
Aspect Oriented Pluggable Support for Parallel

Computing*

João L. Sobral1, Carlos A. Cunha2, Miguel P. Monteiro3

1Departamento de Informática, Universidade do Minho, Braga, Portugal

2Escola Superior de Tecnologia, Instituto Politécnico de Viseu, Portugal

3Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

Abstract. In this paper, we present an approach to develop parallel applications

based on aspect oriented programming. We propose a collection of aspects to

implement group communication mechanisms on parallel applications. In our

approach, parallelisation code is developed by composing the collection into

the application core functionality. The approach requires fewer changes to

sequential applications to parallelise the core functionality than current

alternatives and yields more modular code. The paper presents the collection

and shows how the aspects can be used to develop efficient parallel

applications.

1 Introduction

The widespread use of multithreaded and multi-core architectures requires adequate

tools to refactor current applications to take advantage of this kind of platforms.

Unfortunately, parallelising compilers do not yet produce acceptable results, forcing

programmers to rewrite their applications to take advantage of this kind of systems.

When they do this, parallelisation concerns become intertwined with application core

functionality, increasing complexity and decreasing maintainability and evolvability.

Tangling concurrency and parallelisation concerns with core functionality was

identified as one of the main problems in parallel applications, increasing

development complexity and decreasing code reuse [1, 2]. Similar negative

phenomena of code scattering and tangling were identified as symptoms of the

presence of crosscutting concerns in traditional object oriented applications [3].

Aspect Oriented Programming (AOP) was proposed to deal with such concerns,

enabling programmers to localise within a single module code related to a crosscutting

concern.

The use of AOP to implement parallelisation concerns provides the same benefits

of modularisation as in other fields, namely improved code readability and an

* This work is supported by PPC-VM (Portable Parallel Computing based on Virtual

Machines) project POSI/CHS/47158/2002, funded by Portuguese FCT (POSI) and by

European funds (FEDER). Miguel P. Monteiro is partially supported by FCT under project

SOFTAS (POSI/EIA/60189/2004).

increased potential for reusability and (un)pluggability, for both parallelisation

concerns and sequential code. AOP techniques were successful in modularising

distribution code [4, 5, 6], middleware features [7], and, to a lesser extent, in isolating

parallel code in loop based parallel applications [2].

This paper presents a collection of aspect oriented abstractions for parallel

computing that replace traditional parallel computing constructs and presents several

case studies that illustrate how this collection supports the develop parallel

applications. Section 2 presents related work. Section 3 presents a brief overview of

AspectJ, an AOP extension to Java that was used to implement the collection. Section

4 presents the collection. Section 5 presents several case studies and section 6 presents

a performance evaluation. Section 7 concludes the paper.

2 Related Work

We classify related work in two main areas: concurrent object oriented languages

(COOL) and approaches to separate parallel code from core functionality.

COOLs received a lot of attention in the beginning of the 1990s. ABCL [8]

provides active objects to model concurrent activities. Each active object is

implemented by a process and inter-object communication can be performed by

asynchronous or synchronous method invocation. Concurrent Aggregates [9] is a

similar approach but supports groups of active objects than can work in a coordinated

way and includes mechanisms to identify an object within a group. Recent COOLs are

based on extensions to sequential object oriented languages [10, 11, 12]. These

extensions introduce new language constructs to specify active objects and/or

asynchronous method calls. ProActive [13] is an exception, as it relies on an implicit

wait by necessity mechanism, however, when a more fine grain control is required, an

object body should be provided (to replace the default active object body). Object

groups, similar to concurrent aggregates, were recently introduced [14, 15]. With

these approaches, the introduction of concurrency primitives and/ or object groups

entails major modifications to source code. Parallelisation concerns are intertwined

with core functionality, yielding the aforementioned negative phenomena of code

scattering and tangling.

One approach to separate core functionality from parallel code is based on

skeletons where the parallelism structure is expressed through the implementation of

off-the-shelf designs [16, 17, 18, 19]. In generative patterns [20], the skeletons are

generated and the programmer must fill the provided hooks with core functionality.

