tFz){ // <--- Design Rule
36 fx[p] += tFx;
37 fy[p] += tFy;
38 fz[p] += tFz;
39 }

Figure 5.8: MD - Applying the method design rule to use the critical constructor.

After the design rules, the programmer adds to the SM layer a concrete aspect that extends

the synchronization abstract aspect and selects the appropriate parallelism-related constructor

(Figure 5.9). OpenMP o↵ers the possibility of naming critical regions so that threads can

di↵erentiate among those regions. All nameless critical regions are treated as being the same

one and consequently using the same internal lock. Rather than the traditional OpenMP critical

alike constructor, the programmer used a slightly di↵erent variation named critical method. This

constructor works as a synchronized method in Java. Thus, unlike with OpenMP, there is no

need to name the critical regions so that threads can di↵erentiate between those regions.

17 static aspect criticalParticles extends Sm_Sychronization {
18 pointcut critical_method () : call (... void ... forceUpdate (...)) ||
19 call (... void ... updateControlVar (...));
20 }

Figure 5.9: MD - Pointcut of the critical constructor.

The same parallelization with OpenMP (Figure 5.10) required less programming e↵ort than

using our framework. However, this will not always be the case as we will present in Section

6. Nonetheless, our framework also o↵ers annotations to inject the PRC (Figure 5.11). Besides

inserting the OpenMP annotations, the programmer also had to encapsulate the update of forces

within brackets (lines 12, 16, 22 and 26 of Figure 5.10). Furthermore, in addition to the code

tangling cause by mixing PRC and DRC, the critical(criticalForces) constructor was applied

twice, resulting in code duplication (line 11 and 21). The encapsulation into brackets and the

code duplication could have been avoided by simply creating a method out of the update of

forces (as it was done in our approach).

5.3. Description 65

1 ...
2 protected void calculate_force(final MD md){
3 #pragma omp parallel for schedule (static ,1)
4 for(int i = 0; i < totalParticles; i++)
5 forceNewtonsLaw(md, i);
6 }
7 ...
8 private void forceNewtonsLaw(final MD md, int pA){
9 ...

10 /** Calculating thirds Newton ’s law */
11 #pragma omp critical(criticalForces)
12 {
13 fx[pB] -= tmpFx;
14 fy[pB] -= tmpFy;
15 fz[pB] -= tmpFz;
16 }
17 ... // update local epot , vir interactions
18 }
19 }
20 /** Update of the force of Particle A **/
21 #pragma omp critical(criticalForces)
22 {
23 fx[pA] += fxAcc;
24 fy[pA] += fyAcc;
25 fz[pA] += fzAcc;
26 }
27 /** MD control variables actualization */
28 #pragma omp critical(criticalMDvariables)
29 md.updateControlVar(epot , vir , interactions);
30 }

Figure 5.10: MD - The OpenMP parallelization with the use of the critical constructor.

1 aspect MD_SM extends SM_Layer {
2 declare @method: ... Particles.calculate_force (...): @Parallel for static(chunk =1);
3 declare @method: ... Particles.forceUpdate (...) : @CriticalMethod;
4 declare @method: ...MD.updateControlVar (...) : @CriticalMethod;
5 }

Figure 5.11: MD - The parallel for constructor with annotations.

In the DM parallelization, the programmer wants a for that distributes the iterations of the

force calculation among processes. Furthermore, after the entire force calculation process, the

fields epot, vir and interactions from the MD object, along with the forces from the Particles

object, should be reduced among processes. As with the SM layer workflow, initially, the

programmer creates an aspect that extends the abstract DM layer. Afterward, the programmer

creates a concrete aspect that extends the for distribution abstract aspect (line 3 of Figure 5.12)

and identifies the appropriate extension point (line 4). This time, no for method design rule

is needed since the programmer can reuse the one from the SM layer workflow. Finally, the

programmer performs the data reduction by creating an aspect that extends the appropriate

module from the DM library (line 9) along with defining the data to be reduced, and after which

method. The communication routines and their data are specified in the data method (lines 12

to 17); detailed information about those constructors is provided on Sections 5.3.5 and 5.4.3.

66 5. Proposed Approach

1 aspect MD_DM extends DM_Layer {
2

3 static aspect workSharing extends Dm_For {
4 pointcut for_static () : call (... void calculate_force (..));
5

6 @Override public int chunk(){return 1;}
7 }
8

9 static aspect ReduceVariables extends Dm_Comm <MD >{
10 pointcut comm_after () : call (... cicleForcesNewtonsLaw ());
11

12 @Override public void data (MD md){
13 ...
14 md.setVir (allReduce(md.getVir () , Reduction_DM_OP.SUM));
15 ...
16 allReduce (md.getParticles ().getFx(), Reduction_DM_OP.SUM);
17 }
18 }
19

20 static aspect InitVariables extends Dm_Injection <MD > {
21 pointcut inject_code_before () : call (... cicleForcesNewtonsLaw ());
22

23 @Override public void inject_code_before (MD md) {
24 if(! isMaster ()) md.setInteractions (0);
25 }
26 }
27 }

Figure 5.12: MD - The DM initial parallelism layer.

After executing the base code with the DM layer, the programmer noticed that something was

missing (i.e., a variable initialization7) that could not be provided by the framework constructors.

Nevertheless, the programmer was able to create and add the additional missing logic to the

base code (lines 20 to 26).

To create a hybrid parallelization, in this example, the programmer only needs to add both

the SM and DM layers to the build. Behind the scenes, as soon as the MD is executed the

DM layer creates multiple instances of it (one per process) and ensures that the MPI processes

are correctly initialized/terminated. Before and after the execution of the cicleForcesNewton-

sLaw method, the DM layer initializes the field interaction and reduces (across processes) some

fields from the MD and Particles classes, respectively. Finally, before the execution of the

calculate force method:

1. the SM layer wraps it around within a parallel region;

2. the DM layer statically distributes the iterations of its loop among processes;

3. the SM layer statically distributes the iterations assigned to a process among its threads.

The SM layer also ensures that the methods forceUpdate and updateControlVar are executed

with mutual exclusion, within each process.

7That initialization is necessary because the interaction variable is reduced (using the sum operation) across
processes. The same initialization was not applied to the variables epot and vir because their initialization is
already done in the base code (line 12 of Figure 5.3).

5.3. Description 67

5.3.2 Overview of the Framework

Figure 5.13 presents a more detailed view of our approach and framework components. The

light-green and orange rectangles represent abstract and concrete parallelism layers, respectively.

The red rectangles represent the available class refinements (i.e., code transformations), and the

light-blue rectangles within the concrete modules represent the points from the base code where

the code transformations are applied (i.e., extension points). The (abstract/concrete) layers, the

code transformations, and the specification of the extension points are performed with AOP using

(abstract/concrete) aspects, advices, and pointcuts (or annotations with ITDs), respectively.

For simplicity reasons, we omitted from Figure 5.13 several details of the framework, such as

all its SM and DM abstract modules (e.g., for distribution) and their code transformations (e.g.,

static for and dynamic for). Nonetheless, the “Module X” and “Module Y” illustrate the coex-

istence of several parallelism modules, each implementing a di↵erent set of code transformations

(labeled in the Figure 5.13 as “C.T.”).

Concrete	SM	Layer		

Framework	External	SM	APIs	

Abstract	SM	Layer	

Abstract	Module	X	

Concrete	Module	X	

Join	point	defini=on	

Op=ons	

Exposes join points

Apply code
transformations

Abstract	DM	Layer	

Abstract	Module	Y	

External	DM	APIs	
Calls Calls

Base	Code	

Extends

Concrete	DM	Layer		

Concrete	Module	Y	

Join	point	defini=on	

Op=ons	

Precedence	Rules	

Extends Extends Extends

Exposes join points

Apply code
transformations

C.	T.	...	

C.	T.	1	 C.	T.	1	

C.	T.	...	

Figure 5.13: Framework and approach detailed view.

68 5. Proposed Approach

The framework is composed of two libraries of aspects one for each PP paradigm, namely

SM and DM – represented by “Abstract SM Layer” and “Abstract DM Layer” in Figure 5.13.

The SM (AOmpLib [MS13a, MS17]) and DM (AOdmLib [MS17]) libraries are influenced by the

OpenMP and MPI standards, respectively. On top of the constructors defined in the OpenMP

and MPI standards, both libraries of aspects also provide additional higher-level constructors

(e.g., DM for distribution). This combination of commonly known standards, enhanced with

higher-level constructors on top of them, increases the usability, reliability, and acceptability of

the framework, and reduces the complexity of developing parallel applications.

With AOmpLib, as with OpenMP, whenever a thread reaches a parallel region, it requests

a new team of threads from the initial pool and becomes the master of this team [MS17]. As

with OpenMP, AOmpLib focuses on loop-level parallelism and task parallelism. AOdmLib runs

as many instances of the base code as the number of processes requested using the SPMD

execution model of MPI. Similar to OpenMP and MPI, our libraries do not automatically check

for data dependencies, race conditions or deadlocks. An overview of AOmpLib and AOdmLib is

presented in Sections 5.3.4 and 5.3.5, respectively. Additionally, Sections 5.4.2 and 5.4.3 present

some of the technical details about the implementation of AOmpLib and AOdmLib, respectively.

Modularity

From the framework development point of view, AOP enables the modularization of the PRC

through their encapsulation into aspects. From the perspective of the framework users, AOP

enables the parallelization of their applications in a modular manner by allowing them to map

the framework modules to the points in the base code to inject the parallelism. In our frame-

work, each library contains a set of specialized modules to deal with a specific PRC. For instance,

AOmpLib has specialized modules for loop distributions (e.g., static for), synchronization mech-

anisms and many others. Each of these modules contains all the logic (e.g., advices, pointcuts

and methods) related to a certain kind of code transformation (e.g., loop distribution). By

breaking down the libraries into several smaller aspects, we not only reduced the complexity of

the libraries themselves, but also increased the modularity of the framework and the cohesion

[YC79] of its modules. Consequently, promoting the development of modular parallel applica-

tions, users have a panoply of parallelism-related modules to choose from, each tackling a specific

PRC. Moreover, having smaller parallelism-related modules also facilitates the specification of

aspect precedences, which has consequences for the composition of these modules with the base

code. However, the downside of this approach is that the user has to do more programming

during the implementation of the concrete layers. For instance, to use a parallel for constructor

the user has to extend two aspects and define two pointcuts (e.g., Figure 5.7) instead of one

aspect and one pointcut. Nonetheless, those extra lines of code are a small price to pay for

modularity; otherwise we could have added all PRC into a single aspect.

5.3. Description 69

Pluggability

One of the key properties of the parallelism layers is the ability to (un)plug modules without

having to change the semantics of the base code. This property enables sequential semantics

when all the parallelism-related modules are unplugged and facilitates the parallelization tuning

process (i.e., the customization of parallelism), among others. The first step towards pluggable

modules was achieved by encapsulating the PRC into proper modules (i.e., modularity). With

AOP one can add/remove aspects to/from the base code in an oblivious manner as long as the

join points to be intercepted are part of the AOP join point model. From that model, however,

the parallelism layers are only interested in method calls and fields to inject the parallelism-

related constructors. Hence, the base code might have to be refactor to expose desirable join

points for the parallelism. In our approach these join points are exposed by using structural

patterns [Nag06, Byn11] namely, extract method refactoring [Fow99], and turning primitive

local variables into objects or fields (i.e., extract field refactoring). During the description of the

framework requirements (Section 5.1) the following question arose:

“Based on the core requirements, one question that arises is whether it is possible to create

reusable libraries, which can be used in a base code oblivious to their presence.”

Our libraries, to be reusable, have to be independent (i.e., not change) from the paralleliza-

tion of the base code. Therefore, these libraries should be able to intercept the join points and

abstract them from the concrete ones of a given application. In our framework, each library

is composed of a hierarchical tree of abstract aspects (nodes) and concrete aspects (leaves) to

avoid being tightly-coupled with specific join points of a given base code. These abstract aspects

contain advices and (abstract) pointcuts8 [HU01, HS03], which are also complemented with the

use of marker interfaces [HC02, HS03], parameterized types [HU01, HE08], and annotations

[Lad09]. For each base code, the abstract aspects are extended by concrete ones that contain

the pointcuts/annotations, state, and behavior defined by the user.

To make the base code oblivious to the presence of the libraries’ parallelism modules, the

base code has to be prepared in a way that exposes the desirable join points to be injected with

parallelism without changing the base code semantics (i.e., by applying our design rules). After

defining the expectable pointcut interface and structuring the base code accordingly, the concrete

layer comes into play. In our approach, a concrete layer represents an entity that materializes the

relationship of the pair base code and parallelism layer. This entity holds the mappings between

the parallelism-related code transformations (provided by the framework) and the join points

from the base code to be intercepted. The concrete layers exist so that neither the base codes

nor the libraries have to change their implementations to adapt to a specific parallelization.

8By abstract pointcuts, we include those that use the abstract keyword as well as those that do not have a
concrete implementation (e.g., pointcut for static (int, int, int);)) and can be later overridden.

70 5. Proposed Approach

Base	Code	

Abstract	Layer	

Abstract	Module	X	

C.	T.	1	

Concrete	Layer		

Figure 5.14: The mapping between parallelism-related constructors and the base code join
points.

Figure 5.14 shows the relationship among the parallelism modules, the (newly created) en-

tity where the programmer expresses the intended parallelism (Concrete Layer) and the base

code. The parallelism modules contain the actual implementation of the code transformations

but without the specification of the join points where these transformations will be applied.

Hence, the code transformations are independent of the base code. Nevertheless, these code

transformations expose details about the type of join points supported (e.g., a method call) and

the expected context (e.g., a specific argument of the intercepted method). These code trans-

formations can be seen as black boxes that require join points that satisfy their requirements

(represented in Figure 5.14 by the green triangle). Similar reasoning is used for the base code

side as well. To apply a specific code transformation in a join point of the base code this point

needs to respect the requirements of the code transformation (represented in Figure 5.14 by a

blue diamond). Consequently, sometimes our design rules have to be applied to base code points

to turn them into points which are interceptable by our framework. After applying the design

rules, the programmer expresses the desired parallelism (represented in Figure 5.14 by a blue

circle) in the common bridge between the base code and the parallelism modules (i.e., concrete

layer). This process corresponds to specifying the desired code transformations (including their

customization) along with the base code join points where they should be applied. The cardinal-

ity between the code transformations and the base code join points is many-to-many. Thus, the

same code transformation can be applied to several join points (e.g., pointcut critical method()

: call(public void Particles.*(...)) and Figure 5.9), and several code transformations can be

applied to the same join point (e.g., applying a DM and SM for distribution in the same for

method). Such characteristics help to deal with the PRC tangling and scattering problems.

5.3. Description 71

Composability

With AOP we built libraries composed of self-contained, and specialized, modules that tackle a

specific PRC. Furthermore, these library modules are reusable and can be composed with a base

code which is unaware of their presence. Consequently, these modules can be combined, and

composed surreptitiously with the base code to provide SM, DM, and hybrid parallelizations.

Base	Code	

MD	

SM	parallel		

DM	sta,c	for	[chunk	=	1]	

SM	sta,c	for	[nowait	|	chunk	=	1]	

calculate_force(int,	int,	int,	MD)	

Concrete	SM	Layer		

Concrete	Parallel	

pointcut	parallel()	:	
calculate_force(…)	

Concrete	For	

pointcut	for_sta>c()	:	
calculate_force(…)	

no_wait	=	true	

chunk	=	1	

Concrete	DM	Layer		

Concrete	For	

pointcut	for_sta>c()	:	
calculate_force(…)	

chunk	=	1	

Apply SM static for
transformations

Apply DM static for
transformations

Apply SM
parallel region

transformations

Figure 5.15: Example of the composition of the parallelism-related code transformations with
the base code.

Figure 5.15 illustrates the composition of some of the framework parallelism-related con-

structors with the MD base class (part of the MD parallelization previously shown in Section

5.3.1). We will use this figure to explain some of the particularities of the composition process

of our framework. The yellow, reddish and gray rectangles represent the extension point used to

inject the parallelism-related code transformations (i.e., the calculate force method), the code

transformations applied to the base code (i.e., parallel region and the SM and DM for distribu-

tions) and the customization of some of these code transformations options (i.e., chunk size and

nowait options), respectively. Finally, for the sake of brevity let us label the process of com-

posing parallelism-related code transformation(s) with an extension point as the compositional

step.

72 5. Proposed Approach

With our approach, the user explicitly composes (inside the concrete layer) the parallelism-

related code transformations with the base code by selecting them from the framework and

specifying the extension points onto which they will be applied. As previously mentioned,

this process can (always) be conducted by using inner aspects with pointcuts (e.g., Figure

5.7) or (in some cases) using annotations with ITDs (e.g., Figure 5.11). Technically, all code

transformations provided by the framework can be combined. However, from a correctness point

of view, some of these combinations are either undesirable or should be applied in a predefined

order. For instance, applying a master around a barrier constructor would lead to deadlocks,

and the majority of the SM constructors should be used in the scope of a parallel region.

The main di↵erence in the compositional step using our framework in comparison to an

intrusive approach, is that in the latter, the programmer manually, and intrusively defines the

order (i.e., before, after or around) in which the code transformations will be applied in relation

to the extension point (and to each other). For instance, in an intrusive version of the example

of Figure 5.15, the programmer would create a parallel region around the code that divides the

outer loop iterations of the calculate force method among processes and threads. However, in

our approach the order in which the code transformations are applied is, by default, handled

internally by the framework through the AspectJ mechanism to define the precedence order

(discussed in Section 3.3.5). Thus, the framework user should be aware of this order, especially

when applying di↵erent code transformations to the same extension point.

To understand the order in which the code transformations are applied during the composi-

tional step of our framework, let us reason about the following two questions:

1. In which order is a given code transformation injected into an extension point?

2. When there is more than one code transformation injected into the same extension point,

in which order will they be applied?

Regarding the first question, the default order in which the framework code transforma-

tions are applied is very intuitive. These code transformations can be injected simultaneously

before and after (i.e., around), or either only before or after an extension point. We label as

around transformations the code transformations that are injected around an extension point

(e.g., master) and the remaining ones (e.g., barrier) as single point transformations. Most single

point transformations are applied by default after an extension point – except obvious ones such

as inject code before that injects behavior before a method (e.g., Figure 5.12). Nevertheless,

for each constructor that performs single point transformations, the framework provides three

versions of them, namely those that inject the code transformations before, after or with the

constructor default value (which can be either before or after, depending on the constructor).

These versions are easily distinguishable from each other; the ones applied either before or after

have the keyword before or after on their names, respectively, whereas the default version does

5.3. Description 73

not. Hence, as with the intrusive approach, with our framework, the user can explicitly dictate

the order in which the single point transformations are injected. Finally, figuring it out whether

a constructor applies an around or a single point transformation is also straightforward. The

user only needs to reason about what the constructor does. AOmpLib constructors mainly in-

ject around code transformations, whereas AOdmLib communication constructors mostly inject

single point code transformations.

Regarding the second question, the framework has lists of predefined rules of precedence to

determine the order in which multiple code transformations are injected into the same extension

point. Those lists (defined using the AspectJ’s aspect precedence feature) establish the order of

the code transformations of constructors belonging to the same library and between constructors

of di↵erent libraries (i.e., between the constructors of AOmpLib and AOdmLib, useful for hybrid

parallelizations). In the example of Figure 5.15, three constructors injected behavior around the

same extension point (e.g., calculate force method); based on the framework precedence rules

the parallel region has the highest precedence of these three constructors followed by the DM

and SM for distributions. When the SM and DM for distributions are simultaneously injected

into the same extension point (i.e., for method), the loop iterations of the for method will first

be divided among processes, and then among the threads of each process. However, this does

not imply that the order of transformation is always DM constructors first and SM constructors

second. Nevertheless, the order in which the code transformations of constructors applied to

the same extension point are injected is also fairly intuitive (e.g., in the AOmpLib the parallel

region is the constructor with the highest precedence). Furthermore, the framework precedence

rules only a↵ect sound combinations of code transformations; for instance, it does not try to

solve undesirable combinations such as a single over a master and vice-versa.

For the most part, it is expectable that the framework constructors will be used in a particular

natural order (e.g., a parallel region and then a master and not the other way around). Those

assumptions facilitated the specifications of the precedence rules used by default. It is worth

emphasizing that these precedence rules only a↵ect the order of code transformations that are

simultaneously applied to the same extension point. Therefore, the user only has to consider

them in highly specific scenarios. Nonetheless, the framework provides SM and DM layers

without predefined precedence rules for the cases in which it is undesirable to use the default

precedence rules. In such cases, the user establishes the order of the code transformations of the

conflicting constructors by defining in the (concrete) layer, the precedence rules of the aspects

where these constructors belong (e.g., declare precedence : ..., ...). Such an approach can also

be useful when the user creates his/her (own) constructors since it allows the specification of

the order that the code transformations of the user-defined constructors will be injected when

in conflict with the other framework constructors.

74 5. Proposed Approach

Usability

The users of our framework have access to libraries based on commonly used parallelism-related

models (i.e., multithreading and message-passing) and influenced by well-establish standards

(i.e., OpenMP and MPI). Furthermore, besides the constructors from these standards, users can

also access higher-level constructors, such as dynamic schedulers, reduction of multidimensional

arrays and so on, which saves them from some of the low-level details of PP. All such low-level

details are hidden behind high-level code transformations that can be invoked through pointcuts

and annotations. By providing code transformations based on familiar models and standards,

the framework reduces the parallelism-related concepts that a PP developer must learn.

1 public class A {
2 public void f(){ ... }
3 }
4

5 public class A_Extension extends A{
6 @Override public void f(){
7 // code transformations
8 super.f();
9 // code transformations

10 }
11 }

Figure 5.16: Use of class extension and method overriding OO features to extend the function-
ality of the base code.

From the perspective of PP developer, the set of new concepts that must be learned to use

our framework comes mainly from how the parallelism is injected into the base code (i.e., the

concept of parallelism layers). Nonetheless, these concepts are familiar to OO programmers;

concepts analogous to extending the functionality of an application through the use of class

extension and method overriding OO features. For instance, in the example of Figure 5.16,

the programmer extended the functionality of the f method by overriding it in the subclass

A Extension. Conceptually, our code transformations extend the functionality of the base code

similarly to the example of Figure 5.16 – analogously, our code transformations do the same as

the subclass of A (i.e., A Extension). The steps of choosing which method will be overridden

and implementing the extra functionality (lines 7 and 9) are in our approach analogous to

choosing the extension points (e.g., call(...forceUpdate(...))) and code transformations (e.g.,

pointcut critical method), respectively. Moreover, the customization of the parallelism-related

constructors’ options (e.g., chunk = 1) can be thought of as the overriding of parts of the default

implementation of a method that uses the template method pattern [GHJV95] – a pattern used

also in some of our advices. Finally, our design rules follow the same reasoning as extracting a

method out of a block of code so that it can be overridden in the future. One di↵erence, though,

is that our framework can also extend the functionality of extension points other than methods,

namely object fields. In conclusion, the familiarity of our approach with well-known OO concepts

used to extend functionality makes it easier for OO developers to grasp our approach.

5.3. Description 75

Even though our parallelism layers can add functionality to fields, their expectable interface

is very restrained (i.e., merely method calls and field accesses). A limited interface helps to

control the complexity and increase the stability of the parallel applications developed with our

approach and makes it easier for programmers to reason about the interactions between base code

and parallelism layers (i.e., can only happen through well-defined and stable extension points).

To make those advantages even more noticeable, we propose that the code transformations from

our framework should only be applied to public or protected methods that are neither final nor

static. In Java private, final, and static methods cannot be overridden; hence, our approach

should follow the same reasoning. Consequently, by using such a methodology, we reduce even

more the conceptual gap between extending the base code functionality through class extension

and method overriding and using our framework. Thus, providing an approach that enables the

users of our framework to add parallelism to domain code, using familiar concepts analogous to

class extension and method overriding but without the limitations of OO inheritance [Kuc04].

A programmer reasoning about a base code parallelized with our framework will follow a similar

thought process that an OO programmer would about a base code where the parallelism was

added through subclassing. Finally, in our approach, the use of the AspectJ privileged feature

is discouraged; instead, layers that directly access private variables of the base classes should do

it using proper setters and getters (e.g., lines 14, 16 and 24 of the DM parallelization of the MD

case study shown in Figure 5.12). These guidelines facilitate the development of parallelizations

with our framework, making it less complex, more structured and maintainable.

We used AspectJ to materialize the concept of parallelism layers, and consequently, it is a

technology that the user must understand to use our framework correctly. Nonetheless, for the

development of parallel applications, our approach relies on a small subset of AspectJ pointcuts.

To avoid confusions about the particularities between call and execution pointcuts (described

in Section 3.3.2.1), for method calls our layers solely rely on the call pointcut, and never on

the execution pointcut. Additionally, the programmer needs the set/get pointcuts for the fields,

within and withincode to limit the scope of the extension points to be intercepted and the

pointcuts args, this, and target to expose context. Notwithstanding, a significant number of the

framework constructors can be used through annotations and ITD, which o↵ers a more concise

and intuitive syntax than pointcuts. To reduce the need to create advices our framework provides

modules to support additional code transformations, such as injecting behavior before and after a

method call, manipulating arguments of a method, and creating user-defined loop distributions,

which would typically be implemented with a user-defined advice.

76 5. Proposed Approach

Extensibility and reusability

The framework provides a set of common code transformations that can be reused in di↵erent

contexts. Nonetheless, our framework still has room for customization. The programmer can

customize and extend existing modules or build his/her modules and incorporate them into

our framework. These modules are then ready to be reused in future parallelism layers, thus

building a repertoire of parallelism-related constructors. The customization and extension of

the parallelism-related modules are also familiar to OO programmers (i.e., performed through

method overriding and a mechanism analogous to extending a class, respectively). Naturally

to extend our framework programmers must be knowledgeable about the AspectJ technology

(e.g., creation of advices). Furthermore, programmers must be able to define the precedences

of their modules, and those precedences must be in harmony with the other framework code

transformations. Alternatively, the newly created user-defined code transformations can be left

without precedences, and it is up to the framework user to define them, if so needed, when

developing the concrete parallelism layer. Finally, programmers should also have an overview of

how the framework is internally structured.

For each library, there are interfaces that define the contract between the aspect side and

external services side, which the layer depends on (labeled “External SM APIs” and “External

DM APIs” in Figure 5.13). Those interfaces define what the libraries of aspects expect from

the external API and vice-versa. The low-level details about threads/processes pools and so on

are hidden behind the external API side, leaving aspects with the logic of requesting actions

from the external API to meet the parallelism expressed in the layer. For example, when a

parallel region is encountered, the aspect side sends to the external API a task and the number

of workers that should execute that task in parallel. In this case, the task is the execution of

a block of code (i.e., a method from the base code) with a barrier at the end of it (if the user

did specify otherwise). The aspect side is unaware of the type of barrier and pool that will be

used to perform that task. This separation of concerns makes the framework more adaptable to

future changes and allows programmers to interchange between di↵erent external APIs without

having to change the core of abstract layers, as long as the interfaces are respected. Nonetheless,

the programmer can still directly access the low-level details such as thread/process ID and so

forth through calls from the aspect side to the external API side. Consequently, such low-level

details can also be accessed from the concrete layer as well, which can be helpful during the

parallelism tuning process or the creation of highly specific user-defined code transformations.

The framework is implemented by multiple abstract aspects, among other reasons, because

it helps to break down the internal complexity of the libraries. The same reasoning was also

applied to the pointcuts as well. The elementary pointcut [BLJT07, LJ06] idiom was applied

to some of the abstract pointcuts to divide them into groups of sub-pointcuts to represent fix

and variable state. The latter is typically related with context, for instance, the argument of

5.3. Description 77

a method. The fix and the variant parts of the pointcuts are respectively final and non-final.

Hence, the programmer is allowed to override the latter one. All the pointcuts that can be reused

by parallelism modules provided by the framework are stored in a proper aspect higher in the

hierarchy of aspects. Most of the times, those pointcuts are only useful internally. Nevertheless,

they can be used in the concrete layer aspect. Thus, the programmer can use them to restrict

the scope of other pointcuts declared in the concrete layer.

E�ciency

Regarding e�ciency, our framework performs most of their code transformations at compile-

time, which avoids unnecessary overheads. Special care was taken to avoid as much as possible

the use of AspectJ mechanisms that are likely to introduce high overheads (e.g., cflow and reflec-

tion API). The SM and DM constructors provided by the framework are based on Java concur-

rency framework and highly e�cient MPI implementations, respectively. From the perspective

of the framework user, the fact that the user can extend and create their own parallelism-related

code transformations and modules, and that it is possible to access the low-level details of PRC

from the concrete layer (e.g., thread/process ID) allows for the creation of highly-tuned, and pos-

sible domain specific, code transformations. Consequently, enabling the development of e�cient

parallelizations.

78 5. Proposed Approach

5.3.3 Design rules

Computational and data related transformations

The framework provides parallelism-related constructors that might require two types of code

designing, namely method refactoring and, sporadically, turning local variables of a primitive

data type into objects or fields (i.e., extract field refactoring). The majority of the constructors

provided by the framework are applied to methods. Thus, the points in the base code on which

those constructors will be injected have to be methods (i.e., method design rule). Additionally,

context (e.g., loop range) may have to be passed to constructors using the arguments, or re-

turning type, of those methods. Dependencies inside those methods that can lead to di↵erent

results when executing in parallel must be resolved by the programmer (e.g., dependencies be-

tween iterations of a parallel loop). Furthermore, to prevent undefined behaviors, the methods

in which the PRC are injected should:

• return void, unless when explicitly allowed or required by the constructors;

• contain just the relevant code for the parallelism-related constructor. For example, the for

method should encapsulate only the loop (along with its body) to be parallelized.

To deduce if, and how many, arguments are needed to pass context to a particular parallelism-

related constructor, the programmer merely needs to inspect the pointcut signature of that

constructor. For instance, a pointcut with the signature someConstructor(int) expects that one

argument is used to pass context.

Regarding the position of the arguments that are used to pass context to the parallelism-

related constructors, the framework only constraints the for method. The for loop to be paral-

lelized must be encapsulated into a method, and its range passed as the first three parameters

of that method. For the collapsed loops the first 3 ⇤ N positions should be used, with N being

the number of nested loops to collapse. Finally, for loops iterating over a collection that imple-

ments the Java interface java.util.List, only one parameter (using the first position) needs to be

passed, the list itself, since the range is implicitly deduced. These constraints exist because the

framework provides annotations for parallel loops. With annotations, in contrast to pointcuts

(i.e., args(...)), there is no reasonable way to specify the positions of the arguments that should

be read by the aspects. With these constraints, the framework can assume the position of the

arguments that correspond to the loop range and, consequently, enable the use of annotations

to specify for constructors. The framework accepts the following three loop forms:

• for(int i = begin; i < end; i += c) with end > begin;

• for(int i = begin; i > end; i -= c) with begin > end;

• for(E e : list) with : list implements List < E >.

5.3. Description 79

The loops of the form for(...; ...; ...) that are allowed by OpenMP can be turned into one of

the first two. By relying on methods to inject parallelism, the points in the base code where the

PRC is added can be uniquely identified, and additional behavior can be easily (un)plugged.

Conceptually, this rule complies with OO philosophy; extending the methods of the base codes

with PRC follows the principle of method overriding.

Constructors that apply data-related transformations (DRT) are applied to objects or fields.

Hence, forcing primitive local variables to be turned into either objects or fields. However, in

practice, this scenario only happens when applying AOdmLib DRT to primitive local variables.

All the design rules were carefully thought out to guarantee the sequential semantics of

the base code. Hence, if all the layers are unplugged, the base code will still work correctly.

Nowadays, most IDEs can automatically perform the code refactors needed by our design rules.

From now on the acronym IDE, will be used to refer to the Eclipse IDE. Section 5.4.1 explains

in greater detail the reasoning behind all the design rules previously mentioned.

Performance design rules

This small set of extra design rules is not mandatory to be applied but are useful to increase

performance. The first performance design rule is for code transformations related to the inter-

ception of object creation. According to this rule, the user can turn the object creation into a

method that returns the reference to the object to be created. Some practical cases where this

design rule can be applied are: - the creation of a set of locks to lock accesses to the elements

of a given array; - the user wants to split an array across multiple processes. Figures 5.17 and

5.18 show a code before and after applying the object creation design rule, respectively.

1 void method (. . .) {
2 A = new double [N] [M] ; . . .
3 }

Figure 5.17: Before applying the object creation design rule.

1 double [] [] newMatrixA (i n t N, i n t M) { re turn new double [N] [M] ; }
2

3 void method (. . .) {
4 A = newMatrixA (N, M) ;
5 . . .
6 }

Figure 5.18: After applying the object creation design rule.

To understand the performance implication of not applying this design rule, let us consider

that the matrix A of Figures 5.17 and 5.18 was a field and that the user wanted to split that

matrix by lines across N processes. Hence, each process should allocate only a matrix of size

1xM. AspectJ’s set pointcut could have been used to intercept its creation, and internally

80 5. Proposed Approach

the framework would ensure that each process only allocates its assigned matrix chunk. The

problem is that AspectJ will only intercept field A after the return of the reference by the new

constructor. Thus, processes will first allocate a temporary matrix of NxM, reallocate the matrix

with the actual correct size and assign it to the field A. This leads to unnecessary memory

allocation9. However, by using a method that returns the reference, the framework can first

intercept the call of the method, ensure that only the master thread/process allocates the entire

matrix and then instruct the remaining threads/processes.

1 void code () {
2

3 f o r (i = 0 ; i < 100 ; i++)
4 x = x + i ;
5

6 }

Figure 5.19: Before applying the set/get
performance design rule.

1 void code () {
2 i n t x = th i s . x ;
3 f o r (i = 0 ; i < 100 ; i++)
4 x = x + i ;
5 t h i s . x = x ;
6 }

Figure 5.20: After applying the set/get perfor-
mance design rule.

Our second performance design rule is related to the use of set/get DRT pointcuts, which

are used by the framework to intercept fields and apply additional logic into them. For instance,

to make the field x of Figure 5.19 thread private, the SM library intercepts the accesses to that

field (line 4) and replace it for accesses to the correspondent thread copy of that field. From

a performance point of view, the problem of this approach is that for every access to the field

to be intercepted, the library adds additional instructions. These extra instructions might add

a significant overhead, especially inside loops. Therefore, our set/get performance design rule

(Figure 5.20) focus on reducing the number of interceptions done by the framework. To achieve

that, the user creates a local variable that temporally replaces the use of the field within the

DRT method10. Moreover, the local variable needs to be initialized with the value of the field

and broadcast back the final result to the field, both in the begin and at the end of the code of

the DRT method. The lines 3 and 6 of Figure 5.20 show the introduction of those anchor points.

Using the same name of the field for the local variable automatically replaces any access to the

field x, in that method, by accesses to the local variable x. By applying the design rule in the

code of Figure 5.19, it was possible to reduce the number of interceptions from 200 to only 2.

In practice, the framework only needs the point from line 3. However, the assignment in line 5

is important (for primitive variables) to keep the sequential semantics of the base code.

In intrusive parallelizations, similar performance design rules are frequently applied. For

instance, Java thread-local class is commonly used to provide threads with a private copy of an

object. A similar optimization to the one shown in Figure 5.19 can also be used to reduce the

number of calls to the get/set methods of that class.

9In some of our tests we even had out of memory problems.
10The method where the data-related transformations are injected into.

5.3. Description 81

5.3.4 Shared Memory Library

5.3.4.1 Execution model and computational transformations

OpenMP annotations (i.e., directives) signal the points in the base code where PRC should be

inserted. The C/C++ OpenMP standard requires that some directives are applied on top of a

single statement, which often results in code statements being enclosed in brackets to form a

single logical block. The constructors of AOmpLib are injected into method calls and fields.

As with OpenMP, the AOmpLib execution model is based on the fork-join model [apiva]

with a focus mainly on loop and task parallelism. In AOmpLib, programs start with a single

thread named initial thread (using the OpenMP nomenclature). Since all examples presented

in this work do not use nested parallelism, we labeled the initial thread as master thread or just

master. When the master reaches a method that is intercepted by the parallel region pointcut

parallel (or the annotation @Parallel) a new team of threads is created. All the threads from

that new team execute, in parallel, the intercepted method and wait for each other at the

end of it (unless the user explicitly requests otherwise). When a team of threads encounters a

work-sharing constructor (e.g., for distributions, sections and single) work is assigned to them.

1 static aspect parallel_Region extends Sm_Parallel
2 {
3 pointcut parallel () : call (/** some method **/)
4 && if(/** some conditional **/);
5

6 @Override
7 public int num_threads (){
8 return ...;
9 }

10

11 @Override
12 public boolean no_wait (){
13 return ...;
14 }
15 }

Figure 5.21: AOmpLib - Parallel region pointcut example.

Figures 5.21 and 5.22 illustrate a parallel region using pointcuts and annotations, respec-

tively. With AOmpLib the user can specify, for instance, the number of threads that will execute

the parallel region, conditions that have to be met for that parallel region to be created (line 4

of Figure 5.21), among others.

1 declare @method /** some method **/: @Parallel(num_threads =..., no_wait =...);

Figure 5.22: AOmpLib - Parallel region annotation example.

82 5. Proposed Approach

AOmpLib also provides the OpenMP static, dynamic, guided, and runtime loop distributions,

but does not provide auto. By choosing auto, the user delegates to the compiler the decision of

selecting the most suitable distribution. Since our framework does not perform analysis of loops,

it cannot provide the auto feature. For each of the supported loop distributions, the AOmpLib

has a specific pointcut (e.g., for dynamic) and annotation (e.g., @For dynamic). AOmpLib

supports the collapse option for two nested loops and, since AspectJ does not support pointcut

overloading, AOmpLib provides unique pointcuts and annotations for the collapsed loops as well

(e.g., for dynamic2). Moreover, AOmpLib provides the ordered constructor to ensure that a

section of code inside a parallel loop is executed in the same order as it would if the loop was

executed sequentially.

The constructor sections (shown in Figure 5.23) allows the assignment of heterogeneous

workloads to di↵erent threads within a team. This constructor should be used inside a parallel

region so that the multiple sections can be executed in parallel. For this constructor, the user

needs to identify the code sections (i.e., method calls) that will be executed asynchronously, and

the method that calls these sections (line 3 of Figure 5.23).

1 static aspect sections extends Sm_Sections
2 {
3 pointcut sections () : call (/** some method **/);
4

5 pointcut section () : call (/** method 1 **/) ||
6 call (/** method 2 **/) ||
7 call (/** method 3 **/);
8 }

Figure 5.23: AOmpLib - Sections pointcut example.

Constructors such as parallel region, for and sections have implicit synchronization barriers

at the end of their execution. Nonetheless, users can explicitly request additional synchronization

points among threads in a team. For instance, AOmpLib provides OpenMP alike constructors

such as critical and barrier. Methods declared as critical are executed sequentially, and barriers

function as single points of synchronization that force threads (of a team) to wait for each other.

AOmpLib o↵ers two variants of the barrier constructor, namely barrier before and barrier after

(or simply barrier), that introduce barriers before and after a method call, respectively. Addi-

tionally, AOmpLib o↵ers the critical method constructor, which works as a synchronized method

in Java (i.e., locks using the object where the method belongs to). As with OpenMP, AOm-

pLib also o↵ers the use of explicit locks – including arrays of locks. However, unlike OpenMP,

with AOmpLib those locks can be used without having to be explicitly called in the base code.

AOmpLib also o↵ers specialized read and write locks as well as atomic operations. The latter

is provided by the classes (e.g., AtomicInteger and DoubleAccumulator) from the Java package

java.util.concurrent.atomic [Cla]. Most of the remaining AOmpLib constructors (e.g., single)

also follow the OpenMP standard.

5.3. Description 83

5.3.4.2 Data model and data-related transformations

In Java, there are instance variables that can be static (i.e., class variables) or non-static (i.e.,

object fields), local variables and parameter variables. In the context of AOmpLib data model,

it is also convenient to divide these variables into objects and primitive data types, variables

with and without an explicit accessible memory reference, respectively.

Static variables are shared among threads, and objects created before a parallel region are

shared by the threads inside that region. Local variables created inside a parallel region are

private to each thread. Finally, method arguments are passed by value; when primitive variables

or objects are used as a parameter, a new copy of their value/reference is created and used as

the actual method parameter. Hence, arguments are also private to threads11.

AOmpLib follows the Java memory model, by default. In AOmpLib, from the threads point

of view, data can be shared or private. With AOmpLib the user can apply DRT such as private,

firstprivate, lastprivate and reduction. AOmpLib can reduce arrays, matrices and also other

types of objects when the user-defined reductions are defined. As in OpenMP, in AOmpLib it is

possible to make an object private to threads as long as the copy class constructor is provided.

However, with AOmpLib the user can further specify di↵erent DRT to be applied to the fields

of these thread private objects. For example, the user can provide a copy class constructor that

merely performs a shadow copy of an object. In this case, each thread has a private copy of an

object with fields of primitive data type that are private, while the remaining are shared (i.e.,

reference type). With this in mind, the user can then use AOmpLib annotations or pointcuts

to apply DRT at the field level. Nevertheless, there are some restrictions to this workflow:

1. if fields within the private object are themselves objects, DRT can only be used on them

if the AOmpLib supports them (e.g., arrays);

2. annotations can only be used in the direct fields of the object to become private (i.e.,

annotations cannot be used in fields of another field and so forth).

In the first case, the AOmpLib o↵ers DRT for primitive variables and a set of object types.

For the remaining objects, the library provides an appropriate interface that can be implemented

by them. This interface will request the user to implement methods as copy(...), reduction(...),

among other, making those objects supported by the AOmpLib as well. Finally, the last case

relates to the reduction of complexity and overhead of the AOmpLib implementation.

11When a method argument is an object, its reference is private to threads but threads work with the same
memory location.

84 5. Proposed Approach

To apply the DRT, the AOmpLib provides three approaches, namely method pointcuts,

set/get pointcuts and the private object pointcut and annotations. The first and second ap-

proaches are used to apply DRT to local objects and fields, respectively. The third is to create

private objects per thread and apply DRT into their fields.

With the method pointcuts approach, the user specifies a pointcut with the method call to

intercept (i.e., DRT method). Since the data will be passed as a parameter of the DRT method,

the args pointcut should be used to specify the argument position (line 2 of Figure 5.24).

1 po intcut r educ t i on a rg (double [] [] mA) : c a l l (/⇤⇤ Some Method ⇤⇤/)
2 && args (double [] [] , . . .)

Figure 5.24: AOmpLib - Method pointcuts example.

In the set/get pointcuts approach, the user specifies the method associated with the DRT

(line 1 of Figure 5.25) and additionally the three w’s, namely which, when and what. These refer

to which data will be intercepted, when it will be intercepted and what DRT should be applied

to that data. Figure 5.25 shows the definition of pointcuts to apply the DRT using the set/get

pointcuts approach. The lines 2 and 3 of Figure 5.25 represent user-defined pointcuts12 whereas

the lines 1 and 4 are AOmpLib pointcuts. Line 2 declares which data will be used in the DRT,

while line 3 specifies when the data from line 2 should be intercepted. Finally, line 4 defines

what should be done with that data, in this case, a reduction with the sum operator. As shown

in Figure 5.25, this approach requires the use of set/get pointcuts to intercept the writes/reads

to/from the desired fields, respectively. The withincode pointcut was also needed to restrict the

scope of the variable to be intercepted.

1 po intcut p r i va t e da ta () : c a l l (DRT method (. .)) ;
2 po intcut data () : get (⇤ ⇤ MD. epot) | | s e t (⇤ ⇤ MD. epot) ;
3 po intcut dataScope () : with incode (. . . void addEpot (double)) ;
4 po intcut reductionSUM () : data () && dataScope () ;

Figure 5.25: AOmpLib - Set/Get pointcut DRT example.

The private object pointcut and annotations approach is used to create private objects and

apply DRT to their fields. In this use case, as with the previous one, it is necessary to declare the

which, when and what. However, the which includes specifying the object and possibly its fields.

Additionally, as with OpenMP, the user must also provide the copy constructor of the object

to become private (line 6 of Figure 5.26). As illustrated in line 1 of Figure 5.26, annotations

are used to specify both the which fields and what to do with them, whereas the pointcuts in

lines 4 and 5 are used to specify the when and which object, respectively. The object to become

private is always related to the DRT method. The pointcuts to express the object to become

private can be this, target or args.

12These pointcuts are optional; they could have been used directly used in line 4.

5.3. Description 85

1 @SmData (L i s t = {@OP(Type = Type .SUM, vars = {” epot ” }) })
2 s t a t i c aspect pr ivateData extends Sm PrivateObject <T>
3 {
4 po intcut p r i v a t e o b j e c t (T ob j e c t) : c a l l (. . . DRT method (. .))
5 && ta rg e t (ob j e c t) ;
6 pub l i c T T. copy () {
7 . . .
8 re turn . . . ;
9 }

10 }

Figure 5.26: AOmpLib - Private object pointcut and annotations example.

In the private object pointcut and annotations approach, the use of annotations to specify

the fields o↵ers a cleaner solution than using the set/get pointcuts approach. Worth noting that

if the fields specified in the annotations do not exist AOmpLib throws an exception.

(First) Private Last Private/Reduction
Shared local object method pointcut

Field of a shared object set/get pointcuts
Shared object and its fields private object pointcuts/annotations

Table 5.1: AOmpLib - The summary of data-related transformations.

Although several pointcuts to apply DRT were exposed, Table 5.1 shows that it is not hard

to reasoning about them. Because AOmpLib o↵ers the possibility of adding DRT to objects

and its fields independently, our DRT use cases seem more complicated that OpenMP 3.1. Our

DRT use cases would have been much simpler if the AOmpLib only allowed the application of

DRT at the field level. However, extending these transformations to local objects provides more

flexibility. Otherwise, local arrays, for example, would have to be transformed into an object

field. Nevertheless, regardless if it is OpenMP 3.1 or AOmpLib, the programmer still has to

reason about the scope of the variables in a SM parallelization, especially because of potential

race conditions. Part of this reasoning is initially done when applying the method refactoring.

As we can see in Table 5.1, and as it would be expected, the private-related DRT of AOmpLib

are only applied to variables that are shared among threads.

86 5. Proposed Approach

5.3.5 Distributed Memory Library

Besides the SM library (i.e., AOmpLib), our framework also provides a DM library (i.e., AOdm-

Lib) based on the MPI standard, with a set of modules that can be composed with a base code to

support its execution in DM environments (e.g., clusters). AOdmLib is built on top of OpenMPI

[VGRGS13], which besides being one of the most popular implementations of MPI [VGRS16],

also supports Java [VGRGS13] using a JNI-based approach.

The execution model of AOdmLib is similar to the SPMD of MPI. The AOdmLib starts

by intercepting the execution of the main method of a given project (specified by the user),

initializes the MPI processes with the option MPI THREAD FUNNELED13, creates all the

necessary data structures and then executes the main method. Additionally, AOdmLib ensures

that after the execution of the main method the MPI finalize function will be called. During

the execution of the main method, OpenMPI ensures that there are as many instances of the

same base program running in parallel as the number of processes specified by the user. Each

MPI process executes a JVM instance with a copy of the base program and its data.

The AOdmLib is built on top of the MPI API, and consequently o↵ers most of the MPI

constructors, namely Allreduce, gather, scatter, broadcast and many others. Additionally, the

AOdmLib o↵ers also constructors that are not covered by the MPI standard, such as loop

distributions, several strategies to split/collect multidimensional arrays among/from processes

(e.g., dividing matrices by columns and lines), the possibility of transparently use in the MPI

communication routines other objects than just arrays (e.g., vectors), and restricting methods

to be executed by only a certain process.

As with AOmpLib, AOdmLib provides the for constructor with the possibility of choosing

di↵erent distributions, namely dynamic, static (e.g., Figure 5.12), and user-defined (e.g., Figure

5.27). From the framework user point of view, invoking the for constructor from the AOmpLib

is the same as invoking it from the AOdmLib – as it can be confirmed by comparing the

SM and DM for static constructors previously shown in Figures 5.7 and 5.12, respectively.

Furthermore, both libraries also provide the same annotations to invoke the for constructors

(e.g., @For static(chunk=1)).

Figure 5.27 shows an example of the user-defined for distribution constructor of the AOdm-

Lib. This constructor works as an AspectJ advice. However, instead of using an actual advice,

the user overrides the for user defined method (line 5 of Figure 5.27) – that exposes the loop

range – and calls the for method (lines 7 and 8) to call the original method (i.e., the for method

of the base code). For obvious reasons, neither AOdmLib nor AOmpLib provides annotations

for this constructor.

13“The process may be multi-threaded, but only the main thread will make MPI calls (all MPI calls are funneled
to the main thread)”[tMee]

5.3. Description 87

1 static aspect forceCalculation extends Dm_For {
2 pointcut for_user_defined () :
3

4 @Override
5 public void for_user_defined (..., int begin , int end , int step) {
6 ...
7 for_method(getProcessID (), halfEnd , getTotalProcesses ());
8 for_method(halfEnd+process1Iteration2half , end , getTotalProcesses ());
9 }

10 }

Figure 5.27: AOdmLib - User-defined for pointcut.

In OpenMPI, and consequently in AOdmLib as well, each MPI process has a unique ID that

ranges from 0 to N, with N being the total number of processes chosen by the user. The process

with ID zero is named the master process, or simply master. In the example of Figure 5.27, the

user could make his/her customized loop because AOdmLib provides methods to get the total

number of processes running the application in parallel and the ID of the current process.

In the DM parallelizations, partitioning data among processes is an approach used more often

than dividing the iterations of a loop since it reduces the amount of data to be exchanged and

the memory footprint per process. For instance, typically in matrix multiplications (example

detailed in Section 6.3), the SM parallelization will distribute the iterations of the loops of its

main kernel among threads, whereas the DM parallelization will scatter some of its matrices

among processes. AOmpLib o↵ers specialized modules that implement the partitioning among

processes of commonly used data structures, such as uni- and multi-dimensional arrays, vectors,

and others.

1 s t a t i c aspect splitRowsMatrixA extends DM Share <MM> {
2 . . .
3 po intcut s c a t t e r c r e a t i o n () : c a l l (. . . double [] [] newMatrixA (. .)) ;
4 po intcut g l oba l v i ew () : c a l l (. . .) ;
5

6 po intcut s c a t t e r b e f o r e () : c a l l (. . .) ;
7 po intcut g a t h e r a f t e r () : c a l l (. . .) ;
8

9 po intcut g e t g l o b a l i n d e x (. . .) : c a l l (. . .)
10 && args (. . .) ;
11

12 @Override
13 pub l i c void data (MM baseClass) {
14 baseClass .A = cr ea t e v i ew (baseClass .A) ;
15 }
16

17 @Override
18 pub l i c i n t chunk l i n e s (MM baseClass) {
19 re turn baseClass . tilei ;
20 }
21 . . .
22 }

Figure 5.28: AOdmLib - Data partitioning specialized module.