AspectJ was used in [4, 5, 6] to compose distribution concerns into sequential

applications. In [2], an attempt is made to move all parallelism related issues into a

single aspect and [21] proposes a more fine-grained decomposition. In [22], a

collection of reusable implementations of concurrency concerns is presented.

OpenMP [23] introduces concurrency concerns by means of programming

annotations that can be ignored by the compiler in a sequential execution.

Our approach differs from the aforementioned efforts in that we propose a

collection of reusable aspects that achieve the same goals, by supporting object group

relationships. We use concurrency constructs equivalent to traditional COOLs but we

deploy all code related to parallelism within (un)pluggable aspects. Our approach

differs from skeleton approaches as it uses a different way to compose core

functionality and parallel code. Our approach requires less intrusive modifications to

the core functionality to achieve a parallel application, yields code with greater

potential for reuse and supports (un)plugability of parallelisation concerns.

3 Overview of AspectJ

AspectJ [24, 25] is a backwards compatible extension to Java that includes

mechanisms for AOP. It supports two kinds of crosscutting composition: static and

dynamic. Static crosscutting allows type-safe modifications to the application static

structure that include member introduction and type-hierarchy modification. AspectJ’s

mechanism of inter-type declarations enables the introduction of additional members

(i.e. fields, methods and constructors). AspectJ’s type-hierarchy modifications add

super-types and interfaces to target classes. Fig. 1 presents a point class and Fig. 2

presents an Aspect that changes class Point, to implement interface Serializable, and

to include an additional method, called migrate.

public class Point {
 private int x=0;
 private int y=0;

 public void moveX(int delta) { x+=delta; }
 public void moveY(int delta) { y+=delta; }

 public static void main(String[] args) {
 Point p = new Point();
 p.moveX(10);
 p.moveY(5);
 }
}

Fig. 1. Sample point class

public aspect StaticIntroduction {
 declare parents: Point implements Serializable;
 public void Point.migrate(String node) { System.out.println("Migrate to node" + node); }
}

Fig. 2. Example of a static crosscutting aspect

Dynamic crosscutting enables the capture of various kinds of execution events,

dubbed join points, including object creation, method calls or accesses to instance

fields. The construct specifying a set of interesting join points is a pointcut. A pointcut

specifies a set of join points and collects context information from the captured join

points. The general form of a named pointcut is:

<visibility-modifier> pointcut <name>(ParameterList): <pointcut_expression>;

The pointcut_expression is composed by pointcut designators (PCDs), through

operators &&, ||, and !. AspectJ PCDs identify sets of join points, by filtering a subset

of all join points in the program. Join point matching can be based on the kind of join

point, on scope and on join point context. For more information on PCDs, see [24].

Dynamic crosscutting also enables composing behaviour before, after or instead of

each of the captured join points using the advice construct. Advices have the

following syntax:

 [before | after | <Type> around] (<ParameterList>): <pointcut_expression>
 {… // added behaviour }

The before advice adds the specified behaviour before the execution point

associated to the join points quantified by the pointcut_expression. around advices

replace the original join point with new behaviour and is also capable of executing the

original join point through the proceed construct. after advice adds new behaviour

immediately after the original execution point. The pointcut_expression is an

expression comprising one or several PCDs that can also reuse previous pointcut

definitions. Objects and primitive values specific to the context of the captured join

point are obtained through PCDs this, target and args. Fig. 3 shows the example of a

logging aspect, applied to class Point. In this example, a message is printed on the

screen on every call to methods moveX or moveY. The wildcard in the poincut

expression is used to specify a pattern for the call’s signature to intercept.

public aspect Logging {
 void around(Point obj, int disp) : call(void Point.move*(int)) && target(obj) && args(disp) {
 System.out.println("Move called: target object = " + obj + " Displacement " + disp);
 proceed(obj,disp); // proceed the original call
 }
}

Fig. 3. Example of a dynamic crosscutting aspect

Modularisation of crosscutting concerns is an achievement that contributes to code

reusability. Though it is a necessary condition, it is not a sufficient one, as only the

non case-specific code is reusable. Essential parts of the aspect’s behaviour are the

same in different join points, whereby other parts vary from join point to join point.

Reuse of crosscutting concerns requires the localisation of reusable code within

abstract base aspects that can be reused by concrete sub-aspects. Concrete aspects

contain the variable parts tailored to a specific code base, specifying the case-specific

join points to be captured in the logic declared by the abstract aspect. Abstract aspects

rely on abstract pointcuts and/or marker interfaces. In both cases, the abstract aspect

only refers to abstract pointcut(s) or to the interface(s) and is therefore potentially

reusable. Each concrete implementation entails the creation of one or several concrete

sub-aspects that concretise inherited pointcuts by specifying the set of join points

specific to the system at hand, and by making case-specific types implement the

marker interfaces. In addition, aspects can hold their own state and behaviour.

An aspect is supposed to localise code related to a concern that otherwise would be

crosscutting. A composition phase called weaving enables the placement of aspect

code in multiple non-contiguous points in the system. As an example, the behaviour

specified by the around advice in Fig. 3 is composed in all base classes that call

moveX or moveY methods.

4 Aspect Oriented Collection for Parallel Computing

The aspect oriented collection (Table 1) presented in this paper is based on three

programming abstractions: separable/migrable objects, asynchronous method calls

and object aggregates. By implementing the abstractions through aspects, it becomes

possible to turn a given sequential application (i.e., sequential, domain-specific, object

oriented code) into a parallel application. However, the base code should be amenable

for parallelisation, i.e., the amount of parallelism that can be introduced by the aspect

collection is subject to dependencies in application tasks and data. The composition of

the collection with core functionality requires a set of suitable join points. If these are

not available, the source code must be refactored to expose the necessary join points.

Abstraction Scope Description

Separate Class Separate object - can be placed in any node

Migrable Class Migrable object - can migrate among nodes

Grid1D, Grid2D Class Object aggregate in a 1 or 2d GRID

OneWay Method Spawns a new thread to execute the method

Future Method Spawns a new thread and returns a future

Synchronised Method Implements object-based mutual exclusion

Broadcast/scatter Aggregate Broadcast/scatter method among members

Reduction/gather Aggregate Reduce/gather method among members

Redirection Aggregate Redirect method call to one member (round-robin)

DRedirection Aggregate Redirect call to one member (demand-driven)

Barrier Aggregate Barrier among aggregate members

Table 1. Aspect oriented collection of abstractions for parallel computing

Separable objects are objects that can be placed in remote nodes, selected by the

run-time system. Migrable objects are similar but they can migrate to a different node

after their creation. These two abstractions are specified through the separable and

migrable interfaces using the declare parents AspectJ construct (see section 2).

Asynchronous method calls introduce parallel processing between a client and a

server. The client can proceed while the server executes the requested method.

Asynchronous calls can be OneWay and Future. One-way calls are used when no

return value is required. Fig. 4 shows the synopsis for the use of one-way calls.

public aspect aspectName extends OnewayProtocol {

 protected pointcut onewayMethodExecution(Object servant) : <pointcut definition>;
 protected pointcut join() : <pointcut definition>;
}

Fig. 4. One-way introduction

Pointcut onewayMethodExecution specifies the join points associated to invocation

of methods that run into a new parallel task. Pointcut join can optionally be used to

specify join points where the main thread blocks, waiting for the termination of the

spawned tasks.

Future calls are used for asynchronous calls that require a return value. In typical

situations, a variable stores the result of a given method call, which is used in a later

phase. Instead of blocking in the method call, the client blocks when the variable that

stores the result (i.e., the value returned by the method) is actually accessed. Fig. 5

shows the synopsis for the implementation of futures.

public aspect aspectName extends FutureProtocol {
 protected pointcut futureMethodExecution(Object servant): <pointcut definition>;
 protected pointcut useOfFuture(Object servant): <pointcut definition>;
}

Fig. 5. Future introduction

Pointcut futureMethodExecution indicates the asynchronous method calls and

pointcut useOfFuture defines the join points where the result of the call is needed. The

client blocks on join points captured by useOfFuture, in case the methods defined in

futureMethodExecution have not completed execution.