88 5. Proposed Approach

Figure 5.28 shows an example of using the partitioning data module from AOmpLib to split

a matrix (A) by chunks of lines with a certain size (lines 17 to 20 of Figure 5.28). To specify

the data (i.e., matrix A) – that will be associated with the current instance of the partitioning

module (i.e., splitRowsMatrixA defined in line 1) – and its creation, the user must define the

data method (lines 12 to 15) and the pointcut scatter creation (line 3), respectively. After

intercepting the extension point associated with the pointcut scatter creation, the matrix A will

be scattered (by the master) across processes according to the options chosen by the user. In

this example, the option chosen was to scatter the matrix by chunks of lines with a size of tilei

(lines 17 to 20). Besides the chunk, it is also possible to define other options, such as splitting

by columns, creating ghost cells, among others.

In reality, with the scatter creation constructor, the master will not send to each process the

data to be scattered, instead will send a message with the dimensions of the sub-matrix that each

of them should allocate. We use this strategy since there are cases in which the processes are

only interested in the size of their sub-matrix and not concern about the content of the original

matrix. Hence, in such cases, our approach saves unnecessary communication. To actually

scatter the original matrix among processes, the user can use the scatter before (e.g., line 6

of Figure 5.28) and scatter after constructors that perform the scattering before and after an

extension point, respectively. The gather before and gather after (e.g., line 7) constructors allow

to collect the content of the sub-matrices and merged it back into the original matrix – allocated

in the master. For matrices that will be scattered/gathered by lines, AOdmLib also gives the

option that during the data allocation each process allocates a complete matrix with some of

its lines set to null14 instead of the sub-matrix. This option can be helpful in parallelizations in

which it is desirable that all processes are aware of the dimensions of the original matrix. In the

partitioning data module, with or without the nulls option, the master process has always the

original matrix.

AOmpLib o↵ers pointcuts and methods that receive a local data index from a process (e.g.,

lines 9 and 10 of Figure 5.28) and return what would have been the correspondent position in the

original data (i.e., global index), and vice-versa (i.e., get local index). Regardless of the data

type being used in the partitioning module (e.g., matrix, array, and vector), the constructors

are the same, it is up to AOdmLib to internally figure it out the data type being used.

Using the options defined in Figure 5.28 for a matrix A with a size of 1024x1024 and tilei of

512, in an application running in parallel with two MPI processes, each of them would initialize

a sub-matrix of size 512x1024. During the scattering phase (e.g., scatter before) the process 0

(i.e., master) would take from the original matrix A the content of the lines 0 to 511, whereas

the process 1 would take the content of the lines 512 to 1023. Finally, for the process with ID

1, the local index (0,0) would correspond to the position (512,0) in the original matrix.

14Naturally, the master will allocate the entire matrix without any line set to null.

5.3. Description 89

Since the master holds a subset of the data (i.e., local view) as well as the original data (i.e.,

global view), AOdmLib allows that process to temporally switch between local and global views,

during the execution of a method. During the execution of the methods intercepted by the

constructor global view (line 4 of Figure 5.28), the master works with the complete data. Worth

noting that those methods are only executed by the master, the remaining processes will ignore

these methods. Moreover, the master view over the global data might not reflect the latest

changes made by the other processes. An up to date view over the global data is only possible

with the gather operator. After a gather operation, the master process will “permanently”

switch the view from local to global until a new scatter operation occurs.

1 po intcut s c a t t e r b e f o r e () : c a l l (. . .) ;
2 po intcut g a t h e r a f t e r () : c a l l (. . .) ;
3

4 @Override
5 pub l i c void s c a t t e r (MM sourceC la s s) { /⇤⇤ user�de f ined s c a t t e r ⇤⇤/ }
6

7 @Override
8 pub l i c void gather (MM sourceC la s s) { /⇤⇤ user�de f ined gather ⇤⇤/ }

Figure 5.29: AOdmLib - Customization of the scatter and gather constructors.

For unconventional scatters and gathers, the user can override the AOdmLib scatter and

gather default methods (lines 4 and 8 of Figure 5.29). To facilitate this customization, AOdmLib

o↵ers API to access, among others, the local and global data views.

AOdmLib also o↵ers a module that replicates data, instead of splitting/collecting it

across/from processes. Hence, for a given data structure assigned to a process, this module

creates a copy of that data. From the user perspective, this module works similarly to the parti-

tioning module, and it can be useful for parallelizations where it is desirable to have temporary

bu↵ers or save state in intermediate data structures to avoid polluting the original data.

1 static aspect Communication extends Dm_Comm <MM >{
2 pointcut comm_after () : call (... matrixMultiplication (...));
3

4 @Override
5 public void data (MM mm){
6 allReduce(mm.B , Reduction_DM_OP.SUM));
7 }
8 }

Figure 5.30: AOdmLib - Communication example.

Naturally, AOmpLib o↵ers a module to specify communication routines such as all reduction,

reduction, broadcast, and so on. For that, the user must specify when the communications

should occur (line 2 of Figure 5.30) using the comm after and comm before constructors, and

the communication to be performed inside the method data (lines 4 to 8). The module of Figure

5.30 ensures that all the communications defined inside the method data – all reduction in this

example – will occur after the calls of the matrixMultiplication method.

90 5. Proposed Approach

5.4 Implementation

5.4.1 The reasoning behind the design rules

This section describes in detail the reasoning behind the design rules presented in Section 5.3.3.

5.4.1.1 Computational-related design rules

As previously described, the framework applies constraints to the argument positions of the for

methods. A similar constraint was not applied to other constructors of the framework because it

would increase the fragility of our approach. Moreover, it would be impossible to simultaneously

use constructors that intercept the same join points if these constructors require di↵erent context

to be passed through the same argument position.

Regarding the method design rule, there is an edge case worth mention. Let us imagine that

we want to make a method out of the statements of lines 6 and 7 of Figure 5.31. The IDE will

not be able to apply the method refactoring because there are primitive local variables updated

inside the block of code to be refactored and their newly update values are used outside of that

block of code (i.e., variables a and b).

1 void code () {
2 // code block 1
3 i n t a = 10 , b = 10 ;
4

5 // code block 2
6 a++;
7 b = a + 2 + b ;
8

9 // code block 3
10 l og (” (”+a+” , ”+b+”) ”) ;
11 a = b = 0 ;
12 }

Figure 5.31: Method refactoring problem-
atic example.

1 void code () {
2 // code block 1
3 i n t a = 10 , b = 10 ;
4

5 // code block 2
6 a++;
7 b = a + 2 + b ;
8

9 // code block 3
10 a = b = 0 ;
11 l og (” (”+a+” , ”+b+”) ”) ;
12 }

Figure 5.32: Method refactoring clean ex-
ample.

In the code of Figure 5.32, the IDE is robust enough to understand that the variable updates

in line 6 and 7 will not matter in the third block of code, thus allowing to perform method

refactoring on the second block. The described edge case seems unlikely to happen due to its

specificity. Nevertheless, the IDE still warns15 the programmer of such issues. To solve such

scenarios, the programmer can try to agglomerate the two problematic blocks together. If that

is not possible, the programmer can turn the conflicting variables into fields (i.e., extract field

refactoring) or apply the introduce parameter object refactoring [Obj]. These transformations

can be performed automatically by the IDE.

15“... Selected block modifies more than one local variable used in subsequence code. A↵ect variables are : ...”

5.4. Implementation 91

Our parallel loops have, for the most part, the same restrictions as those described in

OpenMP 3.1 C/C++ standard16. However, there are some slight di↵erences between our im-

plementation and the one from OpenMP that are worth mention. Our framework accepts the

following two canonical forms:

1. for(int | = ⌧ ;�; �) with :

a) ⌧ 2 Z;

b) � 2 {| � �,� � |};

c) � 2 { <,>};

d) � 2 Z;

e) � 2 { | += c, | -= c, | = | + c, | = c + | , | = | - c};

f) c 2 N⇤.

2. for(E e : list) with : list implements List < E >.

Some relevant restrictions imposed by the OpenMP standard on the first loop form are:

1. Informally, ⌧ , � and c represent the for ’ begin, end and incremental step, respectively. All

of them have to stay constant throughout the loop execution. � represents the incremen-

tal/decremental expressions – henceforth loop step – supported by our framework;

2. | is the variable that will hold the current loop iteration and can only be changed by the

expressions in �;

3. If � 2 {| < �,� > |} then � 2 { | += c, | = | + c, | = c + |};

4. If � 2 {| > �,� < |} then � 2 { | -= c, | = | - c}.

We decided to add two extra restrictions that are not explicitly defined by the OpenMP

standard. For loops using � 2 {| < �,� > |} then ⌧ < � and for loops using � 2 {| >

�,� < |} then ⌧ > �. In other words, this means that when | increments between iterations

the framework expects that the begin of the loop is smaller than its end. When the | decrements

the framework expects that the begin of the loop is greater than its end. Those restrictions were

added to make the for method design rule more readable (this will be clarified later).

For the first loop OpenMP allows four additional loop step expressions and two extra con-

ditional operators, namely:

• � 2 {++|, |++, --|, |--};

• � 2 { ,�}.
16From pages 40 to 46 of [apiva]

92 5. Proposed Approach

All those loop step expressions and conditional operators can be converted into the ones

allowed by our framework. For instance, the additional loop step expressions can be reduced to

actual two | += c or | -= c. This transformation can be performed by applying the following

equivalences:

• ++| ⌘ |++ ⌘ | += 1;

• --| ⌘ |-- ⌘ | -= 1.

It is also possible to transform both and � into < and >, respectively, by applying the

following transformations:

• for(int | = ⌧ ; | <= �; | += c) ⌘ for(int | = ⌧ ; | < �+ c; | += c)

• for(int | = ⌧ ; | >= �; | -= c) ⌘ for(int | = ⌧ ; | > �� c; | -= c)

• for(int | = ⌧ ;� >= |; | += c) ⌘ for(int | = ⌧ ; �+ c > |; | += c)

• for(int | = ⌧ ;� <= |; | -= c) ⌘ for(int | = ⌧ ; �� c < |; | -= c)

Informally, this transformation is about adding one loop step on the loop’s end (�) and dropping

the equals signal. If the loop follows the already described restrictions, to remove the = from

 and � we only need to look at the loop step and loop’s end. Hence, if | += c then the

new loop end is � + c, likewise for | -= c then the new loop end is � � c. These rules might

seem complicated, but they are intuitive especially because the most used loops are of the form

for(int i = begin; i < end; i++).

All the forms of the first type of loops that the framework and OpenMP support are seman-

tically equivalent to one of the following two loops:

• for(int i = begin; i < end; i += c);

• for(int i = begin; i > end; i -= c).

“Those restrictions were added to make the for method design rule more readable.”. Why

did we add the restrictions that begin < end and begin > end to ascendant and descendant

for loops, respectively? Because, internally the framework can assume, based on those restric-

tions and the ones formalized by OpenMP, that every time a loop has begin < end is a loop

semantically equivalent to:

for(int i = begin; i < end; i += step)

and that when begin > end is a loop semantically equivalent to:

for(int i = begin; i > end; i -= step)

5.4. Implementation 93

Otherwise, if the framework only relied on the following two OpenMP formalized restrictions:

If � 2 {| < �,� > |} then � 2 { | += c, | = | + c, | = c + |};
If � 2 {| > �,� < |} then � 2 { | -= c, | = | - c}.

the framework would have to use either the conditional operator (< or >) or the loop step

to figure out if the loop is ascendant or descendant. Using the conditional operator would be

di�cult since the framework is intercepting methods and reading its arguments; how would the

programmer express the conditional operator through method arguments ?! Using the loop step

would mean that the programmer would have to pass its sign in the method call. This means

that, for example, with a loop of the form for(int i = 11; i > 0; i -= 1), applying the for

method design rule would result in the code presented in Figure 5.33. We felt that, although

reading line 2 of Figure 5.33 looks relatively natural, we could not say the same about line 6.

Having i += step when in reality the loop is decreasing in each iteration seems strange.

1 void code () {
2 loop method (11 , 0 , �1) ;
3 }
4

5 void loop method (i n t begin , i n t end , i n t s tep) {
6 f o r (i n t i = begin ; i > end ; i += step) {
7 // some code
8 }
9 }

Figure 5.33: For design rule : Extracting the loop body using explicitly the step sign.

Finally, the necessity of transforming and� relates to the fact that the conditional operator

is not passed as a parameter and, unlikely OpenMP the framework does not rely on static

analyses to read the loop body. The framework needs to know the conditional operator to

determine the number of iterations of the loop to be parallelized. Therefore, we decided to

remove ambiguousness and stick to < and > conditional operators.

The second loop form supported by the framework can only be applied over collections

that implement the java.util.List interface because it provides methods such as get(int index),

set(int index, E element) and add(E e) that are useful for the framework internal mechanisms.

Furthermore, the collection that the loop is iterating over has to remain immutable during the

loop execution otherwise it might lead to race conditions, among others.

94 5. Proposed Approach

5.4.1.2 Data-related design rules

To understand the design rules for data-related transformations (DRT) presented in Section

5.3.3, first, it is necessary to understand what each DRT intend to do. As with the computational

transformations, the DRT of our SM and DM libraries are inspired in the OpenMP and MPI,

respectively. Without entering into too much detail, the DRT of SM are related to making shared

data private, whereas the DM is related to sharing data through processes communication.

The DRT from OpenMP 3.1 are mostly centralized around primitive local variables and are

not as useful when it comes to objects and their fields. Oppositely, MPI centralizes mainly in

objects. Our framework faces the opposite problem of OpenMP. AspectJ can deal with objects

and their fields but not with local variables. This problem is especially problematic for primitive

local variables since that in addition to AspectJ not being able to intercept them there is no

explicit memory reference to these variables.

Concerning local objects, AspectJ can intercept their creation, but can neither di↵erentiate

between them nor intercept direct accesses to them17. That happens because AspectJ is not able

to reference them by name, unlike a field. Therefore, given this situation, a possible design rule

could have been to force the programmer to make all the data to be transformed into an object

field. That would mean that users would have to turn both primitive and object local variables

into fields. However, in our approach, DRT are tightly-coupled to a particular computational

code transformation represented by a method call (labeled by us as DRT method). Hence, we

use the argument of the DRT method to pass the data to be transformed. Unfortunately, with

Java, it is not possible to pass a reference to a primitive local variable. Therefore, programmers

need to either turn these variables into objects or fields. The former although not providing

AspectJ with a directly interceptable variable, it provides a memory reference to that variable.

Combining the memory reference with the possibility of passing it as a parameter of a method

provides the framework with more than enough context to correctly perform the desired code

transformations. Passing the argument as a parameter combined with specifying its position

with the pointcut args allows to identify and distinguish between local objects. The memory

references give the framework the freedom to update these objects content. Consequently, no

additional design rules are required to apply DRT to local objects.

17We are referring to the object itself as an entity, not its fields. AspectJ is still able to detect reads and writes
of the local object fields (if any).

5.4. Implementation 95

We could have generalized the design rule for all DRT and stated that local primitive variables

should be turned into either fields or local objects. Nevertheless, this raises the question: “Do

all DRT need this design rule?!”. To answer that question we present a case-by-case analysis.

For simplicity let us consider only the most used SM DRT, that can be applied to local variables,

namely: private, firstprivate, last private and reduction. We can further divide these DRT into

two groups, based upon the relevance, after the DRT method, of the value of the variables used

in the DRT. In the first group (private and firstprivate) that value is irrelevant, whereas in the

second group (lastprivate and reduction) that value is relevant. To better visualize the upcoming

scenarios let us use the code of Figure 5.34 and assume that the user wants to apply DRT to

variables that will be used inside the loop method.

1 void method (. .) {
2 // Block A
3 loop method (0 , 10 , 1 , . . .) ;
4 // Block C
5 }
6

Figure 5.34: Example of data-related code transformation.

If the user wants to apply DRT into the local primitive variables in Block A, these variables

had to be passed as arguments of a DRT method (line 3). Therefore, these variables will always

be private to threads, because either they are created inside a parallel region or are passed

as the argument of one. Hence, in our approach, there is no point in applying the private or

firstprivate into local primitive variables, because their value will be passed as a parameter of

the DRT method, and that value is irrelevant outside the DRT method call.

In constructors such as lastprivate and reduction it is implicit that the values of the variables,

on which these constructors are applied, are relevant outside the DRT method. Thus, these

primitive variables have data dependencies, before, during and after the DRT method call.

That implies that during the method refactoring for the computational transformation these

dependencies were already solved (shown in Figure 5.31), either by creating local objects or

object fields. In both cases, the framework can deal with them without further design rules.

From the SM case-by-case analyze it is possible to conclude that, in practice, to apply the

AOmpLib DRT the user does not need to care about turning primitive local variables into

objects or fields. From the DM side, it is necessary to turn primitive local variables that will be

used in the AOdmLib constructors into objects, or fields.

96 5. Proposed Approach

5.4.2 Shared Memory Library

5.4.2.1 Execution model and computational transformations

In programs parallelized with AOmpLib, the execution starts with a single thread, designated

master, that intercepts the main method of a given project (specified by the user). Before

executing the main, the master creates all the necessary AOmpLib data structures (e.g., thread

pools), reads the configurable options of the library and generates unique IDs for the threads

in the pools. The master has the ID zero, and the other threads have an ID ranging from one

to the maximum of threads defined minus one. These IDs are particularly useful in the for

constructors, since the loop distributions are calculated based on them. Moreover, these IDs

can be explicitly accessed by the users as well, which can be helpful to fine-tuned parallelizations

(e.g., tuning loop distributions).

Internally, the AOmpLib uses hashmaps to map the workers to their respective data struc-

tures (e.g., team ID and private data). However, if nested parallelism is enabled a more complex

structure is used since a worker can belong to multiple teams and a team can have several work-

ers. Thus, additional logic is required to keep track of each worker and its respective teams,

which results inevitably in higher overhead compared with a non-nested parallel region envi-

ronment [Par, DHP08]. For these reasons, and since OpenMP does the same, nested parallel

regions in AOmpLib are disabled by default.

When the thread master encounters a parallel region, it will request a team of workers from

a regular thread pool. If the master encounters a task constructor, it will request workers

from a ForkJoinPool thread pool instead, since this pool is more suitable for that kind of

work (e.g., divided-and-conquer algorithms) [Oak14]. Unlike the pool used for the parallel

regions, ForkJoinPool allows workers to suspend tasks in favor of the execution of other tasks

[Oak14]. Furthermore, as with the TBB sophisticated scheduler, workers of that thread pool

have their (own) task queues and are allowed to steal work from the other queues [Oak14]. This

work-stealing approach makes this pool suitable for applications with load balancing problems.

However, it also comes with an overhead higher than regular thread pools. Furthermore, such

a pool is not the most suitable to deal with static and dynamic loop distributions. Static

scheduling predetermines the amount of work that workers will perform without having to

resort to sophisticated locking. For the dynamic scheduling, it is possible to use an approach

with lower synchronization overhead than a work-stealing mechanism with multiple queues.

5.4. Implementation 97

In AOmpLib, a parallel region is the context of a method call, which will be intercepted by

the parallel region annotation/pointcut (line 1 of Figure 5.35). After the thread master requested

a team of workers, each one of them will also call the intercepted method (line 8) and implicitly

synchronize at the end of its execution (line 10) unless the no wait option was enabled. The

number of workers in a team is calculated (line 5) in a similar way to OpenMP own heuristic18.

Figure 5.35 shows a simple code snippet of the parallel region implementation. Naturally, this

implementation needs to take into account if the nested parallel regions are enabled, the creation

of the necessary data structures and so on. For instance, it is required to create a barrier per

team to make sure that workers will synchronize before resuming the parallel region. If nested

parallelism is disabled, for performance reasons, that barrier is created once at the beginning

of the application with a default number of workers per team in mind. That barrier is created

again only if the number of workers changed between consecutive parallel regions.

1 pub l i c ab s t r a c t po intcut p a r a l l e l () ;
2

3 void around () : p a r a l l e l () . . . {
4 . . .
5 f i n a l i n t totalOfWorkers = requestNumThreads () ;
6 assignTasksToTeam (totalOfWorkers , () �> {
7 /⇤⇤ Task f o r the workers ⇤⇤/
8 proceed () ;
9 i f (! no wait ()) {

10 /⇤⇤ c a l l team ba r r i e r ⇤⇤/
11 }
12 }) ;
13 /⇤⇤ Master task ⇤⇤/
14 proceed () ;
15 i f (! no wait ()) {
16 /⇤⇤ c a l l team ba r r i e r ⇤⇤/
17 }
18 }

Figure 5.35: AOmpLib - Code snippet of the parallel region implementation.

Figure 5.36 shows part of the code that performs the dynamic loop distribution. To keep

track of the task to be assigned this constructor uses a lock-free strategy that relies on Java

AtomicInteger class. Unfortunately, it was not possible to make the entire code of the dynamic

loop constructor lock-free. To avoid race conditions, at the beginning of that constructor we

used barriers around the thread master initialization of the AtomicInteger object (initialized

with the first iteration of the loop). This mutual exclusion region was necessary because the

for dynamic annotation/pointcut can intercept the same method multiple times during the same

application execution. Thus, it is vital to reset the atomic iteration counter in-between those

method calls. This constructor is a good candidate to be improved in the future (i.e., reducing

its overhead).

18The complete algorithm can be found on pages 36 and 37 of [apiva]

98 5. Proposed Approach

1 . . .
2 void around (i n t begin , i n t end , i n t s tep) : for dynamic ()
3 && args (begin , end , step , . .) {
4 . . .
5 f i n a l i n t chunk = chunk () ;
6 /⇤⇤ f o r (i = begin ; i < end ; i += step) ⇤⇤/
7 i f (begin < end)
8 {
9 f i n a l i n t chunkSize = chunk ⇤ s tep ;

10 i n t c u r r e n t I t e r a t i o n = atomicTask . getAndAdd(chunkSize) ;
11 whi le (c u r r e n t I t e r a t i o n + chunkSize < end)
12 {
13 proceed (i t e r a t i o n , i t e r a t i o n + chunkSize , s tep) ;
14 c u r r e n t I t e r a t i o n = atomicTask . getAndAdd(chunkSize) ;
15 }
16 /⇤⇤ Deal ing with the remaining i t e r a t i o n s ⇤⇤/
17
18 }
19 e l s e i f (begin > end) /⇤⇤ f o r (i = begin ; i > end ; i �= step) ⇤⇤/
20 {
21 . . .
22 }
23 . . .
24 }

Figure 5.36: AOmpLib - Code snippet of the dynamic parallel for implementation.

After having deduced if the loop to be dynamically parallelized is ascending (line 7 of Figure

5.36) or descending (line 19), each worker can request chunks of loop iterations to compute.

Each request is performed in an atomic manner using the getAndAdd method (lines 10 and 14)

from the AtomicInteger class. Since the remainder of the division of the total of iterations of

the original loop by the chunk size may not be zero, we divided the loop iterations into two

groups. The first group is executed in parallel, and contains all the iterations starting from the

beginning of the loop up to the maximum number of iterations that divided by the chunk size

has a remainder of zero (lines 10 to 15). The second group contains the remaining iterations

and is executed sequentially (line 16). This heuristic could have been simplified by calculating

everything inside the first loop (lines 10 to 15) and ensuring that it did not surpass the original

end variable. However, that would lead to extra conditional logic added to every chunk of

iterations assigned. Hence, for performance reasons, we discarded that approach. Especially,

because not only is the code from the first loop executed in parallel (lines 10 to 15), but also the

iterations are assigned in a non-deterministic matter – making it very unlikely that the compiler

could mitigate the extra conditionals.

5.4. Implementation 99

5.4.2.2 Data model and data-related transformations

For the most part, AOmpLib computational-related constructors strictly follow OpenMP 3.1

standard. However, regarding the DRT there are some notable di↵erences. These di↵erences

come from the Java model, AspectJ limitations regarding local variables and the di↵erence

between the strategies used by AOmpLib and OpenMP to perform the code transformations.

The OpenMP 3.1 DRT are mainly intended to be used on primitive local variables. The

programmer is not allowed to use OpenMP shared or private data clauses in variables that are of

a reference type. For class instances, it is necessary to provide the class copy constructor [apiva].

Regarding reduction operations, the OpenMP 3.1 standard [apiva] states that: “Aggregate types

(including arrays), pointer types and reference types may not appear in a reduction clause”19.

AOmpLib DRT work almost contrarily to OpenMP, once it allows the use of fields of classes as

well as reference types, but restricts the use of local variables of primitive data types. Unlike

AOmpLib, in OpenMP 3.1, it is not possible to apply DRT (with exception of threadprivate) in

class fields (or structure). This inability to deal with fields can lead to situations that require

a significant amount of code refactoring. Fortunately, to apply DRT in fields, AOmpLib only

needs the name and scope of the fields to be transformed.

We explain next in more detail the type of DRT constructors o↵ered by the framework,

namely method pointcuts, set/get pointcuts and the private object pointcut with annotations.

Local	Object	
Method	
pointcut	

DRT	 Create	copy	

HashMap	<Thread,	Data>	

Save	original	
object	

Create	and	
save	copy	 HEAP	

Execute	
method	

Terminate	

ReducFon/	
lastprivate	

1 : (first) private

1.1 : Inject the object copy
made by the thread

1.2

2 : Reduction/lastprivate

2.1 : getThreadPrivateData()

2.3 : Intercepting
method termination

2.4 : Update reference of the
original object

2.5

2.2 : Inject the
object copy made

by the thread

Figure 5.37: AOmpLib - Overview of a DRT using the method pointcuts approach.

19Currently, with OpenMP 4.5, it is possible to perform, for example, reductions of arrays using additional
annotation clauses parameters.

100 5. Proposed Approach

Figure 5.37 presents a high-level diagram of how the method pointcuts DRT works. For

example, when applying a reduction into a local object passed as an argument of the DRT

method, each thread intercepts that argument, saves the reference to the local object and replaces

the DRT method argument with a newly created object copy. At the end of the DRT method,

all the object copies made by the threads are reduced into a single object. Finally, the thread

master is responsible for updating the original object content.

Class	MD	

DRT	
method	

			DRT	SM	Aspect	

Get	thread	data	

Intercept
accesses to

the field

Access type

[Write]

Continue execution

Perform	
reduc9on	

Field type

End of the DRT method execution

Get	field	copy	

[Read]
Returns the
field copy

[Primitive data type] Update the original field with reflection
HEAP	

Update	field	
copy	

[Objects] Update the original field

Figure 5.38: AOmpLib - Overview of a DRT using the set/get pointcuts approach.

Figure 5.38 shows an overview behind a DRT (in this case a sum reduction) applied to the

fields of a shared object, using the set/get pointcuts. With AOmpLib it is possible to intercept

the arguments or the target object of a method and replace them by thread private copies.

However, it is impossible to do the same with fields of a shared object. Because the object is

shared, its fields are also shared among threads. Nonetheless, the AOmpLib can, with the help

of set/get pointcuts, intercept every access to those fields.

Using Figure 5.38, let us imagine that the user wants to reduce the field epot of the class

MD. Internally each thread will create a copy of that field and initialize it with the appropriate

value (i.e., 0 in case of a sum reduction). During the scope defined by the user, the AOmpLib

will intercept all accesses to epot and, for each one of them the threads will request their epot

copy from their private data. If the access type is a read, the value of the thread epot copy is

returned to the base code, otherwise (i.e., a write), threads will update their epot copy with its

new value and resume execution. At the end of the DRT method execution threads will reduce

all their epot copies into a single one. If the variable epot is of primitive data type, then the

thread master will directly update, using reflection, the original MD epot field with the result

5.4. Implementation 101

of the reduction. If the variable epot is an object instead, then the thread master will directly

update its value on the heap. The reason why the same cannot be done to the primitive data

types is that it is impossible to access them through an explicit memory reference. Nevertheless,

because internally AOmpLib has the memory reference to the MD object and the name of the

fields to be changed, with the help of reflection it is possible to update its value. The set/get

pointcuts do not help in this case because there is no reasonable and e�cient way of knowing

when it will be the last access to the variable epot to inject, at that time, the reduction result.

Class	MD	

DRT	
method	

Class	MD	

DRT	
method	

Class	MD	

DRT	
method	

			DRT	SM	Aspect	

Call	copy	
constructor	

Intercept
method call

Class	MD	copy	 Class	MD	copy	

Field	
transforma;ons	

Perform	
reduc;on	

End of the DRT method execution

Field	
transforma;ons	

Read
annotation

Replace original object by the
thread copy object

Thread 0 Thread 1

Figure 5.39: AOmpLib - Example of a DRT using the private object pointcut and annotations
approach.

Taking the example of Figure 5.38 but instead of using the set/get pointcuts in the shared

object, the private object pointcut and annotations approach was used. The workflow for that

example would be something similar to the one shown in Figure 5.39. In the private object

pointcut and annotations approach a copy of the MD object for each thread is created (two

threads in the illustration of Figure 5.39). Afterward, each thread reads the annotations from

its private copy and applies the necessary transformations to its fields. Then right before the

execution of the DRT method, the original MD object is swapped by the threads private copy.

Because each thread has a copy of the MD object, it is not necessary to intercept all the calls to

the field epot. Instead, threads directly access their private field epot. Because during the DRT

method execution no field interception is needed, annotations can be used to define the DRT to

be used. This approach provides potentially better performance than using set/get pointcuts.

When the AOmpLib reads those annotations, logic will be automatically inserted, before and

after the DRT method, to perform the DRT correctly.

102 5. Proposed Approach

5.4.3 Distributed Memory Library

In Java, it is not possible to handle memory pointers explicitly. This particularity makes building

the messages to be exchanged among processes more cumbersome and complex in MPI for Java

than for C. For instance, in Java to reduce a matrix the user has to call the MPI reduce routine

for every line of the matrix, whereas in C only one call to the MPI reduce routine is needed

– as long the matrix was allocated contiguously in memory. All of these technicalities are

hidden behind AOdmLib high-level constructors that exploit Java method overload capabilities

to extend the MPI functionality while keeping the constructors with the same name.

AOdmLib has static, user-defined, and dynamic loop distributions. The heuristics of the

first two are the same as the ones used in AOmpLib but replacing thread ID by process ID. The

dynamic distribution, however, works di↵erently from the one used in AOmpLib. The dynamic

distribution of AOdmLib uses an approach similar to the task-farming model, where the master

process assigns and keeps track of the loop iterations. The master will send chunks of iterations

to the remaining processes on-demand. When there are no more iterations to be consumed, the

master will send to every process a special message notifying them about the current status, so

that all processes can normally resume their execution. It is expectable that the dynamic for of

the AOdmLib has a higher overhead compared with the one from AOmpLib.

1 s t a t i c aspect splitRowsMatrixA extends DM Share <MM> {
2 . . .
3 @Override
4 pub l i c void data (MM baseClass) {
5 baseClass .A = cr ea t e v i ew (baseClass .A) ;
6 }
7 }

Figure 5.40: AOdmLib - The method data from the data partitioning module.

AOdmLib needs the method data along with the code from line 5 of Figure 5.40 to switch

between local and global views at any time. To change the current view, AOdmLib must change

the memory reference of the partitioned data from the base code (e.g., matrix A). Therefore,

whenever the AOdmLib needs to change between views, the method data is called internally, and

the new view is returned to the base code using the returning value of the method create view.

Aside from a few exceptions (e.g., barrier), the majority of OpenMP constructors are applied

around a block of code (e.g., a parallel region). The scope of the MPI constructors is slightly dif-

ferent from those of OpenMP, partially because of the di↵erences between SM and DM models.

Compared to OpenMP, MPI relies more on single point constructors (e.g., communication rou-

tines). Since AOdmLib is based on MPI, we decided to o↵er an alternative approach to the one

of AOmpLib, less depending on pointcuts to express the code transformations. This approach

relies more on method calls than pointcuts, which enables users to express the communication

routines more easily. Furthermore, this approach is closer to the way MPI is usually used.

5.4. Implementation 103

We will use the example in Figure 5.41 to showcase the advantages of the method call

approach compared with the pointcut approach, in the DM environment. Let us assume that

we had adopted the AOmpLib approach (i.e., using pointcuts) to the DM environment as well.

For instance, to reduce variables, we would have to specify with pointcuts the variables to be

reduced, and when. Moreover, we would have to use method overriding to define some of the

reduction options (e.g., operation and root process). Let us assume that the user wants to

reduce the variable x of Figure 5.41 right after the call of the method1 (line 12). Doing such

action with pointcuts can be tricky. Firstly, set/get pointcuts “have to” be used to intercept

that field variable20. Secondly, it is necessary to find the first join point in the base code after

the call of method1, where the variable x is used (line 9). Additionally, the user would have to

ensure that this join point is only executed once so that multiple interceptions are not triggered

by AOdmLib. This join point is needed to specify a pointcut that triggers the reduction of x

among processes and returns the result to the base code. Ideally, the user would rather perform

the reduction at the end of line 12, however, because at that time there is no access to the

variable ’x’ the user has to postpone this interception.

1 pr i va t e i n t x ;
2 Random random = new Random() ;
3

4 void method1 () {
5 f o r (i n t i = 0 ; i < N ; i++)
6 x += random . next Int (N) ;
7 }
8
9 void method2 () {x = . . . ; }

10 . . .
11 void method3 () {
12 method1 () ;
13 method2 () ;
14 }

Figure 5.41: AOdmLib - Example to showcase the advantages of method call vs. pointcuts.

An alternative approach would be to create an aspect with two pointcuts for every commu-

nication that the user intends to perform, one that only intercepts the data (i.e., field), and

another to define the point where the communication should be performed (e.g., after method1

call). The first pointcut would provide the library with the name of the variable and possibly

its reference (if it is an object). The library could then save this information to later used it

to reduce the variable after executing the second pointcut. Unfortunately, this approach has

some drawbacks. First, it is necessary to provide the library with an access to the field. For

performance reasons, the join point provided by the user should be only intercepted once and

before the call of method1. For example, if the user would define the following pointcut getVar()

20A combination of design rules with the call pointcut can be used instead of set/get pointcuts.

104 5. Proposed Approach

: set(... x) && withincode(... method1()), according to the code of Figure 5.41, the AOdmLib

would intercept N times the field x, even though one would be enough. The second issue is that

the user may have to define every parameter of the communication using method overriding.

The problem of finding the correct join point is not so severe in the AOmpLib because the SM

code transformations and DRT are tightly-coupled around a given method call. Hence, the scope

of these code transformations is well-established. Moreover, in the SM DRT, the use of set/get

pointcuts made more sense since AOmpLib wants to intercept and replace all accesses to a given

field within a certain method execution, not just to inject, in a single moment, the result of an

operation (e.g., reduction). Because of these issues, we provide more convenient approaches for

the use cases of communication routines and splitting/gathering of data.

1 s t a t i c aspect Communication extends DmComm <MM>{
2 po intcut comm after () : c a l l (. . . ma t r i xMu l t i p l i c a t i on (. . .)) ;
3

4 @Override
5 pub l i c void data (MMmm) {
6 a l lReduce (mm.B , Reduction DM OP . SUM)) ;
7 }
8 }

Figure 5.42: AOdmLib - Example of an all reduce using method call approach.

Figure 5.42 presents a code snippet that will be used to explain in more detail the method

approach. With this approach, the user creates an aspect with one pointcut. That pointcut

declares the point in the code where a set of communications will occur. In the example of

Figure 5.42, the communication will happen after the method1 call (line 1). If the user wants

the communication to take place before the method call the pointcut comm before can be used

instead. The data method receives as a parameter the object that contains the code of the

method defined in the pointcut of line 1. This argument is helpful since it provides easy access

to the object context. Worth noting that the data method is an abstract one, thus when using

the communication aspect the user will be automatically reminded to implement that method.

In line 6, the user expresses clearly the communication to be used, its data and options. Without

the method approach, this single line of code would have resulted in several pointcuts and method

overrides. Especially, if the user wanted to perform several other communications calls at the

same point, instead of a single Allreduce. In practice, with the method approach, AOdmLib

turns the code of Figure 5.41 into the one shown in Figure 5.43. From the latter code, it is

possible to see that legacy code of that form can be seamlessly parallelized by AOdmLib. The

user merely has to extract the MPI related concerns from the base code of Figure 5.43, use the

AOdmLib features presented in Figure 5.42 and will end up with the code of Figure 5.41.

5.4. Implementation 105

1 void method3 () {
2 method1 () ;
3 data (t h i s) ;
4 . . .
5 method2 () ;
6 }
7 pub l i c void data (T baseCodeObject) {
8 a l lReduce (baseCodeObject . x , Reduction DM OP .SUM) ;
9 }

Figure 5.43: AOdmLib - The end result of apply the method call approach.

Sometimes the data to be exchanged among processes is not a field but rather a local object.

Clearly, in that case, the method approach is not suitable. Nevertheless, the user can either

turn the local object into a field or use the AOdmLib appropriate pointcuts. The local object

is also handleable since it is passed as an argument of a method. The user can specify the data

using the args pointcut, as with the AOmpLib.

Chapter 6

Validation and Results

This section evaluates the performance and programmability of our framework in comparison

to alternative approaches. To evaluate and validate the framework we used a set of nine case

studies, namely a molecular dynamics simulation (MD), a Java-tuned matrix multiplication

(MM), and a group of seven case studies of the Java Grande benchmark suite (JGF) [SBO01].

We can divide the case studies used into two groups. The first group includes the case studies

on which a significant amount of time was spent improving their sequential code and tuning their

parallelization, namely the MD (based on the JGF implementation) and the MM. In this group

of case studies, we describe in greater detail the design rules, pointcuts, and parallelizations

developed. The second group has seven algorithms from the JGF (including their sequential,

SM and DM versions). This group was used to study how the framework deals with a broader

range of case studies and with legacy code. The MD of the first group along with the algorithms

of the second group corresponds to all parallel benchmarks from the section II and III of the

JGF. To evaluate the performance of our framework we measured the overhead of:

1. Design rules;

2. SM layers built with AOmpLib;

3. DM layers built with AOdmLib;

4. Hybrids built by composing the SM and DM layers.

In the first point, we compare the execution of the base (sequential) code with and without

design rules, to understand the overhead that these rules may introduce. In the base code with

design rules, we included all the rules needed to enable the SM and DM parallelizations. In the

second point, we compare our SM library with intrusive SM Java1 and with JOMP implementa-

tions. In the third point, we compare our DM library with Java MPI implementations2. Lastly,

1Both the SM library and the intrusive implementations use the Java concurrency mechanisms.
2Both the DM library and the intrusive implementations use the same MPI version.

106

107

for the case studies with good scalability (i.e., those with speedups over 15.0⇥ in their SM

and DM intrusive implementations), we also benchmarked their hybrid parallelizations. These

hybrids combine the best SM and DM versions of a case study, with as few as possible changes

to both versions. These hybrids were built, mainly, to verify how easy it is to develop them with

our framework. Ideally, it should be only required to compose the SM and DM layers. Finally,

we compare the performance of the hybrids with pure MPI versions.

Optimizing an application is a hard task; especially parallel ones since the programmer has

to consider aspects such as load balancing, synchronization overhead, the trade-o↵ between

legibility and performance, among others. Performing such tasks intrusively makes matters

worse. Typically, to test the di↵erent parallelism-related approaches, the programmer will either

repetitively modify the same base code or maintain multiple copies of it, one for each approach.

Our framework enables to quickly test di↵erent parallel optimization concerns by

(un)plugging the correspondent modules. Hence, whenever possible, we exploited the capa-

bilities of our framework to improve the parallel versions of the case studies. After employing

the appropriate design rules into the base code, we took advantage of the properties of our layers

(e.g., pluggable and modular) to quickly, and conveniently, test di↵erent strategies (e.g., loop

distribution and data partitioning) aiming for a more e�cient parallelization than the original

one. Applying this prototyping procedure during the development of parallelizations is faster

and easier than performing it in an intrusive manner, especially in the case of hybrids. Addition-

ally, because C is a popular low-level language among the HPC community, for the majority of

the case studies, we provide and measure C implementations of them3. These implementations

include the sequential, SM OpenMP, DM MPI and hybrid versions (when it is the case).

Figure 6.1 depicts the workflow used to develop the di↵erent versions of the case studies.

Deviations made to this workflow, for any case study, are documented. Firstly, we started with

the original sequential version of the case study and examined if it could be improved. When

that was the case, we also adjusted the corresponding original intrusive SM and DM versions to

reflect these improvements. Secondly, we applied all the necessary design rules over the sequential

version (improved or not) and developed the SM layer. When an intrusive SM parallelization was

available (i.e., all JGF case studies) our first SM layer mimicked that parallelization, otherwise

(i.e., MD and MM) we started with one that seemed reasonably e�cient. During this step,

several strategies were easily tested with our AOmpLib to improve performance as much as

possible (step labeled as “SM Layer Improving Cycle” in Figure 6.1). Testing di↵erent strategies

at this stage is just a matter of swapping di↵erent SM layers and, occasionally, adding some

design rules, which requires less e↵ort than intrusively changing an SM version. If an intrusive

SM version already existed and a better strategy was found, we developed a new version (labeled

“improved”) based on the original version modified to implement the new strategy. In the cases

3Those C implementations (created by us) replicate, as much as possible, the best Java implementations.

108 6. Validation and Results

Sequen&al	

SM	Layer	Improving	Cycle	

Sequen&al	+	
SM	design	Rules	

SM	Layer	1	 SM	Layer	2	 SM	Layer	N	

No

Apply	improvements	
in	the	intrusive	

versions	Yes

Trying to improve

Yes : create an intrusive
version based on the layer

Improved	SM	

JOMP	SM	
version	

Replicate the
intrusive SM
version using

JOMP

Yes : Replicate this version using SM
Layers

No : Replicate the intrusive SM version using JOMP

Yes

Best	SM	+	DM	

Create intrusive hybrid

No

Was	
improved	?	

Is	there	any	
intrusive	SM	
version	?	

No

Is	the	layer	
beIer	than	the	
intrusive	SM	?	

Create	Hybrids	?	

Hybrid	Implementa&ons	

Sequen&al	+	
SM	and	DM	design	Rules	

Best	SM	Layer	

Best	DM	Layer	

SM	sub-workflow	

DM	sub-workflow	

Figure 6.1: Workflow of implementing the di↵erent versions of the case studies.

6.1. Benchmark Environments and Methodology 109

that the intrusive SM version did not exist we created one based on the best version found with

the layers. Afterward, we compared the execution times of the original, improved (if present)

and AOmpLib SM versions. Additionally, a JOMP and a C implementation of the best SM

layer were developed and compared. This process was then applied to the development of the

DM versions (step labeled “DM sub-workflow”), however without a JOMP implementation.

Whenever the best SM and DM Java intrusive implementations achieved speedups of 15.0⇥
or more, we created hybrid versions out of them. Finally, after all the parallelization were

developed, and tested, we examined the overhead of the design rules by executing the sequential

version with all the design rules on it.

To measure the programmability, for each case study, we kept track of the parallel construc-

tors used, the applied design rules, and the number of statements necessary with our approach

versus the alternatives. Moreover, we also documented collateral side e↵ects4 of using the design

rules, aspects, and pointcuts. Regarding the hybrid versions, we documented what were, if any,

the di�culties of developing them with and without our framework.

For all the case studies, we decided to compose our SM/DM layers upon the same sequential

base code. The goal is to understand how hard it is to use the same base code for all the di↵erent

parallel versions. Finally, the AOmpLib and AOdmLib were used not only to try to find faster

versions than the ones from the original case study but also to develop versions more readable.

6.1 Benchmark Environments and Methodology

We executed the tests in machines with two E5-2650 v2 processors5 (NUMA), each processor

with 16 physical cores and 32 logical with hyper-threading, 20 MB of shared cache L3 and a

fixed frequency of 2.6 GHz. For the tests with multi-machines, we used a cluster with 8 of

the previously mentioned machines corresponding to a total of 128 physical cores (256 logical).

These machines communicate with each other using Myrinet up to a maximum of 8 processes

per machine and Ethernet otherwise. All the used machines are from the SeARCH cluster6 and

run with CentOS 6.3, OpenJDK 1.8.0 20, OpenMPI 1.8.4 and GCC 4.9.3.

We performed 25 di↵erent measurements for the tests executed in a single machine and 10

for the tests executed in multi-machines. Afterward, we used the median of these measurements

rounded o↵ to the third decimal place. For all the parallel versions running in a single machine

we tested them with 2, 3, 4, 6, 8, 12, 16, 24, and 32 threads or processes, whereas for those

running in multi-machines we tested them with 8, 16, 24, 32, 48, 64, 96, 128, and 256 threads

or processes7. In all the case studies we used a total of five di↵erent input sizes, from which 2

4This includes situations that we did not foresee when using our framework.
5https://ark.intel.com/products/75269/Intel-Xeon-Processor-E5-2650-v2-20M-Cache-2_60-GHz.
6More details about this cluster can be found in search.di.uminho.pt.
7For the (rare) case studies that, for some reason, did not follow this reasoning, we point out what was the

number of threads or processes used.

110 6. Validation and Results

or 3 came from the original JGF benchmark. Lastly, we aimed for inputs with sizes that fit in

the cache levels as well as with sizes that only fit in RAM.

Since the versions implemented with our framework, JOMP, and intrusively are all Java-

based, to avoid misinterpretations in the subsequent subsections of this section we use the terms

“JOMP”, “layer of aspects” (or simply “aspects”), and “Java” to reference implementations

developed with our libraries of aspects, JOMP implementations, and (intrusive) implementations

that only use Java, respectively.

The speedups of the JOMP, aspects, and Java implementations are calculated using the

execution time of the same sequential version (i.e.., the fastest execution time of the sequential

code with and without design rules). Regarding the speedups of the C implementations, we

present two variants of them. In the first one, the speedups are calculated based on the C

sequential execution time, whereas in the second variant (labeled “C adjusted”) the speedups

are calculated based on the fastest Java sequential execution time.

The gains of a given implementation (A) over another (B), regardless of the environment

(sequential, SM, DM or hybrid), are calculated using the formula:

Gains A vs. B =
execution time of B

execution time of A

The calculation of the overall gains and speedups are the accumulation of the values from all

inputs. For instance, the overall gain of Java vs. Aspects, in SM, would be the sum of the

execution times of all inputs of the SM parallelization with aspects divided by the sum of the

execution times of all inputs of the SM parallelization with Java.

Regarding the explanation of results we mainly, but not exclusively, focus on the overhead

of the SM/DM layers of aspects and the design rules. Although we have results comparing C

with Java, it is not the focus of this thesis arguing in favor of one language over the other.

We believe that with enough time, in theory, one should be able to have a C implementation

equal to, or faster than, a Java one. Notwithstanding, we wanted to understand what would be

the performance di↵erence between codes implemented as similar as possible in both languages,

especially in the parallel versions. Before any performance analysis, we expected that C would

be faster than Java, the intrusive Java implementations would be faster than the aspects and

that our AOmpLib would be faster than JOMP. From the results that did not match these

initial expectations, we only considered them worthy of an in-depth examination when their

gain value is under 0.97. We use this approach because the tests were performed in an environ-

ment with several factors that may influence performance and are di�cult to control (e.g., the

unpredictability of the Java garbage collector, the JIT compiler and the cluster itself).

6.2. Case Study : MOLDYN 111

6.2 Case Study : MOLDYN

Molecular dynamics (MD) is a powerful simulation method capable of simulating a variety of

systems, both in and out of thermodynamic equilibrium [ALT08], and is mostly used to simulate

the interaction among particles in a given environment. The MD used on this thesis – based

on the MD from the JGF benchmark – performs a simulation for atoms of argon using the

Lennard-Jones potential [Jon24]. Figure 6.2 presents a simplified execution call graph of that

implementation.

Main	

Ini'aliza'ons	

Simula'on	

Valida'on	

Calculate	posi'ons	

Calculate	forces	

Calculate	veloci'es	

Calculate	temperature	

Calculate	Full	Energy	
Poten'al	

Figure 6.2: MD - The execution call graph (two levels deep).

In this implementation, as with most MD simulations, the majority of the execution time is

spent in the step “Calculate forces” (detailed in Figure 6.3): for each particle, the total force

exerted on it by the remaining particles as well as the distance between it and every other particle

are calculated. Whenever the distance between two particles is less than a given value (labeled

“condition” in Figure 6.3), their forces are updated along with some other variables related to

the MD simulation. As shown in Figure 6.3 (second loop) the force calculation method takes

advantage of the third Newton’s law. This law states that the force that a body A exerts

on a body B is equal, in magnitude, to the force that B exerts on A. Therefore, whenever

two particles are within a given radius, the force exerted between them is calculated and both

particles’ total forces are updated. Consequently, reducing the number of iterations from N2

to N(N�1)
2 . Although this optimization reduces the number of force calculations to half, and

consequently the execution time, it introduces load balancing and data races challenges in the

parallel versions, which increases their complexity.

112 6. Validation and Results

Get	the	posi*ons	of	
par*cle	Pi	

Calculate	the	distance	
between	Pi	and	Pj	

																																				[Par*cles	Pj	and	Pi	within	a	given	radius]	

Compute	and	update	the	
forces	of	par*cles	Pi	and	Pj	

Update	MD	
variables	

Condi*on	

Get	the	posi*ons	of	
Par*cle	Pj	

Figure 6.3: MD - The diagram of the sequential version of the force calculation.

The code from this case study was already presented in Figures 5.3 and 5.4 of Section 5.3.1.

That base code included already some optimizations made by us. Before any parallelization,

a careful analysis was performed, starting with the layout of the particles. The original JGF

implementation uses an array of objects to represent the particles, where each object contains

nine doubles to store the x, y and z components of the particles’ force, velocity, and position.

To improve the spatial locality, we changed the original particles layout to an object (i.e., class

Particles) containing nine arrays of doubles, one for each x, y and z components of the particles’

position, velocity, and forces. Thus, the information of a given particle is accessible using the

corresponding array index. This new layout was overall 1.13⇥ faster than the original with

the performance gain being most noticeable in the inputs that do not fit in the cache. The

input sizes used in this case study are detailed in Table B.1 of Appendix B. The MD simulation

executed only one iteration8 for the two largest sizes (250k and 500k particles), whereas for the

remaining sizes the original 50 iterations were performed.

A second improvement made was the decrease in the number of updates to the MD control

variables (i.e., epot, vir, and interactions). Instead of directly updating these fields inside the

inner loop that calculates the forces between one particle and the remaining (line 18 of Figure

5.4), the updates are performed in local variables. Afterward, outside the inner loop (line 34),

the MD fields are updated with the values of the corresponding local variables. This reduction

in the number of accesses to the MD fields is particularly beneficial in the SM parallelization

since the number of (potential) concurrent accesses of the threads to the shared data is reduced.

8The execution of a single MD simulation with 250k and 500k particles, using the original 50 iterations, would
require more than 2 and 10 hours, respectively.

6.2. Case Study : MOLDYN 113

Identifying the parallel tasks and their granularity, and ensuring an equitable task distri-

bution among threads/processes is paramount to achieve an e�cient parallelization. Since the

force calculation of all particles is the most computational demanding method9, we analyzed this

method extensively to find out the granularity of possible parallel tasks. This analysis showed

that the smallest task granularity is the force calculation between a pair of particles. Inside

that task there are two possible situations: 1) if the particles are within a given radius their

force is computed and updated; 2) otherwise, there is no force computation and update. This

granularity provides the highest number of tasks to be parallelized. However, this granularity

is not coarse enough to overcome the parallelization overhead. At a higher granularity level,

there is the force calculation of a particle with the remaining. This granularity level is the most

suitable (in the architecture that we used) to be assigned to the threads/processes because it

o↵ers the best trade-o↵ between the total number of parallel tasks and task granularity.