A richer set of primitives for synchronisation is also available [22], namely Java’s

synchronised methods, barriers and waiting guards, but their description is out of

scope of this paper.

Object aggregates are used to transparently represent a set of object instances in the

core functionality. An object aggregate deploys one or several object instances in each

node (usually one per physical processor/core) and provides additional constructs to

access the members of the aggregate. There are two main interfaces to support

aggregates: Grid1D and Grid2D; they differ only in the way the internal members of

the aggregate are referenced. For instance, a Grid1D aggregate provides two calls:

getAggregateElems() and getAggregateElemId(). Grid1D and Grid2D aggregates are

specified in a way similar to separate objects (i.e., using declare parents).

Calls to the original object instance (i.e., calls in the core functionality) are

replaced by calls to the first object in the aggregate (called the aggregate

representative). These calls can also be broadcasted, scattered and reduced among

members of the aggregate. Broadcasted calls are executed in parallel by all aggregate

members, using the same parameters of the core functionality call. Such call returns

when all broadcasted calls complete. Fig. 6 shows the synopsis for the use of

broadcasted calls. Pointcut broadcastMethodExecution specifies method calls

broadcasted to all aggregate members.

 protected pointcut broadcastMethodExecution(Object servant) : <pointcut definition>;

Fig. 6. Broadcasted calls introduction

Scattered calls (Fig. 7) are similar to broadcasted calls but they provide a

mechanism to specify a different parameter for each call into aggregates member. This

is specified by implementing the abstract method scatter which returns a vector whose

elements correspond to the parameters sent to aggregate members.

 protected Vector scatter(Object callParameter) {
 …
 }
 protected pointcut scatterMethodExecution(Object serv, Object arg) : <pointcut definition>;

Fig. 7. Scattered calls introduction

Reduced calls are also similar to broadcasted calls, but they provide a mechanism

to combine return values of each aggregate member call. This type of calls should be

used instead of a broadcasted call, when the call returns a value. In this case a

reduction function specifies how to combine the returned values of each aggregate

member call (Fig. 8).

 protected Object reduce(Vector returnValues) {
 …
 }
 protected pointcut reduceMethodExecution(Object serv, Object arg) : <pointcut definition>;

Fig. 8. Reduced calls introduction

An additional function (scatter/reduce) performs a combination of scatter and

reduce calls. Other aggregate functions can redirect a call to one aggregate member in

a round-robin fashion (redirectCall) or in a demand driven scheme (dredirectCall).

Broadcasted, scattered and reduced calls are valid just for object aggregates (e.g.,

method calls on objects that implement interfaces Grid1D or Grid2D).

Fig. 9 shows a simple application that illustrates the use of this collection of

aspects. The object Filter in the core functionality (left column of Fig. 9) is replaced

by an aggregate in the parallelisation code (right column, declare parents statement)

and calls to method filter are broadcasted, in parallel, to all aggregate members

(pointcuts broadcastMethodExecution and onewayMethodExecution). Before filter

method execution (advice before() execution(* Filter.filter)), each aggregate member

displays its identification within the aggregate.

Core functionality Parallelisation code

public class Filter {
 void filter() {
 …
 }
…
Filter f = new Filter();

f.filter();

declare parents: Filter implements Grid1D;

before() : execution(* Filter.filter(..)) && … {
 System.out.println(“Called on ” + getAggregateElemId());
}

pointcut broadcastMethodExecution(..) : call(* Filter.filter(..));

pointcut onewayMethodExecution(..) : call(* Filter.filter(..));

Fig. 9. Simple application example

5 Case studies

This section presents two case studies that illustrate the use of the aspect collection to

develop modular parallel applications. The case studies are taken from the parallel

Java Grande Forum Benchmark (JGF) [26]. This benchmark includes several

sequential scientific codes and parallel versions of the same applications, using

mpiJava (a bind of MPI to Java). Their parallel implementations introduce

modifications to the sequential code, intermingling domain specific code with MPI

primitives to achieve a parallel execution. Tangling makes it difficult to understand

the parallelisation strategy as well as the domain specific code. Our approach entails

introducing as fewer modifications as possible to the domain scientific code by

introducing the parallelisation logic through non-invasive composition of the aspects

from the collection. We believe that this approach makes the implementation of the

parallelisation strategy more modular and explicit.