Since our MD uses the third Newton’s law, we have to deal with data-dependency and load

balancing problems. Regarding the data-dependencies, the arrays of forces (i.e., fx, fy, and

fz) of the object Particles and the fields epot, vir, and interactions of the object MD – fields

updated inside the updateControlVar method – are the only shared variables rewritten inside the

execution flow of the force calculation. Hence, these variables are susceptible to race conditions.

Particles

P
ar

tic
le

s

 0

 1

 2

 4

 5

 6

 3

0 1 2 3 4 5 6

Inner Loop

O
ut

er
 L

oo
p

Figure 6.4: MD - Illustration of the force calculation between pairs of particles.

Concerning the load balancing issues, in Figure 6.3 we can see that the number of inner

cycle iterations varies with the outer cycle iterations (Pj = Pi + 1 to Pi = N). Figure 6.4

illustrates this variation by presenting a matrix out of the force calculation iterations. The

cells colored with orange represent the iterations that can be assigned to threads/processes, the

9For the di↵erent input sizes, the results have shown that the MD simulation spends 99% of its total time on
the force calculation.

114 6. Validation and Results

xx and yy axis represent the iterations from the inner and outer loops, respectively. Figure 6.4

demonstrates that evenly dividing the outer loop iterations among threads/processes would lead

to serious work unbalance. For instance, if we split the outer loop iterations between 2 threads

using the OpenMP default for distribution, the first thread would receive 15 pairs while the

second thread only 6 pairs (i.e., (4,3), (5,3), (6,3), (5,4), (6,4), and (6,5)). Hence, di↵erent static

and dynamic distributions with di↵erent chunks sizes are worth being tested.

The next subsection details the workflow that leads to the final SM and DM layers of the

MD case study. Moreover, we also compare the performance and programmability of each

intermediate test layer to OpenMP/JOMP and intrusive implementations.

6.2.1 Shared Memory

Our starting point is the SM layer presented in Section 5.3.1 (Figures 5.7 and 5.9). That

layer created a parallel region in the force calculation method and assigned to the threads the

iterations of the force calculation between a particle and the renaming, in a round-robin fashion.

Critical regions were used to deal with the data-dependencies. After ensuring the parallelization

correctness of the SM layer, the next step was to improve its performance by first tackling the

synchronization overhead and then the load balancing problems. In our proposed approach this

corresponds to the development of a new SM Layer.

6.2.1.1 Dealing with synchronization overhead

The problem with the critical region is its high overhead, caused by frequently forcing threads to

wait before executing that region, which increases with the number of threads and, consequently,

limits scalability. With this approach, during the force update, threads wait outside the critical

region even when they are not going to update the same particle. Using a lock per particle

minimizes this problem by only forcing threads to wait for each other if they update the forces

of the same particle. Another approach is to replace synchronization with data redundancy.

In this approach, instead of updating the problematic fields directly in the MD and Particles

objects, their values are accumulated in private copies assigned to each thread. At the end of the

parallel region, the private values of all threads are reduced and afterward the master thread

updates the original variables. The data redundancy strategy removes the synchronization

among threads but requires the use of additional memory, which may impact performance. To

decrease the synchronization overhead we tested the following approaches:

1. One lock per particle, and synchronizing the updateControlVar method with a critical

region;

2. Data redundancy.

6.2. Case Study : MOLDYN 115

Locking approach

The first strategy required the creation of an array of locks, with a dedicated lock per particle.

To create this array of locks and to (un)lock particles based on the index used to access the

arrays of forces, AOmpLib needs to know both the size of the array to be created and, during the

update of forces, the array position to be (un)locked. The size can be provided by applying the

object creation design rule over one of the arrays used to save the particle’s components (e.g.,

fx10). The array position can be retrieved using the method design rule introduced during the

creation of the critical regions (i.e., forceUpdate method shown in Figure 5.8). Since the first

argument of the forceUpdate method is the particle index, the array position to be (un)locked

is already provided. Considering that no additional design rules were necessary, the next step

was to define the pointcuts and connect them with the appropriate join points (Figure 6.5).

1 static aspect ParticlesLocking extends Sm_Locks
2 {
3 pointcut lock_array_creation () : call (... double [] create_fx(int));
4

5 pointcut lock_array_access(int pos) : call (... void forceUpdate(int ,...))
6 && args(pos , ...);
7 }

Figure 6.5: MD - Pointcuts to lock the accesses to the array indices.

With the pointcut declared in line 3 of Figure 6.5 the AOmpLib intercepts the creation of

the fx array, extracts its size and creates an array of locks with the same size. The lines 5 and

6 indicate the method and its argument that contains the index of the array to be (un)locked,

respectively. For every call of the forceUpdate method, the AOmpLib reads and uses its first

argument (i.e., the array index) to retrieve the correct lock from the internal array of locks.

OpenMP does not provide locks through annotations, but rather by explicit method calls to

its API. Thus, the reasoning and total of statements needed to implement the locks with OpenMP

or intrusively with Java are fundamentally the same. In a possible intrusive implementation, we

could declare the array of locks as a field of Particles and initialize it in the constructor of that

class (shown in Figure A.2). Afterward, the logic to acquire/release the lock associated with a

particle would be placed around the code that updates the particles’ forces (shown in Figure

A.4). Our library provides the acquiring/releasing logic through the use of the first argument

of the forceUpdate method and the lock array access pointcut. However, unlike the intrusive

approach, our aspects neither introduce a new concern into the base code nor expose the locks

to the outside. Our framework allows the user to seamlessly change the locking strategy by

simply swapping between di↵erent layers while using the same base code. With an intrusive

approach, to test di↵erent locking strategies (e.g., locks and critical) the user has to either

change the base code for each test or create di↵erent versions of the same base code.

10Figure A.1 from Appendix A shows the code of applying the design rule over the fx array.

116 6. Validation and Results

Table 6.1: MD - The number of statements needed to implement the lock approach.

AOmpLib OpenMP C Java Intrusive
Number of statements 6 11 14

Table 6.1 summarizes the number of statements needed for the locking approach (Figure A.3

presents a detailed explanation). For this layer, AOmpLib used, more or less, half of the number

of statements used by the intrusive approaches (i.e., OpenMP and Java). This di↵erence comes

mainly because most of the locking mechanism is handled internally by AOmpLib. Regarding

complexity, in this case, our aspect layer is less complex than the intrusive approaches because

the user only has to reason about how to pass the size to create the array of locks and the index

to access these locks. The user does not have to deal with the low-level details of explicitly

handling locks. Moreover, as with our aspects, in the intrusive implementations, the user also

has to deal with the size of the array of locks and with the access to the appropriate lock from

that array. Nonetheless, we acknowledge that directly accessing the array seems more natural

than passing its index through a method parameter.

Data Redundancy approach

In the second strategy to deal with data races (i.e., using data redundancy), we used constructors

of the AOmpLib to provide private copies of fields of the MD (i.e., epot, vir, and interactions)

and Particles objects (i.e., fx, fy, and fz). At the end of the parallel region, these private

copies are reduced and the correspondent variables of the base code updated accordingly. For

readability purposes, we named these fields as problematic variables. To create the private data,

we tested two di↵erent AOmpLib approaches: 1) using set/get pointcuts combined with the

set/get performance design rule (detailed in Section 5.3.3) to create private copies at the field

level only; 2) creating private copies of the entire MD and Particles objects.

For the set/get constructors, we applied the set/get performance design rule only to the

force fields (details in Figure A.5), since their accesses occur inside a double loop11. By applying

this design rule, AOmpLib can inject the reference to the threads’ private arrays into the local

variables declared inside the force calculation method. However, due to this design rule, the

forces fields were, inconveniently, passed as parameters of the method forceUpdate. This small

inconvenient would not have occurred if we had started by testing the set/get pointcut before

the critical constructor, because the forceUpdate would not have been created. Nevertheless,

we could have simply inlined this method and tested the set/get pointcut e↵ortlessly. However,

in our opinion, the pros of maintaining the method outweigh the cons of removing it. Not only

the method has made the code more readable, but it also has provided a useful join point to

test di↵erent PRC strategies in the future. Notwithstanding, after finishing the layer testing

11The fields epot, vir, and interactions are accessed N times whereas the forces are N(N�1)
2

, with N being the
total number of particles.

6.2. Case Study : MOLDYN 117

workflow it is always possible to undo the unnecessary design rules. The aspects and pointcuts

used to test the set/get approach are very similar to those previously presented in Figure 5.25.

1 aspect MD_SM extends SM_Layer
2 {
3 pointcut hotspot () : call (... void Particles.calculate_force(int ,int ,int , MD))
4

5 @SmData (List = {@OP(Type = Type.SUM , vars = {"fx","fy","fz"})})
6 static aspect Particles_Data extends Sm_PrivateObject <Particles >
7 {
8 pointcut private_object(PrivateObject particles) : hotspot () && target(particles);
9

10 public Particles Particles.copy() { ...}
11 }
12

13 @SmData (List = {@OP(Type = Type.SUM , vars = {"epot","vir","interactions"})})
14 static aspect MD_Data extends Sm_PrivateObject <MD>
15 {
16 pointcut private_object(PrivateObject md) : hotspot () && args(.., md);
17

18 public MD MD.copy() { ...}
19 }
20 }

Figure 6.6: MD - Pointcuts and aspects to create private objects.

Figure 6.6 presents the layer that creates, for each thread, private copies of the entire Particles

(lines 5 to 11) and MD (lines 13 to 19) objects. The pointcuts in lines 8 and 16 replace,

respectively, the target object and last argument of the calculate force method by the appropriate

thread private copies. The annotations in lines 5 and 13 indicate what fields should be reduced

after the calculate force method call.

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	

2048	 8788	 19652	 250000	 500000	 Overall	

Sp
ee
du

ps
	

Number	of	Par<cles	

Cri<cal	 Locks	 Private	objects	 Set/Get	pointcuts	

Figure 6.7: MD - The speedups of the strategies to deal with data dependency in SM.

118 6. Validation and Results

The chart of Figure 6.7 and Tables B.2 (execution time), B.3 (scalability) and B.4 (max

speedups) of Appendix B show the results of testing the di↵erent strategies to deal with data

races. The data redundancy approaches were always the fastest, except for the smallest input

size. For that size, having a lock per particle and synchronizing the updateControlVar method

was the best approach. For the majority of the inputs, the critical approach stops scaling after

4-6 threads, the locks after 12-16 threads, and the data redundancy after 24-32 threads. In

total, for all the inputs, the set/get approach achieved an overall speedup of 15.27⇥ closely

followed by the private objects approach with 15.03⇥. Since both approaches achieved almost

the same overall speedup, we have chosen the more readable of the two, in this case, the private

objects approach. Nevertheless, due to the flexibility of our layers, we could have created a SM

parallelization that would use for each input their fastest layer. Hence, for the smallest input,

we would use locks per particle and updateControlVar method synchronization, for the second

and fourth inputs private objects and for the remaining inputs the set/get approach.

1 public class MD {
2 private ThreadLocal <ThreadPrivateData > mdThreadPrivate = ...;
3 ...
4 protected updateControlVar(double e, double v, int i){
5 mdThreadPrivate.get().updateControlVar(e, v, i);
6 }
7 ...
8 }

Figure 6.8: MD - Code snippet of the approach with ThreadLocal variables.

To intrusively replicate the set/get approach, the accesses to the problematic variables would

have to be replaced by accesses to the corresponding thread private variables. Using ThreadLocal

objects (line 2 of Figure 6.8) or creating arrays with the variables to be replicated among threads

(line 3 of Figure 6.9) are two possible strategies to mimic the set/get approach.

1 public class Particles {
2 private final double fx[],fy[],fz[]; // forces
3 private final double fxTD[][],fyTD[][],fzTD[][]; // thread forces
4 ...
5 private void forceNewtonsLaw(final MD md, int pA, int threadID){
6 ...
7 // Inject private thread references
8 final double fx[] = this.fxTD[threadID];
9 ...

10 for (int pB = pA + 1; pB < totalParticles; pB++){
11 ...
12 if(/** pB inside the radius of pA**/){
13 ...
14 /** Calculating thirds Newton ’s law */
15 fx[pB] -= tmpFx;
16 ...
17 }
18 ...

Figure 6.9: Particles - Code snippet of the approach that uses arrays to replicate the forces.

6.2. Case Study : MOLDYN 119

Unfortunately, the approaches illustrated in Figures 6.8 and 6.9 pollute the base code with

data unrelated to the domain concerns. Moreover, in both approaches the programmer has to

replace the original variables (e.g., fx) by thread-related variables (e.g., fxTD) that are only

used, and meaningful, inside a specific context (i.e., force calculation). Not only is the code

tangling with PRC, but some of these concerns resulted in the creation of di↵erent structures to

represent the same information (e.g., there are two di↵erent versions of the arrays of forces). By

having in the base code two variants of the same data (i.e., original and the thread-related data),

the programmer introduces a semantic dependency between the two and, consequently, has to

update both variants accordingly. For instance, right before and after the parallel region the

thread-related data and the problematic variables should be initialized and updated accordingly

(i.e., reduction), respectively. Furthermore, at least one thread should have access to the private

variables of the other threads to perform the data reductions. With the approach using arrays

(Figure 6.9), threads can access the problematic variables of each other, however, with the

ThreadLocal approach (Figure 6.8) additional structures are needed to hold the references to

the thread local data. Conclusively, one can immediately assume that, by adding the mechanism

that mimics the set/get approach, the base code becomes harder to maintain and understand.

Underneath the ThreadLocal class, there is a hashmap that maps between threads and their

private data. Hence, compared with directly accessing the original problematic variables, or with

accessing arrays with the thread-related variables, the thread local approach adds additional

instructions. These extra instructions can result in a prohibitive overhead. To reduce this

overhead, the programmer might have to resort to a similar strategy to the set/get performance

design rule. Although the use of the approach with arrays does not add the extra instructions

to access a hashmap, false sharing problems might occur. Furthermore, in that approach, the

thread ID had to be passed around (line 5 of Figure 6.9) so that threads could access the

position in the arrays where their data was being held (e.g., line 8). Moreover, this approach is

less explicitly in its intentions compared with the ThreadLocal. In the latter, it is immediately

clear that the main purpose of that structure is to provide private data to threads.

Table 6.2: MD - The number of statements needed to implement the set/get approach.

AOmpLib Java Intrusive
Number of Statements 18 40

Table 6.2 summarizes the number of statements12 needed to replace the problematic variables

using AOmpLib set/get approach and an intrusive approach similar to the one shown in Figure

6.9. More details about the number of statements are provided in Figure A.6.

12Those statements do not include the creation and management of threads, parallel regions and for construc-
tors, they include instead the statements related with set/get approach.

120 6. Validation and Results

In the MD case study, an intrusive implementation that creates, per thread, private copies of

the MD and Particles objects is less intrusive than an implementation that mimics the set/get

approach. Instead of individually replacing each problematic variable, the programmer can

replace the original MD and Particles objects with private ones (line 9 of Figure 6.10). The

code that creates the private data is localized within the logic that provides the parallel region

(line 4 to 11) instead of being spread over the MD and Particles classes.

1 void cicleForcesNewtonsLaw (){
2 epot = vir = 0.0;
3

4 for(int i = 0; i < totalThreads -1; i++){
5 final MD threadPrivateMD = this.copy();
6 final Particles threadPrivateParticles = particles.copy();
7 ...
8 teamThreads.addTask (() -> {
9 threadPrivateParticles.calculate_force(threadPrivateMD , ...);

10 ...
11 }...;
12 ...
13 }

Figure 6.10: MD - Code snippet of the intrusive private objects approach.

1 void calculate_force(MD *md)
2 {
3 // create array of forces and MD copy
4 // Initialize those variables
5 ...
6 #pragma omp declare reduction(mdReduce : MD : \
7 omp_out.epot += omp_in.epot , \
8 omp_out.vir += omp_in.vir , \
9 omp_out.interactions += omp_in.interactions) \

10

11 #pragma omp parallel reduction (mdReduce:mdThread) reduction(+:fx ,fy ,fz)
12 {
13 Particles threadParticle;
14 threadParticle.fx = fx;
15 threadParticle.fy = fy;
16 threadParticle.fz = fz;
17 ...
18 #pragma omp for schedule(static,1)
19 for(int i = 0; i < totalParticles; i++)
20 forceNewtonsLaw (&mdThread , i, &threadParticle);
21 ...
22 // Updating the original variables
23 }

Figure 6.11: MD - Code snippet of OpenMP parallelization of the best (so far) SM layer.

In the OpenMP C implementation that uses data redundancy approach, the MD and Par-

ticles classes were translated into C structures with the same name and fields. The parallel

region and static for were easily inserted through annotations. However, to create and reduce

the private structures additional code was necessary. In OpenMP C, annotations to reduce

structures and arrays were only introduced in the versions 4.0 and 4.5 of the standard, respec-

6.2. Case Study : MOLDYN 121

tively. Unfortunately, neither OpenMP C nor JOMP13 o↵ers annotations to reduce dynamic

allocated arrays/structures, which is needed in our MD C implementation. Nonetheless, we can

shape the code to exploit the OpenMP annotations to reduce structures and arrays (illustrated

in Figure 6.11). We could create a local MD structure (statically allocated) and arrays of forces

and use them in the OpenMP annotations (lines 6 to 11). Afterward, instead of the original

MD structure, the local one is passed as a parameter of the forceNewtonsLaw method (line 20).

Moreover, to avoid changing the code inside the forceNewtonsLaw method, we can create a local

Particles structure (line 13) and adjust its forces fields to point to the local arrays of forces (lines

14 to 16) and the remaining fields to the pointers in the original Particles structure. After the

parallel region, the original variables from the MD and Particles structures have to be updated.

Table 6.3 presents the total number of statements used to implement the (so far) best SM

layer. In these statements are included the creation of the parallel region, static for, and the

replication of private MD and Particles objects.

Table 6.3: MD - The number of statements needed to implement the (so far) best SM layer.

AOmpLib OpenMP C Java Intrusive
Number of Statements 29 33 49

Until this last SM layer, almost all OpenMP C implementations were less complex and

required fewer statements than the intrusive and aspect implementations. However, the last SM

layer reduces arrays inside structures, which is a feature currently not supported by OpenMP

through annotations. Hence, the creation and management of additional temporary structures

to be used in the reduction annotations clauses and to be passed as parameters of the methods

performing the force calculation. Furthermore, we also had to ensure that the results of those

reductions were correctly transferred to the corresponding variables in the base code.

Using the AOmpLib pointcuts to add a parallel region and a for is less complex than cre-

ating these constructors from scratch, but more complex than using the OpenMP annotations.

Nonetheless, using AOmpLib annotations to provide the same features reduces both the com-

plexity gap to OpenMP as well as the number of statements needed. Compared with OpenMP

C and intrusive approaches, AOmpLib shined the most in the creation and reduction of private

objects. With AOmpLib, the user has only to provide the pointcuts stating when (and which)

objects should become private, the copy constructor of these objects and, with annotations,

specify the fields to be reduced. All the cumbersome logic behind the correct reduction and

update of the corresponded variables is hidden, from the user, inside the AOmpLib. Moreover,

in contrast to the OpenMP C and Java intrusive implementations, the creation of private objects

did not require drastic modifications to the source code (e.g., adding new structures). Hence, for

the (so far) best SM layer, AOmpLib provided the implementation with the lowest number of

statements (Table 6.3), as complex as the OpenMP C but less complex than the Java intrusive.

13JOMP is based on the OpenMP 2.0 standard and therefore can only reduce primitive data types.

122 6. Validation and Results

6.2.1.2 Dealing with load balancing

To tackle the load balancing issues we performed a set of tests on the SM layer that uses the

strategy with private object copies. The base code contains the design rules previously applied,

except those from the set/get pointcut approach14. We tested static and dynamic distributions

with a chunk size of one and a manual distribution that divides equitably, as much as possible,

the iterations of the outer loop among threads. Each of these options is analyzed next.

The first iteration of the outer loop of the force calculation computes N�1 pairs of particles,

the second N � 2, and so on, with N being the total number of particles. Hence, threads that

take the initial chunks of iterations have more pairs of particles to work with. A dynamic for

distributes iterations as the threads request them, which improves load balancing. However, a

dynamic for has a higher overhead than a static due to the task distribution synchronization.

Thus, we implemented a manual static distribution that divides the outer loop into two di↵erent

loops, one that performs the iterations between 0 and N
2 � 1 and another that performs the

iterations between N � 1 and N
2 . The thread that executes the iteration i (with 0 i < N

2 and

N > 1) will also execute the iteration N � i � 1. Hence, whenever possible threads will execute

chunks of N� 1 pairs of particles15.

To test the di↵erent distributions of the parallel for no additional design rule was necessary

since the for method was already created. We have already tested the static distribution with

a chunk of one during the testing of di↵erent strategies to deal with data races. Hence, in the

current phase, we only tested the dynamic and the (static) manual distributions. Moreover, to

limit the number of tests, we tested the dynamic for distribution just with its default chunk.

Pointcut-wise, testing the dynamic for was solely a matter of renaming the pointcut for static to

for dynamic. To test our manual scheduling we used the user-defined for distribution constructor

of the AOmpLib (similar to the one shown in Figure 5.27).

Figure 6.12, and Tables B.5 (execution time) and B.6 (speedups) show that the dynamic

scheduling achieved the best speedups (i.e., 16.45⇥ overall). Our manual distribution su↵ers

from load balancing problems because of the two di↵erent levels of task granularity inside the

force calculation – when particles are within the same radius and when they are not. In the

former, extra logic is performed to calculate the force between the two particles, which results

in a higher time spent to complete that task than when the particles are not in the same radius.

14Code readability is the reason why these design rules were excluded.
15The iteration i has N � 1 � i pairs of particles and the iteration N � i � 1 has N � 1 � (N � i � 1) pairs of

particles. Thus, (N� 1� i)+ (N� 1� (N� i� 1)) which simplifying is N� 1. The exception to this is the iteration
N
2
� 1 when N is an even number (e.g., fourth row of Figure 6.4). For that iteration threads will calculate N

2
pairs

of particles instead.

6.2. Case Study : MOLDYN 123

0	
2	
4	
6	
8	

10	
12	
14	
16	
18	
20	

2048	 8788	 19652	 250000	 500000	 Overall	

Sp
ee
du

ps
	

Number	of	Par<cles	

Sta<c	(chunk	=	1)	 Dynamic	(chunk	=	1)	 Manual	

Figure 6.12: MD - Speedups of the strategies to deal with load balancing in SM.

Testing di↵erent for distributions with AOmpLib or OpenMP required practically the same

e↵ort and reasoning. Except for the manual, testing for distributions required changing only the

name of the pointcut/annotation. Because OpenMP does not provide customized distribution

through annotations, the user has to manually change the for body directly in the base code,

resorting to explicit calls to methods of the OpenMP API (e.g., getting the total number of

threads and their ids). With AOmpLib or OpenMP, the user performs a similar e↵ort, however,

in AOmpLib the logic is coded in the layer instead of directly in the base code. Naturally,

testing di↵erent for distributions with the intrusive implementations requires more e↵ort than

with AOmpLib or OpenMP because the programmer has to rewrite the loop from scratch and

guarantee that the heuristic of the distribution is correct. Such a task can be cumbersome,

especially with chunk sizes greater than one, which typically results in adding an extra loop

to iterate over the iteration chunks. To reduce future work the user can save the heuristics

of loop distributions in utility-type classes to reuse that knowledge in di↵erent applications.

Nevertheless, even in that case, the user still needs to rewrite the for.

After the SM testing phase, we ended up with parallelizations (i.e., aspects, OpenMP C,

and Java intrusive) that, for each thread, create private copies of the MD and Particles objects

and that dynamically distribute, among threads, the force calculation between a particle and

the remaining. Moreover, at the end of the parallel region, the epot, vir, and interactions field

variables of the MD and the arrays of forces of the Particles objects are reduced.

124 6. Validation and Results

6.2.2 Distributed Memory

Calculate	posi-ons	

Calculate	forces	

Calculate	veloci-es	

Calculate	temperature	

Calculate	Full	Energy	
Poten-al	

Calculate	posi-ons	

Calculate	forces	

Calculate	veloci-es	

Calculate	temperature	

Calculate	Full	Energy	
Poten-al	

Process 0 Process 1

All_Reduce
Forces

Figure 6.13: MD - DM parallelization with two processes.

The initial DM layer used in this subsection and illustrated in Figure 6.13 with two processes

is the one shown previously in Section 5.3.1 (i.e., Figure 5.12). In this layer, each process runs

the entire MD simulation, but during the force calculation, each process is only responsible for

calculating the forces of a subset of particles. After completing the force calculation, processes

exchange the particles forces among them using the MPI Allreduce routine. Alternatively, pro-

cesses could send only the forces that they updated, but such an approach would require to keep

track of the forces to be exchanged.

We could have developed a DM layer similar to our SM layer, where only the master process

would execute the entire simulation, while the others would only perform the force calculation.

However, since before the force calculation, the updated positions of the particles are required,

the processes would have to broadcast the particles’ position at that time. Consequently, this

approach would have added an extra communication overhead compared with the current one.

The current approach removes the need to send the particle’s position to processes, before

the force calculation, since the processes compute these positions locally. Hence, reducing the

amount of communication needed.

6.2. Case Study : MOLDYN 125

As with the tests performed for the SM layer, for the DM version we also tested three

di↵erent for scheduling approaches, namely, manual, static and dynamic, the last two with a

chunk of one. The manual scheduling employs the same heuristic as the one used in SM. The

results of these tests are shown in Figure 6.14 and in Tables B.5 (execution time) and B.6

(speedups). In the DM tests, as with the SM tests, the static and manual distributions achieved

similar speedups, with the former achieving the highest overall speedup of 15.68⇥ while the later

15.67⇥. However, contrary to what happened in the SM, the DM dynamic for had overall the

worst performance (15.52⇥), possibly because the communication used to dynamically distribute

the tasks produced a higher overhead than the lock mechanism used in the SM dynamic loop

distribution. In the best SM layer, the dynamic distribution achieved the best speedups for all

the inputs, whereas in the best DM layer only for the two largest inputs. Compared with the

best SM layer, the best DM layer scales more for the first three inputs and slightly less for the

remaining.

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	

2048	 8788	 19652	 250000	 500000	 Overall	

Sp
ee
du

ps
	

Number	of	Par<cles	

Sta<c	(chunk	=	1)	 Dynamic	(chunk	=	1)	 Manual	

Figure 6.14: MD - Speedups of the strategies to deal with load balancing in DM.

Table 6.4 presents the number of statements needed to implement the best DM layer using

the AOdmLib and a Java intrusive approach.

Table 6.4: MD - The number of statements needed to implement the DM Layer.

AOdmLib C MPI Java MPI Intrusive
Number of Statements 21* 20 31

* With annotation that value is only 10.

126 6. Validation and Results

6.2.3 Hybrids: Composing the Best SM and DM Layers

With our libraries of aspects, building the hybrid version was as straightforward as adding the

best SM and DM layers into the build. A possible source of issues during the composition

of the two aspect layers could have been the interception of the same join points by both –

the only occurrence of such join point is the method on which the for design rule was applied

(i.e., the calculate force method call). From the SM layer, this join point is intercepted by four

pointcuts, namely those providing the parallel region, dynamic for distribution and the two

related with the creation of private objects, whereas from the DM layer is intercepted by the

pointcut providing the static for distribution. Based on the precedence rules of our framework,

this join point is intercepted first by the parallel region pointcut and then by the pointcuts

concerning the creation of private objects. Afterward, between the for distribution pointcuts,

the one from the DM layer is injected first and only then is the one from the SM layer injected

as well. Although the correct composition of the SM and DM layers could have been a↵ected

by the order on which these code transformations occurred (over the calculate force method),

the framework ensured its correctness.

Building the OpenMP + MPI hybrid version was almost the same as merging the two codes.

In the Java intrusive hybrid version, it was necessary to adapt the dynamic for distribution from

the SM code to also take into account the number of MPI processes.

6.2.4 Performance evaluation

To evaluate the overhead of our approach we measured the execution time of:

• the sequential (base) code with and without the design rules;

• the SM and DM intrusive versions versus AOmpLib and AOdmLib, respectively.

We also compared these versions to their corresponding C implementations.

Regarding the results of the sequential versions, our design rules added no overhead to the

original base code and the execution time of the C implementation was, in total for all the input

sizes, approximately equal to the Java implementation. For the three smallest input sizes, the

C implementation was from 1.01 to 1.05⇥ faster than the Java implementation, but identical

for the two largest (these results are detailed in Tables B.7 and B.8).

In the MD case study, the design rules that could have lead to a noticeable overhead would

have been those introduced inside the method of the force calculation since this method takes

99% of the simulation execution time. However, all of these design rules are methods that ended

up being inlined by the JVM16.

16This was confirmed by using the JVM flags -XX:+UnlockDiagnosticVMOptions and -XX:+PrintInlining.

6.2. Case Study : MOLDYN 127

Figures 6.15 and 6.16 show the results of the Java/C implementations that mimic the best

SM and DM layers. More details about these results are provided in Tables B.9 (execution

time), B.10 (speedup), and B.11 (gains).

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	

2048	 8788	 19652	 250k	 500k	 Overall	 2048	 8788	 19652	 250k	 500k	 Overall	

Best	SM	Layer	 Best	DM	Layer	

Sp
ee
du

p	

Number	of	parBcles	

C	 C	adjusted	 Java	 Aspects	

Figure 6.15: MD - Speedups of the SM/DM versions.

In Figure 6.15, the di↵erence between C and C adjusted is that in the former the speedups

are calculated based on the C sequential execution time, whereas in the latter are based on the

Java sequential execution time. The curves of C and C adjusted overlap each other because the

execution time of the C and Java sequential versions is practically the same. With our SM and

DM aspect layers, we scaled the MD case study to an overall speedup of 16.45⇥ and 15.68⇥,

respectively – 16.62⇥ and 15.77⇥ with the Java intrusive implementations. Unfortunately, for

the two smallest inputs the speedups of the Java and aspect implementations were under 15⇥,

and consequently, these inputs were not used in our hybrid versions.

1.33	
1.08	 1.05	 1.02	 1.00	 1.01	

3.88	

1.33	
1.03	 1.00	 1.02	 1.03	1.06	 1.00	 1.01	 1.02	 1.00	 1.01	

2.07	

1.25	 1.08	 1.01	 0.99	 1.01	

0	

1	

2	

3	

4	

5	

2048	 8788	 19652	 250k	 500k	 Overall	 2048	 8788	 19652	 250k	 500k	 Overall	

Java	vs	Aspects	 C	vs	Java	

Ga
in
s	

Number	of	parDcles	

Best	SM	layer	 Best	DM	Layer	

Figure 6.16: MD - Comparing parallel implementations in SM and DM environments.

128 6. Validation and Results

Figure 6.16 shows that the performance di↵erences between Java and aspects (i.e., Java

vs Aspects) and between C and Java (i.e., C vs Java) are higher with the smaller inputs and

decreases with the increase of the number of particles. Nonetheless, the di↵erence in absolute

time between implementations was insignificant, however, percentage-wise the di↵erence is more

noticeable because the smaller the input, the shorter the execution time. For all the inputs, in

both SM and DM, the time di↵erence between the Java intrusive and aspect implementations

is under 0.25 seconds, and for the C and Java is less than 1.03 seconds. Lastly, the SM and DM

Java intrusive implementations, in overall, were 1.01⇥ faster than the aspects.

Since the best SM and DM versions scaled over 15⇥ (for the three largest sizes), we built

hybrid versions out of them. To understand the benefits of the hybrids we tested and compared

them with versions that only use processes (DM) in a cluster of 8 machines. In the tests of the

hybrid versions, we assigned one process per machine, each with multiple threads, whereas for

the DM tests we assigned multiple processes per machine. The most relevant results of these

tests are shown in Figures 6.17, 6.18 and 6.19. Additionally, for the DM and hybrid versions,

Tables B.12, B.13, and B.14 present information about the execution times, speedups, and gains,

respectively, and Table B.15 shows the gains of the hybrids versus DM.

0	

50	

100	

150	

8	 16	 24	 32	 48	 64	 96	 128	 256	 8	 16	 24	 32	 48	 64	 96	 128	 256	

DM	(8	Machines	x	N	Processes)	 Hybrids	(8	Machines	x	N	Threads)	

Sp
ee
du

ps
	

Total	of	cores	

Aspects	
19652	 250000	 500000	

Figure 6.17: MD - Scalability of the DM and Hybrid versions in 8 machines.

Comparing the results of the layer of aspects shown in Figure 6.15 with those presented

in Figure 6.17, we can see that, regardless of the version (i.e., DM or Hybrid), the speedups

achieved with multi-machines surpassed those with a single machine. The other DM/Hybrid

implementations (C and Java)17 have similar tendencies to the ones shown in Figure 6.17. By

comparing the input with 19652 particles with the others, we can see that, for 19652 particles, the

scalability of the DM and hybrid versions starts to decrease slightly at 48 processing units and

stops at 128. Moreover, we can see that at 96 processing units the decline is more accentuated

in the DM version than in the hybrid version – this is the point where communication overhead

17The charts of all versions are shown in Figure B.1.

6.2. Case Study : MOLDYN 129

starts to become more noticeable. Firstly because at this point, in the DM version, processes have

to switch from communicating with Myrinet18 to Ethernet and secondly because the overhead

of communication among the 96 processes starts to outweigh the gains from the additional

number of smaller parallel tasks. Nonetheless, it is worth recalling that the force calculation

has a computational quadratic asymptotic complexity, which means that with the doubling of

the input size the work to be computed quadruples, which helps to explain why the larger input

sizes continue to scale reasonably well even with more than 96 processing units. The larger the

size, the more parallel work there is, which in turn improves the load balancing. Furthermore,

an increase in input size leads to an increase in the ratio of computation to communication.

1.55	

1.12	 1.09	 1.14	1.18	
1.01	 1.02	 1.04	

1.13	
1.01	 1.03	 1.04	

0.00	

0.50	

1.00	

1.50	

2.00	

19652	 250K	 500K	 Overall	

Ga
in
s	

Number	of	par>cles	

C	 Java	 Aspects	

Figure 6.18: MD - Hybrids vs. DM versions running in 8 machines.

Figure 6.18 presents the gains (in a cluster of 8 machines) of the hybrids versus the DM ver-

sions implemented with C, Java, and our libraries of aspects. Regardless of the implementation

and input size, the hybrid versions were faster than the DM versions. One of the reasons for that

is the lower communication overhead of the hybrid versions. The communication overhead of

the DM version was higher due to the use of more processes (i.e., 256 instead of 8) and the use

of Ethernet instead of Myrinet. Although the di↵erence between the communication overhead

of the hybrid and DM versions a↵ects their scalability, additional factors mitigated the impact

of that overhead. For instance, both versions perform communication among the same number

of machines – inter-machine communication has a higher overhead than intra-machine commu-

nication. Moreover, the communication directive used (i.e., MPI Allreduce) has a complexity

of O(log2 P), where P is the total number of processes.

In the MD case study, the hybrids compared with the DM versions, have the advantages of

using less memory (i.e., fewer JVMs) and exploiting more e�ciently the dynamic scheduling.

However, the hybrids require an extra reduction step (among threads) and the creation of thread

private data. In the Java and aspect implementations, for 19652 particles, the hybrids surpass

18Our Myrinet was limited to 8 ports.

130 6. Validation and Results

the DM at 96 processing units, whereas for the remaining inputs just during hyper-threading

(i.e., 256 processing units). However, in C, for all input sizes, the hybrid surpass the DM at 48

processing units. This result may indicate that the hybrid versions implemented with Java or

aspects have a higher overhead than these implemented with C. Consequently, explain why the

highest overall gain of the hybrids over the DM versions was in the C implementations – 1.14⇥
compare with 1.04⇥ of the Java and aspect implementations.

Figure 6.19 confirms our previous suspicion since with the hybrids C was 1.15⇥ faster than

Java, whereas with the DM it was “only” 1.05⇥. These results imply that the SM part of the

hybrid versions implemented with either Java or aspects has a considerable overhead comparing

with C. Regarding Java versus Aspects, overall in the DM and hybrid versions, Java was 1.01

and 1.02⇥ faster than our libraries of aspects, respectively.

1.02	 1.01	 1.01	 1.01	 1.08	 1.07	 1.03	 1.05	1.07	 1.02	 1.01	 1.02	

1.42	

1.18	 1.11	 1.15	

0.0	

0.5	

1.0	

1.5	

2.0	

19652	 250k	 500k	 Overall	 19652	 250k	 500k	 Overall	

Java	vs	Aspects	 C	vs	Java	

Ga
in
s	

	

Number	of	parDcles	

DM	(8	Machines	x	32	Processes)	 Hybrid	(8	Machines	x	32	Threads)	

Figure 6.19: MD - Comparing parallel versions in DM/Hybrid with 8 machines.

After profiling, we found out that one of the sources of overhead in the hybrids implemented

with Java and aspects came from the creation of the thread private MD and Particles objects

in parallel. We rewrote the Java hybrid version19 to instruct the master thread to create and

assign the objects to the corresponding threads in a sequential manner. We tested again to

verify the di↵erences between the old and new Java hybrid versions, the results of these tests are

presented in Tables B.16 and B.17. The scalability trend of this new hybrid is similar to the one

described for the C implementation. This new Java implementation is overall 1.10⇥ faster than

the aspects (0.8 more than the old one) corresponding to an overall reduction of 0.86 seconds

in execution time (0.7 more than the old implementation). The overall gain of C over Java was

reduced from 1.15 to 1.07⇥, which corresponds to reducing the di↵erence between execution

times of C over Java from 1.24 to 0.55 seconds.

19We did not update the C code because it did not create objects in parallel, in fact, the new Java implemen-
tation is more similar to the C code than the old Java implementation.

6.3. Case Study : Matrix Multiplication 131

6.3 Case Study : Matrix Multiplication

Our matrix multiplication (MM), exemplified in Figure 6.20, instead of performing an elementary

multiplication element by element of the matrix C, uses an e�cient tiling approach based on

[SGS+14] specially tuned for Java. The MM is sub-divided into the multiplication of smaller

matrices (tiles). Our algorithm was thoroughly developed to further sub-divide those smaller

matrices into even smaller ones to fully exploit the three levels of cache.

A B

x =

C

= x + x + + x x

A
(1,0)

A
(1,1)

A
(1,2)

A
(1,3)

B
(0,2)

B
(1,2)

B
(2,2)

B
(3,2)

C
(1,2)

C
(1,2)

A
(1,0)

A
(1,1)

A
(1,2)

A
(1,3)

B
(0,2)

B
(1,2)

B
(2,2)

B
(3,2)

Figure 6.20: MM - Tiling illustration.

Figure 6.21 presents part of the code from our sequential MM version. The MM of a given

matrix C is divided into the MM of smaller tiles20, in our case with size 32 ⇥ 256. The ma-

trixMultiplication method of Figure 6.21 presents the structure of the MM kernel composed by

outer and inner loops (lines 23 and 25) that goes through the titles horizontally and vertically,

respectively. For each jj iteration of the outer loop, our MM loads a chunk of 256 consecutive

columns of the matrix B into the L3 cache, which is shared among cores. These columns of the

matrix B are loaded, inside the packingCacheL3 method, into a sub-matrix labeled bb. The

transfer of values from the columns of matrix B is done by loading 4 lines at a time and placing

them in a single line of matrix bb21 to make the MM more cache-friendly. Afterward, for each ii

iteration of the inner loop (line 25), a chunk of 32 consecutive lines of the matrix A are loaded

and used inside the microTiling (line 27) method. The microTiling method performs the MM of

the tile ii⇥ jj from matrix C by multiplying the lines loaded from matrix A with the columns

of matrix B stored in the sub-matrix bb. The microTiling method further splits the MM of the

tile ii ⇥ jj into smaller chunks to take advantage of the layout of the matrix bb, the smaller

cache levels (i.e., L1 and L2), and the registers. For brevity, the code of the microTiling method

was omitted since it is not fundamental for the understanding of the MM parallel versions.

20We found out that tiles with size 32 ⇥ 256 provide the best execution times for the sequential MM. Conse-
quently, and to reduce the number of possible future tests, we used tiles with size 32⇥256 for the parallel versions
of the MM, as well.

21Detailed code and visually illustration in Figures D.1 and D.3 of Appendix D, respectively.

132 6. Validation and Results

1 public final class MM {
2

3 public final static int tilei = 32, tilej = 256; // Tile size
4 private final double A[][], B[][], C[][];
5 private final int maxRowA, maxColA, maxRowB, maxColB ...;
6

7 public MM(int mRA , int mCA ,int mRB , int mCB) {
8 maxColA = mCA; maxRowA = mRA;
9 ...

10 A = new double [maxRowA][maxColA];
11 ...
12 }
13 ...
14 public void packingCacheL3(int jj, double bb[][]){
15 for(int k = 0; k < maxRowB; k += 4)// Loads 4 lines
16 ...
17 }
18 ...
19 public void matrixMultiplication (){
20 final double bb[][] = new double[maxRowB/4][tilej*4+1]
21 final double cc[][] = new double[tilei][tilej+1];
22

23 for(int jj=0; jj < maxColC; jj += tilej) {
24 packingCacheL3(jj , bb);
25 for(int ii = 0; ii< maxRowC; ii += tilei){
26 initBlock(cc);
27 microTiling(ii , bb, cc);
28 updateCCmatrix(ii , jj , cc);
29 }
30 }
31 }
32 ...
33 }

Figure 6.21: MM - Relevant code of the sequential version.

It is possible to identify (at least) two potential sources of parallelism in the matrixMulti-

plication method, namely the iterations of the outer and inner loops that can be assigned to

threads/processes. There are di↵erent trade-o↵s between parallelizing the outer and the inner

loops; for instance, the former has fewer iterations but more computation per iteration than the

latter. In the one hand, parallelizing the outer loop might lead to load balancing problems due

to having a small number of iterations. On the other hand, the iterations from the inner loop

might not have enough granularity to overcome the parallelization overhead. Since our MM

uses tiles with size 32 ⇥ 256, the inner loop has 8 times22 more iterations that the outer loop.

Furthermore, in the SM version, parallelizing the inner loop allows sharing the sub-matrix bb23

across threads, in contrast with parallelizing the outer loop which requires threads to have their

private bb sub-matrix. Regarding the DM versions, the processes to correctly perform the MM

of the tiles assigned to them only need specific chunks of the matrices. Hence, we can use an

approach that splits the matrices among processes. In practice, this approach works the same

as distributing the loop iterations among processes, but without having to waste memory in

redundant data. As illustrated in Figure 6.20, a given Tileii⇥jj of size tilei⇥ tilej from

22tilej/tilei = 256/32 = 8.
23According to our MM implementation, the sub-matrix bb is loaded into the shared L3 cache.

6.3. Case Study : Matrix Multiplication 133

the matrix C is the result of multiplying a complete line of Tilesii⇥↵ from the matrix A with

0 ↵ < maxColA
tilei by a complete column of Tiles�⇥jj from the matrix B with 0 � < maxRowsB

tilej .

Thus, there are two main DM versions of this MM implementation:

1. assigning lines of C tiles to processes, each process needs the entire matrix B and the

appropriate chunks of lines from the matrices A and C;

2. assigning columns of C tiles to processes, each process needs the entire matrix A and the

appropriate chunks of columns from the matrices B and C.

Analogously, the first and second approaches correspond, in the SM version, to distribute

the outer and inner loop iterations among threads, respectively.

Similar to what was done in the MD case study, we tested di↵erent strategies of loop/matrices

distribution in the SM/DM versions with aspects. The best MM SM layer found creates a parallel

region around the matrixMultiplication method and dynamically distributes the loop iterations

of the packingCacheL3 method and the inner loop iterations of the matrixMultiplication method.

Additionally, the sub-matrix bb is made shared among threads, whereas the cc remains private.

Our SM version needs synchronization barriers after the packingCacheL3 method and in-between

the outer loop iterations of the matrixMultiplication method. The first barrier ensures that the

shared sub-matrix bb has all its values loaded before threads can work with them in the MM

tiling, while the second guarantees that threads will not execute the packingCacheL3 method

before the others have finished the micro MM tiling of their tiles. Since both the packingCacheL3

method and the inner loop use the for constructor, they have already implicit barriers at the

end of their execution. Moreover, there is no risk of deadlock, since all threads execute all the

iterations of the outer loop, from the matrixMultiplication method, hence every thread will reach

all the barrier calls within the scope of that loop.

Our best DM version splits the matrices A and C by chunks of lines (of size tilei) across

processes while replicating the entire matrix B. In that version, the master process is responsible

for scattering, broadcasting, and gathering the matrices A, B, and C across/from the remaining

processes, respectively. Naturally, the scattering and broadcasting occur before the matrixMul-

tiplication method and the gathering after it. Regarding the hybrid version, besides testing the

composition of the best SM and DM layers, we also tested the use of the DM layer that splits

the matrices B and C by chunks of columns (of size tilej) across processes while replicating

the matrix A, combined with the best SM version. This alternative hybrid approach conceptu-

ally corresponds to statically distributing the outer loop iterations of the matrixMultiplication

method among processes combined with dynamically distributing both the inner loop iterations

of the matrixMultiplication method and the outer loop iterations of the packingCacheL3 method

among the threads of each process. To test that hybrid version we reused both the layer created

for the best SM version and one of the DM layers created during the intermediate DM tests. In

the end, the best hybrid version remained the one that combines the best SM and DM versions.

134 6. Validation and Results

6.3.1 Programmability evaluation

Our best SM layer uses one parallel region, a single and two dynamic fors, all of them implicitly

call a barrier. To introduce these parallel constructors three design rules were applied, one to

intercept object creation and two for methods. The first design rule was used to provide a

shared bb memory reference among threads24, whereas the last two were necessary to inject

the for constructors. Regarding the parallel region, no extra design rule was needed since this

constructor is applied over a method that already existed in the base code (matrixMultiplication).

1 public double [][] createPackBB () {
2 return new double[maxRowB /4][tilej *4+1];
3 }
4 public void mmTitleMatrixC(int begin , int end , int step , ...){
5 for(int ii = begin; ii< end; ii += step){
6 initBlock(cc);
7 microTiling(ii , bb, cc);
8 updateCCmatrix(ii , jj , cc);
9 }

10 }
11 public void matrixMultiplication (){
12 final double bb[][] = createPackBB ();
13 final double cc[][] = new double[tilei][tilej+1];
14

15 for(int jj=0; jj < maxColC; jj += tilej){
16 packingCacheL3 (0, maxRowB, 4, jj, bb);
17 mmTitleMatrixC (0, maxRowC, tilei, bb , cc , jj);
18 }
19 }

Figure 6.22: MM - Application of the SM design rules.

One of the for design rules (shown in Figure D.2) simply reused the packingCacheL3 method,

but adapting its signature, call, and outer loop range accordingly. For the remaining design rules,

two new methods were created, namely createPackBB (line 1 of Figure 6.22) and mmTitleMa-

trixC (line 4) to apply the single and for constructors, respectively. The changes in lines 12, 16

and 17 of Figure 6.22 resulted from applying the object creation design rule, the injection of the

loop range from the packingCacheL3 method and the call to the for method that encloses the

old inner loop, respectively.

Figure 6.23 shows the SM layer of aspects using annotations (the equivalent pointcut version

can be seen in Figure D.5). The parallel region, the single, and the two dynamic fors are

presented in the lines 3, 4, 5, and 6 of Figure 6.23, respectively.

1 public final aspect SM_MM extends SM_Layer {
2 ...
3 declare @method: * *.MM.matrixMultiplication () : @Parallel;
4 declare @method: * *.MM.createPackBB () : @Single;
5 declare @method: * *.MM.mmTitleMatrixC (..) : @For dynamic;
6 declare @method: * *.MM.packingCacheL3 (..) : @For dynamic;
7 }

Figure 6.23: MM - The best SM layer using annotations.

24Applying a single over an object creation method will provide a shared memory reference among threads.

6.3. Case Study : Matrix Multiplication 135

To replicate the best SM layer with a Java intrusive implementation, we started by creating

a parallel region (exemplified in Figure D.4). Creating a simple parallel region, even with the

use of lambdas, required almost the same amount of code used to create the entire SM layer

with pointcuts and nearly twice as much as with annotations. To build the parallel region we

created a new method that wraps around all the logic to implement it. Inside the new method,

the parallel tasks are assigned to a pool of threads, and the sub-matrix bb is created before the

task assignment and passed as the argument of the new method so that it is shared among the

threads inside the parallel region.

1 ... AtomicInteger tasksPackingLoop = new AtomicInteger (0);
2 ... AtomicInteger innerLoop = new AtomicInteger (0);
3 ...
4 public void matrixMultiplication(int threadID , double [][] bb){
5 ...
6 for(int jj=0; jj < maxColC; jj += tilej){
7 ...
8 if(threadID == 0) innerLoop.set(0);
9 callBarrier ();

10 for(int ii=innerLoop.getAndAdd(tilei); ii< maxRowC; ii=innerLoop.getAndAdd(tilei)){...}
11

12 if(threadID == 0) tasksPackingLoop.set(0);
13 callBarrier ();
14 }
15 }

Figure 6.24: MM - Dynamic intrusive fors in the SM Java intrusive version.

After creating the parallel region, we implemented the two dynamic fors. To simulate the

counters of these fors we used variables with atomic properties (lines 1 and 2 of Figure 6.24)

that are initialized (by the master thread) between iterations of the outer loop (lines 8 and 12).

Afterward, we adapted the appropriate loops to use the dynamic counters (e.g., line 10).

Table 6.5 shows the total of statements needed to implement the best SM layer (more detail

in Figure D.6). The annotation-based approaches (AOmpLib, OpenMP, and JOMP) required

the least number of added/modified statements, followed by the pointcut-based and the Java

intrusive approaches. Regarding complexity, naturally, the intrusive approach was the most

complex followed by the pointcut approach and with the annotations being the least complex.

The hardest part of the Java intrusive approach was to correctly introduce and initialize the

variables used in the dynamic for distribution (making sure it was free of data races). From

the AOmpLib side, all the necessary design rules were applied automatically using the method

refactoring and introduce parameter features from eclipse. Replicating the best SM layer with

OpenMP C and JOMP was only a matter of adding three annotations to the right code spots.

Unfortunately, with JOMP it was also necessary, due to its restrictions, the removal of the final

clause of some variables (e.g., sub-matrix bb). The noticeable di↵erence between the number

of statements used with AOmpLib and OpenMP annotations come from the fact that we also

included the statements required for the design rules (i.e., 8 statements). The AOmpLib pointcut

and annotations based approaches per se only required 8 and 5 statements, respectively.

136 6. Validation and Results

Table 6.5: MM - The number of statements needed to implement the SM Layer.

AOmpLib OpenMP JOMP Java Intrusive
Number of Statements 16* 3 10 33

* With annotations the number of statements is 13.

Our best DM version uses 5 aspects, 2 to split the matrices A and C by lines among processes

(data partitioning feature), one to broadcast the matrix B across processes and another to allow

the execution of certain methods by the master process only. In the data partitioning aspects,

we used pointcuts to send the dimensions of the matrices A and C that each process should

allocate, to have a global view over the matrix A when populating it, and to send to each

process the values of their corresponding sub-matrix A. To broadcast the matrix B we used an

all reduce25. Finally, we made sure that the master process is the only one allowed to populate

the matrices A and B and to validate the matrix C.

1 public final class MM {
2 ...
3 public MM(int mRA , int mCA ,int mRB , int mCB){
4 A = createMatrixA(mRA , mCA);
5 ...
6 maxColA = (A.length > 0) ? A[0]. length : 0;
7 maxRowA = A.length;
8 ...
9 }

10 ...

Figure 6.25: MM - The DM design rules in the MM object constructor.

The best DM layer required 3 new design rules along with some refactoring resulting from

collateral side e↵ects of the DM model itself. Line 4 of Figure 6.25 shows the application of

object creation design rule over the allocation of the matrix A (we omitted the code related with

the other matrices). These design rules provided the AOdmLib with hook points to inject the

local/global matrix views of the data partitioning feature.

Comparing the code of Figure 6.25 with the base code (lines 7 to 12 of Figure 6.21), besides

the introduction of the design rules, we can see that the assignments to the variables holding the

sizes of the matrices along with their positions in the code have changed. These modifications

were necessary because, unlike with the sequential version, with the DM versions matrices might

end up with di↵erent sizes than the ones initially defined. Furthermore, because some processes

might end up without sub-matrices, additional safety checks were necessary (line 6 of Figure

6.25). The order of the assignments to the variables holding the sizes of the matrices also

changed, because the matrices have to be created before we can query them for their sizes.

Moreover, because the memory reference of the matrices may vary at runtime, due to the

local/global view feature from AOdmLib, the final clauses from the matrices fields’ declaration

25In theory, the function most suitable to this task should have been an actual MPI broadcast. However, in
the MPI version that we used the broadcast function was, in overall, considerably slower than the all reduce. We
also tested the broadcast algorithm with tailored-made MPI flags, but overall the all reduce function remained
the fastest.

6.3. Case Study : Matrix Multiplication 137

had to be removed. Although, it was not necessary in the MM case study a more robust solution

would have been the removal of the fields that statically hold the sizes of the matrices and the

replacement of their occurrences by querying the matrices themselves for their sizes.

Table 6.6: MM - The number of statements needed to implement the DM Layer.

AOdmLib Java C
Number of Statements 38 51 38

During the implementation of the best DM layer with Java/C MPI we experienced the same

collateral side e↵ects encountered in the implementation with AOdmLib. Table 6.6 presents the

number of statements needed to develop the best DM layer (more detail in Figure D.7).

Regarding complexity, the C/Java intrusive implementations were more complex than the

AOdmLib, since the programmer must code all the logic to scatter/gather the matrices among

processes in chunks of size tilei. Moreover, coding the intrusive versions was not as complex as

it could have been, because we had already tested and found the best layer with the AOdmLib.

Therefore, not only we did not have to code all the di↵erent approaches to scatter/gather the

matrices (e.g., by lines or columns), but also when we coded the intrusive versions we already

knew the correct heuristics to use, which made the task less cumbersome and error-prone.

The best hybrid version is the composition of the best SM and DM layers. Summarizing,

in the best hybrid version each process performs the MM of a subset of lines of the matrix C,

which in turn is divided into smaller ones that are dynamically assigned to the threads created

in the scope of the process. The composition of the best SM and DM layers of aspects was

performed seamlessly, without requiring any modifications or additional design rules. The call

to the matrixMultiplication method was the only join point that had multiple interceptions by

the two layers. Hence, that join point could have led to the incorrect composition of the layers.

From the DM layer, that join point is intercepted by three pointcuts, namely the ones providing

the scattering of the matrix A, the gathering of the matrix C and the reduction of the matrix

B. Additionally, from the SM layer, that join point is intercepted by the pointcut providing the

parallel region. According to the chosen pointcuts, ours and the AspectJ precedence rules, the

scatters and the reduction will occur before the parallel region and the gathers after. By default,

the reduction would occur after a given join point, but in this case, happens before the parallel

region because we explicitly choose the pointcut (before comm) that injects behavior before a

join point since the processes need the values of the matrix B before performing the MM kernel.

The C/Java hybrids were created by intrusively merging the code from the SM and DM

intrusive versions. Regarding the parallel loops, we took those from the SM modules without

any adaptation. In contrast to the SM version, the DM version does not change the range of

the parallel loops directly, but rather the size of the matrices. Hence, unlike the parallel loop

from the Java hybrid version of the MD, that we had to adapt because the SM and DM versions

modified the range of that loop, in the MM case study no adaption is necessary.

138 6. Validation and Results

6.3.2 Performance evaluation

Before analyzing the results, we provide first some relevant context from the MM versions/tests.

Concerning the C implementation, it is noteworthy that its versions use matrices allocated in

continuous memory positions. Hence, the C versions are more cache friendly and, potentially,

have a lower communication overhead in DM compared with the other versions. In the DM

layer of aspects, each process has the entire matrix B and sub-matrices of the matrices A and

C, additionally, the master process also keeps the entire matrices A and C. For the DM Java/C

intrusive versions we applied a small optimization where the master process only works with the

global matrices and does not have any sub-matrices. Finally, because of memory limitations,

for the MM of matrices with 16384x16384 (the largest input), the DM tests were limited to a

maximum of 16 processes per machine.

The input sizes used in the MM (presented in Table C.1 from Appendix C) are considerably

larger than those used in the MD, with the biggest one reaching up a little bit over 6 GB. The

sequential code of our MM was also tuned to a set of JVM flags26 to improve its performance.

These flags were also used in our parallel versions. Table C.3 presents the execution time of the

sequential versions with and without the JVM flags.

Figure 6.26 shows the comparison of di↵erent sequential, SM and DM versions. Aside from

the C implementations, the execution time of the remaining tests is the best between running

the test with and without flags. For the SM and DM versions of the C versus Java, we removed

the values of the smallest input because they were too big when compared with the remaining

values, which compromised the legibility of the chart. Nonetheless, the execution times and

gains of the SM and DM versions are detailed in Tables C.5 and C.7, respectively.

0.00	
0.25	
0.50	
0.75	
1.00	
1.25	
1.50	
1.75	
2.00	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

O
ve
ra
ll	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

O
ve
ra
ll	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

O
ve
ra
ll	

Java	vs	Aspects	(Flags)	 Aspects	vs	JOMP	(Flags)	 C	vs	Java	(Flags)	

Ga
in
s	

Matrices	sizes	

SequenGal	 Best	SM	layer	 Best	DM	layer	

Figure 6.26: MM - Comparing di↵erent implementations of the sequential, SM, and DM versions.

26Namely, -XX:+UnlockDiagnosticVMOptions, -XX:LoopUnrollLimit=500, -XX:-UseCompressedOops and -
XX:ObjectAlignmentInBytes=256.

6.3. Case Study : Matrix Multiplication 139

In Figure 6.26 (and Table C.4), under the category Java vs. Aspects and the “Sequential”

column, is possible to see that the design rules did not add overhead. In the SM and DM

versions, we can also see that for the two smallest inputs Java was slower than C and that

for the majority of the inputs the Java intrusive implementations were faster than the aspects,

ranging from 0.92 to 1.06. The value of 0.92 for SM MM of matrices with size 2048 can be

considered an outlier. Overall the SM Java intrusive was 1.03 faster than the aspects, while in

the DM version there was virtually no di↵erence (1.00). Compared with JOMP, the AOmpLib

was faster for the smallest inputs (especially in the outlier), with gains up to 1.10, but overall

with similar performance (1.00).

0	
2	
4	
6	
8	

10	
12	
14	
16	
18	
20	

1024	 2048	 4096	 8192	 16384	 Overall	 1024	 2048	 4096	 8192	 16384	 Overall	

SM	 DM	

Sp
ee
du

p	

Matrices	size	

C	 C	adjusted	 Java	 Aspects	 JOMP	

Figure 6.27: MM - Speedups of di↵erent implementations of the SM and DM versions.

Figure 6.27 presents the speedups of the di↵erent SM and DM versions (more detail in Tables

C.8 and C.9). The blue curve of Figure 6.27 shows that for most inputs the C implementations

scaled the most. However, the red curve (“C adjusted”) shows that, except for the two smallest

inputs, the Java-based versions were faster (with the help of the flags) than C. Since for the two

largest inputs the Java intrusive implementations achieved speedups over 15.0⇥, we decided to

test them in a multi-machine setup as well.

Figure 6.28 shows the speedups of the DM and hybrid versions in a cluster of 8 machines. Due

to hardware constraints27, the DM versions were tested with a maximum of 64 processes spread

across 8 machines. Figures 6.27 and 6.28 (or more explicit Tables C.8, C.9, and C.11) show that

the Java intrusive DM version for the two biggest inputs was able to scale, respectively, from

10.99 and 15.03⇥ (in 1 machine) to 11.29 and 24.06⇥ (in 8 machines). Moreover, for the same

inputs, from the Java intrusive SM version to the correspondent hybrid, the speedups increased

from 15.36 and 17.79⇥ to 19.70 and 41.25⇥. Hence, executing our MM in multi-machines only

pays o↵ with the hybrids, and mainly for the last input.

27The Myrinet used is limited to 8 ports. Using Ethernet, in the MM case study, to communicate among more
than 8 processes per machine introduced a prohibitive overhead.

140 6. Validation and Results

0	
10	
20	
30	
40	
50	
60	
70	
80	

8192	 16384	 Overall	 8192	 16384	 Overall	

DM	(8	Machines	x	8	Processes)	 Hybrid	(8	Machines	x	32	Threads)	

Matrices	sizes	

Sp
ee
du

p	

C	 C	Adjusted	 Java	 Aspects	

Figure 6.28: MM - Speedups of hybrids and DM versions with 8 machines.

Figure 6.29 shows that the hybrid versions were overall 1.54, 1.72, and 1.68 times faster

than the pure DM in C, Java, and aspect implementations, respectively (details in Table C.13).

The gains of the hybrids over pure MPI come mainly from a lower communication overhead

(i.e., 8 processes instead of the 64 used in the pure MPI), the ability to run in more cores (i.e.,

32 instead of 8) and, possibly, the dynamic balancing. With 8 threads per machine instead of

32, the hybrids are 1.05, 1.39, and 1.37 times faster than the pure MPI in C, Java, and aspect

implementations, respectively. Therefore, the majority of the gains of the hybrid in C (i.e., 90%)

comes from the extra cores, whereas for the hybrids with Java and with aspects the extra cores

did not contribute as much (i.e., 46% for Java and 47% for the aspects). Nevertheless, these

values are rough estimations, since for a more precise evaluation it would be required, among

others, cache and load balancing values.

1.43	
1.57	 1.54	

1.75	 1.71	 1.72	
1.62	 1.70	 1.68	

0.00	

0.50	

1.00	

1.50	

2.00	

8192	 16384	 Overall	

Ga
in
s	

Matrices	size	

C	 Java	 Aspects	

Figure 6.29: MM - Hybrids vs. DM versions with 8 machines.

6.3. Case Study : Matrix Multiplication 141

Figure 6.30 shows the comparisons of di↵erent DM and hybrid versions in a cluster of 8 ma-

chines. Overall the Java intrusive implementations were 1.00 and 1.02 faster than the aspects in

the DM and hybrid versions, respectively. The performance di↵erence between the implementa-

tions with Java and with aspects was slightly more noticeable in the hybrids, following a similar

trend to the results shown in the MD case study. By analyzing the C vs. Java comparison we

can see that contrary to the single machine test results, Java was slower than C (even with the

use of the JVM flags). The matrix layout of the C implementations allows performing fewer

MPI process communications than the layout used in Java. Hence, in C the communication

overhead was lower than in Java (results in Table C.6)).

1.00	 0.99	 1.00	

1.61	

1.13	
1.20	

1.08	
1.00	 1.02	

1.31	

1.03	 1.08	

0.00	
0.25	
0.50	
0.75	
1.00	
1.25	
1.50	
1.75	
2.00	

8192	 16384	 Overall	 8192	 16384	 Overall	

Java	vs	Aspects	 C	vs	Java	

Ga
in
s	

Matrices	sizes	

DM	(8	Machines	x	8	Processes)	 Hybrid	(8	Machines	x	32	Threads)	

Figure 6.30: MM - Comparing parallel versions in DM/Hybrid with 8 machines.

142 6. Validation and Results

6.4 Case Study : JGF Benchmarks

This section shows how our framework deals with a broader range of case studies and legacy code

regarding performance and programmability compared to other approaches. The case studies

presented in this section are the parallel benchmarks from section II and III of the JGF.

This section is structured di↵erently from the MD and MM sections. We start with the

introduction of all the algorithms, and then we present the improvements made to them. After-

ward, we present the evaluation of the performance and programmability of our framework in

comparison to other approaches.

6.4.1 Introduction of the case studies

We start by introducing the case studies with relevant information about their original JGF

parallelizations. For some of the case studies, we found better strategies and optimizations. All

those findings are properly indicated in the upcoming sections.

Crypt

This case study uses the International Data Encryption Algorithm (IDEA) [LMM91] to encrypt

and decrypt data [SBO01]. The JGF implementation of this algorithm has three main data

structures that hold the text to be encrypted, the encrypted and the decrypted data. In the

most computational demanding routine, the data is first encrypted and then decrypted; both

phases use an auxiliary sub-routine labeled “cipher idea”. The SM JGF implementation par-

allelizes the outer loop of the routine “cipher idea” and the DM version splits the data to be

encrypted/decrypted among processes. For the parallelization of this algorithm it is relevant to

know that:

• the parallelized loop contains a loop-unrolling of degree 8;

• there is a dependency among iterations of the “cipher idea” loop, that needs to be solved

before parallelizing it. After that dependency is solved the algorithm is embarrassingly

parallel ;

• this algorithm is compute bound with an asymptotic complexity of ⇥(N), with N being the

size of the text to be encrypted.

Initially, this algorithm came with three inputs (3, 20 and 50 million elements) that ranged

from 8.58 to 143.05 Megabytes, to these we added two additional ones (200 and 900 million) for

a maximum of 2574.92 Megabytes.

6.4. Case Study : JGF Benchmarks 143

Series

This algorithm computes the first N coe�cients of a Fourier Series [Wei] for the function f(x) =

(x+ 1)x in the interval [0, 2] [SBO01], which corresponds to the formula:

f(x) =
1

2
aO +

NX

n=1

ancos(n⇡x) +
NX

n=1

bnsin(n⇡x) [Wei] (6.1)

a0 =

Z 2

0

(x+ 1)x dx (6.2)

an =

Z 2

0
(x+ 1)x cos(n⇡x) dx (6.3)

bn =

Z 2

0
(x+ 1)x sin(n⇡x) dx (6.4)

The main kernel is composed by a section that first computes the term aO and an outer

loop that computes the terms of an and bn from 1 to N. These terms are computed using 1000

integrations steps (implemented with an inner loop). The outer loop iterations are independent

of each other, and therefore the algorithm is embarrassingly parallel. The threads/processes of

the SM/DM JGF implementations are responsible for computing a chunk of coe�cients. The

algorithm is compute bound with a complexity of ⇥(N) and originally had three inputs of 10k,

100k, and 1 million elements, up to 15 Megabytes. We added two more inputs of 2 and 2.5

million elements, up to 38.52 Megabytes. Unfortunately, for this case study inputs that required

more memory would not be convenient since it would, prohibitively, increase the execution time.

SOR

This case study solves a system of X linear equations using a variant of the Gauss-Seidel [GS00]

iterative method, but with a relaxation factor (!) of 1.25, which enables a faster convergence.

Because ! is greater than 1 the method is called successive over-relaxation (SOR).

The system of linear equations is represented by a matrix X⇥X. The main kernel of the SOR

implementation of JGF has two loops that iterate over all positions of the matrix. That main

kernel is executed 100 times (i.e., convergence phase) and the content of the matrix is updated

using the formula:

Mij =
!

4
(Mi�1j + Mi+1j + Mij�1 + Mij+1) + (1� !)Mij (6.5)

where M represents the matrix that holds the results. That formula includes the use of a

stencil of four points, which implies the presence of dependencies between the loop iterations.

Hence, this version is hard to be parallelized e�ciently [SBO01]. Nevertheless, the JGF parallel

implementations of the SOR use a “red-black” [Mit14] strategy that makes it easier to exploit

144 6. Validation and Results

parallelism. In this version, the convergence phase is divided into two sub-phases named red

and black, where odd and even rows numbers are updated, respectively. In the SM version, at

the end of each phase, threads synchronize using a global barrier, whereas in the DM version

processes will swap the rows of their borders using a blocking communication routine. Moreover,

threads/processes have to be aware of their matrix borders, which implies extra conditional

statements inside the main kernel. Since one of our goals is to use the same base code for all the

parallelizations, we used a sequential base implementation based on the “red-black” approach.

Although that decision did not negatively a↵ect the performance, the code became less readable.

This algorithm is memory bound with an asymptotic complexity of ⇥(N), with N being the

matrix size. Initially, the inputs use were 1k ⇥ 1k, 1.5k ⇥ 1.5k, and 2k ⇥ 2k elements up to

30.52 Megabytes of memory. We added two more inputs of 10k and 15k elements that use up

to 1716.61 Megabytes, to emphasize the memory bandwidth constraints of the algorithm.

LUFact

This case study solves a system of X linear equations using a modified version of a Gaussian elim-

ination known as lower upper factorization (LUfact) proceeded by a triangular solve [SBO01].

The LUFact decomposes a given matrix A into a product of a lower (L) and upper (U) triangular

matrices (A = LU).

This case study is based on the original Linpack benchmark [DRM], which implements a LU

factorization with partial pivoting. The system of linear equations is represented by a matrix

X⇥X. The most computational demanding routine of this case study is the row elimination phase,

where for each column k of the matrix a vector-vector multiplication of the pivot column with

the remaining columns is performed, starting with column k+ 1. That phase is the main source

of parallelism in LUFact since all vector-vector multiplications can be performed in parallel.

However, the total loop iterations decrease as the factorization algorithm goes through the

columns of the matrix since for each column k the row elimination performs X�k�1 iterations.

This case study is memory bound and has an asymptotic complexity of ⇥(N
3
2), with N being

the matrix size. For the same reason as the SOR (to stress the bandwidth), we added two

additional inputs of 8k⇥ 8k and 16k⇥ 16k for matrices with sizes up to 1972.82 Megabytes.

Sparse

This case study performs, a hundred times in a row, the multiplication of a vector by a sparse

matrix stored in the format COO (coordinate format).

1 for (int r = 0; r < 100; r++)
2 for (int i = 0; i < N; i++)
3 y[row[i]] = y[row[i]] + x[col[i]] * val[i];

Figure 6.31: JGF - Sparse Kernel.

6.4. Case Study : JGF Benchmarks 145

From all the case studies, Sparse has the simplest kernel (Figure 6.31). The vectors row, col

and val, shown in Figure 6.31 together, represent the matrix saved in the COO format. The

JGF SM implementation of this algorithm parallelizes the inner loop of Figure 6.31. To avoid

race conditions during the update of vector y the vector row is sorted and the content of the

vectors col and val are adjusted accordingly. Moreover, there is also additional logic to ensure

that the same row is not assigned to di↵erent threads. In the DM implementation processes

have a copy of the vector y and in-between iterations of the outer loop processes communicate

to update their copies of the vector.

This algorithm is memory bound with irregular memory access patterns and an asymptotic

complexity of ⇥(N), with N being the number of matrix elements. We added two extra inputs of

5 and 7.5 million elements that use up to 137.33 Megabytes of memory.

MC

This case study uses Monte Carlo methods to simulate a financial environment [SBO01]. Among

all case studies, MC has the highest number of classes. The sequential version of the MC has

15 classes, 145 methods, and 1145 lines of code28.

The main kernel of the MC is composed by a loop with N iterations, with N being the input

size. Every iteration of that loop executes a Monte Carlo simulation on a data that emulates a

price stock and saves the results of the simulation in a vector of price stocks. The SM and DM

parallelizations assign to threads/processes chunks of price stocks to be simulated. Although in

the SM implementation the vector of results is shared among threads, there is no risk of race

conditions because the vector data structure from Java internally uses synchronization during

the critical operations (e.g., add). Naturally, in the DM implementation, each process has its

vector of results that at the end of the simulation is merged in a single vector.

The MC case study is compute bound and with an asymptotic complexity of ⇥(N). Originally,

this case study had only two case studies (10k and 60k elements), but we added three more (90k,

120k, and 150k elements) for a maximum of memory consumption of 2222 Megabytes.

RayTracer

This case study generates a scene with 64 spheres using a 3D Ray Tracer and saves the results in

an array of size N [SBO01]. Similar to the MC, RayTracer is considerably larger than the other

case studies, with a total of 13 classes, 52 methods and 548 lines of code28. The main kernel

renders the scene and has a double loop that iterates through the x and y coordinates of the scene.

In the JGF SM/DM implementations, threads/processes are responsible for rendering di↵erent

parts of the scene. The SM parallelization needs to deal with the shared state and dependencies

28Statistics measured with CodePro AnalytiX .

146 6. Validation and Results

inside the double loop. For instance, a shared variable named “checksum” accumulates the RGB

elements of each pixel in the scene.

This algorithm is compute bound and performs several memory allocations and has an

asymptotic complexity of ⇥(N), with N being the number of pixels in the scene. This case study

currently uses five di↵erent inputs (three added by us) ranging from 150x150 to 2500x2500

elements for a maximum of memory consumption of 606 Megabytes.

6.4.2 Performance and programmability evaluation

The size of the inputs used (i.e., total of elements and memory occupied by them) in the JGF

case studies are presented in Tables E.1 and E.2 from the Appendix E. The execution times of

the sequential, SM, and DM versions of all the implementations (C, Java, JOMP, and aspects)

are shown in Tables E.3, E.5, and E.6, respectively.

6.4.2.1 Improvements

The improvements made to the original JGF implementations came either from better strategies

found with our framework or straightforward improvements. These improvements are not only

related to increasing performance but also with improving the code readability.

Concerning the sequential versions, the performance of the RayTracer and SOR was signifi-

cantly improved. Figure 6.32 (and Table E.4) presents the gains from these improvements.

1.36	 1.42	
1.34	 1.36	1.36	

1.29	1.34	 1.29	
1.38	

1.21	
1.37	

1.23	

0	

0.5	

1	

1.5	

2	

RayTracer	 SOR	

Ga
in
s	

JGF	Case	Studies	

JGF	Improved	vs	JGF	Original	:	SequenIal	

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

Figure 6.32: JGF - The gains of improvements in the sequential versions.

The JOMP version of the RayTracer does not use the original base code from JGF. The

JOMP implementation replaced, in the base code, fields that were susceptible to race conditions

by local variables passed as parameters of the methods that used these fields. Hence, resulting

in several modifications to the (original) base code. We speculate that these fields were replaced

due to the inability of JOMP to make them thread private. Nevertheless, the JOMP version

with a single thread was overall 1.37⇥ faster than the original JGF sequential version. Hence, we

6.4. Case Study : JGF Benchmarks 147

used the JOMP sequential implementation as the new (sequential) base code. Compared with

the original version the new implementation produces fewer instructions, occupies less memory,

and allocates fewer objects (details in Table F.1 of Appendix F).

We improved the SOR sequential version (the one based on the red-black algorithm) by

reducing the number of conditional tests. The snippet of code of Figure 6.33 shows the structure

of the SOR kernel, which consists of applying a stencil over a matrix. To apply the stencil (lines

9 to 11) the SOR kernel needs to di↵erentiate among the first, last, and middle rows.

1 ...
2 public void sor_simulation (...)
3 {
4 ...
5 for(int p = 0; p < JACOBI_NUM_ITER; p++)
6 {
7 for(int i = 1 + (p % 2); i < MAX_ROWS; i += 2)
8 {
9 if(/* First row */) {...}

10 else if(/** Last row **/) {...}
11 else {...} // Middle rows
12 }
13 }
14 }

Figure 6.33: JGF - SOR Kernel.

Our optimization consisted in moving the first and last row tests to outside the loop. Conse-

quently, we had to adapt the loop range to exclude the first and last rows. We further applied the

same optimization over the stencil heuristics themselves (not included in Figure 6.33). Worth

noting that although our improvement reduced the number of instructions, it also increased the

absolute number of misses to the cache L2 and L3 (details in Tables F.2 and F.3). As shown in

Figure 6.32 this optimization provided an overall gain of 1.23. Naturally, we implemented the

parallel versions of the RayTracer and SOR upon their improved sequential versions.

1.10	

2.16	

1.10	 1.02	 1.10	
1.15	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

Crypt	 RayTracer	 Series	 SOR	 MC	 LUFact	

Ga
in
s	

JGF		Case	Studies	

JGF	Improved	vs	JGF	Original	:	Shared	Memory	

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

Figure 6.34: JGF - Gains of the improved SM versions.

148 6. Validation and Results

After the improvement of the sequential versions of the case studies, we tackle their SM

versions. Figure 6.34 presents the gains obtained for the improved SM versions (detailed in

Table E.7). The improvements made over Crypt and SOR were the only ones that did not come

directly from the tests made with our framework. In Figure 6.34 for the smallest input of the

LUFact, there is a black bar to illustrate that we did not consider that input because for that

size the parallel version of the LUFact had a speedup under one.

The SM version of Crypt originally had two consecutive parallel for constructors, one per

encrypting and decrypting phases. We improved that version by creating a single parallel region

that wraps the encrypting and decrypting parallel fors. This improvement reduced the number of

threads/runnables created and the number of calls to synchronization mechanisms (e.g., join).

Furthermore, in the original version, the heuristic that distributes the iterations of loops per

threads was calculated twice (encrypting and decrypting) even though both parallel fors had

the same range, which means that with static distributions threads will work with the same

range in both fors. With this in mind, we tested di↵erent for distributions with our AOmpLib

and concluded that a static distribution with default chunk was the fastest. As shown in Figure

6.34 those improvements provided an overall gain of 1.10 (0.284 seconds).

The improvements in the SM versions of the RayTracer, Series, MC, and LUFact came

from tests made with the AOmpLib. The use of a dynamic for distribution (with a chunk of

one) alone improved the RayTracer, Series, and MC case studies. Nonetheless, we also added

the following improvements to the RayTracer: - sharing some objects among threads instead

of making them private; - reducing the synchronization to update a shared variable (named

checksum)29; - the use of the changes made by JOMP in the (sequential) base code, among

others. These improvements provided an overall gain of 2.16 (31.918 seconds), from these the

AOmpLib contributed directly with 1.19 (9.571 seconds). The use of the dynamic distribution

in the Series and MC delivered in both an overall gain of 1.10 that corresponds to a reduction

of 4.151 and 0.566 seconds, respectively.

The LUFact had two di↵erent SM parallelizations, the original from the JGF and the one

provided by JOMP. In the JGF version a parallel region wraps around the entire method that

performs the factorization and inside of it there is a for distribution in the row elimination rou-

tine. In this version, the master thread executes most of the operations inside the parallel region

sequentially. Moreover, inside that parallel region, six synchronization barriers are required to

ensure that the threads wait while the master is working. In the JOMP version, there is only a

parallel for during the row elimination. At first glance, the main advantage of the JGF approach

is that there is the creation of only one parallel region, whereas in the JOMP approach there are

multiple parallel regions (one for each time the row elimination method is invoked). However,

29In the improved version threads have private copies of the checksum variable and at the end of the parallel
region, all the checksum variables, from the di↵erent threads, are reduced.

6.4. Case Study : JGF Benchmarks 149

with thread pools, threads can be created once and reused afterward, instead of being created

every time a parallel region is reached.

After testing several approaches with the AOmpLib, including the two aforementioned, re-

sults showed that overall the JOMP approach is 1.15⇥ faster than the original JGF approach.

Moreover, the JOMP approach is also less complex since it only has one parallel for constructor,

whereas the JGF approach has a parallel region, a for, 6 barriers and 3 masters constructors.

It is worth mentioning that the improved version benefited more with the Java NUMA flag30

than the original version (details in Table E.11). Without the NUMA flag, the LUFact improved

version would only have significant gains in the three smallest inputs, those that fit in cache.

Regarding the SOR, the gains of its SM and DM versions, shown in Figures 6.34 and 6.35,

are the result of the (previously mentioned) reduction of conditional tests. In the SOR SM and

DM versions, the gains are higher in the three smallest input sizes (varying from 1.61 to 2.57)

and practically nonexistent in the remaining two. That results from the fact that: - first, the

two largest inputs do not fit in the cache; - second, with the improved version the absolute

and percentage L3 cache misses decreased with the three smallest inputs and increased with the

remaining two (results in Tables F.4 and F.5); - and, finally, the parallel versions have a di↵erent

bottleneck. The parallel versions of the SOR (and also the LUFact) are limited by the memory

bandwidth, which is most noticeable for inputs that do not fit in cache. Nonetheless, the SM

and DM improvements still reach an overall gain of 1.02 and 1.03, respectively.

1.43	

1.01	 1.03	 1.03	 1.00	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

RayTracer	 Series	 SOR	 Sparse	 LUFact	

Ga
in
s	

JGF		Case	Studies	

JGF	Improved	vs	JGF	Original	:	Distributed	Memory	

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

Figure 6.35: JGF - Gains of the improved DM versions.

Figure 6.35 and Table E.8 present the gains of the improved DM versions. The overall gain

of 1.43 (12.146 seconds) from the RayTracer DM improved version, as with the SOR, came from

the optimizations performed in the sequential version.

30The flag -XX:+UseNUMA is a Java JVM flag used to make the Parallel Scavenger garbage collector NUMA-
aware [Fla]. For simplicity, we refer to this flag as NUMA flag.

150 6. Validation and Results

The improvements in the Sparse DM version came from the phase when we compared the

intrusive approach to our layer of aspects. During that phase, the tests showed that the layer

of aspects was overall faster than the matching Java intrusive implementation (i.e., the original

Sparse DM version). Contrary to the AOdmLib, the JGF version used a global array as a

temporary array during the reduction31 of the matrix across processes. We replaced that global

array by a local one, which provided an overall gain of 1.03 (0.672 seconds).

1 public void calculatingFourierFirstNparis (...){
2 ...
3 // Calculate the fourier series. Begin by calculating A[0].
4 TestArray [0][0] = TrapezoidIntegrate (...);
5

6 for(int i = 1; i < TestArray.length; i++)
7 {
8 // Calculate A[i] terms.
9 TestArray [0][i] = TrapezoidIntegrate (..., omega * i, 1);

10 // Calculate the B[i] terms.
11 TestArray [1][i] = TrapezoidIntegrate (..., omega * i, 2);
12 }
13 }

Figure 6.36: JGF - Series Kernel.

The improvements made in the DM versions of Series and LUFact focused more on reducing

the complexity of their parallelizations than increasing performance. Figure 6.36 presents a code

snippet32 extracted from the sequential version of Series. The Series SM version distributes

among threads the loop iterations shown in line 6 of Figure 6.36. However, in the DM version,

each process allocates a smaller sub-matrix of the global matrix (labeled “TestArray” in Figure

6.36) where the elements of the trapezoid integrations are stored. In the end, the slaves send

their chunks of columns to the master process. Figure 6.36 shows that the index (i) of the loop

is being used as the series number (lines 9 and 11). Consequently, in the original JGF DM

version processes have to convert the indices of their local matrix into the corresponding indices

of the global matrix. Although we tested (using our layers of aspects) di↵erent DM versions, we

did not find one that considerably outperformed the performance of the original. Nevertheless,

one of them was slightly faster, and simpler, than the original version. This version uses a

similar approach to the SM version, where every process has a global view over the matrix and

parallelizes the loop from line 6. With this approach, there is no need to convert between local

and global indices since the loop is aligned with the matrix access pattern. Moreover, to collect

the results from all processes, we used a reduction routine with the master process as the root

instead of using the more complex communication heuristic33 present in the original version.

With this new approach, we reduced the number of DM-related statements in the intrusive

31An All reduction communication routine is called 200 times.
32The method labeled calculatingFourierFirstNparis in Figure 6.36 is named DO in the JGF.
33Sending a matrix by columns with MPI send requires more e↵ort than a MPI reduction, especially in Java

where there is no pointer arithmetic.

6.4. Case Study : JGF Benchmarks 151

version from 44 to only 16, a reduction of more than half of the statements. The new approach

provided an overall gain of 1.01 (0.517 seconds). The gains of the majority of the inputs vary

between 1.00 and 1.02, except for the second input. For that input size, the gain was 1.13

because for that input the reduction communication routine outperformed the one used in the

original version.

Similar to Series, the original LUFact DM version divides the matrix among processes,

however, in the latter, the division is performed by rows instead of columns. Moreover, the

original LUFact DM version uses auxiliary structures to map the processes ids to the indices of

the rows that each process should work. The use of these structures originated in part from the

need to translate between global and local matrix indices. Similar to the improvement made in

Series, in the LUFact improved DM version processes have the entire matrix instead of only a

subset of rows. The combination of this new approach with some additional arithmetic enables

the removal of the auxiliary structures along with several lines of code. Furthermore, because

the matrix was divided by rows, we applied a further optimization to minimize memory usage.

With our additional optimization processes allocate the entire matrix, but the rows that will

not be touch by them are set to null. Hence, with this additional optimization, we combined

the advantage of having the entire matrix (i.e., no need to convert between global and local

indices) with the advantage of the original version (i.e., avoiding the duplication of the matrix

in all processes).

The improved approach reduced almost to half the number of DM related-statements (from

86 to 46). Besides simplifying the code, this new approach also uses less memory not only because

of the removal of the auxiliary structures but also because the master process does not need to

keep a sub-matrix along with the global matrix. Overall the performance of the new approach is

virtually the same as the original; nevertheless, for the three smallest inputs we achieved gains

ranging from 1.03 to 1.34 (up to 0.027 seconds). The improvement is only noticeable in the

three smallest inputs because for the two biggest the LUFact takes considerable more time (15

to 193 times more) and the reduction in the execution time provided by the improvements does

not scale with the input size.

The previously mentioned feature of setting rows to null based on some matrix distribution

is also provided by our AOmpLib transparently to the user.

152 6. Validation and Results

6.4.2.2 Framework evaluation

Design Rules

Before showing the parallel implementations, we start by presenting in Table 6.7 the design

rules and metrics required to implement them. These design rules include all the methods and

modifications needed to test the di↵erent layers of parallelism – including setters and gathers

added to access (from the layers) private fields of the base code. Some of these design rules could

have been removed after the best layer was found, but we kept them because it provides potential

useful join points. Worth mentioning that not all parallel constructors forced the introduction

of new design rules, some of them reused methods that either initially existed in the base code

or resulted from previous design rules (column labeled “# of join points reused” in Table 6.7).

Unsurprisingly, most of the design rules for the SM layers were for methods, which in the case

of RayTracer, Series, and MC were reused in their DM layers as well. The DM layers of all case

studies used the object creation design rule, sometimes more than once, which was expectable

since we created layers to test parallelism based on explicitly decomposing the domain data.

Table 6.7: JGF - Summary of the design rules applied.

Case Studies SM Design Rules DM Design Rules
Crypt For; OCDR (3); Method;
RayTracer For; OCDR; Method;
Series For; OCDR; Method (2);
SOR For; OCDR; Method (5);
Sparse Method; A.I. (2); OCDR (4); Method (3);
MC For; OCDR; Method (2);
LUFact For; Method (3); OCDR; Method (2);

Total For (6); Method (4); A.I. (2); OCDR (12); Method(16);

Case Studies
of DR # of join points Collateral # of new # of new

reused Design Rules Methods Statements
Crypt 6 6 1 4 13
RayTracer 4 5 1 3 8
Series 5 3 1 4 11
SOR 6 7 1 5 15
Sparse 10 12 - 8 17
MC 4 4 - 4 9
LUFact 8 5 - 8 16

Total 43 42 4 36 89
Average 6.1 6 0.6 5.1 12.7

DR - Design Rules;
For - for method design rule;
A.I - Injection of an argument into a method;
OCDR - Object Creation Design Rule;
Method - creation of a method to provide a join point;
(X) - ’X’ is the number of times such a rule was applied. When omitted X=1.

6.4. Case Study : JGF Benchmarks 153

In some cases, besides the typical design rules, additional refactoring was needed (“collateral

design rules” in Table 6.7). In the entire JGF benchmark only four collateral design rules were

added, three concerning parallel loop correctness (Crypt, RayTracer, and SOR) and one related

with domain decomposition (Series). Regarding the latter, we already described a similar issue

in the MM case study. In Series, a field was being used to hold the number of columns of a

matrix, which could lead to problems since that number can vary at runtime due to AOdmLib

data management features. To preempt any future issues we replaced that variable by explicit

accesses to the data structure size, which resulted in the refactoring of a single statement34.

Regarding the loop correctness, the refactoring applied in the Crypt, RayTracer, and SOR case

studies had also been done in the JOMP versions. The refactoring was done because the body

of those loops could not be executed in parallel and not because of limitations in JOMP or our

framework – without these changes, the loops would be invalid in OpenMP as well.

We argue that most of the design rules applied made the code more readable since they

introduced well-named methods with well-defined behavior. Nevertheless, we also acknowledge

that four of them might look slightly unnatural at first, namely two design rules regarding access

to data indices and two methods wrapping around conditional conditions. These design rules

were necessary due to the restrictions on the AspectJ join point model regarding the interception

of accesses to array positions and conditional conditions. Therefore, to be able to intercept and

manipulate these types of join points we created methods out of them. We needed to know

the accessed positions in the data structures of the RayTracer and Series to allow conversions

between local and global data views indices. The wrapping of the conditionals was used in the

SOR because the heuristics to detect the first and last iterations can vary with the parallelization.

The creation of methods out of those conditions enables the layers of aspects to intercept them

and adapt the conditions accordingly. Nevertheless, we could have avoided the wrapping of

the conditions by coding them directly in the base code. However, that would go against our

philosophy of having a unique base code regardless of the parallelization in place.

Sparse and LUFact were the case studies that required the highest number of design rules. In

the Sparse, we applied four times the object creation design rule, and in the LUFact its original

SM implementation required the introduction of six barriers and three masters constructors. In

the latter, most of the newly created methods could have been inlined since the best SM layer

found only needed the application of a for method design rule.

Figure 6.37 shows that for the majority of the inputs the overhead of the design rules is

almost nonexistent. With exception of LUFact, the gains of the code without design rules over

the one with design rules ranged from 0.99 to 1.01 with 1.00 (no overhead) being the overall

result. As expected, adding methods or exposing parameters did not add a significant overhead.

34Although, in the end, the best DM layer of Series did not rely on any data management features we still kept
that refactoring in the source code.

154 6. Validation and Results

1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 0.96	

0.0	

0.5	

1.0	

1.5	

2.0	

Crypt	 RayTracer	 Series	 SOR	 Sparse	 MC	 LUFact	

Ga
in
s	

JGF	Case	Studies	

SequenAal	(without	design	rules)	versus	SequenAal	(with	design	rules)	

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

Figure 6.37: JGF - The gains of the sequential code with and without design rules.

Overall, in the LUFact the design rules reduced 2.998 seconds from its original execution.

With the introduction of the design rules, a variable in the routine daxpy is kept in a register,

whereas previously it was allocated in the stack. This unexpected event reduced the number

of load instructions and, consequently, the execution time. Figure F.1 and Table F.6 show the

assembly and profiling results of the LUFact design rules, respectively.

Apart from the LUFact the other unexpected behavior caused by the design rules happened

during the layer testing phase for the Sparse case study. During that phase, the introduction of

the for method design rule increased the overall execution time of the sequential version in 5.948

seconds (an increase of 1.19⇥). After analyzing the assembly of the sequential code with the

for method design rule, we verified that the statement i+=step was generating 3 instructions

(2 mov and 1 add), whereas the version without that design rule (the one using the statement

i++ instead) generated only 1 (inc). The assembly of both versions can be seen in Figure F.2.

We removed the step from the for method since the best SM/DM layers did not need it.

SM Layers

Tables 6.8 and 6.9 show for the best SM Layers the parallel constructors used and the number

of statements needed to implement them, respectively. As shown in Table 6.8 aside from Sparse

all case studies used a for constructor. The original JGF Sparse parallelization uses, instead, a

customized loop distribution, which was reused in the best layer as well. That distribution only

modifies the begin and end of the loop based on the thread ID. Hence, the use of two constructors

to inject di↵erent argument values into a method (labeled as “A.C.” in Table 6.8). The other

constructors worth mentioning are: - in the RayTracer, the creation of a private object per

thread along with the reduction of a field from it and making four other fields shared (shown in

Figure F.3); - in the SOR, the replacement of the AOmpLib default barrier by a user-defined

one through the use of Java’ method overriding mechanism (Figure F.4).

6.4. Case Study : JGF Benchmarks 155

Table 6.8: JGF - Constructors of best SM Layers.

Case
Parallel constructors used in the Best Layer

Studies
Crypt P.R.; For Static;
RayTracer P.For Dynamic; Private Object;
Series P.For Dynamic;
SOR P.R.; For Static with user-defined barrier;
Sparse P.R.; A.C. (2);
MC P.For Dynamic;
LUFact P.For Static;

P.R. - Parallel Region;
P.For - Parallel For;
A.C. - Changing the value of an Argument from a method;
(X) - ’X’ is the number of times such a constructor was used.

When omitted X=1.

Table 6.9 shows, under the AOmpLib category, the number of statements needed to apply the

design rules (column labeled “DR”) and to implement the layer of aspects using a pointcut-based

approach (column labeled “Pointcuts”) and alternatively using an annotation-based approach

(column labeled “Anno.”). For the JOMP/OpenMP implementations, we included the number

of statements needed for both the annotations and for the additional intrusive code (column

labeled “Non-annotation.”). Finally, the column labeled as “Ratio” shows the ratio of the

number of statements used in the Java intrusive implementation to the number of statements

needed with a pointcut-based approach (including the design rules).

Table 6.9: JGF - The number of statements needed to implement the best SM Layers.

Case AOmpLib JOMP/OpenMP
Intrusive Ratio

Studies Pointcuts Anno. DR Anno. Non-annotation
Crypt 7 3 5 2 1 28 2.3
RayTracer 13 6 4 1 19 20 1.2
Series 7 2 3 1 1 13 1.3
SOR 17 - 5 1 21 38 1.7
Sparse 50 - 3 1 44 51 1.0
MC 7 2 3 1 0 14 1.4
LUFact 7 2 3 1 0 23 2.3

Total 108 15 26 8 86 187 1.4
Average 15.4 3 3.7 1.1 12.3 26.7 1.6

DR - Design Rules;
Anno. - Annotations;
Ratio - Intrusive / (Pointcuts + DR).

Unsurprisingly, as shown in Table 6.9, the Java intrusive implementation required more state-

ments than the other approaches. The Java intrusive implementations needed, in total, approx-

imately 1.4⇥ the number of statements used by the AOmpLib with a pointcut-based approach.

That number increases to approximately 2.9⇥ when compared with AOmpLib annotations35.

35Since we did not use annotations in the SOR and Sparse case studies, we did not count those when com-
paring the number of statements used in annotations with those used in the intrusive. Hence, the intrusive and
annotations used 98 and 33 statements, respectively.

156 6. Validation and Results

In the previous values (i.e., pointcuts and annotations) we also included the number of state-

ments needed for the design rules. Sparse was the case study with the lowest ratio between the

number of needed statements with the Java intrusive implementation and with AOmpLib. Re-

gardless of the used implementation (i.e., AOmpLib, JOMP/OpenMP, or intrusive), the Sparse

required several statements because all of these implementations use the original customized

loop distribution (this routine alone has 35 statements). The fact that with AOmpLib we had

to implement from scratch the customized loop distribution explains why the AOmpLib used

almost the same number of statements as used with the Java intrusive implementation.

SOR, Crypt, and LUFact were the case studies with intrusive implementations that used

more than 1.5⇥ the number of statements used by AOmpLib implementations. These case

studies, along with Sparse, are the only ones that use a static loop distribution. In our Java

intrusive implementations, the coding of the static loop distributions required more statements

than the dynamic loop distributions.

Although we reduced the number of statements of all JGF SM parallelizations – for instance,

instead of using classes for the runnables we used lambdas in the scope of the method applying

the parallelism – that number is still significant, mostly because of loop heuristics (static by

blocks). Nonetheless, that number can be reduced with the use of utility-type classes that

centralize the commonly used heuristics (e.g., loop distributions). However, such a detailed

study is out of the scope of this work.

As excepted the implementations using annotations have the fewest number of statements, es-

pecially those from OpenMP/JOMP. Unfortunately, sometimes annotations are not enough and

consequently have to be complemented with additional code. For instance, the JOMP/OpenMP

implementations of the RayTracer, SOR, and Sparse required, besides the introduction of the

annotations, other modifications to the base code. We refactored the RayTracer because of

JOMP’s restrictions and the Sparse case study because of its specific loop distribution. The

SOR was refactored because of its tailor-made barrier and because with our improvement to

its sequential code it is no longer feasible to use the for annotation. Consequently, in the SOR

JOMP/OpenMP implementations, we coded the loop distribution instead of using annotations.

If we consider only the AOmpLib layers that use annotations and compare them with the

annotations from JOMP, including the refactoring needed in both, AOmpLib required approx-

imately 1.2⇥ more statements. Unlike the annotations from JOMP, the annotations from our

framework have to be encapsulated into an aspect, which counts as an additional statement.

Before analyzing the performance results of the best SM layers, it is worth to mention

that the flag NUMA from Java was used in the SOR, LUFact, and Crypt case studies since it

improved their performance. Moreover, the Series case study was executed with Java 1.9, since

it is considerably faster with that version than with Java 1.8 (more than 5⇥), more details will

be provided later in this chapter.

6.4. Case Study : JGF Benchmarks 157

1.10	
1.00	 1.00	 1.00	 1.05	 1.01	 1.02	

0.00	

0.25	

0.50	

0.75	

1.00	

1.25	

1.50	

1.75	

2.00	

Crypt	 RayTracer	 Series	 SOR	 Sparse	 MC	 LUFact	

Ga
in
s	

JGF		Case	Studies	

Aspects	vs	JOMP	:	Shared	Memory	

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

Figure 6.38: JGF - The gains of the Aspects vs. JOMP.

Figure 6.38 (and Table E.10) shows the gains of AOmpLib over JOMP. For the inputs with

execution times under 0.12 seconds the gains of AOmpLib over JOMP are typically higher

but decrease with the increase of the input size/execution time. That indicates that, usually,

the fixed overhead of the parallel constructors from JOMP is higher than the ones from the

AOmpLib. Therefore, unsurprisingly, the AOmpLib considerably outperforms JOMP in the two

case studies with the lowest SM execution time (Crypt and Sparse with execution times under

2.5 seconds for any input). Compared with the AOmpLib, JOMP introduced more instructions

in the Crypt and Sparse case studies and produced in the Crypt case study more accesses and

misses in the L2 and L3 caches (details in Tables F.9, F.10, F.11, and F.12).

The LUFact is, performance-wise, very sensitive to code changes in its kernel, as we could

verify in the design rules overhead (Figure 6.37). In this case study, for the second and third

smallest inputs, JOMP was 0.017 and 0.116 seconds faster than AOmpLib, corresponding to

gains of 0.90 and 0.75, respectively. These di↵erences are related to the fact that JOMP uses

a di↵erent synchronization barrier from the one used by AOmpLib. JOMP uses their bar-

rier implementation inspired in the tournament barrier algorithm proposed by Hengsen et al.

[HFM88], whereas AOmpLib uses a cyclic barrier introduced in Java 1.5. The barrier imple-

mentation used in JOMP is the same as the one used in the original JGF benchmark, which

according to [Pet11]36 outperforms the cyclic barrier in the LUFact case study. We tested the

JOMP implementation using the cyclic barrier instead of the tournament barrier and, indeed,

it became slower. Compared with that JOMP implementation AOmpLib is overall 1.05⇥ faster

and is now 1.15⇥ and 1.06⇥ faster in the second and third smallest inputs, respectively.

Although in the LUFact, JOMP outperformed the AOmpLib in the second and third inputs

it was not able to do the same in the two largest inputs. For the two largest input sizes two

factors influenced the di↵erences between JOMP and AOmpLib, namely the flag NUMA and

36At that time the tests where performed with JVMs older or equal to 1.6.

158 6. Validation and Results

the ratio of the input sizes to the number of barrier calls. In all SM implementations of the

LUFact, the flag NUMA significantly reduced the execution time of the last two inputs (details

in Table E.11). With that flag, in the two largest input sizes, the JOMP implementation became

1.60 and 1.50⇥ faster, whereas the AOmpLib became 1.66 and 1.47⇥ faster. Without the flag

NUMA, in the last two inputs, the AOmpLib would have been 0.99 and 1.04⇥ faster than JOMP,

respectively. Finally, compared with the second and third inputs, the last two inputs had a lower

ratio of the input size to the number of barrier calls. Hence, benefiting the AOmpLib.

The performance di↵erence between cyclic barrier and tournament barrier was only notice-

able in the LUFact because, apart from the SOR, it is the only case study that performs several

barrier calls. Although SOR also performs several barrier calls, it uses a di↵erent, and simpler,

version of a barrier, which was also used in the AOmpLib and JOMP implementations. For

all the other case studies we have replaced the original tournament barrier for a cyclic barrier.

We did that refactoring because it makes it easier to compare the results from the JGF and

AOmpLib implementations and because the cyclic barrier is an implementation [Pet11] that is

provided by Java standard API. Nevertheless, as experienced in the SOR, changing the default

barrier of AOmpLib is just a matter of overriding a method in the concrete layer of aspects.

1.06	 1.00	 1.00	 1.01	 1.01	 1.01	 1.00	

0.00	

0.25	

0.50	

0.75	

1.00	

1.25	

1.50	

1.75	

2.00	

Crypt	 RayTracer	 Series	 SOR	 Sparse	 MC	 LUFact	

Ga
in
s	

JGF		Case	Studies	

Java	vs	Aspects	:	Shared	Memory			

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

Figure 6.39: JGF - The gains of the Java intrusive vs. Aspects in SM.

Figure 6.39 shows the gains of the intrusive Java implementations over the AOmpLib. An-

alyzing that figure we can extrapolate similar conclusions to the ones made in the AOmpLib

versus JOMP comparison. Apart from Crypt, the gains of the intrusive versions over the AOm-

pLib are higher for the smaller inputs, typically under 0.12 seconds, but these gains decrease with

the increase of the execution time. The AOmpLib parallel constructors, naturally, have a higher

overhead than those added intrusively. Moreover, the overhead of the AOmpLib constructors is

typically fixed, hence not increasing with the input size of the case study. Therefore, percentage-

wise this overhead is more noticeable in the smaller inputs. Nevertheless, in the majority of the

case studies, overall AOmpLib had an equivalent performance to the Java intrusive.

6.4. Case Study : JGF Benchmarks 159

The Crypt was the case study where the AOmpLib performed the worst compared with the

intrusive implementation. From all the case studies, Crypt has the lowest execution time, thus

emphasizing, the most, the AOmpLib overhead. Moreover, our profiling results show that the

AOmpLib added more instructions, cache accesses and misses (detail in Tables F.13 and F.14).