The first case study is a Successive Over-Relation method (SOR), an iterative

algorithm to solve Partial Differential Equations (PDEs). This application is

parallelised using a heartbeat scheme, where each parallel task processes part of the

original matrix. After each iteration, neighbour parallel tasks must exchange

information required for the next iteration.

The second application is a ray-tracer that renders a scene with 64 spheres. It is

parallelised using a farming strategy, where each worker renders a set of image lines.

5.1 Successive Over-Relation

The SOR method is used to iteratively solve a system of PDE equations. The method

successively calculates each new matrix element using its neighbour points. The

sequential Java program of the JGF method is outlined in Fig. 10. This code iterates a

number of pre-defined iterations, given by num_iterations, over matrix G.

In this particular case, the sequential version could limit parallelism due to

dependencies among calculations. To overcome this limitation the SORrun

implementation was changed to use the Red-Black parallel version, becoming more

amenable for parallel execution. This strategy was also followed in the JGF parallel

benchmark to derive the parallel version of the application.

 public class SOR {
 …
 public static final void SORrun(double omega, double G[][], int num_iterations) {
 …
 for (int p=0; p<num_iterations; p++) {
 … // performs one iteration
 }
 …
 }
 }

Fig. 10. JGF SOR sequential code

The sequential code from the JGF does not provide adequate join points to

compose with our collection. Our first step is to use the static crosscutting of AspectJ

to make this code suitable for composition with parallelisation code (Fig. 11). This

code introduces two new methods into the SOR class: the init method (lines 04-05)

initialises the SOR matrix and the iterate method (lines 07-08) performs one iteration.

In lines 10-17 the original SORrun call is redefined to call these methods. An

alternative would be to refactor all the JGF SOR sequential code to use SOR

instances, init and iterate calls.

01 double SOR.MyG[][],
02 static int SOR.omega;
03
04 // initialise matrix
05 public void SOR.init(double G[][]) { MyG = G; }
06
07 // performs one iteration
08 public void SOR.iterate() { SORrun(omega, MyG, 1); }
09
10 // redirects SORrun calls to use SOR instances, init call and iterate calls
11 void around(double omega, double G[][], int iterations) call(* SOR.SORrun(..)) && … {
12 SOR.omega = omega;
13 SOR so = new SOR();
14 so.init(G);
15 for(int i=0; i<iterations; i++)
16 so.iterate();
17 }

Fig. 11. SOR method core functionality

SOR core functionality can be parallelised through a typical heartbeat strategy.

According to this strategy, each parallel task iterates over a subset of the matrix,

periodically exchanging boundary information with its neighbours. The parallelisation

aspect has four parts: 1) creates multiple SOR objects; 2) assigns a subset of the

matrix to each SOR object; 3) performs a call to the iterate method on all the objects

in the set and 4) exchanges matrix lines among objects after each iteration.

The first step creates an aggregate of SOR objects in place of a single object (Fig.

12), by specifying that the SOR class implements the Grid1D interface (line 01 in

Fig. 13). Our system intercepts the creation of SOR instances in the core functionality

and creates one SOR object on each node/CPU.

S S

S
S

S S S C

Client object

Server object

Server creation

C

S

Fig. 12. Transparent creation of several SOR objects

The second step distributes the G matrix among the elements of the aggregate

(Fig. 14). The code for this step intercepts the init method, splits the received matrix

into blocks, using method scatter (line 02 in Fig. 13) and calls the init method on each

object in the set, passing a different block to each element using the scatter method

(line 03 in Fig. 13). Code for the matrix partition (scatter method in line 02 in

Fig. 13) is a bit tricky to implement since there are lines from the matrix that are

replicated in several objects and the first and the last objects receive one line less than

other objects. However, this code is also required in a traditional parallel application

and it is usually tangled with the algorithm core functionality.

13 SOR so = new SOR();

14 so.init(G);

15 for(int i=0; i<iterations; i++)
16 so.iterate();

01 declare parents: SOR implements Grid1D;

02 Vector scatter(Object arg) { … }
03 pointcut scatterMethodExecution(..) :
 call (* SOR.init(..)) && ...;

04 pointcut broadcastMethodExecution(..) :
 call(* SOR.iterate(..)) && …;

05 after() : execution(* SOR.iterate(..)) && … { … }

Fig. 13. Parallelisation of the SOR application using our AOP collection

Fig. 14. Matrix distribution among SOR objects

Third, iterate method calls are executed by all SOR aggregate objects (Fig. 15).

Code for this operation implements the broadcast pointcut (line 04 in Fig. 13).

iterate

iterate

iterate

iterate

iterate

iterate

iterate

iterate

Fig. 15. Iteration distribution among SOR objects

The last step exchanges matrix boundary lines among SOR objects, after an iterate

method execution (Fig. 16 and line 05 in Fig. 13).

Iterate

(after)

Iterate

(after)

Fig. 16. Boundary exchange among SOR objects

Init (G)

Init (MyG)

Init (MyG)

Init (MyG)

Init (G)

Init (MyG)

Init (MyG)

Init (MyG)

5.2 RayTracer

The JGF RayTrace renders an image of sixty-four spheres. A simplified version of the

JGF sequential code is provided in Fig. 17. Method JGFinitialise initialises the scene

to be rendered and method JGFapplication renders the scene. The class Interval

allows the specification of a subset of the lines to be rendered.

 public class JGFRayTracerBench extends RayTracer … {
 …
 public void JGFinitialise(){
 …
 scene = createScene(); // create the objects to be rendered
 setScene(scene); // get lights, objects etc. from scene.
 …
 }

 public void JGFapplication() {
 …
 // Set interval to be rendered to the whole picture
 Interval interval = new Interval(0,width,height,0,height,1);

 render(interval); // Do the business!
 …
 }
 }

Fig. 17. JGF RayTracer sequential code

The parallelisation aspect for this benchmark (Fig. 18) declares the class

JGFRayTracerBench to implement the Grid1D interface (line 01). Calls to

JGFinitialise are broadcasted to all aggregate members (line 03) and a call to the

render method is scattered throughout aggregate elements. The scatter function builds

a vector with the arguments for each call to one aggregate member. This is the same

strategy followed in the JGF parallel version of this application.

01 declare parents: RayTracerBench implements Grid1D;
02
03 pointcut broadcastMethodExecution(Object servant) : call(* *. JGFinitialise(..)) && … ;
04
05 Vector scatter(Object arg) { // calculates the parameters of each call
06 Vector v = new Vector();
07 Interval in = (Interval) arg;
08 …
09 for(int i=0; i<workers; i++) {
10 Interval inp = new Interval(/* sub-interval range */);
11 v.add(inp); // saves the range of each worker
12 }
13 return(v);
14 }
15
16 pointcut scatterMethodExecution(Object serv, Object arg) : call (* *.render(..)) && … ;
17

Fig. 18. JGF RayTracer parallelisation aspect

6 Performance Results

This section presents a performance evaluation of the proposed aspect collection. The

results presented in this section were measured on an unloaded cluster of 8 dual-Xeon

3.2 GHz machines, with hyper-threading enabled, connected through a 1 Gbit

Ethernet. This cluster runs Rocks 4.0.0 and Sun Java JDK 1.5.0_3 in client mode.

Presented execution times are the median of five executions. Sequential execution

times were measured on JGF versions where our parallelisation aspects were

unplugged. Speed-up values are relative to these sequential execution times.