The SOR and LUFact case studies are memory bound and took advantage of the flag NUMA.

Overall, the flag NUMA reduced 12.324 and 9.026 seconds from the SOR and LUFact SM

intrusive Java implementations, corresponding to gains37 of 1.68 and 1.55, respectively. As

shown in Figure 6.39, the SOR and LUFact Java intrusive implementations outperform the

AOmpLib in the sizes that fit in the cache (the three smallest sizes). In these case studies

and input sizes, the AOmpLib added more cache accesses/misses, which among other factors

explains the performance di↵erences between the AOmpLib and the intrusive versions. The

profiling results are presented in Tables F.7 and F.8.

DM Layers

Table 6.10: JGF - Constructors of best DM Layers.

Case
Parallel constructors used in the best DM layer

Studies
Crypt Master (2); Scatter (4); Gather; GlobalView(3);

RayTracer
Master; Scatter; Gather;
LocalIndex; For Static; Reduce;

Series Master(2); For Static; Reduce;

SOR
Master; Scatter (2); Gather;
GlobalView; SendRecv(2); UDA(3);

Sparse
Master(3); Scatter (6); GlobalView(4);
AllReduce; DataDuplication(3);

MC Master (2); Scatter; Gather; For Static;

LUFact
Master(5); Scatter (2); Gather;
Ignore; Bcast; UDA;

(X) - ’X’ is the number of times such a constructor was used. When
omitted X = 1;
UDA - User-Defined Advices.

Tables 6.10 and 6.11 show the parallel constructors and the number of statements needed

to implement the best DM Layers, respectively. As shown in Table 6.10, all case studies, apart

from Series, used the scatter and gather constructors provided by AOdmLib data partitioning

module. These constructors were further tuned, varying from just ensuring that the data was

correctly aligned (e.g., Crypt with an alignment of 8 elements) to complete scatters and gathers

implemented from scratch (e.g., SOR). The other constructors worth mentioning are: - the

distribution of data by chunks and the use of constructors to converts from global to local

indexes (Figure F.5) in the RayTracer case study; - the scatter and gather of vectors (Figure

F.6) in the MC case study.

37Gains of the versions with the flag NUMA versus the versions without flag NUMA.

160 6. Validation and Results

The best SOR DM layer is one of the two that used user-defined advices (three in total).

Two of these advices intercept the methods (resulted from the design rules) that wrap around

the logic to detect the first and last rows based on the borders of the SOR matrix. Since in

the best DM layer the matrix is scattered across processes the logic to detect the first and last

rows di↵ers from the one in the base code. These user-defined advices ensure that the logic

from the base code to detect the first and last rows is adapted to the DM parallelization. The

other user-defined advice intercepts the method resulting from the for design rule and adapts

its range based on the current phase (i.e., red or black).

1 pub l i c i n t dgefa (. . .) {
2 . . .
3 f o r (/⇤⇤ each column ⇤⇤/)
4 {
5 if(/** process to work **/){
6 . . .
7 // update p ivot
8 i f (/⇤⇤ i f t h i s column i s not yet t r i a n g u l a r i z e d ⇤⇤/) {
9 // some work

10 // compute mu l t i p l i e r s
11 row elimination(...);
12 }
13 e l s e { . . . }
14 }
15 // Broadcast data
16 row elimination(...)
17 }
18 . . .
19 }

Figure 6.40: JGF - LUFact main kernel.

Besides SOR, LUFact also used user-defined advices (only one) to replicate part of the logic

of the original JGF DM parallelization (illustrated in Figure 6.40). In Figure 6.40, the red lines

of code represent the DM parallelization, the scratched gray line the code that was removed

from the sequential implementation and the remaining lines the code common to the sequential

and DM implementations. Regarding the implementation with the layer of aspects, the di�cult

part of replicating the original JGF parallelization is the move, in the base code, of the row

elimination method call from one point to the other (from the line 11 to the line 16).

During the test phase of the SM and DM layers, a method design rule was applied over the

lines 8 to 13 of Figure 6.40 (method named triangularized). The best DM layer (part of it shown

in Figure 6.41) intercepts the call to the row elimination method (line 11 of Figure 6.40) and

ensures that no process will execute that method. After the call to the triangularized method,

the user-defined advice (line 8 of Figure 6.41) injects the remaining missing logic (lines 15 and

16 of Figure 6.40), which includes the call to the row elimination method (line 14 of Figure

6.41).

6.4. Case Study : JGF Benchmarks 161

1 . . . s t a t i c aspect f i l t e r extends Dm Filter {
2 po intcut i gnor e () : c a l l (. . . void row e l im ina t i on (. . .))
3 && with incode (. . . t r i a n gu l a r i z e d (. . .))
4 }
5

6 . . . s t a t i c aspect i n j e c tL extends Dm Inject ion . . . {
7

8 . . . around () : c a l l (. . . t r i a n g u l a r i z e d (. . .)) && ta rg e t (source) && . . . {
9

10 i f (/⇤⇤ proce s s to work ⇤⇤/) {
11 . . . r e s u l t = proceed (. . .) ;
12 }
13 // Broadcast data
14 source . r ow e l im ina t i on (. . .) ;
15 re turn r e s u l t ;
16 }
17 }

Figure 6.41: JGF- The best DM layer of the LUFact case study.

The SM and DM layers of the LUFact were able to correctly compose with the same base

code, notwithstanding, we argue that transformations as the one introduced by the user-defined

advice can threat the composition of layers to form the hybrids. The row elimination method

resulted from the application of the for method design rule during the testing phase of the SM

layers. The best SM layer intercepts that method and parallelizes its loop. The problem with the

user-defined advice from the DM layer is that it moves the call of a method, that is intercepted

by the SM layer, from the base code to the DM layer. Depending on how the programmer

restricted the pointcut in the SM layer that intercepts the row elimination method call, that

pointcut might not intercept any method call after a hybrid parallelization. For instance, if the

programmer restricted that method call based on the target object (call(row elimination(...)

&& target(Linpack)), in a hybrid parallelization, the SM layer would not be able to intercept

the row elimination method call performed from the DM layer.

Table 6.11: JGF - The number of statements needed to implement the best DM Layers.

Case AOdmLib
Intrusive Ratio

Studies Pointcuts Anno. DR
Crypt 26 - 8 42 1.2
RayTracer 20 15 4 28 1.2
Series 12 5 4 17 1.1
SOR 61 - 10 70 1.0
Sparse 31 - 14 55 1.2
MC 11 9 6 55 3.2
LUFact 38 - 10 46 1.0

Total 199 29 56 313 1.2
Average 28.4 9.7 8.0 44.7 1.4

DR - Design Rules;
Anno. - Annotations;
Ratio. - Intrusive / (Pointcuts + DR).

162 6. Validation and Results

Table 6.11 shows the number of statements necessary to implement the best DM paralleliza-

tions with the AOdmLib and intrusively. By comparing Tables 6.11 and 6.9 we can see that

the best DM parallelizations of most case studies required more statements than the best SM

parallelizations, regardless if implemented with AOdmLib or intrusively. The best DM paral-

lelizations of all case studies with our libraries required 1.9⇥ more statements than their best

SM parallelizations, while intrusively it required 1.7⇥ more. This di↵erence between the number

of statements comes mainly from the fact that most of the best DM parallelizations use explicit

domain data decomposition, which either intrusively or with the layers of aspects requires more

statements than the best SM parallelizations (that rely mainly on loop parallelism).

For the SM parallelizations of all case studies, the intrusive implementations required 1.4⇥
more statements than the layers of aspects, while for the DM parallelizations that value decreased

to 1.2. This decrease is related to the fact that for most case studies their best DM layers were

more customized (i.e., tuned) and required more design rules than their best SM layers. The

design rules applied during the implementation of the DM layers used 2.2⇥more statements than

those of the SM layers, even though the DM layer reused some of the design rules introduced

during the SM testing phase. Hence, this emphasizes that the DM versions required more

code restructuring than the SM versions. Both consequences (i.e., more tuning and design

rules) resulted from the fact that the majority of the best DM layers used the AOdmLib data

partitioning module. Usually, the use of this module requires the customization of the handling

of the target data (e.g., scatter by lines), which corresponds to the creation of methods in the

concrete layer of aspects that override the ones from the abstract layers. Hence, this further

increases the number of used statements. Furthermore, applying the local/global data view

feature over a data structure will, typically, require the introduction of a few methods in the

base code (e.g., object creation design rule), which also increases the number of used statements.

SOR and LUFact were the only case studies where the number of statements used in their DM

intrusive and AOdmLib implementations was almost the same. The best AOdmLib implemen-

tation of those case studies used user-defined advices, which naturally require more statements

than using the default parallel constructors. Concerning the SOR almost half of the statements

of its DM intrusive parallelization were used to implement the scatter and gather routines. These

routines, by default, are not provided by the AOdmLib. Therefore, the AOdmLib default scat-

ter and gather constructors were overridden, in the DM layer, by the same scatter and gather

used in the intrusive implementation, which reduced the di↵erence between the number of state-

ments used in the intrusive implementation and the AOdmLib. In the LUFact the intrusive and

AOdmLib implementations needed almost the same number of statements mainly because of

the user-defined advice that replicates the DM logic presented in Figure 6.41.

6.4. Case Study : JGF Benchmarks 163

The Sparse and MC were the only case studies in which the ratio between the number of

statements used in their intrusive implementations and used in their layer of aspects increased

from the SM to the DM parallelizations. Regarding the Sparse case study, its best SM layer

was mainly composed by a customized loop distribution, while its best DM layer used parallel

constructors that our framework provides by default. Since the DM layer did not use highly

customized parallel constructors, that layer was able to save more statements (compared with

the respective intrusive implementation) than the SM layer was. Concerning the MC case study,

its best DM parallelization uses routines that are not provided by the OpenMPI implementation

that we used in the intrusive implementations (i.e., scatter/gather of vectors). The intrusive

implementation of these routines resulted in several statements, which are provided by AOmpLib

with significantly fewer statements.

1.00	 1.01	 1.00	 1.00	 1.00	 1.00	 1.01	

0.00	

0.25	

0.50	

0.75	

1.00	

1.25	

1.50	

1.75	

2.00	

Crypt	 RayTracer	 Series	 SOR	 Sparse	 MC	 LUFact	

Ga
in
s	

JGF		Case	Studies	

Java	vs	Aspects	:	Distributed	Memory			

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

Figure 6.42: JGF - The gains of the Java intrusive vs. Aspects in DM.

Figure 6.42 presents the gains of the Java intrusive DM versions versus the AOdmLib. By

comparing Figures 6.39 and 6.42, we can see that for most of the case studies the gains of the

intrusive implementations over the libraries of aspects were higher in the SM parallelizations.

Hence, this suggests that for most of the case studies the AOmpLib had a higher additional

overhead than the AOdmLib. We expected that the gains of the Java intrusive implementations

over the libraries of aspects would be higher in SM than in DM since the implementations

of the parallel constructors with our framework or intrusively can vary more in the SM than

in DM. However, not all case studies meet our initial expectation. Nevertheless, besides the

parallel constructors of the libraries by themselves, it is also necessary to consider additional

code changes that each may have imposed in the base code. For example, the base code of the

DM implementation of the RayTracer has an extra design rule that does not exist in the SM

implementation. That extra design rule38 was added to allow the DM library to convert between

local/global indices and may influence the execution time of the case study.

38That design rule added an extra division operation that will be executed as many times as the input size.

164 6. Validation and Results

The LUFact was the only case study where the intrusive implementation was visibly faster

than the AOdmLib in multiple input sizes. For the three smallest inputs of the LUFact, the

intrusive implementation obtained gains ranging from 1.04 to 1.25, corresponding to a di↵erence

between execution times up to 0.020 seconds. From all the best aspect layers of all case studies,

it was expected that the layer from the LUFact had the highest overhead (compared with the

intrusive implementations) since it is the most complex. Moreover, that layer changes the

position of the call to the row elimination method and performs that change in a code region

that is executed multiple times.

Hybrid Layers

Figure 6.43 shows the speedups of the best SM and DM Java intrusive implementations for all

the case studies. There are four case studies with SM versions that achieved speedups above

15⇥, namely Crypt, RayTracer, Series, and MC. From these case studies, only the RayTracer

and the Series have also speedups above 15⇥ in their DM versions. Hence, we created hybrid

versions out of these two case studies and tested them with the inputs that also scaled above

15⇥ in the SM and DM implementations. Tables E.13 and E.14 present in more detail the

speedups of the SM and DM versions in C, Java (original and improved), Aspects, and JOMP.

0	

5	

10	

15	

20	

25	

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	 Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

SM	 DM	

Sp
ee
du

p	

Crypt	 RayTracer	 Series	 SOR	 Sparse	 MC	 LUFact	 Candidate	to	Hybrids	

Figure 6.43: JGF - The speedups of the best Java intrusive parallel versions.

Similar to what we experienced in Sections 6.2 and 6.3 with the MD and MM case studies,

implementing the hybrid versions of the RayTracer and Series with our libraries was just a matter

of adding the SM and DM layers to the same build. As mentioned before, join points that are

intercepted simultaneously by the SM and DM layers can threaten the correct composition of

these layers. In the RayTracer and Series, the methods resulting from the for design rule are the

only join points (on each case study) intercepted by pointcuts of both layers. In the RayTracer

the for method is intercepted by six parallel constructors, three of each layer. From the SM

6.4. Case Study : JGF Benchmarks 165

layer, it is intercepted by a parallel region, a dynamic for, and a creator of private objects, while

from the DM layer it is intercepted by a static for, a gather, and a reduction. According to the

precedence rules of our framework, each process will first create a team of threads (i.e., parallel

region) and then the private objects. Afterward, the iterations of the for method are (statically)

divided among processes and then further (dynamically) divided among threads. After the call

of the for method, and without any specific order, the appropriate data structures are gathered

and reduced among processes. The compositional process of the Series hybrid aspect version was

similar to the one described in the RayTracer. However, the Series did not have the creation of

private objects from the SM layer and the gather from the DM layer. For both cases studies, the

framework correctly and transparently dealt with the order on which the previously described

code transformations were applied to the base code.

Similar to what has occurred in the MD and MM case studies, implementing the hybrid

versions of the RayTracer and Series intrusively, mainly, required merging the SM and DM

parallelizations with adaptations to the dynamic SM for to reflect the DM static for.

79.28	
88.16	 94.96	 89.56	

76.41	
85.96	 92.77	 87.19	

97.66	
115.57	

124.65	
115.96	

96.81	
113.17	

122.23	
113.92	

0	

50	

100	

150	

200	

1500	 2000	 2500	 Overall	 1500	 2000	 2500	 Overall	

Java	 Aspects	

Sp
ee
du

ps
	

Input	sizes	

RayTracer	:	Speedups	of	Hybrids	and	DM	versions	

DM	(8	Machines	x	32	Processes)	 Hybrid	(8	Machines	x	32	Threads)	

86.84	
128.45	

137.41	 132.27	 132.31	
85.23	

128.15	
137.30	 131.72	 131.90	

80.74	

145.19	 150.00	 151.48	 147.87	

67.35	

141.63	 147.63	 149.88	 144.91	

0	

50	

100	

150	

200	

100k	 1M	 2M	 2.5M	 Overall	 100k	 1M	 2M	 2.5M	 Overall	

Java	 Aspects	

Sp
ee
du

p	

Input	sizes	

Series	:	Speedups	of	Hybrids	and	DM	versions	

DM	(8	Machines	x	32	processes)	 Hybrid	(8	Machines	x	32	Threads)	

Figure 6.44: JGF - RayTracer and Series: The speedups of the DM/Hybrid with 8 machines.

166 6. Validation and Results

Figure 6.44 shows the speedups of the DM and Hybrid versions of the RayTracer and Series

case studies in a cluster with 8 machines. More details about these speedups and the correspon-

dent execution times are shown in Tables E.15, E.16, E.17, and E.18. With exception of the

100k input size of Series, all hybrids outperformed the versions using only processes. For the

majority of the input sizes, in both the intrusive and versions with aspects, the speedups of the

DM and hybrids increased with the size of the inputs. Overall, in the RayTracer and Series, the

intrusive hybrids achieved speedups of 115.96 and 147.87⇥, whereas the intrusive DM versions

achieved speedups of 89.56 and 132.31⇥, respectively. The speedups of the versions with aspects

followed the same trend as the intrusive versions, however with slightly lower speedups.

Figure 6.44 shows that Series, regardless of the version, achieved higher speedups than the

RayTracer, following the same trend as the SM/DM versions of these case studies in a single

machine. The di↵erence between the scalability of the two case studies can be explained by the

fact that: - the kernel from Series is more CPU intensive than the RayTracer; - the SM/DM

parallelizations from Series are less complex and with lower overhead than those from RayTracer.

1.23	 1.31	 1.31	 1.29	

0.93	
1.13	 1.09	 1.15	 1.12	

1.27	 1.32	 1.32	 1.31	

0.79	

1.11	 1.08	 1.14	 1.10	

0.0	

0.5	

1.0	

1.5	

2.0	

1500	 2000	 2500	 Overall	 100k	 1	M	 2	M	 2.5	M	 Overall	

RayTracer	 Series	

Ga
in
s	

	

Input	Size	

Java	 Aspects	

Figure 6.45: JGF - RayTracer and Series : The gains of the Hybrids vs. DM with 8 machines.

Figure 6.45 (and Tables E.19 and E.20) shows, for the RayTracer and Series, the gains of

the hybrids over the DM in 8 machines. Overall the gains of the hybrids over the DM versions

were higher in the RayTracer with its intrusive and aspect versions achieving gains of 1.29 and

1.31, respectively. The gains of the hybrids from the RayTracer were higher than those from

Series because the hybrids from the RayTracer extracted more out of the hyper-threading than

their corresponding DM versions. For 128 processes, 16 per machine, the overall gains of the

(intrusive) hybrids over the DM versions in the RayTracer and Series were 1.05 and 1.00. While

during hyper-threading (32 threads) the RayTracer intrusive hybrids achieved an extra 0.14

in gains, whereas the Series achieved 0.10. The hybrids from RayTracer and Series required

significantly less memory than their DM versions. In the tests with 8 machines, for the largest

input, the DM and hybrid versions of the RayTracer used around 9 and 2 Gigabytes of memory

per machine, whereas the DM and hybrids of Series only used 3 and 0.1 Gigabytes, respectively.

6.4. Case Study : JGF Benchmarks 167

The hybrids from the RayTracer and Series scaled more than the DM versions because the

hybrids: - use Myrinet, whereas the DM versions only use Myrinet up to 8 processes per machine

and from that point on Ethernet; - need less memory than the DM versions; - benefit from the

SM dynamic distribution; - exploit more e�ciently the hyper-threading than the DM versions.

The input with 100k elements of Series was the only one where the hybrids did not outperform

the DM versions. That behavior also occurred in the single machine tests, however with a

di↵erent input (10k). With a careful look at the speedups of the SM/DM versions of Series in

a single machine (presented in Figure 6.43), we can see that the DM version only outperforms

the SM version39 in the smallest input (10k). Although 100k is an input 10⇥ larger than 10k,

in the tests with the cluster there are 8⇥ more machines. Hence, an input of 100k in 8 machines

corresponds to only 12.5k elements per machine, which explains why, for that input, the tests

in multi-machines followed the same trend as those of 10k in a single machine.

1.04	 1.03	 1.02	 1.03	 1.02	 1.00	 1.00	 1.00	 1.00	1.01	 1.02	 1.02	 1.02	
1.20	

1.03	 1.02	 1.01	 1.02	

0.0	

0.5	

1.0	

1.5	

2.0	

1500	 2000	 2500	 Overall	 100k	 1	M	 2	M	 2.5	M	 Overall	

RayTracer	 Series	

Ga
in
s	

Input	sizes	

DM	(8	Machines	x	32	Processes)	 Hybrid	(8	Machines	x	32	Threads)	

Figure 6.46: JGF - RayTracer : The gains of the Java vs. Aspects in DM/Hybrid with 8
machines.

Figure 6.46 shows the comparison of the DM/hybrid versions implemented intrusively versus

implemented with our framework of aspects. These results follow the same trends as the ones

from the SM/DM tests performed in a single machine (shown in Figures 6.39 and 6.42). In the

single machine tests, the intrusive SM and DM versions of the RayTracer were 1.00 and 1.01

faster than our libraries of aspects, whereas the intrusive SM and DM versions of the Series had

the same performance. In the cluster, the gains of the intrusive versions over the libraries of

aspects increased compared with those in the single machine. However, the di↵erence between

the execution times of the intrusive and aspect versions did not vary significantly. If we aggregate

the execution times of the four largest inputs, the Series SM and hybrid aspect versions are

0.177 and 0.126 seconds slower than the corresponding intrusive versions, respectively. However,

because the execution time of the hybrids is significantly lower than those from the SM version

(approximately 7⇥), the overhead of our libraries is more noticeable.

39A speedup of 11.11⇥ from the DM version and 8.79⇥ from the SM version.

168 6. Validation and Results

In the RayTracer and Series, the intrusive implementations were 1.00 to 1.04⇥ faster than

our libraries of aspects (except for the input size of 100k of Series). Although the gain of 1.20⇥
(corresponding to a time di↵erence of 0.034 seconds) of the intrusive hybrid over the hybrid

with our framework in the Series 100k input size may come as a surprise, in fact, it follows the

same trend as the one from the single machine tests. As explained before, the input of 100k

corresponds in the tests with multi-machines to 12.5k elements per machine. If we recall the

results of the comparison between Java intrusive versus AOmpLib for the size of 10k the gain

was also noticeable (1.15⇥ corresponding to a time di↵erence of 0.016 seconds). Furthermore,

the di↵erence between the execution times of the intrusive hybrid and the hybrid with aspects

was practically the same for all inputs, varying from 0.029 and 0.034 seconds. However, because

the execution time of the input with 100k elements is much lower than the remaining inputs

(from 6 to almost 16⇥ lower), the overhead of our libraries is more exacerbated by that input.

6.4. Case Study : JGF Benchmarks 169

6.4.2.3 C vs Java

The RayTracer and the MC were the only case studies that we did not implement in C because

these case studies use Java intrinsic features (e.g., collections and inheritance) that would be

hard to replicate precisely in C. Furthermore, as previously stated, comparing Java with C is

not one of the main goals of this thesis. Nevertheless, we present in Figures 6.47, 6.48, and 6.49

the comparison of Java versus C in the sequential, SM, and DM environments, respectively.

Although the C implementations replicate as much as possible the Java implementations, there

are peculiarities that can a↵ect their execution time, namely: - in the C implementations of the

SOR, Series, and LUFact, the matrices were continuously allocated in memory, whereas in the

Java implementations these matrices were allocated as arrays of pointers; - the Java implemen-

tations of the Crypt, SOR, and LUFact used the flag NUMA, whereas their C implementations

exploited the first-touch policy on the initialization of their main data structures [NAAL01].

1.21	

0.62	

1.01	 0.99	
1.21	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

Crypt	 Series	 SOR	 Sparse	 LUFact	

Ga
in
s	

JGF	Case	Studies	

C	vs	Java	:	SequenBal	

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

Figure 6.47: JGF - The gains of the C vs. Java in sequential versions.

The comparison between C and Java, for the Crypt, SOR, and LUFact, shows trends similar

to the ones of previous comparisons (e.g., Intrusive versus Aspects); the gains are high for the

smaller inputs and decrease with the increase of the input. Moreover, as encountered in other

comparisons, when there are significant changes in the SOR or Crypt implementations, these

changes are noticeable in all inputs of Crypt and (mostly) in the three smallest inputs of SOR.

C outperformed Java the most in the Crypt and LUFact with an overall di↵erence between

the execution times of C and Java of 9.332 and 12.646 seconds, respectively. In both case

studies, the Java implementation produced significantly more instructions than C, from 1.19 up

to a maximum of 2.25⇥ (i.e., the first input of LUFact) more instructions. Tables F.15, F.16,

F.17, and F.18 present in more detail the profiling results of Crypt and LUFact.

170 6. Validation and Results

In the Sparse case study both Java and C implementations have overall approximately the

same execution time, 30.476 and 30.637 seconds, respectively. Although in the Sparse for the

two smallest inputs C was faster than Java, for the input sizes that do not fit in the cache

the di↵erence in execution time was practically none; three factors contributed to that behavior.

First, the implementations are sequential therefore the code of both C and Java are very similar.

Second, the sequential version of Sparse is very simple (presented in Figure 6.31). Third, the

algorithm is memory-bound with an irregular memory data access pattern.

Series was the only case study with Java implementations (i.e., sequential, SM and DM)

that outperformed the C implementations. Series, as mentioned before, was executed with Java

9, which made its sequential code overall 5.77⇥ faster than executing it with Java 8. The

version with Java 9, unlike Java 8, exploited vectorization. Series is compute bound and relies

heavily on functions from the Math library, namely, pow, sin, and cos, which were greatly

improved with Java 9. Unfortunately, to the best of our knowledge, at the time of the writing of

this document no o�cial technical paper was released explaining those improvements in detail.

Nevertheless, a talk about the improvements made in the Java Math library can be found in

[VV17]. When executing the Series sequential code with Java 8, C was overall 3.58⇥ faster than

Java. However, when executing with Java 9 C was 1.61⇥ slower than Java. As with Java 8, and

unlike Java 9, none of the Series C implementations exploited vectorization. Therefore, just as

the sequential version, the parallel versions of Series implemented with C were slower than the

ones implemented/executed with Java 9.

1.32	 0.67	 1.14	 1.17	 1.21	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	

Crypt	 Series	 SOR	 Sparse	 LUFact	

Ga
in
s	

JGF	Case	Studies	

C	vs	Java	:	Shared	Memory	

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

Figure 6.48: JGF - The gains of the C vs. Java in SM versions.

6.4. Case Study : JGF Benchmarks 171

1.72	
0.68	 1.04	 1.39	 1.07	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

10	
11	
12	
13	

Crypt	 Series	 SOR	 Sparse	 LUfact	

Ga
in
s	

JGF	Case	Studies	

C	vs	Java	:	Distributed	Memory	

Size	1	 Size	2	 Size	3	 Size	4	 Size	5	 Overall	

Figure 6.49: JGF - The gains of the C vs. Java in DM versions.

Figures 6.48 and 6.49 show the gains of C versus Java for their SM and DM parallel versions,

respectively. As expected the parallel constructors in C had a lower overhead than those from

Java, especially noticeable in the smaller inputs. For instance, in C the speedups of the SM

version of Series for the smallest and biggest input are 21.20 and 22.64⇥ and in the DM version

are 22.66 and 22.81⇥, respectively. However, for the same case study and inputs, the speedups

of the Java SM version were 8.79 and 21.02⇥ and of the DM version 11.11 and 20.93⇥. That

indicates, especially since Series is compute bound, that Java requires a bigger task granularity

than C for the parallelism to pay o↵. It is also worth mentioning that in SM, C benefited more

from the first-touch technique than Java from the flag NUMA (details in Table E.11). Combining

the overall gains of the SM parallelizations of the Crypt, SOR, and LUFact case studies, the first-

touch approach and flag NUMA provided an aggregated gain of 4.92 and 4.24, which corresponds

to a reduction of 27.968 and 19.449 seconds from the execution time, respectively. Thus, the

first-touch had a gain of 1.43 over the flag NUMA.

Initially, we expected that the gains of C over Java would be smaller in the DM than in the

SM. However, that is not the case for Crypt and Sparse (the di↵erence in Series is negligible).

In Crypt the communication routine of its Java DM version was more complex and with higher

overhead than the one in C. The Sparse Java DM version did not scale for two of the five inputs

and the overhead of the all reduce routine in Java was higher than in C (results in Table F.19).

Regarding the C hybrids, we implemented one for the Series case study. However, the results

of testing the hybrid and DM versions in multi-machines did not provide new useful information.

The C DM and hybrid versions, running in multiple machines, are still slower than the versions

with Java 9. Moreover, as with the Java intrusive implementations and with the layers of aspects,

with C the hybrids also outperformed the DM version. Finally, although the DM and hybrid

C versions were slower than the ones in Java 9, their speedups were higher (overall 153.93 and

172.52⇥, respectively). The results can be seen in more detail in Figure E.1.

172 6. Validation and Results

6.5 Design rules

The majority of the design rules applied during the implementation of SM and DM layers were

methods. By introducing methods, we are adding points that can be extended in the future,

which is in line with the design for change principle. Indeed, several design rules added during

the SM layer testing workflow were reused in the DM layers as well. Notwithstanding, to not

jeopardize code quality a good balance should be achieved; otherwise, one could merely turn

every statement into a method.

One problem with AspectJ is that it can lead to the introduction of empty methods [KAB07]

into the base code as a way of creating artificial join points. Such methods are considered

poor design [MLWR01], and therefore should be avoided. However, we did not experience

these problems during the implementations of the layers, mainly because the parallelism-related

constructors will typically be injected into significant chunks of code. Hence, these blocks will

contain enough logic to become a method without jeopardizing the code legibility. Naturally,

parallelism-related constructors that perform around code transformations (e.g., parallel region)

will be injected into blocks of code that can become a method. The problem with empty methods

is more likely to happen with constructors that inject single point code transformations (i.e.,

barriers). Most of the AOmpLib constructors have implicit barriers at the end of their execution

which reduce the need to invoke barriers explicitly, while most of AOdmLib communications

routines will happen before or after a hot spot in the base code.

In the scenarios that empty methods are needed with our framework, they would most likely

also be needed in other approaches such as design patterns (e.g., decorator pattern), inheritance,

and so on. In such scenarios, the only way to avoid empty methods would be with an approach

with a finer grain join point model that the one used by our framework, which would undesirably

increase the fragility of such approach.

6.6. Class Extension and Decorator Pattern 173

6.6 Class Extension and Decorator Pattern

In this section, we present a small study of the implementation of the MD case study with

common OO strategies. We start by presenting some of the implementations details and con-

clude the section with a discussion about some of the advantages and disadvantages of these

implementations.

We created Java intrusive implementations of the best SM and DM layers using class ex-

tension and method overriding (Figure 6.50) to compare them with our parallelism layers. The

PRC are injected in the base code by extending its classes (i.e., MD and Particles), overriding

some of its methods, and reusing others. The subclasses of the MD (i.e., MD SM and MD DM)

are responsible for the management of the parallelism-related structures, (e.g., thread pool), the

assignment of tasks to the threads/processes, and the reduction of the appropriate variables after

the force calculation. The subclasses of the Particles class are responsible for the parallelization

of the outer loop of the force calculation.

MD	

Par'cles	

“has a”

MD_SM	 MD_DM	

Extends Extends

Par'cles_SM	 Par'cles_DM	

Extends Extends

Figure 6.50: MD - Diagram of classes of using extension to implement layers.

As presented in Figure 6.51 the subclass Particles SM extends the base class Particles (line

1), overrides the method that calculates the forces (line 4), and parallelizes the outer loop of

that method (line 6). For every iteration of the parallelized loop, the method of the base class

Particles that performs the force calculation between a particle and the remaining is invoked

(line 7). Additionally, we introduced in the base code a factory pattern for the MD and Particles

classes (Figure A.7 of appendix A) to have a flexible mechanism to change between di↵erent

MD implementations (i.e., sequential, SM, and DM). These implementations can be chosen at

runtime based on, for instance, a value read from a configuration file. This avoids having to

manually specify in the base code which classes to be used.

174 6. Validation and Results

1 public class Particles_SM extends Particles {
2 ...
3 @Override
4 public void calculate_force(MD md){
5 ...
6 for(/** a given parallel for distribution **/)
7 super.forceNewtonsLaw(threadPrivateMD , i);
8 ...
9 }

10 }

Figure 6.51: MD - Code snippet of the Particles SM class of the SM implementation.

We had to reduce some of the original constraints of the MD classes and methods, namely

removing some of the private and final properties, and some of the PRC are still mixed with the

domain code (i.e., factory pattern). Nevertheless, with class extension and method overriding we

were able to create the private copies of the MD and Particles object without changing the code

of the force calculation methods. Moreover, the majority of the force calculation code of the base

class Particles is reused. We achieved this by calling part of the logic of the force calculation

method (i.e., invoking the forceNewtonsLaw method). By using such a strategy, we avoided the

need to apply a refactoring similar to our for method design rule (i.e., exposing the loop range).

However, a major weakness with this approach is that we are not calling the calculate force

method of the base class. Consequently, any change to the base class calculate force method

that is not inside the forceNewtonsLaw method will not be visible to the parallelization.

IMD	

MDAbstractDecorator	

Implements

MD	

Implements

MDsmDecorator	 MDdmDecorator	

Extends Extends

“has a”

Par1cles	

“has a”

IPar1cles	

Implements

Par1clesAbstractDecorator	

Implements

“has a”

Par1clesSmDecorator	 Par1clesDmDecorator	

Extends
Extends

Figure 6.52: MD - Diagram of classes after the implementation of decorator pattern.

6.6. Class Extension and Decorator Pattern 175

We also created a Java intrusive version based on the decorator pattern; Figure 6.52 shows the

diagram of classes resulting from the application of that pattern. Firstly, we created a common

interface (labeled “IMD” in Figure 6.52) with all the externally visible methods that the concrete

implementations of the MD class (in our case the base MD sequential class) should provide.

Secondly, we created an abstract decorator class (“MDAbstractDecorator”) that implements

the common interface and also has it as a field. Finally, we applied the same structure to

the class Particles as well. Every time a new parallel version of the MD case study has to

be implemented, it will be created as concrete classes of the abstract decorated classes (i.e.,

MDAbstractDecorator and ParticlesAbstractDecorator). The abstract decorator classes forward

all the methods of the common interfaces so that their subclasses are not obliged to overwrite

them, hence minimizing code duplication. The abstract decorator class works as a mediator

between its concrete classes and the correspondent base class (e.g., MD and Particles).

The decorator pattern approach is regarded as being more maintainable and scalable than

inheritance. However, compared with the inheritance approach, the decorator pattern required

a significant amount of non-intrusive statements because of the extra interfaces and abstract

classes. Furthermore, we also had to turn some private methods into public ones (e.g., those

added to the interfaces) – some of which are irrelevant to the parallelism. Another issue with

this approach is that since the (abstract) decorators implement the common interfaces, all the

methods of these interfaces need to be implemented, even the ones that will not be decorated.

Consequently, leading to several one-line methods (known as forwarding methods) coded in the

abstract decorators. Regarding complexity, those extra non-intrusive statements are negligible;

however, they a↵ect productivity. Nevertheless, if the number of concrete decorator classes

increases the total of statements of the common interfaces and abstract decorator classes should

remain the same.

1 public void runiters () // Change to public
2 {
3 for (/** Run simulation N Times **/) {
4 cicleDoMove (...);
5 cicleForcesNewtonsLaw (...);
6 cicleMkekin (...);
7 cicleVelavg (...);
8 scale_temperature (...);
9 get_full_potential_energy (...);

10 }
11 }

Figure 6.53: MD - Problems with decorator pattern.

176 6. Validation and Results

The biggest issue with the decorator pattern happened when we tried to decorate the method

cicleForcesNewtonsLaw. Decorating the calculate force method was easy because it is invoked

from the exterior – this method is defined in the Particles class and called from the MD class.

The class main has a reference to the MD object that is being decorated, and this MD object

has a reference to the Particles object that is being decorated. However, the method cicle-

ForcesNewtonsLaw is only being called internally (i.e., inside the same class); when the main

class requests a MD object, the factory will return the appropriate decorator, for instance,

MDsmDecorator. When the main calls the method runiters, the MDsmDecorator will forward

that call to the MDAbstractDecorator, which on its turn will forward it to the MD base class,

leading to the execution of the code illustrated in Figure 6.53. The issue is that the method ci-

cleForcesNewtonsLaw of the MDsmDecorator will never be called, and consequently, the method

cicleForcesNewtonsLaw of the base class will never be decorated with the functionality of the

MDsmDecorator. Possible solutions to deal with this issue are: - the use of the strategy pattern

for the method cicleForcesNewtonsLaw ; - or merely inlining the method runiters call in the

main class. We have chosen the latter, and consequently, forced to make the methods from lines

4, and 6 to 9 of Figure 6.53 protected.

The issues experienced with the decorator pattern do not come from a bad design of the

MD class, the decorator pattern, alone, is not suitable for this case. For example, the same

would have happened if we tried to implement the SM layer that used critical regions (shown

in Section 5.3.1). In this case, we would have had problems with the method forceUpdate of the

class Particles. Nonetheless, we could extract the forces into a class and apply the decorator

pattern with them as well.

We did the previous process for the Java intrusive DM layer, and in both approaches (i.e.,

inheritance and the decorator pattern) we faced the same pros and cons, previously discussed.

To replicate the best SM and the best DM layers as intrusive versions we created new MD

and Particles classes that either extended or decorated their corresponded base classes. Each

pair of new MD and Particles classes, regardless of the approach used (inheritance or decorator

pattern), parallelizes the base code in a SM or DM fashion. For the hybrids, the goal was to

reuse and combine the individual SM and DM modules40. However, with inheritance, this is

not possible, since the SM and DM modules extend already the base classes. Thus, we created

copies of the DM modules, named them hybrids, and made them extend the SM modules instead

of the base classes. Building the hybrid in this way was straightforward; we were able to reuse

the SM modules but duplicated the DM modules. Concerning the decorator pattern, the hybrid

was created by returning, in the MD and Particles factories, the new objects corresponding

to the DM decorators wrapping the SM decorators that in turn wrapped the (sequential) base

40By modules of a given environment (SM and DM), we are referring to the new MD and Particles classes
created to provide the PRC concerning that environment.

6.6. Class Extension and Decorator Pattern 177

classes. Hence, regarding module composition, the decorator pattern o↵ered a cleaner solution

than inheritance. Nonetheless, with both inheritance and decorator pattern approaches, even

after composing the SM and DM modules, the hybrid versions were (still) not working correctly.

We stumbled across the problem of properly composing the DM and SM loop parallelizations.

Since in the SM and DM modules the loop parallelization is hard-coded in the loop body itself

and not exposed to the API, it is not viable to compose the multiple levels of loop parallelization

using conventional design patterns. For the correct loop composition among di↵erent levels of

parallelization, each sub-level has to be aware of the loop transformations performed by its

upper-level. Hence, in our case, the SM module needs to know the loop range transformations

previously performed by the DM module. To guarantee the correct composition of the multiple

loop transformations, we extracted the loop range as parameters of the force calculation method,

making it part of the Particles API, exactly like our for method design rule. Therefore, the

Particles DM class will overwrite/decorate the force calculation method, take its parameters,

change them based on the DM loop distribution and then call the force calculation with the

new parameters. Afterward, the Particles SM class will intercept that force calculation call,

change its parameters accordingly and proceed to call the force calculation. Finally, at that

point, the force calculation from the base (sequential) Particles class is called with the modified

parameters resulting from the DM and SM loop transformations.

As we can see inheritance, decorator pattern, and other design patterns, also force the de-

signing of the base code. Namely, creating methods to inject the additional functionality and

making them public/protected. We even end-up applying the for method design rule to be able

to compose the SM and DM modules. Inheritance o↵ers a simple solution and enables the reuse

of functionality. However, it su↵ers from fragile base class problem, does not scale well when

composing multiple features (e.g., combining SM and DM modules), exploding class hierarchy,

among others. In the case of the parallelism, in our opinion, extending a base class with a sub-

class that injects parallelism creates a hierarchy that is semantically unsound. For instance, the

relationship between Particles and Particles SM has nothing to do with the domain concerns.

The decorator pattern provides a flexible approach that can combine multiple features. How-

ever, it leads to a significant amount of boilerplate code, forward methods, a chain of decorators

that can be hard to follow and which increases the complexity of the code. In the MD case

study, the majority of the statements added were mainly concerned with the implementation of

the pattern and had nothing to do with either the PRC or DRC. In both inheritance and dec-

orator pattern, there are still traces of PRC in the base code, albeit significantly less compared

with an intrusive approach that injects the PRC directly in the base code. Furthermore, the

PRC are still scattered among the subclasses and the decorators. Hence, to reason about the

parallelizations, the programmer has to go through not only multiple domain classes but also

multiple parallelism-related subclasses/decorators.

Chapter 7

Conclusion and Future Work

Nowadays, high-performance clusters connect several multicore machines, leading to systems

with multiple levels of parallelism. To exploit these cores software has to be developed accord-

ingly (i.e., parallelized, potentially with di↵erent paradigms). Unfortunately, the non-modular

and unstructured approach of mixing the PRC and DRC, embraced by the traditional parallel

programming paradigms, increases the complexity of developing parallel applications.

This thesis contributes towards the goal of reducing the complexity of PP – while achieving

a competitive performance – through the concept of parallelism layers. This concept emerged

from our study of AOP to develop an approach capable of reducing the complexity and in-

creasing the structure of the development of parallel applications, with performance compa-

rable to traditional parallel programming paradigms. This study led to several publications

[MS13a, MS13b, MSS15, MSS16, MS17]. Parallelism layers help to achieve these goals by pro-

moting the development of e�cient parallel applications based on three fundamental software

properties, namely modularity, pluggability, and composability. The PRC are encapsulated in

modules with high cohesion and a well-defined responsibility – following the single responsibility

principle. These modules are not tightly-coupled with the base code and can be (un)plugged

from the base code without changing it. Hence, enabling the support for the base code se-

quential semantics. Moreover, these modules can be composed/combined with the base code

to provide di↵erent parallelization strategies, which helps to find e�cient parallelizations for

a given environment. These properties (i.e., modularity, pluggability, and composability) are

tightly connected with the separation of the PRC from the DRC. This separation of concerns is

achieved by the parallelism layers through simple, yet powerful, well-known OO concepts such

as class extension and method overriding. By separating the PRC from the DRC, and encap-

sulating the PRC in proper modules that are grouped into layers, the tangling and scattering

problems are avoided. The additional overhead of adding the PRC with the parallelism layers

is not significant since these layers rely on low overhead mechanisms similar to class extension

and method overriding.

178

179

To materialized the parallelism layers we developed an aspect-oriented framework – more

specifically with AspectJ – enhanced with a methodology based on structured programming and

design rules. AspectJ provided means to modularize and compose the PRC with the domain

code without having to change its semantics – a fundamental characteristic of parallelism layers.

AspectJ enabled us to combine the use of reusable libraries (composed with modules that tackle

a specific PRC) with the injection of the constructors of these libraries into the base code in

a non-invasive manner. Hence, combining the advantages of reusable libraries (e.g., reusability

and the ability to extend their functionality) and extending the domain functionally in a similar

approach to inheritance. However, without the disadvantages of mixing the PRC and DRC,

changing the structure of the domain classes, among others.

To reduce complexity and promote structure, we suggest the development of parallel applica-

tions with our framework in an incremental fashion. Programmers start by developing the code

containing the DRC and afterward the layer that encapsulates the PRC. These layers are added

to the domain code by plugging in the framework’s aspect modules. The proposed approach

is an important step to make the process of developing parallel applications more structured,

faster, and cleaner. More structured because the programmer incrementally parallelizes applica-

tions by composing their base code with the parallelism-related modules, instead of adding the

parallelism directly into the base code in a disorganized manner. Faster, because programmers

can quickly (un)plug di↵erent parallel modules to test which one provides the best performance

for a specific platform, or completely remove the PRC to reason about the base code in isola-

tion without having to rewrite the domain code. Moreover, the framework raises the level of

abstraction by providing high-level parallelism-related modules that abstract the programmer

from the low-level details of PP. Cleaner because the PRC are not mixed up with the domain

application code, promoting a modular and incremental software development.

Our parallelism layers rely solely on methods and objects to inject their constructors. These

layers are further restricted to only public/protected non-final/static methods, which simplifies

our approach, makes it more predictable and closer to how class extension works. Moreover,

it helps to attenuate the pointcut fragility problem of AOP. Even though the programmer

has to follow our design rules (e.g., method refactoring) to inject the parallelism-related code

transformations, these do not break the sequential semantics of the base code, and hence we

considered that these design rules do not violate obliviousness in the context of parallelism.

If we consider that the base code is oblivious of the aspect modules only when (literally) no

modification should be made to it, then we argue that true obliviousness is impossible to achieve

without a much finer grain join point model than the one provided by AspectJ. Moreover, in our

opinion, such level of obliviousness would be undesirable in the context of parallelism because

it would increase the fragility and complexity of developing parallel applications.

180 7. Conclusion and Future Work

We evaluated the performance and programmability of our framework with a set of case

studies executed in a cluster of multicores. The majority of the design rules introduced were

methods and for methods; we argue that most of them made the code more readable since they

introduced well-named methods with well-defined behavior. Moreover, several of them were

created for the SM layer and reused in the DM layer, which highlights their importance for the

parallelism-related constructors. Finally, we did not have to create empty methods [KAB07,

MLWR01] to create artificial extension points. We argue that parallelism-related constructors

usually are injected into blocks of code significant enough to be turned into methods. In some

case studies, additional refactoring was needed, for instance, to make intrinsically sequential

loops into parallelizable ones. Hence, as we can see, true obliviousness is hard to achieve in the

context of parallelism. By making these loops parallelizable, we introduced, very subtly, PRC

into the base code and made the base code aware of it. However, in our opinion, this level of

obliviousness is acceptable as long as the base code sequential semantics are retained.

To implement the best SM and DM layers the intrusive Java implementations required,

on average, 1.6⇥ and 1.4⇥ more statements than our libraries of aspects using a pointcut

syntax – including the design rules applied, which account for 26% of the statements. For the

parallelizations that could rely solely on annotations, our framework annotations required only

half of the statements needed by the pointcuts. Although an elegant approach, annotations

are not enough for more complex parallelizations that require the tuning of the parallelism-

related constructors (e.g., customized loop distributions and scatter/gathers). Nonetheless, our

annotations can be injected into the base code non-invasively, promoting a modular approach.

For the biggest input of each case studies, the Java SM and DM intrusive implementations

were, on average, 1.02⇥ and 1.00⇥ faster than the AOmpLib and AOdmLib, respectively. Mean-

while, for the smallest input, these values were 1.09⇥ and 1.05⇥. Usually, the time di↵erence

between intrusive and our framework was higher for the smaller inputs but decreased with the in-

crease of the input size. For the vast majority of the cases, our design rules did not meaningfully

change the execution time of the sequential versions.

With our framework, we were able to improve the overall execution time of the paralleliza-

tions of 5 out of 7 JGF case studies with improvements ranging from 1.01 to 1.19⇥. Moreover,

we were able to build hybrid parallelizations out of the best SM and DM aspect layers for 4

out of 9 used case studies. Some of these hybrids scaled up to 149.88⇥ for 256 cores (with

hyperthreading). The composition of the SM and DM layers with our framework was as easy

as adding them into the build, even though some hybrid parallelizations resulted in up to 6

parallelism-related constructors injected into the same extension point.

181

Our design rules, the fact that our transformations are restricted to public/protected non-

final/static methods, the need to make the base code intrinsically parallelizable (e.g., the removal

of dependencies inside a loop) can be seen as inconveniences. However, this is the price to be

paid for a structured design; the time spent, in the beginning, will be compensated in the long

run, with code more modular and maintainable. Parallelism layers, like other popular parallel

programming paradigms, do not make miracles, the code has to be designed with the parallelism

in mind.

From our set of design rules, the (optional) ones concerning performance are arguably from

an aesthetic point of view less desirable. Regarding the object creation design rule, it might

look strange to see a method that only returns a new object. The set/get performance design

rule might, in the worst case scenario, led to considerable code refactoring if local variables have

to be passed as parameters of several methods. In all our case studies that need private fields,

we were able to use the AOmpLib private object pointcut and annotations approach instead of

the set/get pointcuts. Moreover, the matrix multiplication case study was the only one that

strictly needed the object creation design rule due to huge memory consumption in the matrix

multiplication case study.

182 7. Conclusion and Future Work

7.1 Future Work

We describe possible future work that can be done to improve the concept of parallelism layers,

our methodology, and our framework.

Design rules

There is room for improvement in our data-related design rules (e.g., performance design rules).

Our framework could be enhanced with a mechanism to handle the data more transparently,

especially in SM environments. The first step might be to force the use of setters and get-

ters to access the data that will be injected with PRC. Adding such a restriction would reduce

the expectable interface of the parallelism layers to only methods, and consequently, make our

approach even simpler, predictable, and closer to OO class extension and method overriding

philosophy. However, this restriction would lead to additional code refactoring. Nonetheless,

most IDEs automatically introduce setters/getters methods and even replace all the direct ac-

cesses to the variables by calls to these methods. Moreover, performance-wise such methods are

(likely) inlined. This approach would facilitate any potential future automation concerning our

framework (e.g., automatically creating pointcuts/annotations based on the method name).

Unfortunately, it is not clear yet how forcing the use of setters and getters would help to

avoid our performance design rules. Another solution is to provide our own data objects to the

users, or a combination of our framework with a data-centric framework, which would facilitate

handling the accesses to the data. Moreover, this solution would also facilitate potential data-

related optimizations (e.g., tiling). We would also include the use of iterators in the loops to

be parallelized, which would avoid having to expose the loop body. Notwithstanding, a proper

study of the impact of those solutions on performance and programmability would have to be

conducted before.

Correctness

To help with the correctness of the parallelizations, we can provide layers similar to parallelism

layers but, instead, directed to ensure that there are no combinations of constructors that might

lead to problems (e.g., a barrier called inside a master constructor). Such correctness layer will

likely rely heavily on the AspectJ cflow and cflowbelow pointcuts. Hence, this layer would only

be turned on to check the soundness of the parallelization and turned o↵ during the execution of

the actual parallelism layer. The programmer would develop a normal parallelism layer with the

constructors to be injected and so on. Afterward, we would provide a transparent mechanism

that would allow changing the layer from parallelism to correctness, which would avoid having

to duplicate layers.

7.1. Future Work 183

Extending framework functionality

We plan to extend our framework to complement other hardware environments; some initial

work was already done in this direction with extensions for GRID [MSS15] and GPUs [MSS16].

Unfortunately, due to having to depend on third-party tools to execute the code in those environ-

ments, additional work will be necessary to fully integrate these extensions with our framework,

methodology, and design rules. Possibly with the development of intermediate software to make

the bridge between the di↵erent extensions. Furthermore, we might also consider integrating

some in-house aspect-oriented tools that are helpful in the context of parallelism, namely check-

point [MS11] and profiling (e.g., PAPI).

Automation

Most of the process of creating the parallelism-related modules follow a fixed order; creating the

aspects, choosing the pointcuts, overriding methods to customize the constructors and so on. We

want to develop tools (e.g., a plugin) that can automatize part of this process. One possibility

is to integrate such a tool with current IDE refactoring tools, for instance, most of the times

a for method is a method refactoring followed by three extract method parameters. Moreover,

such a tool could automatize part of the process of creating concrete modules and pointcuts.

For instance, the user could select a block of code to apply method refactoring, and the tool

in addition to applying the method refactoring would request the names of the constructor to

use (e.g., parallel region), the concrete module, and the layer where that constructor should

be defined. Since the tool performs the method refactoring it has access to all the context

necessary to fill up the pointcut/annotation. Since our framework only relies on the pointcut

call to intercept method calls, the development of such a tool is easier. This process can be

facilitated even further if we ended up restricting the parallelism-layer to only method calls.

Validation

From the validation point of view, it would be desirable to validate parallelism layers with

large projects, and potentially using di↵erent software quality metrics. It would be desirable to

understand how having the PRC centralized in a layer a↵ects the way programmers reason about

the parallelizations compared with having it spread across di↵erent classes. Moreover, it would

be interesting to study for di↵erent project sizes what is the most appropriate layer granularity.

Should we have a layer per package? per parallel region ?. Finally, it would also add additional

value to implement the concept of parallelism layers using di↵erent technologies besides AspectJ

and Java. There might be a better solution than AOP to implement this concept, probably one

that would be simpler than AOP (in the sense that it does not have as many features as AOP)

but robust enough to implement the concept of parallelism layers.

Appendix A

MD : Code and Explanations

1 ...
2 Particles(final int size){
3 fx = create_fx(size);
4 ...
5 }
6 public double [] create_fx(int size) {return new double [size];}

Figure A.1: MD - Applying the object creation design rule.

1 public class Particles {
2 ...
3 private final ReentrantLock locks[]; // Statement 1
4 ...
5 Particles(final int size)
6 {
7 locks = new ReentrantLock[size]; // Statement 2
8 for(int i = 0; i < size; i++) // Statement 3
9 locks[i] = new ReentrantLock (); // Statement 4

10 }
11 }

Figure A.2: MD - Creation of an array of locks using an OpenMP/Intrusive approach.

Explanation of the total of statements used in the di↵erent implementations of
the lock approach:

In the Java and OpenMP implementations, the approach of locking per particle would require
about 14 and 11 new statements, respectively. In a possible intrusive implementation, we
could declare the array of locks as a field of Particles and initialize it in the constructor of
that class (shown in Figure A.2). Afterward, the logic to acquire/release the lock associated
with a particle would be placed around the code that updates the particles’ forces, adding
at least 10 new statements (shown in Figure A.4).
Our AOmpLib only requires the use of 4 statements (i.e., declaration of the inner aspect,
the two pointcuts and the argument to be intercepted) and two additional ones to apply the
object creation design rule. To extract the index to be used in the array of locks we reused
the forceUpdate method, resulting in no additional design rule.

Figure A.3: MD - The explanation of the total statements needed for the lock per particle approach.

3

184

185

26 ...
27 /** Calculating thirds Newton ’s law */
28 try // Statement 1
29 {
30 locks[pB].lock(); // Statement 2
31 fx[pB] -= tmpFx;
32 fy[pB] -= tmpFy;
33 fz[pB] -= tmpFz;
34 ... // update local epot , vir interactions
35 }
36 catch (..){} // Statement 3
37 finally // Statement 4
38 {
39 unlock[pB]. unlock (); // Statement 5
40 }
41 }
42 }
43 /** Update of the force of Particle A **/
44 try // Statement 6
45 {
46 locks[pA].lock(); // Statement 7
47 fx[pA] += fxAcc;
48 fy[pA] += fyAcc;
49 fz[pA] += fzAcc;
50 }
51 catch (..){} // Statement 8
52 finally // Statement 9
53 {
54 unlock[pA]. unlock (); // Statement 10
55 }
56

Figure A.4: MD - A possible implementation of the intrusive lock approach.

1 ...
2 final double fx[] = this.fx; // <- Performance design rule fx
3 final double fy[] = this.fy; // <- Performance design rule fy
4 final double fz[] = this.fz; // <- Performance design rule fz
5

6 for (int pB = pA + 1; pB < totalParticles; pB++){
7 ...
8 if(/** pB inside the radius of pA**/){
9 ...

10 forceUpdate(pB , -tmpFx , -tmpFy , -tmpFz , fx, fy, fz);
11 }
12 }
13 /** Update of the force of Particle A **/
14 forceUpdate(pA , fxAcc , fyAcc , fzAcc , fx, fy, fz);
15 /** MD control variables actualization */
16 md.updateControlVar(epot , vir , interactions);
17 }

Figure A.5: MD - Application of the set/get performance design rule.

Explanation of the total of statements among the di↵erent versions for the
set/get approach:

The AOmpLib needed one inner aspect, 10 pointcuts and 3 set/get performance de-
sign rule for a total of 18 statements. The majority of the new statements from the intrusive
version came from the passing the thread ID around, the creation and initialization of the
new thread-related variables, and the replacement of the problematic variables by the new
variables.

Figure A.6: MD - The explanation of the total statements needed for the set/get approach.

186 A. MD : Code and Explanations

1 public final class MDFactory{
2 ...
3 public MD getMDversion (...)
4 {
5 if(/** SEQ version **/) return new MD(..); // MD base class
6 else if (/** SM version **/) return new MD_SM (..);
7 else if ...
8 }
9 }

Figure A.7: MD - Example of the MDFactory class.

Explanation of the total of statements among the di↵erent versions for the best
SM Layer:

To implement the best SM layer composed by a parallel region with a dynamic for distri-
bution and copy/reduction of the private objects, using pointcuts only, the AOmpLib used
a total of 5 aspects, 6 pointcuts, 3 method definitions (to provide the object copies and the
no wait() clause) and 1 design rule (for method). In total, for the best layer, with AOm-
pLib we wrote 29 statements, 18 of them used to provide the copies of the Particles and
MD objects. With OpenMP C 36 statements were written with only 6 of them being actual
annotations (parallel region, dynamic for and declare reduction). Concerning the Java in-
trusive version, even with the use of extension and overriding mechanisms to minimize the
number of modifications to the base code, at least 36 statements had to be written/modi-
fied. These modifications include removing final clauses, changing from private methods to
non-private ones, creating setters/getters to manage private fields from the outside and so
on. In addition to the intrusive statements we also wrote 80 non-intrusive statements spread
across three di↵erent classes (MDParallel, ParallelForce and ThreadTeam)a. Since one of
the new classes (ThreadTeam) can be reused in another case studies besides the MD, from
the 80 non-intrusive statements, 19 out of them can be deducted for a total of 97b intrusive
and non-intrusive statements. The Java intrusive version needed slightly over 3 times more
statements that the layer implemented with the AOmpLib. This is not surprising since since
the AOmpLib includes all the logic of the parallel region, of the copy and reduction of the
private objects and so on.

aWe excluded the MDFactory class from the calculations.
b80 non-intrusive statements minus 19 from those that can be reused plus 36 intrusive statements.

Figure A.8: MD - The explanation of the total statements needed for the best SM Layer.

Appendix B

MD : Results

Table B.1: MD - Input sizes.

Number of particles Size (MB)
2048 0.14
8788 0.60
19652 1.35
256k 17.17
500k 34.33

Table B.2: MD - Execution times of data dependency strategies with AOmpLib.

Number of
Critical Locks

Private Set/Get
particles objects pointcuts
2048 0.591 0.312 0.371 0.426
8788 8.796 2.263 1.623 1.670
19652 37.834 10.924 5.870 5.724
250k 109.768 25.656 13.286 13.306
500k 395.100 88.936 50.020 48.913
Total 552.088 128.090 71.170 70.039

• The values in bold marks in each row the strategy with the lowest execution time.

187

188 B. MD : Results

Table B.3: MD - Scalability of the data dependency strategies with AOmpLib.

Version Input
Total of threads

2 3 4 6 8 12 16 24 32
2048 1.08 1.43 1.57 1.10 1.15 1.06 1.07 1.04 1.03
8788 1.17 1.58 1.69 1.34 1.29 1.29 1.31 1.27 1.22

Critical 19652 1.21 1.55 1.88 1.52 1.42 1.28 1.40 1.39 1.36
250k 1.14 1.60 1.86 1.89 1.55 1.49 1.47 1.41 1.44
500k 1.13 1.59 1.87 1.96 1.60 1.51 1.55 1.41 1.48

2048 1.02 1.40 1.80 2.21 2.31 2.89 2.97 2.90 2.67
8788 1.11 1.74 2.23 3.46 4.55 6.00 5.22 6.43 6.56

Locks 19652 1.18 1.91 2.31 3.51 4.71 6.49 5.23 5.13 6.05
250k 1.11 1.86 2.55 3.74 4.65 7.01 8.07 7.42 7.19
500k 1.13 1.75 2.29 3.67 4.92 7.31 8.72 8.37 7.73

2048 1.55 2.03 2.39 2.50 2.49 2.29 2.15 1.76 1.57
Private 8788 1.97 2.99 3.69 5.55 6.77 8.19 7.30 9.14 8.40
objects 19652 2.05 3.12 4.02 5.38 7.22 10.20 9.06 12.09 11.98

250k 2.00 2.99 3.60 5.63 7.76 11.39 12.67 13.49 15.59
500k 2.00 3.00 3.98 5.68 7.58 11.73 13.27 14.18 15.51

2048 1.47 1.85 2.18 1.62 1.58 1.58 1.07 0.90 1.37
S/G 8788 1.98 2.87 3.76 5.34 6.56 7.11 7.07 8.89 8.83

pointcuts 19652 2.09 2.96 3.86 5.52 7.17 9.72 8.75 11.22 12.39
250k 1.99 3.00 3.61 5.91 7.86 11.55 12.94 13.11 15.56
500k 1.96 2.94 3.92 5.97 7.69 11.48 13.93 14.21 15.86

• The values in bold represent the ones with the greatest speedup;

• The speedups are calculated using the lowest execution time of the sequential code base with or without the
design rules.

Table B.4: MD - Max speedups of the data dependency strategies with AOmpLib.

Number of
Critical Locks

Private Set/Get
particles objects pointcuts
2048 1.57 2.97 2.50 2.18
8788 1.69 6.56 9.14 8.89
19652 1.88 6.49 12.09 12.39
250k 1.89 8.07 15.59 15.56
500k 1.96 8.72 15.51 15.86

Overall 1.94 8.35 15.03 15.27

• The values in bold represent the ones with the greatest speedup;

• The speedups are calculated using the lowest execution time of the sequential code base with or without the
design rules.

189

Table B.5: MD - Execution times of load balancing strategies with AOmpLib/AOdmLib.

SM DM
of Static Dynamic

Manual
Static Dynamic

Manual
particles (chunk=1) (chunk=1) (chunk=1) (chunk=1)
2048 0.371 0.330 0.371 0.153 0.258 0.157
8788 1.623 1.263 1.628 1.036 1.504 1.038
19652 5.870 4.379 5.862 4.235 4.755 4.231
250k 13.286 12.316 13.464 13.538 13.491 13.550
500k 50.020 46.732 49.425 49.260 48.892 49.298
Total 71.170 65.020 70.750 68.222 68.900 68.274

• The values in bold represent the ones with the lowest execution time.

Table B.6: MD - Speedups of the load balancing strategies with AOmpLib/AOdmLib.

SM DM
of Static Dynamic

Manual
Static Dynamic

Manual
particles (chunk=1) (chunk=1) (chunk=1) (chunk=1)
2048 2.50 2.81 2.50 6.06 3.59 5.90
8788 9.14 11.75 9.11 14.32 9.87 14.30
19652 12.09 16.20 12.10 16.75 14.92 16.77
250k 15.59 16.81 15.38 15.30 15.35 15.28
500k 15.51 16.60 15.70 15.75 15.87 15.74

Overall 15.03 16.45 15.12 15.68 15.52 15.67

• The values in bold represent the ones with the greatest speedup;

• The speedups are calculated using the lowest execution time of the sequential execution with or without the
design rules.

Table B.7: MD - Execution times of the di↵erent sequential versions.

Number of particles C Code Base Design Rules
2048 0.880 0.927 0.927
8788 14.707 14.881 14.838
19652 69.424 71.087 70.946
250k 208.081 207.178 207.077
500k 777.449 776.431 775.811
Total 1070.541 1070.504 1069.599

• Neither the C nor the Base Code includes the design rules.

190 B. MD : Results

Table B.8: MD - Comparison gains between di↵erent sequential versions.

Number of particles C vs. Java Base Code vs. Design Rules
2048 1.05 1.00
8788 1.01 1.00
19652 1.02 1.00
250k 1.00 1.00
500k 1.00 1.00

Overall 1.00 1.00

• Java = The fastest between Base Code and Design Rules;

• Gains A vs. B = execution time of B
execution time of A

.

Table B.9: MD - Execution times of the best SM/DM versions.

SM DM
Number of Particles C Java Aspects C Java Aspects

2048 0.064 0.248 0.330 0.070 0.145 0.153
8788 0.877 1.165 1.263 0.823 1.032 1.036
19652 4.045 4.175 4.379 3.897 4.213 4.235
250k 12.147 12.106 12.316 13.131 13.311 13.538
500k 45.660 46.680 46.732 49.388 49.135 49.260
Total 62.793 64.374 65.020 67.309 67.836 68.222

Table B.10: MD - Speedups of the best SM/DM versions.

SM DM
of

C
C

Java Aspects C
C

Java Aspects
Particles adjust adjust
2048 13.75 14.48 3.74 2.81 12.57 13.24 6.39 6.06
8788 16.77 16.92 12.74 11.75 17.87 18.03 14.38 14.32
19652 17.16 17.54 16.99 16.20 17.81 18.21 16.84 16.75
250k 17.13 17.05 17.11 16.81 15.85 15.77 15.56 15.26
500k 17.03 16.99 16.62 16.60 15.74 15.71 15.79 15.75

Overall 17.05 17.03 16.62 16.45 15.90 15.89 15.77 15.68

• The speedups of Java, Aspects, and C adjust are calculated using the lowest execution time of the sequential
code base with or without the design rules;

• Speedups of C are base on the execution time of its sequential version.

191

Table B.11: MD - Comparison gains between di↵erent versions.

SM DM
Gains Time Di↵erence (s) Gains Time Di↵erence (s)

2048 1.33 0.082 1.06 0.008
8788 1.08 0.098 1.00 0.004

Java vs. 19652 1.05 0.204 1.01 0.022
Aspects 250k 1.02 0.210 1.02 0.227

500k 1.00 0.052 1.00 0.125
Overall 1.01 0.646 1.01 0.386
2048 3.88 0.184 2.07 0.075
8788 1.33 0.288 1.25 0.209

C vs. 19652 1.03 0.130 1.08 0.316
Java 250k 1.00 -0.041 1.01 0.180

500k 1.02 1.020 0.99 -0.253
Overall 1.03 1.581 1.01 0.527

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

Table B.12: MD - Execution times of the DM/Hybrid with 8 machines.

of C Java Aspects
Particles DM Hybrid DM Hybrid DM Hybrid
19652 1.212 0.782 1.315 1.110 1.340 1.189
250K 1.850 1.657 1.971 1.947 2.000 1.982
500K 6.475 5.914 6.686 6.536 6.761 6.586
Total 9.537 8.353 9.972 9.593 10.101 9.757

Table B.13: MD - Speedups of the DM and Hybrid with 8 machines.

Number of C C adjust Java Aspects
Particles DM Hybrid DM Hybrid DM Hybrid DM Hybrid
19652 57.28 88.78 58.54 90.72 53.95 63.92 52.94 59.67
250K 112.48 125.58 111.93 124.97 105.06 106.36 103.54 104.48
500K 120.07 131.46 119.82 131.18 116.04 118.70 114.75 117.80
Overall 110.62 126.30 110.50 126.16 105.68 109.85 104.33 108.01

• The speedups of Java, Aspects, and C adjust are calculated using the lowest execution time of the sequential
code base with or without the design rules;

• Speedups of C are base on the execution time of its sequential version.

192 B. MD : Results

Table B.14: MD - Comparison gains between versions for the DM/Hybrid with 8 machines.

of DM Hybrid
Particles Gains Time Di↵erence (s) Gains Time Di↵erence (s)
19652 1.02 0.025 1.07 0.079

Java vs. 250K 1.01 0.029 1.02 0.035
Aspects 500K 1.01 0.075 1.01 0.050

Overall 1.01 0.129 1.02 0.164
19652 1.08 0.103 1.42 0.328

C vs. 250K 1.07 0.121 1.18 0.290
Java 500K 1.03 0.211 1.11 0.622

Overall 1.05 0.435 1.15 1.240

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

Table B.15: MD - Gains of the Hybrid vs. DM with 8 machines.

Hybrid vs. DM
of Gains Time Di↵erence (s)

C

19652 1.55 0.430
250K 1.12 0.193
500K 1.09 0.561

Overall 1.14 1.184

Java

19652 1.18 0.205
250K 1.01 0.024
500K 1.02 0.150

Overall 1.04 0.379

Aspects

19652 1.13 0.151
250K 1.01 0.018
500K 1.03 0.175

Overall 1.04 0.344

• Time Di↵erence Hybrid vs. DM = execution time of DM - execution time of Hybrid;

• Gains Hybrid vs. DM = execution time of DM
execution time of Hybrid

.

Table B.16: MD - Comparison between new and old Hybrid versions with 8 machines.

of New Hybrid Old Hybrid
Particles Gains Time Di↵erence (s) Gains Time Di↵erence (s)
19652 1.11 0.122 1.07 0.079

Java vs. 250K 1.10 0.180 1.02 0.035
Aspects 500K 1.09 0.556 1.01 0.050

Overall 1.10 0.858 1.02 0.164
19652 1.36 0.285 1.42 0.328

C vs. 250K 1.09 0.145 1.18 0.290
Java 500K 1.02 0.116 1.11 0.622

Overall 1.07 0.546 1.15 1.240

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

193

Table B.17: MD - Gains of new and old Hybrid vs. DM with 8 machines.

Hybrid vs. DM
New Hybrid Old Hybrid

of Gains Time Di↵erence (s) Gains Time Di↵erence (s)

Java

19652 1.23 0.248 1.18 0.205
250K 1.09 0.169 1.01 0.024
500K 1.11 0.656 1.02 0.150

Overall 1.12 1.073 1.04 0.379

• Time Di↵erence Hybrid vs. DM = execution time of DM - execution time of Hybrid;

• Gains Hybrid vs. DM = execution time of DM
execution time of Hybrid

.

0	

50	

100	

150	

8	 16	 24	 32	 48	 64	 96	 128	 256	 8	 16	 24	 32	 48	 64	 96	 128	 256	 8	 16	 24	 32	 48	 64	 96	 128	 256	

C	 Java	 Aspects	

Sp
ee
du

ps
	

Total	processes	

DM	:	8	Machines	x	N	Processes	

19652	 250000	 500000	

0	

50	

100	

150	

8	 16	 24	 32	 48	 64	 96	 128	256	 8	 16	 24	 32	 48	 64	 96	 128	256	 8	 16	 24	 32	 48	 64	 96	 128	256	

C	 Java	 Aspects	

Sp
ee
du

ps
	

Total	Threads	

Hybrid	:	8	Machines	x	N	Threads	

19652	 250000	 500000	

Figure B.1: MD - Scalability of the DM/Hybrid with 8 machines.

Appendix C

MM : Results

Table C.1: MM - Input sizes.

Matrices sizes Size (MB)
10242 24
20482 96
40962 384
81922 1536
163842 6144

Table C.2: MM - Total of iterations.

Matrices sizes Outer loop Inner loop
10242 4 32
20482 8 64
40962 16 128
81922 32 256
163842 64 512

• Outer loop iterations = Total columns of matrix C
Total columns of the tile

.

• Inner loop iterations = Total lines of matrix C
Total lines of the tile

.

194

195

Table C.3: MM - Execution times of the sequential versions.

Java Design Rules
Matrix Size C No Flags Flags No Flags Flags

10242 0.264 0.336 0.241 0.337 0.240
20482 2.137 2.379 1.426 2.432 1.427
40962 17.076 18.842 10.819 18.667 10.810
81922 142.857 155.185 95.646 156.732 95.746
163842 1239.721 1341.674 853.209 1346.559 852.883
Total 1402.055 1518.416 961.341 1524.727 961.106

Table C.4: MM - Comparison gains between di↵erent sequential versions.

C vs. Java Java (Flags) vs. (Java) Flags vs.
Matrix Size No Flags Flags Design Rules (Flags) (Java) No Flags

10242 1.27 0.91 1.00 1.39
20482 1.11 0.67 1.00 1.67
40962 1.10 0.63 1.00 1.74
81922 1.09 0.67 1.00 1.62
163842 1.08 0.69 1.00 1.57
Overall 1.08 0.69 1.00 1.58

• The flags were not applied to the C versions;

• Gains A vs. B = execution time of B
execution time of A

.

Table C.5: MM - Execution times of the di↵erent versions.

SM DM
Matrix Size C Java Aspects JOMP C Java Aspects

10242 0.021 0.123 0.125 0.138 0.047 0.166 0.169
20482 0.151 0.288 0.266 0.322 0.278 0.462 0.491
40962 1.164 0.991 0.994 1.073 1.715 1.551 1.599
81922 9.131 6.227 6.496 6.467 11.595 8.704 8.896
163842 71.423 47.938 49.505 49.400 84.199 56.732 56.496
Total 81.890 55.567 57.386 57.400 97.834 67.615 67.651

• The execution time of the Java, Aspects, and JOMP implementations are the best execution time of these
versions with and without the JVM performance Flags;

• For the 163842 input size, the tests of the DM version were limited to 16 processes do due memory constrains.

196 C. MM : Results

Table C.6: MM - Time spent during communication over 8 machines.

Matrices Java C
81922 3.808 2.066
163842 13.979 8.560

Table C.7: MM - Comparison gains between di↵erent versions.

SM DM
Gains Time Di↵erence (s) Gains Time Di↵erence (s)

10242 1.14 0.017 0.81 -0.040
(Java) Flags 20482 1.26 0.074 0.97 -0.015

vs. 40962 1.45 0.448 1.30 0.467
(Java) 81922 1.50 3.126 1.47 4.096

No Flags 163842 1.53 25.203 1.62 34.926
Overall 1.52 28.868 1.58 39.434
10242 1.02 0.002 1.02 0.003

Java 20482 0.92 -0.022 1.06 0.029
vs. 40962 1.00 0.003 1.03 0.048

Aspects 81922 1.04 0.269 1.02 0.192
(Flags) 163842 1.03 1.567 1.00 -0.236

Overall 1.03 1.819 1.00 0.036
10242 5.86 0.102 3.53 0.119

C 20482 1.91 0.137 1.66 0.184
vs. 40962 0.85 -0.173 0.90 -0.164
Java 81922 0.68 -2.904 0.75 -2.891

(Flags) 163842 0.67 -23.485 0.67 -27.467
Overall 0.68 -26.323 0.69 -30.219
10242 6.67 0.119 3.53 0.119

C 20482 2.40 0.211 1.66 0.184
vs. 40962 1.24 0.275 1.18 0.303
Java 81922 1.02 0.222 1.10 1.205

(No Flags) 163842 1.02 1.718 1.09 7.459
Overall 1.03 2.545 1.09 9.270
10242 1.10 0.013 - -

Aspects 20482 1.21 0.056 - -
vs. 40962 1.08 0.079 - -

JOMP 81922 1.00 -0.029 - -
(Flags) 163842 1.00 -0.105 - -

Overall 1.00 0.014 - -

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

197

Table C.8: MM - Speedups of the di↵erent SM versions.

Matrix Size C C Adjust Java Aspects JOMP
10242 12.57 11.43 1.95 1.92 1.74
20482 14.15 9.44 4.95 5.36 4.43
40962 14.67 9.29 10.91 10.88 10.07
81922 15.65 10.47 15.36 14.72 14.79
163842 17.36 11.94 17.79 17.23 17.26
Overall 17.12 11.74 17.29 16.75 16.74

• The speedups of Java, Aspects, and C adjust are calculated using the lowest execution time of the sequential
code base (with flags) with or without the design rules;

• Speedups of C are base on the execution time of its sequential version.

Table C.9: MM - Speedups of the di↵erent DM versions.

Matrix Size C C Adjust Java Aspects
10242 5.62 5.11 1.45 1.42
20482 7.69 5.13 3.09 2.90
40962 9.96 6.30 6.97 6.76
81922 12.32 8.25 10.99 10.75
163842 14.72 10.13 15.03 15.10
Overall 14.33 9.82 14.21 14.21

• The speedups of Java, Aspects, and C adjust are calculated using the lowest execution time of the sequential
code base (with flags) with or without the design rules;

• Speedups of C are base on the execution time of its sequential version.

Table C.10: MM - Execution times of the DM and Hybrid with 8 machines.

Matrices C Java Aspects
Size DM Hybrid DM Hybrid DM Hybrid
81922 5.280 3.694 8.475 4.854 8.493 5.235
163842 31.372 20.045 35.441 20.674 35.210 20.732
Total 36.652 23.739 43.916 25.528 43.703 25.967

Table C.11: MM - Speedups of the DM and Hybrid with 8 machines.

Matrices C C adjust Java Aspects
Size DM Hybrid DM Hybrid DM Hybrid DM Hybrid
81922 27.06 38.67 18.11 25.89 11.29 19.70 11.26 18.27
163842 39.52 61.85 27.19 42.55 24.06 41.25 24.22 41.14
Overall 37.72 58.24 25.88 39.96 21.60 37.16 21.70 36.53

198 C. MM : Results

Table C.12: MM - Comparison of the DM and Hybrid with 8 machines.

DM Hybrid
Gains Time Di↵erence (s) Gains Time Di↵erence (s)

(Java) Flags 81922 1.14 1.205 1.11 0.539
vs. 163842 1.25 8.869 1.16 3.385

(Java) No Flags Overall 1.23 10.074 1.15 3.924
Java 81922 1.00 0.018 1.08 0.381
vs. 163842 0.99 -0.231 1.00 0.058

Aspects Overall 1.00 -0.213 1.02 0.439
C 81922 1.61 3.195 1.31 1.160
vs. 163842 1.13 4.069 1.03 0.629
Java Overall 1.20 7.264 1.08 1.789

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

Table C.13: MM - Gains of the Hybrid vs. DM with 8 machines.

Hybrid vs. DM
Gains Time Di↵erence (s)

C
81922 1.43 1.586
163842 1.57 11.327
Overall 1.54 12.913

Java
81922 1.75 3.621
163842 1.71 14.767
Overall 1.72 18.388

Aspects
81922 1.62 3.258
163842 1.70 14.478
Overall 1.68 17.736

• Time Di↵erence Hybrid vs. DM = execution time of DM - execution time of Hybrid;

• Gains Hybrid vs. DM = execution time of DM
execution time of Hybrid

.

Appendix D

MM : Code and Figures

1 public void packingCacheL3(int jj , double bb[][])
2 {
3 for(int k = 0; k < maxRowB; k += 4)// Loads 4 lines
4 {
5 for (int j = 0; j < tilej; j++)
6 {
7 bb[k/4][j] = B[k][jj+j];
8 bb[k/4][j+tilej] = B[k+1][jj+j];
9 bb[k/4][j+tilej * 2] = B[k+2][jj+j];

10 bb[k/4][j+tilej * 3] = B[k+3][jj+j];
11 }
12 }
13 }

Figure D.1: MM - Sequential cache L3 packing of matrix B into sub-matrix bb.

1 public void packingCacheL3(int begin , int end , int step , int jj , double bb[][])
2 {
3 for(int k = begin; k < end; k += step)// Loads 4 lines
4 {
5 for (int j = 0; j < tilej; j++)
6 {
7 bb[k/4][j] = B[k][jj+j];
8 bb[k/4][j+tilej] = B[k+1][jj+j];
9 bb[k/4][j+tilej * 2] = B[k+2][jj+j];

10 bb[k/4][j+tilej * 3] = B[k+3][jj+j];
11 }
12 }
13 }

Figure D.2: MM - Application of the for design rule in the packingCacheL3 method.

199

200 D. MM : Code and Figures

B

bb

Figure D.3: MM - L3 packing of matrix B into sub-matrix bb.

1 public final class MM {
2 ...
3 public final parallelRegion ()
4 {
5 final double bb[][] = new double[maxRowB /4][tilej *4+1];
6 for(int threadID = 1; threadID < TotalThreads; threadID ++)
7 {
8 poolThreads[threadID]. execute (() ->
9 {

10 matrixMultiplication(threadID , bb);
11 ...
12 });
13 }
14 }
15 matrixMultiplication(threadID , bb);
16 ...
17 }

Figure D.4: MM - The parallel region in the SM Java intrusive version.

1 public final aspect SM_MM extends SM_Layer {
2 ...
3 static aspect parallelRegion extends Sm_Parallel
4 {
5 pointcut parallel () : call (... matrixMultiplication ());
6 }
7

8 static aspect sharedBB extends Sm_SharedObject
9 {

10 pointcut single ():call (... createPackBB ());
11 }
12

13 static aspect workSharing extends Sm_For
14 {
15 pointcut for_dynamic () :
16 (
17 call (... mmTitleMatrixC (int , int , int , ...)) ||
18 call (... packingCacheL3 (int , int , int , ...))
19);
20 }
21 }

Figure D.5: MM - The best SM layer using pointcuts.

201

Explanation of the total number of statements of the di↵erent versions for the
best SM layer:

The best SM layer with a pointcut-based approach (shown in Figure D.5) needed 4
aspects, 4 pointcuts, and 3 design rules. The design rules modified/added 8 statements and
the layer of aspect another 8 (only 5 in the case of the annotation-based approach). The
Java intrusive version, OpenMP C, and JOMP used 33, 3, and 10a statements, respectively.

a3 statements used in annotations and 7 for the removal of the final clauses.

Figure D.6: MM - The explanation of the total statements needed for the SM layer.

Explanation of the total number of statements of the di↵erent versions for the
best DM layer:

In total, with the AOdmLib, we added/modified 15 statements into/from the base
code as result of applying the design rules and the collateral side e↵ects. Additionally,
we needed 23 statements more to define the layer of aspects. For the Java MPI intrusive
version, we wrote/modified 51 statements, of which 20 were used to write the methods to
perform the scattering, gathering, and reduction of the matrices. The C MPI intrusive
version needed 38 statementsa.

aThe discrepancies between the number of statements come from the di↵erence between C and JAVA
languages.

Figure D.7: MM - The explanation of the total statements needed for the DM layer.

Appendix E

JGF Benchmark : Results

Table E.1: JGF - Number of elements of the inputs.

Number of elements
Input size Crypt Ray Series SOR Sparse MC LUFact
Size 1 3M 150 10k 1k2 250k 10k 5002

Size 2 20M 500 100k 1.5k2 500k 60k 1k2

Size 3 50M 1500 1M 2k2 2.5M 90k 2k2

Size 4 200M 2000 2M 10k2 5M 120k 8k2

Size 5 900M 2500 2.5M 15k2 7.5M 150k 16k2

Table E.2: JGF - Input sizes.

Size (MB)
Input size Crypt Ray Series SOR Sparse MC LUFact
Size 1 8.58 260 0.15 7.63 4.58 283 1.94
Size 2 57.22 560 1.54 17.17 9.16 975 7.73
Size 3 143.05 577 15.41 30.52 45.78 1555 30.87
Size 4 572.21 589 30.82 762.94 91.55 1765 493.31
Size 5 2574.92 606 38.52 1716.61 137.33 2222 1972.82

• The values of the RayTracer (Ray) and MC are rough measurements in the peak of the JVM memory used;

• The values of the Crypt, Series, SOR, Sparse, and LUFact measures the memory that the application needs
for the input provided, however this value does not include the memory reserved for the JVM.

202

203

Table E.3: JGF - Execution times of the sequential versions.

Version Input Crypt Ray Series SOR Sparse MC LUFact
Size 1 0.114 - 2.629 0.167 0.234 - 0.031
Size 2 0.765 - 26.324 0.375 0.508 - 0.233

C Size 3 1.914 - 263.170 0.808 3.862 - 2.289
Size 4 7.656 - 526.307 22.859 8.323 - 19.596
Size 5 34.466 - 658.066 52.731 17.710 - 37.495

Overall 44.915 - 1476.496 76.940 30.637 - 59.644
Size 1 0.178 1.283 0.968 0.294 0.243 2.186 0.066
Size 2 0.962 13.397 13.807 0.610 0.517 12.828 0.338

JGF Size 3 2.343 120.874 161.595 1.132 3.785 19.507 2.880
Size 4 9.254 212.227 327.597 29.447 8.281 25.854 24.582
Size 5 41.510 341.262 410.986 64.343 17.650 32.254 44.424

Overall 54.247 689.043 914.953 95.826 30.476 92.629 72.290
Size 1 - 0.945 - 0.207 - - -
Size 2 - 10.033 - 0.447 - - -

JGF Size 3 - 88.617 - 0.878 - - -
Improved Size 4 - 157.986 - 22.816 - - -

Size 5 - 246.515 - 53.264 - - -
Overall - 504.096 - 77.612 - - -
Size 1 0.179 0.945 0.967 0.209 0.241 2.187 0.064
Size 2 0.962 10.045 13.809 0.452 0.516 12.814 0.338

Design Size 3 2.342 88.482 161.606 0.878 3.773 19.487 2.892
Rules Size 4 9.245 158.397 327.648 23.015 8.260 25.851 23.390

Size 5 41.462 245.561 410.964 53.094 17.644 32.223 42.608
Overall 54.190 503.430 914.994 77.648 30.434 92.562 69.292

Table E.4: JGF - Improvements over the sequential versions.

Ray SOR
Gains Time Di↵erence (s) Gains Time Di↵erence (s)

Size 1 1.36 0.338 1.42 0.087
Size 2 1.34 3.364 1.36 0.163
Size 3 1.36 32.257 1.29 0.254
Size 4 1.34 54.241 1.29 6.631
Size 5 1.38 94.747 1.21 11.079

Overall 1.37 184.947 1.23 18.214

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

204 E. JGF Benchmark : Results

Table E.5: JGF - Fastest execution times of the SM versions.

Version Input Crypt Ray Series SOR Sparse MC LUFact
Size 1 0.006 - 0.124 0.016 0.014 - 0.006
Size 2 0.040 - 1.169 0.034 0.032 - 0.028

C Size 3 0.100 - 11.632 0.060 0.280 - 0.154
Size 4 0.394 - 23.253 4.905 0.679 - 4.755
Size 5 1.675 - 29.065 10.939 1.634 - 8.577

Overall 2.215 - 65.243 15.954 2.639 - 13.520
Size 1 0.086 0.288 0.134 0.144 0.069 0.199 0.076
Size 2 0.158 1.281 0.851 0.193 0.096 0.786 0.208

JGF Size 3 0.226 10.514 8.558 0.269 0.390 1.400 0.458
Size 4 0.582 18.354 16.971 5.472 0.825 1.749 7.256
Size 5 2.159 28.909 21.253 12.429 1.718 2.018 10.894

Overall 3.211 59.346 47.767 18.507 3.098 6.152 18.892
Size 1 0.073 0.223 0.110 0.056 - 0.189 0.066
Size 2 0.125 0.741 0.730 0.083 - 0.701 0.160

JGF Size 3 0.195 4.950 7.713 0.118 - 1.273 0.408
Improved Size 4 0.538 8.488 15.514 5.457 - 1.589 5.435

Size 5 1.996 13.026 19.549 12.511 - 1.834 10.347
Overall 2.927 27.428 43.616 18.225 - 5.586 16.416
Size 1 0.079 0.233 0.126 0.058 0.074 0.188 0.073
Size 2 0.133 0.764 0.737 0.089 0.107 0.727 0.169

Aspects Size 3 0.212 4.941 7.768 0.126 0.390 1.284 0.470
(AOmpLib) Size 4 0.571 8.557 15.640 5.495 0.821 1.605 5.369

Size 5 2.098 13.064 19.538 12.556 1.733 1.859 10.419
Overall 3.093 27.559 43.809 18.324 3.125 5.663 16.500
Size 1 0.097 0.237 0.150 0.074 0.085 0.209 0.073
Size 2 0.173 0.772 0.765 0.106 0.122 0.726 0.152

JOMP Size 3 0.258 4.970 7.756 0.144 0.416 1.302 0.354
Size 4 0.642 8.518 15.605 5.485 0.881 1.627 5.517
Size 5 2.246 13.010 19.537 12.493 1.771 1.874 10.668

Overall 3.416 27.507 43.813 18.302 3.275 5.738 16.764

205

Table E.6: JGF - Fastest execution times of the DM versions.

Version Input Crypt Ray Series SOR Sparse MC LUFact
Size 1 0.013 - 0.116 0.017 0.131 - 0.009
Size 2 0.057 - 1.151 0.034 0.271 - 0.032

C Size 3 0.126 - 11.535 0.061 2.356 - 0.187
Size 4 0.466 - 23.088 5.154 6.007 - 5.339
Size 5 2.068 - 28.848 11.517 9.570 - 10.905

Overall 2.730 - 64.738 16.783 18.335 - 16.472
Size 1 0.100 0.190 0.087 0.124 0.192 0.945 0.059
Size 2 0.165 1.048 0.833 0.231 0.460 3.885 0.139

JGF Size 3 0.299 7.071 7.953 0.295 4.016 5.345 0.392
Size 4 0.854 12.527 15.888 5.426 8.837 6.504 5.708
Size 5 3.277 19.271 19.700 11.829 13.492 9.145 11.371

Overall 4.695 40.107 44.461 17.905 26.997 25.824 17.669
Size 1 - 0.144 0.087 0.077 0.185 - 0.044
Size 2 - 0.760 0.740 0.121 0.445 - 0.112

JGF Size 3 - 4.958 7.810 0.173 3.792 - 0.380
Improved Size 4 - 8.683 15.668 5.377 8.408 - 5.731

Size 5 - 13.416 19.639 11.665 12.842 - 11.394
Overall - 27.961 43.944 17.403 25.672 - 17.661
Size 1 0.100 0.150 0.091 0.078 0.185 0.973 0.055
Size 2 0.165 0.767 0.736 0.121 0.446 3.875 0.132

Aspects Size 3 0.300 5.020 7.799 0.174 3.782 5.349 0.395
(AOdmLib) Size 4 0.866 8.813 15.634 5.350 8.511 6.578 5.734

Size 5 3.283 13.609 19.554 11.737 12.824 9.133 11.502
Overall 4.714 28.359 43.814 17.460 25.748 25.908 17.818

Table E.7: JGF - Improvements over the SM versions.

Type Input Crypt Ray Series SOR Sparse MC LUFact
Size 1 1.18 1.29 1.22 2.57 - 1.05 *
Size 2 1.26 1.73 1.17 2.33 - 1.12 1.30

Gains Size 3 1.16 2.12 1.11 2.28 - 1.10 1.12
Size 4 1.08 2.16 1.09 1.00 - 1.10 1.34
Size 5 1.08 2.22 1.09 0.99 - 1.10 1.05

Overall 1.10 2.16 1.10 1.02 - 1.10 1.15
Size 1 0.013 0.065 0.024 0.088 - 0.010 0.010

Time Size 2 0.033 0.540 0.121 0.110 - 0.085 0.048
Di↵erence Size 3 0.031 5.564 0.845 0.151 - 0.127 0.050

(s) Size 4 0.044 9.866 1.457 0.015 - 0.160 1.821
Size 5 0.163 15.883 1.704 -0.082 - 0.184 0.547

Overall 0.284 31.918 4.151 0.282 - 0.566 2.466

• *LUFact does not scale for the Size 1;

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

206 E. JGF Benchmark : Results

Table E.8: JGF - Improvements over the DM versions.

Type Input Crypt Ray Series SOR Sparse MC LUFact
Size 1 - 1.32 1.00 1.61 1.04 - 1.34
Size 2 - 1.38 1.13 1.91 1.03 - 1.24

Gains Size 3 - 1.43 1.02 1.71 * - 1.03
Size 4 - 1.44 1.01 1.01 * - 1.00
Size 5 - 1.44 1.00 1.02 1.05 - 1.00

Overall - 1.43 1.01 1.03 1.03 - 1.00
Size 1 - 0.046 0.000 0.047 0.007 - 0.015

Time Size 2 - 0.288 0.093 0.110 0.015 - 0.027
Di↵erence Size 3 - 2.113 0.143 0.122 * - 0.012

(s) Size 4 - 3.844 0.220 0.049 * - -0.023
Size 5 - 5.855 0.061 0.174 0.650 - -0.023

Overall - 12.146 0.517 0.502 0.672 - 0.008

• *For the Size 2 and Size3 Sparse does not scale;

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

207

Table E.9: JGF - Java vs. Aspects in di↵erent versions.

Version Type Input Crypt Ray Series SOR Sparse MC LUFact
Size 1 1.01 1.00 1.00 1.01 0.99 1.00 0.97
Size 2 1.00 1.00 1.00 1.01 1.00 1.00 1.00

Gains Size 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Size 4 1.00 1.00 1.00 1.01 1.00 1.00 0.95
Size 5 1.00 1.00 1.00 1.00 1.00 1.00 0.96

SEQ. Overall 1.00 1.00 1.00 1.00 1.00 1.00 0.96
Size 1 0.001 0.000 -0.001 0.002 -0.002 0.001 -0.002

Time Size 2 0.000 0.012 0.002 0.005 -0.001 -0.014 0.000
Di↵. Size 3 -0.001 -0.135 0.011 0.000 -0.012 -0.020 0.012
(s) Size 4 -0.009 0.411 0.051 0.199 -0.021 -0.003 -1.192

Size 5 -0.048 -0.954 -0.022 -0.170 -0.006 -0.031 -1.816
Overall -0.057 -0.666 0.041 0.036 -0.042 -0.067 -2.998
Size 1 1.08 1.04 1.15 1.04 1.07 0.99 *
Size 2 1.06 1.03 1.01 1.07 1.11 1.04 1.06

Gains Size 3 1.09 1.00 1.01 1.07 1.00 1.01 1.15
Size 4 1.06 1.01 1.01 1.01 1.00 1.01 0.99
Size 5 1.05 1.00 1.00 1.00 1.01 1.01 1.01

SM Overall 1.06 1.00 1.00 1.01 1.01 1.01 1.00
Size 1 0.006 0.010 0.016 0.002 0.005 -0.001 *

Time Size 2 0.008 0.023 0.007 0.006 0.011 0.026 0.009
Di↵. Size 3 0.017 -0.009 0.055 0.008 0.000 0.011 0.062
(s) Size 4 0.033 0.069 0.126 0.038 -0.004 0.016 -0.066

Size 5 0.102 0.038 -0.011 0.045 0.015 0.025 0.072
Overall 0.166 0.131 0.193 0.099 0.027 0.077 0.077
Size 1 1.00 1.04 1.05 1.01 1.00 1.03 1.25
Size 2 1.00 1.01 0.99 1.00 1.00 1.00 1.18

Gains Size 3 1.00 1.01 1.00 1.01 * 1.00 1.04
Size 4 1.01 1.01 1.00 0.99 * 1.01 1.00
Size 5 1.00 1.01 1.00 1.01 1.00 1.00 1.01

DM Overall 1.00 1.01 1.00 1.00 1.00 1.00 1.01
Size 1 0.000 0.006 0.004 0.001 0.000 0.028 0.011

Time Size 2 0.000 0.007 -0.004 0.000 0.001 -0.010 0.020
Di↵. Size 3 0.001 0.062 -0.011 0.001 * 0.004 0.015
(s) Size 4 0.012 0.130 -0.034 -0.027 * 0.074 0.003

Size 5 0.006 0.193 -0.085 0.082 -0.018 -0.012 0.108
Overall 0.019 0.398 -0.130 0.057 -0.017 0.084 0.157

• In this case SEQ. is the Java (SEQ.) vs. Design rules.

• *That case study does not scale for that size;

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

208 E. JGF Benchmark : Results

Table E.10: JGF - Aspects vs. JOMP.

Type Input Crypt Ray Series SOR Sparse MC LUFact
Size 1 1.23 1.02 1.19 1.28 1.15 1.11 *
Size 2 1.30 1.01 1.04 1.19 1.14 1.00 0.90

Gains Size 3 1.22 1.01 1.00 1.14 1.07 1.01 0.75
Size 4 1.12 1.00 1.00 1.00 1.07 1.01 1.03
Size 5 1.07 1.00 1.00 0.99 1.02 1.01 1.02

Overall 1.10 1.00 1.00 1.00 1.05 1.01 1.02
Size 1 0.018 0.004 0.024 0.016 0.011 0.021 *

Time Size 2 0.040 0.008 0.028 0.017 0.015 -0.001 -0.017
Di↵. Size 3 0.046 0.029 -0.012 0.018 0.026 0.018 -0.116
(s) Size 4 0.071 -0.039 -0.035 -0.010 0.060 0.022 0.148

Size 5 0.148 -0.054 -0.001 -0.063 0.038 0.015 0.249
Overall 0.323 -0.052 0.004 -0.022 0.150 0.075 0.264

• *LUFact does not scale for the Size 1;

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

209

Table E.11: JGF - Gains of the first touch approach and NUMA flag.

Version Input
Crypt SOR LUFact

Gains Time D. Gains Time D. Gains Time D.

C

Size 1 1.17 0.001 1.00 0.000 1.00 0.000
Size 2 1.05 0.002 1.00 0.000 1.00 0.000
Size 3 1.02 0.002 1.02 0.001 1.01 0.001
Size 4 1.02 0.008 2.02 4.985 1.89 4.208
Size 5 1.04 0.072 2.01 10.994 1.90 7.694
Overall 1.04 0.085 2.00 15.980 1.88 11.903
Size 1 1.06 0.005 0.99 -0.002 * *
Size 2 0.99 -0.001 0.98 -0.003 1.00 0.000

JGF Size 3 1.00 -0.001 1.01 0.003 1.00 -0.001
Original Size 4 1.00 -0.001 1.72 3.959 1.21 1.539

Size 5 1.01 0.017 1.70 8.672 1.46 5.039
Overall 1.01 0.019 1.68 12.629 1.35 6.577
Size 1 0.96 -0.003 1.02 0.001 * *
Size 2 1.00 0.000 0.99 -0.001 0.99 -0.002

JGF Size 3 1.03 0.005 1.00 0.000 0.98 -0.009
Improved Size 4 1.03 0.016 1.72 3.943 1.64 3.461

Size 5 1.01 0.018 1.67 8.381 1.54 5.576
Overall 1.01 0.036 1.68 12.324 1.55 9.026

AOmpLib

Size 1 1.00 0.000 0.97 -0.002 * *
Size 2 1.04 0.005 0.95 -0.005 0.99 -0.002
Size 3 0.98 -0.005 1.02 0.002 0.99 -0.004
Size 4 0.99 -0.005 1.76 4.176 1.66 3.554
Size 5 0.99 -0.031 1.54 6.817 1.47 4.879
Overall 1.00 0.034 1.60 10.988 1.51 8.427

JOMP

Size 1 1.00 0.000 1.01 0.001 * *
Size 2 0.99 -0.001 0.94 -0.007 1.01 0.002
Size 3 1.09 0.023 0.98 -0.003 0.99 -0.005
Size 4 1.66 0.424 1.70 3.866 1.60 3.309
Size 5 1.00 -0.003 1.69 8.585 1.50 5.284
Overall 1.03 0.441 1.68 12.442 1.51 8.590

• *LUFact does not scale for the Size 1;

• For the C versions we used the first touch optimization technique;

• Gains between versions with and without flag NUMA/first touch;

• Time D. = Time Di↵erence (seconds).

210 E. JGF Benchmark : Results

Table E.12: JGF - C vs. Java in di↵erent versions.

Version Type Input Crypt Ray Series SOR Sparse MC LUFact
Size 1 1.56 - 0.37 1.24 1.04 - 2.13
Size 2 1.26 - 0.52 1.19 1.02 - 1.45

Gains Size 3 1.22 - 0.61 1.09 0.98 - 1.26
Size 4 1.21 - 0.62 1.00 0.99 - 1.25
Size 5 1.20 - 0.63 1.01 1.00 - 1.18

SEQ. Overall 1.21 - 0.62 1.01 0.99 - 1.21
Size 1 0.064 - -1.661 0.040 0.009 - 0.035

Time Size 2 0.197 - -12.517 0.072 0.009 - 0.105
Di↵. Size 3 0.429 - -101.575 0.070 -0.077 - 0.591
(s) Size 4 1.598 - -198.710 -0.043 -0.042 - 4.986

Size 5 7.044 - -247.080 0.533 -0.060 - 6.929
Overall 9.332 - -561.543 0.672 -0.161 - 12.646
Size 1 12.17 - 0.89 3.50 4.93 - 10.67*
Size 2 3.13 - 0.62 2.44 3.00 - 5.71

Gains Size 3 1.95 - 0.66 1.97 1.39 - 2.65
Size 4 1.37 - 0.67 1.11 1.22 - 1.14
Size 5 1.19 - 0.67 1.14 1.05 - 1.21

SM Overall 1.32 - 0.67 1.14 1.17 - 1.21
Size 1 0.067 - -0.014 0.040 0.055 - 0.058*

Time Size 2 0.085 - -0.439 0.049 0.064 - 0.132
Di↵. Size 3 0.095 - -3.919 0.058 0.110 - 0.254
(s) Size 4 0.144 - -7.739 0.552 0.146 - 0.680

Size 5 0.321 - -9.516 1.572 0.084 - 1.770
Overall 0.712 - -21.627 2.271 0.459 - 2.894
Size 1 7.69 - 0.75 4.53 1.41 - 4.89
Size 2 2.89 - 0.64 3.56 1.64 - 3.50

Gains Size 3 2.37 - 0.68 2.84 1.61* - 2.03
Size 4 1.83 - 0.68 1.04 1.40* - 1.07
Size 5 1.58 - 0.68 1.01 1.34 - 1.04

DM Overall 1.72 - 0.68 1.04 1.39 - 1.07
Size 1 0.087 - -0.029 0.060 0.054 - 0.035

Time Size 2 0.108 - -0.411 0.087 0.174 - 0.080
Di↵. Size 3 0.173 - -3.725 0.112 1.417* - 0.193
(s) Size 4 0.388 - -7.420 0.223 2.253* - 0.392

Size 5 1.209 - -9.209 0.138 3.272 - 0.489
Overall 1.965 - -20.794 0.620 7.170 - 1.189

• *For that case study and that size the execution time used for Java was the sequential one since it was the
fastest;

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

211

Table E.13: JGF - Speedups of the SM implementations.