Fig. 19 presents the execution time for a SOR (4000x4000 matrix) and a RayTracer

(500x500 image) on a single machine. With two aggregate members the ray tracer

presents better speed-ups, due to less communication required among tasks. Both

applications can benefit from hyper-threading (i.e., using more than two aggregate

members per node). In this case, higher gains in the SOR can be due to stronger

dependencies among matrix elements calculations; leading to higher parallelism when

the user performs an explicit parallelisation (e.g., provides more independent tasks, by

means of a higher number of aggregate members).

Fig. 20 presents execution times on 8 cluster nodes. Also in this case the ray tracer

presents better speed-ups, due to less communication among tasks. Note that using

more than 16 aggregate members leads to a smaller performance improvement, since

this additional gain is achieved by using multi-threading capabilities of these

processors.

Execution times compared to equivalent Java versions (not shown), using MPP

(message passing library built on top of Java nio) and Java Threads are within 5%

execution time. This low overhead is due to static nature of AspectJ weaving, which

can inline most aspect code into the core classes. The aspect overhead results from

additional data structures and from some code that can not be in-lined in the original

and is placed in new classes. Scatter and reduce functions can also be an additional

source of overhead, since they may require additional data copies.

Fig. 19. Execution time and speed-ups for a SOR (at left) a RayTracer (at right).

0

20

40

60

80

1 2 3 4

Aggregate Members

E
x
e
c
u
ti
o
n
 T

im
e
 (
s
)

.

0

1

2

3

4

S
p
e
e
d
-U

p

.

0

25

50

75

100

1 2 3 4

Aggregate Members

E
x
e
c
u
ti
o
n
 T

im
e
 (
s
)

 .
.

0

1

2

3

4

S
p
e
e
d
-U

p

.

Fig. 20. Execution times and speed-ups for a SOR (at left) and a RayTracer (at right)

7 Conclusion

This paper presents a collection of aspects for parallel computing that requires fewer

and smaller changes to parallelise sequential applications than current alternatives. It

yields parallel object-oriented scientific applications that are more modular and easier

to reuse. The collection was successfully applied to several JGF applications.

One of the main drawbacks of the approach stems from the non object-oriented

nature of current scientific applications, as these do not provide adequate join point

leverage to compose the sequential code with our collection. However, this limitation

is expected to have less impact in the future, as scientific code becomes more object

oriented. We can partially overcome this limitation by using the static crosscutting

mechanisms of AspectJ to introduce the appropriate join points (as in the SOR

application).

A second limitation is when the sequential code is not amenable for parallelisation.

One solution is to refactor the core functionality in order to obtain a more fine grained

decomposition. As an example, in the RayTracer example we could have a method

renderLine which would provide more flexibility to derive the parallel version of

RayTracer.

Current work includes the extension of this collection to support more orthogonal

compositions of broadcast, scatter and reduce pointcuts; and a more efficient

implementation of these pointcuts on distributed memory machines (e.g., using MPI

collective primitives).

References

1. S. Matsuoka, K. Taura, A. Yonezawa: Highly Efficient and Encapsulated Re-use of

Synchronisation Code in Concurrent Object-Oriented Languages, OOPSLA ‘93, Oct. 1993.

0

10

20

30

40

50

60

70

80

0 4 8 12 16 20 24 28 32

Aggregate Members

E
x
e
c
u
ti
o
n
 T

im
e
 (
s
)

.

0

4

8

12

16

20

24

28

32

S
p
e
e
d
-U

p

.

0

13

26

39

52

65

78

91

104

0 4 8 12 16 20 24 28 32

Aggregate Members

E
x
e
c
u
ti
o
n
 T

im
e
 (
s
)

 .

0

4

8

12

16

20

24

28

32

S
p
e
e
d
-U

p

 .

2. B. Harbulot, J. Gurd.. Using AspectJ to Separate Concerns in Parallel Scientific Java Code,

ACM AOSD’04, Lancaster, UK, March 2004.

3. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, J. Irwin.