Version Input Crypt Ray Series SOR Sparse MC LUFact
Size 1 19.00 - 21.20 10.44 16.71 - 5.17
Size 2 19.13 - 22.52 11.03 15.88 - 8.32

C Size 3 19.14 - 22.62 13.47 13.79 - 14.86
Size 4 19.43 - 22.63 4.66 12.26 - 4.12
Size 5 20.58 - 22.64 4.82 10.84 - 4.37

Overall 20.28 - 22.63 4.82 11.61 - 4.41
Size 1 2.07 3.28 7.22 1.44 3.49 10.98 0.84
Size 2 6.09 7.83 16.22 2.32 5.38 16.30 1.63

JGF Size 3 10.36 8.42 18.88 3.26 9.67 13.92 6.29
Size 4 15.88 8.61 19.30 4.17 10.01 14.78 3.22
Size 5 19.20 8.49 19.34 4.27 10.27 15.97 3.91

Overall 16.88 8.48 19.15 4.18 9.82 15.05 3.67
Size 1 2.44 4.24 8.79 3.70 - 11.57 0.97
Size 2 7.70 13.54 18.91 5.39 - 18.28 2.11

JGF Size 3 12.01 17.88 20.95 7.44 - 15.31 7.06
Improved Size 4 17.18 18.61 21.12 4.18 - 16.27 4.30

Size 5 20.77 18.85 21.02 4.24 - 17.57 4.12
Overall 18.51 18.34 20.98 4.25 - 16.57 4.22
Size 1 2.25 4.06 7.67 3.57 3.26 11.63 0.88
Size 2 7.23 13.13 18.73 5.02 4.82 17.63 2.00

Aspects Size 3 11.05 17.91 20.80 6.97 9.67 15.18 6.13
Size 4 16.19 18.46 20.95 4.15 10.06 16.11 4.36
Size 5 19.76 18.80 21.03 4.23 10.18 17.33 4.09

Overall 17.52 18.25 20.88 4.23 9.74 16.34 4.20
Size 1 1.84 3.99 6.45 2.80 2.84 10.46 0.88
Size 2 5.56 13.00 18.05 4.22 4.23 17.65 2.22

JOMP Size 3 9.08 17.80 20.83 6.10 9.07 14.97 8.14
Size 4 14.40 18.55 20.99 4.16 9.38 15.89 4.24
Size 5 18.46 18.87 21.04 4.25 9.96 17.19 3.99

Overall 15.86 18.29 20.88 4.23 9.29 16.13 4.13

• The speedups of C versions are calculated using the lowest execution time of the C sequential code base;

• The speedups of the JGF, JGF improved, Aspects, and JOMP are calculated using the lowest execution time
of the Java sequential code base with or without the design rules.

212 E. JGF Benchmark : Results

Table E.14: JGF - Speedups of the DM implementations.

Version Input Crypt Ray Series SOR Sparse MC LUFact
Size 1 8.77 - 22.66 9.82 1.79 - 3.44
Size 2 13.42 - 22.87 11.03 1.87 - 7.28

C Size 3 15.19 - 22.81 13.25 1.64 - 12.24
Size 4 16.43 - 22.80 4.44 1.39 - 3.67
Size 5 16.67 - 22.81 4.58 1.85 - 3.44

Overall 16.45 - 22.81 4.58 1.67 - 3.62
Size 1 1.78 4.97 11.11 1.67 1.26 2.31 1.08
Size 2 5.83 9.57 16.58 1.94 1.12 3.30 2.43

JGF Size 3 7.83 12.51 20.32 2.98 0.94 3.65 7.35
Size 4 10.83 12.61 20.62 4.20 0.93 3.97 4.10
Size 5 12.65 12.74 20.86 4.49 1.31 3.52 3.75

Overall 11.54 12.54 20.58 4.33 1.13 3.58 3.92
Size 1 - 6.56 11.11 2.69 1.30 - 1.45
Size 2 - 13.20 18.66 3.69 1.16 - 3.02

JGF Size 3 - 17.85 20.69 5.08 0.99 - 7.58
Improved Size 4 - 18.19 20.91 4.24 0.98 - 4.08

Size 5 - 18.30 20.93 4.56 1.37 - 3.74
Overall - 17.99 20.82 4.45 1.19 - 3.92
Size 1 1.78 6.30 10.63 2.65 1.30 2.25 1.16
Size 2 5.83 13.08 18.76 3.69 1.16 3.31 2.56

Aspects Size 3 7.81 17.63 20.72 5.05 1.00 3.64 7.29
Size 4 10.68 17.93 20.95 4.26 0.97 3.93 4.08
Size 5 12.63 18.04 21.02 4.52 1.38 3.53 3.70

Overall 11.50 17.74 20.88 4.44 1.18 3.57 3.89

• The speedups of C versions are calculated using the lowest execution time of the C sequential code base;

• The speedups of the JGF, JGF improved, Aspects, and JOMP are calculated using the lowest execution time
of the Java sequential code base with or without the design rules.

Table E.15: JGF - Ray : Execution times of the DM and Hybrid with 8 machines.

Input Java Aspects
Size DM Hybrid DM Hybrid
1500 1.116 0.906 1.158 0.914
2000 1.792 1.367 1.838 1.396
2500 2.586 1.970 2.647 2.009
Total 5.494 4.243 5.643 4.319

Table E.16: JGF - Ray : Speedups of the DM and Hybrid with 8 machines.

Input Java Aspects
Size DM Hybrid DM Hybrid
1500 79.28 97.66 76.41 96.81
2000 88.16 115.57 85.96 113.17
2500 94.96 124.65 92.77 122.23

Overall 89.56 115.96 87.19 113.92

• The speedups of Java, Aspects, and C adjust are calculated using the lowest execution time of the sequential
code base with or without the design rules;

• Speedups of C are base on the execution time of its sequential version.

213

0	
25	
50	
75	

100	
125	
150	
175	
200	

100k	 1M	 2M	 2.5M	 Overall	 100k	 1M	 2M	 2.5M	 Overall	

DM	(8	Machines	x	32	processes)	 Hybrid	(8	Machines	x	32	Threads)	

Sp
ee
du

p	

Input	sizes	

Series	:	Speedups	of	Hybrids	and	DM	versions	

C	 C	Adjusted	 Java	 Aspects	

1.02	 1.00	 1.00	 1.00	 1.00	

1.20	
1.03	 1.02	 1.01	 1.02	

0.93	

0.75	 0.73	 0.72	 0.74	

1.08	

0.73	 0.72	 0.71	 0.72	

0.0	

0.5	

1.0	

1.5	

2.0	

100k	 1M	 2M	 2.5M	 Overall	 100k	 1M	 2M	 2.5M	 Overall	

DM	(8	Machines	x	32	processes)	 Hybrid	(8	Machines	x	32	Threads)	

G
ai
ns
	

Input	sizes	

Series	:	Gains	between	DM/Hybrid	versions	

Java	vs	Aspects	 C	vs	Java	

0.93	

1.13	 1.09	 1.15	 1.12	

0.79	

1.11	 1.08	 1.14	 1.10	1.08	 1.10	 1.07	 1.13	 1.10	

0.00	

0.50	

1.00	

1.50	

2.00	

100k	 1M	 2M	 2.5M	 Overall	

Ga
in
s	

Input	sizes	

Series	:	Hybrids	vs	DM	

Java	 Aspects	 C	

Figure E.1: JGF - Series: The tests in multi-machines, including the C implementations.

214 E. JGF Benchmark : Results

Table E.17: JGF - Series : Execution times of the DM and Hybrid with 8 machines.

Number of C C adjust Java Aspects
Particles DM Hybrid DM Hybrid DM Hybrid DM Hybrid
100k 0.171 0.159 0.171 0.159 0.159 0.171 0.162 0.205
1M 1.676 1.528 1.676 1.528 1.258 1.113 1.261 1.141
2M 3.252 3.047 3.252 3.047 2.384 2.184 2.386 2.219
2.5M 4.293 3.809 4.293 3.809 3.107 2.713 3.120 2.742
Overall 9.392 8.543 9.392 8.543 6.908 6.181 6.929 6.307

Table E.18: JGF - Series : Speedups of the DM and Hybrid with 8 machines.

Number of C C adjust Java Aspects
Particles DM Hybrid DM Hybrid DM Hybrid DM Hybrid
100k 153.94 165.56 80.74 86.84 86.84 80.74 85.23 67.35
1M 157.02 172.23 96.42 105.76 128.45 145.19 128.15 141.63
2M 161.84 172.73 100.74 107.51 137.41 150.00 137.30 147.63
2.5M 153.29 172.77 95.73 107.89 132.27 151.48 131.72 149.88
Overall 156.93 172.52 97.31 106.98 132.31 147.87 131.90 144.91

• The speedups of Java, Aspects, and C adjust are calculated using the lowest execution time of the sequential
code base with or without the design rules;

• Speedups of C are base on the execution time of its sequential version.

Table E.19: JGF - Ray : Gains of the Hybrid vs. DM with 8 machines.

Hybrid vs. DM
of Gains Time Di↵erence (s)

Java

1000 1.23 0.210
1500 1.31 0.425
2000 1.31 0.616

Overall 1.29 1.251

Aspects

1000 1.27 0.244
1500 1.32 0.442
2000 1.32 0.638

Overall 1.31 1.324

• Time Di↵erence Hybrid vs. DM = execution time of DM - execution time of Hybrid;

• Gains Hybrid vs. DM = execution time of DM
execution time of Hybrid

.

215

Table E.20: JGF - Series : Gains of the Hybrid vs. DM with 8 machines.

Hybrid vs. DM
of Gains Time Di↵erence (s)

C

100k 1.08 0.012
1M 1.10 0.148
2M 1.07 0.205
2.5M 1.13 0.484

Overall 1.10 0.849

Java

100k 0.93 -0.012
1M 1.13 0.145
2M 1.09 0.200
2.5M 1.15 0.394

Overall 1.12 0.727

Aspects

100k 0.79 -0.043
1M 1.11 0.120
2M 1.08 0.167
2.5M 1.14 0.378

Overall 1.10 0.622

• Time Di↵erence Hybrid vs. DM = execution time of DM - execution time of Hybrid;

• Gains Hybrid vs. DM = execution time of DM
execution time of Hybrid

.

Table E.21: JGF - Ray : Comparison gains between versions for the DM and Hybrid with 8 machines.

Input DM Hybrid
Size Gains Time Di↵erence (s) Gains Time Di↵erence (s)
1000 1.04 0.042 1.01 0.008

Java vs. 1500 1.03 0.046 1.02 0.029
Aspects 2000 1.02 0.061 1.02 0.039

Overall 1.03 0.149 1.02 0.076

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

Table E.22: JGF - Series : Comparison gains between versions for the DM and Hybrid with 8 machines.

Input DM Hybrid
Size Gains Time Di↵erence (s) Gains Time Di↵erence (s)
100k 1.02 0.003 1.20 0.034

Java 1M 1.00 0.003 1.03 0.028
vs. 2M 1.00 0.002 1.02 0.035

Aspects 2.5M 1.00 0.013 1.01 0.029
Overall 1.00 0.019 1.02 0.126
100k 0.93 -0.012 1.08 0.012

C 1M 0.75 -0.418 0.73 -0.415
vs. 2M 0.73 -0.868 0.72 -0.863
Java 2.5M 0.72 -1.186 0.71 -1.096

Overall 0.74 -2.484 0.72 -2.362

• Time Di↵erence A vs. B = execution time of B - execution time of A;

• Gains A vs. B = execution time of B
execution time of A

.

Appendix F

JGF Benchmark : Code and Profiling

results

Table F.1: JGF - RayTracer : Profiling of the sequential versions.

Version Input instructions
Cache Cache Bus Branch Branch

references misses cycles instructions misses
150 7.14E+09 1.84E+07 4.78E+06 1.67E+08 5.62E+08 1.74E+07
500 6.83E+10 5.13E+07 1.04E+07 1.40E+09 4.31E+09 9.98E+07

Original 1500 5.86E+11 3.07E+08 4.44E+07 1.24E+10 3.73E+10 6.79E+08
2000 1.07E+12 4.85E+08 7.44E+07 2.16E+10 6.69E+10 1.26E+09
2500 1.67E+12 8.01E+08 1.32E+08 3.51E+10 1.05E+11 2.00E+09
150 4.08E+09 1.40E+07 4.48E+06 1.17E+08 3.45E+08 1.30E+07
500 3.91E+10 4.56E+07 1.02E+07 1.04E+09 2.52E+09 8.73E+07

Improved 1500 3.48E+11 2.85E+08 4.39E+07 9.09E+09 2.20E+10 6.56E+08
2000 6.17E+11 5.49E+08 7.81E+07 1.64E+10 3.96E+10 1.16E+09
2500 9.63E+11 8.67E+08 1.17E+08 2.54E+10 6.21E+10 1.78E+09
150 1.75 1.31 1.07 1.43 1.63 1.34

Improved 500 1.75 1.12 1.02 1.34 1.71 1.14
vs. 1500 1.75 1.31 1.07 1.43 1.63 1.34

Original 2000 1.75 1.31 1.07 1.43 1.63 1.34
2500 1.75 1.31 1.07 1.43 1.63 1.34

• Values measured using perf profiler.

216

217

Table F.2: JGF - SOR Part 1 : Profiling of the Java sequential versions.

Version Input
Total Branch L1 Cache

Instructions Instructions Misses
1k x 1k 2.64E+09 5.23E+08 2.73E+07

1.5k x 1.5k 5.65E+09 1.15E+09 1.13E+08
Original 2k x 2k 1.02E+10 2.03E+09 2.01E+08

10k x 10k 2.45E+11 5.00E+10 5.01E+09
15k x 15k 5.51E+11 1.12E+11 1.13E+10
1k x 1k 1.03E+09 4.84E+07 2.94E+07

1.5k x 1.5k 2.16E+09 8.20E+07 1.15E+08
Improved 2k x 2k 3.73E+09 1.27E+08 2.03E+08

10k x 10k 9.02E+10 2.55E+09 5.02E+09
15k x 15k 2.03E+11 5.68E+09 1.13E+10
1k x 1k 2.57 10.79 0.93

Improved 1.5k x 1.5k 2.62 13.97 0.98
vs. 2k x 2k 2.74 16.05 0.99

Original 10k x 10k 2.72 19.64 1.00
15k x 15k 2.72 19.78 1.00

• Values measured using PAPI profiler.

Table F.3: JGF - SOR Part 2 : Profiling of the Java sequential versions.

Version Input
L3 L3 Total % L3 L2 L2 Total % L2

Cache Cache Cache Cache Cache Cache
Misses Accesses Misses Misses Accesses Misses

1k x 1k 7.03E+02 1.32E+06 0.05 1.24E+06 2.73E+07 4.56
1.5k x 1.5k 5.28E+04 5.09E+06 1.04 5.41E+06 1.13E+08 4.77

Original 2k x 2k 6.02E+06 2.82E+07 21.39 2.80E+07 2.01E+08 13.89
10k x 10k 9.47E+07 1.66E+09 5.71 1.44E+09 5.01E+09 28.69
15k x 15k 1.99E+08 4.18E+09 4.75 3.62E+09 1.13E+10 32.16
1k x 1k 9.39E+02 3.16E+06 0.03 3.41E+06 2.94E+07 11.59

1.5k x 1.5k 9.42E+04 1.92E+07 0.49 2.05E+07 1.15E+08 17.79
Improved 2k x 2k 8.69E+06 5.01E+07 17.35 5.17E+07 2.03E+08 25.42

10k x 10k 2.45E+08 2.34E+09 10.46 2.28E+09 5.02E+09 45.47
15k x 15k 7.34E+08 6.09E+09 12.06 6.00E+09 1.13E+10 53.27
1k x 1k 0.75 0.42 1.79 0.37 0.93 0.39

Improved 1.5k x 1.5k 0.56 0.26 2.11 0.26 0.98 0.27
vs. 2k x 2k 0.69 0.56 1.23 0.54 0.99 0.55

Original 10k x 10k 0.39 0.71 0.55 0.63 1.00 0.63
15k x 15k 0.27 0.69 0.39 0.60 1.00 0.60

• Values measured using PAPI profiler;

• % Lx Cache Misses = Lx Cache Misses
Lx Cache Accesses

⇤ 100.

218 F. JGF Benchmark : Code and Profiling results

Table F.4: JGF - SOR Part 1 : Profiling of the original and improved Java SM versions.

Version Input
Total Branch L1 Cache Execution

Instructions Instructions Misses time(s)
1k x 1k 7.59E+09 1.11E+09 3.98E+07 0.179

1.5k x 1.5k 1.07E+10 1.84E+09 1.19E+08 0.196
Original 2k x 2k 1.61E+10 2.96E+09 2.09E+08 0.285

10k x 10k 3.03E+11 6.46E+10 5.02E+09 5.493
15k x 15k 6.91E+11 1.55E+11 1.13E+10 12.543
1k x 1k 1.75E+09 2.44E+08 3.78E+07 0.057

1.5k x 1.5k 4.66E+09 4.86E+08 1.17E+08 0.095
Improved 2k x 2k 7.08E+09 9.17E+08 2.07E+08 0.131

10k x 10k 1.59E+11 1.73E+10 5.02E+09 5.457
15k x 15k 3.90E+11 3.82E+10 1.13E+10 12.511
1k x 1k 4.33 4.56 1.05 3.14

Improved 1.5k x 1.5k 2.30 3.79 1.01 2.06
vs. 2k x 2k 2.27 3.23 1.01 2.18

Original 10k x 10k 1.91 3.73 1.00 1.01
15k x 15k 1.77 4.05 1.00 1.00

• Values measured using PAPI profiler;

• All versions were tested with 12 threads and with the flag -XX:+UseNUMA.

Table F.5: JGF - SOR Part 2 : Profiling of the original and improved SM versions.

Version Input
L3 L3 Total % L3 L2 L2 Total % L2

Cache Cache Cache Cache Cache Cache
Misses Accesses Misses Misses Accesses Misses

1k x 1k 2.98E+06 6.77E+06 44.08 7.65E+06 3.74E+07 20.44
1.5k x 1.5k 2.11E+06 1.44E+07 14.61 1.52E+07 1.20E+08 12.63

Original 2k x 2k 3.70E+06 2.18E+07 16.96 1.98E+07 2.09E+08 9.49
10k x 10k 3.06E+08 2.19E+09 13.94 2.20E+09 5.02E+09 43.75
15k x 15k 6.82E+08 5.27E+09 12.96 5.31E+09 1.13E+10 47.09
1k x 1k 8.19E+05 6.67E+06 12.27 7.07E+06 3.94E+07 17.93

1.5k x 1.5k 1.13E+06 2.04E+07 5.54 2.05E+07 1.18E+08 17.43
Improved 2k x 2k 1.56E+06 3.72E+07 4.19 3.91E+07 2.07E+08 18.91

10k x 10k 3.69E+08 2.36E+09 15.65 2.37E+09 5.02E+09 47.11
15k x 15k 8.55E+08 5.61E+09 15.26 5.60E+09 1.13E+10 49.64
1k x 1k 3.65 1.01 3.59 1.08 0.95 1.14

Improved 1.5k x 1.5k 1.86 0.70 2.64 0.74 1.02 0.72
vs. 2k x 2k 2.38 0.59 4.05 0.51 1.01 0.50

Original 10k x 10k 0.83 0.93 0.89 0.93 1.00 0.93
15k x 15k 0.80 0.94 0.85 0.95 1.00 0.95

• Values measured using PAPI profiler;

• All versions were tested with 12 threads and with the flag -XX:+UseNUMA;

• % Lx Cache Misses = Lx Cache Misses
Lx Cache Accesses

⇤ 100.

219

Table F.6: JGF - LUFact : Profiling of the design rules gains.

Version Input
Total Load Store L1 Cache Execution

Instructions instructions instruction Misses Time (s)
500 x 500 4.04E+08 1.65E+08 1.29E+08 5.55E+07 0.066
1k x 1k 1.93E+09 8.78E+08 7.26E+08 3.50E+08 0.338

Sequential 2k x 2k 1.23E+10 7.46E+09 5.03E+09 2.49E+09 2.880
4k x 4k 9.45E+10 6.90E+10 4.16E+10 1.96E+10 24.582

16k x 16k 1.75E+11 1.37E+11 7.70E+10 3.62E+10 44.424
500 x 500 3.98E+08 1.62E+08 1.26E+08 5.41E+07 0.064
1k x 1k 1.92E+09 8.78E+08 7.27E+08 3.51E+08 0.338

Design Rules 2k x 2k 1.23E+10 7.49E+09 5.04E+09 2.51E+09 2.892
4k x 4k 9.45E+10 6.14E+10 3.92E+10 1.96E+10 23.390

16k x 16k 1.75E+11 1.11E+11 7.27E+10 3.62E+10 42.608
500 x 500 0.99 0.98 0.98 0.98 0.97

Sequential 1k x 1k 1.00 1.00 1.01 1.00 1.00
vs. 2k x 2k 1.00 1.00 1.00 1.00 1.00

Design Rules 4k x 4k 1.00 0.94 1.00 0.94 0.95
16k x 16k 1.00 0.94 1.00 0.94 0.96

• Values measured using PAPI profiler.

Table F.7: JGF - SOR Part 1 : Profiling of the intrusive and AOmpLib SM versions.

Version Input
Total Total Branch L1 Cache Execution

Instructions Cycles Instructions Misses time (s)
1k x 1k 1.75E+09 1.84E+07 1.98E+09 3.78E+07 0.057

1.5k x 1.5k 4.66E+09 2.49E+07 3.70E+09 1.17E+08 0.095
Intrusive 2k x 2k 7.08E+09 2.70E+07 5.38E+09 2.07E+08 0.131

10k x 10k 1.59E+11 2.19E+08 1.69E+11 5.02E+09 5.457
15k x 15k 3.90E+11 3.43E+08 3.88E+11 1.13E+10 12.511
1k x 1k 1.94E+09 3.14E+07 1.84E+09 3.67E+07 0.064

1.5k x 1.5k 3.99E+09 3.12E+07 3.31E+09 1.18E+08 0.116
AOmpLib 2k x 2k 6.47E+09 3.96E+07 5.16E+09 2.08E+08 0.178

10k x 10k 1.55E+11 1.19E+08 1.70E+11 5.02E+09 5.495
15k x 15k 3.80E+11 2.03E+08 3.89E+11 1.13E+10 12.573
1k x 1k 1.11 1.71 0.93 0.97 1.12

Intrusive 1.5k x 1.5k 0.86 1.26 0.90 1.01 1.22
vs. 2k x 2k 0.91 1.46 0.96 1.00 1.36

AOmpLib 10k x 10k 0.98 0.54 1.01 1.00 1.01
15k x 15k 0.97 0.59 1.00 1.00 1.00

• Values measured using PAPI profiler;

• All versions were tested with 12 threads and with the flag -XX:+UseNUMA.

220 F. JGF Benchmark : Code and Profiling results

Table F.8: JGF - SOR Part 2 : Profiling of the intrusive and AOmpLib SM versions.

Version Input
L3 L3 Total % L3 L2 L2 Total % L2

Cache Cache Cache Cache Cache Cache
Misses Accesses Misses Misses Accesses Misses

1k x 1k 8.19E+05 6.67E+06 12.27 7.07E+06 3.94E+07 17.93
1.5k x 1.5k 1.13E+06 2.04E+07 5.54 2.05E+07 1.18E+08 17.43

Intrusive 2k x 2k 1.56E+06 3.72E+07 4.19 3.91E+07 2.07E+08 18.91
10k x 10k 3.69E+08 2.36E+09 15.65 2.37E+09 5.02E+09 47.11
15k x 15k 8.55E+08 5.61E+09 15.26 5.60E+09 1.13E+10 49.64
1k x 1k 9.67E+05 8.33E+06 11.61 7.98E+06 3.72E+07 21.42

1.5k x 1.5k 1.29E+06 2.42E+07 5.35 2.36E+07 1.19E+08 19.91
AOmpLib 2k x 2k 1.72E+06 3.73E+07 4.61 4.01E+07 2.08E+08 19.30

10k x 10k 3.71E+08 2.37E+09 15.67 2.37E+09 5.02E+09 47.13
15k x 15k 8.52E+08 5.59E+09 15.25 5.60E+09 1.13E+10 49.62
1k x 1k 1.18 1.25 0.95 1.13 0.94 1.19

Intrusive 1.5k x 1.5k 1.14 1.18 0.97 1.15 1.01 1.14
vs. 2k x 2k 1.11 1.00 1.10 1.03 1.01 1.02

AOmpLib 10k x 10k 1.00 1.00 1.00 1.00 1.00 1.00
15k x 15k 1.00 1.00 1.00 1.00 1.00 1.00

• Values measured using PAPI profiler;

• All versions were tested with 12 threads and with the flag -XX:+UseNUMA;

• % Lx Cache Misses = Lx Cache Misses
Lx Cache Accesses

⇤ 100.

Table F.9: JGF - Crypt Part 1 : Profiling AOmpLib vs. JOMP.

Version Input
Total Branch L1 Cache Execution

Instructions Instructions Misses Time (s)
3 M 1.67E+09 1.94E+08 4.04E+06 0.10
20 M 5.75E+09 3.08E+08 5.08E+06 0.14

AOmpLib 50 M 1.29E+10 5.09E+08 6.80E+06 0.21
200 M 4.67E+10 1.23E+09 1.60E+07 0.57
900 M 2.06E+11 4.89E+09 6.03E+07 2.10
3 M 1.73E+09 2.06E+08 5.37E+06 0.15
20 M 5.76E+09 3.46E+08 5.95E+06 0.18

JOMP 50 M 1.28E+10 5.54E+08 7.76E+06 0.28
200 M 4.80E+10 1.59E+09 1.68E+07 0.64
900 M 2.10E+11 6.41E+09 6.09E+07 2.25
3 M 1.04 1.07 1.33 1.41

AOmpLib 20 M 1.00 1.12 1.17 1.30
vs. 50 M 0.99 1.09 1.14 1.33

JOMP 200 M 1.03 1.30 1.05 1.12
900 M 1.02 1.31 1.01 1.07

• Values measured using PAPI profiler;

• All versions were tested with 32 threads and with the flag -XX:+UseNUMA for the JOMP runs.

221

1

2 ; Assembly from the "dy[i + dy_off] += da * dx[i + dx_off]
3 ; from the sequential version without the design rules
4

5 mov %r10d ,%r8d
6 add 0x48(%rsp),%r8d ;*iinc "The Difference !!!"
7 vmovsd 0x10(%rbx ,%r8 ,8) ,%xmm0 ;*daload
8 vmulsd %xmm1 ,%xmm0 ,%xmm0
9 vaddsd 0x10(%rdx ,%r8 ,8) ,%xmm0 ,%xmm0

10 vmovsd %xmm0 ,0x10(%rdx ,%r8 ,8) ;*dastore
11 movslq %r8d ,%r11
12 vmovsd 0x18(%rbx ,%r11 ,8) ,%xmm0 ;*daload
13 vmulsd %xmm1 ,%xmm0 ,%xmm0
14 vaddsd 0x18(%rdx ,%r11 ,8) ,%xmm0 ,%xmm0
15 vmovsd %xmm0 ,0x18(%rdx ,%r11 ,8) ;*dastore
16
17 vaddsd 0x40(%rdx ,%r11 ,8) ,%xmm0 ,%xmm0
18 vmovsd %xmm0 ,0x40(%rdx ,%r11 ,8) ;*dastore
19 vmovsd 0x48(%rbx ,%r11 ,8) ,%xmm0 ;*daload
20 vmulsd %xmm1 ,%xmm0 ,%xmm0
21 vaddsd 0x48(%rdx ,%r11 ,8) ,%xmm0 ,%xmm0
22 vmovsd %xmm0 ,0x48(%rdx ,%r11 ,8) ;*dastore
23 add $0x8 ,%r10d ;*iinc
24 cmp %edi ,%r10d
25 jl ... ;*if_icmplt
26 ...
27

28 ;--
29 ; Assembly from the "dy[i + dy_off] += da * dx[i + dx_off]
30 ; from the sequential version with the design rules
31

32 mov %r13d ,%eax
33 add %r8d ,%eax ;*iadd "The Difference !!!"
34 vmovsd 0x10(%r9 ,%rax ,8) ,%xmm0 ;*daload
35 vmulsd %xmm1 ,%xmm0 ,%xmm0
36 vaddsd 0x10(%rsi ,%rax ,8) ,%xmm0 ,%xmm0
37 vmovsd %xmm0 ,0x10(%rsi ,%rax ,8) ;*dastore
38 movslq %eax ,%rax
39 vmovsd 0x18(%r9 ,%rax ,8) ,%xmm0 ;*daload
40 vmulsd %xmm1 ,%xmm0 ,%xmm0
41 vaddsd 0x18(%rsi ,%rax ,8) ,%xmm0 ,%xmm0
42 vmovsd %xmm0 ,0x18(%rsi ,%rax ,8) ;*dastore
43 ...
44 vaddsd 0x40(%rsi ,%rax ,8) ,%xmm0 ,%xmm0
45 vmovsd %xmm0 ,0x40(%rsi ,%rax ,8) ;*dastore
46 vmovsd 0x48(%r9 ,%rax ,8) ,%xmm0 ;*daload
47 vmulsd %xmm1 ,%xmm0 ,%xmm0
48 vaddsd 0x48(%rsi ,%rax ,8) ,%xmm0 ,%xmm0
49 vmovsd %xmm0 ,0x48(%rsi ,%rax ,8) ;*dastore
50 add $0x8 ,%r13d ;*iinc
51 cmp %r10d ,%r13d
52 jl ... ;*if_icmplt
53 ...

Figure F.1: JGF - LUFact : Assembly snippet of the daxpy method of the sequential code with
and without design rules.

222 F. JGF Benchmark : Code and Profiling results

1

2 ; Part of the assembly of "for (int i = begin; i < end; i++)" loop
3 ; from the sequential version without the for method design rule
4

5 vmulsd %xmm2 ,%xmm1 ,%xmm1
6 vaddsd %xmm1 ,%xmm0 ,%xmm0
7 movslq %eax ,%rax
8 vmovsd %xmm0 ,0x10(%rcx ,%rax ,8) ;*dastore
9 ; - design_rules.SparseMatmult :: kernel@28 (line 59)

10

11 inc %esi ; "The Difference !!!"
12 mov $0x2b5b71ce2780 ,%rax ; ...
13 mov 0xe0(%rax),%r11d
14 add $0x8 ,%r11d
15 mov %r11d ,0xe0(%rax)
16 mov $0x2b5b71ce0240 ,%rax ; ...
17 and $0xfff8 ,%r11d
18 cmp $0x0 ,%r11d
19 je 0x00002b5ab03a7020 ;*if_icmplt
20 ; - design_rules.SparseMatmult :: kernel@35 (line 58)
21 test %eax ,-0x69e6e66 (%rip) ; ...
22 cmp %edx ,%esi
23 ...
24 ;--
25

26 ; Part of the assembly of "for (int i = begin; i < end; i+=step)" loop
27 ; from the sequential version with the for method design rule
28

29 vmulsd %xmm2 ,%xmm1 ,%xmm1
30 vaddsd %xmm1 ,%xmm0 ,%xmm0
31 movslq %r11d ,%r11
32 vmovsd %xmm0 ,0x10(%r8 ,%r11 ,8) ;*dastore
33 ; - design_rules.SparseMatmult :: kernel@29 (line 59)
34

35 mov %rcx ,%r11 ; "The Difference !!!"
36 add %esi ,%r11d ; "The Difference !!!"
37 mov %r11 ,%rsi ;*iload ; "The Difference !!!"
38

39 mov $0x2ae9edce0cd0 ,%r11 ; ...
40 mov 0xe0(%r11),%r13d
41 add $0x8 ,%r13d
42 mov %r13d ,0xe0(%r11)
43 mov $0x2ae9edce0100 ,%r11 ; ...
44 and $0xfff8 ,%r13d
45 cmp $0x0 ,%r13d
46 je 0x00002ae95c3a6770 ;*if_icmplt
47 ; - design_rules.SparseMatmult :: kernel@39 (line 58)
48 test %eax ,-0x5d3e5b6 (%rip) ; ...
49 cmp %edx ,%esi
50 ...

Figure F.2: JGF - Sparse : Assembly snippet of the sparse kernel loop with and without the for
method design rule.

223

Table F.10: JGF - Crypt Part 2 : Profiling AOmpLib vs. JOMP.

Version Input
L3 L3 Total % L3 L2 L2 Total % L2

Cache Cache Cache Cache Cache Cache
Misses Accesses Misses Misses Accesses Misses

3 M 1.18E+06 1.56E+06 75.85 3.72E+06 4.01E+06 92.643
20 M 1.27E+06 2.06E+06 61.86 3.71E+06 5.14E+06 72.167

AOmpLib 50 M 1.40E+06 3.00E+06 46.52 3.89E+06 6.89E+06 56.379
200 M 1.90E+06 7.60E+06 25.02 3.95E+06 1.59E+07 24.897
900 M 4.82E+06 2.94E+07 16.37 7.16E+06 6.00E+07 11.918
3 M 1.44E+06 2.17E+06 66.59 4.82E+06 5.32E+06 90.692
20 M 1.74E+06 2.55E+06 68.06 4.59E+06 5.97E+06 76.853

JOMP 50 M 1.70E+06 3.51E+06 48.50 4.53E+06 7.72E+06 58.755
200 M 2.12E+06 8.03E+06 26.33 5.06E+06 1.66E+07 30.437
900 M 5.16E+06 2.98E+07 17.30 7.85E+06 6.06E+07 12.966
3 M 1.22 1.39 0.88 1.30 1.32 0.98

AOmpLib 20 M 1.37 1.24 1.10 1.24 1.16 1.06
vs. 50 M 1.22 1.17 1.04 1.17 1.12 1.04

JOMP 200 M 1.11 1.06 1.05 1.28 1.05 1.22
900 M 1.07 1.01 1.06 1.10 1.01 1.09

• Values measured using PAPI profiler;

• All versions were tested with 32 threads and with the flag -XX:+UseNUMA for the JOMP runs;

• % Lx Cache Misses = Lx Cache Misses
Lx Cache Accesses

⇤ 100.

Table F.11: JGF - Sparse Part 1 : Profiling AOmpLib vs. JOMP.

Version Input
Total Branch L1 Cache Execution

Instructions Instructions Misses Time (s)
50k 7.48E+08 1.44E+08 9.89E+07 0.08
100k 1.39E+09 2.68E+08 2.11E+08 0.11

AOmpLib 500k 6.79E+09 1.30E+09 1.09E+09 0.39
1 M 1.34E+10 2.57E+09 2.23E+09 0.82
1.5 M 1.99E+10 3.82E+09 3.35E+09 1.76
50k 7.83E+08 1.47E+08 9.88E+07 0.10
100k 1.43E+09 2.71E+08 2.11E+08 0.12

JOMP 500k 6.94E+09 1.32E+09 1.10E+09 0.45
1 M 1.35E+10 2.58E+09 2.23E+09 0.88
1.5 M 2.00E+10 3.84E+09 3.36E+09 1.77
50k 1.05 1.02 1.00 1.13

AOmpLib 100k 1.03 1.01 1.00 1.14
vs. 500k 1.02 1.01 1.01 1.15

JOMP 1 M 1.01 1.01 1.00 1.07
1.5 M 1.01 1.00 1.00 1.00

• Values measured using PAPI profiler;

• All versions were tested with fix number of threads 50k and 100k with 8 Threads and the remaining with 32.

224 F. JGF Benchmark : Code and Profiling results

Table F.12: JGF - Sparse Part 2 : Profiling AOmpLib vs. JOMP.

Version Input
L3 L3 Total % L3 L2 L2 Total % L2

Cache Cache Cache Cache Cache Cache
Misses Accesses Misses Misses Accesses Misses

50k 6.40E+05 4.50E+07 1.42 4.52E+07 9.92E+07 45.56
100k 7.04E+05 1.30E+08 0.54 1.28E+08 2.11E+08 60.73

AOmpLib 500k 6.62E+07 8.56E+08 7.74 8.60E+08 1.09E+09 78.81
1M 2.52E+08 1.99E+09 12.68 1.99E+09 2.23E+09 89.19
1.5M 6.36E+08 3.11E+09 20.49 3.11E+09 3.35E+09 92.78
50k 6.16E+05 4.54E+07 1.36 4.52E+07 9.88E+07 45.76
100k 6.84E+05 1.28E+08 0.53 1.28E+08 2.12E+08 60.49

JOMP 500k 7.19E+07 8.77E+08 8.20 8.83E+08 1.10E+09 80.51
1M 2.53E+08 2.00E+09 12.64 2.00E+09 2.23E+09 89.73
1.5M 6.38E+08 3.12E+09 20.48 3.12E+09 3.36E+09 92.91
50k 0.96 1.01 0.95 1.00 1.00 1.00

AOmpLib 100k 0.97 0.99 0.98 1.00 1.01 1.00
vs. 500k 1.09 1.02 1.06 1.03 1.01 1.02

JOMP 1M 1.00 1.00 1.00 1.01 1.00 1.01
1.5M 1.00 1.00 1.00 1.00 1.00 1.00

• Values measured using PAPI profiler;

• All versions were tested with fix number of threads 50k and 100k with 8 Threads and the remaining with 32;

• % Lx Cache Misses = Lx Cache Misses
Lx Cache Accesses

⇤ 100.

Table F.13: JGF - Crypt Part 1 : Profiling Intrusive vs. AOmpLib.

Version Input
Total Branch L1 Cache Execution

Instructions Instructions Misses Time (s)
3 M 1.33E+09 1.35E+08 3.28E+06 0.095
20 M 5.26E+09 2.50E+08 4.43E+06 0.125

Intrusive 50 M 1.24E+10 4.21E+08 6.24E+06 0.195
200 M 4.51E+10 1.09E+09 1.57E+07 0.538
900 M 2.01E+11 4.31E+09 5.93E+07 1.996
3 M 1.67E+09 1.94E+08 4.04E+06 0.104
20 M 5.75E+09 3.08E+08 5.08E+06 0.138

AOmpLib 50 M 1.29E+10 5.09E+08 6.80E+06 0.212
200 M 4.67E+10 1.23E+09 1.60E+07 0.571
900 M 2.06E+11 4.89E+09 6.03E+07 2.098
3 M 1.25 1.44 1.23 1.09

Intrusive 20 M 1.09 1.23 1.15 1.10
vs. 50 M 1.04 1.21 1.09 1.09

AOmpLib 200 M 1.03 1.12 1.02 1.06
900 M 1.03 1.13 1.02 1.05

• Values measured using PAPI profiler;

• All versions were tested with 32 threads.

225

Table F.14: JGF - Crypt Part 2 : Profiling Intrusive vs. AOmpLib.

Version Input
L3 L3 Total % L3 L2 L2 Total % L2

Cache Cache Cache Cache Cache Cache
Misses Accesses Misses Misses Accesses Misses

3 M 9.98E+05 2.95E+06 33.78 3.00E+06 3.24E+06 92.51
20 M 1.06E+06 2.89E+06 36.53 2.94E+06 4.25E+06 69.03

Intrusive 50 M 1.32E+06 3.25E+06 40.73 3.23E+06 6.49E+06 49.77
200 M 1.81E+06 3.73E+06 48.51 3.79E+06 1.56E+07 24.30
900 M 4.77E+06 6.53E+06 73.02 6.59E+06 5.94E+07 11.08
3 M 1.18E+06 3.58E+06 32.98 3.72E+06 4.01E+06 92.64
20 M 1.27E+06 3.72E+06 34.21 3.71E+06 5.14E+06 72.17

AOmpLib 50 M 1.40E+06 3.80E+06 36.73 3.89E+06 6.89E+06 56.38
200 M 1.90E+06 3.82E+06 49.76 3.95E+06 1.59E+07 24.90
900 M 4.82E+06 6.75E+06 71.37 7.16E+06 6.00E+07 11.92
3 M 1.18 1.21 0.98 1.24 1.24 1.00

Intrusive 20 M 1.20 1.29 0.94 1.26 1.21 1.05
vs. 50 M 1.05 1.17 0.90 1.20 1.06 1.13

AOmpLib 200 M 1.05 1.02 1.03 1.04 1.02 1.02
900 M 1.01 1.03 0.98 1.09 1.01 1.08

• Values measured using PAPI profiler;

• All versions were tested with 32 threads;

• % Lx Cache Misses = Lx Cache Misses
Lx Cache Accesses

⇤ 100.

226 F. JGF Benchmark : Code and Profiling results

Table F.15: JGF - Crypt Part 1 : Profiling C vs. Java (sequential).

Version Input
Total Load Store L1 Cache

Instructions instruction instruction Misses
3 M 4.70E+08 4.58E+07 6.00E+06 1.63E+05
20 M 3.13E+09 3.05E+08 4.00E+07 1.24E+06

C 50 M 7.83E+09 7.63E+08 1.00E+08 3.11E+06
200 M 3.13E+10 3.05E+09 4.00E+08 1.25E+07
900 M 1.41E+11 1.37E+10 1.80E+09 5.63E+07
3 M 7.92E+08 1.65E+08 3.84E+07 2.21E+05
20 M 4.70E+09 8.44E+08 1.83E+08 1.29E+06

Java 50 M 1.16E+10 2.04E+09 4.38E+08 3.18E+06
200 M 4.61E+10 8.04E+09 1.71E+09 1.26E+07
900 M 2.07E+11 3.60E+10 7.66E+09 5.66E+07
3 M 1.69 3.60 6.41 1.36

C 20 M 1.50 2.77 4.57 1.04
vs. 50 M 1.48 2.68 4.38 1.02
Java 200 M 1.47 2.64 4.28 1.01

900 M 1.47 2.63 4.26 1.01

• Values measured using PAPI profiler.

Table F.16: JGF - Crypt Part 2 : Profiling C vs. Java (sequential).

Version Input
L3 L3 Total % L3 L2 L2 Total % L2

Cache Cache Cache Cache Cache Cache
Misses Accesses Misses Misses Accesses Misses

3 M 8.00E+00 1.26E+04 0.06 1.28E+04 1.72E+05 7.45
20 M 4.43E+04 7.83E+04 56.53 7.59E+04 1.23E+06 6.11

C 50 M 1.07E+05 1.87E+05 57.20 1.88E+05 3.12E+06 6.03
200 M 4.16E+05 7.49E+05 55.55 7.48E+05 1.25E+07 5.98
900 M 1.85E+06 3.37E+06 55.00 3.37E+06 5.63E+07 5.97
3 M 1.95E+03 2.30E+04 8.47 2.40E+04 2.20E+05 10.93
20 M 7.91E+04 8.91E+04 88.79 9.04E+04 1.29E+06 7.00

Java 50 M 1.90E+05 2.00E+05 94.93 2.01E+05 3.18E+06 6.33
200 M 7.10E+05 7.80E+05 91.03 7.42E+05 1.26E+07 5.87
900 M 3.15E+06 3.38E+06 93.15 3.29E+06 5.68E+07 5.79
3 M 243.63 1.83 133.12 1.88 1.28 1.47

C 20 M 1.79 1.14 1.57 1.19 1.05 1.15
vs. 50 M 1.77 1.07 1.66 1.07 1.02 1.05
Java 200 M 1.71 1.04 1.64 0.99 1.01 0.98

900 M 1.70 1.00 1.69 0.97 1.01 0.96

• Values measured using PAPI profiler;

• % Lx Cache Misses = Lx Cache Misses
Lx Cache Accesses

⇤ 100.

227

Table F.17: JGF - LUFact Part 1 : Profiling C vs. Java (sequential).

Version Input
Total Load Store L1 Cache

Instructions instruction instruction Misses
5002 1.79E+08 4.41E+07 2.17E+07 5.57E+06
1k2 1.38E+09 3.43E+08 1.70E+08 4.31E+07

C 2k2 1.01E+10 2.51E+09 1.25E+09 3.21E+08
8k2 7.88E+10 1.96E+10 9.78E+09 4.91E+09
16k2 1.47E+11 3.63E+10 1.81E+10 9.08E+09
5002 4.04E+08 1.29E+08 5.55E+07 6.02E+06
1k2 1.93E+09 7.26E+08 3.50E+08 4.36E+07

Java 2k2 1.23E+10 5.03E+09 2.49E+09 3.33E+08
8k2 9.45E+10 4.16E+10 1.96E+10 4.92E+09
16k2 1.75E+11 7.70E+10 3.62E+10 9.09E+09
5002 2.25 2.92 2.56 1.08

C 1k2 1.39 2.11 2.06 1.01
vs. 2k2 1.22 2.01 2.00 1.04
Java 8k2 1.20 2.12 2.00 1.00

16k2 1.19 2.12 2.00 1.00

• Values measured using PAPI profiler.

Table F.18: JGF - LUFact Part 2 : Profiling C vs. Java (sequential).

Version Input
L3 L3 Total % L3 L2 L2 Total % L2

Cache Cache Cache Cache Cache Cache
Misses Accesses Misses Misses Accesses Misses

5002 1.00E+00 3.15E+06 0.00 3.16E+06 5.57E+06 56.66
1k2 1.70E+01 2.34E+07 0.00 2.35E+07 4.31E+07 54.56

C 2k2 5.53E+07 1.85E+08 29.90 1.86E+08 3.21E+08 58.13
8k2 5.95E+08 1.72E+09 34.65 1.71E+09 4.91E+09 34.82
16k2 1.38E+09 4.16E+09 33.05 4.00E+09 9.08E+09 44.11
5002 1.38E+03 2.34E+06 0.06 2.37E+06 6.11E+06 38.70
1k2 1.75E+03 1.55E+07 0.01 1.56E+07 4.37E+07 35.72

Java 2k2 4.55E+07 1.27E+08 35.86 1.29E+08 3.34E+08 38.68
8k2 6.15E+08 1.13E+09 54.17 1.28E+09 4.92E+09 25.94
16k2 1.11E+09 3.24E-01 45.52 2.95E+09 9.09E+09 32.45
5002 1378.00 0.74 1854.65 0.75 1.10 0.68

C 1k2 103.00 0.66 155.32 0.67 1.02 0.65
vs. 2k2 0.82 0.69 1.20 0.69 1.04 0.67
Java 8k2 1.03 0.66 1.56 0.75 1.00 0.75

16k2 0.81 0.59 1.38 0.74 1.00 0.74

• Values measured using PAPI profiler;

• % Lx Cache Misses = Lx Cache Misses
Lx Cache Accesses

⇤ 100.

228 F. JGF Benchmark : Code and Profiling results

Table F.19: JGF - Execution times of MPI Communication in C vs. Java.

Version Input Crypt SOR LUFact

C

Size 1 0.009 0.006 0.007
Size 2 0.031 0.010 0.017
Size 3 0.060 0.015 0.075
Size 4 0.206 0.207 0.754
Size 5 0.918 0.441 2.630
Overall 1.224 0.679 3.483

Java

Size 1 0.016 0.017 0.031
Size 2 0.053 0.029 0.076
Size 3 0.102 0.043 0.204
Size 4 0.371 0.342 0.959
Size 5 1.718 0.678 3.075
Overall 2.260 1.109 4.345

Gains

Size 1 1.87 2.70 4.43
Size 2 1.69 2.82 4.47
Size 3 1.69 2.86 2.72
Size 4 1.80 1.65 1.27
Size 5 1.87 1.54 1.17
Overall 1.85 1.63 1.25
Size 1 0.007 0.011 0.024
Size 2 0.022 0.019 0.059

Time Size 3 0.042 0.028 0.129
Di↵erence (s) Size 4 0.165 0.135 0.205

Size 5 0.800 0.237 0.445
Overall 1.036 0.430 0.862

229

1 final aspect SM_Ray extends Sm_Layer {
2

3 declare @method: * sm.RayTracer.simulation (..): @Parallel_for_dynamic;
4

5 declare parents : RayTracer implements PrivateObject;
6

7 declare @method: * sm.RayTracer.simulation (..): @Private_target
8 (
9 data=@SmData(List = { @OP(Type = Type.SUM, vars = {"checksum"})})

10);
11

12 public RayTracer RayTracer.copy() {return new RayTracer ();}
13 }

Figure F.3: RayTracer - The best SM layer using annotations.

1 final aspect SM_SOR_user_defined_barrier extends Sm_Layer {
2 ...
3 static volatile long sync [][];
4

5 // Parallel Region
6 static aspect parallelRegion extends Sm_Parallel {
7 ... pointcut parallel () : (call (... void sor_simulation (..))) ...;
8

9 @Override
10 public final void before_parallel_region () {
11 sync = new long[getActiveThreads ()][128];
12 }
13 }
14

15 // Parallel For with used defined barrier
16 static aspect workSharing extends Sm_For {
17 final int nthreads = getActiveThreads ();
18

19 pointcut for_static () : call (... void row_iterations (..))...;
20

21 // Overriding the smLib barrier with an used defined one
22 @Override
23 public final void barrier ()
24 {
25 final int id = getWorkerID ();
26

27 sync[id][0]++;
28

29 if (id > 0) {
30 while (sync[id -1][0] < sync[id][0]) ;
31 }
32 if (id < nthreads -1) {
33 while (sync[id +1][0] < sync[id][0]) ;
34 }
35 }
36 }
37 }

Figure F.4: SOR - The best SM layer using pointcuts.

230 F. JGF Benchmark : Code and Profiling results

1 public aspect DM extends Dm_Layer {
2

3 pointcut hotspot () : call (... void simulation(int , int , int , ..));
4

5 static aspect splitRow extends DM_Share <RayTracer > {
6

7 pointcut scatter_creation () : call (... int[] row_creation (..));
8

9 pointcut gather () : hotspot ();
10

11 pointcut get_local_index(int y) : call (... int getIndex (.., int))
12 && args(.., y);
13 @Override
14 public final int chunk(RayTracer source) {
15 return source.width;
16 }
17

18 ...
19 }
20

21 static aspect reduce_checksum extends Dm_Comm <RayTracer > {
22 pointcut after_comm () : hotspot ();
23

24 @Override
25 public final void data(RayTracer source) {
26 source.checksum = reduce_to_master(source.checksum, Reduction_DM_OP.SUM);
27 }
28 }
29

30 static aspect Parallel_For extends Dm_For {
31 pointcut for_static () : hotspot ();
32

33 @Override
34 public final int chunk () { return 1;}
35 }
36

37 static aspect filter extends Dm_Filter {
38 pointcut master () : (call (... void JGFvalidate ()));
39 }
40 }

Figure F.5: RayTracer - The best DM layer using pointcuts.

1 public aspect DM extends Dm_Layer {
2

3 ... static aspect splitResultsVector extends DM_Share <AppDemo >
4 {
5 pointcut scatter_creation () : call (... Vector createVector ());
6

7 pointcut gather () : call (... void runSerial ());
8

9 @Override
10 public final void data(AppDemo source) {
11 source.results = create_view(source.results);
12 }
13 }
14

15 static aspect Parallel_For extends Dm_For {
16 pointcut for_static () : call (... void simulation(int , int , int))
17 }
18

19 static aspect filter extends Dm_Filter {
20 pointcut master (): (call (... void JGFvalidate ()) ||
21 call (... void presults ())
22);
23 }
24 }

Figure F.6: MC - The best DM layer using pointcuts.

Bibliography

[AB08] R. Arora and P. Bangalore. Using aspect-oriented programming for checkpointing a parallel

application. In Proceedings of the International Conference on Parallel and Distributed Pro-

cessing Techniques and Applications, PDPTA, Las Vegas, Nevada, USA, July 14-17, volume 2,

pages 955–961, 2008.

[ABG02] D. Abramson, R. Buyya, and J. Giddy. A computational economy for grid computing and its

implementation in the nimrod-g resource broker. Future Gener. Comput. Syst., 18(8):1061–

1074, October 2002.

[ABV92] M. Aksit, L. Bergmans, and S. Vural. An object-oriented language-database integration model:

The composition-filters approach. In Proceedings of the European Conference on Object-

Oriented Programming, ECOOP, pages 372–395, London, 1992. Springer-Verlag.

[ABVM10] D. Ansaloni, W. Binder, A. Villazón, and P. Moret. Parallel dynamic analysis on multicores

with aspect-oriented programming. In Proceedings of the 9th International Conference on

Aspect-Oriented Software Development, AOSD, pages 1–12, NY, USA, 2010. ACM.

[ACN09] S. Akai, S. Chiba, and M. Nishizawa. Region pointcut for aspectj. In Proceedings of the 8th

Workshop on Aspects, Components, and Patterns for Infrastructure Software, ACP4IS ’09,

pages 43–48, New York, NY, USA, 2009. ACM.

[ADT03] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting structured

parallel programming in java. Future Gener. Comput. Syst., 19(5):611–626, 2003.

[AE06] M. Aho and A. Eaddy. Statement annotations for fine-grained advising. In RAM-SE’06–

ECOOP’06 Workshop on Reflection, AOP, and Meta-Data for Software Evolution, page 89,

2006.

[AESC08] V. Arnaoudova, L. M. Eshkevar, E. S. Sharifabadi, and C. Constantinides. Overcoming compre-

hension barriers in the aspectj programming language. Journal of Object Technology, 7(6):121–

142, July 2008.

[AHO+07] Pavel Avgustinov, Elnar Hajiyev, Neil Ongkingco, Oege de Moor, Damien Sereni, Julian Tib-

ble, and Mathieu Verbaere. Semantics of static pointcuts in aspectj. In Proceedings of the

34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’07, pages 11–23, NY, USA, 2007. ACM.

[Ale00] Milenkovic Aleksandar. Achieving high performance in bus-based shared memory multipro-

cessors. IEEE CONCURRENCY, 8(3):36–44, 2000.

231

232 Bibliography

[ALT08] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose molecular dynamics

simulations fully implemented on graphics processing units. Journal of Computational Physics,

227(10):5342 – 5359, 2008.

[Ape07] Sven Apel. The role of features and aspects in software development: similarities, di↵erences,

and synergetic potential. PhD thesis, Otto-von-Guericke University Magdeburg, Germany,

2007.

[apiva] OpenMP application programming interface : version 3.1. www.openmp.org/wp-content/

uploads/OpenMP3.1.pdf. Accessed: 2017-06-16.

[apivb] OpenMP application programming interface : version 4.0. http://www.openmp.org/

wp-content/uploads/OpenMP4.0.0.pdf. Accessed: 2017-06-16.

[Asp] AspectGrid. https://alba.di.uminho.pt/research/projects/aspectgrid/. Accessed:

2018-06-16.

[AtJF] AspectJ and AspectWerkz to Join Forces. http://www.eclipse.org/aspectj/aj5announce.

html.

[B.04] Ron B. Enterprise security aspects. In Proceedings of the 2008 ACM Symposium on Applied

Computing. AOSD, 2004.

[Ban07] Purushotham V Bangalore. Generating parallel applications for distributed memory systems

using aspects, components, and patterns. In Proceedings of the 6th workshop on Aspects,

components, and patterns for infrastructure software, page 3. ACM, 2007.

[BCF+99] Mark Baker, Bryan Carpenter, Geo↵rey Fox, Sung Hoon Ko, and Sang Lim. mpijava: An

object-oriented java interface to mpi. In International Parallel Processing Symposium, pages

748–762. Springer, 1999.

[BDGS92] J. K. Bennett, S. Dwarkadas, J. Greenwood, and E. Speight. Willow: a scalable shared

memory multiprocessor. In Proceedings of the 1992 ACM/IEEE conference on Supercomputing,

Supercomputing ’92, pages 336–345, Los Alamitos, CA, USA, 1992. IEEE Computer Society

Press.

[Ber94] L. Bergmans. Composing Concurrent Objects - Applying Composition Filters for the Develop-

ment and Reuse of Concurrent Object-Oriented Programs. PhD thesis, University of Twente,

Netherlands, 1994.

[BFN13] Dick Buttlar, Jacqueline Farrell, and Bradford Nichols. PThreads Programming : A POSIX

Standard for Better Multiprocessing. O’Reilly Media, 2013.

[BH02] Jason Baker and Wilson Hsieh. Runtime aspect weaving through metaprogramming. In Pro-

ceedings of the 1st International Conference on Aspect-oriented Software Development, AOSD

’02, pages 86–95, NY, USA, 2002. ACM.

[BH08] Marc Bartsch and Rachel Harrison. An exploratory study of the e↵ect of aspect-oriented

programming on maintainability. Software Quality Control, 16(1):23–44, March 2008.

Bibliography 233

[BHMO04] C. Bockisch, M. Haupt, Mira Mezini, and K. Ostermann. Virtual machine support for dynamic

join points. In AOSD : Proceedings of the 3rd international conference on Aspect-oriented

software development, pages 83–92, NY, USA, 2004. ACM.

[BK00] J. M. Bull and M. E. Kambites. Jomp - an openmp-like interface for java. In Proceedings of

the ACM Conference on Java Grande, JAVA, pages 44–53, NY, USA, 2000. ACM.

[BLJT07] M. Bynens, B. Lagaisse, W. Joosen, and E. Truyen. The elementary pointcut pattern. In

Proceedings of the 2Nd Workshop on Best Practices in Applying Aspect-oriented Software De-

velopment, BPAOSD, NY, USA, 2007. ACM.

[BM08] H. Brunst and B. Mohr. Performance analysis of large-scale openmp and hybrid mpi/openmp

applications with vampir ng. In M. S. Mueller, B. M. Chapman, B. R. de Supinski, A. D.

Malony, and M. Voss, editors, OpenMP Shared Memory Parallel Programming, pages 5–14.

Springer Berlin Heidelberg, 2008.

[BME07] A. Basumallik, S. Min, and R. Eigenmann. Programming distributed memory sytems using

openmp. In Parallel and Distributed Processing Symposium, IPDPS, pages 1–8. IEEE, 2007.

[Bon04] J. Boner. Aspectwerkz - dynamic aop for java. In Proceeding of the 3rd International Conference

on Aspect-Oriented Software Development (AOSD), Lancaster, UK, 2004.

[BPP+02] L S. Blackford, A. Petitet, R. Pozo, K. Remington, R C. Whaley, J. Demmel, J. Dongarra,

I. Du↵, S. Hammarling, G. Henry, et al. An updated set of basic linear algebra subprograms

(blas). ACM Transactions on Mathematical Software, 28(2):135–151, 2002.

[Bre09] Clay Breshears. The Art of Concurrency: A Thread Monkey’s Guide to Writing Parallel

Applications. O’Reilly Media, Inc., 2009.

[BS03] László Böszörményi and Peter Schojer, editors. Modular Programming Languages, Joint Modu-

lar Languages Conference, JMLC 2003, Klagenfurt, Austria, August 25-27, 2003, Proceedings,

volume 2789 of Lecture Notes in Computer Science. Springer, 2003.

[BSR04] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. IEEE Trans.

Softw. Eng., 30(6):355–371, June 2004.

[BTF04] Ohad Barzilay, Shmuel Tyszberowicz, and Yishai A. Feldman. Call and execution semantics

in aspectj. In G. T. Leavens, C. Clifton, , and R. Lämmel, editors, FOAL 2004 Proceed-

ings - Foundations of Aspect-Oriented Languages - Workshop at AOSD 2004., Department of

Computer Science, Iowa State University, March 2004.

[Bug] Aspectj Bug. https://bugs.eclipse.org/bugs/show_bug.cgi?id=318878. Accessed: 2018-

06-16.

[Byn11] M. Bynens. A System of Patterns for the Design of Reusable Aspect Libraries. PhD thesis,

Informatics Section, Department of Computer Science, Faculty of Engineering Science, October

2011. Joosen, Wouter (supervisor), Truyen, Eddy (cosupervisor).

[BZS93] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The midway distributed

shared memory system. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA,

1993.

234 Bibliography

[CA08] K. Cwalina and B. Abrams. Framework Design Guidelines: Conventions, Idioms, and Patterns

for Reusable .NET Libraries. Addison-Wesley Professional, 2nd edition, 2008.

[Car] OpenMP 4.0 API C/C++ Syntax Quick Reference Card. http://www.openmp.org/

wp-content/uploads/OpenMP-4.0-C.pdf. Accessed: 2017-06-16.

[cat] Refactoring catalog. http://refactoring.com/catalog/extractMethod.html. Accessed:

2018-06-16.

[CC07] Kung Chen and C.-H Chien. Extending the field access pointcuts of aspectj to arrays. Journal

of Software Engineering Studies, 2:93–102, 01 2007.

[CCHW04] A. Colyer, A. Clement, G. Harley, and M. Webster. Eclipse Aspectj: Aspect-oriented Program-

ming with Aspectj and the Eclipse Aspectj Development Tools. Addison-Wesley Professional,

first edition, 2004.

[CCS95] Kenneth Cameron, Lyndon J Clarke, and A Gordon Smith. Cri/epcc mpi for cray t3d. In 1st

European Cray T3D Workshop, EPFL, 1995.

[CCvEK97] Chi-Chao Chang, Grzegorz Czajkowski, Thorsten von Eicken, and Carl Kesselman. Evaluating

the performance limitations of mpmd communication. In Proceedings of the 1997 ACM/IEEE

conference on Supercomputing (CDROM), Supercomputing ’97, pages 1–10, NY, USA, 1997.

ACM.

[CCZ07] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the chapel

language. Int. J. High Perform. Comput. Appl., 21(3):291–312, August 2007.

[CD01] Yiannis Cotronis and Jack Dongarra, editors. The SPMD Model: Past, Present and Future,

pages 1–1. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[CEtPG11] NVIDIA CAPS Enterprise, Cray Inc. and the Portland Group. The openacc application pro-

gramming interface, v1.0, November 2011.

[CG02] S. Canditt and M. Gunter. Aspect oriented logging in a real-world system. In First AOSD

Workshop on Aspects, Components, and Patterns for Infrastructure Software (AOSD-2002),

March 2002.

[CGS+05] Philippe Charles, Christian Grotho↵, Vijay Saraswat, Christopher Donawa, Allan Kielstra,

Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-oriented approach

to non-uniform cluster computing. SIGPLAN Not., 40(10):519–538, October 2005.

[CGS+09] R. Chitchyan, P. Greenwood, A. Sampaio, A. Rashid, A. Garcia, and L. F. da Silva. Se-

mantic vs. syntactic compositions in aspect-oriented requirements engineering: An empirical

study. In Proceedings of the 8th ACM International Conference on Aspect-oriented Software

Development, AOSD, pages 149–160, NY, USA, 2009. ACM.

[CI05] Shigeru Chiba and Rei Ishikawa. Aspect-oriented programming beyond dependency injection.

In Andrew P. Black, editor, ECOOP 2005 - Object-Oriented Programming, pages 121–143,

Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Bibliography 235

[CJ03] Maŕıa Agustina Cibrán and Viviane Jonckers. Aspect-oriented programming for connecting

business rules. In Proceedings of the 6th International Conference on Business Information

Systems, Colorado, 2003.

[CKPD99] Henri Casanova, Myungho Kim, James S. Plank, and Jack J. Dongarra. Adaptive scheduling

for task farming with grid middleware. Int. J. High Perform. Comput. Appl., 13(3):231–240,

August 1999.

[CL15] R. Clucas and S. Levitt. Capp: A c++ aspect-oriented based framework for parallel pro-

gramming with opencl. In Proceedings of the Annual Research Conference on South African

Institute of Computer Scientists and Information Technologists, SAICSIT, pages 10:1–10:10,

NY, USA, 2015. ACM.

[Cla] Java Concurrent Atomic Classes. https://docs.oracle.com/javase/8/docs/api/java/

util/concurrent/atomic/package-summary.html. Accessed: 2018-06-16.

[Cli05] C. Clifton. A design discipline and language features for modular reasoning in aspect-oriented

programs. Technical report, Department of Computer Science, Iowa State University, 226

Atanaso↵ Hall, Ames, Iowa 50011, July 2005.

[CM08] Gilberto Contreras and Margaret Martonosi. Characterizing and improving the performance

of intel threading building blocks. 2008 IEEE International Symposium on Workload Charac-

terization, pages 57–66, 2008.

[CMT04] S. Cahon, N. Melab, and E.-G. Talbi. Paradiseo: A framework for the reusable design of

parallel and distributed metaheuristics. Journal of Heuristics, 10(3):357–380, May 2004.

[Col91] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT

Press, Cambridge, MA, USA, 1991.

[CRB04] Adrian Colyer, Awais Rashid, and Gordon Blair. On the separation of concerns in program

families. Technical report, Lancaster University, 2004.

[CS07] C. A Cunha and J. Lúıs Sobral. An annotation-based framework for parallel computing.

In Parallel, Distributed and Network-Based Processing, 2007. PDP’07. 15th EUROMICRO

International Conference on, pages 113–120. IEEE, 2007.

[CSM06] Carlos A. Cunha, João L. Sobral, and Miguel P. Monteiro. Reusable aspect-oriented imple-

mentations of concurrency patterns and mechanisms. In Proceedings of the 5th international

conference on Aspect-oriented software development, AOSD ’06, pages 134–145, NY, USA,

2006. ACM.

[CT04] Mariano Ceccato and Paolo Tonella. Adding distribution to existing applications by means of

aspect oriented programming. In Source Code Analysis and Manipulation, 2004. Fourth IEEE

International Workshop on, pages 107–116. IEEE, 2004.

[CV13] W. Cazzola and E. Vacchi. Fine-grained annotations for pointcuts with a finer granularity.

In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages 1706–1711.

ACM, 2013.

236 Bibliography

[DHP08] Vassilios V. Dimakopoulos, Panagiotis E. Hadjidoukas, and Giorgos Ch. Philos. A microbench-

mark study of openmp overheads under nested parallelism. In Proceedings of the 4th Interna-

tional Conference on OpenMP in a New Era of Parallelism, IWOMP’08, pages 1–12, Berlin,

Heidelberg, 2008. Springer-Verlag.

[Dij79] Edsger Dijkstra. Programming considered as a human activity. In Classics in software engi-

neering, pages 1–9. Yourdon Press, 1979.

[DM98] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard api for shared-memory

programming. IEEE Comput. Sci. Eng., 5(1):46–55, January 1998.

[DM14] John S. Dean and Frank J. Mitropoulos. An aspect pointcut for parallelizable loops. In

Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC ’14, pages 1619–

1624, NY, USA, 2014. ACM.

[DMCN12] Javier Diaz, Camelia Munoz-Caro, and Alfonso Nino. A survey of parallel programming models

and tools in the multi and many-core era. IEEE Trans. Parallel Distrib. Syst., 23(8):1369–1386,

August 2012.

[DPV+08] M. Danelutto, M. Pasin, M. Vanneschi, P. Dazzi, D. Laforenza, and L. Presti. PAL: Exploiting

Java Annotations for Parallelism, pages 83–96. Springer US, Boston, MA, 2008.

[DRM] J. Dongarra, Wade R., and P. McMahan. Linpack. http://www.netlib.org/benchmark/

linpackjava/. Accessed: 28-03-2018.

[DSK05] T Fountain D Sima and P Kacsuk. Advanced Computer Architectures : a design space approach.

Addison-Wesley, 2005.

[DWWW05] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. Polyaml: A polymorphic aspect-

oriented functional programming language. SIGPLAN Not., 40(9):306–319, September 2005.

[ea09] D. Binkley et al. Tool-supported refactoring of existing object-oriented code into aspects. IEEE

Transactions on Software Engineering, 32(9):698–717, 2009.

[EBFJ16] Pacôme Eberhart, Julien Brajard, Pierre Fortin, and Fabienne Jézéquel. Estimation of Round-

o↵ Errors in OpenMP Codes, pages 3–16. Springer International Publishing, Cham, 2016.

[Ecl18a] Eclipse. Frequently asked questions. https://www.eclipse.org/aspectj/doc/released/

faq.php, 2018. Accessed: 01-05-2018.

[Ecl18b] Eclipse. Inter-type declarations and annotations. https://www.eclipse.org/aspectj/doc/

next/adk15notebook/annotations-itds.html, 2018. Accessed: 01-05-2018.

[EGCSY03] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed Shared-Memory

Programming. Wiley-Interscience, 2003.

[EMR09] P. Evangelista, P. Maia, and M. Rocha. Implementing metaheuristic optimization algorithms

with jecoli. In Proceedings of the Ninth International Conference on Intelligent Systems Design

and Applications, ISDA, pages 505–510, DC, USA, 2009. IEEE.

[ERAEB05] H. El-Rewini and M. Abd-El-Barr. Advanced Computer Architecture and Parallel Processing

(Wiley Series on Parallel and Distributed Computing). Wiley-Interscience, 2005.

Bibliography 237

[Fab05] J Fabry. Modularizing Advanced Transaction Management - Tackling Tangled Aspect Code.

PhD thesis, Vrije Universiteit Brussel, Belgium, 2005.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:

improving the design of existing code. Addison-Wesley Professional, 1999.

[FDNT15] J. Fabry, T. Dinkelaker, J. Noyé, and É. Tanter. A taxonomy of domain-specific aspect lan-

guages. ACM Comput. Surv., 47(3):40:1–40:44, February 2015.

[FF00] R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and oblivi-

ousness. Technical report, RIACS, 2000.

[Fla] NUMA Flag. https://docs.oracle.com/javase/7/docs/technotes/guides/vm/

performance-enhancements-7.html. Accessed: 2018-06-16.

[For94] Message P Forum. Mpi: A message-passing interface standard. Technical report, University

of Tennessee, Knoxville, TN, USA, 1994.

[For12] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 3.0,

Sep. 2012. Chapter author for Collective Communication, Process Topologies, and One Sided

Communications.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1999.

[FPS15] Naznin Fauzia, Louis-Noël Pouchet, and P. Sadayappan. Characterizing and enhancing global

memory data coalescing on gpus. In Proceedings of the 13th Annual IEEE/ACM International

Symposium on Code Generation and Optimization, CGO ’15, pages 12–22, Washington, DC,

USA, 2015. IEEE Computer Society.

[FSP06] J. F. Ferreira, J. L. Sobral, and A. J. Proença. Jaskel: A java skeleton-based framework for

structured cluster and grid computing. In Cluster Computing and the Grid, CCGRID. Sixth

IEEE International Symposium on, volume 1, 2006.

[GFB+04] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,

P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, and T. S.

Woodall. Open MPI: Goals, concept, and design of a next generation MPI implementation.

In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest,

Hungary, September 2004.

[GHD00] W. L. George, J. G. Hagedorn, and J. E. Devaney. Impi: Making mpi interoperable. In Journal

of research of the National Institute of Standards and Technology, 2000.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1995.

[GHTL14] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk. Using Advanced MPI: Modern Features of the

Message-Passing Interface. The MIT Press, 2014.

[GK01] Stephan Gudmundson and Gregor Kiczales. Addressing practical software development issues

in aspectj with a pointcut interface. In In Advanced Separation of Concerns, 2001.

238 Bibliography

[GL03] J. D. Gradecki and N. Lesiecki. Mastering AspectJ: Aspect-Oriented Programming in Java.

John Wiley & Sons, Inc., NY, USA, 2003.

[GLS14] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the

Message-Passing Interface. The MIT Press, 2014.

[GS00] L. Grippo and M. Sciandrone. On the convergence of the block nonlinear gauss-seidel method

under convex constraints. Oper. Res. Lett., 26(3):127–136, April 2000.

[GS09] R. Gonçalves and J. Sobral. Pluggable parallelization. High Performance Distributed Comput-

ing, (HPDC’09), Munique, ACM Press, June 2009.

[GS12] R. C. Gonçalves and J. L. Sobral. Modular and non-invasive distributed memory parallelization.

In Proceedings of the workshop on Modularity in Systems Software, pages 33–38. ACM, 2012.

[GSBW09] GACP Ganegoda, D Samaranayake, L Bandara, and KADNKWimalawarne. Jconqurr-a multi-

core programming toolkit for java. International Journal of Computer and Information Engi-

neering, 3(4):223–230, 2009.

[GTM96] A. Gruj́ıc, M. Tomasev́ıc, and V. Milutinov́ıc. A simulation study of hardware-oriented dsm

approaches. IEEE Parallel Distrib. Technol., 4(1):74–83, March 1996.

[GVL10] H. G. Vélez and M. Leyton. A survey of algorithmic skeleton frameworks: High-level structured

parallel programming enablers. Softw. Pract. Exper., 40(12):1135–1160, November 2010.

[Har06] B. Harbulot. Separating concerns in scientific software using aspect-oriented programming.

PhD thesis, University of Manchestery, 2006.

[HC02] S. Hanenberg and P. Costanza. Connecting aspects in AspectJ: Strategies vs. patterns. In First

AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software, March

2002.

[HDB+13] T. Hoefler, J. Dinan, Darius Buntinas, Pavan Balaji, B. Barrett, R. Brightwell, W. D. Gropp,

V. Kale, and Rajeev Thakur. Mpi + mpi: A new hybrid approach to parallel programming

with mpi plus shared memory. Computing, 95:1121–1136, 2013.

[HDT+15] Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett, Pavan Balaji, William Gropp,

and Keith Underwood. Remote memory access programming in mpi-3. ACM Transactions on

Parallel Computing, 2(2):9, 2015.

[HE08] Kevin Ho↵man and Patrick Eugster. Towards reusable components with aspects: An empirical

study on modularity and obliviousness. In Proceedings of the 30th International Conference

on Software Engineering, ICSE ’08, pages 91–100, NY, USA, 2008. ACM.

[HFM88] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algorithms for barrier synchronization.

Int. J. Parallel Program., 17(1):1–17, February 1988.

[HG06] Bruno Harbulot and John R. Gurd. A join point for loops in aspectj. In Proceedings of the 5th

International Conference on Aspect-oriented Software Development, AOSD ’06, pages 63–74,

NY, USA, 2006. ACM.

Bibliography 239

[HH04] Erik Hilsdale and Jim Hugunin. Advice weaving in aspectj. In Proceedings of the 3rd Inter-

national Conference on Aspect-oriented Software Development, AOSD ’04, pages 26–35, NY,

USA, 2004. ACM.

[HJ09] Uwe D.C. Hohenstein and Michael C. Jäger. Using aspect-orientation in industrial projects:

Appreciated or damned? In Proceedings of the 8th ACM International Conference on Aspect-

oriented Software Development, AOSD ’09, pages 213–222, NY, USA, 2009. ACM.

[HNP98] David Holmes, James Noble, and John Potter. Toward reusable synchronisation for object-

oriented languages. In Object-Oriented Technology, ECOOP’98 Workshop Reader, Demos, and

Posters, Brussels, Belgium, July 20-24, page 439, 1998.

[HO93] William Harrison and Harold Ossher. Subject-oriented programming: A critique of pure ob-

jects. SIGPLAN Not., 28(10):411–428, October 1993.

[HOF+12] Ruud Haring, Martin Ohmacht, Thomas Fox, Michael Gschwind, David Satterfield, Krishnan

Sugavanam, Paul Coteus, Philip Heidelberger, Matthias Blumrich, Robert Wisniewski, alan

gara, George Chiu, Peter Boyle, Norman Chist, and Changhoan Kim. The ibm blue gene/q

compute chip. IEEE Micro, 32(2):48–60, March 2012.

[HS03] Stefan Hanenberg and Arno Schmidmeier. Aspectj idioms for aspect-oriented software con-

struction. In Kevlin Henney and Dietmar Schütz, editors, EuroPLoP, pages 617–644. UVK -

Universitaetsverlag Konstanz, 2003.

[HT00] Weicheng Huang and Danesh Tafti. A Parallel computing framework for dynamic power bal-

ancing in adaptive mesh refinement applications. North Holland, 12 2000.

[HU01] S. Hanenberg and R. Unland. Using and reusing aspects in aspectj. In In OOPSLA Workshop

on Advanced Separation of Concerns in Object-Oriented Systems, 2001.

[IJ11] Yasuhiro Idomura and Sébastien Jolliet. Performance evaluations of advanced massively par-

allel platforms based on gyrokinetic toroidal five-dimensional eulerian code gt5d. Progress in

Nuclear Science and Technology, 2:620–627, 10 2011.

[JBo] JBossAOP. http://jbossaop.jboss.org/. Accessed: 2018-06-16.

[JJM+11] Haoqiang Jin, Dennis Jespersen, Piyush Mehrotra, Rupak Biswas, Lei Huang, and Barbara

Chapman. High performance computing using mpi and openmp on multi-core parallel systems.

Parallel Comput., 37(9):562–575, September 2011.

[JMOA08] Ulises Juárez-Mart́ınez and José Oscar Olmedo-Aguirre. Énfasis: A model for local variable

crosscutting. In Proceedings of the 2008 ACM Symposium on Applied Computing, SAC ’08,

pages 261–265, NY, USA, 2008. ACM.

[Jon24] J. E. Jones. On the Determination of Molecular Fields. II. From the Equation of State of a

Gas. Proceedings of the Royal Society of London Series A, 106:463–477, 1924.

[KAB07] Christian Kastner, Sven Apel, and Don Batory. A case study implementing features using

aspectj. In Proceedings of the 11th International Software Product Line Conference, SPLC ’07,

pages 223–232, Washington, DC, USA, 2007. IEEE Computer Society.

240 Bibliography

[Kam07] Alan Kaminsky. Parallel java: A unified api for shared memory and cluster parallel program-

ming in 100 In In 21st IEEE International Parallel and Distributed Processing Symposium

(IPDPS, 2007.

[KBVP07] Michael Klemm, Matthias Bezold, Ronald Veldema, and Michael Philippsen. Jamp: An im-

plementation of openmp for a java dsm: Research articles. Concurr. Comput. : Pract. Exper.,

19(18):2333–2352, December 2007.

[KCDZ94] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Treadmarks: Dis-

tributed shared memory on standard workstations and operating systems. In In proceeding of

the 1994 winter usenix conference, pages 115–131, 1994.

[KG02] Jörg Kienzle and Rachid Guerraoui. Aop: Does it make sense? the case of concurrency and

failures. In Proceedings of the 16th European Conference on Object-Oriented Programming,

ECOOP ’02, pages 37–61, London, UK, UK, 2002. Springer-Verlag.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Je↵rey Palm, and William G.

Griswold. An overview of aspectj. In Proceedings of the 15th European Conference on Object-

Oriented Programming, ECOOP ’01, pages 327–353, London, UK, UK, 2001. Springer-Verlag.

[Kic96] G. Kiczales. Aspect-oriented programming. ACM Comput. Surv., 28(4es), 1996.

[Kis02] I. Kiselev. Aspect-Oriented Programming with AspectJ. Sams, IN, USA, 2002.

[KM99] Mik A. Kersten and Gail C. Murphy. Atlas: A case study in building a web-based learn-

ing environment using aspect-oriented programming. Technical report, University of British

Columbia, Vancouver, BC, Canada, Canada, 1999.

[Kru92] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, June 1992.

[KS10] F. Berg Kjolstad and M. Snir. Ghost cell pattern. In Proceedings of the 2010 Workshop on

Parallel Programming Patterns, ParaPLoP, pages 4:1–4:9, NY, USA, 2010. ACM.

[KSG09] Philipp Kegel, Maraike Schellmann, and Sergei Gorlatch. Using openmp vs. threading building

blocks for medical imaging on multi-cores. In Proceedings of the 15th International Euro-Par

Conference on Parallel Processing, Euro-Par ’09, pages 654–665, Berlin, Heidelberg, 2009.

Springer-Verlag.

[Kuc04] Partha Kuchana. Software architecture design patterns in Java. CRC Press, 2004.

[KVBP08] M. Klemm, R. Veldema, M. Bezold, and M. Philippsen. A proposal for openmp for java. In

OpenMP Shared Memory Parallel Programming, pages 409–421. Springer Berlin Heidelberg,

2008.

[Lad03] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publications

Co., Greenwich, CT, USA, 2003.

[Lad09] R. Laddad. AspectJ in Action: Enterprise AOP with Spring Applications. Manning Publica-

tions Co., Greenwich, CT, USA, 2nd edition, 2009.

[Lam13] Christoph Lameter. Numa (non-uniform memory access): An overview. Queue, 11(7):40:40–

40:51, July 2013.

Bibliography 241

[Law98] Ramon Lawrence. A survey of cache coherence mechanisms in shared memory multiprocessors,

1998.

[LHBL06] Roberto Lopez-Herrejon, Don Batory, and Christian Lengauer. A disciplined approach to

aspect composition. In Proceedings of the 2006 ACM SIGPLAN Symposium on Partial Eval-

uation and Semantics-based Program Manipulation, PEPM ’06, pages 68–77, New York, NY,

USA, 2006. ACM.

[LJ06] Bert Lagaisse and Wouter Joosen. Decomposition into elementary pointcuts: A design principle

for improved aspect reusability. In In SPLAT, 2006.

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and di↵erential cryptanalysis.

In Donald W. Davies, editor, Advances in Cryptology — EUROCRYPT ’91, pages 17–38,

Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

[Lop97] Cristina Lopes. A Language Framework for Distributed Programming. PhD thesis, College of

Computer Science, Northeastern University, Boston, USA, 1997.

[LR88] K. J. Lieberherr and A. J. Riel. Demeter: A case study of software growth through parame-

terized classes. In Proceedings of the 10th International Conference on Software Engineering,

ICSE ’88, pages 254–264, Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[LSB88] Thomas J. LeBlanc, Michael L. Scott, and Christopher M. Brown. Large-scale parallel pro-

gramming: Experience with bbn butterfly parallel processor. SIGPLAN Not., 23(9):161–172,

January 1988.

[LSM11] Y. Liu, B. Schmidt, and D. L. Maskell. An ultrafast scalable many-core motif discovery algo-

rithm for multiple gpus. In 2011 IEEE International Symposium on Parallel and Distributed

Processing Workshops and Phd Forum, pages 428–434, May 2011.

[LW17] Pierre Lavallee and Philippe Wautelet. Hybrid mpi-openmp programming. http://www.

idris.fr/media/eng/formations/hybride/hybride_v3-0_en.pdf, 2017. Accessed: 22-04-

2018.

[Mar03] Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Practices. Pren-

tice Hall PTR, Upper Saddle River, NJ, USA, 2003.

[MCS00] Mathematics and Argonne National Laboratory Computer Science. Mpi con-

text. https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-1.

1/node93.htm, 2000. Accessed: 08-04-2018.

[MD09] Adrian Moga and Michel Dubois. A comparative evaluation of hybrid distributed shared-

memory systems. J. Syst. Archit., 55(1):43–52, January 2009.

[MEB99] Luis Moura, Silva E, and Rajkumar Buyya. Parallel programming models and paradigms. In

Rajkummar Buyya, editor, High Performance Cluster Computing: , volume 2, Programming

and Applications., pages 4–27, 1999.

[Meu97] Wolfgang De Meuter. Monads as a theoretical foundation for aop. In International Workshop

on Aspect-Oriented Programming at ECOOP, page 25. Springer-Verlag, 1997.

242 Bibliography

[MF04] M. Monteiro and J. Fernandes. Pitfalls of aspectj implementations of some of the gang-of-four

design patterns. In Proceedings of the workshop at JISBD 2004 (IX Jornadas de Ingenieŕıa de

Software y Bases de Datos), Málaga, Spain,, ISDA ’09, November 2004.

[MF05] M. P. Monteiro and J. M. Fernandes. Towards a catalog of aspect-oriented refactorings. In Pro-

ceedings of the 4th International Conference on Aspect-oriented Software Development, AOSD

’05, pages 111–122, NY, USA, 2005. ACM.

[Mil04] R. Miles. AspectJ Cookbook. O’Reilly Media, Inc., 2004.

[Mit14] Sparsh Mittal. A study of successive over-relaxation method parallelisation over modern hpc

languages. Int. J. High Perform. Comput. Netw., 7(4):292–298, June 2014.

[MK03] H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-oriented programming. In

A. Ohori, editor, Programming Languages and Systems, pages 105–121. Springer Berlin Hei-

delberg, 2003.

[Ml07] L. Madeyski and L. Sza la. Impact of aspect-oriented programming on software development

e�ciency and design quality: an empirical study. IET Software, 1(5):180–187, 2007.

[MLAV10] Vladimir Marjanović, Jesús Labarta, Eduard Ayguadé, and Mateo Valero. Overlapping com-

munication and computation by using a hybrid mpi/smpss approach. In Proceedings of the

24th ACM International Conference on Supercomputing, ICS ’10, pages 5–16, NY, USA, 2010.

ACM.

[MLWR01] Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin P. Robillard. Separating features

in source code: An exploratory study. In Proceedings of the 23rd International Conference on

Software Engineering, ICSE ’01, pages 275–284, Washington, DC, USA, 2001. IEEE Computer

Society.

[MMPS09] Michele Mazzucco, Graham Morgan, Fabio Panzieri, and Craig Sharp. Engineering distributed

shared memory middleware for java. In Proceedings of the Confederated International Confer-

ences, CoopIS, DOA, IS, and ODBASE 2009 on On the Move to Meaningful Internet Systems:

Part I, OTM ’09, pages 531–548, Berlin, Heidelberg, 2009. Springer-Verlag.

[Mon04] M. P. Monteiro. Catalogue of refactorings for aspectj. Universidade do Minho, Tech. Rep.

UM-DI-GECSD-200402, 2004.

[MRR12] Michael McCool, James Reinders, and Arch Robison. Structured Parallel Programming: Pat-

terns for E�cient Computation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1st edition, 2012.

[MS11] B. Medeiros and J. L. Sobral. Checkpoint and run-time adaptation with pluggable parallelisa-

tion. In ICPP’11, pages 434–443, 2011.

[MS13a] B. Medeiros and J. L. Sobral. Aomplib: An aspect library for large-scale multi-core. In

Proceedings of the 42Nd International Conference on Parallel Processing, ICPP ’13, pages

270–279, Washington, DC, USA, 2013. IEEE Computer Society.

[MS13b] B. Medeiros and J. L. Sobral. Implementing an openmp-like standard with aspectj. In Pro-

ceedings of the 3rd Workshop on Modularity in Systems Software, MISS ’13, pages 1–6, New

York, NY, USA, 2013. ACM.

Bibliography 243

[MS17] B. Medeiros and J. L. Sobral. Aspect oriented parallel framework for java. In High Performance

Computing for Computational Science – VECPAR 2016, pages 220–233, Cham, 2017. Springer

International Publishing.

[MSS15] B. Medeiros, R. Silva, and J. L. Sobral. Grid programming frameworks. Grid Computing:

Techniques and Future Prospects, pages 157–186, 2015.

[MSS16] B. Medeiros, R. Silva, and J. L. Sobral. Gaspar: a compositional aspect-oriented approach

for cluster applications. Concurrency and Computation: Practice and Experience, 28(8):2353–

2373, 2016.

[NAAL01] D. S. Nikolopoulos, E. Artiaga, E. Ayguadé, and J. Labarta. Exploiting memory a�nity in

openmp through schedule reuse. SIGARCH Comput. Archit. News, 29(5):49–55, December

2001.

[Nag06] I. Nagy. On the Design of Aspect-Oriented Composition Models for Software Evolution. PhD

thesis, University of Twente, 6 2006.

[NB12] Marek Nowicki and Piotr Ba la. Parallel computations in java with pcj library. In High Perfor-

mance Computing and Simulation (HPCS), 2012 International Conference on, pages 381–387.

IEEE, 2012.

[NC08] M. Nishizawa and S. Chiba. A small extension to java for class refinement. In Proceedings of

the 2008 ACM Symposium on Applied Computing, SAC ’08, pages 160–165, New York, NY,

USA, 2008. ACM.

[NS09] Diogo Telmo Neves and João Lúıs Sobral. Improving the separation of parallel code in skeletal

systems. 2009 Eighth International Symposium on Parallel and Distributed Computing, pages

257–260, 2009.

[NSPB07] James Noble, Arno Schmiedmeier, David J. Pearce, and Andrew P. Black. Patterns of aspect-

oriented design. In Lise B. Hvatum and Till Schümmer, editors, EuroPLoP, pages 769–796.

UVK - Universitaetsverlag Konstanz, 2007.

[Oak14] Scott Oaks. Java Performance - The Definitive Guide: Getting the Most Out of Your Code.

O’Reilly, 2014.

[Obj] Introduce Parameter Object. https://refactoring.com/catalog/

introduceParameterObject.html. Accessed: 2018-06-16.

[ONH+96] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang. The

case for a single-chip multiprocessor. SIGOPS Oper. Syst. Rev., 30(5):2–11, September 1996.

[Ora18] Oracle. Collections framework enhancements in java se 8. https://docs.oracle.com/javase/

8/docs/technotes/guides/concurrency/changes8.html, 2018. Accessed: 08-04-2018.

[Pad11] D. Padua. Encyclopedia of Parallel Computing. Springer Publishing Company, Incorporated,

2011.

[Par] Nested Parallelism. https://docs.oracle.com/cd/E19205-01/819-5270/aewbc/index.

html. Accessed: 2018-06-16.

244 Bibliography

[Par72a] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Commun.

ACM, 15(12):1053–1058, December 1972.

[Par72b] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Commun.

ACM, 15(12):1053–1058, December 1972.

[Par79] D. L. Parnas. Designing software for ease of extension and contraction. IEEE Transactions on

Software Engineering, SE-5(2):128–138, March 1979.

[PB04] E. Paul and ed. Black. Algorithms and theory of computation handbook,. In CRC Press

LLC, 1999, “single program multiple data”, in Dictionary of Algorithms and Data Structures

[online], 2004.

[PBB+06] With T. P., Joshua B., Joseph B., David H., and Doug Lea. Java Concurrency in Practice.

Addison-Wesley Professional, Addison-Wesley, 1st edition, 2006.

[Pet11] Sanderson Peter. Updating the java grande forum benchmark suite. Master’s thesis, University

of Edinburgh, 2011.

[PH13] D. A. Patterson and J. L. Hennessy. Computer Organization and Design, Fifth Edition: The

Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

5th edition, 2013.

[Phe08] Chuck Pheatt. Intel® threading building blocks. J. Comput. Sci. Coll., 23(4):298–298,

April 2008.

[pre] Advice precedence. https://www.eclipse.org/aspectj/doc/next/progguide/

semantics-advice.html. Accessed: 2018-06-16.

[Pre97] Christian Prehofer. Feature-oriented programming: A fresh look at objects. In Mehmet Akşit

and Satoshi Matsuoka, editors, ECOOP’97 — Object-Oriented Programming, pages 419–443,

Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[PS+10] J. H. M. Pinho, J. L. F. Sobral, et al. Pluggable parallelization of evolutionary algorithms

applied to the optimization of biological processes. In Parallel, Distributed and Network-Based

Processing (PDP), 2010 18th Euromicro International Conference on, pages 395–402. IEEE,

2010.

[PSR05] R. Pawlak, L. Seinturier, and J. Retaillé. Foundations of AOP for J2EE development. Apress,

Berkeley, CA, 2005.

[PSR13] J. Pinho, J. L. Sobral, and M. Rocha. Parallel evolutionary computation in bioinformatics

applications. Computer Methods and Programs in Biomedicine, 110(2):183 – 191, 2013.

[Qub] Sonar Qube. Codesmell. https://rules.sonarsource.com/java/RSPEC-1450. Accessed:

28-03-2018.

[RC03] Awais Rashid and Ruzanna Chitchyan. Persistence as an aspect. In Proceedings of the 2Nd

International Conference on Aspect-oriented Software Development, AOSD ’03, pages 120–129,

NY, USA, 2003. ACM.

Bibliography 245

[Rei] James Reinders. https://software.intel.com/en-us/blogs/2009/08/03/parallel_

for-is-easier-with-lambdas-intel-threading-building-blocks. Accessed: 2017-06-16.

[Rei07] J. Reinders. Intel threading building blocks - outfitting C++ for multi-core processor parallelism.

O’Reilly, 2007.

[RHJ09] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. Hybrid mpi/openmp parallel programming

on clusters of multi-core smp nodes. In Proceedings of the 2009 17th Euromicro International

Conference on Parallel, Distributed and Network-based Processing, PDP ’09, pages 427–436,

Washington, DC, USA, 2009. IEEE Computer Society.

[RJ14] J. Reinders and J. Je↵ers. High Performance Parallelism Pearls: Multicore and Many-core

Programming Approaches. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st

edition, 2014.

[RM06] Awais Rashid and Ana Moreira. Domain models are not aspect free. In In MODELS, pages

155–169. Springer, 2006.

[SB02] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented implementation tech-

nique for refinements and collaboration-based designs. ACM Transactions on Software Engi-

neering and Methodology (TOSEM), 11(2):215–255, 2002.

[SBO01] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel java grande benchmark suite. In Pro-

ceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), Supercomputing

’01, page 8, USA, November 2001. ACM.

[SC12] N. Suri and G. Cabri. Adaptive, Dynamic, and Resilient Systems. Auerbach Publications,

Boston, MA, USA, 1st edition, 2012.

[SCB09] Aamir Shafi, Bryan Carpenter, and Mark Baker. Nested parallelism for multi-core hpc systems

using java. J. Parallel Distrib. Comput., 69(6):532–545, June 2009.

[Sch01] Martin Schulz. Shared memory programming on NUMA-based clusters using a general and

open hybrid hardware, software Approach. PhD thesis, Technical University Munich, Germany,

2001.

[SCM07] J. L. Sobral, C. A. Cunha, and M. P. Monteiro. Aspect oriented pluggable support for parallel

computing. In High Performance Computing for Computational Science - VECPAR 2006,

pages 93–106. Springer Berlin Heidelberg, 2007.

[Sema] Join Points : Appendix B. Language Semantics. https://eclipse.org/aspectj/doc/

released/progguide/semantics-joinPoints.html. Accessed: 2018-06-16.

[Semb] Pointcuts : Appendix B. Language Semantics. https://eclipse.org/aspectj/doc/

released/progguide/semantics-pointcuts.html. Accessed: 2018-06-16.

[SG05] M. Störzer and J. Graf. Using pointcut delta analysis to support evolution of aspect-oriented

software. 21st IEEE International Conference on Software Maintenance (ICSM’05), pages

653–656, 2005.

246 Bibliography

[SGS+14] Tyler M. Smith, Robert van de Geijn, Mikhail Smelyanskiy, Je↵ R. Hammond, and Field G. Van

Zee. Anatomy of high-performance many-threaded matrix multiplication. In Proceedings of

the 2014 IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS ’14,

pages 1049–1059, Washington, DC, USA, 2014. IEEE Computer Society.

[SGSP02] Olaf Spinczyk, Andreas Gal, and Wolfgang Schroder-Preikschat. Aspectc++: An aspect-

oriented extension to the c++ programming language. In James Noble and John Potter,

editors, Fortieth International Conference on Technology of Object-Oriented Languages and

Systems (TOOLS Pacific 2002), volume 10 of CRPIT, pages 53–60, Sydney, Australia, 2002.

ACS.

[SJF+10] Hongzhang Shan, Haoqiang Jin, Karl Fürlinger, Alice Koniges, and Nicholas J. Wright. An-

alyzing the e↵ect of di↵erent programming models upon performance and memory usage on

cray xt5 platforms. In Cray User’s Group Meeting 2010, Edinburgh, May 2010.

[SK10] Kotrappa Sirbi and Prakash Jayanth Kulkarni. Stronger enforcement of security using AOP

and spring AOP. CoRR, abs/1006.4550, 2010.

[SLB02] Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution and persistence

aspects with aspectj. SIGPLAN Not., 37(11):174–190, November 2002.

[SM07] Inc. Sun Microsystems. Sunfiretm t1000 server overview, 2007. Accessed: 2018-06-16.

[SM08] J. L. Sobral and M. P. Monteiro. A domain-specific language for parallel and grid computing.

In Proceedings of the 2008 AOSD Workshop on Domain-specific Aspect Languages, DSAL,

pages 2:1–2:4, NY, USA, 2008. ACM.

[SM11] J. Sobral and B. Medeiros. An aspect-oriented approach to fault-tolerance in grid platforms.

IBERGRID’2011 - The 5th Iberian Grid Infrastructure Conference Santander, June 2011.

[SMC06] J. L. Sobral, M. P. Monteiro, and C. A. Cunha. Aspect-oriented support for modular parallel

computing. In Proc. of the 5th AOSD Workshop on Aspects, Components, and Patterns for

Infrastructure Software, Y. Coady, DH Lorenz, O. Spinczyk, and E. Wohlstadter, eds., Bonn,

Germany, pages 37–41, 2006.

[Sob06] J. L. Sobral. Incrementally developing parallel applications with aspectj. In Proceedings of the

20th international conference on Parallel and distributed processing, IPDPS’06, pages 116–116,

Washington, DC, USA, 2006. IEEE Computer Society.

[Som10] I. Sommerville. Software Engineering (9th Edition). Pearson Addison Wesley, 2010.

[Spr] SpringAOP. http://docs.spring.io/spring/docs/current/

spring-framework-reference/html/aop.html. Accessed: 2018-06-16.

[ST15] Myoungkyu Song and Eli Tilevich. Reusing metadata across components, applications, and

languages. Sci. Comput. Program., 98:617–644, 2015.

[Sta12] W. Stallings. Data and Computer Communications, Designing for performance (9th Ed.).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2012.

Bibliography 247

[SW07] Martin Sulzmann and Meng Wang. Aspect-oriented programming with type classes. In Pro-

ceedings of the 6th Workshop on Foundations of Aspect-oriented Languages, FOAL ’07, pages

65–74, NY, USA, 2007. ACM.

[SWS12] W. Sun, X. Wang, and X. Sun. Using modular programming strategy to practice computer

programming: A case study. In 2012 ASEE Annual Conference, San Antonio, Texas, June

2012. ASEE Conferences. https://peer.asee.org/22189.

[Tan01] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 2nd edition, 2001.

[tMee] Initialize the MPI execution environment. https://www.mpich.org/static/docs/v3.1/

www3/MPI_Init_thread.html. Accessed: 2018-06-16.

[TRE+13] Guillermo L. Taboada, Sabela Ramos, Roberto R. Expósito, Juan Touriño, and Ramón Doallo.

Java in the high performance computing arena: Research, practice and experience. Sci. Com-

put. Program., 78(5):425–444, May 2013.

[TTD03] Guillermo L Taboada, Juan Tourino, and Ramón Doallo. Performance analysis of java message-

passing libraries on fast ethernet, myrinet and sci clusters. In CLUSTER, pages 118–126, 2003.

[TTnD12] Guillermo L. Taboada, Juan Touriño, and Ramón Doallo. F-mpj: Scalable java message-

passing communications on parallel systems. J. Supercomput., 60(1):117–140, April 2012.

[TUSF03] Eli Tilevich, Stephan Urbanski, Yannis Smaragdakis, and Marc Fleury. Aspectizing server-side

distribution. In Automated Software Engineering, 2003. Proceedings. 18th IEEE International

Conference on, pages 130–141. IEEE, 2003.

[UIT94] T. Utsumi, M. Ikeda, and M. Takamura. Architecture of the vpp500 parallel supercomputer.

In Proceedings of Supercomputing ’94, pages 478–487, Nov 1994.

[V.11] Michael V. Threading building blocks, openmp, or native threads? https://software.intel.

com/en-us/intel-threading-building-blocks-openmp-or-native-threads, 2011. Ac-

cessed: 08-04-2014.

[VBP11] Ronald Veldema, Thorsten Blass, and Michael Philippsen. Enabling multiple accelerator ac-

celeration for java/openmp. In Proceedings of the 3rd USENIX Conference on Hot Topic in

Parallelism, HotPar’11, pages 6–6, Berkeley, CA, USA, 2011. USENIX Association.

[VDK02] Arie Van Deursen and Paul Klint. Domain-specific language design requires feature descrip-

tions. Journal of Computing and Information Technology, 10(1):1–17, 2002.

[VGRGS13] Oscar Vega-Gisbert, Jose E. Roman, Siegmar Groß, and Je↵rey M. Squyres. Towards the

availability of java bindings in open mpi. In Proceedings of the 20th European MPI Users’

Group Meeting, EuroMPI ’13, pages 141–142, NY, USA, 2013. ACM.

[VGRS16] Oscar Vega-Gisbert, Jose E. Roman, and Je↵rey M. Squyres. Design and implementation of

java bindings in open mpi. Parallel Computing, 59(Complete):1–20, 2016.

[VGS13] Vikas, Nasser Giacaman, and Oliver Sinnen. Pyjama: Openmp-like implementation for java,

with gui extensions. In Proceedings of the 2013 International Workshop on Programming

Models and Applications for Multicores and Manycores, PMAM ’13, pages 43–52, NY, USA,

2013. ACM.

248 Bibliography

[VHBB01] R. Veldema, R. F. H. Hofman, R. A. F. Bhoedjang, and H. E. Bal. Runtime optimizations for

a java dsm implementation. In Proceedings of the 2001 Joint ACM-ISCOPE Conference on

Java Grande, JGI ’01, pages 153–162, NY, USA, 2001. ACM.

[Vin99] B. Vinter. PastSet - A Distributed Shared Memory System. PhD thesis, Tromso Univ. , Norway,

1999.

[VV17] Mikael Vidstedt and Sandhya Viswanathan. Jdk 9 hidden gems [con4529]. https:

//events.rainfocus.com/catalog/oracle/oow17/catalogjavaone17?search=CON4529&

showEnrolled=false, October 2017. Accessed: 01-04-2018.

[Wal91] David W. Wall. Limits of instruction-level parallelism. In Proceedings of the Fourth Interna-

tional Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS IV, pages 176–188, NY, USA, 1991. ACM.

[Wam06] Dean Wampler. The Challenges of Writing Reusable and Portable Aspects in AspectJ: Lessons

from Contract4J. In In Proceedings of International Conference on Aspect Oriented Software

Development (AOSD 2006), March 2006.

[Wea] Load-Time Weaving. https://eclipse.org/aspectj/doc/released/devguide/ltw.html.

Accessed: 2018-06-16.

[Wei] Eric W. Weisstein. Fourier series. http://mathworld.wolfram.com/FourierSeries.html.

Accessed: 28-03-2018.

[WPH03] P. Werstein, M. Pethick, and Z. Huang. A performance comparison of dsm, pvm, and mpi.

In Proceedings of the 4th International Conference on Parallel and Distributed Computing,

Applications and Technologies, pages 476–482, SW Jiaotong University, Chengdu, China, 2003.

[XHG09] C. Xi, B. Harbulot, and J. R. Gurd. Aspect-oriented support for synchronization in parallel

computing. In Proceedings of the 1st Workshop on Linking Aspect Technology and Evolution,

PLATE ’09, pages 1–5, New York, NY, USA, 2009. ACM.

[YBC+07] K. Yelick, D. Bonachea, W. Chen, P. Colella, K. Datta, J. Duell, S. L. Graham, P. Hargrove,

P. Hilfinger, P. Husbands, C. Iancu, A. Kamil, R. Nishtala, J. Su, M. Welcome, and T. Wen.

Productivity and performance using partitioned global address space languages. In Proceedings

of the International Workshop on Parallel Symbolic Computation, PASCO, pages 24–32, NY,

USA, 2007. ACM.

[YC79] E. Yourdon and L. L. Constantine. Structured Design: Fundamentals of a Discipline of Com-

puter Program and Systems Design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1st

edition, 1979.

[YSP+98] Kathy Yelick, Luigi Semenzato, Geo↵ Pike, Carleton Miyamoto, Ben Liblit, Arvind Krishna-

murthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex Aiken. Titanium:

A high-performance java dialect. In In ACM, pages 10–11, 1998.

[ZMWK17] Zhengji Zhao, Martijn Marsman, Florian Wende, and Jeongnim Kim. Performance of hybrid

mpi/openmp vasp on cray xc40 based on intel knights landing many integrated core architec-

ture. In CUG Proceedings, 2017.

	Página 1
	Página 2
	Página 3
	Página 4