Aspect Oriented Programming, ECOOP ‘97, June 1997.

4. S. Soares, E. Loureiro, P. Borba. Implementing Distribution and Persistence Aspects With

AspectJ, OOPSLA ’02, November 2002.

5. M. Ceccato, P. Tonella. Adding Distribution to Existing Applications by means of Aspect

Oriented Programming, 4th IEEE SCAM, September 2004.

6. E. Tilevich, S. Urbanski, Y. Smaragdakis, M. Fleury. Aspectizing Server-Side Distribution,

IEEE ASE 2003, Montreal, Canada, October 2003.

7. C. Zhang, H. Jacobsen. Resolving Feature Convolution in Middleware Systems,

OOPSLA’04, Vancouver, Canada, October 2004.

8. A. Yonezawa, M. Tokoro, ed, Object-Oriented Concurrent Programming, MIT Press, 1987.

9. A. Chien, V. Karamcheti, J. Plevyak, X. Zhang, Concurrent Aggregates (CA) Language

Report - Version 2.0, TR, Dep. Computer Science, University of Illinois, UC, Nov., 1993

10. G. Wilson (Ed). Parallel Programming Using C++, MIT Press, 1996.

11. M. Philippsen. A Survey of Concurrent Object-Oriented Languages, Concurrency: Practice

and Experience, 10(12), August 2000.

12. M. Factor, A. Schuster, K. Shagin. A Distributed Runtime for Java: Yesterday and Today,

IEEE IPDPS’04, New Mexico, April 2004.

13. F. Baude , L. Baduel, D. Caromel, A. Contes, F. Huet, M. Morel, R. Quilici, Programming,

Composing Deploying for the Grid, in GRID COMPUTING: Software Environments and

Tools, Jose C. Cunha and Omer F. Rana (Eds), Springer Verlag, January 2006.

14. J. Maassen, T. Kielmann and H. Bal, GMI: Flexible and Efficient Group Method

Invocation for Parallel Programming, Sixth Workshop on Languages, Compilers, and Run-

time Systems for Scalable Computers (LCR-02), Washington DC, March 2002.

15. L. Baduel, F. Baude, D. Caromel, Object-Oriented SPMD, International Symposium on

Cluster Computing and the Grid (CCGrid2005), Cardiff, May, 2005.

16. J. Darlington, Y. Guo, H. To, J. Yang. Parallel Skeletons for Structured Composition,

PPoPP’95, Santa Clara, USA, 1995.

17. P. Trinder, K. Hammond, H. Loidl, S. Jones. Algorithm + Strategy = Parallelism, Journal of

Functional Programming, 8(1), January 1998.

18. F. Rabhi, S. Gorlatch (ed): Patterns and Skeletons for Parallel and Distributed Computing,

Springer, 2003.

19. J. Fernando, J. Sobral, A. Proenca. JaSkel: A Java Skeleton-Based Framework for

Structured Cluster and Grid Computing, CCGrid'2006, Singapore, May 2006

20. K. Tan, D. Szafron, J. Schaeffer, J. Anvik, S. MacDonald. Using Generative Design

Patterns to Generate Parallel Code for a Distributed Memory Environment, PPoPP'03, San

Diego, California, USA, June, 2003.

21. J. Sobral, Incrementally Developing Parallel Applications with AspectJ, IEEE IPDPS’06,

Rhodes, Greece, April 2006

22. C. Cunha, J. Sobral, M. Monteiro, M., Reusable Aspect-Oriented Implementations of

Concurrency Patterns and Mechanisms, AOSD’06, Bonn, Germany, March 2006.

23. OpenMP architecture review board, OpenMP Application Program Interface, Version 2.5,

May 2005, www.openmp.org.

24. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An Overview of

AspectJ. ECOOP 2001, Budapest, Hungary, June 2001.

25. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, Getting Started

with AspectJ. Communications of the ACM, 44(10), October 2001.

26. A. Smith, J. Bull, J. Obdrzálek: A Parallel Java Grande Benchmark Suite, Supercomputing

(SC’01), November 2001.

